1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "exec/page-protection.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include "exec/translation-block.h" 23 #include "hw/irq.h" 24 #include "system/cpu-timers.h" 25 #include "system/kvm.h" 26 #include "system/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 369 { 370 ARMCPU *cpu = env_archcpu(env); 371 372 raw_write(env, ri, value); 373 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 374 } 375 376 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 377 { 378 ARMCPU *cpu = env_archcpu(env); 379 380 if (raw_read(env, ri) != value) { 381 /* 382 * Unlike real hardware the qemu TLB uses virtual addresses, 383 * not modified virtual addresses, so this causes a TLB flush. 384 */ 385 tlb_flush(CPU(cpu)); 386 raw_write(env, ri, value); 387 } 388 } 389 390 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 391 uint64_t value) 392 { 393 ARMCPU *cpu = env_archcpu(env); 394 395 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 396 && !extended_addresses_enabled(env)) { 397 /* 398 * For VMSA (when not using the LPAE long descriptor page table 399 * format) this register includes the ASID, so do a TLB flush. 400 * For PMSA it is purely a process ID and no action is needed. 401 */ 402 tlb_flush(CPU(cpu)); 403 } 404 raw_write(env, ri, value); 405 } 406 407 int alle1_tlbmask(CPUARMState *env) 408 { 409 /* 410 * Note that the 'ALL' scope must invalidate both stage 1 and 411 * stage 2 translations, whereas most other scopes only invalidate 412 * stage 1 translations. 413 * 414 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 415 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 416 */ 417 return (ARMMMUIdxBit_E10_1 | 418 ARMMMUIdxBit_E10_1_PAN | 419 ARMMMUIdxBit_E10_0 | 420 ARMMMUIdxBit_Stage2 | 421 ARMMMUIdxBit_Stage2_S); 422 } 423 424 static const ARMCPRegInfo cp_reginfo[] = { 425 /* 426 * Define the secure and non-secure FCSE identifier CP registers 427 * separately because there is no secure bank in V8 (no _EL3). This allows 428 * the secure register to be properly reset and migrated. There is also no 429 * v8 EL1 version of the register so the non-secure instance stands alone. 430 */ 431 { .name = "FCSEIDR", 432 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 433 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 434 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 435 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 436 { .name = "FCSEIDR_S", 437 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 438 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 439 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 440 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 441 /* 442 * Define the secure and non-secure context identifier CP registers 443 * separately because there is no secure bank in V8 (no _EL3). This allows 444 * the secure register to be properly reset and migrated. In the 445 * non-secure case, the 32-bit register will have reset and migration 446 * disabled during registration as it is handled by the 64-bit instance. 447 */ 448 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 449 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 450 .access = PL1_RW, .accessfn = access_tvm_trvm, 451 .fgt = FGT_CONTEXTIDR_EL1, 452 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 453 .secure = ARM_CP_SECSTATE_NS, 454 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 455 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 456 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 457 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 458 .access = PL1_RW, .accessfn = access_tvm_trvm, 459 .secure = ARM_CP_SECSTATE_S, 460 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 461 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 462 }; 463 464 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 465 /* 466 * NB: Some of these registers exist in v8 but with more precise 467 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 468 */ 469 /* MMU Domain access control / MPU write buffer control */ 470 { .name = "DACR", 471 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 472 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 473 .writefn = dacr_write, .raw_writefn = raw_write, 474 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 475 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 476 /* 477 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 478 * For v6 and v5, these mappings are overly broad. 479 */ 480 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 481 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 482 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 483 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 484 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 485 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 486 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 487 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 488 /* Cache maintenance ops; some of this space may be overridden later. */ 489 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 490 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 491 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 492 }; 493 494 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 495 /* 496 * Not all pre-v6 cores implemented this WFI, so this is slightly 497 * over-broad. 498 */ 499 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 500 .access = PL1_W, .type = ARM_CP_WFI }, 501 }; 502 503 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 504 /* 505 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 506 * is UNPREDICTABLE; we choose to NOP as most implementations do). 507 */ 508 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 509 .access = PL1_W, .type = ARM_CP_WFI }, 510 /* 511 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 512 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 513 * OMAPCP will override this space. 514 */ 515 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 516 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 517 .resetvalue = 0 }, 518 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 519 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 520 .resetvalue = 0 }, 521 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 522 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 523 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 524 .resetvalue = 0 }, 525 /* 526 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 527 * implementing it as RAZ means the "debug architecture version" bits 528 * will read as a reserved value, which should cause Linux to not try 529 * to use the debug hardware. 530 */ 531 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 532 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 533 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 534 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 535 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 536 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 537 }; 538 539 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 uint32_t mask = 0; 543 544 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 545 if (!arm_feature(env, ARM_FEATURE_V8)) { 546 /* 547 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 548 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 549 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 550 */ 551 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 552 /* VFP coprocessor: cp10 & cp11 [23:20] */ 553 mask |= R_CPACR_ASEDIS_MASK | 554 R_CPACR_D32DIS_MASK | 555 R_CPACR_CP11_MASK | 556 R_CPACR_CP10_MASK; 557 558 if (!arm_feature(env, ARM_FEATURE_NEON)) { 559 /* ASEDIS [31] bit is RAO/WI */ 560 value |= R_CPACR_ASEDIS_MASK; 561 } 562 563 /* 564 * VFPv3 and upwards with NEON implement 32 double precision 565 * registers (D0-D31). 566 */ 567 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 568 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 569 value |= R_CPACR_D32DIS_MASK; 570 } 571 } 572 value &= mask; 573 } 574 575 /* 576 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 577 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 578 */ 579 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 580 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 581 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 582 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 583 } 584 585 env->cp15.cpacr_el1 = value; 586 } 587 588 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 589 { 590 /* 591 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 592 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 593 */ 594 uint64_t value = env->cp15.cpacr_el1; 595 596 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 597 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 598 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 599 } 600 return value; 601 } 602 603 604 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 605 { 606 /* 607 * Call cpacr_write() so that we reset with the correct RAO bits set 608 * for our CPU features. 609 */ 610 cpacr_write(env, ri, 0); 611 } 612 613 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 614 bool isread) 615 { 616 if (arm_feature(env, ARM_FEATURE_V8)) { 617 /* Check if CPACR accesses are to be trapped to EL2 */ 618 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 619 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 620 return CP_ACCESS_TRAP_EL2; 621 /* Check if CPACR accesses are to be trapped to EL3 */ 622 } else if (arm_current_el(env) < 3 && 623 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 624 return CP_ACCESS_TRAP_EL3; 625 } 626 } 627 628 return CP_ACCESS_OK; 629 } 630 631 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 632 bool isread) 633 { 634 /* Check if CPTR accesses are set to trap to EL3 */ 635 if (arm_current_el(env) == 2 && 636 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 637 return CP_ACCESS_TRAP_EL3; 638 } 639 640 return CP_ACCESS_OK; 641 } 642 643 static const ARMCPRegInfo v6_cp_reginfo[] = { 644 /* prefetch by MVA in v6, NOP in v7 */ 645 { .name = "MVA_prefetch", 646 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 647 .access = PL1_W, .type = ARM_CP_NOP }, 648 /* 649 * We need to break the TB after ISB to execute self-modifying code 650 * correctly and also to take any pending interrupts immediately. 651 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 652 */ 653 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 654 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 655 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 656 .access = PL0_W, .type = ARM_CP_NOP }, 657 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 658 .access = PL0_W, .type = ARM_CP_NOP }, 659 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 660 .access = PL1_RW, .accessfn = access_tvm_trvm, 661 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 662 offsetof(CPUARMState, cp15.ifar_ns) }, 663 .resetvalue = 0, }, 664 /* 665 * Watchpoint Fault Address Register : should actually only be present 666 * for 1136, 1176, 11MPCore. 667 */ 668 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 669 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 670 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 671 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 672 .fgt = FGT_CPACR_EL1, 673 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 674 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 675 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 676 }; 677 678 typedef struct pm_event { 679 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 680 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 681 bool (*supported)(CPUARMState *); 682 /* 683 * Retrieve the current count of the underlying event. The programmed 684 * counters hold a difference from the return value from this function 685 */ 686 uint64_t (*get_count)(CPUARMState *); 687 /* 688 * Return how many nanoseconds it will take (at a minimum) for count events 689 * to occur. A negative value indicates the counter will never overflow, or 690 * that the counter has otherwise arranged for the overflow bit to be set 691 * and the PMU interrupt to be raised on overflow. 692 */ 693 int64_t (*ns_per_count)(uint64_t); 694 } pm_event; 695 696 static bool event_always_supported(CPUARMState *env) 697 { 698 return true; 699 } 700 701 static uint64_t swinc_get_count(CPUARMState *env) 702 { 703 /* 704 * SW_INCR events are written directly to the pmevcntr's by writes to 705 * PMSWINC, so there is no underlying count maintained by the PMU itself 706 */ 707 return 0; 708 } 709 710 static int64_t swinc_ns_per(uint64_t ignored) 711 { 712 return -1; 713 } 714 715 /* 716 * Return the underlying cycle count for the PMU cycle counters. If we're in 717 * usermode, simply return 0. 718 */ 719 static uint64_t cycles_get_count(CPUARMState *env) 720 { 721 #ifndef CONFIG_USER_ONLY 722 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 723 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 724 #else 725 return cpu_get_host_ticks(); 726 #endif 727 } 728 729 #ifndef CONFIG_USER_ONLY 730 static int64_t cycles_ns_per(uint64_t cycles) 731 { 732 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 733 } 734 735 static bool instructions_supported(CPUARMState *env) 736 { 737 /* Precise instruction counting */ 738 return icount_enabled() == ICOUNT_PRECISE; 739 } 740 741 static uint64_t instructions_get_count(CPUARMState *env) 742 { 743 assert(icount_enabled() == ICOUNT_PRECISE); 744 return (uint64_t)icount_get_raw(); 745 } 746 747 static int64_t instructions_ns_per(uint64_t icount) 748 { 749 assert(icount_enabled() == ICOUNT_PRECISE); 750 return icount_to_ns((int64_t)icount); 751 } 752 #endif 753 754 static bool pmuv3p1_events_supported(CPUARMState *env) 755 { 756 /* For events which are supported in any v8.1 PMU */ 757 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 758 } 759 760 static bool pmuv3p4_events_supported(CPUARMState *env) 761 { 762 /* For events which are supported in any v8.1 PMU */ 763 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 764 } 765 766 static uint64_t zero_event_get_count(CPUARMState *env) 767 { 768 /* For events which on QEMU never fire, so their count is always zero */ 769 return 0; 770 } 771 772 static int64_t zero_event_ns_per(uint64_t cycles) 773 { 774 /* An event which never fires can never overflow */ 775 return -1; 776 } 777 778 static const pm_event pm_events[] = { 779 { .number = 0x000, /* SW_INCR */ 780 .supported = event_always_supported, 781 .get_count = swinc_get_count, 782 .ns_per_count = swinc_ns_per, 783 }, 784 #ifndef CONFIG_USER_ONLY 785 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 786 .supported = instructions_supported, 787 .get_count = instructions_get_count, 788 .ns_per_count = instructions_ns_per, 789 }, 790 { .number = 0x011, /* CPU_CYCLES, Cycle */ 791 .supported = event_always_supported, 792 .get_count = cycles_get_count, 793 .ns_per_count = cycles_ns_per, 794 }, 795 #endif 796 { .number = 0x023, /* STALL_FRONTEND */ 797 .supported = pmuv3p1_events_supported, 798 .get_count = zero_event_get_count, 799 .ns_per_count = zero_event_ns_per, 800 }, 801 { .number = 0x024, /* STALL_BACKEND */ 802 .supported = pmuv3p1_events_supported, 803 .get_count = zero_event_get_count, 804 .ns_per_count = zero_event_ns_per, 805 }, 806 { .number = 0x03c, /* STALL */ 807 .supported = pmuv3p4_events_supported, 808 .get_count = zero_event_get_count, 809 .ns_per_count = zero_event_ns_per, 810 }, 811 }; 812 813 /* 814 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 815 * events (i.e. the statistical profiling extension), this implementation 816 * should first be updated to something sparse instead of the current 817 * supported_event_map[] array. 818 */ 819 #define MAX_EVENT_ID 0x3c 820 #define UNSUPPORTED_EVENT UINT16_MAX 821 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 822 823 /* 824 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 825 * of ARM event numbers to indices in our pm_events array. 826 * 827 * Note: Events in the 0x40XX range are not currently supported. 828 */ 829 void pmu_init(ARMCPU *cpu) 830 { 831 unsigned int i; 832 833 /* 834 * Empty supported_event_map and cpu->pmceid[01] before adding supported 835 * events to them 836 */ 837 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 838 supported_event_map[i] = UNSUPPORTED_EVENT; 839 } 840 cpu->pmceid0 = 0; 841 cpu->pmceid1 = 0; 842 843 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 844 const pm_event *cnt = &pm_events[i]; 845 assert(cnt->number <= MAX_EVENT_ID); 846 /* We do not currently support events in the 0x40xx range */ 847 assert(cnt->number <= 0x3f); 848 849 if (cnt->supported(&cpu->env)) { 850 supported_event_map[cnt->number] = i; 851 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 852 if (cnt->number & 0x20) { 853 cpu->pmceid1 |= event_mask; 854 } else { 855 cpu->pmceid0 |= event_mask; 856 } 857 } 858 } 859 } 860 861 /* 862 * Check at runtime whether a PMU event is supported for the current machine 863 */ 864 static bool event_supported(uint16_t number) 865 { 866 if (number > MAX_EVENT_ID) { 867 return false; 868 } 869 return supported_event_map[number] != UNSUPPORTED_EVENT; 870 } 871 872 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 873 bool isread) 874 { 875 /* 876 * Performance monitor registers user accessibility is controlled 877 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 878 * trapping to EL2 or EL3 for other accesses. 879 */ 880 int el = arm_current_el(env); 881 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 882 883 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 884 return CP_ACCESS_TRAP; 885 } 886 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 887 return CP_ACCESS_TRAP_EL2; 888 } 889 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 890 return CP_ACCESS_TRAP_EL3; 891 } 892 893 return CP_ACCESS_OK; 894 } 895 896 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 897 const ARMCPRegInfo *ri, 898 bool isread) 899 { 900 /* ER: event counter read trap control */ 901 if (arm_feature(env, ARM_FEATURE_V8) 902 && arm_current_el(env) == 0 903 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 904 && isread) { 905 return CP_ACCESS_OK; 906 } 907 908 return pmreg_access(env, ri, isread); 909 } 910 911 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 912 const ARMCPRegInfo *ri, 913 bool isread) 914 { 915 /* SW: software increment write trap control */ 916 if (arm_feature(env, ARM_FEATURE_V8) 917 && arm_current_el(env) == 0 918 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 919 && !isread) { 920 return CP_ACCESS_OK; 921 } 922 923 return pmreg_access(env, ri, isread); 924 } 925 926 static CPAccessResult pmreg_access_selr(CPUARMState *env, 927 const ARMCPRegInfo *ri, 928 bool isread) 929 { 930 /* ER: event counter read trap control */ 931 if (arm_feature(env, ARM_FEATURE_V8) 932 && arm_current_el(env) == 0 933 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 934 return CP_ACCESS_OK; 935 } 936 937 return pmreg_access(env, ri, isread); 938 } 939 940 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 941 const ARMCPRegInfo *ri, 942 bool isread) 943 { 944 /* CR: cycle counter read trap control */ 945 if (arm_feature(env, ARM_FEATURE_V8) 946 && arm_current_el(env) == 0 947 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 948 && isread) { 949 return CP_ACCESS_OK; 950 } 951 952 return pmreg_access(env, ri, isread); 953 } 954 955 /* 956 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 957 * We use these to decide whether we need to wrap a write to MDCR_EL2 958 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 959 */ 960 #define MDCR_EL2_PMU_ENABLE_BITS \ 961 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 962 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 963 964 /* 965 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 966 * the current EL, security state, and register configuration. 967 */ 968 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 969 { 970 uint64_t filter; 971 bool e, p, u, nsk, nsu, nsh, m; 972 bool enabled, prohibited = false, filtered; 973 bool secure = arm_is_secure(env); 974 int el = arm_current_el(env); 975 uint64_t mdcr_el2; 976 uint8_t hpmn; 977 978 /* 979 * We might be called for M-profile cores where MDCR_EL2 doesn't 980 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 981 * must be before we read that value. 982 */ 983 if (!arm_feature(env, ARM_FEATURE_PMU)) { 984 return false; 985 } 986 987 mdcr_el2 = arm_mdcr_el2_eff(env); 988 hpmn = mdcr_el2 & MDCR_HPMN; 989 990 if (!arm_feature(env, ARM_FEATURE_EL2) || 991 (counter < hpmn || counter == 31)) { 992 e = env->cp15.c9_pmcr & PMCRE; 993 } else { 994 e = mdcr_el2 & MDCR_HPME; 995 } 996 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 997 998 /* Is event counting prohibited? */ 999 if (el == 2 && (counter < hpmn || counter == 31)) { 1000 prohibited = mdcr_el2 & MDCR_HPMD; 1001 } 1002 if (secure) { 1003 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1004 } 1005 1006 if (counter == 31) { 1007 /* 1008 * The cycle counter defaults to running. PMCR.DP says "disable 1009 * the cycle counter when event counting is prohibited". 1010 * Some MDCR bits disable the cycle counter specifically. 1011 */ 1012 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1013 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1014 if (secure) { 1015 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1016 } 1017 if (el == 2) { 1018 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1019 } 1020 } 1021 } 1022 1023 if (counter == 31) { 1024 filter = env->cp15.pmccfiltr_el0; 1025 } else { 1026 filter = env->cp15.c14_pmevtyper[counter]; 1027 } 1028 1029 p = filter & PMXEVTYPER_P; 1030 u = filter & PMXEVTYPER_U; 1031 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1032 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1033 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1034 m = arm_el_is_aa64(env, 1) && 1035 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1036 1037 if (el == 0) { 1038 filtered = secure ? u : u != nsu; 1039 } else if (el == 1) { 1040 filtered = secure ? p : p != nsk; 1041 } else if (el == 2) { 1042 filtered = !nsh; 1043 } else { /* EL3 */ 1044 filtered = m != p; 1045 } 1046 1047 if (counter != 31) { 1048 /* 1049 * If not checking PMCCNTR, ensure the counter is setup to an event we 1050 * support 1051 */ 1052 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1053 if (!event_supported(event)) { 1054 return false; 1055 } 1056 } 1057 1058 return enabled && !prohibited && !filtered; 1059 } 1060 1061 static void pmu_update_irq(CPUARMState *env) 1062 { 1063 ARMCPU *cpu = env_archcpu(env); 1064 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1065 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1066 } 1067 1068 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1069 { 1070 /* 1071 * Return true if the clock divider is enabled and the cycle counter 1072 * is supposed to tick only once every 64 clock cycles. This is 1073 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1074 * (64-bit) cycle counter PMCR.D has no effect. 1075 */ 1076 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1077 } 1078 1079 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1080 { 1081 /* Return true if the specified event counter is configured to be 64 bit */ 1082 1083 /* This isn't intended to be used with the cycle counter */ 1084 assert(counter < 31); 1085 1086 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1087 return false; 1088 } 1089 1090 if (arm_feature(env, ARM_FEATURE_EL2)) { 1091 /* 1092 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1093 * current security state, so we don't use arm_mdcr_el2_eff() here. 1094 */ 1095 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1096 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1097 1098 if (counter >= hpmn) { 1099 return hlp; 1100 } 1101 } 1102 return env->cp15.c9_pmcr & PMCRLP; 1103 } 1104 1105 /* 1106 * Ensure c15_ccnt is the guest-visible count so that operations such as 1107 * enabling/disabling the counter or filtering, modifying the count itself, 1108 * etc. can be done logically. This is essentially a no-op if the counter is 1109 * not enabled at the time of the call. 1110 */ 1111 static void pmccntr_op_start(CPUARMState *env) 1112 { 1113 uint64_t cycles = cycles_get_count(env); 1114 1115 if (pmu_counter_enabled(env, 31)) { 1116 uint64_t eff_cycles = cycles; 1117 if (pmccntr_clockdiv_enabled(env)) { 1118 eff_cycles /= 64; 1119 } 1120 1121 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1122 1123 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1124 1ull << 63 : 1ull << 31; 1125 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1126 env->cp15.c9_pmovsr |= (1ULL << 31); 1127 pmu_update_irq(env); 1128 } 1129 1130 env->cp15.c15_ccnt = new_pmccntr; 1131 } 1132 env->cp15.c15_ccnt_delta = cycles; 1133 } 1134 1135 /* 1136 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1137 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1138 * pmccntr_op_start. 1139 */ 1140 static void pmccntr_op_finish(CPUARMState *env) 1141 { 1142 if (pmu_counter_enabled(env, 31)) { 1143 #ifndef CONFIG_USER_ONLY 1144 /* Calculate when the counter will next overflow */ 1145 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1146 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1147 remaining_cycles = (uint32_t)remaining_cycles; 1148 } 1149 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1150 1151 if (overflow_in > 0) { 1152 int64_t overflow_at; 1153 1154 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1155 overflow_in, &overflow_at)) { 1156 ARMCPU *cpu = env_archcpu(env); 1157 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1158 } 1159 } 1160 #endif 1161 1162 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1163 if (pmccntr_clockdiv_enabled(env)) { 1164 prev_cycles /= 64; 1165 } 1166 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1167 } 1168 } 1169 1170 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1171 { 1172 1173 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1174 uint64_t count = 0; 1175 if (event_supported(event)) { 1176 uint16_t event_idx = supported_event_map[event]; 1177 count = pm_events[event_idx].get_count(env); 1178 } 1179 1180 if (pmu_counter_enabled(env, counter)) { 1181 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1182 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1183 1ULL << 63 : 1ULL << 31; 1184 1185 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1186 env->cp15.c9_pmovsr |= (1 << counter); 1187 pmu_update_irq(env); 1188 } 1189 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1190 } 1191 env->cp15.c14_pmevcntr_delta[counter] = count; 1192 } 1193 1194 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1195 { 1196 if (pmu_counter_enabled(env, counter)) { 1197 #ifndef CONFIG_USER_ONLY 1198 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1199 uint16_t event_idx = supported_event_map[event]; 1200 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1201 int64_t overflow_in; 1202 1203 if (!pmevcntr_is_64_bit(env, counter)) { 1204 delta = (uint32_t)delta; 1205 } 1206 overflow_in = pm_events[event_idx].ns_per_count(delta); 1207 1208 if (overflow_in > 0) { 1209 int64_t overflow_at; 1210 1211 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1212 overflow_in, &overflow_at)) { 1213 ARMCPU *cpu = env_archcpu(env); 1214 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1215 } 1216 } 1217 #endif 1218 1219 env->cp15.c14_pmevcntr_delta[counter] -= 1220 env->cp15.c14_pmevcntr[counter]; 1221 } 1222 } 1223 1224 void pmu_op_start(CPUARMState *env) 1225 { 1226 unsigned int i; 1227 pmccntr_op_start(env); 1228 for (i = 0; i < pmu_num_counters(env); i++) { 1229 pmevcntr_op_start(env, i); 1230 } 1231 } 1232 1233 void pmu_op_finish(CPUARMState *env) 1234 { 1235 unsigned int i; 1236 pmccntr_op_finish(env); 1237 for (i = 0; i < pmu_num_counters(env); i++) { 1238 pmevcntr_op_finish(env, i); 1239 } 1240 } 1241 1242 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1243 { 1244 pmu_op_start(&cpu->env); 1245 } 1246 1247 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1248 { 1249 pmu_op_finish(&cpu->env); 1250 } 1251 1252 void arm_pmu_timer_cb(void *opaque) 1253 { 1254 ARMCPU *cpu = opaque; 1255 1256 /* 1257 * Update all the counter values based on the current underlying counts, 1258 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1259 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1260 * counter may expire. 1261 */ 1262 pmu_op_start(&cpu->env); 1263 pmu_op_finish(&cpu->env); 1264 } 1265 1266 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1267 uint64_t value) 1268 { 1269 pmu_op_start(env); 1270 1271 if (value & PMCRC) { 1272 /* The counter has been reset */ 1273 env->cp15.c15_ccnt = 0; 1274 } 1275 1276 if (value & PMCRP) { 1277 unsigned int i; 1278 for (i = 0; i < pmu_num_counters(env); i++) { 1279 env->cp15.c14_pmevcntr[i] = 0; 1280 } 1281 } 1282 1283 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1284 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1285 1286 pmu_op_finish(env); 1287 } 1288 1289 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1290 { 1291 uint64_t pmcr = env->cp15.c9_pmcr; 1292 1293 /* 1294 * If EL2 is implemented and enabled for the current security state, reads 1295 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1296 */ 1297 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1298 pmcr &= ~PMCRN_MASK; 1299 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1300 } 1301 1302 return pmcr; 1303 } 1304 1305 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1306 uint64_t value) 1307 { 1308 unsigned int i; 1309 uint64_t overflow_mask, new_pmswinc; 1310 1311 for (i = 0; i < pmu_num_counters(env); i++) { 1312 /* Increment a counter's count iff: */ 1313 if ((value & (1 << i)) && /* counter's bit is set */ 1314 /* counter is enabled and not filtered */ 1315 pmu_counter_enabled(env, i) && 1316 /* counter is SW_INCR */ 1317 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1318 pmevcntr_op_start(env, i); 1319 1320 /* 1321 * Detect if this write causes an overflow since we can't predict 1322 * PMSWINC overflows like we can for other events 1323 */ 1324 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1325 1326 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1327 1ULL << 63 : 1ULL << 31; 1328 1329 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1330 env->cp15.c9_pmovsr |= (1 << i); 1331 pmu_update_irq(env); 1332 } 1333 1334 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1335 1336 pmevcntr_op_finish(env, i); 1337 } 1338 } 1339 } 1340 1341 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1342 { 1343 uint64_t ret; 1344 pmccntr_op_start(env); 1345 ret = env->cp15.c15_ccnt; 1346 pmccntr_op_finish(env); 1347 return ret; 1348 } 1349 1350 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1351 uint64_t value) 1352 { 1353 /* 1354 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1355 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1356 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1357 * accessed. 1358 */ 1359 env->cp15.c9_pmselr = value & 0x1f; 1360 } 1361 1362 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1363 uint64_t value) 1364 { 1365 pmccntr_op_start(env); 1366 env->cp15.c15_ccnt = value; 1367 pmccntr_op_finish(env); 1368 } 1369 1370 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1371 uint64_t value) 1372 { 1373 uint64_t cur_val = pmccntr_read(env, NULL); 1374 1375 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1376 } 1377 1378 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1379 uint64_t value) 1380 { 1381 pmccntr_op_start(env); 1382 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1383 pmccntr_op_finish(env); 1384 } 1385 1386 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1387 uint64_t value) 1388 { 1389 pmccntr_op_start(env); 1390 /* M is not accessible from AArch32 */ 1391 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1392 (value & PMCCFILTR); 1393 pmccntr_op_finish(env); 1394 } 1395 1396 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1397 { 1398 /* M is not visible in AArch32 */ 1399 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1400 } 1401 1402 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1403 uint64_t value) 1404 { 1405 pmu_op_start(env); 1406 value &= pmu_counter_mask(env); 1407 env->cp15.c9_pmcnten |= value; 1408 pmu_op_finish(env); 1409 } 1410 1411 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1412 uint64_t value) 1413 { 1414 pmu_op_start(env); 1415 value &= pmu_counter_mask(env); 1416 env->cp15.c9_pmcnten &= ~value; 1417 pmu_op_finish(env); 1418 } 1419 1420 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1421 uint64_t value) 1422 { 1423 value &= pmu_counter_mask(env); 1424 env->cp15.c9_pmovsr &= ~value; 1425 pmu_update_irq(env); 1426 } 1427 1428 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1429 uint64_t value) 1430 { 1431 value &= pmu_counter_mask(env); 1432 env->cp15.c9_pmovsr |= value; 1433 pmu_update_irq(env); 1434 } 1435 1436 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1437 uint64_t value, const uint8_t counter) 1438 { 1439 if (counter == 31) { 1440 pmccfiltr_write(env, ri, value); 1441 } else if (counter < pmu_num_counters(env)) { 1442 pmevcntr_op_start(env, counter); 1443 1444 /* 1445 * If this counter's event type is changing, store the current 1446 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1447 * pmevcntr_op_finish has the correct baseline when it converts back to 1448 * a delta. 1449 */ 1450 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1451 PMXEVTYPER_EVTCOUNT; 1452 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1453 if (old_event != new_event) { 1454 uint64_t count = 0; 1455 if (event_supported(new_event)) { 1456 uint16_t event_idx = supported_event_map[new_event]; 1457 count = pm_events[event_idx].get_count(env); 1458 } 1459 env->cp15.c14_pmevcntr_delta[counter] = count; 1460 } 1461 1462 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1463 pmevcntr_op_finish(env, counter); 1464 } 1465 /* 1466 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1467 * PMSELR value is equal to or greater than the number of implemented 1468 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1469 */ 1470 } 1471 1472 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1473 const uint8_t counter) 1474 { 1475 if (counter == 31) { 1476 return env->cp15.pmccfiltr_el0; 1477 } else if (counter < pmu_num_counters(env)) { 1478 return env->cp15.c14_pmevtyper[counter]; 1479 } else { 1480 /* 1481 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1482 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1483 */ 1484 return 0; 1485 } 1486 } 1487 1488 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1489 uint64_t value) 1490 { 1491 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1492 pmevtyper_write(env, ri, value, counter); 1493 } 1494 1495 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1496 uint64_t value) 1497 { 1498 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1499 env->cp15.c14_pmevtyper[counter] = value; 1500 1501 /* 1502 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1503 * pmu_op_finish calls when loading saved state for a migration. Because 1504 * we're potentially updating the type of event here, the value written to 1505 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1506 * different counter type. Therefore, we need to set this value to the 1507 * current count for the counter type we're writing so that pmu_op_finish 1508 * has the correct count for its calculation. 1509 */ 1510 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1511 if (event_supported(event)) { 1512 uint16_t event_idx = supported_event_map[event]; 1513 env->cp15.c14_pmevcntr_delta[counter] = 1514 pm_events[event_idx].get_count(env); 1515 } 1516 } 1517 1518 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1519 { 1520 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1521 return pmevtyper_read(env, ri, counter); 1522 } 1523 1524 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1525 uint64_t value) 1526 { 1527 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1528 } 1529 1530 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1531 { 1532 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1533 } 1534 1535 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value, uint8_t counter) 1537 { 1538 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1539 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1540 value &= MAKE_64BIT_MASK(0, 32); 1541 } 1542 if (counter < pmu_num_counters(env)) { 1543 pmevcntr_op_start(env, counter); 1544 env->cp15.c14_pmevcntr[counter] = value; 1545 pmevcntr_op_finish(env, counter); 1546 } 1547 /* 1548 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1549 * are CONSTRAINED UNPREDICTABLE. 1550 */ 1551 } 1552 1553 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1554 uint8_t counter) 1555 { 1556 if (counter < pmu_num_counters(env)) { 1557 uint64_t ret; 1558 pmevcntr_op_start(env, counter); 1559 ret = env->cp15.c14_pmevcntr[counter]; 1560 pmevcntr_op_finish(env, counter); 1561 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1562 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1563 ret &= MAKE_64BIT_MASK(0, 32); 1564 } 1565 return ret; 1566 } else { 1567 /* 1568 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1569 * are CONSTRAINED UNPREDICTABLE. 1570 */ 1571 return 0; 1572 } 1573 } 1574 1575 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1579 pmevcntr_write(env, ri, value, counter); 1580 } 1581 1582 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1583 { 1584 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1585 return pmevcntr_read(env, ri, counter); 1586 } 1587 1588 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1592 assert(counter < pmu_num_counters(env)); 1593 env->cp15.c14_pmevcntr[counter] = value; 1594 pmevcntr_write(env, ri, value, counter); 1595 } 1596 1597 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1598 { 1599 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1600 assert(counter < pmu_num_counters(env)); 1601 return env->cp15.c14_pmevcntr[counter]; 1602 } 1603 1604 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1608 } 1609 1610 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1611 { 1612 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1613 } 1614 1615 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 if (arm_feature(env, ARM_FEATURE_V8)) { 1619 env->cp15.c9_pmuserenr = value & 0xf; 1620 } else { 1621 env->cp15.c9_pmuserenr = value & 1; 1622 } 1623 } 1624 1625 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1626 uint64_t value) 1627 { 1628 /* We have no event counters so only the C bit can be changed */ 1629 value &= pmu_counter_mask(env); 1630 env->cp15.c9_pminten |= value; 1631 pmu_update_irq(env); 1632 } 1633 1634 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1635 uint64_t value) 1636 { 1637 value &= pmu_counter_mask(env); 1638 env->cp15.c9_pminten &= ~value; 1639 pmu_update_irq(env); 1640 } 1641 1642 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1643 uint64_t value) 1644 { 1645 /* 1646 * Note that even though the AArch64 view of this register has bits 1647 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1648 * architectural requirements for bits which are RES0 only in some 1649 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1650 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1651 */ 1652 raw_write(env, ri, value & ~0x1FULL); 1653 } 1654 1655 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1656 { 1657 /* Begin with base v8.0 state. */ 1658 uint64_t valid_mask = 0x3fff; 1659 ARMCPU *cpu = env_archcpu(env); 1660 uint64_t changed; 1661 1662 /* 1663 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1664 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1665 * Instead, choose the format based on the mode of EL3. 1666 */ 1667 if (arm_el_is_aa64(env, 3)) { 1668 value |= SCR_FW | SCR_AW; /* RES1 */ 1669 valid_mask &= ~SCR_NET; /* RES0 */ 1670 1671 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1672 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1673 value |= SCR_RW; /* RAO/WI */ 1674 } 1675 if (cpu_isar_feature(aa64_ras, cpu)) { 1676 valid_mask |= SCR_TERR; 1677 } 1678 if (cpu_isar_feature(aa64_lor, cpu)) { 1679 valid_mask |= SCR_TLOR; 1680 } 1681 if (cpu_isar_feature(aa64_pauth, cpu)) { 1682 valid_mask |= SCR_API | SCR_APK; 1683 } 1684 if (cpu_isar_feature(aa64_sel2, cpu)) { 1685 valid_mask |= SCR_EEL2; 1686 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1687 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1688 value |= SCR_NS; 1689 } 1690 if (cpu_isar_feature(aa64_mte, cpu)) { 1691 valid_mask |= SCR_ATA; 1692 } 1693 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1694 valid_mask |= SCR_ENSCXT; 1695 } 1696 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1697 valid_mask |= SCR_EASE | SCR_NMEA; 1698 } 1699 if (cpu_isar_feature(aa64_sme, cpu)) { 1700 valid_mask |= SCR_ENTP2; 1701 } 1702 if (cpu_isar_feature(aa64_hcx, cpu)) { 1703 valid_mask |= SCR_HXEN; 1704 } 1705 if (cpu_isar_feature(aa64_fgt, cpu)) { 1706 valid_mask |= SCR_FGTEN; 1707 } 1708 if (cpu_isar_feature(aa64_rme, cpu)) { 1709 valid_mask |= SCR_NSE | SCR_GPF; 1710 } 1711 if (cpu_isar_feature(aa64_ecv, cpu)) { 1712 valid_mask |= SCR_ECVEN; 1713 } 1714 } else { 1715 valid_mask &= ~(SCR_RW | SCR_ST); 1716 if (cpu_isar_feature(aa32_ras, cpu)) { 1717 valid_mask |= SCR_TERR; 1718 } 1719 } 1720 1721 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1722 valid_mask &= ~SCR_HCE; 1723 1724 /* 1725 * On ARMv7, SMD (or SCD as it is called in v7) is only 1726 * supported if EL2 exists. The bit is UNK/SBZP when 1727 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1728 * when EL2 is unavailable. 1729 * On ARMv8, this bit is always available. 1730 */ 1731 if (arm_feature(env, ARM_FEATURE_V7) && 1732 !arm_feature(env, ARM_FEATURE_V8)) { 1733 valid_mask &= ~SCR_SMD; 1734 } 1735 } 1736 1737 /* Clear all-context RES0 bits. */ 1738 value &= valid_mask; 1739 changed = env->cp15.scr_el3 ^ value; 1740 env->cp15.scr_el3 = value; 1741 1742 /* 1743 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1744 * we must invalidate all TLBs below EL3. 1745 */ 1746 if (changed & (SCR_NS | SCR_NSE)) { 1747 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1748 ARMMMUIdxBit_E20_0 | 1749 ARMMMUIdxBit_E10_1 | 1750 ARMMMUIdxBit_E20_2 | 1751 ARMMMUIdxBit_E10_1_PAN | 1752 ARMMMUIdxBit_E20_2_PAN | 1753 ARMMMUIdxBit_E2)); 1754 } 1755 } 1756 1757 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1758 { 1759 /* 1760 * scr_write will set the RES1 bits on an AArch64-only CPU. 1761 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1762 */ 1763 scr_write(env, ri, 0); 1764 } 1765 1766 static CPAccessResult access_tid4(CPUARMState *env, 1767 const ARMCPRegInfo *ri, 1768 bool isread) 1769 { 1770 if (arm_current_el(env) == 1 && 1771 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1772 return CP_ACCESS_TRAP_EL2; 1773 } 1774 1775 return CP_ACCESS_OK; 1776 } 1777 1778 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 ARMCPU *cpu = env_archcpu(env); 1781 1782 /* 1783 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1784 * bank 1785 */ 1786 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1787 ri->secure & ARM_CP_SECSTATE_S); 1788 1789 return cpu->ccsidr[index]; 1790 } 1791 1792 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1793 uint64_t value) 1794 { 1795 raw_write(env, ri, value & 0xf); 1796 } 1797 1798 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1799 { 1800 CPUState *cs = env_cpu(env); 1801 bool el1 = arm_current_el(env) == 1; 1802 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1803 uint64_t ret = 0; 1804 1805 if (hcr_el2 & HCR_IMO) { 1806 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1807 ret |= CPSR_I; 1808 } 1809 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1810 ret |= ISR_IS; 1811 ret |= CPSR_I; 1812 } 1813 } else { 1814 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1815 ret |= CPSR_I; 1816 } 1817 1818 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1819 ret |= ISR_IS; 1820 ret |= CPSR_I; 1821 } 1822 } 1823 1824 if (hcr_el2 & HCR_FMO) { 1825 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1826 ret |= CPSR_F; 1827 } 1828 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1829 ret |= ISR_FS; 1830 ret |= CPSR_F; 1831 } 1832 } else { 1833 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1834 ret |= CPSR_F; 1835 } 1836 } 1837 1838 if (hcr_el2 & HCR_AMO) { 1839 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1840 ret |= CPSR_A; 1841 } 1842 } 1843 1844 return ret; 1845 } 1846 1847 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1848 bool isread) 1849 { 1850 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1851 return CP_ACCESS_TRAP_EL2; 1852 } 1853 1854 return CP_ACCESS_OK; 1855 } 1856 1857 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1858 bool isread) 1859 { 1860 if (arm_feature(env, ARM_FEATURE_V8)) { 1861 return access_aa64_tid1(env, ri, isread); 1862 } 1863 1864 return CP_ACCESS_OK; 1865 } 1866 1867 static const ARMCPRegInfo v7_cp_reginfo[] = { 1868 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1869 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1870 .access = PL1_W, .type = ARM_CP_NOP }, 1871 /* 1872 * Performance monitors are implementation defined in v7, 1873 * but with an ARM recommended set of registers, which we 1874 * follow. 1875 * 1876 * Performance registers fall into three categories: 1877 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1878 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1879 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1880 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1881 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1882 */ 1883 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1884 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1885 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1886 .writefn = pmcntenset_write, 1887 .accessfn = pmreg_access, 1888 .fgt = FGT_PMCNTEN, 1889 .raw_writefn = raw_write }, 1890 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1891 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1892 .access = PL0_RW, .accessfn = pmreg_access, 1893 .fgt = FGT_PMCNTEN, 1894 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1895 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1896 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1897 .access = PL0_RW, 1898 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1899 .accessfn = pmreg_access, 1900 .fgt = FGT_PMCNTEN, 1901 .writefn = pmcntenclr_write, 1902 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1903 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1904 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1905 .access = PL0_RW, .accessfn = pmreg_access, 1906 .fgt = FGT_PMCNTEN, 1907 .type = ARM_CP_ALIAS | ARM_CP_IO, 1908 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1909 .writefn = pmcntenclr_write }, 1910 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1911 .access = PL0_RW, .type = ARM_CP_IO, 1912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1913 .accessfn = pmreg_access, 1914 .fgt = FGT_PMOVS, 1915 .writefn = pmovsr_write, 1916 .raw_writefn = raw_write }, 1917 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1919 .access = PL0_RW, .accessfn = pmreg_access, 1920 .fgt = FGT_PMOVS, 1921 .type = ARM_CP_ALIAS | ARM_CP_IO, 1922 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1923 .writefn = pmovsr_write, 1924 .raw_writefn = raw_write }, 1925 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1926 .access = PL0_W, .accessfn = pmreg_access_swinc, 1927 .fgt = FGT_PMSWINC_EL0, 1928 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1929 .writefn = pmswinc_write }, 1930 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1931 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1932 .access = PL0_W, .accessfn = pmreg_access_swinc, 1933 .fgt = FGT_PMSWINC_EL0, 1934 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1935 .writefn = pmswinc_write }, 1936 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1937 .access = PL0_RW, .type = ARM_CP_ALIAS, 1938 .fgt = FGT_PMSELR_EL0, 1939 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1940 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1941 .raw_writefn = raw_write}, 1942 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1943 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1944 .access = PL0_RW, .accessfn = pmreg_access_selr, 1945 .fgt = FGT_PMSELR_EL0, 1946 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1947 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1948 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1949 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1950 .fgt = FGT_PMCCNTR_EL0, 1951 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1952 .accessfn = pmreg_access_ccntr }, 1953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1955 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1956 .fgt = FGT_PMCCNTR_EL0, 1957 .type = ARM_CP_IO, 1958 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1959 .readfn = pmccntr_read, .writefn = pmccntr_write, 1960 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1961 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1962 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1963 .access = PL0_RW, .accessfn = pmreg_access, 1964 .fgt = FGT_PMCCFILTR_EL0, 1965 .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .resetvalue = 0, }, 1967 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1968 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1969 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1970 .access = PL0_RW, .accessfn = pmreg_access, 1971 .fgt = FGT_PMCCFILTR_EL0, 1972 .type = ARM_CP_IO, 1973 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1974 .resetvalue = 0, }, 1975 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1976 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1977 .accessfn = pmreg_access, 1978 .fgt = FGT_PMEVTYPERN_EL0, 1979 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1980 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1982 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1983 .accessfn = pmreg_access, 1984 .fgt = FGT_PMEVTYPERN_EL0, 1985 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1986 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1987 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1988 .accessfn = pmreg_access_xevcntr, 1989 .fgt = FGT_PMEVCNTRN_EL0, 1990 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1991 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access_xevcntr, 1995 .fgt = FGT_PMEVCNTRN_EL0, 1996 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1997 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1998 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2000 .resetvalue = 0, 2001 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2002 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2003 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2004 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2005 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2006 .resetvalue = 0, 2007 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2008 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2009 .access = PL1_RW, .accessfn = access_tpm, 2010 .fgt = FGT_PMINTEN, 2011 .type = ARM_CP_ALIAS | ARM_CP_IO, 2012 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2013 .resetvalue = 0, 2014 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2015 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2016 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .fgt = FGT_PMINTEN, 2019 .type = ARM_CP_IO, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2021 .writefn = pmintenset_write, .raw_writefn = raw_write, 2022 .resetvalue = 0x0 }, 2023 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .fgt = FGT_PMINTEN, 2026 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2027 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2028 .writefn = pmintenclr_write, }, 2029 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2031 .access = PL1_RW, .accessfn = access_tpm, 2032 .fgt = FGT_PMINTEN, 2033 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2034 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2035 .writefn = pmintenclr_write }, 2036 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2037 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2038 .access = PL1_R, 2039 .accessfn = access_tid4, 2040 .fgt = FGT_CCSIDR_EL1, 2041 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2042 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2043 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2044 .access = PL1_RW, 2045 .accessfn = access_tid4, 2046 .fgt = FGT_CSSELR_EL1, 2047 .writefn = csselr_write, .resetvalue = 0, 2048 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2049 offsetof(CPUARMState, cp15.csselr_ns) } }, 2050 /* 2051 * Auxiliary ID register: this actually has an IMPDEF value but for now 2052 * just RAZ for all cores: 2053 */ 2054 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2056 .access = PL1_R, .type = ARM_CP_CONST, 2057 .accessfn = access_aa64_tid1, 2058 .fgt = FGT_AIDR_EL1, 2059 .resetvalue = 0 }, 2060 /* 2061 * Auxiliary fault status registers: these also are IMPDEF, and we 2062 * choose to RAZ/WI for all cores. 2063 */ 2064 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2065 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2066 .access = PL1_RW, .accessfn = access_tvm_trvm, 2067 .fgt = FGT_AFSR0_EL1, 2068 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2069 .type = ARM_CP_CONST, .resetvalue = 0 }, 2070 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2071 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2072 .access = PL1_RW, .accessfn = access_tvm_trvm, 2073 .fgt = FGT_AFSR1_EL1, 2074 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2075 .type = ARM_CP_CONST, .resetvalue = 0 }, 2076 /* 2077 * MAIR can just read-as-written because we don't implement caches 2078 * and so don't need to care about memory attributes. 2079 */ 2080 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2081 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2082 .access = PL1_RW, .accessfn = access_tvm_trvm, 2083 .fgt = FGT_MAIR_EL1, 2084 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2085 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2086 .resetvalue = 0 }, 2087 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2089 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2090 .resetvalue = 0 }, 2091 /* 2092 * For non-long-descriptor page tables these are PRRR and NMRR; 2093 * regardless they still act as reads-as-written for QEMU. 2094 */ 2095 /* 2096 * MAIR0/1 are defined separately from their 64-bit counterpart which 2097 * allows them to assign the correct fieldoffset based on the endianness 2098 * handled in the field definitions. 2099 */ 2100 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2101 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2102 .access = PL1_RW, .accessfn = access_tvm_trvm, 2103 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2104 offsetof(CPUARMState, cp15.mair0_ns) }, 2105 .resetfn = arm_cp_reset_ignore }, 2106 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2107 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2108 .access = PL1_RW, .accessfn = access_tvm_trvm, 2109 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2110 offsetof(CPUARMState, cp15.mair1_ns) }, 2111 .resetfn = arm_cp_reset_ignore }, 2112 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2114 .fgt = FGT_ISR_EL1, 2115 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2116 }; 2117 2118 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2119 /* PMOVSSET is not implemented in v7 before v7ve */ 2120 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMOVS, 2123 .type = ARM_CP_ALIAS | ARM_CP_IO, 2124 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2125 .writefn = pmovsset_write, 2126 .raw_writefn = raw_write }, 2127 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2128 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2129 .access = PL0_RW, .accessfn = pmreg_access, 2130 .fgt = FGT_PMOVS, 2131 .type = ARM_CP_ALIAS | ARM_CP_IO, 2132 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2133 .writefn = pmovsset_write, 2134 .raw_writefn = raw_write }, 2135 }; 2136 2137 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2138 uint64_t value) 2139 { 2140 value &= 1; 2141 env->teecr = value; 2142 } 2143 2144 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2145 bool isread) 2146 { 2147 /* 2148 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2149 * at all, so we don't need to check whether we're v8A. 2150 */ 2151 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2152 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2153 return CP_ACCESS_TRAP_EL2; 2154 } 2155 return CP_ACCESS_OK; 2156 } 2157 2158 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2159 bool isread) 2160 { 2161 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2162 return CP_ACCESS_TRAP; 2163 } 2164 return teecr_access(env, ri, isread); 2165 } 2166 2167 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2168 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2169 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2170 .resetvalue = 0, 2171 .writefn = teecr_write, .accessfn = teecr_access }, 2172 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2173 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2174 .accessfn = teehbr_access, .resetvalue = 0 }, 2175 }; 2176 2177 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2178 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2180 .access = PL0_RW, 2181 .fgt = FGT_TPIDR_EL0, 2182 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2183 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2184 .access = PL0_RW, 2185 .fgt = FGT_TPIDR_EL0, 2186 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2187 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2188 .resetfn = arm_cp_reset_ignore }, 2189 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2190 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2191 .access = PL0_R | PL1_W, 2192 .fgt = FGT_TPIDRRO_EL0, 2193 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2194 .resetvalue = 0}, 2195 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2196 .access = PL0_R | PL1_W, 2197 .fgt = FGT_TPIDRRO_EL0, 2198 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2199 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2200 .resetfn = arm_cp_reset_ignore }, 2201 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2202 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2203 .access = PL1_RW, 2204 .fgt = FGT_TPIDR_EL1, 2205 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2206 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2207 .access = PL1_RW, 2208 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2209 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2210 .resetvalue = 0 }, 2211 }; 2212 2213 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2214 { 2215 ARMCPU *cpu = env_archcpu(env); 2216 2217 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2218 } 2219 2220 #ifndef CONFIG_USER_ONLY 2221 2222 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2223 bool isread) 2224 { 2225 /* 2226 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2227 * Writable only at the highest implemented exception level. 2228 */ 2229 int el = arm_current_el(env); 2230 uint64_t hcr; 2231 uint32_t cntkctl; 2232 2233 switch (el) { 2234 case 0: 2235 hcr = arm_hcr_el2_eff(env); 2236 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2237 cntkctl = env->cp15.cnthctl_el2; 2238 } else { 2239 cntkctl = env->cp15.c14_cntkctl; 2240 } 2241 if (!extract32(cntkctl, 0, 2)) { 2242 return CP_ACCESS_TRAP; 2243 } 2244 break; 2245 case 1: 2246 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2247 arm_is_secure_below_el3(env)) { 2248 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2249 return CP_ACCESS_TRAP_UNCATEGORIZED; 2250 } 2251 break; 2252 case 2: 2253 case 3: 2254 break; 2255 } 2256 2257 if (!isread && el < arm_highest_el(env)) { 2258 return CP_ACCESS_TRAP_UNCATEGORIZED; 2259 } 2260 2261 return CP_ACCESS_OK; 2262 } 2263 2264 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2265 bool isread) 2266 { 2267 unsigned int cur_el = arm_current_el(env); 2268 bool has_el2 = arm_is_el2_enabled(env); 2269 uint64_t hcr = arm_hcr_el2_eff(env); 2270 2271 switch (cur_el) { 2272 case 0: 2273 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2274 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2275 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2276 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2277 } 2278 2279 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2280 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2281 return CP_ACCESS_TRAP; 2282 } 2283 /* fall through */ 2284 case 1: 2285 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2286 if (has_el2 && timeridx == GTIMER_PHYS && 2287 (hcr & HCR_E2H 2288 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2289 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2290 return CP_ACCESS_TRAP_EL2; 2291 } 2292 if (has_el2 && timeridx == GTIMER_VIRT) { 2293 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2294 return CP_ACCESS_TRAP_EL2; 2295 } 2296 } 2297 break; 2298 } 2299 return CP_ACCESS_OK; 2300 } 2301 2302 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2303 bool isread) 2304 { 2305 unsigned int cur_el = arm_current_el(env); 2306 bool has_el2 = arm_is_el2_enabled(env); 2307 uint64_t hcr = arm_hcr_el2_eff(env); 2308 2309 switch (cur_el) { 2310 case 0: 2311 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2312 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2313 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2314 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2315 } 2316 2317 /* 2318 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2319 * EL0 if EL0[PV]TEN is zero. 2320 */ 2321 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2322 return CP_ACCESS_TRAP; 2323 } 2324 /* fall through */ 2325 2326 case 1: 2327 if (has_el2 && timeridx == GTIMER_PHYS) { 2328 if (hcr & HCR_E2H) { 2329 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2330 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 } else { 2334 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2335 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2336 return CP_ACCESS_TRAP_EL2; 2337 } 2338 } 2339 } 2340 if (has_el2 && timeridx == GTIMER_VIRT) { 2341 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2342 return CP_ACCESS_TRAP_EL2; 2343 } 2344 } 2345 break; 2346 } 2347 return CP_ACCESS_OK; 2348 } 2349 2350 static CPAccessResult gt_pct_access(CPUARMState *env, 2351 const ARMCPRegInfo *ri, 2352 bool isread) 2353 { 2354 return gt_counter_access(env, GTIMER_PHYS, isread); 2355 } 2356 2357 static CPAccessResult gt_vct_access(CPUARMState *env, 2358 const ARMCPRegInfo *ri, 2359 bool isread) 2360 { 2361 return gt_counter_access(env, GTIMER_VIRT, isread); 2362 } 2363 2364 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2365 bool isread) 2366 { 2367 return gt_timer_access(env, GTIMER_PHYS, isread); 2368 } 2369 2370 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2371 bool isread) 2372 { 2373 return gt_timer_access(env, GTIMER_VIRT, isread); 2374 } 2375 2376 static CPAccessResult gt_stimer_access(CPUARMState *env, 2377 const ARMCPRegInfo *ri, 2378 bool isread) 2379 { 2380 /* 2381 * The AArch64 register view of the secure physical timer is 2382 * always accessible from EL3, and configurably accessible from 2383 * Secure EL1. 2384 */ 2385 switch (arm_current_el(env)) { 2386 case 1: 2387 if (!arm_is_secure(env)) { 2388 return CP_ACCESS_TRAP; 2389 } 2390 if (!(env->cp15.scr_el3 & SCR_ST)) { 2391 return CP_ACCESS_TRAP_EL3; 2392 } 2393 return CP_ACCESS_OK; 2394 case 0: 2395 case 2: 2396 return CP_ACCESS_TRAP; 2397 case 3: 2398 return CP_ACCESS_OK; 2399 default: 2400 g_assert_not_reached(); 2401 } 2402 } 2403 2404 uint64_t gt_get_countervalue(CPUARMState *env) 2405 { 2406 ARMCPU *cpu = env_archcpu(env); 2407 2408 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2409 } 2410 2411 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2412 { 2413 CPUARMState *env = &cpu->env; 2414 uint64_t cnthctl = env->cp15.cnthctl_el2; 2415 ARMSecuritySpace ss = arm_security_space(env); 2416 /* ISTATUS && !IMASK */ 2417 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2418 2419 /* 2420 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2421 * It is RES0 in Secure and NonSecure state. 2422 */ 2423 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2424 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2425 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2426 irqstate = 0; 2427 } 2428 2429 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2430 trace_arm_gt_update_irq(timeridx, irqstate); 2431 } 2432 2433 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2434 { 2435 /* 2436 * Changing security state between Root and Secure/NonSecure, which may 2437 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2438 * mask bits. Update the IRQ state accordingly. 2439 */ 2440 gt_update_irq(cpu, GTIMER_VIRT); 2441 gt_update_irq(cpu, GTIMER_PHYS); 2442 } 2443 2444 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2445 { 2446 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2447 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2448 arm_is_el2_enabled(env) && 2449 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2450 return env->cp15.cntpoff_el2; 2451 } 2452 return 0; 2453 } 2454 2455 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2456 { 2457 if (arm_current_el(env) >= 2) { 2458 return 0; 2459 } 2460 return gt_phys_raw_cnt_offset(env); 2461 } 2462 2463 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2464 { 2465 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2466 2467 if (gt->ctl & 1) { 2468 /* 2469 * Timer enabled: calculate and set current ISTATUS, irq, and 2470 * reset timer to when ISTATUS next has to change 2471 */ 2472 uint64_t offset = timeridx == GTIMER_VIRT ? 2473 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2474 uint64_t count = gt_get_countervalue(&cpu->env); 2475 /* Note that this must be unsigned 64 bit arithmetic: */ 2476 int istatus = count - offset >= gt->cval; 2477 uint64_t nexttick; 2478 2479 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2480 2481 if (istatus) { 2482 /* 2483 * Next transition is when (count - offset) rolls back over to 0. 2484 * If offset > count then this is when count == offset; 2485 * if offset <= count then this is when count == offset + 2^64 2486 * For the latter case we set nexttick to an "as far in future 2487 * as possible" value and let the code below handle it. 2488 */ 2489 if (offset > count) { 2490 nexttick = offset; 2491 } else { 2492 nexttick = UINT64_MAX; 2493 } 2494 } else { 2495 /* 2496 * Next transition is when (count - offset) == cval, i.e. 2497 * when count == (cval + offset). 2498 * If that would overflow, then again we set up the next interrupt 2499 * for "as far in the future as possible" for the code below. 2500 */ 2501 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2502 nexttick = UINT64_MAX; 2503 } 2504 } 2505 /* 2506 * Note that the desired next expiry time might be beyond the 2507 * signed-64-bit range of a QEMUTimer -- in this case we just 2508 * set the timer for as far in the future as possible. When the 2509 * timer expires we will reset the timer for any remaining period. 2510 */ 2511 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2512 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2513 } else { 2514 timer_mod(cpu->gt_timer[timeridx], nexttick); 2515 } 2516 trace_arm_gt_recalc(timeridx, nexttick); 2517 } else { 2518 /* Timer disabled: ISTATUS and timer output always clear */ 2519 gt->ctl &= ~4; 2520 timer_del(cpu->gt_timer[timeridx]); 2521 trace_arm_gt_recalc_disabled(timeridx); 2522 } 2523 gt_update_irq(cpu, timeridx); 2524 } 2525 2526 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2527 int timeridx) 2528 { 2529 ARMCPU *cpu = env_archcpu(env); 2530 2531 timer_del(cpu->gt_timer[timeridx]); 2532 } 2533 2534 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2535 { 2536 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2537 } 2538 2539 uint64_t gt_virt_cnt_offset(CPUARMState *env) 2540 { 2541 uint64_t hcr; 2542 2543 switch (arm_current_el(env)) { 2544 case 2: 2545 hcr = arm_hcr_el2_eff(env); 2546 if (hcr & HCR_E2H) { 2547 return 0; 2548 } 2549 break; 2550 case 0: 2551 hcr = arm_hcr_el2_eff(env); 2552 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2553 return 0; 2554 } 2555 break; 2556 } 2557 2558 return env->cp15.cntvoff_el2; 2559 } 2560 2561 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2564 } 2565 2566 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 int timeridx, 2568 uint64_t value) 2569 { 2570 trace_arm_gt_cval_write(timeridx, value); 2571 env->cp15.c14_timer[timeridx].cval = value; 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx) 2577 { 2578 uint64_t offset = 0; 2579 2580 switch (timeridx) { 2581 case GTIMER_VIRT: 2582 case GTIMER_HYPVIRT: 2583 offset = gt_virt_cnt_offset(env); 2584 break; 2585 case GTIMER_PHYS: 2586 offset = gt_phys_cnt_offset(env); 2587 break; 2588 } 2589 2590 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2591 (gt_get_countervalue(env) - offset)); 2592 } 2593 2594 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 int timeridx, 2596 uint64_t value) 2597 { 2598 uint64_t offset = 0; 2599 2600 switch (timeridx) { 2601 case GTIMER_VIRT: 2602 case GTIMER_HYPVIRT: 2603 offset = gt_virt_cnt_offset(env); 2604 break; 2605 case GTIMER_PHYS: 2606 offset = gt_phys_cnt_offset(env); 2607 break; 2608 } 2609 2610 trace_arm_gt_tval_write(timeridx, value); 2611 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2612 sextract64(value, 0, 32); 2613 gt_recalc_timer(env_archcpu(env), timeridx); 2614 } 2615 2616 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2617 int timeridx, 2618 uint64_t value) 2619 { 2620 ARMCPU *cpu = env_archcpu(env); 2621 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2622 2623 trace_arm_gt_ctl_write(timeridx, value); 2624 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2625 if ((oldval ^ value) & 1) { 2626 /* Enable toggled */ 2627 gt_recalc_timer(cpu, timeridx); 2628 } else if ((oldval ^ value) & 2) { 2629 /* 2630 * IMASK toggled: don't need to recalculate, 2631 * just set the interrupt line based on ISTATUS 2632 */ 2633 trace_arm_gt_imask_toggle(timeridx); 2634 gt_update_irq(cpu, timeridx); 2635 } 2636 } 2637 2638 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2639 { 2640 gt_timer_reset(env, ri, GTIMER_PHYS); 2641 } 2642 2643 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2644 uint64_t value) 2645 { 2646 gt_cval_write(env, ri, GTIMER_PHYS, value); 2647 } 2648 2649 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2650 { 2651 return gt_tval_read(env, ri, GTIMER_PHYS); 2652 } 2653 2654 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2655 uint64_t value) 2656 { 2657 gt_tval_write(env, ri, GTIMER_PHYS, value); 2658 } 2659 2660 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2661 uint64_t value) 2662 { 2663 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2664 } 2665 2666 static int gt_phys_redir_timeridx(CPUARMState *env) 2667 { 2668 switch (arm_mmu_idx(env)) { 2669 case ARMMMUIdx_E20_0: 2670 case ARMMMUIdx_E20_2: 2671 case ARMMMUIdx_E20_2_PAN: 2672 return GTIMER_HYP; 2673 default: 2674 return GTIMER_PHYS; 2675 } 2676 } 2677 2678 static int gt_virt_redir_timeridx(CPUARMState *env) 2679 { 2680 switch (arm_mmu_idx(env)) { 2681 case ARMMMUIdx_E20_0: 2682 case ARMMMUIdx_E20_2: 2683 case ARMMMUIdx_E20_2_PAN: 2684 return GTIMER_HYPVIRT; 2685 default: 2686 return GTIMER_VIRT; 2687 } 2688 } 2689 2690 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2691 const ARMCPRegInfo *ri) 2692 { 2693 int timeridx = gt_phys_redir_timeridx(env); 2694 return env->cp15.c14_timer[timeridx].cval; 2695 } 2696 2697 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2698 uint64_t value) 2699 { 2700 int timeridx = gt_phys_redir_timeridx(env); 2701 gt_cval_write(env, ri, timeridx, value); 2702 } 2703 2704 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2705 const ARMCPRegInfo *ri) 2706 { 2707 int timeridx = gt_phys_redir_timeridx(env); 2708 return gt_tval_read(env, ri, timeridx); 2709 } 2710 2711 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2712 uint64_t value) 2713 { 2714 int timeridx = gt_phys_redir_timeridx(env); 2715 gt_tval_write(env, ri, timeridx, value); 2716 } 2717 2718 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2719 const ARMCPRegInfo *ri) 2720 { 2721 int timeridx = gt_phys_redir_timeridx(env); 2722 return env->cp15.c14_timer[timeridx].ctl; 2723 } 2724 2725 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2726 uint64_t value) 2727 { 2728 int timeridx = gt_phys_redir_timeridx(env); 2729 gt_ctl_write(env, ri, timeridx, value); 2730 } 2731 2732 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2733 { 2734 gt_timer_reset(env, ri, GTIMER_VIRT); 2735 } 2736 2737 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2738 uint64_t value) 2739 { 2740 gt_cval_write(env, ri, GTIMER_VIRT, value); 2741 } 2742 2743 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2744 { 2745 return gt_tval_read(env, ri, GTIMER_VIRT); 2746 } 2747 2748 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2749 uint64_t value) 2750 { 2751 gt_tval_write(env, ri, GTIMER_VIRT, value); 2752 } 2753 2754 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2755 uint64_t value) 2756 { 2757 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2758 } 2759 2760 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2761 uint64_t value) 2762 { 2763 ARMCPU *cpu = env_archcpu(env); 2764 uint32_t oldval = env->cp15.cnthctl_el2; 2765 uint32_t valid_mask = 2766 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2767 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2768 R_CNTHCTL_EVNTEN_MASK | 2769 R_CNTHCTL_EVNTDIR_MASK | 2770 R_CNTHCTL_EVNTI_MASK | 2771 R_CNTHCTL_EL0VTEN_MASK | 2772 R_CNTHCTL_EL0PTEN_MASK | 2773 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2774 R_CNTHCTL_EL1PTEN_MASK; 2775 2776 if (cpu_isar_feature(aa64_rme, cpu)) { 2777 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2778 } 2779 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2780 valid_mask |= 2781 R_CNTHCTL_EL1TVT_MASK | 2782 R_CNTHCTL_EL1TVCT_MASK | 2783 R_CNTHCTL_EL1NVPCT_MASK | 2784 R_CNTHCTL_EL1NVVCT_MASK | 2785 R_CNTHCTL_EVNTIS_MASK; 2786 } 2787 if (cpu_isar_feature(aa64_ecv, cpu)) { 2788 valid_mask |= R_CNTHCTL_ECV_MASK; 2789 } 2790 2791 /* Clear RES0 bits */ 2792 value &= valid_mask; 2793 2794 raw_write(env, ri, value); 2795 2796 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2797 gt_update_irq(cpu, GTIMER_VIRT); 2798 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2799 gt_update_irq(cpu, GTIMER_PHYS); 2800 } 2801 } 2802 2803 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2804 uint64_t value) 2805 { 2806 ARMCPU *cpu = env_archcpu(env); 2807 2808 trace_arm_gt_cntvoff_write(value); 2809 raw_write(env, ri, value); 2810 gt_recalc_timer(cpu, GTIMER_VIRT); 2811 } 2812 2813 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2814 const ARMCPRegInfo *ri) 2815 { 2816 int timeridx = gt_virt_redir_timeridx(env); 2817 return env->cp15.c14_timer[timeridx].cval; 2818 } 2819 2820 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2821 uint64_t value) 2822 { 2823 int timeridx = gt_virt_redir_timeridx(env); 2824 gt_cval_write(env, ri, timeridx, value); 2825 } 2826 2827 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2828 const ARMCPRegInfo *ri) 2829 { 2830 int timeridx = gt_virt_redir_timeridx(env); 2831 return gt_tval_read(env, ri, timeridx); 2832 } 2833 2834 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2835 uint64_t value) 2836 { 2837 int timeridx = gt_virt_redir_timeridx(env); 2838 gt_tval_write(env, ri, timeridx, value); 2839 } 2840 2841 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2842 const ARMCPRegInfo *ri) 2843 { 2844 int timeridx = gt_virt_redir_timeridx(env); 2845 return env->cp15.c14_timer[timeridx].ctl; 2846 } 2847 2848 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2849 uint64_t value) 2850 { 2851 int timeridx = gt_virt_redir_timeridx(env); 2852 gt_ctl_write(env, ri, timeridx, value); 2853 } 2854 2855 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2856 { 2857 gt_timer_reset(env, ri, GTIMER_HYP); 2858 } 2859 2860 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 uint64_t value) 2862 { 2863 gt_cval_write(env, ri, GTIMER_HYP, value); 2864 } 2865 2866 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2867 { 2868 return gt_tval_read(env, ri, GTIMER_HYP); 2869 } 2870 2871 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2872 uint64_t value) 2873 { 2874 gt_tval_write(env, ri, GTIMER_HYP, value); 2875 } 2876 2877 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2878 uint64_t value) 2879 { 2880 gt_ctl_write(env, ri, GTIMER_HYP, value); 2881 } 2882 2883 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2884 { 2885 gt_timer_reset(env, ri, GTIMER_SEC); 2886 } 2887 2888 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2889 uint64_t value) 2890 { 2891 gt_cval_write(env, ri, GTIMER_SEC, value); 2892 } 2893 2894 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2895 { 2896 return gt_tval_read(env, ri, GTIMER_SEC); 2897 } 2898 2899 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2900 uint64_t value) 2901 { 2902 gt_tval_write(env, ri, GTIMER_SEC, value); 2903 } 2904 2905 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2906 uint64_t value) 2907 { 2908 gt_ctl_write(env, ri, GTIMER_SEC, value); 2909 } 2910 2911 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2912 { 2913 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2914 } 2915 2916 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2917 uint64_t value) 2918 { 2919 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2920 } 2921 2922 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2923 { 2924 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2925 } 2926 2927 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2931 } 2932 2933 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2937 } 2938 2939 void arm_gt_ptimer_cb(void *opaque) 2940 { 2941 ARMCPU *cpu = opaque; 2942 2943 gt_recalc_timer(cpu, GTIMER_PHYS); 2944 } 2945 2946 void arm_gt_vtimer_cb(void *opaque) 2947 { 2948 ARMCPU *cpu = opaque; 2949 2950 gt_recalc_timer(cpu, GTIMER_VIRT); 2951 } 2952 2953 void arm_gt_htimer_cb(void *opaque) 2954 { 2955 ARMCPU *cpu = opaque; 2956 2957 gt_recalc_timer(cpu, GTIMER_HYP); 2958 } 2959 2960 void arm_gt_stimer_cb(void *opaque) 2961 { 2962 ARMCPU *cpu = opaque; 2963 2964 gt_recalc_timer(cpu, GTIMER_SEC); 2965 } 2966 2967 void arm_gt_hvtimer_cb(void *opaque) 2968 { 2969 ARMCPU *cpu = opaque; 2970 2971 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2972 } 2973 2974 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2975 /* 2976 * Note that CNTFRQ is purely reads-as-written for the benefit 2977 * of software; writing it doesn't actually change the timer frequency. 2978 * Our reset value matches the fixed frequency we implement the timer at. 2979 */ 2980 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2981 .type = ARM_CP_ALIAS, 2982 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2984 }, 2985 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2987 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2988 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2989 .resetfn = arm_gt_cntfrq_reset, 2990 }, 2991 /* overall control: mostly access permissions */ 2992 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2993 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2994 .access = PL1_RW, 2995 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2996 .resetvalue = 0, 2997 }, 2998 /* per-timer control */ 2999 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3000 .secure = ARM_CP_SECSTATE_NS, 3001 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3002 .accessfn = gt_ptimer_access, 3003 .fieldoffset = offsetoflow32(CPUARMState, 3004 cp15.c14_timer[GTIMER_PHYS].ctl), 3005 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3006 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3007 }, 3008 { .name = "CNTP_CTL_S", 3009 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3010 .secure = ARM_CP_SECSTATE_S, 3011 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3012 .accessfn = gt_ptimer_access, 3013 .fieldoffset = offsetoflow32(CPUARMState, 3014 cp15.c14_timer[GTIMER_SEC].ctl), 3015 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3016 }, 3017 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3019 .type = ARM_CP_IO, .access = PL0_RW, 3020 .accessfn = gt_ptimer_access, 3021 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3023 .resetvalue = 0, 3024 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3025 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3026 }, 3027 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3028 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3029 .accessfn = gt_vtimer_access, 3030 .fieldoffset = offsetoflow32(CPUARMState, 3031 cp15.c14_timer[GTIMER_VIRT].ctl), 3032 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3033 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3034 }, 3035 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3036 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3037 .type = ARM_CP_IO, .access = PL0_RW, 3038 .accessfn = gt_vtimer_access, 3039 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3040 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3041 .resetvalue = 0, 3042 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3043 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3044 }, 3045 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3046 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3047 .secure = ARM_CP_SECSTATE_NS, 3048 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3049 .accessfn = gt_ptimer_access, 3050 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3051 }, 3052 { .name = "CNTP_TVAL_S", 3053 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3054 .secure = ARM_CP_SECSTATE_S, 3055 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3056 .accessfn = gt_ptimer_access, 3057 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3058 }, 3059 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3061 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3062 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3063 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3064 }, 3065 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3066 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3067 .accessfn = gt_vtimer_access, 3068 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3069 }, 3070 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3071 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3072 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3073 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3074 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3075 }, 3076 /* The counter itself */ 3077 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3078 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3079 .accessfn = gt_pct_access, 3080 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3081 }, 3082 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3084 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3085 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3086 }, 3087 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3089 .accessfn = gt_vct_access, 3090 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3091 }, 3092 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3095 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3096 }, 3097 /* Comparison value, indicating when the timer goes off */ 3098 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3099 .secure = ARM_CP_SECSTATE_NS, 3100 .access = PL0_RW, 3101 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3102 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3103 .accessfn = gt_ptimer_access, 3104 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3105 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3106 }, 3107 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3108 .secure = ARM_CP_SECSTATE_S, 3109 .access = PL0_RW, 3110 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3112 .accessfn = gt_ptimer_access, 3113 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3114 }, 3115 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3116 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3117 .access = PL0_RW, 3118 .type = ARM_CP_IO, 3119 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3121 .resetvalue = 0, .accessfn = gt_ptimer_access, 3122 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3123 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3124 }, 3125 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3126 .access = PL0_RW, 3127 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3129 .accessfn = gt_vtimer_access, 3130 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3131 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3132 }, 3133 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3134 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3135 .access = PL0_RW, 3136 .type = ARM_CP_IO, 3137 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3138 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3139 .resetvalue = 0, .accessfn = gt_vtimer_access, 3140 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3141 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3142 }, 3143 /* 3144 * Secure timer -- this is actually restricted to only EL3 3145 * and configurably Secure-EL1 via the accessfn. 3146 */ 3147 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3148 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3149 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3150 .accessfn = gt_stimer_access, 3151 .readfn = gt_sec_tval_read, 3152 .writefn = gt_sec_tval_write, 3153 .resetfn = gt_sec_timer_reset, 3154 }, 3155 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3156 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3157 .type = ARM_CP_IO, .access = PL1_RW, 3158 .accessfn = gt_stimer_access, 3159 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3160 .resetvalue = 0, 3161 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3162 }, 3163 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3164 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3165 .type = ARM_CP_IO, .access = PL1_RW, 3166 .accessfn = gt_stimer_access, 3167 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3168 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3169 }, 3170 }; 3171 3172 /* 3173 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3174 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3175 * so our implementations here are identical to the normal registers. 3176 */ 3177 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3178 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3179 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3180 .accessfn = gt_vct_access, 3181 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3182 }, 3183 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3184 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3185 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3186 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3187 }, 3188 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3189 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3190 .accessfn = gt_pct_access, 3191 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3192 }, 3193 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3194 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3195 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3196 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3197 }, 3198 }; 3199 3200 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3201 const ARMCPRegInfo *ri, 3202 bool isread) 3203 { 3204 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3205 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3206 return CP_ACCESS_TRAP_EL3; 3207 } 3208 return CP_ACCESS_OK; 3209 } 3210 3211 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3212 uint64_t value) 3213 { 3214 ARMCPU *cpu = env_archcpu(env); 3215 3216 trace_arm_gt_cntpoff_write(value); 3217 raw_write(env, ri, value); 3218 gt_recalc_timer(cpu, GTIMER_PHYS); 3219 } 3220 3221 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3222 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3223 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3224 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3225 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3226 .nv2_redirect_offset = 0x1a8, 3227 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3228 }; 3229 #else 3230 3231 /* 3232 * In user-mode most of the generic timer registers are inaccessible 3233 * however modern kernels (4.12+) allow access to cntvct_el0 3234 */ 3235 3236 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3237 { 3238 ARMCPU *cpu = env_archcpu(env); 3239 3240 /* 3241 * Currently we have no support for QEMUTimer in linux-user so we 3242 * can't call gt_get_countervalue(env), instead we directly 3243 * call the lower level functions. 3244 */ 3245 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3246 } 3247 3248 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3251 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3253 .resetfn = arm_gt_cntfrq_reset, 3254 }, 3255 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3256 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3257 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3258 .readfn = gt_virt_cnt_read, 3259 }, 3260 }; 3261 3262 /* 3263 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3264 * is exposed to userspace by Linux. 3265 */ 3266 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3267 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3269 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3270 .readfn = gt_virt_cnt_read, 3271 }, 3272 }; 3273 3274 #endif 3275 3276 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3277 { 3278 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3279 raw_write(env, ri, value); 3280 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3281 raw_write(env, ri, value & 0xfffff6ff); 3282 } else { 3283 raw_write(env, ri, value & 0xfffff1ff); 3284 } 3285 } 3286 3287 #ifndef CONFIG_USER_ONLY 3288 /* get_phys_addr() isn't present for user-mode-only targets */ 3289 3290 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3291 bool isread) 3292 { 3293 if (ri->opc2 & 4) { 3294 /* 3295 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3296 * Secure EL1 (which can only happen if EL3 is AArch64). 3297 * They are simply UNDEF if executed from NS EL1. 3298 * They function normally from EL2 or EL3. 3299 */ 3300 if (arm_current_el(env) == 1) { 3301 if (arm_is_secure_below_el3(env)) { 3302 if (env->cp15.scr_el3 & SCR_EEL2) { 3303 return CP_ACCESS_TRAP_EL2; 3304 } 3305 return CP_ACCESS_TRAP_EL3; 3306 } 3307 return CP_ACCESS_TRAP_UNCATEGORIZED; 3308 } 3309 } 3310 return CP_ACCESS_OK; 3311 } 3312 3313 #ifdef CONFIG_TCG 3314 static int par_el1_shareability(GetPhysAddrResult *res) 3315 { 3316 /* 3317 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3318 * memory -- see pseudocode PAREncodeShareability(). 3319 */ 3320 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3321 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3322 return 2; 3323 } 3324 return res->cacheattrs.shareability; 3325 } 3326 3327 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3328 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3329 ARMSecuritySpace ss) 3330 { 3331 bool ret; 3332 uint64_t par64; 3333 bool format64 = false; 3334 ARMMMUFaultInfo fi = {}; 3335 GetPhysAddrResult res = {}; 3336 3337 /* 3338 * I_MXTJT: Granule protection checks are not performed on the final 3339 * address of a successful translation. This is a translation not a 3340 * memory reference, so "memop = none = 0". 3341 */ 3342 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3343 mmu_idx, ss, &res, &fi); 3344 3345 /* 3346 * ATS operations only do S1 or S1+S2 translations, so we never 3347 * have to deal with the ARMCacheAttrs format for S2 only. 3348 */ 3349 assert(!res.cacheattrs.is_s2_format); 3350 3351 if (ret) { 3352 /* 3353 * Some kinds of translation fault must cause exceptions rather 3354 * than being reported in the PAR. 3355 */ 3356 int current_el = arm_current_el(env); 3357 int target_el; 3358 uint32_t syn, fsr, fsc; 3359 bool take_exc = false; 3360 3361 if (fi.s1ptw && current_el == 1 3362 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3363 /* 3364 * Synchronous stage 2 fault on an access made as part of the 3365 * translation table walk for AT S1E0* or AT S1E1* insn 3366 * executed from NS EL1. If this is a synchronous external abort 3367 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3368 * to EL3. Otherwise the fault is taken as an exception to EL2, 3369 * and HPFAR_EL2 holds the faulting IPA. 3370 */ 3371 if (fi.type == ARMFault_SyncExternalOnWalk && 3372 (env->cp15.scr_el3 & SCR_EA)) { 3373 target_el = 3; 3374 } else { 3375 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3376 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3377 env->cp15.hpfar_el2 |= HPFAR_NS; 3378 } 3379 target_el = 2; 3380 } 3381 take_exc = true; 3382 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3383 /* 3384 * Synchronous external aborts during a translation table walk 3385 * are taken as Data Abort exceptions. 3386 */ 3387 if (fi.stage2) { 3388 if (current_el == 3) { 3389 target_el = 3; 3390 } else { 3391 target_el = 2; 3392 } 3393 } else { 3394 target_el = exception_target_el(env); 3395 } 3396 take_exc = true; 3397 } 3398 3399 if (take_exc) { 3400 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3401 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3402 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3403 fsr = arm_fi_to_lfsc(&fi); 3404 fsc = extract32(fsr, 0, 6); 3405 } else { 3406 fsr = arm_fi_to_sfsc(&fi); 3407 fsc = 0x3f; 3408 } 3409 /* 3410 * Report exception with ESR indicating a fault due to a 3411 * translation table walk for a cache maintenance instruction. 3412 */ 3413 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3414 fi.ea, 1, fi.s1ptw, 1, fsc); 3415 env->exception.vaddress = value; 3416 env->exception.fsr = fsr; 3417 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3418 } 3419 } 3420 3421 if (is_a64(env)) { 3422 format64 = true; 3423 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3424 /* 3425 * ATS1Cxx: 3426 * * TTBCR.EAE determines whether the result is returned using the 3427 * 32-bit or the 64-bit PAR format 3428 * * Instructions executed in Hyp mode always use the 64bit format 3429 * 3430 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3431 * * The Non-secure TTBCR.EAE bit is set to 1 3432 * * The implementation includes EL2, and the value of HCR.VM is 1 3433 * 3434 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3435 * 3436 * ATS1Hx always uses the 64bit format. 3437 */ 3438 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3439 3440 if (arm_feature(env, ARM_FEATURE_EL2)) { 3441 if (mmu_idx == ARMMMUIdx_E10_0 || 3442 mmu_idx == ARMMMUIdx_E10_1 || 3443 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3444 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3445 } else { 3446 format64 |= arm_current_el(env) == 2; 3447 } 3448 } 3449 } 3450 3451 if (format64) { 3452 /* Create a 64-bit PAR */ 3453 par64 = (1 << 11); /* LPAE bit always set */ 3454 if (!ret) { 3455 par64 |= res.f.phys_addr & ~0xfffULL; 3456 if (!res.f.attrs.secure) { 3457 par64 |= (1 << 9); /* NS */ 3458 } 3459 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3460 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3461 } else { 3462 uint32_t fsr = arm_fi_to_lfsc(&fi); 3463 3464 par64 |= 1; /* F */ 3465 par64 |= (fsr & 0x3f) << 1; /* FS */ 3466 if (fi.stage2) { 3467 par64 |= (1 << 9); /* S */ 3468 } 3469 if (fi.s1ptw) { 3470 par64 |= (1 << 8); /* PTW */ 3471 } 3472 } 3473 } else { 3474 /* 3475 * fsr is a DFSR/IFSR value for the short descriptor 3476 * translation table format (with WnR always clear). 3477 * Convert it to a 32-bit PAR. 3478 */ 3479 if (!ret) { 3480 /* We do not set any attribute bits in the PAR */ 3481 if (res.f.lg_page_size == 24 3482 && arm_feature(env, ARM_FEATURE_V7)) { 3483 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3484 } else { 3485 par64 = res.f.phys_addr & 0xfffff000; 3486 } 3487 if (!res.f.attrs.secure) { 3488 par64 |= (1 << 9); /* NS */ 3489 } 3490 } else { 3491 uint32_t fsr = arm_fi_to_sfsc(&fi); 3492 3493 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3494 ((fsr & 0xf) << 1) | 1; 3495 } 3496 } 3497 return par64; 3498 } 3499 #endif /* CONFIG_TCG */ 3500 3501 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3502 { 3503 #ifdef CONFIG_TCG 3504 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3505 uint64_t par64; 3506 ARMMMUIdx mmu_idx; 3507 int el = arm_current_el(env); 3508 ARMSecuritySpace ss = arm_security_space(env); 3509 3510 switch (ri->opc2 & 6) { 3511 case 0: 3512 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3513 switch (el) { 3514 case 3: 3515 if (ri->crm == 9 && arm_pan_enabled(env)) { 3516 mmu_idx = ARMMMUIdx_E30_3_PAN; 3517 } else { 3518 mmu_idx = ARMMMUIdx_E3; 3519 } 3520 break; 3521 case 2: 3522 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3523 /* fall through */ 3524 case 1: 3525 if (ri->crm == 9 && arm_pan_enabled(env)) { 3526 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3527 } else { 3528 mmu_idx = ARMMMUIdx_Stage1_E1; 3529 } 3530 break; 3531 default: 3532 g_assert_not_reached(); 3533 } 3534 break; 3535 case 2: 3536 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3537 switch (el) { 3538 case 3: 3539 mmu_idx = ARMMMUIdx_E30_0; 3540 break; 3541 case 2: 3542 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3543 mmu_idx = ARMMMUIdx_Stage1_E0; 3544 break; 3545 case 1: 3546 mmu_idx = ARMMMUIdx_Stage1_E0; 3547 break; 3548 default: 3549 g_assert_not_reached(); 3550 } 3551 break; 3552 case 4: 3553 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3554 mmu_idx = ARMMMUIdx_E10_1; 3555 ss = ARMSS_NonSecure; 3556 break; 3557 case 6: 3558 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3559 mmu_idx = ARMMMUIdx_E10_0; 3560 ss = ARMSS_NonSecure; 3561 break; 3562 default: 3563 g_assert_not_reached(); 3564 } 3565 3566 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3567 3568 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3569 #else 3570 /* Handled by hardware accelerator. */ 3571 g_assert_not_reached(); 3572 #endif /* CONFIG_TCG */ 3573 } 3574 3575 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3576 uint64_t value) 3577 { 3578 #ifdef CONFIG_TCG 3579 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3580 uint64_t par64; 3581 3582 /* There is no SecureEL2 for AArch32. */ 3583 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3584 ARMSS_NonSecure); 3585 3586 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3587 #else 3588 /* Handled by hardware accelerator. */ 3589 g_assert_not_reached(); 3590 #endif /* CONFIG_TCG */ 3591 } 3592 3593 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3594 bool isread) 3595 { 3596 /* 3597 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3598 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3599 * only happen when executing at EL3 because that combination also causes an 3600 * illegal exception return. We don't need to check FEAT_RME either, because 3601 * scr_write() ensures that the NSE bit is not set otherwise. 3602 */ 3603 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3604 return CP_ACCESS_TRAP; 3605 } 3606 return CP_ACCESS_OK; 3607 } 3608 3609 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3610 bool isread) 3611 { 3612 if (arm_current_el(env) == 3 && 3613 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3614 return CP_ACCESS_TRAP; 3615 } 3616 return at_e012_access(env, ri, isread); 3617 } 3618 3619 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3620 bool isread) 3621 { 3622 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3623 return CP_ACCESS_TRAP_EL2; 3624 } 3625 return at_e012_access(env, ri, isread); 3626 } 3627 3628 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3629 uint64_t value) 3630 { 3631 #ifdef CONFIG_TCG 3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3633 ARMMMUIdx mmu_idx; 3634 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3635 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3636 bool for_el3 = false; 3637 ARMSecuritySpace ss; 3638 3639 switch (ri->opc2 & 6) { 3640 case 0: 3641 switch (ri->opc1) { 3642 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3643 if (ri->crm == 9 && arm_pan_enabled(env)) { 3644 mmu_idx = regime_e20 ? 3645 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3646 } else { 3647 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3648 } 3649 break; 3650 case 4: /* AT S1E2R, AT S1E2W */ 3651 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3652 break; 3653 case 6: /* AT S1E3R, AT S1E3W */ 3654 mmu_idx = ARMMMUIdx_E3; 3655 for_el3 = true; 3656 break; 3657 default: 3658 g_assert_not_reached(); 3659 } 3660 break; 3661 case 2: /* AT S1E0R, AT S1E0W */ 3662 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3663 break; 3664 case 4: /* AT S12E1R, AT S12E1W */ 3665 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3666 break; 3667 case 6: /* AT S12E0R, AT S12E0W */ 3668 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3669 break; 3670 default: 3671 g_assert_not_reached(); 3672 } 3673 3674 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3675 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3676 #else 3677 /* Handled by hardware accelerator. */ 3678 g_assert_not_reached(); 3679 #endif /* CONFIG_TCG */ 3680 } 3681 #endif 3682 3683 /* Return basic MPU access permission bits. */ 3684 static uint32_t simple_mpu_ap_bits(uint32_t val) 3685 { 3686 uint32_t ret; 3687 uint32_t mask; 3688 int i; 3689 ret = 0; 3690 mask = 3; 3691 for (i = 0; i < 16; i += 2) { 3692 ret |= (val >> i) & mask; 3693 mask <<= 2; 3694 } 3695 return ret; 3696 } 3697 3698 /* Pad basic MPU access permission bits to extended format. */ 3699 static uint32_t extended_mpu_ap_bits(uint32_t val) 3700 { 3701 uint32_t ret; 3702 uint32_t mask; 3703 int i; 3704 ret = 0; 3705 mask = 3; 3706 for (i = 0; i < 16; i += 2) { 3707 ret |= (val & mask) << i; 3708 mask <<= 2; 3709 } 3710 return ret; 3711 } 3712 3713 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3714 uint64_t value) 3715 { 3716 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3717 } 3718 3719 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3720 { 3721 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3722 } 3723 3724 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3725 uint64_t value) 3726 { 3727 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3728 } 3729 3730 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3731 { 3732 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3733 } 3734 3735 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3736 { 3737 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3738 3739 if (!u32p) { 3740 return 0; 3741 } 3742 3743 u32p += env->pmsav7.rnr[M_REG_NS]; 3744 return *u32p; 3745 } 3746 3747 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3748 uint64_t value) 3749 { 3750 ARMCPU *cpu = env_archcpu(env); 3751 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3752 3753 if (!u32p) { 3754 return; 3755 } 3756 3757 u32p += env->pmsav7.rnr[M_REG_NS]; 3758 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3759 *u32p = value; 3760 } 3761 3762 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3763 uint64_t value) 3764 { 3765 ARMCPU *cpu = env_archcpu(env); 3766 uint32_t nrgs = cpu->pmsav7_dregion; 3767 3768 if (value >= nrgs) { 3769 qemu_log_mask(LOG_GUEST_ERROR, 3770 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3771 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3772 return; 3773 } 3774 3775 raw_write(env, ri, value); 3776 } 3777 3778 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3779 uint64_t value) 3780 { 3781 ARMCPU *cpu = env_archcpu(env); 3782 3783 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3784 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3785 } 3786 3787 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3788 { 3789 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3790 } 3791 3792 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3793 uint64_t value) 3794 { 3795 ARMCPU *cpu = env_archcpu(env); 3796 3797 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3798 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3799 } 3800 3801 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3802 { 3803 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3804 } 3805 3806 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3807 uint64_t value) 3808 { 3809 ARMCPU *cpu = env_archcpu(env); 3810 3811 /* 3812 * Ignore writes that would select not implemented region. 3813 * This is architecturally UNPREDICTABLE. 3814 */ 3815 if (value >= cpu->pmsav7_dregion) { 3816 return; 3817 } 3818 3819 env->pmsav7.rnr[M_REG_NS] = value; 3820 } 3821 3822 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3823 uint64_t value) 3824 { 3825 ARMCPU *cpu = env_archcpu(env); 3826 3827 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3828 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3829 } 3830 3831 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3832 { 3833 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3834 } 3835 3836 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3837 uint64_t value) 3838 { 3839 ARMCPU *cpu = env_archcpu(env); 3840 3841 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3842 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3843 } 3844 3845 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3846 { 3847 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3848 } 3849 3850 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3851 uint64_t value) 3852 { 3853 uint32_t n; 3854 uint32_t bit; 3855 ARMCPU *cpu = env_archcpu(env); 3856 3857 /* Ignore writes to unimplemented regions */ 3858 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3859 value &= MAKE_64BIT_MASK(0, rmax); 3860 3861 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3862 3863 /* Register alias is only valid for first 32 indexes */ 3864 for (n = 0; n < rmax; ++n) { 3865 bit = extract32(value, n, 1); 3866 env->pmsav8.hprlar[n] = deposit32( 3867 env->pmsav8.hprlar[n], 0, 1, bit); 3868 } 3869 } 3870 3871 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3872 { 3873 uint32_t n; 3874 uint32_t result = 0x0; 3875 ARMCPU *cpu = env_archcpu(env); 3876 3877 /* Register alias is only valid for first 32 indexes */ 3878 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3879 if (env->pmsav8.hprlar[n] & 0x1) { 3880 result |= (0x1 << n); 3881 } 3882 } 3883 return result; 3884 } 3885 3886 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 ARMCPU *cpu = env_archcpu(env); 3890 3891 /* 3892 * Ignore writes that would select not implemented region. 3893 * This is architecturally UNPREDICTABLE. 3894 */ 3895 if (value >= cpu->pmsav8r_hdregion) { 3896 return; 3897 } 3898 3899 env->pmsav8.hprselr = value; 3900 } 3901 3902 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3903 uint64_t value) 3904 { 3905 ARMCPU *cpu = env_archcpu(env); 3906 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3907 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3908 3909 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3910 3911 if (ri->opc1 & 4) { 3912 if (index >= cpu->pmsav8r_hdregion) { 3913 return; 3914 } 3915 if (ri->opc2 & 0x1) { 3916 env->pmsav8.hprlar[index] = value; 3917 } else { 3918 env->pmsav8.hprbar[index] = value; 3919 } 3920 } else { 3921 if (index >= cpu->pmsav7_dregion) { 3922 return; 3923 } 3924 if (ri->opc2 & 0x1) { 3925 env->pmsav8.rlar[M_REG_NS][index] = value; 3926 } else { 3927 env->pmsav8.rbar[M_REG_NS][index] = value; 3928 } 3929 } 3930 } 3931 3932 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3933 { 3934 ARMCPU *cpu = env_archcpu(env); 3935 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3936 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3937 3938 if (ri->opc1 & 4) { 3939 if (index >= cpu->pmsav8r_hdregion) { 3940 return 0x0; 3941 } 3942 if (ri->opc2 & 0x1) { 3943 return env->pmsav8.hprlar[index]; 3944 } else { 3945 return env->pmsav8.hprbar[index]; 3946 } 3947 } else { 3948 if (index >= cpu->pmsav7_dregion) { 3949 return 0x0; 3950 } 3951 if (ri->opc2 & 0x1) { 3952 return env->pmsav8.rlar[M_REG_NS][index]; 3953 } else { 3954 return env->pmsav8.rbar[M_REG_NS][index]; 3955 } 3956 } 3957 } 3958 3959 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3960 { .name = "PRBAR", 3961 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3962 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3963 .accessfn = access_tvm_trvm, 3964 .readfn = prbar_read, .writefn = prbar_write }, 3965 { .name = "PRLAR", 3966 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3967 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3968 .accessfn = access_tvm_trvm, 3969 .readfn = prlar_read, .writefn = prlar_write }, 3970 { .name = "PRSELR", .resetvalue = 0, 3971 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3972 .access = PL1_RW, .accessfn = access_tvm_trvm, 3973 .writefn = prselr_write, 3974 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3975 { .name = "HPRBAR", .resetvalue = 0, 3976 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3977 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3978 .readfn = hprbar_read, .writefn = hprbar_write }, 3979 { .name = "HPRLAR", 3980 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3981 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3982 .readfn = hprlar_read, .writefn = hprlar_write }, 3983 { .name = "HPRSELR", .resetvalue = 0, 3984 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3985 .access = PL2_RW, 3986 .writefn = hprselr_write, 3987 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3988 { .name = "HPRENR", 3989 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3990 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3991 .readfn = hprenr_read, .writefn = hprenr_write }, 3992 }; 3993 3994 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3995 /* 3996 * Reset for all these registers is handled in arm_cpu_reset(), 3997 * because the PMSAv7 is also used by M-profile CPUs, which do 3998 * not register cpregs but still need the state to be reset. 3999 */ 4000 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4001 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4002 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4003 .readfn = pmsav7_read, .writefn = pmsav7_write, 4004 .resetfn = arm_cp_reset_ignore }, 4005 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4006 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4007 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4008 .readfn = pmsav7_read, .writefn = pmsav7_write, 4009 .resetfn = arm_cp_reset_ignore }, 4010 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4011 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4012 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4013 .readfn = pmsav7_read, .writefn = pmsav7_write, 4014 .resetfn = arm_cp_reset_ignore }, 4015 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4016 .access = PL1_RW, 4017 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4018 .writefn = pmsav7_rgnr_write, 4019 .resetfn = arm_cp_reset_ignore }, 4020 }; 4021 4022 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4023 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4024 .access = PL1_RW, .type = ARM_CP_ALIAS, 4025 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4026 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4027 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4028 .access = PL1_RW, .type = ARM_CP_ALIAS, 4029 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4030 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4031 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4032 .access = PL1_RW, 4033 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4034 .resetvalue = 0, }, 4035 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4036 .access = PL1_RW, 4037 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4038 .resetvalue = 0, }, 4039 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4040 .access = PL1_RW, 4041 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4042 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4043 .access = PL1_RW, 4044 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4045 /* Protection region base and size registers */ 4046 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4047 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4048 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4049 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4050 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4051 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4052 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4053 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4054 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4055 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4056 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4057 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4058 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4059 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4060 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4061 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4062 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4063 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4064 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4065 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4066 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4067 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4068 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4069 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4070 }; 4071 4072 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 ARMCPU *cpu = env_archcpu(env); 4076 4077 if (!arm_feature(env, ARM_FEATURE_V8)) { 4078 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4079 /* 4080 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4081 * using Long-descriptor translation table format 4082 */ 4083 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4084 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4085 /* 4086 * In an implementation that includes the Security Extensions 4087 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4088 * Short-descriptor translation table format. 4089 */ 4090 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4091 } else { 4092 value &= TTBCR_N; 4093 } 4094 } 4095 4096 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4097 /* 4098 * With LPAE the TTBCR could result in a change of ASID 4099 * via the TTBCR.A1 bit, so do a TLB flush. 4100 */ 4101 tlb_flush(CPU(cpu)); 4102 } 4103 raw_write(env, ri, value); 4104 } 4105 4106 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4107 uint64_t value) 4108 { 4109 ARMCPU *cpu = env_archcpu(env); 4110 4111 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4112 tlb_flush(CPU(cpu)); 4113 raw_write(env, ri, value); 4114 } 4115 4116 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4117 uint64_t value) 4118 { 4119 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4120 if (cpreg_field_is_64bit(ri) && 4121 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4122 ARMCPU *cpu = env_archcpu(env); 4123 tlb_flush(CPU(cpu)); 4124 } 4125 raw_write(env, ri, value); 4126 } 4127 4128 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4129 uint64_t value) 4130 { 4131 /* 4132 * If we are running with E2&0 regime, then an ASID is active. 4133 * Flush if that might be changing. Note we're not checking 4134 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4135 * holds the active ASID, only checking the field that might. 4136 */ 4137 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4138 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4139 uint16_t mask = ARMMMUIdxBit_E20_2 | 4140 ARMMMUIdxBit_E20_2_PAN | 4141 ARMMMUIdxBit_E20_0; 4142 tlb_flush_by_mmuidx(env_cpu(env), mask); 4143 } 4144 raw_write(env, ri, value); 4145 } 4146 4147 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4148 uint64_t value) 4149 { 4150 ARMCPU *cpu = env_archcpu(env); 4151 CPUState *cs = CPU(cpu); 4152 4153 /* 4154 * A change in VMID to the stage2 page table (Stage2) invalidates 4155 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4156 */ 4157 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4158 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4159 } 4160 raw_write(env, ri, value); 4161 } 4162 4163 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4164 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4165 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4166 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4167 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4168 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4169 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4170 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4171 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4172 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4173 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4174 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4175 offsetof(CPUARMState, cp15.dfar_ns) } }, 4176 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4177 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4178 .access = PL1_RW, .accessfn = access_tvm_trvm, 4179 .fgt = FGT_FAR_EL1, 4180 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4181 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4182 .resetvalue = 0, }, 4183 }; 4184 4185 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4186 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4188 .access = PL1_RW, .accessfn = access_tvm_trvm, 4189 .fgt = FGT_ESR_EL1, 4190 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4191 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4192 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4193 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4194 .access = PL1_RW, .accessfn = access_tvm_trvm, 4195 .fgt = FGT_TTBR0_EL1, 4196 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4197 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4198 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4199 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4200 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4201 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4202 .access = PL1_RW, .accessfn = access_tvm_trvm, 4203 .fgt = FGT_TTBR1_EL1, 4204 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4205 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4206 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4207 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4208 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4209 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4210 .access = PL1_RW, .accessfn = access_tvm_trvm, 4211 .fgt = FGT_TCR_EL1, 4212 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4213 .writefn = vmsa_tcr_el12_write, 4214 .raw_writefn = raw_write, 4215 .resetvalue = 0, 4216 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4217 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4218 .access = PL1_RW, .accessfn = access_tvm_trvm, 4219 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4220 .raw_writefn = raw_write, 4221 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4222 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4223 }; 4224 4225 /* 4226 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4227 * qemu tlbs nor adjusting cached masks. 4228 */ 4229 static const ARMCPRegInfo ttbcr2_reginfo = { 4230 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4231 .access = PL1_RW, .accessfn = access_tvm_trvm, 4232 .type = ARM_CP_ALIAS, 4233 .bank_fieldoffsets = { 4234 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4235 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4236 }, 4237 }; 4238 4239 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4240 uint64_t value) 4241 { 4242 env->cp15.c15_ticonfig = value & 0xe7; 4243 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4244 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4245 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4246 } 4247 4248 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4249 uint64_t value) 4250 { 4251 env->cp15.c15_threadid = value & 0xffff; 4252 } 4253 4254 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4255 uint64_t value) 4256 { 4257 /* Wait-for-interrupt (deprecated) */ 4258 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4259 } 4260 4261 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4262 uint64_t value) 4263 { 4264 /* 4265 * On OMAP there are registers indicating the max/min index of dcache lines 4266 * containing a dirty line; cache flush operations have to reset these. 4267 */ 4268 env->cp15.c15_i_max = 0x000; 4269 env->cp15.c15_i_min = 0xff0; 4270 } 4271 4272 static const ARMCPRegInfo omap_cp_reginfo[] = { 4273 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4274 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4275 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4276 .resetvalue = 0, }, 4277 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4278 .access = PL1_RW, .type = ARM_CP_NOP }, 4279 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4280 .access = PL1_RW, 4281 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4282 .writefn = omap_ticonfig_write }, 4283 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4284 .access = PL1_RW, 4285 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4286 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4287 .access = PL1_RW, .resetvalue = 0xff0, 4288 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4289 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4290 .access = PL1_RW, 4291 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4292 .writefn = omap_threadid_write }, 4293 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4294 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4295 .type = ARM_CP_NO_RAW, 4296 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4297 /* 4298 * TODO: Peripheral port remap register: 4299 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4300 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4301 * when MMU is off. 4302 */ 4303 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4304 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4305 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4306 .writefn = omap_cachemaint_write }, 4307 { .name = "C9", .cp = 15, .crn = 9, 4308 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4309 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4310 }; 4311 4312 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4313 uint64_t value) 4314 { 4315 env->cp15.c15_cpar = value & 0x3fff; 4316 } 4317 4318 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4319 { .name = "XSCALE_CPAR", 4320 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4321 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4322 .writefn = xscale_cpar_write, }, 4323 { .name = "XSCALE_AUXCR", 4324 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4325 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4326 .resetvalue = 0, }, 4327 /* 4328 * XScale specific cache-lockdown: since we have no cache we NOP these 4329 * and hope the guest does not really rely on cache behaviour. 4330 */ 4331 { .name = "XSCALE_LOCK_ICACHE_LINE", 4332 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4333 .access = PL1_W, .type = ARM_CP_NOP }, 4334 { .name = "XSCALE_UNLOCK_ICACHE", 4335 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4336 .access = PL1_W, .type = ARM_CP_NOP }, 4337 { .name = "XSCALE_DCACHE_LOCK", 4338 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4339 .access = PL1_RW, .type = ARM_CP_NOP }, 4340 { .name = "XSCALE_UNLOCK_DCACHE", 4341 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4342 .access = PL1_W, .type = ARM_CP_NOP }, 4343 }; 4344 4345 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4346 /* 4347 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4348 * implementation of this implementation-defined space. 4349 * Ideally this should eventually disappear in favour of actually 4350 * implementing the correct behaviour for all cores. 4351 */ 4352 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4353 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4354 .access = PL1_RW, 4355 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4356 .resetvalue = 0 }, 4357 }; 4358 4359 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4360 /* Cache status: RAZ because we have no cache so it's always clean */ 4361 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4362 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4363 .resetvalue = 0 }, 4364 }; 4365 4366 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4367 /* We never have a block transfer operation in progress */ 4368 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4369 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4370 .resetvalue = 0 }, 4371 /* The cache ops themselves: these all NOP for QEMU */ 4372 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4373 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4374 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4375 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4376 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4377 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4378 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4379 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4380 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4381 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4382 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4383 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4384 }; 4385 4386 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4387 /* 4388 * The cache test-and-clean instructions always return (1 << 30) 4389 * to indicate that there are no dirty cache lines. 4390 */ 4391 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4392 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4393 .resetvalue = (1 << 30) }, 4394 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4395 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4396 .resetvalue = (1 << 30) }, 4397 }; 4398 4399 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4400 /* Ignore ReadBuffer accesses */ 4401 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4402 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4403 .access = PL1_RW, .resetvalue = 0, 4404 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4405 }; 4406 4407 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4408 { 4409 unsigned int cur_el = arm_current_el(env); 4410 4411 if (arm_is_el2_enabled(env) && cur_el == 1) { 4412 return env->cp15.vpidr_el2; 4413 } 4414 return raw_read(env, ri); 4415 } 4416 4417 static uint64_t mpidr_read_val(CPUARMState *env) 4418 { 4419 ARMCPU *cpu = env_archcpu(env); 4420 uint64_t mpidr = cpu->mp_affinity; 4421 4422 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4423 mpidr |= (1U << 31); 4424 /* 4425 * Cores which are uniprocessor (non-coherent) 4426 * but still implement the MP extensions set 4427 * bit 30. (For instance, Cortex-R5). 4428 */ 4429 if (cpu->mp_is_up) { 4430 mpidr |= (1u << 30); 4431 } 4432 } 4433 return mpidr; 4434 } 4435 4436 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4437 { 4438 unsigned int cur_el = arm_current_el(env); 4439 4440 if (arm_is_el2_enabled(env) && cur_el == 1) { 4441 return env->cp15.vmpidr_el2; 4442 } 4443 return mpidr_read_val(env); 4444 } 4445 4446 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4447 /* NOP AMAIR0/1 */ 4448 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4449 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4450 .access = PL1_RW, .accessfn = access_tvm_trvm, 4451 .fgt = FGT_AMAIR_EL1, 4452 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4453 .type = ARM_CP_CONST, .resetvalue = 0 }, 4454 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4455 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4456 .access = PL1_RW, .accessfn = access_tvm_trvm, 4457 .type = ARM_CP_CONST, .resetvalue = 0 }, 4458 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4459 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4460 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4461 offsetof(CPUARMState, cp15.par_ns)} }, 4462 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4463 .access = PL1_RW, .accessfn = access_tvm_trvm, 4464 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4465 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4466 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4467 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4468 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4469 .access = PL1_RW, .accessfn = access_tvm_trvm, 4470 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4471 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4472 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4473 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4474 }; 4475 4476 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4477 { 4478 return vfp_get_fpcr(env); 4479 } 4480 4481 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4482 uint64_t value) 4483 { 4484 vfp_set_fpcr(env, value); 4485 } 4486 4487 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4488 { 4489 return vfp_get_fpsr(env); 4490 } 4491 4492 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4493 uint64_t value) 4494 { 4495 vfp_set_fpsr(env, value); 4496 } 4497 4498 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4499 bool isread) 4500 { 4501 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4502 return CP_ACCESS_TRAP; 4503 } 4504 return CP_ACCESS_OK; 4505 } 4506 4507 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4508 uint64_t value) 4509 { 4510 env->daif = value & PSTATE_DAIF; 4511 } 4512 4513 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4514 { 4515 return env->pstate & PSTATE_PAN; 4516 } 4517 4518 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4519 uint64_t value) 4520 { 4521 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4522 } 4523 4524 static const ARMCPRegInfo pan_reginfo = { 4525 .name = "PAN", .state = ARM_CP_STATE_AA64, 4526 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4527 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4528 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4529 }; 4530 4531 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4532 { 4533 return env->pstate & PSTATE_UAO; 4534 } 4535 4536 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4537 uint64_t value) 4538 { 4539 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4540 } 4541 4542 static const ARMCPRegInfo uao_reginfo = { 4543 .name = "UAO", .state = ARM_CP_STATE_AA64, 4544 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4545 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4546 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4547 }; 4548 4549 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4550 { 4551 return env->pstate & PSTATE_DIT; 4552 } 4553 4554 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4555 uint64_t value) 4556 { 4557 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4558 } 4559 4560 static const ARMCPRegInfo dit_reginfo = { 4561 .name = "DIT", .state = ARM_CP_STATE_AA64, 4562 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4563 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4564 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4565 }; 4566 4567 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4568 { 4569 return env->pstate & PSTATE_SSBS; 4570 } 4571 4572 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4573 uint64_t value) 4574 { 4575 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4576 } 4577 4578 static const ARMCPRegInfo ssbs_reginfo = { 4579 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4580 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4581 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4582 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4583 }; 4584 4585 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4586 const ARMCPRegInfo *ri, 4587 bool isread) 4588 { 4589 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4590 switch (arm_current_el(env)) { 4591 case 0: 4592 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4593 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4594 return CP_ACCESS_TRAP; 4595 } 4596 /* fall through */ 4597 case 1: 4598 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4599 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4600 return CP_ACCESS_TRAP_EL2; 4601 } 4602 break; 4603 } 4604 return CP_ACCESS_OK; 4605 } 4606 4607 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4608 { 4609 /* Cache invalidate/clean to Point of Unification... */ 4610 switch (arm_current_el(env)) { 4611 case 0: 4612 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4613 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4614 return CP_ACCESS_TRAP; 4615 } 4616 /* fall through */ 4617 case 1: 4618 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4619 if (arm_hcr_el2_eff(env) & hcrflags) { 4620 return CP_ACCESS_TRAP_EL2; 4621 } 4622 break; 4623 } 4624 return CP_ACCESS_OK; 4625 } 4626 4627 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4628 bool isread) 4629 { 4630 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4631 } 4632 4633 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4634 bool isread) 4635 { 4636 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4637 } 4638 4639 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4640 bool isread) 4641 { 4642 int cur_el = arm_current_el(env); 4643 4644 if (cur_el < 2) { 4645 uint64_t hcr = arm_hcr_el2_eff(env); 4646 4647 if (cur_el == 0) { 4648 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4649 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4650 return CP_ACCESS_TRAP_EL2; 4651 } 4652 } else { 4653 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4654 return CP_ACCESS_TRAP; 4655 } 4656 if (hcr & HCR_TDZ) { 4657 return CP_ACCESS_TRAP_EL2; 4658 } 4659 } 4660 } else if (hcr & HCR_TDZ) { 4661 return CP_ACCESS_TRAP_EL2; 4662 } 4663 } 4664 return CP_ACCESS_OK; 4665 } 4666 4667 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4668 { 4669 ARMCPU *cpu = env_archcpu(env); 4670 int dzp_bit = 1 << 4; 4671 4672 /* DZP indicates whether DC ZVA access is allowed */ 4673 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4674 dzp_bit = 0; 4675 } 4676 return cpu->dcz_blocksize | dzp_bit; 4677 } 4678 4679 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4680 bool isread) 4681 { 4682 if (!(env->pstate & PSTATE_SP)) { 4683 /* 4684 * Access to SP_EL0 is undefined if it's being used as 4685 * the stack pointer. 4686 */ 4687 return CP_ACCESS_TRAP_UNCATEGORIZED; 4688 } 4689 return CP_ACCESS_OK; 4690 } 4691 4692 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4693 { 4694 return env->pstate & PSTATE_SP; 4695 } 4696 4697 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4698 { 4699 update_spsel(env, val); 4700 } 4701 4702 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4703 uint64_t value) 4704 { 4705 ARMCPU *cpu = env_archcpu(env); 4706 4707 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4708 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4709 value &= ~SCTLR_M; 4710 } 4711 4712 /* ??? Lots of these bits are not implemented. */ 4713 4714 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4715 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4716 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4717 } else { 4718 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4719 SCTLR_ATA0 | SCTLR_ATA); 4720 } 4721 } 4722 4723 if (raw_read(env, ri) == value) { 4724 /* 4725 * Skip the TLB flush if nothing actually changed; Linux likes 4726 * to do a lot of pointless SCTLR writes. 4727 */ 4728 return; 4729 } 4730 4731 raw_write(env, ri, value); 4732 4733 /* This may enable/disable the MMU, so do a TLB flush. */ 4734 tlb_flush(CPU(cpu)); 4735 4736 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4737 /* 4738 * Normally we would always end the TB on an SCTLR write; see the 4739 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4740 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4741 * of hflags from the translator, so do it here. 4742 */ 4743 arm_rebuild_hflags(env); 4744 } 4745 } 4746 4747 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4748 uint64_t value) 4749 { 4750 /* 4751 * Some MDCR_EL3 bits affect whether PMU counters are running: 4752 * if we are trying to change any of those then we must 4753 * bracket this update with PMU start/finish calls. 4754 */ 4755 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4756 4757 if (pmu_op) { 4758 pmu_op_start(env); 4759 } 4760 env->cp15.mdcr_el3 = value; 4761 if (pmu_op) { 4762 pmu_op_finish(env); 4763 } 4764 } 4765 4766 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4767 uint64_t value) 4768 { 4769 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4770 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4771 } 4772 4773 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4774 uint64_t value) 4775 { 4776 /* 4777 * Some MDCR_EL2 bits affect whether PMU counters are running: 4778 * if we are trying to change any of those then we must 4779 * bracket this update with PMU start/finish calls. 4780 */ 4781 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4782 4783 if (pmu_op) { 4784 pmu_op_start(env); 4785 } 4786 env->cp15.mdcr_el2 = value; 4787 if (pmu_op) { 4788 pmu_op_finish(env); 4789 } 4790 } 4791 4792 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4793 bool isread) 4794 { 4795 if (arm_current_el(env) == 1) { 4796 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4797 4798 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4799 return CP_ACCESS_TRAP_EL2; 4800 } 4801 } 4802 return CP_ACCESS_OK; 4803 } 4804 4805 #ifdef CONFIG_USER_ONLY 4806 /* 4807 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4808 * code to get around W^X restrictions, where one region is writable and the 4809 * other is executable. 4810 * 4811 * Since the executable region is never written to we cannot detect code 4812 * changes when running in user mode, and rely on the emulated JIT telling us 4813 * that the code has changed by executing this instruction. 4814 */ 4815 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4816 uint64_t value) 4817 { 4818 uint64_t icache_line_mask, start_address, end_address; 4819 const ARMCPU *cpu; 4820 4821 cpu = env_archcpu(env); 4822 4823 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4824 start_address = value & ~icache_line_mask; 4825 end_address = value | icache_line_mask; 4826 4827 mmap_lock(); 4828 4829 tb_invalidate_phys_range(start_address, end_address); 4830 4831 mmap_unlock(); 4832 } 4833 #endif 4834 4835 static const ARMCPRegInfo v8_cp_reginfo[] = { 4836 /* 4837 * Minimal set of EL0-visible registers. This will need to be expanded 4838 * significantly for system emulation of AArch64 CPUs. 4839 */ 4840 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4841 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4842 .access = PL0_RW, .type = ARM_CP_NZCV }, 4843 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4845 .type = ARM_CP_NO_RAW, 4846 .access = PL0_RW, .accessfn = aa64_daif_access, 4847 .fieldoffset = offsetof(CPUARMState, daif), 4848 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4849 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4850 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4851 .access = PL0_RW, .type = ARM_CP_FPU, 4852 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4853 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4855 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4856 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4857 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4859 .access = PL0_R, .type = ARM_CP_NO_RAW, 4860 .fgt = FGT_DCZID_EL0, 4861 .readfn = aa64_dczid_read }, 4862 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4865 #ifndef CONFIG_USER_ONLY 4866 /* Avoid overhead of an access check that always passes in user-mode */ 4867 .accessfn = aa64_zva_access, 4868 .fgt = FGT_DCZVA, 4869 #endif 4870 }, 4871 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4873 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4874 /* 4875 * Instruction cache ops. All of these except `IC IVAU` NOP because we 4876 * don't emulate caches. 4877 */ 4878 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4880 .access = PL1_W, .type = ARM_CP_NOP, 4881 .fgt = FGT_ICIALLUIS, 4882 .accessfn = access_ticab }, 4883 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4885 .access = PL1_W, .type = ARM_CP_NOP, 4886 .fgt = FGT_ICIALLU, 4887 .accessfn = access_tocu }, 4888 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4890 .access = PL0_W, 4891 .fgt = FGT_ICIVAU, 4892 .accessfn = access_tocu, 4893 #ifdef CONFIG_USER_ONLY 4894 .type = ARM_CP_NO_RAW, 4895 .writefn = ic_ivau_write 4896 #else 4897 .type = ARM_CP_NOP 4898 #endif 4899 }, 4900 /* Cache ops: all NOPs since we don't emulate caches */ 4901 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4903 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4904 .fgt = FGT_DCIVAC, 4905 .type = ARM_CP_NOP }, 4906 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4908 .fgt = FGT_DCISW, 4909 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4910 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4912 .access = PL0_W, .type = ARM_CP_NOP, 4913 .fgt = FGT_DCCVAC, 4914 .accessfn = aa64_cacheop_poc_access }, 4915 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4917 .fgt = FGT_DCCSW, 4918 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4919 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4920 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4921 .access = PL0_W, .type = ARM_CP_NOP, 4922 .fgt = FGT_DCCVAU, 4923 .accessfn = access_tocu }, 4924 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4926 .access = PL0_W, .type = ARM_CP_NOP, 4927 .fgt = FGT_DCCIVAC, 4928 .accessfn = aa64_cacheop_poc_access }, 4929 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4931 .fgt = FGT_DCCISW, 4932 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4933 #ifndef CONFIG_USER_ONLY 4934 /* 64 bit address translation operations */ 4935 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4937 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4938 .fgt = FGT_ATS1E1R, 4939 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4940 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4942 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4943 .fgt = FGT_ATS1E1W, 4944 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4945 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4947 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4948 .fgt = FGT_ATS1E0R, 4949 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4950 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4952 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .fgt = FGT_ATS1E0W, 4954 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 4955 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4956 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4957 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4958 .accessfn = at_e012_access, .writefn = ats_write64 }, 4959 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4961 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .accessfn = at_e012_access, .writefn = ats_write64 }, 4963 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4965 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .accessfn = at_e012_access, .writefn = ats_write64 }, 4967 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4969 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .accessfn = at_e012_access, .writefn = ats_write64 }, 4971 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4972 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4973 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4974 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4975 .writefn = ats_write64 }, 4976 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4978 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4979 .writefn = ats_write64 }, 4980 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4981 .type = ARM_CP_ALIAS, 4982 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4983 .access = PL1_RW, .resetvalue = 0, 4984 .fgt = FGT_PAR_EL1, 4985 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4986 .writefn = par_write }, 4987 #endif 4988 /* 32 bit cache operations */ 4989 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4990 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 4991 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4992 .type = ARM_CP_NOP, .access = PL1_W }, 4993 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4994 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 4995 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4996 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 4997 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4998 .type = ARM_CP_NOP, .access = PL1_W }, 4999 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5000 .type = ARM_CP_NOP, .access = PL1_W }, 5001 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5002 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5003 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5004 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5005 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5006 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5007 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5008 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5009 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5011 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5013 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5015 /* MMU Domain access control / MPU write buffer control */ 5016 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5017 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5018 .writefn = dacr_write, .raw_writefn = raw_write, 5019 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5020 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5021 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5022 .type = ARM_CP_ALIAS, 5023 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5024 .access = PL1_RW, .accessfn = access_nv1, 5025 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5026 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5027 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5028 .type = ARM_CP_ALIAS, 5029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5030 .access = PL1_RW, .accessfn = access_nv1, 5031 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5032 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5033 /* 5034 * We rely on the access checks not allowing the guest to write to the 5035 * state field when SPSel indicates that it's being used as the stack 5036 * pointer. 5037 */ 5038 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5040 .access = PL1_RW, .accessfn = sp_el0_access, 5041 .type = ARM_CP_ALIAS, 5042 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5043 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5045 .nv2_redirect_offset = 0x240, 5046 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5047 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5048 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5050 .type = ARM_CP_NO_RAW, 5051 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5052 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5053 .type = ARM_CP_ALIAS, 5054 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5055 .access = PL2_RW, 5056 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5057 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5058 .type = ARM_CP_ALIAS, 5059 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5060 .access = PL2_RW, 5061 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5062 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5063 .type = ARM_CP_ALIAS, 5064 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5065 .access = PL2_RW, 5066 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5067 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5068 .type = ARM_CP_ALIAS, 5069 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5070 .access = PL2_RW, 5071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5072 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_IO, 5074 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5075 .resetvalue = 0, 5076 .access = PL3_RW, 5077 .writefn = mdcr_el3_write, 5078 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5079 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5080 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5081 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5082 .writefn = sdcr_write, 5083 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5084 }; 5085 5086 /* These are present only when EL1 supports AArch32 */ 5087 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5088 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5090 .access = PL2_RW, 5091 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5092 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5093 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5094 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5095 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5096 .writefn = dacr_write, .raw_writefn = raw_write, 5097 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5098 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5100 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5101 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5102 }; 5103 5104 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5105 { 5106 ARMCPU *cpu = env_archcpu(env); 5107 5108 if (arm_feature(env, ARM_FEATURE_V8)) { 5109 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5110 } else { 5111 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5112 } 5113 5114 if (arm_feature(env, ARM_FEATURE_EL3)) { 5115 valid_mask &= ~HCR_HCD; 5116 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5117 /* 5118 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5119 * However, if we're using the SMC PSCI conduit then QEMU is 5120 * effectively acting like EL3 firmware and so the guest at 5121 * EL2 should retain the ability to prevent EL1 from being 5122 * able to make SMC calls into the ersatz firmware, so in 5123 * that case HCR.TSC should be read/write. 5124 */ 5125 valid_mask &= ~HCR_TSC; 5126 } 5127 5128 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5129 if (cpu_isar_feature(aa64_vh, cpu)) { 5130 valid_mask |= HCR_E2H; 5131 } 5132 if (cpu_isar_feature(aa64_ras, cpu)) { 5133 valid_mask |= HCR_TERR | HCR_TEA; 5134 } 5135 if (cpu_isar_feature(aa64_lor, cpu)) { 5136 valid_mask |= HCR_TLOR; 5137 } 5138 if (cpu_isar_feature(aa64_pauth, cpu)) { 5139 valid_mask |= HCR_API | HCR_APK; 5140 } 5141 if (cpu_isar_feature(aa64_mte, cpu)) { 5142 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5143 } 5144 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5145 valid_mask |= HCR_ENSCXT; 5146 } 5147 if (cpu_isar_feature(aa64_fwb, cpu)) { 5148 valid_mask |= HCR_FWB; 5149 } 5150 if (cpu_isar_feature(aa64_rme, cpu)) { 5151 valid_mask |= HCR_GPF; 5152 } 5153 if (cpu_isar_feature(aa64_nv, cpu)) { 5154 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5155 } 5156 if (cpu_isar_feature(aa64_nv2, cpu)) { 5157 valid_mask |= HCR_NV2; 5158 } 5159 } 5160 5161 if (cpu_isar_feature(any_evt, cpu)) { 5162 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5163 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5164 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5165 } 5166 5167 /* Clear RES0 bits. */ 5168 value &= valid_mask; 5169 5170 /* 5171 * These bits change the MMU setup: 5172 * HCR_VM enables stage 2 translation 5173 * HCR_PTW forbids certain page-table setups 5174 * HCR_DC disables stage1 and enables stage2 translation 5175 * HCR_DCT enables tagging on (disabled) stage1 translation 5176 * HCR_FWB changes the interpretation of stage2 descriptor bits 5177 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5178 */ 5179 if ((env->cp15.hcr_el2 ^ value) & 5180 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5181 tlb_flush(CPU(cpu)); 5182 } 5183 env->cp15.hcr_el2 = value; 5184 5185 /* 5186 * Updates to VI and VF require us to update the status of 5187 * virtual interrupts, which are the logical OR of these bits 5188 * and the state of the input lines from the GIC. (This requires 5189 * that we have the BQL, which is done by marking the 5190 * reginfo structs as ARM_CP_IO.) 5191 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5192 * VFNMI, it is never possible for it to be taken immediately 5193 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5194 * at EL0 or EL1, and HCR can only be written at EL2. 5195 */ 5196 g_assert(bql_locked()); 5197 arm_cpu_update_virq(cpu); 5198 arm_cpu_update_vfiq(cpu); 5199 arm_cpu_update_vserr(cpu); 5200 if (cpu_isar_feature(aa64_nmi, cpu)) { 5201 arm_cpu_update_vinmi(cpu); 5202 arm_cpu_update_vfnmi(cpu); 5203 } 5204 } 5205 5206 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5207 { 5208 do_hcr_write(env, value, 0); 5209 } 5210 5211 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5212 uint64_t value) 5213 { 5214 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5215 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5216 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5217 } 5218 5219 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5220 uint64_t value) 5221 { 5222 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5223 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5224 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5225 } 5226 5227 /* 5228 * Return the effective value of HCR_EL2, at the given security state. 5229 * Bits that are not included here: 5230 * RW (read from SCR_EL3.RW as needed) 5231 */ 5232 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5233 { 5234 uint64_t ret = env->cp15.hcr_el2; 5235 5236 assert(space != ARMSS_Root); 5237 5238 if (!arm_is_el2_enabled_secstate(env, space)) { 5239 /* 5240 * "This register has no effect if EL2 is not enabled in the 5241 * current Security state". This is ARMv8.4-SecEL2 speak for 5242 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5243 * 5244 * Prior to that, the language was "In an implementation that 5245 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5246 * as if this field is 0 for all purposes other than a direct 5247 * read or write access of HCR_EL2". With lots of enumeration 5248 * on a per-field basis. In current QEMU, this is condition 5249 * is arm_is_secure_below_el3. 5250 * 5251 * Since the v8.4 language applies to the entire register, and 5252 * appears to be backward compatible, use that. 5253 */ 5254 return 0; 5255 } 5256 5257 /* 5258 * For a cpu that supports both aarch64 and aarch32, we can set bits 5259 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5260 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5261 */ 5262 if (!arm_el_is_aa64(env, 2)) { 5263 uint64_t aa32_valid; 5264 5265 /* 5266 * These bits are up-to-date as of ARMv8.6. 5267 * For HCR, it's easiest to list just the 2 bits that are invalid. 5268 * For HCR2, list those that are valid. 5269 */ 5270 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5271 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5272 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5273 ret &= aa32_valid; 5274 } 5275 5276 if (ret & HCR_TGE) { 5277 /* These bits are up-to-date as of ARMv8.6. */ 5278 if (ret & HCR_E2H) { 5279 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5280 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5281 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5282 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5283 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5284 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5285 } else { 5286 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5287 } 5288 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5289 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5290 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5291 HCR_TLOR); 5292 } 5293 5294 return ret; 5295 } 5296 5297 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5298 { 5299 if (arm_feature(env, ARM_FEATURE_M)) { 5300 return 0; 5301 } 5302 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5303 } 5304 5305 /* 5306 * Corresponds to ARM pseudocode function ELIsInHost(). 5307 */ 5308 bool el_is_in_host(CPUARMState *env, int el) 5309 { 5310 uint64_t mask; 5311 5312 /* 5313 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5314 * Perform the simplest bit tests first, and validate EL2 afterward. 5315 */ 5316 if (el & 1) { 5317 return false; /* EL1 or EL3 */ 5318 } 5319 5320 /* 5321 * Note that hcr_write() checks isar_feature_aa64_vh(), 5322 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5323 */ 5324 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5325 if ((env->cp15.hcr_el2 & mask) != mask) { 5326 return false; 5327 } 5328 5329 /* TGE and/or E2H set: double check those bits are currently legal. */ 5330 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5331 } 5332 5333 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5334 uint64_t value) 5335 { 5336 ARMCPU *cpu = env_archcpu(env); 5337 uint64_t valid_mask = 0; 5338 5339 /* FEAT_MOPS adds MSCEn and MCE2 */ 5340 if (cpu_isar_feature(aa64_mops, cpu)) { 5341 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5342 } 5343 5344 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5345 if (cpu_isar_feature(aa64_nmi, cpu)) { 5346 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5347 } 5348 /* FEAT_CMOW adds CMOW */ 5349 if (cpu_isar_feature(aa64_cmow, cpu)) { 5350 valid_mask |= HCRX_CMOW; 5351 } 5352 /* FEAT_XS adds FGTnXS, FnXS */ 5353 if (cpu_isar_feature(aa64_xs, cpu)) { 5354 valid_mask |= HCRX_FGTNXS | HCRX_FNXS; 5355 } 5356 5357 /* Clear RES0 bits. */ 5358 env->cp15.hcrx_el2 = value & valid_mask; 5359 5360 /* 5361 * Updates to VINMI and VFNMI require us to update the status of 5362 * virtual NMI, which are the logical OR of these bits 5363 * and the state of the input lines from the GIC. (This requires 5364 * that we have the BQL, which is done by marking the 5365 * reginfo structs as ARM_CP_IO.) 5366 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5367 * possible for it to be taken immediately, because VINMI and 5368 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5369 * can only be written at EL2. 5370 */ 5371 if (cpu_isar_feature(aa64_nmi, cpu)) { 5372 g_assert(bql_locked()); 5373 arm_cpu_update_vinmi(cpu); 5374 arm_cpu_update_vfnmi(cpu); 5375 } 5376 } 5377 5378 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5379 bool isread) 5380 { 5381 if (arm_current_el(env) == 2 5382 && arm_feature(env, ARM_FEATURE_EL3) 5383 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5384 return CP_ACCESS_TRAP_EL3; 5385 } 5386 return CP_ACCESS_OK; 5387 } 5388 5389 static const ARMCPRegInfo hcrx_el2_reginfo = { 5390 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5391 .type = ARM_CP_IO, 5392 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5393 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5394 .nv2_redirect_offset = 0xa0, 5395 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5396 }; 5397 5398 /* Return the effective value of HCRX_EL2. */ 5399 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5400 { 5401 /* 5402 * The bits in this register behave as 0 for all purposes other than 5403 * direct reads of the register if SCR_EL3.HXEn is 0. 5404 * If EL2 is not enabled in the current security state, then the 5405 * bit may behave as if 0, or as if 1, depending on the bit. 5406 * For the moment, we treat the EL2-disabled case as taking 5407 * priority over the HXEn-disabled case. This is true for the only 5408 * bit for a feature which we implement where the answer is different 5409 * for the two cases (MSCEn for FEAT_MOPS). 5410 * This may need to be revisited for future bits. 5411 */ 5412 if (!arm_is_el2_enabled(env)) { 5413 uint64_t hcrx = 0; 5414 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5415 /* MSCEn behaves as 1 if EL2 is not enabled */ 5416 hcrx |= HCRX_MSCEN; 5417 } 5418 return hcrx; 5419 } 5420 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5421 return 0; 5422 } 5423 return env->cp15.hcrx_el2; 5424 } 5425 5426 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5427 uint64_t value) 5428 { 5429 /* 5430 * For A-profile AArch32 EL3, if NSACR.CP10 5431 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5432 */ 5433 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5434 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5435 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5436 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5437 } 5438 env->cp15.cptr_el[2] = value; 5439 } 5440 5441 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5442 { 5443 /* 5444 * For A-profile AArch32 EL3, if NSACR.CP10 5445 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5446 */ 5447 uint64_t value = env->cp15.cptr_el[2]; 5448 5449 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5450 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5451 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5452 } 5453 return value; 5454 } 5455 5456 static const ARMCPRegInfo el2_cp_reginfo[] = { 5457 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5458 .type = ARM_CP_IO, 5459 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5461 .nv2_redirect_offset = 0x78, 5462 .writefn = hcr_write, .raw_writefn = raw_write }, 5463 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5464 .type = ARM_CP_ALIAS | ARM_CP_IO, 5465 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5466 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5467 .writefn = hcr_writelow }, 5468 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5469 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5470 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5471 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5472 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5473 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5474 .access = PL2_RW, 5475 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5476 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5477 .type = ARM_CP_NV2_REDIRECT, 5478 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5479 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5480 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5481 .type = ARM_CP_NV2_REDIRECT, 5482 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5483 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5484 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5485 .type = ARM_CP_ALIAS, 5486 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5487 .access = PL2_RW, 5488 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5489 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5490 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5491 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5492 .access = PL2_RW, 5493 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5494 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5495 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5496 .access = PL2_RW, .writefn = vbar_write, 5497 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5498 .resetvalue = 0 }, 5499 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5501 .access = PL3_RW, .type = ARM_CP_ALIAS, 5502 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5503 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5504 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5505 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5506 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5507 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5508 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5509 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5510 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5511 .resetvalue = 0 }, 5512 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5513 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5514 .access = PL2_RW, .type = ARM_CP_ALIAS, 5515 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5516 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5517 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5518 .access = PL2_RW, .type = ARM_CP_CONST, 5519 .resetvalue = 0 }, 5520 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5521 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5522 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5523 .access = PL2_RW, .type = ARM_CP_CONST, 5524 .resetvalue = 0 }, 5525 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5526 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5527 .access = PL2_RW, .type = ARM_CP_CONST, 5528 .resetvalue = 0 }, 5529 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5530 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5531 .access = PL2_RW, .type = ARM_CP_CONST, 5532 .resetvalue = 0 }, 5533 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5534 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5535 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5536 .raw_writefn = raw_write, 5537 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5538 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5539 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5540 .type = ARM_CP_ALIAS, 5541 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5542 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5543 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5544 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5545 .access = PL2_RW, 5546 .nv2_redirect_offset = 0x40, 5547 /* no .writefn needed as this can't cause an ASID change */ 5548 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5549 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5550 .cp = 15, .opc1 = 6, .crm = 2, 5551 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5552 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5553 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5554 .writefn = vttbr_write, .raw_writefn = raw_write }, 5555 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5556 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5557 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5558 .nv2_redirect_offset = 0x20, 5559 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5560 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5561 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5562 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5563 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5564 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5565 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5566 .access = PL2_RW, .resetvalue = 0, 5567 .nv2_redirect_offset = 0x90, 5568 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5569 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5571 .access = PL2_RW, .resetvalue = 0, 5572 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5573 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5574 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5575 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5576 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5577 #ifndef CONFIG_USER_ONLY 5578 /* 5579 * Unlike the other EL2-related AT operations, these must 5580 * UNDEF from EL3 if EL2 is not implemented, which is why we 5581 * define them here rather than with the rest of the AT ops. 5582 */ 5583 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5584 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5585 .access = PL2_W, .accessfn = at_s1e2_access, 5586 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5587 .writefn = ats_write64 }, 5588 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5589 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5590 .access = PL2_W, .accessfn = at_s1e2_access, 5591 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5592 .writefn = ats_write64 }, 5593 /* 5594 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5595 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5596 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5597 * to behave as if SCR.NS was 1. 5598 */ 5599 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5600 .access = PL2_W, 5601 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5602 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5603 .access = PL2_W, 5604 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5605 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5606 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5607 /* 5608 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5609 * reset values as IMPDEF. We choose to reset to 3 to comply with 5610 * both ARMv7 and ARMv8. 5611 */ 5612 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5613 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5614 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5615 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5616 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5617 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5618 .writefn = gt_cntvoff_write, 5619 .nv2_redirect_offset = 0x60, 5620 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5621 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5622 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5623 .writefn = gt_cntvoff_write, 5624 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5625 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5627 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5628 .type = ARM_CP_IO, .access = PL2_RW, 5629 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5630 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5631 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5632 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5633 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5634 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5635 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5636 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5637 .resetfn = gt_hyp_timer_reset, 5638 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5639 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5640 .type = ARM_CP_IO, 5641 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5642 .access = PL2_RW, 5643 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5644 .resetvalue = 0, 5645 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5646 #endif 5647 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5648 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5649 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5650 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5651 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5653 .access = PL2_RW, 5654 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5655 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5656 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5657 .access = PL2_RW, 5658 .nv2_redirect_offset = 0x80, 5659 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5660 }; 5661 5662 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5663 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5664 .type = ARM_CP_ALIAS | ARM_CP_IO, 5665 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5666 .access = PL2_RW, 5667 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5668 .writefn = hcr_writehigh }, 5669 }; 5670 5671 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5672 bool isread) 5673 { 5674 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5675 return CP_ACCESS_OK; 5676 } 5677 return CP_ACCESS_TRAP_UNCATEGORIZED; 5678 } 5679 5680 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5681 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5682 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5683 .access = PL2_RW, .accessfn = sel2_access, 5684 .nv2_redirect_offset = 0x30, 5685 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5686 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5687 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5688 .access = PL2_RW, .accessfn = sel2_access, 5689 .nv2_redirect_offset = 0x48, 5690 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5691 }; 5692 5693 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5694 bool isread) 5695 { 5696 /* 5697 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5698 * At Secure EL1 it traps to EL3 or EL2. 5699 */ 5700 if (arm_current_el(env) == 3) { 5701 return CP_ACCESS_OK; 5702 } 5703 if (arm_is_secure_below_el3(env)) { 5704 if (env->cp15.scr_el3 & SCR_EEL2) { 5705 return CP_ACCESS_TRAP_EL2; 5706 } 5707 return CP_ACCESS_TRAP_EL3; 5708 } 5709 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5710 if (isread) { 5711 return CP_ACCESS_OK; 5712 } 5713 return CP_ACCESS_TRAP_UNCATEGORIZED; 5714 } 5715 5716 static const ARMCPRegInfo el3_cp_reginfo[] = { 5717 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5718 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5719 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5720 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5721 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5722 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5723 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5724 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5725 .writefn = scr_write, .raw_writefn = raw_write }, 5726 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5727 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5728 .access = PL3_RW, .resetvalue = 0, 5729 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5730 { .name = "SDER", 5731 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5732 .access = PL3_RW, .resetvalue = 0, 5733 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5734 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5735 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5736 .writefn = vbar_write, .resetvalue = 0, 5737 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5738 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5740 .access = PL3_RW, .resetvalue = 0, 5741 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5742 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5744 .access = PL3_RW, 5745 /* no .writefn needed as this can't cause an ASID change */ 5746 .resetvalue = 0, 5747 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5748 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5749 .type = ARM_CP_ALIAS, 5750 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5751 .access = PL3_RW, 5752 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5753 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5755 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5756 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5758 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5759 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5760 .type = ARM_CP_ALIAS, 5761 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5762 .access = PL3_RW, 5763 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5764 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5766 .access = PL3_RW, .writefn = vbar_write, 5767 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5768 .resetvalue = 0 }, 5769 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5771 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5772 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5773 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5775 .access = PL3_RW, .resetvalue = 0, 5776 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5777 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5779 .access = PL3_RW, .type = ARM_CP_CONST, 5780 .resetvalue = 0 }, 5781 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5782 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5783 .access = PL3_RW, .type = ARM_CP_CONST, 5784 .resetvalue = 0 }, 5785 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5786 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5787 .access = PL3_RW, .type = ARM_CP_CONST, 5788 .resetvalue = 0 }, 5789 }; 5790 5791 #ifndef CONFIG_USER_ONLY 5792 5793 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 5794 bool isread) 5795 { 5796 if (arm_current_el(env) == 1) { 5797 /* This must be a FEAT_NV access */ 5798 return CP_ACCESS_OK; 5799 } 5800 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 5801 return CP_ACCESS_TRAP_UNCATEGORIZED; 5802 } 5803 return CP_ACCESS_OK; 5804 } 5805 5806 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 5807 bool isread) 5808 { 5809 if (arm_current_el(env) == 1) { 5810 /* This must be a FEAT_NV access with NVx == 101 */ 5811 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 5812 return CP_ACCESS_TRAP_EL2; 5813 } 5814 } 5815 return e2h_access(env, ri, isread); 5816 } 5817 5818 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 5819 bool isread) 5820 { 5821 if (arm_current_el(env) == 1) { 5822 /* This must be a FEAT_NV access with NVx == 101 */ 5823 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 5824 return CP_ACCESS_TRAP_EL2; 5825 } 5826 } 5827 return e2h_access(env, ri, isread); 5828 } 5829 5830 /* Test if system register redirection is to occur in the current state. */ 5831 static bool redirect_for_e2h(CPUARMState *env) 5832 { 5833 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5834 } 5835 5836 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5837 { 5838 CPReadFn *readfn; 5839 5840 if (redirect_for_e2h(env)) { 5841 /* Switch to the saved EL2 version of the register. */ 5842 ri = ri->opaque; 5843 readfn = ri->readfn; 5844 } else { 5845 readfn = ri->orig_readfn; 5846 } 5847 if (readfn == NULL) { 5848 readfn = raw_read; 5849 } 5850 return readfn(env, ri); 5851 } 5852 5853 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5854 uint64_t value) 5855 { 5856 CPWriteFn *writefn; 5857 5858 if (redirect_for_e2h(env)) { 5859 /* Switch to the saved EL2 version of the register. */ 5860 ri = ri->opaque; 5861 writefn = ri->writefn; 5862 } else { 5863 writefn = ri->orig_writefn; 5864 } 5865 if (writefn == NULL) { 5866 writefn = raw_write; 5867 } 5868 writefn(env, ri, value); 5869 } 5870 5871 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 5872 { 5873 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 5874 return ri->orig_readfn(env, ri->opaque); 5875 } 5876 5877 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 5878 uint64_t value) 5879 { 5880 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 5881 return ri->orig_writefn(env, ri->opaque, value); 5882 } 5883 5884 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 5885 const ARMCPRegInfo *ri, 5886 bool isread) 5887 { 5888 if (arm_current_el(env) == 1) { 5889 /* 5890 * This must be a FEAT_NV access (will either trap or redirect 5891 * to memory). None of the registers with _EL12 aliases want to 5892 * apply their trap controls for this kind of access, so don't 5893 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 5894 */ 5895 return CP_ACCESS_OK; 5896 } 5897 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 5898 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 5899 return CP_ACCESS_TRAP_UNCATEGORIZED; 5900 } 5901 if (ri->orig_accessfn) { 5902 return ri->orig_accessfn(env, ri->opaque, isread); 5903 } 5904 return CP_ACCESS_OK; 5905 } 5906 5907 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5908 { 5909 struct E2HAlias { 5910 uint32_t src_key, dst_key, new_key; 5911 const char *src_name, *dst_name, *new_name; 5912 bool (*feature)(const ARMISARegisters *id); 5913 }; 5914 5915 #define K(op0, op1, crn, crm, op2) \ 5916 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5917 5918 static const struct E2HAlias aliases[] = { 5919 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5920 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5921 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5922 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5923 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5924 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5925 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5926 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5927 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5928 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5929 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5930 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5931 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5932 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5933 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5934 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5935 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5936 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5937 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5938 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5939 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5940 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5941 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5942 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5943 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5944 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5945 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5946 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5947 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5948 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5949 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5950 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5951 5952 /* 5953 * Note that redirection of ZCR is mentioned in the description 5954 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5955 * not in the summary table. 5956 */ 5957 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5958 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5959 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5960 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5961 5962 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5963 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5964 5965 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5966 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5967 isar_feature_aa64_scxtnum }, 5968 5969 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5970 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5971 }; 5972 #undef K 5973 5974 size_t i; 5975 5976 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5977 const struct E2HAlias *a = &aliases[i]; 5978 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5979 bool ok; 5980 5981 if (a->feature && !a->feature(&cpu->isar)) { 5982 continue; 5983 } 5984 5985 src_reg = g_hash_table_lookup(cpu->cp_regs, 5986 (gpointer)(uintptr_t)a->src_key); 5987 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5988 (gpointer)(uintptr_t)a->dst_key); 5989 g_assert(src_reg != NULL); 5990 g_assert(dst_reg != NULL); 5991 5992 /* Cross-compare names to detect typos in the keys. */ 5993 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5994 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5995 5996 /* None of the core system registers use opaque; we will. */ 5997 g_assert(src_reg->opaque == NULL); 5998 5999 /* Create alias before redirection so we dup the right data. */ 6000 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6001 6002 new_reg->name = a->new_name; 6003 new_reg->type |= ARM_CP_ALIAS; 6004 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6005 new_reg->access &= PL2_RW | PL3_RW; 6006 /* The new_reg op fields are as per new_key, not the target reg */ 6007 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6008 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6009 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6010 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6011 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6012 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6013 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6014 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6015 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6016 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6017 new_reg->opaque = src_reg; 6018 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6019 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6020 new_reg->orig_accessfn = src_reg->accessfn; 6021 if (!new_reg->raw_readfn) { 6022 new_reg->raw_readfn = raw_read; 6023 } 6024 if (!new_reg->raw_writefn) { 6025 new_reg->raw_writefn = raw_write; 6026 } 6027 new_reg->readfn = el2_e2h_e12_read; 6028 new_reg->writefn = el2_e2h_e12_write; 6029 new_reg->accessfn = el2_e2h_e12_access; 6030 6031 /* 6032 * If the _EL1 register is redirected to memory by FEAT_NV2, 6033 * then it shares the offset with the _EL12 register, 6034 * and which one is redirected depends on HCR_EL2.NV1. 6035 */ 6036 if (new_reg->nv2_redirect_offset) { 6037 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6038 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6039 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6040 } 6041 6042 ok = g_hash_table_insert(cpu->cp_regs, 6043 (gpointer)(uintptr_t)a->new_key, new_reg); 6044 g_assert(ok); 6045 6046 src_reg->opaque = dst_reg; 6047 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6048 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6049 if (!src_reg->raw_readfn) { 6050 src_reg->raw_readfn = raw_read; 6051 } 6052 if (!src_reg->raw_writefn) { 6053 src_reg->raw_writefn = raw_write; 6054 } 6055 src_reg->readfn = el2_e2h_read; 6056 src_reg->writefn = el2_e2h_write; 6057 } 6058 } 6059 #endif 6060 6061 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6062 bool isread) 6063 { 6064 int cur_el = arm_current_el(env); 6065 6066 if (cur_el < 2) { 6067 uint64_t hcr = arm_hcr_el2_eff(env); 6068 6069 if (cur_el == 0) { 6070 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6071 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6072 return CP_ACCESS_TRAP_EL2; 6073 } 6074 } else { 6075 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6076 return CP_ACCESS_TRAP; 6077 } 6078 if (hcr & HCR_TID2) { 6079 return CP_ACCESS_TRAP_EL2; 6080 } 6081 } 6082 } else if (hcr & HCR_TID2) { 6083 return CP_ACCESS_TRAP_EL2; 6084 } 6085 } 6086 6087 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6088 return CP_ACCESS_TRAP_EL2; 6089 } 6090 6091 return CP_ACCESS_OK; 6092 } 6093 6094 /* 6095 * Check for traps to RAS registers, which are controlled 6096 * by HCR_EL2.TERR and SCR_EL3.TERR. 6097 */ 6098 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6099 bool isread) 6100 { 6101 int el = arm_current_el(env); 6102 6103 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6104 return CP_ACCESS_TRAP_EL2; 6105 } 6106 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6107 return CP_ACCESS_TRAP_EL3; 6108 } 6109 return CP_ACCESS_OK; 6110 } 6111 6112 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6113 { 6114 int el = arm_current_el(env); 6115 6116 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6117 return env->cp15.vdisr_el2; 6118 } 6119 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6120 return 0; /* RAZ/WI */ 6121 } 6122 return env->cp15.disr_el1; 6123 } 6124 6125 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6126 { 6127 int el = arm_current_el(env); 6128 6129 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6130 env->cp15.vdisr_el2 = val; 6131 return; 6132 } 6133 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6134 return; /* RAZ/WI */ 6135 } 6136 env->cp15.disr_el1 = val; 6137 } 6138 6139 /* 6140 * Minimal RAS implementation with no Error Records. 6141 * Which means that all of the Error Record registers: 6142 * ERXADDR_EL1 6143 * ERXCTLR_EL1 6144 * ERXFR_EL1 6145 * ERXMISC0_EL1 6146 * ERXMISC1_EL1 6147 * ERXMISC2_EL1 6148 * ERXMISC3_EL1 6149 * ERXPFGCDN_EL1 (RASv1p1) 6150 * ERXPFGCTL_EL1 (RASv1p1) 6151 * ERXPFGF_EL1 (RASv1p1) 6152 * ERXSTATUS_EL1 6153 * and 6154 * ERRSELR_EL1 6155 * may generate UNDEFINED, which is the effect we get by not 6156 * listing them at all. 6157 * 6158 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6159 * is higher priority than FGT-to-EL2 so we do not need to list them 6160 * in order to check for an FGT. 6161 */ 6162 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6163 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6164 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6165 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6166 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6167 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6168 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6169 .access = PL1_R, .accessfn = access_terr, 6170 .fgt = FGT_ERRIDR_EL1, 6171 .type = ARM_CP_CONST, .resetvalue = 0 }, 6172 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6173 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6174 .nv2_redirect_offset = 0x500, 6175 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6176 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6177 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6178 .nv2_redirect_offset = 0x508, 6179 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6180 }; 6181 6182 /* 6183 * Return the exception level to which exceptions should be taken 6184 * via SVEAccessTrap. This excludes the check for whether the exception 6185 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6186 * be found by testing 0 < fp_exception_el < sve_exception_el. 6187 * 6188 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6189 * pseudocode does *not* separate out the FP trap checks, but has them 6190 * all in one function. 6191 */ 6192 int sve_exception_el(CPUARMState *env, int el) 6193 { 6194 #ifndef CONFIG_USER_ONLY 6195 if (el <= 1 && !el_is_in_host(env, el)) { 6196 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6197 case 1: 6198 if (el != 0) { 6199 break; 6200 } 6201 /* fall through */ 6202 case 0: 6203 case 2: 6204 return 1; 6205 } 6206 } 6207 6208 if (el <= 2 && arm_is_el2_enabled(env)) { 6209 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6210 if (env->cp15.hcr_el2 & HCR_E2H) { 6211 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6212 case 1: 6213 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6214 break; 6215 } 6216 /* fall through */ 6217 case 0: 6218 case 2: 6219 return 2; 6220 } 6221 } else { 6222 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6223 return 2; 6224 } 6225 } 6226 } 6227 6228 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6229 if (arm_feature(env, ARM_FEATURE_EL3) 6230 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6231 return 3; 6232 } 6233 #endif 6234 return 0; 6235 } 6236 6237 /* 6238 * Return the exception level to which exceptions should be taken for SME. 6239 * C.f. the ARM pseudocode function CheckSMEAccess. 6240 */ 6241 int sme_exception_el(CPUARMState *env, int el) 6242 { 6243 #ifndef CONFIG_USER_ONLY 6244 if (el <= 1 && !el_is_in_host(env, el)) { 6245 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6246 case 1: 6247 if (el != 0) { 6248 break; 6249 } 6250 /* fall through */ 6251 case 0: 6252 case 2: 6253 return 1; 6254 } 6255 } 6256 6257 if (el <= 2 && arm_is_el2_enabled(env)) { 6258 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6259 if (env->cp15.hcr_el2 & HCR_E2H) { 6260 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6261 case 1: 6262 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6263 break; 6264 } 6265 /* fall through */ 6266 case 0: 6267 case 2: 6268 return 2; 6269 } 6270 } else { 6271 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6272 return 2; 6273 } 6274 } 6275 } 6276 6277 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6278 if (arm_feature(env, ARM_FEATURE_EL3) 6279 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6280 return 3; 6281 } 6282 #endif 6283 return 0; 6284 } 6285 6286 /* 6287 * Given that SVE is enabled, return the vector length for EL. 6288 */ 6289 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6290 { 6291 ARMCPU *cpu = env_archcpu(env); 6292 uint64_t *cr = env->vfp.zcr_el; 6293 uint32_t map = cpu->sve_vq.map; 6294 uint32_t len = ARM_MAX_VQ - 1; 6295 6296 if (sm) { 6297 cr = env->vfp.smcr_el; 6298 map = cpu->sme_vq.map; 6299 } 6300 6301 if (el <= 1 && !el_is_in_host(env, el)) { 6302 len = MIN(len, 0xf & (uint32_t)cr[1]); 6303 } 6304 if (el <= 2 && arm_is_el2_enabled(env)) { 6305 len = MIN(len, 0xf & (uint32_t)cr[2]); 6306 } 6307 if (arm_feature(env, ARM_FEATURE_EL3)) { 6308 len = MIN(len, 0xf & (uint32_t)cr[3]); 6309 } 6310 6311 map &= MAKE_64BIT_MASK(0, len + 1); 6312 if (map != 0) { 6313 return 31 - clz32(map); 6314 } 6315 6316 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6317 assert(sm); 6318 return ctz32(cpu->sme_vq.map); 6319 } 6320 6321 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6322 { 6323 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6324 } 6325 6326 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6327 uint64_t value) 6328 { 6329 int cur_el = arm_current_el(env); 6330 int old_len = sve_vqm1_for_el(env, cur_el); 6331 int new_len; 6332 6333 /* Bits other than [3:0] are RAZ/WI. */ 6334 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6335 raw_write(env, ri, value & 0xf); 6336 6337 /* 6338 * Because we arrived here, we know both FP and SVE are enabled; 6339 * otherwise we would have trapped access to the ZCR_ELn register. 6340 */ 6341 new_len = sve_vqm1_for_el(env, cur_el); 6342 if (new_len < old_len) { 6343 aarch64_sve_narrow_vq(env, new_len + 1); 6344 } 6345 } 6346 6347 static const ARMCPRegInfo zcr_reginfo[] = { 6348 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6349 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6350 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6351 .access = PL1_RW, .type = ARM_CP_SVE, 6352 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6353 .writefn = zcr_write, .raw_writefn = raw_write }, 6354 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6355 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6356 .access = PL2_RW, .type = ARM_CP_SVE, 6357 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6358 .writefn = zcr_write, .raw_writefn = raw_write }, 6359 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6360 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6361 .access = PL3_RW, .type = ARM_CP_SVE, 6362 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6363 .writefn = zcr_write, .raw_writefn = raw_write }, 6364 }; 6365 6366 #ifdef TARGET_AARCH64 6367 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6368 bool isread) 6369 { 6370 int el = arm_current_el(env); 6371 6372 if (el == 0) { 6373 uint64_t sctlr = arm_sctlr(env, el); 6374 if (!(sctlr & SCTLR_EnTP2)) { 6375 return CP_ACCESS_TRAP; 6376 } 6377 } 6378 /* TODO: FEAT_FGT */ 6379 if (el < 3 6380 && arm_feature(env, ARM_FEATURE_EL3) 6381 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6382 return CP_ACCESS_TRAP_EL3; 6383 } 6384 return CP_ACCESS_OK; 6385 } 6386 6387 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6388 bool isread) 6389 { 6390 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6391 if (arm_current_el(env) == 2 6392 && arm_feature(env, ARM_FEATURE_EL3) 6393 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6394 return CP_ACCESS_TRAP_EL3; 6395 } 6396 return CP_ACCESS_OK; 6397 } 6398 6399 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6400 bool isread) 6401 { 6402 if (arm_current_el(env) < 3 6403 && arm_feature(env, ARM_FEATURE_EL3) 6404 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6405 return CP_ACCESS_TRAP_EL3; 6406 } 6407 return CP_ACCESS_OK; 6408 } 6409 6410 /* ResetSVEState */ 6411 static void arm_reset_sve_state(CPUARMState *env) 6412 { 6413 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6414 /* Recall that FFR is stored as pregs[16]. */ 6415 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6416 vfp_set_fpsr(env, 0x0800009f); 6417 } 6418 6419 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6420 { 6421 uint64_t change = (env->svcr ^ new) & mask; 6422 6423 if (change == 0) { 6424 return; 6425 } 6426 env->svcr ^= change; 6427 6428 if (change & R_SVCR_SM_MASK) { 6429 arm_reset_sve_state(env); 6430 } 6431 6432 /* 6433 * ResetSMEState. 6434 * 6435 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6436 * on enable: while disabled, the storage is inaccessible and the 6437 * value does not matter. We're not saving the storage in vmstate 6438 * when disabled either. 6439 */ 6440 if (change & new & R_SVCR_ZA_MASK) { 6441 memset(env->zarray, 0, sizeof(env->zarray)); 6442 } 6443 6444 if (tcg_enabled()) { 6445 arm_rebuild_hflags(env); 6446 } 6447 } 6448 6449 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6450 uint64_t value) 6451 { 6452 aarch64_set_svcr(env, value, -1); 6453 } 6454 6455 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6456 uint64_t value) 6457 { 6458 int cur_el = arm_current_el(env); 6459 int old_len = sve_vqm1_for_el(env, cur_el); 6460 int new_len; 6461 6462 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6463 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6464 raw_write(env, ri, value); 6465 6466 /* 6467 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6468 * when SVL is widened (old values kept, or zeros). Choose to keep the 6469 * current values for simplicity. But for QEMU internals, we must still 6470 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6471 * above aarch64_sve_narrow_vq. 6472 */ 6473 new_len = sve_vqm1_for_el(env, cur_el); 6474 if (new_len < old_len) { 6475 aarch64_sve_narrow_vq(env, new_len + 1); 6476 } 6477 } 6478 6479 static const ARMCPRegInfo sme_reginfo[] = { 6480 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6481 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6482 .access = PL0_RW, .accessfn = access_tpidr2, 6483 .fgt = FGT_NTPIDR2_EL0, 6484 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6485 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6486 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6487 .access = PL0_RW, .type = ARM_CP_SME, 6488 .fieldoffset = offsetof(CPUARMState, svcr), 6489 .writefn = svcr_write, .raw_writefn = raw_write }, 6490 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6491 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6492 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6493 .access = PL1_RW, .type = ARM_CP_SME, 6494 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6495 .writefn = smcr_write, .raw_writefn = raw_write }, 6496 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6498 .access = PL2_RW, .type = ARM_CP_SME, 6499 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6500 .writefn = smcr_write, .raw_writefn = raw_write }, 6501 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6502 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6503 .access = PL3_RW, .type = ARM_CP_SME, 6504 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6505 .writefn = smcr_write, .raw_writefn = raw_write }, 6506 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6507 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6508 .access = PL1_R, .accessfn = access_aa64_tid1, 6509 /* 6510 * IMPLEMENTOR = 0 (software) 6511 * REVISION = 0 (implementation defined) 6512 * SMPS = 0 (no streaming execution priority in QEMU) 6513 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6514 */ 6515 .type = ARM_CP_CONST, .resetvalue = 0, }, 6516 /* 6517 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6518 */ 6519 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6520 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6521 .access = PL1_RW, .accessfn = access_smpri, 6522 .fgt = FGT_NSMPRI_EL1, 6523 .type = ARM_CP_CONST, .resetvalue = 0 }, 6524 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6525 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6526 .nv2_redirect_offset = 0x1f8, 6527 .access = PL2_RW, .accessfn = access_smprimap, 6528 .type = ARM_CP_CONST, .resetvalue = 0 }, 6529 }; 6530 6531 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6532 uint64_t value) 6533 { 6534 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6535 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6536 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6537 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6538 6539 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6540 } 6541 6542 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6543 { 6544 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6545 env_archcpu(env)->reset_l0gptsz); 6546 } 6547 6548 static const ARMCPRegInfo rme_reginfo[] = { 6549 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6550 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6551 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6552 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6553 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6554 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6555 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6556 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6557 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6558 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6559 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6560 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6561 .access = PL3_W, .type = ARM_CP_NOP }, 6562 }; 6563 6564 static const ARMCPRegInfo rme_mte_reginfo[] = { 6565 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6566 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6567 .access = PL3_W, .type = ARM_CP_NOP }, 6568 }; 6569 6570 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6571 uint64_t value) 6572 { 6573 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6574 } 6575 6576 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6577 { 6578 return env->pstate & PSTATE_ALLINT; 6579 } 6580 6581 static CPAccessResult aa64_allint_access(CPUARMState *env, 6582 const ARMCPRegInfo *ri, bool isread) 6583 { 6584 if (!isread && arm_current_el(env) == 1 && 6585 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6586 return CP_ACCESS_TRAP_EL2; 6587 } 6588 return CP_ACCESS_OK; 6589 } 6590 6591 static const ARMCPRegInfo nmi_reginfo[] = { 6592 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6593 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6594 .type = ARM_CP_NO_RAW, 6595 .access = PL1_RW, .accessfn = aa64_allint_access, 6596 .fieldoffset = offsetof(CPUARMState, pstate), 6597 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6598 .resetfn = arm_cp_reset_ignore }, 6599 }; 6600 #endif /* TARGET_AARCH64 */ 6601 6602 static void define_pmu_regs(ARMCPU *cpu) 6603 { 6604 /* 6605 * v7 performance monitor control register: same implementor 6606 * field as main ID register, and we implement four counters in 6607 * addition to the cycle count register. 6608 */ 6609 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6610 ARMCPRegInfo pmcr = { 6611 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6612 .access = PL0_RW, 6613 .fgt = FGT_PMCR_EL0, 6614 .type = ARM_CP_IO | ARM_CP_ALIAS, 6615 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6616 .accessfn = pmreg_access, 6617 .readfn = pmcr_read, .raw_readfn = raw_read, 6618 .writefn = pmcr_write, .raw_writefn = raw_write, 6619 }; 6620 ARMCPRegInfo pmcr64 = { 6621 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6622 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6623 .access = PL0_RW, .accessfn = pmreg_access, 6624 .fgt = FGT_PMCR_EL0, 6625 .type = ARM_CP_IO, 6626 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6627 .resetvalue = cpu->isar.reset_pmcr_el0, 6628 .readfn = pmcr_read, .raw_readfn = raw_read, 6629 .writefn = pmcr_write, .raw_writefn = raw_write, 6630 }; 6631 6632 define_one_arm_cp_reg(cpu, &pmcr); 6633 define_one_arm_cp_reg(cpu, &pmcr64); 6634 for (i = 0; i < pmcrn; i++) { 6635 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6636 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6637 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6638 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6639 ARMCPRegInfo pmev_regs[] = { 6640 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6641 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6642 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6643 .fgt = FGT_PMEVCNTRN_EL0, 6644 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6645 .accessfn = pmreg_access_xevcntr }, 6646 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6647 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6648 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6649 .type = ARM_CP_IO, 6650 .fgt = FGT_PMEVCNTRN_EL0, 6651 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6652 .raw_readfn = pmevcntr_rawread, 6653 .raw_writefn = pmevcntr_rawwrite }, 6654 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6655 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6656 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6657 .fgt = FGT_PMEVTYPERN_EL0, 6658 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6659 .accessfn = pmreg_access }, 6660 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6661 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6662 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6663 .fgt = FGT_PMEVTYPERN_EL0, 6664 .type = ARM_CP_IO, 6665 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6666 .raw_writefn = pmevtyper_rawwrite }, 6667 }; 6668 define_arm_cp_regs(cpu, pmev_regs); 6669 g_free(pmevcntr_name); 6670 g_free(pmevcntr_el0_name); 6671 g_free(pmevtyper_name); 6672 g_free(pmevtyper_el0_name); 6673 } 6674 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6675 ARMCPRegInfo v81_pmu_regs[] = { 6676 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6677 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6678 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6679 .fgt = FGT_PMCEIDN_EL0, 6680 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6681 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6682 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6683 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6684 .fgt = FGT_PMCEIDN_EL0, 6685 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6686 }; 6687 define_arm_cp_regs(cpu, v81_pmu_regs); 6688 } 6689 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6690 static const ARMCPRegInfo v84_pmmir = { 6691 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6692 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6693 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6694 .fgt = FGT_PMMIR_EL1, 6695 .resetvalue = 0 6696 }; 6697 define_one_arm_cp_reg(cpu, &v84_pmmir); 6698 } 6699 } 6700 6701 #ifndef CONFIG_USER_ONLY 6702 /* 6703 * We don't know until after realize whether there's a GICv3 6704 * attached, and that is what registers the gicv3 sysregs. 6705 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6706 * at runtime. 6707 */ 6708 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6709 { 6710 ARMCPU *cpu = env_archcpu(env); 6711 uint64_t pfr1 = cpu->isar.id_pfr1; 6712 6713 if (env->gicv3state) { 6714 pfr1 |= 1 << 28; 6715 } 6716 return pfr1; 6717 } 6718 6719 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6720 { 6721 ARMCPU *cpu = env_archcpu(env); 6722 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6723 6724 if (env->gicv3state) { 6725 pfr0 |= 1 << 24; 6726 } 6727 return pfr0; 6728 } 6729 #endif 6730 6731 /* 6732 * Shared logic between LORID and the rest of the LOR* registers. 6733 * Secure state exclusion has already been dealt with. 6734 */ 6735 static CPAccessResult access_lor_ns(CPUARMState *env, 6736 const ARMCPRegInfo *ri, bool isread) 6737 { 6738 int el = arm_current_el(env); 6739 6740 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6741 return CP_ACCESS_TRAP_EL2; 6742 } 6743 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6744 return CP_ACCESS_TRAP_EL3; 6745 } 6746 return CP_ACCESS_OK; 6747 } 6748 6749 static CPAccessResult access_lor_other(CPUARMState *env, 6750 const ARMCPRegInfo *ri, bool isread) 6751 { 6752 if (arm_is_secure_below_el3(env)) { 6753 /* Access denied in secure mode. */ 6754 return CP_ACCESS_TRAP; 6755 } 6756 return access_lor_ns(env, ri, isread); 6757 } 6758 6759 /* 6760 * A trivial implementation of ARMv8.1-LOR leaves all of these 6761 * registers fixed at 0, which indicates that there are zero 6762 * supported Limited Ordering regions. 6763 */ 6764 static const ARMCPRegInfo lor_reginfo[] = { 6765 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6767 .access = PL1_RW, .accessfn = access_lor_other, 6768 .fgt = FGT_LORSA_EL1, 6769 .type = ARM_CP_CONST, .resetvalue = 0 }, 6770 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6772 .access = PL1_RW, .accessfn = access_lor_other, 6773 .fgt = FGT_LOREA_EL1, 6774 .type = ARM_CP_CONST, .resetvalue = 0 }, 6775 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6777 .access = PL1_RW, .accessfn = access_lor_other, 6778 .fgt = FGT_LORN_EL1, 6779 .type = ARM_CP_CONST, .resetvalue = 0 }, 6780 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6781 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6782 .access = PL1_RW, .accessfn = access_lor_other, 6783 .fgt = FGT_LORC_EL1, 6784 .type = ARM_CP_CONST, .resetvalue = 0 }, 6785 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6786 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6787 .access = PL1_R, .accessfn = access_lor_ns, 6788 .fgt = FGT_LORID_EL1, 6789 .type = ARM_CP_CONST, .resetvalue = 0 }, 6790 }; 6791 6792 #ifdef TARGET_AARCH64 6793 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6794 bool isread) 6795 { 6796 int el = arm_current_el(env); 6797 6798 if (el < 2 && 6799 arm_is_el2_enabled(env) && 6800 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6801 return CP_ACCESS_TRAP_EL2; 6802 } 6803 if (el < 3 && 6804 arm_feature(env, ARM_FEATURE_EL3) && 6805 !(env->cp15.scr_el3 & SCR_APK)) { 6806 return CP_ACCESS_TRAP_EL3; 6807 } 6808 return CP_ACCESS_OK; 6809 } 6810 6811 static const ARMCPRegInfo pauth_reginfo[] = { 6812 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6813 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6814 .access = PL1_RW, .accessfn = access_pauth, 6815 .fgt = FGT_APDAKEY, 6816 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6817 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6818 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6819 .access = PL1_RW, .accessfn = access_pauth, 6820 .fgt = FGT_APDAKEY, 6821 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6822 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6824 .access = PL1_RW, .accessfn = access_pauth, 6825 .fgt = FGT_APDBKEY, 6826 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6827 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6828 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6829 .access = PL1_RW, .accessfn = access_pauth, 6830 .fgt = FGT_APDBKEY, 6831 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6832 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6833 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6834 .access = PL1_RW, .accessfn = access_pauth, 6835 .fgt = FGT_APGAKEY, 6836 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6837 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6839 .access = PL1_RW, .accessfn = access_pauth, 6840 .fgt = FGT_APGAKEY, 6841 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6842 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6843 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6844 .access = PL1_RW, .accessfn = access_pauth, 6845 .fgt = FGT_APIAKEY, 6846 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6847 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6848 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6849 .access = PL1_RW, .accessfn = access_pauth, 6850 .fgt = FGT_APIAKEY, 6851 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6852 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6853 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6854 .access = PL1_RW, .accessfn = access_pauth, 6855 .fgt = FGT_APIBKEY, 6856 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6857 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6859 .access = PL1_RW, .accessfn = access_pauth, 6860 .fgt = FGT_APIBKEY, 6861 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6862 }; 6863 6864 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6865 { 6866 Error *err = NULL; 6867 uint64_t ret; 6868 6869 /* Success sets NZCV = 0000. */ 6870 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6871 6872 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6873 /* 6874 * ??? Failed, for unknown reasons in the crypto subsystem. 6875 * The best we can do is log the reason and return the 6876 * timed-out indication to the guest. There is no reason 6877 * we know to expect this failure to be transitory, so the 6878 * guest may well hang retrying the operation. 6879 */ 6880 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6881 ri->name, error_get_pretty(err)); 6882 error_free(err); 6883 6884 env->ZF = 0; /* NZCF = 0100 */ 6885 return 0; 6886 } 6887 return ret; 6888 } 6889 6890 /* We do not support re-seeding, so the two registers operate the same. */ 6891 static const ARMCPRegInfo rndr_reginfo[] = { 6892 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6893 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6894 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6895 .access = PL0_R, .readfn = rndr_readfn }, 6896 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6897 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6898 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6899 .access = PL0_R, .readfn = rndr_readfn }, 6900 }; 6901 6902 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6903 uint64_t value) 6904 { 6905 #ifdef CONFIG_TCG 6906 ARMCPU *cpu = env_archcpu(env); 6907 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6908 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6909 uint64_t vaddr_in = (uint64_t) value; 6910 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6911 void *haddr; 6912 int mem_idx = arm_env_mmu_index(env); 6913 6914 /* This won't be crossing page boundaries */ 6915 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6916 if (haddr) { 6917 #ifndef CONFIG_USER_ONLY 6918 6919 ram_addr_t offset; 6920 MemoryRegion *mr; 6921 6922 /* RCU lock is already being held */ 6923 mr = memory_region_from_host(haddr, &offset); 6924 6925 if (mr) { 6926 memory_region_writeback(mr, offset, dline_size); 6927 } 6928 #endif /*CONFIG_USER_ONLY*/ 6929 } 6930 #else 6931 /* Handled by hardware accelerator. */ 6932 g_assert_not_reached(); 6933 #endif /* CONFIG_TCG */ 6934 } 6935 6936 static const ARMCPRegInfo dcpop_reg[] = { 6937 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6939 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6940 .fgt = FGT_DCCVAP, 6941 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6942 }; 6943 6944 static const ARMCPRegInfo dcpodp_reg[] = { 6945 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6947 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6948 .fgt = FGT_DCCVADP, 6949 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6950 }; 6951 6952 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6953 bool isread) 6954 { 6955 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6956 return CP_ACCESS_TRAP_EL2; 6957 } 6958 6959 return CP_ACCESS_OK; 6960 } 6961 6962 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6963 bool isread) 6964 { 6965 int el = arm_current_el(env); 6966 if (el < 2 && arm_is_el2_enabled(env)) { 6967 uint64_t hcr = arm_hcr_el2_eff(env); 6968 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6969 return CP_ACCESS_TRAP_EL2; 6970 } 6971 } 6972 if (el < 3 && 6973 arm_feature(env, ARM_FEATURE_EL3) && 6974 !(env->cp15.scr_el3 & SCR_ATA)) { 6975 return CP_ACCESS_TRAP_EL3; 6976 } 6977 return CP_ACCESS_OK; 6978 } 6979 6980 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 6981 bool isread) 6982 { 6983 CPAccessResult nv1 = access_nv1(env, ri, isread); 6984 6985 if (nv1 != CP_ACCESS_OK) { 6986 return nv1; 6987 } 6988 return access_mte(env, ri, isread); 6989 } 6990 6991 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 6992 bool isread) 6993 { 6994 /* 6995 * TFSR_EL2: similar to generic access_mte(), but we need to 6996 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 6997 * if NV2 is enabled then we will redirect this to TFSR_EL1 6998 * after doing the HCR and SCR ATA traps; otherwise this will 6999 * be a trap to EL2 and the HCR/SCR traps do not apply. 7000 */ 7001 int el = arm_current_el(env); 7002 7003 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7004 return CP_ACCESS_OK; 7005 } 7006 if (el < 2 && arm_is_el2_enabled(env)) { 7007 uint64_t hcr = arm_hcr_el2_eff(env); 7008 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7009 return CP_ACCESS_TRAP_EL2; 7010 } 7011 } 7012 if (el < 3 && 7013 arm_feature(env, ARM_FEATURE_EL3) && 7014 !(env->cp15.scr_el3 & SCR_ATA)) { 7015 return CP_ACCESS_TRAP_EL3; 7016 } 7017 return CP_ACCESS_OK; 7018 } 7019 7020 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7021 { 7022 return env->pstate & PSTATE_TCO; 7023 } 7024 7025 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7026 { 7027 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7028 } 7029 7030 static const ARMCPRegInfo mte_reginfo[] = { 7031 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7033 .access = PL1_RW, .accessfn = access_mte, 7034 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7035 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7036 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7037 .access = PL1_RW, .accessfn = access_tfsr_el1, 7038 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7039 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7040 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7041 .type = ARM_CP_NV2_REDIRECT, 7042 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7043 .access = PL2_RW, .accessfn = access_tfsr_el2, 7044 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7045 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7047 .access = PL3_RW, 7048 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7049 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7051 .access = PL1_RW, .accessfn = access_mte, 7052 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7053 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7055 .access = PL1_RW, .accessfn = access_mte, 7056 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7057 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7058 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7059 .type = ARM_CP_NO_RAW, 7060 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7061 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7063 .type = ARM_CP_NOP, .access = PL1_W, 7064 .fgt = FGT_DCIVAC, 7065 .accessfn = aa64_cacheop_poc_access }, 7066 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7068 .fgt = FGT_DCISW, 7069 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7070 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7072 .type = ARM_CP_NOP, .access = PL1_W, 7073 .fgt = FGT_DCIVAC, 7074 .accessfn = aa64_cacheop_poc_access }, 7075 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7077 .fgt = FGT_DCISW, 7078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7079 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7081 .fgt = FGT_DCCSW, 7082 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7083 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7085 .fgt = FGT_DCCSW, 7086 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7087 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7089 .fgt = FGT_DCCISW, 7090 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7091 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7093 .fgt = FGT_DCCISW, 7094 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7095 }; 7096 7097 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7098 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7099 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7100 .type = ARM_CP_CONST, .access = PL0_RW, }, 7101 }; 7102 7103 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7104 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7105 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7106 .type = ARM_CP_NOP, .access = PL0_W, 7107 .fgt = FGT_DCCVAC, 7108 .accessfn = aa64_cacheop_poc_access }, 7109 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7110 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7111 .type = ARM_CP_NOP, .access = PL0_W, 7112 .fgt = FGT_DCCVAC, 7113 .accessfn = aa64_cacheop_poc_access }, 7114 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7116 .type = ARM_CP_NOP, .access = PL0_W, 7117 .fgt = FGT_DCCVAP, 7118 .accessfn = aa64_cacheop_poc_access }, 7119 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7121 .type = ARM_CP_NOP, .access = PL0_W, 7122 .fgt = FGT_DCCVAP, 7123 .accessfn = aa64_cacheop_poc_access }, 7124 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7125 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7126 .type = ARM_CP_NOP, .access = PL0_W, 7127 .fgt = FGT_DCCVADP, 7128 .accessfn = aa64_cacheop_poc_access }, 7129 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7130 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7131 .type = ARM_CP_NOP, .access = PL0_W, 7132 .fgt = FGT_DCCVADP, 7133 .accessfn = aa64_cacheop_poc_access }, 7134 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7135 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7136 .type = ARM_CP_NOP, .access = PL0_W, 7137 .fgt = FGT_DCCIVAC, 7138 .accessfn = aa64_cacheop_poc_access }, 7139 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7140 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7141 .type = ARM_CP_NOP, .access = PL0_W, 7142 .fgt = FGT_DCCIVAC, 7143 .accessfn = aa64_cacheop_poc_access }, 7144 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7145 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7146 .access = PL0_W, .type = ARM_CP_DC_GVA, 7147 #ifndef CONFIG_USER_ONLY 7148 /* Avoid overhead of an access check that always passes in user-mode */ 7149 .accessfn = aa64_zva_access, 7150 .fgt = FGT_DCZVA, 7151 #endif 7152 }, 7153 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7155 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7156 #ifndef CONFIG_USER_ONLY 7157 /* Avoid overhead of an access check that always passes in user-mode */ 7158 .accessfn = aa64_zva_access, 7159 .fgt = FGT_DCZVA, 7160 #endif 7161 }, 7162 }; 7163 7164 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7165 bool isread) 7166 { 7167 uint64_t hcr = arm_hcr_el2_eff(env); 7168 int el = arm_current_el(env); 7169 7170 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7171 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7172 if (hcr & HCR_TGE) { 7173 return CP_ACCESS_TRAP_EL2; 7174 } 7175 return CP_ACCESS_TRAP; 7176 } 7177 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7178 return CP_ACCESS_TRAP_EL2; 7179 } 7180 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7181 return CP_ACCESS_TRAP_EL2; 7182 } 7183 if (el < 3 7184 && arm_feature(env, ARM_FEATURE_EL3) 7185 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7186 return CP_ACCESS_TRAP_EL3; 7187 } 7188 return CP_ACCESS_OK; 7189 } 7190 7191 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7192 const ARMCPRegInfo *ri, 7193 bool isread) 7194 { 7195 CPAccessResult nv1 = access_nv1(env, ri, isread); 7196 7197 if (nv1 != CP_ACCESS_OK) { 7198 return nv1; 7199 } 7200 return access_scxtnum(env, ri, isread); 7201 } 7202 7203 static const ARMCPRegInfo scxtnum_reginfo[] = { 7204 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7206 .access = PL0_RW, .accessfn = access_scxtnum, 7207 .fgt = FGT_SCXTNUM_EL0, 7208 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7209 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7210 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7211 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7212 .fgt = FGT_SCXTNUM_EL1, 7213 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7214 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7215 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7216 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7217 .access = PL2_RW, .accessfn = access_scxtnum, 7218 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7219 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7221 .access = PL3_RW, 7222 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7223 }; 7224 7225 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7226 bool isread) 7227 { 7228 if (arm_current_el(env) == 2 && 7229 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7230 return CP_ACCESS_TRAP_EL3; 7231 } 7232 return CP_ACCESS_OK; 7233 } 7234 7235 static const ARMCPRegInfo fgt_reginfo[] = { 7236 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7238 .nv2_redirect_offset = 0x1b8, 7239 .access = PL2_RW, .accessfn = access_fgt, 7240 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7241 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7243 .nv2_redirect_offset = 0x1c0, 7244 .access = PL2_RW, .accessfn = access_fgt, 7245 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7246 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7248 .nv2_redirect_offset = 0x1d0, 7249 .access = PL2_RW, .accessfn = access_fgt, 7250 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7251 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7253 .nv2_redirect_offset = 0x1d8, 7254 .access = PL2_RW, .accessfn = access_fgt, 7255 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7256 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7258 .nv2_redirect_offset = 0x1c8, 7259 .access = PL2_RW, .accessfn = access_fgt, 7260 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7261 }; 7262 7263 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7264 uint64_t value) 7265 { 7266 /* 7267 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7268 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7269 * about the RESS bits at the top -- we choose the "generate an EL2 7270 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7271 * the ptw.c code detect the resulting invalid address). 7272 */ 7273 env->cp15.vncr_el2 = value & ~0xfffULL; 7274 } 7275 7276 static const ARMCPRegInfo nv2_reginfo[] = { 7277 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7279 .access = PL2_RW, 7280 .writefn = vncr_write, 7281 .nv2_redirect_offset = 0xb0, 7282 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7283 }; 7284 7285 #endif /* TARGET_AARCH64 */ 7286 7287 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7288 bool isread) 7289 { 7290 int el = arm_current_el(env); 7291 7292 if (el == 0) { 7293 uint64_t sctlr = arm_sctlr(env, el); 7294 if (!(sctlr & SCTLR_EnRCTX)) { 7295 return CP_ACCESS_TRAP; 7296 } 7297 } else if (el == 1) { 7298 uint64_t hcr = arm_hcr_el2_eff(env); 7299 if (hcr & HCR_NV) { 7300 return CP_ACCESS_TRAP_EL2; 7301 } 7302 } 7303 return CP_ACCESS_OK; 7304 } 7305 7306 static const ARMCPRegInfo predinv_reginfo[] = { 7307 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7309 .fgt = FGT_CFPRCTX, 7310 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7311 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7313 .fgt = FGT_DVPRCTX, 7314 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7315 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7316 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7317 .fgt = FGT_CPPRCTX, 7318 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7319 /* 7320 * Note the AArch32 opcodes have a different OPC1. 7321 */ 7322 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7323 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7324 .fgt = FGT_CFPRCTX, 7325 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7326 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7327 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7328 .fgt = FGT_DVPRCTX, 7329 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7330 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7331 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7332 .fgt = FGT_CPPRCTX, 7333 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7334 }; 7335 7336 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7337 { 7338 /* Read the high 32 bits of the current CCSIDR */ 7339 return extract64(ccsidr_read(env, ri), 32, 32); 7340 } 7341 7342 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7343 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7344 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7345 .access = PL1_R, 7346 .accessfn = access_tid4, 7347 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7348 }; 7349 7350 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7351 bool isread) 7352 { 7353 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7354 return CP_ACCESS_TRAP_EL2; 7355 } 7356 7357 return CP_ACCESS_OK; 7358 } 7359 7360 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7361 bool isread) 7362 { 7363 if (arm_feature(env, ARM_FEATURE_V8)) { 7364 return access_aa64_tid3(env, ri, isread); 7365 } 7366 7367 return CP_ACCESS_OK; 7368 } 7369 7370 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7371 bool isread) 7372 { 7373 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7374 return CP_ACCESS_TRAP_EL2; 7375 } 7376 7377 return CP_ACCESS_OK; 7378 } 7379 7380 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7381 const ARMCPRegInfo *ri, bool isread) 7382 { 7383 /* 7384 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7385 * in v7A, not in v8A. 7386 */ 7387 if (!arm_feature(env, ARM_FEATURE_V8) && 7388 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7389 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7390 return CP_ACCESS_TRAP_EL2; 7391 } 7392 return CP_ACCESS_OK; 7393 } 7394 7395 static const ARMCPRegInfo jazelle_regs[] = { 7396 { .name = "JIDR", 7397 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7398 .access = PL1_R, .accessfn = access_jazelle, 7399 .type = ARM_CP_CONST, .resetvalue = 0 }, 7400 { .name = "JOSCR", 7401 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7402 .accessfn = access_joscr_jmcr, 7403 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7404 { .name = "JMCR", 7405 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7406 .accessfn = access_joscr_jmcr, 7407 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7408 }; 7409 7410 static const ARMCPRegInfo contextidr_el2 = { 7411 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7412 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7413 .access = PL2_RW, 7414 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7415 }; 7416 7417 static const ARMCPRegInfo vhe_reginfo[] = { 7418 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7420 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7421 .raw_writefn = raw_write, 7422 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7423 #ifndef CONFIG_USER_ONLY 7424 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7426 .fieldoffset = 7427 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7428 .type = ARM_CP_IO, .access = PL2_RW, 7429 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7430 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7431 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7432 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7433 .resetfn = gt_hv_timer_reset, 7434 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7435 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7436 .type = ARM_CP_IO, 7437 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7438 .access = PL2_RW, 7439 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7440 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7441 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7442 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7443 .type = ARM_CP_IO | ARM_CP_ALIAS, 7444 .access = PL2_RW, .accessfn = access_el1nvpct, 7445 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7446 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7447 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7448 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7449 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7450 .type = ARM_CP_IO | ARM_CP_ALIAS, 7451 .access = PL2_RW, .accessfn = access_el1nvvct, 7452 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7453 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7454 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7455 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7457 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7458 .access = PL2_RW, .accessfn = e2h_access, 7459 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7460 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7462 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7463 .access = PL2_RW, .accessfn = e2h_access, 7464 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7465 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7467 .type = ARM_CP_IO | ARM_CP_ALIAS, 7468 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7469 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7470 .access = PL2_RW, .accessfn = access_el1nvpct, 7471 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7472 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7473 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7474 .type = ARM_CP_IO | ARM_CP_ALIAS, 7475 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7476 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7477 .access = PL2_RW, .accessfn = access_el1nvvct, 7478 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7479 #endif 7480 }; 7481 7482 #ifndef CONFIG_USER_ONLY 7483 static const ARMCPRegInfo ats1e1_reginfo[] = { 7484 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7485 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7486 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7487 .fgt = FGT_ATS1E1RP, 7488 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7489 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7490 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7491 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7492 .fgt = FGT_ATS1E1WP, 7493 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7494 }; 7495 7496 static const ARMCPRegInfo ats1cp_reginfo[] = { 7497 { .name = "ATS1CPRP", 7498 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7499 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7500 .writefn = ats_write }, 7501 { .name = "ATS1CPWP", 7502 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7503 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7504 .writefn = ats_write }, 7505 }; 7506 #endif 7507 7508 /* 7509 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7510 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7511 * is non-zero, which is never for ARMv7, optionally in ARMv8 7512 * and mandatorily for ARMv8.2 and up. 7513 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7514 * implementation is RAZ/WI we can ignore this detail, as we 7515 * do for ACTLR. 7516 */ 7517 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7518 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7519 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7520 .access = PL1_RW, .accessfn = access_tacr, 7521 .type = ARM_CP_CONST, .resetvalue = 0 }, 7522 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7523 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7524 .access = PL2_RW, .type = ARM_CP_CONST, 7525 .resetvalue = 0 }, 7526 }; 7527 7528 void register_cp_regs_for_features(ARMCPU *cpu) 7529 { 7530 /* Register all the coprocessor registers based on feature bits */ 7531 CPUARMState *env = &cpu->env; 7532 if (arm_feature(env, ARM_FEATURE_M)) { 7533 /* M profile has no coprocessor registers */ 7534 return; 7535 } 7536 7537 define_arm_cp_regs(cpu, cp_reginfo); 7538 if (!arm_feature(env, ARM_FEATURE_V8)) { 7539 /* 7540 * Must go early as it is full of wildcards that may be 7541 * overridden by later definitions. 7542 */ 7543 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7544 } 7545 7546 define_tlb_insn_regs(cpu); 7547 7548 if (arm_feature(env, ARM_FEATURE_V6)) { 7549 /* The ID registers all have impdef reset values */ 7550 ARMCPRegInfo v6_idregs[] = { 7551 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7553 .access = PL1_R, .type = ARM_CP_CONST, 7554 .accessfn = access_aa32_tid3, 7555 .resetvalue = cpu->isar.id_pfr0 }, 7556 /* 7557 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7558 * the value of the GIC field until after we define these regs. 7559 */ 7560 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7562 .access = PL1_R, .type = ARM_CP_NO_RAW, 7563 .accessfn = access_aa32_tid3, 7564 #ifdef CONFIG_USER_ONLY 7565 .type = ARM_CP_CONST, 7566 .resetvalue = cpu->isar.id_pfr1, 7567 #else 7568 .type = ARM_CP_NO_RAW, 7569 .accessfn = access_aa32_tid3, 7570 .readfn = id_pfr1_read, 7571 .writefn = arm_cp_write_ignore 7572 #endif 7573 }, 7574 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7576 .access = PL1_R, .type = ARM_CP_CONST, 7577 .accessfn = access_aa32_tid3, 7578 .resetvalue = cpu->isar.id_dfr0 }, 7579 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7581 .access = PL1_R, .type = ARM_CP_CONST, 7582 .accessfn = access_aa32_tid3, 7583 .resetvalue = cpu->id_afr0 }, 7584 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7586 .access = PL1_R, .type = ARM_CP_CONST, 7587 .accessfn = access_aa32_tid3, 7588 .resetvalue = cpu->isar.id_mmfr0 }, 7589 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7591 .access = PL1_R, .type = ARM_CP_CONST, 7592 .accessfn = access_aa32_tid3, 7593 .resetvalue = cpu->isar.id_mmfr1 }, 7594 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7596 .access = PL1_R, .type = ARM_CP_CONST, 7597 .accessfn = access_aa32_tid3, 7598 .resetvalue = cpu->isar.id_mmfr2 }, 7599 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7601 .access = PL1_R, .type = ARM_CP_CONST, 7602 .accessfn = access_aa32_tid3, 7603 .resetvalue = cpu->isar.id_mmfr3 }, 7604 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7605 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7606 .access = PL1_R, .type = ARM_CP_CONST, 7607 .accessfn = access_aa32_tid3, 7608 .resetvalue = cpu->isar.id_isar0 }, 7609 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7610 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7611 .access = PL1_R, .type = ARM_CP_CONST, 7612 .accessfn = access_aa32_tid3, 7613 .resetvalue = cpu->isar.id_isar1 }, 7614 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7616 .access = PL1_R, .type = ARM_CP_CONST, 7617 .accessfn = access_aa32_tid3, 7618 .resetvalue = cpu->isar.id_isar2 }, 7619 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7621 .access = PL1_R, .type = ARM_CP_CONST, 7622 .accessfn = access_aa32_tid3, 7623 .resetvalue = cpu->isar.id_isar3 }, 7624 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7625 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7626 .access = PL1_R, .type = ARM_CP_CONST, 7627 .accessfn = access_aa32_tid3, 7628 .resetvalue = cpu->isar.id_isar4 }, 7629 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7630 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7631 .access = PL1_R, .type = ARM_CP_CONST, 7632 .accessfn = access_aa32_tid3, 7633 .resetvalue = cpu->isar.id_isar5 }, 7634 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7636 .access = PL1_R, .type = ARM_CP_CONST, 7637 .accessfn = access_aa32_tid3, 7638 .resetvalue = cpu->isar.id_mmfr4 }, 7639 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7641 .access = PL1_R, .type = ARM_CP_CONST, 7642 .accessfn = access_aa32_tid3, 7643 .resetvalue = cpu->isar.id_isar6 }, 7644 }; 7645 define_arm_cp_regs(cpu, v6_idregs); 7646 define_arm_cp_regs(cpu, v6_cp_reginfo); 7647 } else { 7648 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7649 } 7650 if (arm_feature(env, ARM_FEATURE_V6K)) { 7651 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7652 } 7653 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7654 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7655 } 7656 if (arm_feature(env, ARM_FEATURE_V7)) { 7657 ARMCPRegInfo clidr = { 7658 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7659 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7660 .access = PL1_R, .type = ARM_CP_CONST, 7661 .accessfn = access_tid4, 7662 .fgt = FGT_CLIDR_EL1, 7663 .resetvalue = cpu->clidr 7664 }; 7665 define_one_arm_cp_reg(cpu, &clidr); 7666 define_arm_cp_regs(cpu, v7_cp_reginfo); 7667 define_debug_regs(cpu); 7668 define_pmu_regs(cpu); 7669 } else { 7670 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7671 } 7672 if (arm_feature(env, ARM_FEATURE_V8)) { 7673 /* 7674 * v8 ID registers, which all have impdef reset values. 7675 * Note that within the ID register ranges the unused slots 7676 * must all RAZ, not UNDEF; future architecture versions may 7677 * define new registers here. 7678 * ID registers which are AArch64 views of the AArch32 ID registers 7679 * which already existed in v6 and v7 are handled elsewhere, 7680 * in v6_idregs[]. 7681 */ 7682 int i; 7683 ARMCPRegInfo v8_idregs[] = { 7684 /* 7685 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7686 * emulation because we don't know the right value for the 7687 * GIC field until after we define these regs. 7688 */ 7689 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7691 .access = PL1_R, 7692 #ifdef CONFIG_USER_ONLY 7693 .type = ARM_CP_CONST, 7694 .resetvalue = cpu->isar.id_aa64pfr0 7695 #else 7696 .type = ARM_CP_NO_RAW, 7697 .accessfn = access_aa64_tid3, 7698 .readfn = id_aa64pfr0_read, 7699 .writefn = arm_cp_write_ignore 7700 #endif 7701 }, 7702 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7703 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7704 .access = PL1_R, .type = ARM_CP_CONST, 7705 .accessfn = access_aa64_tid3, 7706 .resetvalue = cpu->isar.id_aa64pfr1}, 7707 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7708 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7709 .access = PL1_R, .type = ARM_CP_CONST, 7710 .accessfn = access_aa64_tid3, 7711 .resetvalue = 0 }, 7712 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7713 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7714 .access = PL1_R, .type = ARM_CP_CONST, 7715 .accessfn = access_aa64_tid3, 7716 .resetvalue = 0 }, 7717 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7718 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7719 .access = PL1_R, .type = ARM_CP_CONST, 7720 .accessfn = access_aa64_tid3, 7721 .resetvalue = cpu->isar.id_aa64zfr0 }, 7722 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7723 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7724 .access = PL1_R, .type = ARM_CP_CONST, 7725 .accessfn = access_aa64_tid3, 7726 .resetvalue = cpu->isar.id_aa64smfr0 }, 7727 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7729 .access = PL1_R, .type = ARM_CP_CONST, 7730 .accessfn = access_aa64_tid3, 7731 .resetvalue = 0 }, 7732 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7733 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7734 .access = PL1_R, .type = ARM_CP_CONST, 7735 .accessfn = access_aa64_tid3, 7736 .resetvalue = 0 }, 7737 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7738 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7739 .access = PL1_R, .type = ARM_CP_CONST, 7740 .accessfn = access_aa64_tid3, 7741 .resetvalue = cpu->isar.id_aa64dfr0 }, 7742 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7744 .access = PL1_R, .type = ARM_CP_CONST, 7745 .accessfn = access_aa64_tid3, 7746 .resetvalue = cpu->isar.id_aa64dfr1 }, 7747 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7749 .access = PL1_R, .type = ARM_CP_CONST, 7750 .accessfn = access_aa64_tid3, 7751 .resetvalue = 0 }, 7752 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7753 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7754 .access = PL1_R, .type = ARM_CP_CONST, 7755 .accessfn = access_aa64_tid3, 7756 .resetvalue = 0 }, 7757 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7759 .access = PL1_R, .type = ARM_CP_CONST, 7760 .accessfn = access_aa64_tid3, 7761 .resetvalue = cpu->id_aa64afr0 }, 7762 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7764 .access = PL1_R, .type = ARM_CP_CONST, 7765 .accessfn = access_aa64_tid3, 7766 .resetvalue = cpu->id_aa64afr1 }, 7767 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7769 .access = PL1_R, .type = ARM_CP_CONST, 7770 .accessfn = access_aa64_tid3, 7771 .resetvalue = 0 }, 7772 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7774 .access = PL1_R, .type = ARM_CP_CONST, 7775 .accessfn = access_aa64_tid3, 7776 .resetvalue = 0 }, 7777 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7779 .access = PL1_R, .type = ARM_CP_CONST, 7780 .accessfn = access_aa64_tid3, 7781 .resetvalue = cpu->isar.id_aa64isar0 }, 7782 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7784 .access = PL1_R, .type = ARM_CP_CONST, 7785 .accessfn = access_aa64_tid3, 7786 .resetvalue = cpu->isar.id_aa64isar1 }, 7787 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 7788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7789 .access = PL1_R, .type = ARM_CP_CONST, 7790 .accessfn = access_aa64_tid3, 7791 .resetvalue = cpu->isar.id_aa64isar2 }, 7792 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7794 .access = PL1_R, .type = ARM_CP_CONST, 7795 .accessfn = access_aa64_tid3, 7796 .resetvalue = 0 }, 7797 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7799 .access = PL1_R, .type = ARM_CP_CONST, 7800 .accessfn = access_aa64_tid3, 7801 .resetvalue = 0 }, 7802 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7804 .access = PL1_R, .type = ARM_CP_CONST, 7805 .accessfn = access_aa64_tid3, 7806 .resetvalue = 0 }, 7807 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7809 .access = PL1_R, .type = ARM_CP_CONST, 7810 .accessfn = access_aa64_tid3, 7811 .resetvalue = 0 }, 7812 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7814 .access = PL1_R, .type = ARM_CP_CONST, 7815 .accessfn = access_aa64_tid3, 7816 .resetvalue = 0 }, 7817 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7819 .access = PL1_R, .type = ARM_CP_CONST, 7820 .accessfn = access_aa64_tid3, 7821 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7822 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7824 .access = PL1_R, .type = ARM_CP_CONST, 7825 .accessfn = access_aa64_tid3, 7826 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7827 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7829 .access = PL1_R, .type = ARM_CP_CONST, 7830 .accessfn = access_aa64_tid3, 7831 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7832 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 7833 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7834 .access = PL1_R, .type = ARM_CP_CONST, 7835 .accessfn = access_aa64_tid3, 7836 .resetvalue = cpu->isar.id_aa64mmfr3 }, 7837 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7839 .access = PL1_R, .type = ARM_CP_CONST, 7840 .accessfn = access_aa64_tid3, 7841 .resetvalue = 0 }, 7842 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7844 .access = PL1_R, .type = ARM_CP_CONST, 7845 .accessfn = access_aa64_tid3, 7846 .resetvalue = 0 }, 7847 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7849 .access = PL1_R, .type = ARM_CP_CONST, 7850 .accessfn = access_aa64_tid3, 7851 .resetvalue = 0 }, 7852 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7853 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7854 .access = PL1_R, .type = ARM_CP_CONST, 7855 .accessfn = access_aa64_tid3, 7856 .resetvalue = 0 }, 7857 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7858 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7859 .access = PL1_R, .type = ARM_CP_CONST, 7860 .accessfn = access_aa64_tid3, 7861 .resetvalue = cpu->isar.mvfr0 }, 7862 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7864 .access = PL1_R, .type = ARM_CP_CONST, 7865 .accessfn = access_aa64_tid3, 7866 .resetvalue = cpu->isar.mvfr1 }, 7867 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7869 .access = PL1_R, .type = ARM_CP_CONST, 7870 .accessfn = access_aa64_tid3, 7871 .resetvalue = cpu->isar.mvfr2 }, 7872 /* 7873 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7874 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7875 * as RAZ, since it is in the "reserved for future ID 7876 * registers, RAZ" part of the AArch32 encoding space. 7877 */ 7878 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7879 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7880 .access = PL1_R, .type = ARM_CP_CONST, 7881 .accessfn = access_aa64_tid3, 7882 .resetvalue = 0 }, 7883 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7884 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7885 .access = PL1_R, .type = ARM_CP_CONST, 7886 .accessfn = access_aa64_tid3, 7887 .resetvalue = 0 }, 7888 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7889 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7890 .access = PL1_R, .type = ARM_CP_CONST, 7891 .accessfn = access_aa64_tid3, 7892 .resetvalue = 0 }, 7893 /* 7894 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7895 * they're also RAZ for AArch64, and in v8 are gradually 7896 * being filled with AArch64-view-of-AArch32-ID-register 7897 * for new ID registers. 7898 */ 7899 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7901 .access = PL1_R, .type = ARM_CP_CONST, 7902 .accessfn = access_aa64_tid3, 7903 .resetvalue = 0 }, 7904 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7906 .access = PL1_R, .type = ARM_CP_CONST, 7907 .accessfn = access_aa64_tid3, 7908 .resetvalue = cpu->isar.id_pfr2 }, 7909 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7911 .access = PL1_R, .type = ARM_CP_CONST, 7912 .accessfn = access_aa64_tid3, 7913 .resetvalue = cpu->isar.id_dfr1 }, 7914 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7916 .access = PL1_R, .type = ARM_CP_CONST, 7917 .accessfn = access_aa64_tid3, 7918 .resetvalue = cpu->isar.id_mmfr5 }, 7919 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7921 .access = PL1_R, .type = ARM_CP_CONST, 7922 .accessfn = access_aa64_tid3, 7923 .resetvalue = 0 }, 7924 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7925 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7926 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7927 .fgt = FGT_PMCEIDN_EL0, 7928 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7929 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7931 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7932 .fgt = FGT_PMCEIDN_EL0, 7933 .resetvalue = cpu->pmceid0 }, 7934 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7935 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7936 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7937 .fgt = FGT_PMCEIDN_EL0, 7938 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7939 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7940 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7941 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7942 .fgt = FGT_PMCEIDN_EL0, 7943 .resetvalue = cpu->pmceid1 }, 7944 }; 7945 #ifdef CONFIG_USER_ONLY 7946 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7947 { .name = "ID_AA64PFR0_EL1", 7948 .exported_bits = R_ID_AA64PFR0_FP_MASK | 7949 R_ID_AA64PFR0_ADVSIMD_MASK | 7950 R_ID_AA64PFR0_SVE_MASK | 7951 R_ID_AA64PFR0_DIT_MASK, 7952 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 7953 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 7954 { .name = "ID_AA64PFR1_EL1", 7955 .exported_bits = R_ID_AA64PFR1_BT_MASK | 7956 R_ID_AA64PFR1_SSBS_MASK | 7957 R_ID_AA64PFR1_MTE_MASK | 7958 R_ID_AA64PFR1_SME_MASK }, 7959 { .name = "ID_AA64PFR*_EL1_RESERVED", 7960 .is_glob = true }, 7961 { .name = "ID_AA64ZFR0_EL1", 7962 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 7963 R_ID_AA64ZFR0_AES_MASK | 7964 R_ID_AA64ZFR0_BITPERM_MASK | 7965 R_ID_AA64ZFR0_BFLOAT16_MASK | 7966 R_ID_AA64ZFR0_B16B16_MASK | 7967 R_ID_AA64ZFR0_SHA3_MASK | 7968 R_ID_AA64ZFR0_SM4_MASK | 7969 R_ID_AA64ZFR0_I8MM_MASK | 7970 R_ID_AA64ZFR0_F32MM_MASK | 7971 R_ID_AA64ZFR0_F64MM_MASK }, 7972 { .name = "ID_AA64SMFR0_EL1", 7973 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 7974 R_ID_AA64SMFR0_BI32I32_MASK | 7975 R_ID_AA64SMFR0_B16F32_MASK | 7976 R_ID_AA64SMFR0_F16F32_MASK | 7977 R_ID_AA64SMFR0_I8I32_MASK | 7978 R_ID_AA64SMFR0_F16F16_MASK | 7979 R_ID_AA64SMFR0_B16B16_MASK | 7980 R_ID_AA64SMFR0_I16I32_MASK | 7981 R_ID_AA64SMFR0_F64F64_MASK | 7982 R_ID_AA64SMFR0_I16I64_MASK | 7983 R_ID_AA64SMFR0_SMEVER_MASK | 7984 R_ID_AA64SMFR0_FA64_MASK }, 7985 { .name = "ID_AA64MMFR0_EL1", 7986 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 7987 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 7988 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 7989 { .name = "ID_AA64MMFR1_EL1", 7990 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 7991 { .name = "ID_AA64MMFR2_EL1", 7992 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 7993 { .name = "ID_AA64MMFR3_EL1", 7994 .exported_bits = 0 }, 7995 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7996 .is_glob = true }, 7997 { .name = "ID_AA64DFR0_EL1", 7998 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 7999 { .name = "ID_AA64DFR1_EL1" }, 8000 { .name = "ID_AA64DFR*_EL1_RESERVED", 8001 .is_glob = true }, 8002 { .name = "ID_AA64AFR*", 8003 .is_glob = true }, 8004 { .name = "ID_AA64ISAR0_EL1", 8005 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8006 R_ID_AA64ISAR0_SHA1_MASK | 8007 R_ID_AA64ISAR0_SHA2_MASK | 8008 R_ID_AA64ISAR0_CRC32_MASK | 8009 R_ID_AA64ISAR0_ATOMIC_MASK | 8010 R_ID_AA64ISAR0_RDM_MASK | 8011 R_ID_AA64ISAR0_SHA3_MASK | 8012 R_ID_AA64ISAR0_SM3_MASK | 8013 R_ID_AA64ISAR0_SM4_MASK | 8014 R_ID_AA64ISAR0_DP_MASK | 8015 R_ID_AA64ISAR0_FHM_MASK | 8016 R_ID_AA64ISAR0_TS_MASK | 8017 R_ID_AA64ISAR0_RNDR_MASK }, 8018 { .name = "ID_AA64ISAR1_EL1", 8019 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8020 R_ID_AA64ISAR1_APA_MASK | 8021 R_ID_AA64ISAR1_API_MASK | 8022 R_ID_AA64ISAR1_JSCVT_MASK | 8023 R_ID_AA64ISAR1_FCMA_MASK | 8024 R_ID_AA64ISAR1_LRCPC_MASK | 8025 R_ID_AA64ISAR1_GPA_MASK | 8026 R_ID_AA64ISAR1_GPI_MASK | 8027 R_ID_AA64ISAR1_FRINTTS_MASK | 8028 R_ID_AA64ISAR1_SB_MASK | 8029 R_ID_AA64ISAR1_BF16_MASK | 8030 R_ID_AA64ISAR1_DGH_MASK | 8031 R_ID_AA64ISAR1_I8MM_MASK }, 8032 { .name = "ID_AA64ISAR2_EL1", 8033 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8034 R_ID_AA64ISAR2_RPRES_MASK | 8035 R_ID_AA64ISAR2_GPA3_MASK | 8036 R_ID_AA64ISAR2_APA3_MASK | 8037 R_ID_AA64ISAR2_MOPS_MASK | 8038 R_ID_AA64ISAR2_BC_MASK | 8039 R_ID_AA64ISAR2_RPRFM_MASK | 8040 R_ID_AA64ISAR2_CSSC_MASK }, 8041 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8042 .is_glob = true }, 8043 }; 8044 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8045 #endif 8046 /* 8047 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8048 * TODO: For RMR, a write with bit 1 set should do something with 8049 * cpu_reset(). In the meantime, "the bit is strictly a request", 8050 * so we are in spec just ignoring writes. 8051 */ 8052 if (!arm_feature(env, ARM_FEATURE_EL3) && 8053 !arm_feature(env, ARM_FEATURE_EL2)) { 8054 ARMCPRegInfo el1_reset_regs[] = { 8055 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8056 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8057 .access = PL1_R, 8058 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8059 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8060 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8061 .access = PL1_RW, .type = ARM_CP_CONST, 8062 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8063 }; 8064 define_arm_cp_regs(cpu, el1_reset_regs); 8065 } 8066 define_arm_cp_regs(cpu, v8_idregs); 8067 define_arm_cp_regs(cpu, v8_cp_reginfo); 8068 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8069 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8070 } 8071 8072 for (i = 4; i < 16; i++) { 8073 /* 8074 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8075 * For pre-v8 cores there are RAZ patterns for these in 8076 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8077 * v8 extends the "must RAZ" part of the ID register space 8078 * to also cover c0, 0, c{8-15}, {0-7}. 8079 * These are STATE_AA32 because in the AArch64 sysreg space 8080 * c4-c7 is where the AArch64 ID registers live (and we've 8081 * already defined those in v8_idregs[]), and c8-c15 are not 8082 * "must RAZ" for AArch64. 8083 */ 8084 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8085 ARMCPRegInfo v8_aa32_raz_idregs = { 8086 .name = name, 8087 .state = ARM_CP_STATE_AA32, 8088 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8089 .access = PL1_R, .type = ARM_CP_CONST, 8090 .accessfn = access_aa64_tid3, 8091 .resetvalue = 0 }; 8092 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8093 } 8094 } 8095 8096 /* 8097 * Register the base EL2 cpregs. 8098 * Pre v8, these registers are implemented only as part of the 8099 * Virtualization Extensions (EL2 present). Beginning with v8, 8100 * if EL2 is missing but EL3 is enabled, mostly these become 8101 * RES0 from EL3, with some specific exceptions. 8102 */ 8103 if (arm_feature(env, ARM_FEATURE_EL2) 8104 || (arm_feature(env, ARM_FEATURE_EL3) 8105 && arm_feature(env, ARM_FEATURE_V8))) { 8106 uint64_t vmpidr_def = mpidr_read_val(env); 8107 ARMCPRegInfo vpidr_regs[] = { 8108 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8109 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8110 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8111 .resetvalue = cpu->midr, 8112 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8113 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8114 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8115 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8116 .access = PL2_RW, .resetvalue = cpu->midr, 8117 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8118 .nv2_redirect_offset = 0x88, 8119 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8120 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8121 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8122 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8123 .resetvalue = vmpidr_def, 8124 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8125 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8126 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8127 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8128 .access = PL2_RW, .resetvalue = vmpidr_def, 8129 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8130 .nv2_redirect_offset = 0x50, 8131 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8132 }; 8133 /* 8134 * The only field of MDCR_EL2 that has a defined architectural reset 8135 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8136 */ 8137 ARMCPRegInfo mdcr_el2 = { 8138 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8139 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8140 .writefn = mdcr_el2_write, 8141 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8142 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8143 }; 8144 define_one_arm_cp_reg(cpu, &mdcr_el2); 8145 define_arm_cp_regs(cpu, vpidr_regs); 8146 define_arm_cp_regs(cpu, el2_cp_reginfo); 8147 if (arm_feature(env, ARM_FEATURE_V8)) { 8148 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8149 } 8150 if (cpu_isar_feature(aa64_sel2, cpu)) { 8151 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8152 } 8153 /* 8154 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8155 * See commentary near RMR_EL1. 8156 */ 8157 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8158 static const ARMCPRegInfo el2_reset_regs[] = { 8159 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8160 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8161 .access = PL2_R, 8162 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8163 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8164 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8165 .access = PL2_R, 8166 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8167 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8168 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8169 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8170 }; 8171 define_arm_cp_regs(cpu, el2_reset_regs); 8172 } 8173 } 8174 8175 /* Register the base EL3 cpregs. */ 8176 if (arm_feature(env, ARM_FEATURE_EL3)) { 8177 define_arm_cp_regs(cpu, el3_cp_reginfo); 8178 ARMCPRegInfo el3_regs[] = { 8179 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8180 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8181 .access = PL3_R, 8182 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8183 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8184 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8185 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8186 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8187 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8188 .access = PL3_RW, .type = ARM_CP_CONST, 8189 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8190 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8192 .access = PL3_RW, 8193 .raw_writefn = raw_write, .writefn = sctlr_write, 8194 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8195 .resetvalue = cpu->reset_sctlr }, 8196 }; 8197 8198 define_arm_cp_regs(cpu, el3_regs); 8199 } 8200 /* 8201 * The behaviour of NSACR is sufficiently various that we don't 8202 * try to describe it in a single reginfo: 8203 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8204 * reads as constant 0xc00 from NS EL1 and NS EL2 8205 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8206 * if v7 without EL3, register doesn't exist 8207 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8208 */ 8209 if (arm_feature(env, ARM_FEATURE_EL3)) { 8210 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8211 static const ARMCPRegInfo nsacr = { 8212 .name = "NSACR", .type = ARM_CP_CONST, 8213 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8214 .access = PL1_RW, .accessfn = nsacr_access, 8215 .resetvalue = 0xc00 8216 }; 8217 define_one_arm_cp_reg(cpu, &nsacr); 8218 } else { 8219 static const ARMCPRegInfo nsacr = { 8220 .name = "NSACR", 8221 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8222 .access = PL3_RW | PL1_R, 8223 .resetvalue = 0, 8224 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8225 }; 8226 define_one_arm_cp_reg(cpu, &nsacr); 8227 } 8228 } else { 8229 if (arm_feature(env, ARM_FEATURE_V8)) { 8230 static const ARMCPRegInfo nsacr = { 8231 .name = "NSACR", .type = ARM_CP_CONST, 8232 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8233 .access = PL1_R, 8234 .resetvalue = 0xc00 8235 }; 8236 define_one_arm_cp_reg(cpu, &nsacr); 8237 } 8238 } 8239 8240 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8241 if (arm_feature(env, ARM_FEATURE_V6)) { 8242 /* PMSAv6 not implemented */ 8243 assert(arm_feature(env, ARM_FEATURE_V7)); 8244 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8245 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8246 } else { 8247 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8248 } 8249 } else { 8250 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8251 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8252 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8253 if (cpu_isar_feature(aa32_hpd, cpu)) { 8254 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8255 } 8256 } 8257 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8258 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8259 } 8260 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8261 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8262 } 8263 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8264 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8265 } 8266 #ifndef CONFIG_USER_ONLY 8267 if (cpu_isar_feature(aa64_ecv, cpu)) { 8268 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8269 } 8270 #endif 8271 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8272 ARMCPRegInfo vapa_cp_reginfo[] = { 8273 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8274 .access = PL1_RW, .resetvalue = 0, 8275 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8276 offsetoflow32(CPUARMState, cp15.par_ns) }, 8277 .writefn = par_write}, 8278 #ifndef CONFIG_USER_ONLY 8279 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8280 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8281 .access = PL1_W, .accessfn = ats_access, 8282 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8283 #endif 8284 }; 8285 8286 /* 8287 * When LPAE exists this 32-bit PAR register is an alias of the 8288 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8289 */ 8290 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8291 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8292 } 8293 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8294 } 8295 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8296 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8297 } 8298 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8299 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8300 } 8301 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8302 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8303 } 8304 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8305 define_arm_cp_regs(cpu, omap_cp_reginfo); 8306 } 8307 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8308 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8309 } 8310 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8311 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8312 } 8313 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8314 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8315 } 8316 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8317 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8318 } 8319 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8320 define_arm_cp_regs(cpu, jazelle_regs); 8321 } 8322 /* 8323 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8324 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8325 * be read-only (ie write causes UNDEF exception). 8326 */ 8327 { 8328 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8329 /* 8330 * Pre-v8 MIDR space. 8331 * Note that the MIDR isn't a simple constant register because 8332 * of the TI925 behaviour where writes to another register can 8333 * cause the MIDR value to change. 8334 * 8335 * Unimplemented registers in the c15 0 0 0 space default to 8336 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8337 * and friends override accordingly. 8338 */ 8339 { .name = "MIDR", 8340 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8341 .access = PL1_R, .resetvalue = cpu->midr, 8342 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8343 .readfn = midr_read, 8344 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8345 .type = ARM_CP_OVERRIDE }, 8346 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8347 { .name = "DUMMY", 8348 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8349 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8350 { .name = "DUMMY", 8351 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8352 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8353 { .name = "DUMMY", 8354 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8355 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8356 { .name = "DUMMY", 8357 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8358 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8359 { .name = "DUMMY", 8360 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8361 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8362 }; 8363 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8364 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8366 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8367 .fgt = FGT_MIDR_EL1, 8368 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8369 .readfn = midr_read }, 8370 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8371 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8372 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8373 .access = PL1_R, .resetvalue = cpu->midr }, 8374 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8376 .access = PL1_R, 8377 .accessfn = access_aa64_tid1, 8378 .fgt = FGT_REVIDR_EL1, 8379 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8380 }; 8381 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8382 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8383 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8384 .access = PL1_R, .resetvalue = cpu->midr 8385 }; 8386 ARMCPRegInfo id_cp_reginfo[] = { 8387 /* These are common to v8 and pre-v8 */ 8388 { .name = "CTR", 8389 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8390 .access = PL1_R, .accessfn = ctr_el0_access, 8391 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8392 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8394 .access = PL0_R, .accessfn = ctr_el0_access, 8395 .fgt = FGT_CTR_EL0, 8396 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8397 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8398 { .name = "TCMTR", 8399 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8400 .access = PL1_R, 8401 .accessfn = access_aa32_tid1, 8402 .type = ARM_CP_CONST, .resetvalue = 0 }, 8403 }; 8404 /* TLBTR is specific to VMSA */ 8405 ARMCPRegInfo id_tlbtr_reginfo = { 8406 .name = "TLBTR", 8407 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8408 .access = PL1_R, 8409 .accessfn = access_aa32_tid1, 8410 .type = ARM_CP_CONST, .resetvalue = 0, 8411 }; 8412 /* MPUIR is specific to PMSA V6+ */ 8413 ARMCPRegInfo id_mpuir_reginfo = { 8414 .name = "MPUIR", 8415 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8416 .access = PL1_R, .type = ARM_CP_CONST, 8417 .resetvalue = cpu->pmsav7_dregion << 8 8418 }; 8419 /* HMPUIR is specific to PMSA V8 */ 8420 ARMCPRegInfo id_hmpuir_reginfo = { 8421 .name = "HMPUIR", 8422 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8423 .access = PL2_R, .type = ARM_CP_CONST, 8424 .resetvalue = cpu->pmsav8r_hdregion 8425 }; 8426 static const ARMCPRegInfo crn0_wi_reginfo = { 8427 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8428 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8429 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8430 }; 8431 #ifdef CONFIG_USER_ONLY 8432 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8433 { .name = "MIDR_EL1", 8434 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8435 R_MIDR_EL1_PARTNUM_MASK | 8436 R_MIDR_EL1_ARCHITECTURE_MASK | 8437 R_MIDR_EL1_VARIANT_MASK | 8438 R_MIDR_EL1_IMPLEMENTER_MASK }, 8439 { .name = "REVIDR_EL1" }, 8440 }; 8441 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8442 #endif 8443 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8444 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8445 size_t i; 8446 /* 8447 * Register the blanket "writes ignored" value first to cover the 8448 * whole space. Then update the specific ID registers to allow write 8449 * access, so that they ignore writes rather than causing them to 8450 * UNDEF. 8451 */ 8452 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8453 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8454 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8455 } 8456 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8457 id_cp_reginfo[i].access = PL1_RW; 8458 } 8459 id_mpuir_reginfo.access = PL1_RW; 8460 id_tlbtr_reginfo.access = PL1_RW; 8461 } 8462 if (arm_feature(env, ARM_FEATURE_V8)) { 8463 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8464 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8465 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8466 } 8467 } else { 8468 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8469 } 8470 define_arm_cp_regs(cpu, id_cp_reginfo); 8471 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8472 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8473 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8474 arm_feature(env, ARM_FEATURE_V8)) { 8475 uint32_t i = 0; 8476 char *tmp_string; 8477 8478 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8479 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8480 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8481 8482 /* Register alias is only valid for first 32 indexes */ 8483 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8484 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8485 uint8_t opc1 = extract32(i, 4, 1); 8486 uint8_t opc2 = extract32(i, 0, 1) << 2; 8487 8488 tmp_string = g_strdup_printf("PRBAR%u", i); 8489 ARMCPRegInfo tmp_prbarn_reginfo = { 8490 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8491 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8492 .access = PL1_RW, .resetvalue = 0, 8493 .accessfn = access_tvm_trvm, 8494 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8495 }; 8496 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8497 g_free(tmp_string); 8498 8499 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8500 tmp_string = g_strdup_printf("PRLAR%u", i); 8501 ARMCPRegInfo tmp_prlarn_reginfo = { 8502 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8503 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8504 .access = PL1_RW, .resetvalue = 0, 8505 .accessfn = access_tvm_trvm, 8506 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8507 }; 8508 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8509 g_free(tmp_string); 8510 } 8511 8512 /* Register alias is only valid for first 32 indexes */ 8513 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8514 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8515 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8516 uint8_t opc2 = extract32(i, 0, 1) << 2; 8517 8518 tmp_string = g_strdup_printf("HPRBAR%u", i); 8519 ARMCPRegInfo tmp_hprbarn_reginfo = { 8520 .name = tmp_string, 8521 .type = ARM_CP_NO_RAW, 8522 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8523 .access = PL2_RW, .resetvalue = 0, 8524 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8525 }; 8526 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8527 g_free(tmp_string); 8528 8529 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8530 tmp_string = g_strdup_printf("HPRLAR%u", i); 8531 ARMCPRegInfo tmp_hprlarn_reginfo = { 8532 .name = tmp_string, 8533 .type = ARM_CP_NO_RAW, 8534 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8535 .access = PL2_RW, .resetvalue = 0, 8536 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8537 }; 8538 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8539 g_free(tmp_string); 8540 } 8541 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8542 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8543 } 8544 } 8545 8546 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8547 ARMCPRegInfo mpidr_cp_reginfo[] = { 8548 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8549 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8550 .fgt = FGT_MPIDR_EL1, 8551 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8552 }; 8553 #ifdef CONFIG_USER_ONLY 8554 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8555 { .name = "MPIDR_EL1", 8556 .fixed_bits = 0x0000000080000000 }, 8557 }; 8558 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8559 #endif 8560 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8561 } 8562 8563 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8564 ARMCPRegInfo auxcr_reginfo[] = { 8565 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8566 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8567 .access = PL1_RW, .accessfn = access_tacr, 8568 .nv2_redirect_offset = 0x118, 8569 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8570 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8571 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8572 .access = PL2_RW, .type = ARM_CP_CONST, 8573 .resetvalue = 0 }, 8574 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8575 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8576 .access = PL3_RW, .type = ARM_CP_CONST, 8577 .resetvalue = 0 }, 8578 }; 8579 define_arm_cp_regs(cpu, auxcr_reginfo); 8580 if (cpu_isar_feature(aa32_ac2, cpu)) { 8581 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8582 } 8583 } 8584 8585 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8586 /* 8587 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8588 * There are two flavours: 8589 * (1) older 32-bit only cores have a simple 32-bit CBAR 8590 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8591 * 32-bit register visible to AArch32 at a different encoding 8592 * to the "flavour 1" register and with the bits rearranged to 8593 * be able to squash a 64-bit address into the 32-bit view. 8594 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8595 * in future if we support AArch32-only configs of some of the 8596 * AArch64 cores we might need to add a specific feature flag 8597 * to indicate cores with "flavour 2" CBAR. 8598 */ 8599 if (arm_feature(env, ARM_FEATURE_V8)) { 8600 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8601 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8602 | extract64(cpu->reset_cbar, 32, 12); 8603 ARMCPRegInfo cbar_reginfo[] = { 8604 { .name = "CBAR", 8605 .type = ARM_CP_CONST, 8606 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8607 .access = PL1_R, .resetvalue = cbar32 }, 8608 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8609 .type = ARM_CP_CONST, 8610 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8611 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8612 }; 8613 /* We don't implement a r/w 64 bit CBAR currently */ 8614 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8615 define_arm_cp_regs(cpu, cbar_reginfo); 8616 } else { 8617 ARMCPRegInfo cbar = { 8618 .name = "CBAR", 8619 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8620 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8621 .fieldoffset = offsetof(CPUARMState, 8622 cp15.c15_config_base_address) 8623 }; 8624 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8625 cbar.access = PL1_R; 8626 cbar.fieldoffset = 0; 8627 cbar.type = ARM_CP_CONST; 8628 } 8629 define_one_arm_cp_reg(cpu, &cbar); 8630 } 8631 } 8632 8633 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8634 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8635 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8636 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8637 .access = PL1_RW, .writefn = vbar_write, 8638 .accessfn = access_nv1, 8639 .fgt = FGT_VBAR_EL1, 8640 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8641 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8642 offsetof(CPUARMState, cp15.vbar_ns) }, 8643 .resetvalue = 0 }, 8644 }; 8645 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8646 } 8647 8648 /* Generic registers whose values depend on the implementation */ 8649 { 8650 ARMCPRegInfo sctlr = { 8651 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8652 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8653 .access = PL1_RW, .accessfn = access_tvm_trvm, 8654 .fgt = FGT_SCTLR_EL1, 8655 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8656 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8657 offsetof(CPUARMState, cp15.sctlr_ns) }, 8658 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8659 .raw_writefn = raw_write, 8660 }; 8661 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8662 /* 8663 * Normally we would always end the TB on an SCTLR write, but Linux 8664 * arch/arm/mach-pxa/sleep.S expects two instructions following 8665 * an MMU enable to execute from cache. Imitate this behaviour. 8666 */ 8667 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8668 } 8669 define_one_arm_cp_reg(cpu, &sctlr); 8670 8671 if (arm_feature(env, ARM_FEATURE_PMSA) && 8672 arm_feature(env, ARM_FEATURE_V8)) { 8673 ARMCPRegInfo vsctlr = { 8674 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8675 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8676 .access = PL2_RW, .resetvalue = 0x0, 8677 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8678 }; 8679 define_one_arm_cp_reg(cpu, &vsctlr); 8680 } 8681 } 8682 8683 if (cpu_isar_feature(aa64_lor, cpu)) { 8684 define_arm_cp_regs(cpu, lor_reginfo); 8685 } 8686 if (cpu_isar_feature(aa64_pan, cpu)) { 8687 define_one_arm_cp_reg(cpu, &pan_reginfo); 8688 } 8689 #ifndef CONFIG_USER_ONLY 8690 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8691 define_arm_cp_regs(cpu, ats1e1_reginfo); 8692 } 8693 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8694 define_arm_cp_regs(cpu, ats1cp_reginfo); 8695 } 8696 #endif 8697 if (cpu_isar_feature(aa64_uao, cpu)) { 8698 define_one_arm_cp_reg(cpu, &uao_reginfo); 8699 } 8700 8701 if (cpu_isar_feature(aa64_dit, cpu)) { 8702 define_one_arm_cp_reg(cpu, &dit_reginfo); 8703 } 8704 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8705 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8706 } 8707 if (cpu_isar_feature(any_ras, cpu)) { 8708 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8709 } 8710 8711 if (cpu_isar_feature(aa64_vh, cpu) || 8712 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8713 define_one_arm_cp_reg(cpu, &contextidr_el2); 8714 } 8715 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8716 define_arm_cp_regs(cpu, vhe_reginfo); 8717 } 8718 8719 if (cpu_isar_feature(aa64_sve, cpu)) { 8720 define_arm_cp_regs(cpu, zcr_reginfo); 8721 } 8722 8723 if (cpu_isar_feature(aa64_hcx, cpu)) { 8724 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8725 } 8726 8727 #ifdef TARGET_AARCH64 8728 if (cpu_isar_feature(aa64_sme, cpu)) { 8729 define_arm_cp_regs(cpu, sme_reginfo); 8730 } 8731 if (cpu_isar_feature(aa64_pauth, cpu)) { 8732 define_arm_cp_regs(cpu, pauth_reginfo); 8733 } 8734 if (cpu_isar_feature(aa64_rndr, cpu)) { 8735 define_arm_cp_regs(cpu, rndr_reginfo); 8736 } 8737 /* Data Cache clean instructions up to PoP */ 8738 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8739 define_one_arm_cp_reg(cpu, dcpop_reg); 8740 8741 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8742 define_one_arm_cp_reg(cpu, dcpodp_reg); 8743 } 8744 } 8745 8746 /* 8747 * If full MTE is enabled, add all of the system registers. 8748 * If only "instructions available at EL0" are enabled, 8749 * then define only a RAZ/WI version of PSTATE.TCO. 8750 */ 8751 if (cpu_isar_feature(aa64_mte, cpu)) { 8752 ARMCPRegInfo gmid_reginfo = { 8753 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8754 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8755 .access = PL1_R, .accessfn = access_aa64_tid5, 8756 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8757 }; 8758 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8759 define_arm_cp_regs(cpu, mte_reginfo); 8760 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8761 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8762 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8763 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8764 } 8765 8766 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8767 define_arm_cp_regs(cpu, scxtnum_reginfo); 8768 } 8769 8770 if (cpu_isar_feature(aa64_fgt, cpu)) { 8771 define_arm_cp_regs(cpu, fgt_reginfo); 8772 } 8773 8774 if (cpu_isar_feature(aa64_rme, cpu)) { 8775 define_arm_cp_regs(cpu, rme_reginfo); 8776 if (cpu_isar_feature(aa64_mte, cpu)) { 8777 define_arm_cp_regs(cpu, rme_mte_reginfo); 8778 } 8779 } 8780 8781 if (cpu_isar_feature(aa64_nv2, cpu)) { 8782 define_arm_cp_regs(cpu, nv2_reginfo); 8783 } 8784 8785 if (cpu_isar_feature(aa64_nmi, cpu)) { 8786 define_arm_cp_regs(cpu, nmi_reginfo); 8787 } 8788 #endif 8789 8790 if (cpu_isar_feature(any_predinv, cpu)) { 8791 define_arm_cp_regs(cpu, predinv_reginfo); 8792 } 8793 8794 if (cpu_isar_feature(any_ccidx, cpu)) { 8795 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8796 } 8797 8798 #ifndef CONFIG_USER_ONLY 8799 /* 8800 * Register redirections and aliases must be done last, 8801 * after the registers from the other extensions have been defined. 8802 */ 8803 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8804 define_arm_vh_e2h_redirects_aliases(cpu); 8805 } 8806 #endif 8807 } 8808 8809 /* 8810 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8811 * add a single reginfo struct to the hash table. 8812 */ 8813 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8814 void *opaque, CPState state, 8815 CPSecureState secstate, 8816 int crm, int opc1, int opc2, 8817 const char *name) 8818 { 8819 CPUARMState *env = &cpu->env; 8820 uint32_t key; 8821 ARMCPRegInfo *r2; 8822 bool is64 = r->type & ARM_CP_64BIT; 8823 bool ns = secstate & ARM_CP_SECSTATE_NS; 8824 int cp = r->cp; 8825 size_t name_len; 8826 bool make_const; 8827 8828 switch (state) { 8829 case ARM_CP_STATE_AA32: 8830 /* We assume it is a cp15 register if the .cp field is left unset. */ 8831 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8832 cp = 15; 8833 } 8834 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8835 break; 8836 case ARM_CP_STATE_AA64: 8837 /* 8838 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8839 * cp == 0 as equivalent to the value for "standard guest-visible 8840 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8841 * in their AArch64 view (the .cp value may be non-zero for the 8842 * benefit of the AArch32 view). 8843 */ 8844 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8845 cp = CP_REG_ARM64_SYSREG_CP; 8846 } 8847 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8848 break; 8849 default: 8850 g_assert_not_reached(); 8851 } 8852 8853 /* Overriding of an existing definition must be explicitly requested. */ 8854 if (!(r->type & ARM_CP_OVERRIDE)) { 8855 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8856 if (oldreg) { 8857 assert(oldreg->type & ARM_CP_OVERRIDE); 8858 } 8859 } 8860 8861 /* 8862 * Eliminate registers that are not present because the EL is missing. 8863 * Doing this here makes it easier to put all registers for a given 8864 * feature into the same ARMCPRegInfo array and define them all at once. 8865 */ 8866 make_const = false; 8867 if (arm_feature(env, ARM_FEATURE_EL3)) { 8868 /* 8869 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8870 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8871 */ 8872 int min_el = ctz32(r->access) / 2; 8873 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8874 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8875 return; 8876 } 8877 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8878 } 8879 } else { 8880 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8881 ? PL2_RW : PL1_RW); 8882 if ((r->access & max_el) == 0) { 8883 return; 8884 } 8885 } 8886 8887 /* Combine cpreg and name into one allocation. */ 8888 name_len = strlen(name) + 1; 8889 r2 = g_malloc(sizeof(*r2) + name_len); 8890 *r2 = *r; 8891 r2->name = memcpy(r2 + 1, name, name_len); 8892 8893 /* 8894 * Update fields to match the instantiation, overwiting wildcards 8895 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8896 */ 8897 r2->cp = cp; 8898 r2->crm = crm; 8899 r2->opc1 = opc1; 8900 r2->opc2 = opc2; 8901 r2->state = state; 8902 r2->secure = secstate; 8903 if (opaque) { 8904 r2->opaque = opaque; 8905 } 8906 8907 if (make_const) { 8908 /* This should not have been a very special register to begin. */ 8909 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8910 assert(old_special == 0 || old_special == ARM_CP_NOP); 8911 /* 8912 * Set the special function to CONST, retaining the other flags. 8913 * This is important for e.g. ARM_CP_SVE so that we still 8914 * take the SVE trap if CPTR_EL3.EZ == 0. 8915 */ 8916 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8917 /* 8918 * Usually, these registers become RES0, but there are a few 8919 * special cases like VPIDR_EL2 which have a constant non-zero 8920 * value with writes ignored. 8921 */ 8922 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8923 r2->resetvalue = 0; 8924 } 8925 /* 8926 * ARM_CP_CONST has precedence, so removing the callbacks and 8927 * offsets are not strictly necessary, but it is potentially 8928 * less confusing to debug later. 8929 */ 8930 r2->readfn = NULL; 8931 r2->writefn = NULL; 8932 r2->raw_readfn = NULL; 8933 r2->raw_writefn = NULL; 8934 r2->resetfn = NULL; 8935 r2->fieldoffset = 0; 8936 r2->bank_fieldoffsets[0] = 0; 8937 r2->bank_fieldoffsets[1] = 0; 8938 } else { 8939 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8940 8941 if (isbanked) { 8942 /* 8943 * Register is banked (using both entries in array). 8944 * Overwriting fieldoffset as the array is only used to define 8945 * banked registers but later only fieldoffset is used. 8946 */ 8947 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8948 } 8949 if (state == ARM_CP_STATE_AA32) { 8950 if (isbanked) { 8951 /* 8952 * If the register is banked then we don't need to migrate or 8953 * reset the 32-bit instance in certain cases: 8954 * 8955 * 1) If the register has both 32-bit and 64-bit instances 8956 * then we can count on the 64-bit instance taking care 8957 * of the non-secure bank. 8958 * 2) If ARMv8 is enabled then we can count on a 64-bit 8959 * version taking care of the secure bank. This requires 8960 * that separate 32 and 64-bit definitions are provided. 8961 */ 8962 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8963 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8964 r2->type |= ARM_CP_ALIAS; 8965 } 8966 } else if ((secstate != r->secure) && !ns) { 8967 /* 8968 * The register is not banked so we only want to allow 8969 * migration of the non-secure instance. 8970 */ 8971 r2->type |= ARM_CP_ALIAS; 8972 } 8973 8974 if (HOST_BIG_ENDIAN && 8975 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8976 r2->fieldoffset += sizeof(uint32_t); 8977 } 8978 } 8979 } 8980 8981 /* 8982 * By convention, for wildcarded registers only the first 8983 * entry is used for migration; the others are marked as 8984 * ALIAS so we don't try to transfer the register 8985 * multiple times. Special registers (ie NOP/WFI) are 8986 * never migratable and not even raw-accessible. 8987 */ 8988 if (r2->type & ARM_CP_SPECIAL_MASK) { 8989 r2->type |= ARM_CP_NO_RAW; 8990 } 8991 if (((r->crm == CP_ANY) && crm != 0) || 8992 ((r->opc1 == CP_ANY) && opc1 != 0) || 8993 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8994 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8995 } 8996 8997 /* 8998 * Check that raw accesses are either forbidden or handled. Note that 8999 * we can't assert this earlier because the setup of fieldoffset for 9000 * banked registers has to be done first. 9001 */ 9002 if (!(r2->type & ARM_CP_NO_RAW)) { 9003 assert(!raw_accessors_invalid(r2)); 9004 } 9005 9006 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9007 } 9008 9009 9010 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9011 const ARMCPRegInfo *r, void *opaque) 9012 { 9013 /* 9014 * Define implementations of coprocessor registers. 9015 * We store these in a hashtable because typically 9016 * there are less than 150 registers in a space which 9017 * is 16*16*16*8*8 = 262144 in size. 9018 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9019 * If a register is defined twice then the second definition is 9020 * used, so this can be used to define some generic registers and 9021 * then override them with implementation specific variations. 9022 * At least one of the original and the second definition should 9023 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9024 * against accidental use. 9025 * 9026 * The state field defines whether the register is to be 9027 * visible in the AArch32 or AArch64 execution state. If the 9028 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9029 * reginfo structure for the AArch32 view, which sees the lower 9030 * 32 bits of the 64 bit register. 9031 * 9032 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9033 * be wildcarded. AArch64 registers are always considered to be 64 9034 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9035 * the register, if any. 9036 */ 9037 int crm, opc1, opc2; 9038 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9039 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9040 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9041 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9042 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9043 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9044 CPState state; 9045 9046 /* 64 bit registers have only CRm and Opc1 fields */ 9047 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9048 /* op0 only exists in the AArch64 encodings */ 9049 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9050 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9051 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9052 /* 9053 * This API is only for Arm's system coprocessors (14 and 15) or 9054 * (M-profile or v7A-and-earlier only) for implementation defined 9055 * coprocessors in the range 0..7. Our decode assumes this, since 9056 * 8..13 can be used for other insns including VFP and Neon. See 9057 * valid_cp() in translate.c. Assert here that we haven't tried 9058 * to use an invalid coprocessor number. 9059 */ 9060 switch (r->state) { 9061 case ARM_CP_STATE_BOTH: 9062 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9063 if (r->cp == 0) { 9064 break; 9065 } 9066 /* fall through */ 9067 case ARM_CP_STATE_AA32: 9068 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9069 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9070 assert(r->cp >= 14 && r->cp <= 15); 9071 } else { 9072 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9073 } 9074 break; 9075 case ARM_CP_STATE_AA64: 9076 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9077 break; 9078 default: 9079 g_assert_not_reached(); 9080 } 9081 /* 9082 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9083 * encodes a minimum access level for the register. We roll this 9084 * runtime check into our general permission check code, so check 9085 * here that the reginfo's specified permissions are strict enough 9086 * to encompass the generic architectural permission check. 9087 */ 9088 if (r->state != ARM_CP_STATE_AA32) { 9089 CPAccessRights mask; 9090 switch (r->opc1) { 9091 case 0: 9092 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9093 mask = PL0U_R | PL1_RW; 9094 break; 9095 case 1: case 2: 9096 /* min_EL EL1 */ 9097 mask = PL1_RW; 9098 break; 9099 case 3: 9100 /* min_EL EL0 */ 9101 mask = PL0_RW; 9102 break; 9103 case 4: 9104 case 5: 9105 /* min_EL EL2 */ 9106 mask = PL2_RW; 9107 break; 9108 case 6: 9109 /* min_EL EL3 */ 9110 mask = PL3_RW; 9111 break; 9112 case 7: 9113 /* min_EL EL1, secure mode only (we don't check the latter) */ 9114 mask = PL1_RW; 9115 break; 9116 default: 9117 /* broken reginfo with out-of-range opc1 */ 9118 g_assert_not_reached(); 9119 } 9120 /* assert our permissions are not too lax (stricter is fine) */ 9121 assert((r->access & ~mask) == 0); 9122 } 9123 9124 /* 9125 * Check that the register definition has enough info to handle 9126 * reads and writes if they are permitted. 9127 */ 9128 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9129 if (r->access & PL3_R) { 9130 assert((r->fieldoffset || 9131 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9132 r->readfn); 9133 } 9134 if (r->access & PL3_W) { 9135 assert((r->fieldoffset || 9136 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9137 r->writefn); 9138 } 9139 } 9140 9141 for (crm = crmmin; crm <= crmmax; crm++) { 9142 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9143 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9144 for (state = ARM_CP_STATE_AA32; 9145 state <= ARM_CP_STATE_AA64; state++) { 9146 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9147 continue; 9148 } 9149 if ((r->type & ARM_CP_ADD_TLBI_NXS) && 9150 cpu_isar_feature(aa64_xs, cpu)) { 9151 /* 9152 * This is a TLBI insn which has an NXS variant. The 9153 * NXS variant is at the same encoding except that 9154 * crn is +1, and has the same behaviour except for 9155 * fine-grained trapping. Add the NXS insn here and 9156 * then fall through to add the normal register. 9157 * add_cpreg_to_hashtable() copies the cpreg struct 9158 * and name that it is passed, so it's OK to use 9159 * a local struct here. 9160 */ 9161 ARMCPRegInfo nxs_ri = *r; 9162 g_autofree char *name = g_strdup_printf("%sNXS", r->name); 9163 9164 assert(state == ARM_CP_STATE_AA64); 9165 assert(nxs_ri.crn < 0xf); 9166 nxs_ri.crn++; 9167 if (nxs_ri.fgt) { 9168 nxs_ri.fgt |= R_FGT_NXS_MASK; 9169 } 9170 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state, 9171 ARM_CP_SECSTATE_NS, 9172 crm, opc1, opc2, name); 9173 } 9174 if (state == ARM_CP_STATE_AA32) { 9175 /* 9176 * Under AArch32 CP registers can be common 9177 * (same for secure and non-secure world) or banked. 9178 */ 9179 char *name; 9180 9181 switch (r->secure) { 9182 case ARM_CP_SECSTATE_S: 9183 case ARM_CP_SECSTATE_NS: 9184 add_cpreg_to_hashtable(cpu, r, opaque, state, 9185 r->secure, crm, opc1, opc2, 9186 r->name); 9187 break; 9188 case ARM_CP_SECSTATE_BOTH: 9189 name = g_strdup_printf("%s_S", r->name); 9190 add_cpreg_to_hashtable(cpu, r, opaque, state, 9191 ARM_CP_SECSTATE_S, 9192 crm, opc1, opc2, name); 9193 g_free(name); 9194 add_cpreg_to_hashtable(cpu, r, opaque, state, 9195 ARM_CP_SECSTATE_NS, 9196 crm, opc1, opc2, r->name); 9197 break; 9198 default: 9199 g_assert_not_reached(); 9200 } 9201 } else { 9202 /* 9203 * AArch64 registers get mapped to non-secure instance 9204 * of AArch32 9205 */ 9206 add_cpreg_to_hashtable(cpu, r, opaque, state, 9207 ARM_CP_SECSTATE_NS, 9208 crm, opc1, opc2, r->name); 9209 } 9210 } 9211 } 9212 } 9213 } 9214 } 9215 9216 /* Define a whole list of registers */ 9217 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9218 void *opaque, size_t len) 9219 { 9220 size_t i; 9221 for (i = 0; i < len; ++i) { 9222 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9223 } 9224 } 9225 9226 /* 9227 * Modify ARMCPRegInfo for access from userspace. 9228 * 9229 * This is a data driven modification directed by 9230 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9231 * user-space cannot alter any values and dynamic values pertaining to 9232 * execution state are hidden from user space view anyway. 9233 */ 9234 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9235 const ARMCPRegUserSpaceInfo *mods, 9236 size_t mods_len) 9237 { 9238 for (size_t mi = 0; mi < mods_len; ++mi) { 9239 const ARMCPRegUserSpaceInfo *m = mods + mi; 9240 GPatternSpec *pat = NULL; 9241 9242 if (m->is_glob) { 9243 pat = g_pattern_spec_new(m->name); 9244 } 9245 for (size_t ri = 0; ri < regs_len; ++ri) { 9246 ARMCPRegInfo *r = regs + ri; 9247 9248 if (pat && g_pattern_match_string(pat, r->name)) { 9249 r->type = ARM_CP_CONST; 9250 r->access = PL0U_R; 9251 r->resetvalue = 0; 9252 /* continue */ 9253 } else if (strcmp(r->name, m->name) == 0) { 9254 r->type = ARM_CP_CONST; 9255 r->access = PL0U_R; 9256 r->resetvalue &= m->exported_bits; 9257 r->resetvalue |= m->fixed_bits; 9258 break; 9259 } 9260 } 9261 if (pat) { 9262 g_pattern_spec_free(pat); 9263 } 9264 } 9265 } 9266 9267 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9268 { 9269 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9270 } 9271 9272 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9273 uint64_t value) 9274 { 9275 /* Helper coprocessor write function for write-ignore registers */ 9276 } 9277 9278 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9279 { 9280 /* Helper coprocessor write function for read-as-zero registers */ 9281 return 0; 9282 } 9283 9284 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9285 { 9286 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9287 } 9288 9289 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9290 { 9291 /* 9292 * Return true if it is not valid for us to switch to 9293 * this CPU mode (ie all the UNPREDICTABLE cases in 9294 * the ARM ARM CPSRWriteByInstr pseudocode). 9295 */ 9296 9297 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9298 if (write_type == CPSRWriteByInstr && 9299 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9300 mode == ARM_CPU_MODE_HYP)) { 9301 return 1; 9302 } 9303 9304 switch (mode) { 9305 case ARM_CPU_MODE_USR: 9306 return 0; 9307 case ARM_CPU_MODE_SYS: 9308 case ARM_CPU_MODE_SVC: 9309 case ARM_CPU_MODE_ABT: 9310 case ARM_CPU_MODE_UND: 9311 case ARM_CPU_MODE_IRQ: 9312 case ARM_CPU_MODE_FIQ: 9313 /* 9314 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9315 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9316 */ 9317 /* 9318 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9319 * and CPS are treated as illegal mode changes. 9320 */ 9321 if (write_type == CPSRWriteByInstr && 9322 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9323 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9324 return 1; 9325 } 9326 return 0; 9327 case ARM_CPU_MODE_HYP: 9328 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9329 case ARM_CPU_MODE_MON: 9330 return arm_current_el(env) < 3; 9331 default: 9332 return 1; 9333 } 9334 } 9335 9336 uint32_t cpsr_read(CPUARMState *env) 9337 { 9338 int ZF; 9339 ZF = (env->ZF == 0); 9340 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9341 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9342 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9343 | ((env->condexec_bits & 0xfc) << 8) 9344 | (env->GE << 16) | (env->daif & CPSR_AIF); 9345 } 9346 9347 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9348 CPSRWriteType write_type) 9349 { 9350 uint32_t changed_daif; 9351 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9352 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9353 9354 if (mask & CPSR_NZCV) { 9355 env->ZF = (~val) & CPSR_Z; 9356 env->NF = val; 9357 env->CF = (val >> 29) & 1; 9358 env->VF = (val << 3) & 0x80000000; 9359 } 9360 if (mask & CPSR_Q) { 9361 env->QF = ((val & CPSR_Q) != 0); 9362 } 9363 if (mask & CPSR_T) { 9364 env->thumb = ((val & CPSR_T) != 0); 9365 } 9366 if (mask & CPSR_IT_0_1) { 9367 env->condexec_bits &= ~3; 9368 env->condexec_bits |= (val >> 25) & 3; 9369 } 9370 if (mask & CPSR_IT_2_7) { 9371 env->condexec_bits &= 3; 9372 env->condexec_bits |= (val >> 8) & 0xfc; 9373 } 9374 if (mask & CPSR_GE) { 9375 env->GE = (val >> 16) & 0xf; 9376 } 9377 9378 /* 9379 * In a V7 implementation that includes the security extensions but does 9380 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9381 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9382 * bits respectively. 9383 * 9384 * In a V8 implementation, it is permitted for privileged software to 9385 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9386 */ 9387 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9388 arm_feature(env, ARM_FEATURE_EL3) && 9389 !arm_feature(env, ARM_FEATURE_EL2) && 9390 !arm_is_secure(env)) { 9391 9392 changed_daif = (env->daif ^ val) & mask; 9393 9394 if (changed_daif & CPSR_A) { 9395 /* 9396 * Check to see if we are allowed to change the masking of async 9397 * abort exceptions from a non-secure state. 9398 */ 9399 if (!(env->cp15.scr_el3 & SCR_AW)) { 9400 qemu_log_mask(LOG_GUEST_ERROR, 9401 "Ignoring attempt to switch CPSR_A flag from " 9402 "non-secure world with SCR.AW bit clear\n"); 9403 mask &= ~CPSR_A; 9404 } 9405 } 9406 9407 if (changed_daif & CPSR_F) { 9408 /* 9409 * Check to see if we are allowed to change the masking of FIQ 9410 * exceptions from a non-secure state. 9411 */ 9412 if (!(env->cp15.scr_el3 & SCR_FW)) { 9413 qemu_log_mask(LOG_GUEST_ERROR, 9414 "Ignoring attempt to switch CPSR_F flag from " 9415 "non-secure world with SCR.FW bit clear\n"); 9416 mask &= ~CPSR_F; 9417 } 9418 9419 /* 9420 * Check whether non-maskable FIQ (NMFI) support is enabled. 9421 * If this bit is set software is not allowed to mask 9422 * FIQs, but is allowed to set CPSR_F to 0. 9423 */ 9424 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9425 (val & CPSR_F)) { 9426 qemu_log_mask(LOG_GUEST_ERROR, 9427 "Ignoring attempt to enable CPSR_F flag " 9428 "(non-maskable FIQ [NMFI] support enabled)\n"); 9429 mask &= ~CPSR_F; 9430 } 9431 } 9432 } 9433 9434 env->daif &= ~(CPSR_AIF & mask); 9435 env->daif |= val & CPSR_AIF & mask; 9436 9437 if (write_type != CPSRWriteRaw && 9438 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9439 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9440 /* 9441 * Note that we can only get here in USR mode if this is a 9442 * gdb stub write; for this case we follow the architectural 9443 * behaviour for guest writes in USR mode of ignoring an attempt 9444 * to switch mode. (Those are caught by translate.c for writes 9445 * triggered by guest instructions.) 9446 */ 9447 mask &= ~CPSR_M; 9448 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9449 /* 9450 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9451 * v7, and has defined behaviour in v8: 9452 * + leave CPSR.M untouched 9453 * + allow changes to the other CPSR fields 9454 * + set PSTATE.IL 9455 * For user changes via the GDB stub, we don't set PSTATE.IL, 9456 * as this would be unnecessarily harsh for a user error. 9457 */ 9458 mask &= ~CPSR_M; 9459 if (write_type != CPSRWriteByGDBStub && 9460 arm_feature(env, ARM_FEATURE_V8)) { 9461 mask |= CPSR_IL; 9462 val |= CPSR_IL; 9463 } 9464 qemu_log_mask(LOG_GUEST_ERROR, 9465 "Illegal AArch32 mode switch attempt from %s to %s\n", 9466 aarch32_mode_name(env->uncached_cpsr), 9467 aarch32_mode_name(val)); 9468 } else { 9469 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9470 write_type == CPSRWriteExceptionReturn ? 9471 "Exception return from AArch32" : 9472 "AArch32 mode switch from", 9473 aarch32_mode_name(env->uncached_cpsr), 9474 aarch32_mode_name(val), env->regs[15]); 9475 switch_mode(env, val & CPSR_M); 9476 } 9477 } 9478 mask &= ~CACHED_CPSR_BITS; 9479 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9480 if (tcg_enabled() && rebuild_hflags) { 9481 arm_rebuild_hflags(env); 9482 } 9483 } 9484 9485 #ifdef CONFIG_USER_ONLY 9486 9487 static void switch_mode(CPUARMState *env, int mode) 9488 { 9489 ARMCPU *cpu = env_archcpu(env); 9490 9491 if (mode != ARM_CPU_MODE_USR) { 9492 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9493 } 9494 } 9495 9496 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9497 uint32_t cur_el, bool secure) 9498 { 9499 return 1; 9500 } 9501 9502 void aarch64_sync_64_to_32(CPUARMState *env) 9503 { 9504 g_assert_not_reached(); 9505 } 9506 9507 #else 9508 9509 static void switch_mode(CPUARMState *env, int mode) 9510 { 9511 int old_mode; 9512 int i; 9513 9514 old_mode = env->uncached_cpsr & CPSR_M; 9515 if (mode == old_mode) { 9516 return; 9517 } 9518 9519 if (old_mode == ARM_CPU_MODE_FIQ) { 9520 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9521 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9522 } else if (mode == ARM_CPU_MODE_FIQ) { 9523 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9524 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9525 } 9526 9527 i = bank_number(old_mode); 9528 env->banked_r13[i] = env->regs[13]; 9529 env->banked_spsr[i] = env->spsr; 9530 9531 i = bank_number(mode); 9532 env->regs[13] = env->banked_r13[i]; 9533 env->spsr = env->banked_spsr[i]; 9534 9535 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9536 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9537 } 9538 9539 /* 9540 * Physical Interrupt Target EL Lookup Table 9541 * 9542 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9543 * 9544 * The below multi-dimensional table is used for looking up the target 9545 * exception level given numerous condition criteria. Specifically, the 9546 * target EL is based on SCR and HCR routing controls as well as the 9547 * currently executing EL and secure state. 9548 * 9549 * Dimensions: 9550 * target_el_table[2][2][2][2][2][4] 9551 * | | | | | +--- Current EL 9552 * | | | | +------ Non-secure(0)/Secure(1) 9553 * | | | +--------- HCR mask override 9554 * | | +------------ SCR exec state control 9555 * | +--------------- SCR mask override 9556 * +------------------ 32-bit(0)/64-bit(1) EL3 9557 * 9558 * The table values are as such: 9559 * 0-3 = EL0-EL3 9560 * -1 = Cannot occur 9561 * 9562 * The ARM ARM target EL table includes entries indicating that an "exception 9563 * is not taken". The two cases where this is applicable are: 9564 * 1) An exception is taken from EL3 but the SCR does not have the exception 9565 * routed to EL3. 9566 * 2) An exception is taken from EL2 but the HCR does not have the exception 9567 * routed to EL2. 9568 * In these two cases, the below table contain a target of EL1. This value is 9569 * returned as it is expected that the consumer of the table data will check 9570 * for "target EL >= current EL" to ensure the exception is not taken. 9571 * 9572 * SCR HCR 9573 * 64 EA AMO From 9574 * BIT IRQ IMO Non-secure Secure 9575 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9576 */ 9577 static const int8_t target_el_table[2][2][2][2][2][4] = { 9578 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9579 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9580 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9581 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9582 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9583 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9584 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9585 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9586 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9587 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9588 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9589 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9590 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9591 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9592 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9593 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9594 }; 9595 9596 /* 9597 * Determine the target EL for physical exceptions 9598 */ 9599 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9600 uint32_t cur_el, bool secure) 9601 { 9602 CPUARMState *env = cpu_env(cs); 9603 bool rw; 9604 bool scr; 9605 bool hcr; 9606 int target_el; 9607 /* Is the highest EL AArch64? */ 9608 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9609 uint64_t hcr_el2; 9610 9611 if (arm_feature(env, ARM_FEATURE_EL3)) { 9612 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9613 } else { 9614 /* 9615 * Either EL2 is the highest EL (and so the EL2 register width 9616 * is given by is64); or there is no EL2 or EL3, in which case 9617 * the value of 'rw' does not affect the table lookup anyway. 9618 */ 9619 rw = is64; 9620 } 9621 9622 hcr_el2 = arm_hcr_el2_eff(env); 9623 switch (excp_idx) { 9624 case EXCP_IRQ: 9625 case EXCP_NMI: 9626 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9627 hcr = hcr_el2 & HCR_IMO; 9628 break; 9629 case EXCP_FIQ: 9630 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9631 hcr = hcr_el2 & HCR_FMO; 9632 break; 9633 default: 9634 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9635 hcr = hcr_el2 & HCR_AMO; 9636 break; 9637 }; 9638 9639 /* 9640 * For these purposes, TGE and AMO/IMO/FMO both force the 9641 * interrupt to EL2. Fold TGE into the bit extracted above. 9642 */ 9643 hcr |= (hcr_el2 & HCR_TGE) != 0; 9644 9645 /* Perform a table-lookup for the target EL given the current state */ 9646 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9647 9648 assert(target_el > 0); 9649 9650 return target_el; 9651 } 9652 9653 void arm_log_exception(CPUState *cs) 9654 { 9655 int idx = cs->exception_index; 9656 9657 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9658 const char *exc = NULL; 9659 static const char * const excnames[] = { 9660 [EXCP_UDEF] = "Undefined Instruction", 9661 [EXCP_SWI] = "SVC", 9662 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9663 [EXCP_DATA_ABORT] = "Data Abort", 9664 [EXCP_IRQ] = "IRQ", 9665 [EXCP_FIQ] = "FIQ", 9666 [EXCP_BKPT] = "Breakpoint", 9667 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9668 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9669 [EXCP_HVC] = "Hypervisor Call", 9670 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9671 [EXCP_SMC] = "Secure Monitor Call", 9672 [EXCP_VIRQ] = "Virtual IRQ", 9673 [EXCP_VFIQ] = "Virtual FIQ", 9674 [EXCP_SEMIHOST] = "Semihosting call", 9675 [EXCP_NOCP] = "v7M NOCP UsageFault", 9676 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9677 [EXCP_STKOF] = "v8M STKOF UsageFault", 9678 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9679 [EXCP_LSERR] = "v8M LSERR UsageFault", 9680 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9681 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9682 [EXCP_VSERR] = "Virtual SERR", 9683 [EXCP_GPC] = "Granule Protection Check", 9684 [EXCP_NMI] = "NMI", 9685 [EXCP_VINMI] = "Virtual IRQ NMI", 9686 [EXCP_VFNMI] = "Virtual FIQ NMI", 9687 }; 9688 9689 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9690 exc = excnames[idx]; 9691 } 9692 if (!exc) { 9693 exc = "unknown"; 9694 } 9695 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9696 idx, exc, cs->cpu_index); 9697 } 9698 } 9699 9700 /* 9701 * Function used to synchronize QEMU's AArch64 register set with AArch32 9702 * register set. This is necessary when switching between AArch32 and AArch64 9703 * execution state. 9704 */ 9705 void aarch64_sync_32_to_64(CPUARMState *env) 9706 { 9707 int i; 9708 uint32_t mode = env->uncached_cpsr & CPSR_M; 9709 9710 /* We can blanket copy R[0:7] to X[0:7] */ 9711 for (i = 0; i < 8; i++) { 9712 env->xregs[i] = env->regs[i]; 9713 } 9714 9715 /* 9716 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9717 * Otherwise, they come from the banked user regs. 9718 */ 9719 if (mode == ARM_CPU_MODE_FIQ) { 9720 for (i = 8; i < 13; i++) { 9721 env->xregs[i] = env->usr_regs[i - 8]; 9722 } 9723 } else { 9724 for (i = 8; i < 13; i++) { 9725 env->xregs[i] = env->regs[i]; 9726 } 9727 } 9728 9729 /* 9730 * Registers x13-x23 are the various mode SP and FP registers. Registers 9731 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9732 * from the mode banked register. 9733 */ 9734 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9735 env->xregs[13] = env->regs[13]; 9736 env->xregs[14] = env->regs[14]; 9737 } else { 9738 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9739 /* HYP is an exception in that it is copied from r14 */ 9740 if (mode == ARM_CPU_MODE_HYP) { 9741 env->xregs[14] = env->regs[14]; 9742 } else { 9743 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9744 } 9745 } 9746 9747 if (mode == ARM_CPU_MODE_HYP) { 9748 env->xregs[15] = env->regs[13]; 9749 } else { 9750 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9751 } 9752 9753 if (mode == ARM_CPU_MODE_IRQ) { 9754 env->xregs[16] = env->regs[14]; 9755 env->xregs[17] = env->regs[13]; 9756 } else { 9757 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9758 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9759 } 9760 9761 if (mode == ARM_CPU_MODE_SVC) { 9762 env->xregs[18] = env->regs[14]; 9763 env->xregs[19] = env->regs[13]; 9764 } else { 9765 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9766 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9767 } 9768 9769 if (mode == ARM_CPU_MODE_ABT) { 9770 env->xregs[20] = env->regs[14]; 9771 env->xregs[21] = env->regs[13]; 9772 } else { 9773 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9774 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9775 } 9776 9777 if (mode == ARM_CPU_MODE_UND) { 9778 env->xregs[22] = env->regs[14]; 9779 env->xregs[23] = env->regs[13]; 9780 } else { 9781 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9782 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9783 } 9784 9785 /* 9786 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9787 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9788 * FIQ bank for r8-r14. 9789 */ 9790 if (mode == ARM_CPU_MODE_FIQ) { 9791 for (i = 24; i < 31; i++) { 9792 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9793 } 9794 } else { 9795 for (i = 24; i < 29; i++) { 9796 env->xregs[i] = env->fiq_regs[i - 24]; 9797 } 9798 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9799 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9800 } 9801 9802 env->pc = env->regs[15]; 9803 } 9804 9805 /* 9806 * Function used to synchronize QEMU's AArch32 register set with AArch64 9807 * register set. This is necessary when switching between AArch32 and AArch64 9808 * execution state. 9809 */ 9810 void aarch64_sync_64_to_32(CPUARMState *env) 9811 { 9812 int i; 9813 uint32_t mode = env->uncached_cpsr & CPSR_M; 9814 9815 /* We can blanket copy X[0:7] to R[0:7] */ 9816 for (i = 0; i < 8; i++) { 9817 env->regs[i] = env->xregs[i]; 9818 } 9819 9820 /* 9821 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9822 * Otherwise, we copy x8-x12 into the banked user regs. 9823 */ 9824 if (mode == ARM_CPU_MODE_FIQ) { 9825 for (i = 8; i < 13; i++) { 9826 env->usr_regs[i - 8] = env->xregs[i]; 9827 } 9828 } else { 9829 for (i = 8; i < 13; i++) { 9830 env->regs[i] = env->xregs[i]; 9831 } 9832 } 9833 9834 /* 9835 * Registers r13 & r14 depend on the current mode. 9836 * If we are in a given mode, we copy the corresponding x registers to r13 9837 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9838 * for the mode. 9839 */ 9840 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9841 env->regs[13] = env->xregs[13]; 9842 env->regs[14] = env->xregs[14]; 9843 } else { 9844 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9845 9846 /* 9847 * HYP is an exception in that it does not have its own banked r14 but 9848 * shares the USR r14 9849 */ 9850 if (mode == ARM_CPU_MODE_HYP) { 9851 env->regs[14] = env->xregs[14]; 9852 } else { 9853 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9854 } 9855 } 9856 9857 if (mode == ARM_CPU_MODE_HYP) { 9858 env->regs[13] = env->xregs[15]; 9859 } else { 9860 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9861 } 9862 9863 if (mode == ARM_CPU_MODE_IRQ) { 9864 env->regs[14] = env->xregs[16]; 9865 env->regs[13] = env->xregs[17]; 9866 } else { 9867 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9868 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9869 } 9870 9871 if (mode == ARM_CPU_MODE_SVC) { 9872 env->regs[14] = env->xregs[18]; 9873 env->regs[13] = env->xregs[19]; 9874 } else { 9875 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9876 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9877 } 9878 9879 if (mode == ARM_CPU_MODE_ABT) { 9880 env->regs[14] = env->xregs[20]; 9881 env->regs[13] = env->xregs[21]; 9882 } else { 9883 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9884 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9885 } 9886 9887 if (mode == ARM_CPU_MODE_UND) { 9888 env->regs[14] = env->xregs[22]; 9889 env->regs[13] = env->xregs[23]; 9890 } else { 9891 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9892 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9893 } 9894 9895 /* 9896 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9897 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9898 * FIQ bank for r8-r14. 9899 */ 9900 if (mode == ARM_CPU_MODE_FIQ) { 9901 for (i = 24; i < 31; i++) { 9902 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9903 } 9904 } else { 9905 for (i = 24; i < 29; i++) { 9906 env->fiq_regs[i - 24] = env->xregs[i]; 9907 } 9908 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9909 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9910 } 9911 9912 env->regs[15] = env->pc; 9913 } 9914 9915 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9916 uint32_t mask, uint32_t offset, 9917 uint32_t newpc) 9918 { 9919 int new_el; 9920 9921 /* Change the CPU state so as to actually take the exception. */ 9922 switch_mode(env, new_mode); 9923 9924 /* 9925 * For exceptions taken to AArch32 we must clear the SS bit in both 9926 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9927 */ 9928 env->pstate &= ~PSTATE_SS; 9929 env->spsr = cpsr_read(env); 9930 /* Clear IT bits. */ 9931 env->condexec_bits = 0; 9932 /* Switch to the new mode, and to the correct instruction set. */ 9933 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9934 9935 /* This must be after mode switching. */ 9936 new_el = arm_current_el(env); 9937 9938 /* Set new mode endianness */ 9939 env->uncached_cpsr &= ~CPSR_E; 9940 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9941 env->uncached_cpsr |= CPSR_E; 9942 } 9943 /* J and IL must always be cleared for exception entry */ 9944 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9945 env->daif |= mask; 9946 9947 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9948 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9949 env->uncached_cpsr |= CPSR_SSBS; 9950 } else { 9951 env->uncached_cpsr &= ~CPSR_SSBS; 9952 } 9953 } 9954 9955 if (new_mode == ARM_CPU_MODE_HYP) { 9956 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9957 env->elr_el[2] = env->regs[15]; 9958 } else { 9959 /* CPSR.PAN is normally preserved preserved unless... */ 9960 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9961 switch (new_el) { 9962 case 3: 9963 if (!arm_is_secure_below_el3(env)) { 9964 /* ... the target is EL3, from non-secure state. */ 9965 env->uncached_cpsr &= ~CPSR_PAN; 9966 break; 9967 } 9968 /* ... the target is EL3, from secure state ... */ 9969 /* fall through */ 9970 case 1: 9971 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9972 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9973 env->uncached_cpsr |= CPSR_PAN; 9974 } 9975 break; 9976 } 9977 } 9978 /* 9979 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9980 * and we should just guard the thumb mode on V4 9981 */ 9982 if (arm_feature(env, ARM_FEATURE_V4T)) { 9983 env->thumb = 9984 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9985 } 9986 env->regs[14] = env->regs[15] + offset; 9987 } 9988 env->regs[15] = newpc; 9989 9990 if (tcg_enabled()) { 9991 arm_rebuild_hflags(env); 9992 } 9993 } 9994 9995 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9996 { 9997 /* 9998 * Handle exception entry to Hyp mode; this is sufficiently 9999 * different to entry to other AArch32 modes that we handle it 10000 * separately here. 10001 * 10002 * The vector table entry used is always the 0x14 Hyp mode entry point, 10003 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10004 * The offset applied to the preferred return address is always zero 10005 * (see DDI0487C.a section G1.12.3). 10006 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10007 */ 10008 uint32_t addr, mask; 10009 ARMCPU *cpu = ARM_CPU(cs); 10010 CPUARMState *env = &cpu->env; 10011 10012 switch (cs->exception_index) { 10013 case EXCP_UDEF: 10014 addr = 0x04; 10015 break; 10016 case EXCP_SWI: 10017 addr = 0x08; 10018 break; 10019 case EXCP_BKPT: 10020 /* Fall through to prefetch abort. */ 10021 case EXCP_PREFETCH_ABORT: 10022 env->cp15.ifar_s = env->exception.vaddress; 10023 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10024 (uint32_t)env->exception.vaddress); 10025 addr = 0x0c; 10026 break; 10027 case EXCP_DATA_ABORT: 10028 env->cp15.dfar_s = env->exception.vaddress; 10029 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10030 (uint32_t)env->exception.vaddress); 10031 addr = 0x10; 10032 break; 10033 case EXCP_IRQ: 10034 addr = 0x18; 10035 break; 10036 case EXCP_FIQ: 10037 addr = 0x1c; 10038 break; 10039 case EXCP_HVC: 10040 addr = 0x08; 10041 break; 10042 case EXCP_HYP_TRAP: 10043 addr = 0x14; 10044 break; 10045 default: 10046 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10047 } 10048 10049 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10050 if (!arm_feature(env, ARM_FEATURE_V8)) { 10051 /* 10052 * QEMU syndrome values are v8-style. v7 has the IL bit 10053 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10054 * If this is a v7 CPU, squash the IL bit in those cases. 10055 */ 10056 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10057 (cs->exception_index == EXCP_DATA_ABORT && 10058 !(env->exception.syndrome & ARM_EL_ISV)) || 10059 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10060 env->exception.syndrome &= ~ARM_EL_IL; 10061 } 10062 } 10063 env->cp15.esr_el[2] = env->exception.syndrome; 10064 } 10065 10066 if (arm_current_el(env) != 2 && addr < 0x14) { 10067 addr = 0x14; 10068 } 10069 10070 mask = 0; 10071 if (!(env->cp15.scr_el3 & SCR_EA)) { 10072 mask |= CPSR_A; 10073 } 10074 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10075 mask |= CPSR_I; 10076 } 10077 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10078 mask |= CPSR_F; 10079 } 10080 10081 addr += env->cp15.hvbar; 10082 10083 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10084 } 10085 10086 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10087 { 10088 ARMCPU *cpu = ARM_CPU(cs); 10089 CPUARMState *env = &cpu->env; 10090 uint32_t addr; 10091 uint32_t mask; 10092 int new_mode; 10093 uint32_t offset; 10094 uint32_t moe; 10095 10096 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10097 switch (syn_get_ec(env->exception.syndrome)) { 10098 case EC_BREAKPOINT: 10099 case EC_BREAKPOINT_SAME_EL: 10100 moe = 1; 10101 break; 10102 case EC_WATCHPOINT: 10103 case EC_WATCHPOINT_SAME_EL: 10104 moe = 10; 10105 break; 10106 case EC_AA32_BKPT: 10107 moe = 3; 10108 break; 10109 case EC_VECTORCATCH: 10110 moe = 5; 10111 break; 10112 default: 10113 moe = 0; 10114 break; 10115 } 10116 10117 if (moe) { 10118 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10119 } 10120 10121 if (env->exception.target_el == 2) { 10122 /* Debug exceptions are reported differently on AArch32 */ 10123 switch (syn_get_ec(env->exception.syndrome)) { 10124 case EC_BREAKPOINT: 10125 case EC_BREAKPOINT_SAME_EL: 10126 case EC_AA32_BKPT: 10127 case EC_VECTORCATCH: 10128 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10129 0, 0, 0x22); 10130 break; 10131 case EC_WATCHPOINT: 10132 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10133 EC_DATAABORT); 10134 break; 10135 case EC_WATCHPOINT_SAME_EL: 10136 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10137 EC_DATAABORT_SAME_EL); 10138 break; 10139 } 10140 arm_cpu_do_interrupt_aarch32_hyp(cs); 10141 return; 10142 } 10143 10144 switch (cs->exception_index) { 10145 case EXCP_UDEF: 10146 new_mode = ARM_CPU_MODE_UND; 10147 addr = 0x04; 10148 mask = CPSR_I; 10149 if (env->thumb) { 10150 offset = 2; 10151 } else { 10152 offset = 4; 10153 } 10154 break; 10155 case EXCP_SWI: 10156 new_mode = ARM_CPU_MODE_SVC; 10157 addr = 0x08; 10158 mask = CPSR_I; 10159 /* The PC already points to the next instruction. */ 10160 offset = 0; 10161 break; 10162 case EXCP_BKPT: 10163 /* Fall through to prefetch abort. */ 10164 case EXCP_PREFETCH_ABORT: 10165 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10166 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10167 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10168 env->exception.fsr, (uint32_t)env->exception.vaddress); 10169 new_mode = ARM_CPU_MODE_ABT; 10170 addr = 0x0c; 10171 mask = CPSR_A | CPSR_I; 10172 offset = 4; 10173 break; 10174 case EXCP_DATA_ABORT: 10175 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10176 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10177 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10178 env->exception.fsr, 10179 (uint32_t)env->exception.vaddress); 10180 new_mode = ARM_CPU_MODE_ABT; 10181 addr = 0x10; 10182 mask = CPSR_A | CPSR_I; 10183 offset = 8; 10184 break; 10185 case EXCP_IRQ: 10186 new_mode = ARM_CPU_MODE_IRQ; 10187 addr = 0x18; 10188 /* Disable IRQ and imprecise data aborts. */ 10189 mask = CPSR_A | CPSR_I; 10190 offset = 4; 10191 if (env->cp15.scr_el3 & SCR_IRQ) { 10192 /* IRQ routed to monitor mode */ 10193 new_mode = ARM_CPU_MODE_MON; 10194 mask |= CPSR_F; 10195 } 10196 break; 10197 case EXCP_FIQ: 10198 new_mode = ARM_CPU_MODE_FIQ; 10199 addr = 0x1c; 10200 /* Disable FIQ, IRQ and imprecise data aborts. */ 10201 mask = CPSR_A | CPSR_I | CPSR_F; 10202 if (env->cp15.scr_el3 & SCR_FIQ) { 10203 /* FIQ routed to monitor mode */ 10204 new_mode = ARM_CPU_MODE_MON; 10205 } 10206 offset = 4; 10207 break; 10208 case EXCP_VIRQ: 10209 new_mode = ARM_CPU_MODE_IRQ; 10210 addr = 0x18; 10211 /* Disable IRQ and imprecise data aborts. */ 10212 mask = CPSR_A | CPSR_I; 10213 offset = 4; 10214 break; 10215 case EXCP_VFIQ: 10216 new_mode = ARM_CPU_MODE_FIQ; 10217 addr = 0x1c; 10218 /* Disable FIQ, IRQ and imprecise data aborts. */ 10219 mask = CPSR_A | CPSR_I | CPSR_F; 10220 offset = 4; 10221 break; 10222 case EXCP_VSERR: 10223 { 10224 /* 10225 * Note that this is reported as a data abort, but the DFAR 10226 * has an UNKNOWN value. Construct the SError syndrome from 10227 * AET and ExT fields. 10228 */ 10229 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10230 10231 if (extended_addresses_enabled(env)) { 10232 env->exception.fsr = arm_fi_to_lfsc(&fi); 10233 } else { 10234 env->exception.fsr = arm_fi_to_sfsc(&fi); 10235 } 10236 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10237 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10238 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10239 env->exception.fsr); 10240 10241 new_mode = ARM_CPU_MODE_ABT; 10242 addr = 0x10; 10243 mask = CPSR_A | CPSR_I; 10244 offset = 8; 10245 } 10246 break; 10247 case EXCP_SMC: 10248 new_mode = ARM_CPU_MODE_MON; 10249 addr = 0x08; 10250 mask = CPSR_A | CPSR_I | CPSR_F; 10251 offset = 0; 10252 break; 10253 default: 10254 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10255 return; /* Never happens. Keep compiler happy. */ 10256 } 10257 10258 if (new_mode == ARM_CPU_MODE_MON) { 10259 addr += env->cp15.mvbar; 10260 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10261 /* High vectors. When enabled, base address cannot be remapped. */ 10262 addr += 0xffff0000; 10263 } else { 10264 /* 10265 * ARM v7 architectures provide a vector base address register to remap 10266 * the interrupt vector table. 10267 * This register is only followed in non-monitor mode, and is banked. 10268 * Note: only bits 31:5 are valid. 10269 */ 10270 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10271 } 10272 10273 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10274 env->cp15.scr_el3 &= ~SCR_NS; 10275 } 10276 10277 take_aarch32_exception(env, new_mode, mask, offset, addr); 10278 } 10279 10280 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10281 { 10282 /* 10283 * Return the register number of the AArch64 view of the AArch32 10284 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10285 * be that of the AArch32 mode the exception came from. 10286 */ 10287 int mode = env->uncached_cpsr & CPSR_M; 10288 10289 switch (aarch32_reg) { 10290 case 0 ... 7: 10291 return aarch32_reg; 10292 case 8 ... 12: 10293 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10294 case 13: 10295 switch (mode) { 10296 case ARM_CPU_MODE_USR: 10297 case ARM_CPU_MODE_SYS: 10298 return 13; 10299 case ARM_CPU_MODE_HYP: 10300 return 15; 10301 case ARM_CPU_MODE_IRQ: 10302 return 17; 10303 case ARM_CPU_MODE_SVC: 10304 return 19; 10305 case ARM_CPU_MODE_ABT: 10306 return 21; 10307 case ARM_CPU_MODE_UND: 10308 return 23; 10309 case ARM_CPU_MODE_FIQ: 10310 return 29; 10311 default: 10312 g_assert_not_reached(); 10313 } 10314 case 14: 10315 switch (mode) { 10316 case ARM_CPU_MODE_USR: 10317 case ARM_CPU_MODE_SYS: 10318 case ARM_CPU_MODE_HYP: 10319 return 14; 10320 case ARM_CPU_MODE_IRQ: 10321 return 16; 10322 case ARM_CPU_MODE_SVC: 10323 return 18; 10324 case ARM_CPU_MODE_ABT: 10325 return 20; 10326 case ARM_CPU_MODE_UND: 10327 return 22; 10328 case ARM_CPU_MODE_FIQ: 10329 return 30; 10330 default: 10331 g_assert_not_reached(); 10332 } 10333 case 15: 10334 return 31; 10335 default: 10336 g_assert_not_reached(); 10337 } 10338 } 10339 10340 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10341 { 10342 uint32_t ret = cpsr_read(env); 10343 10344 /* Move DIT to the correct location for SPSR_ELx */ 10345 if (ret & CPSR_DIT) { 10346 ret &= ~CPSR_DIT; 10347 ret |= PSTATE_DIT; 10348 } 10349 /* Merge PSTATE.SS into SPSR_ELx */ 10350 ret |= env->pstate & PSTATE_SS; 10351 10352 return ret; 10353 } 10354 10355 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10356 { 10357 /* Return true if this syndrome value is a synchronous external abort */ 10358 switch (syn_get_ec(syndrome)) { 10359 case EC_INSNABORT: 10360 case EC_INSNABORT_SAME_EL: 10361 case EC_DATAABORT: 10362 case EC_DATAABORT_SAME_EL: 10363 /* Look at fault status code for all the synchronous ext abort cases */ 10364 switch (syndrome & 0x3f) { 10365 case 0x10: 10366 case 0x13: 10367 case 0x14: 10368 case 0x15: 10369 case 0x16: 10370 case 0x17: 10371 return true; 10372 default: 10373 return false; 10374 } 10375 default: 10376 return false; 10377 } 10378 } 10379 10380 /* Handle exception entry to a target EL which is using AArch64 */ 10381 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10382 { 10383 ARMCPU *cpu = ARM_CPU(cs); 10384 CPUARMState *env = &cpu->env; 10385 unsigned int new_el = env->exception.target_el; 10386 target_ulong addr = env->cp15.vbar_el[new_el]; 10387 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10388 unsigned int old_mode; 10389 unsigned int cur_el = arm_current_el(env); 10390 int rt; 10391 10392 if (tcg_enabled()) { 10393 /* 10394 * Note that new_el can never be 0. If cur_el is 0, then 10395 * el0_a64 is is_a64(), else el0_a64 is ignored. 10396 */ 10397 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10398 } 10399 10400 if (cur_el < new_el) { 10401 /* 10402 * Entry vector offset depends on whether the implemented EL 10403 * immediately lower than the target level is using AArch32 or AArch64 10404 */ 10405 bool is_aa64; 10406 uint64_t hcr; 10407 10408 switch (new_el) { 10409 case 3: 10410 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10411 break; 10412 case 2: 10413 hcr = arm_hcr_el2_eff(env); 10414 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10415 is_aa64 = (hcr & HCR_RW) != 0; 10416 break; 10417 } 10418 /* fall through */ 10419 case 1: 10420 is_aa64 = is_a64(env); 10421 break; 10422 default: 10423 g_assert_not_reached(); 10424 } 10425 10426 if (is_aa64) { 10427 addr += 0x400; 10428 } else { 10429 addr += 0x600; 10430 } 10431 } else if (pstate_read(env) & PSTATE_SP) { 10432 addr += 0x200; 10433 } 10434 10435 switch (cs->exception_index) { 10436 case EXCP_GPC: 10437 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10438 env->cp15.mfar_el3); 10439 /* fall through */ 10440 case EXCP_PREFETCH_ABORT: 10441 case EXCP_DATA_ABORT: 10442 /* 10443 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10444 * to be taken to the SError vector entrypoint. 10445 */ 10446 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10447 syndrome_is_sync_extabt(env->exception.syndrome)) { 10448 addr += 0x180; 10449 } 10450 env->cp15.far_el[new_el] = env->exception.vaddress; 10451 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10452 env->cp15.far_el[new_el]); 10453 /* fall through */ 10454 case EXCP_BKPT: 10455 case EXCP_UDEF: 10456 case EXCP_SWI: 10457 case EXCP_HVC: 10458 case EXCP_HYP_TRAP: 10459 case EXCP_SMC: 10460 switch (syn_get_ec(env->exception.syndrome)) { 10461 case EC_ADVSIMDFPACCESSTRAP: 10462 /* 10463 * QEMU internal FP/SIMD syndromes from AArch32 include the 10464 * TA and coproc fields which are only exposed if the exception 10465 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10466 * AArch64 format syndrome. 10467 */ 10468 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10469 break; 10470 case EC_CP14RTTRAP: 10471 case EC_CP15RTTRAP: 10472 case EC_CP14DTTRAP: 10473 /* 10474 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10475 * the raw register field from the insn; when taking this to 10476 * AArch64 we must convert it to the AArch64 view of the register 10477 * number. Notice that we read a 4-bit AArch32 register number and 10478 * write back a 5-bit AArch64 one. 10479 */ 10480 rt = extract32(env->exception.syndrome, 5, 4); 10481 rt = aarch64_regnum(env, rt); 10482 env->exception.syndrome = deposit32(env->exception.syndrome, 10483 5, 5, rt); 10484 break; 10485 case EC_CP15RRTTRAP: 10486 case EC_CP14RRTTRAP: 10487 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10488 rt = extract32(env->exception.syndrome, 5, 4); 10489 rt = aarch64_regnum(env, rt); 10490 env->exception.syndrome = deposit32(env->exception.syndrome, 10491 5, 5, rt); 10492 rt = extract32(env->exception.syndrome, 10, 4); 10493 rt = aarch64_regnum(env, rt); 10494 env->exception.syndrome = deposit32(env->exception.syndrome, 10495 10, 5, rt); 10496 break; 10497 } 10498 env->cp15.esr_el[new_el] = env->exception.syndrome; 10499 break; 10500 case EXCP_IRQ: 10501 case EXCP_VIRQ: 10502 case EXCP_NMI: 10503 case EXCP_VINMI: 10504 addr += 0x80; 10505 break; 10506 case EXCP_FIQ: 10507 case EXCP_VFIQ: 10508 case EXCP_VFNMI: 10509 addr += 0x100; 10510 break; 10511 case EXCP_VSERR: 10512 addr += 0x180; 10513 /* Construct the SError syndrome from IDS and ISS fields. */ 10514 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10515 env->cp15.esr_el[new_el] = env->exception.syndrome; 10516 break; 10517 default: 10518 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10519 } 10520 10521 if (is_a64(env)) { 10522 old_mode = pstate_read(env); 10523 aarch64_save_sp(env, arm_current_el(env)); 10524 env->elr_el[new_el] = env->pc; 10525 10526 if (cur_el == 1 && new_el == 1) { 10527 uint64_t hcr = arm_hcr_el2_eff(env); 10528 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10529 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10530 /* 10531 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10532 * by setting M[3:2] to 0b10. 10533 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10534 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10535 */ 10536 old_mode = deposit32(old_mode, 2, 2, 2); 10537 } 10538 } 10539 } else { 10540 old_mode = cpsr_read_for_spsr_elx(env); 10541 env->elr_el[new_el] = env->regs[15]; 10542 10543 aarch64_sync_32_to_64(env); 10544 10545 env->condexec_bits = 0; 10546 } 10547 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10548 10549 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10550 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10551 env->elr_el[new_el]); 10552 10553 if (cpu_isar_feature(aa64_pan, cpu)) { 10554 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10555 new_mode |= old_mode & PSTATE_PAN; 10556 switch (new_el) { 10557 case 2: 10558 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10559 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10560 != (HCR_E2H | HCR_TGE)) { 10561 break; 10562 } 10563 /* fall through */ 10564 case 1: 10565 /* ... the target is EL1 ... */ 10566 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10567 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10568 new_mode |= PSTATE_PAN; 10569 } 10570 break; 10571 } 10572 } 10573 if (cpu_isar_feature(aa64_mte, cpu)) { 10574 new_mode |= PSTATE_TCO; 10575 } 10576 10577 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10578 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10579 new_mode |= PSTATE_SSBS; 10580 } else { 10581 new_mode &= ~PSTATE_SSBS; 10582 } 10583 } 10584 10585 if (cpu_isar_feature(aa64_nmi, cpu)) { 10586 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10587 new_mode |= PSTATE_ALLINT; 10588 } else { 10589 new_mode &= ~PSTATE_ALLINT; 10590 } 10591 } 10592 10593 pstate_write(env, PSTATE_DAIF | new_mode); 10594 env->aarch64 = true; 10595 aarch64_restore_sp(env, new_el); 10596 10597 if (tcg_enabled()) { 10598 helper_rebuild_hflags_a64(env, new_el); 10599 } 10600 10601 env->pc = addr; 10602 10603 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10604 new_el, env->pc, pstate_read(env)); 10605 } 10606 10607 /* 10608 * Do semihosting call and set the appropriate return value. All the 10609 * permission and validity checks have been done at translate time. 10610 * 10611 * We only see semihosting exceptions in TCG only as they are not 10612 * trapped to the hypervisor in KVM. 10613 */ 10614 #ifdef CONFIG_TCG 10615 static void tcg_handle_semihosting(CPUState *cs) 10616 { 10617 ARMCPU *cpu = ARM_CPU(cs); 10618 CPUARMState *env = &cpu->env; 10619 10620 if (is_a64(env)) { 10621 qemu_log_mask(CPU_LOG_INT, 10622 "...handling as semihosting call 0x%" PRIx64 "\n", 10623 env->xregs[0]); 10624 do_common_semihosting(cs); 10625 env->pc += 4; 10626 } else { 10627 qemu_log_mask(CPU_LOG_INT, 10628 "...handling as semihosting call 0x%x\n", 10629 env->regs[0]); 10630 do_common_semihosting(cs); 10631 env->regs[15] += env->thumb ? 2 : 4; 10632 } 10633 } 10634 #endif 10635 10636 /* 10637 * Handle a CPU exception for A and R profile CPUs. 10638 * Do any appropriate logging, handle PSCI calls, and then hand off 10639 * to the AArch64-entry or AArch32-entry function depending on the 10640 * target exception level's register width. 10641 * 10642 * Note: this is used for both TCG (as the do_interrupt tcg op), 10643 * and KVM to re-inject guest debug exceptions, and to 10644 * inject a Synchronous-External-Abort. 10645 */ 10646 void arm_cpu_do_interrupt(CPUState *cs) 10647 { 10648 ARMCPU *cpu = ARM_CPU(cs); 10649 CPUARMState *env = &cpu->env; 10650 unsigned int new_el = env->exception.target_el; 10651 10652 assert(!arm_feature(env, ARM_FEATURE_M)); 10653 10654 arm_log_exception(cs); 10655 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10656 new_el); 10657 if (qemu_loglevel_mask(CPU_LOG_INT) 10658 && !excp_is_internal(cs->exception_index)) { 10659 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10660 syn_get_ec(env->exception.syndrome), 10661 env->exception.syndrome); 10662 } 10663 10664 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10665 arm_handle_psci_call(cpu); 10666 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10667 return; 10668 } 10669 10670 /* 10671 * Semihosting semantics depend on the register width of the code 10672 * that caused the exception, not the target exception level, so 10673 * must be handled here. 10674 */ 10675 #ifdef CONFIG_TCG 10676 if (cs->exception_index == EXCP_SEMIHOST) { 10677 tcg_handle_semihosting(cs); 10678 return; 10679 } 10680 #endif 10681 10682 /* 10683 * Hooks may change global state so BQL should be held, also the 10684 * BQL needs to be held for any modification of 10685 * cs->interrupt_request. 10686 */ 10687 g_assert(bql_locked()); 10688 10689 arm_call_pre_el_change_hook(cpu); 10690 10691 assert(!excp_is_internal(cs->exception_index)); 10692 if (arm_el_is_aa64(env, new_el)) { 10693 arm_cpu_do_interrupt_aarch64(cs); 10694 } else { 10695 arm_cpu_do_interrupt_aarch32(cs); 10696 } 10697 10698 arm_call_el_change_hook(cpu); 10699 10700 if (!kvm_enabled()) { 10701 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10702 } 10703 } 10704 #endif /* !CONFIG_USER_ONLY */ 10705 10706 uint64_t arm_sctlr(CPUARMState *env, int el) 10707 { 10708 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10709 if (el == 0) { 10710 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10711 switch (mmu_idx) { 10712 case ARMMMUIdx_E20_0: 10713 el = 2; 10714 break; 10715 case ARMMMUIdx_E30_0: 10716 el = 3; 10717 break; 10718 default: 10719 el = 1; 10720 break; 10721 } 10722 } 10723 return env->cp15.sctlr_el[el]; 10724 } 10725 10726 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10727 { 10728 if (regime_has_2_ranges(mmu_idx)) { 10729 return extract64(tcr, 37, 2); 10730 } else if (regime_is_stage2(mmu_idx)) { 10731 return 0; /* VTCR_EL2 */ 10732 } else { 10733 /* Replicate the single TBI bit so we always have 2 bits. */ 10734 return extract32(tcr, 20, 1) * 3; 10735 } 10736 } 10737 10738 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10739 { 10740 if (regime_has_2_ranges(mmu_idx)) { 10741 return extract64(tcr, 51, 2); 10742 } else if (regime_is_stage2(mmu_idx)) { 10743 return 0; /* VTCR_EL2 */ 10744 } else { 10745 /* Replicate the single TBID bit so we always have 2 bits. */ 10746 return extract32(tcr, 29, 1) * 3; 10747 } 10748 } 10749 10750 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10751 { 10752 if (regime_has_2_ranges(mmu_idx)) { 10753 return extract64(tcr, 57, 2); 10754 } else { 10755 /* Replicate the single TCMA bit so we always have 2 bits. */ 10756 return extract32(tcr, 30, 1) * 3; 10757 } 10758 } 10759 10760 static ARMGranuleSize tg0_to_gran_size(int tg) 10761 { 10762 switch (tg) { 10763 case 0: 10764 return Gran4K; 10765 case 1: 10766 return Gran64K; 10767 case 2: 10768 return Gran16K; 10769 default: 10770 return GranInvalid; 10771 } 10772 } 10773 10774 static ARMGranuleSize tg1_to_gran_size(int tg) 10775 { 10776 switch (tg) { 10777 case 1: 10778 return Gran16K; 10779 case 2: 10780 return Gran4K; 10781 case 3: 10782 return Gran64K; 10783 default: 10784 return GranInvalid; 10785 } 10786 } 10787 10788 static inline bool have4k(ARMCPU *cpu, bool stage2) 10789 { 10790 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10791 : cpu_isar_feature(aa64_tgran4, cpu); 10792 } 10793 10794 static inline bool have16k(ARMCPU *cpu, bool stage2) 10795 { 10796 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10797 : cpu_isar_feature(aa64_tgran16, cpu); 10798 } 10799 10800 static inline bool have64k(ARMCPU *cpu, bool stage2) 10801 { 10802 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10803 : cpu_isar_feature(aa64_tgran64, cpu); 10804 } 10805 10806 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10807 bool stage2) 10808 { 10809 switch (gran) { 10810 case Gran4K: 10811 if (have4k(cpu, stage2)) { 10812 return gran; 10813 } 10814 break; 10815 case Gran16K: 10816 if (have16k(cpu, stage2)) { 10817 return gran; 10818 } 10819 break; 10820 case Gran64K: 10821 if (have64k(cpu, stage2)) { 10822 return gran; 10823 } 10824 break; 10825 case GranInvalid: 10826 break; 10827 } 10828 /* 10829 * If the guest selects a granule size that isn't implemented, 10830 * the architecture requires that we behave as if it selected one 10831 * that is (with an IMPDEF choice of which one to pick). We choose 10832 * to implement the smallest supported granule size. 10833 */ 10834 if (have4k(cpu, stage2)) { 10835 return Gran4K; 10836 } 10837 if (have16k(cpu, stage2)) { 10838 return Gran16K; 10839 } 10840 assert(have64k(cpu, stage2)); 10841 return Gran64K; 10842 } 10843 10844 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10845 ARMMMUIdx mmu_idx, bool data, 10846 bool el1_is_aa32) 10847 { 10848 uint64_t tcr = regime_tcr(env, mmu_idx); 10849 bool epd, hpd, tsz_oob, ds, ha, hd; 10850 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10851 ARMGranuleSize gran; 10852 ARMCPU *cpu = env_archcpu(env); 10853 bool stage2 = regime_is_stage2(mmu_idx); 10854 10855 if (!regime_has_2_ranges(mmu_idx)) { 10856 select = 0; 10857 tsz = extract32(tcr, 0, 6); 10858 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10859 if (stage2) { 10860 /* VTCR_EL2 */ 10861 hpd = false; 10862 } else { 10863 hpd = extract32(tcr, 24, 1); 10864 } 10865 epd = false; 10866 sh = extract32(tcr, 12, 2); 10867 ps = extract32(tcr, 16, 3); 10868 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 10869 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10870 ds = extract64(tcr, 32, 1); 10871 } else { 10872 bool e0pd; 10873 10874 /* 10875 * Bit 55 is always between the two regions, and is canonical for 10876 * determining if address tagging is enabled. 10877 */ 10878 select = extract64(va, 55, 1); 10879 if (!select) { 10880 tsz = extract32(tcr, 0, 6); 10881 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10882 epd = extract32(tcr, 7, 1); 10883 sh = extract32(tcr, 12, 2); 10884 hpd = extract64(tcr, 41, 1); 10885 e0pd = extract64(tcr, 55, 1); 10886 } else { 10887 tsz = extract32(tcr, 16, 6); 10888 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10889 epd = extract32(tcr, 23, 1); 10890 sh = extract32(tcr, 28, 2); 10891 hpd = extract64(tcr, 42, 1); 10892 e0pd = extract64(tcr, 56, 1); 10893 } 10894 ps = extract64(tcr, 32, 3); 10895 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 10896 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10897 ds = extract64(tcr, 59, 1); 10898 10899 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 10900 regime_is_user(env, mmu_idx)) { 10901 epd = true; 10902 } 10903 } 10904 10905 gran = sanitize_gran_size(cpu, gran, stage2); 10906 10907 if (cpu_isar_feature(aa64_st, cpu)) { 10908 max_tsz = 48 - (gran == Gran64K); 10909 } else { 10910 max_tsz = 39; 10911 } 10912 10913 /* 10914 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10915 * adjust the effective value of DS, as documented. 10916 */ 10917 min_tsz = 16; 10918 if (gran == Gran64K) { 10919 if (cpu_isar_feature(aa64_lva, cpu)) { 10920 min_tsz = 12; 10921 } 10922 ds = false; 10923 } else if (ds) { 10924 if (regime_is_stage2(mmu_idx)) { 10925 if (gran == Gran16K) { 10926 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10927 } else { 10928 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10929 } 10930 } else { 10931 if (gran == Gran16K) { 10932 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10933 } else { 10934 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10935 } 10936 } 10937 if (ds) { 10938 min_tsz = 12; 10939 } 10940 } 10941 10942 if (stage2 && el1_is_aa32) { 10943 /* 10944 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 10945 * are loosened: a configured IPA of 40 bits is permitted even if 10946 * the implemented PA is less than that (and so a 40 bit IPA would 10947 * fault for an AArch64 EL1). See R_DTLMN. 10948 */ 10949 min_tsz = MIN(min_tsz, 24); 10950 } 10951 10952 if (tsz > max_tsz) { 10953 tsz = max_tsz; 10954 tsz_oob = true; 10955 } else if (tsz < min_tsz) { 10956 tsz = min_tsz; 10957 tsz_oob = true; 10958 } else { 10959 tsz_oob = false; 10960 } 10961 10962 /* Present TBI as a composite with TBID. */ 10963 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10964 if (!data) { 10965 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10966 } 10967 tbi = (tbi >> select) & 1; 10968 10969 return (ARMVAParameters) { 10970 .tsz = tsz, 10971 .ps = ps, 10972 .sh = sh, 10973 .select = select, 10974 .tbi = tbi, 10975 .epd = epd, 10976 .hpd = hpd, 10977 .tsz_oob = tsz_oob, 10978 .ds = ds, 10979 .ha = ha, 10980 .hd = ha && hd, 10981 .gran = gran, 10982 }; 10983 } 10984 10985 10986 /* 10987 * Return the exception level to which FP-disabled exceptions should 10988 * be taken, or 0 if FP is enabled. 10989 */ 10990 int fp_exception_el(CPUARMState *env, int cur_el) 10991 { 10992 #ifndef CONFIG_USER_ONLY 10993 uint64_t hcr_el2; 10994 10995 /* 10996 * CPACR and the CPTR registers don't exist before v6, so FP is 10997 * always accessible 10998 */ 10999 if (!arm_feature(env, ARM_FEATURE_V6)) { 11000 return 0; 11001 } 11002 11003 if (arm_feature(env, ARM_FEATURE_M)) { 11004 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11005 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11006 return 1; 11007 } 11008 11009 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11010 if (!extract32(env->v7m.nsacr, 10, 1)) { 11011 /* FP insns cause a NOCP UsageFault taken to Secure */ 11012 return 3; 11013 } 11014 } 11015 11016 return 0; 11017 } 11018 11019 hcr_el2 = arm_hcr_el2_eff(env); 11020 11021 /* 11022 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11023 * 0, 2 : trap EL0 and EL1/PL1 accesses 11024 * 1 : trap only EL0 accesses 11025 * 3 : trap no accesses 11026 * This register is ignored if E2H+TGE are both set. 11027 */ 11028 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11029 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11030 11031 switch (fpen) { 11032 case 1: 11033 if (cur_el != 0) { 11034 break; 11035 } 11036 /* fall through */ 11037 case 0: 11038 case 2: 11039 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11040 if (!arm_el_is_aa64(env, 3) 11041 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11042 return 3; 11043 } 11044 if (cur_el <= 1) { 11045 return 1; 11046 } 11047 break; 11048 } 11049 } 11050 11051 /* 11052 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11053 * to control non-secure access to the FPU. It doesn't have any 11054 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11055 */ 11056 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11057 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11058 if (!extract32(env->cp15.nsacr, 10, 1)) { 11059 /* FP insns act as UNDEF */ 11060 return cur_el == 2 ? 2 : 1; 11061 } 11062 } 11063 11064 /* 11065 * CPTR_EL2 is present in v7VE or v8, and changes format 11066 * with HCR_EL2.E2H (regardless of TGE). 11067 */ 11068 if (cur_el <= 2) { 11069 if (hcr_el2 & HCR_E2H) { 11070 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11071 case 1: 11072 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11073 break; 11074 } 11075 /* fall through */ 11076 case 0: 11077 case 2: 11078 return 2; 11079 } 11080 } else if (arm_is_el2_enabled(env)) { 11081 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11082 return 2; 11083 } 11084 } 11085 } 11086 11087 /* CPTR_EL3 : present in v8 */ 11088 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11089 /* Trap all FP ops to EL3 */ 11090 return 3; 11091 } 11092 #endif 11093 return 0; 11094 } 11095 11096 /* Return the exception level we're running at if this is our mmu_idx */ 11097 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11098 { 11099 if (mmu_idx & ARM_MMU_IDX_M) { 11100 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11101 } 11102 11103 switch (mmu_idx) { 11104 case ARMMMUIdx_E10_0: 11105 case ARMMMUIdx_E20_0: 11106 case ARMMMUIdx_E30_0: 11107 return 0; 11108 case ARMMMUIdx_E10_1: 11109 case ARMMMUIdx_E10_1_PAN: 11110 return 1; 11111 case ARMMMUIdx_E2: 11112 case ARMMMUIdx_E20_2: 11113 case ARMMMUIdx_E20_2_PAN: 11114 return 2; 11115 case ARMMMUIdx_E3: 11116 case ARMMMUIdx_E30_3_PAN: 11117 return 3; 11118 default: 11119 g_assert_not_reached(); 11120 } 11121 } 11122 11123 #ifndef CONFIG_TCG 11124 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11125 { 11126 g_assert_not_reached(); 11127 } 11128 #endif 11129 11130 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11131 { 11132 ARMMMUIdx idx; 11133 uint64_t hcr; 11134 11135 if (arm_feature(env, ARM_FEATURE_M)) { 11136 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11137 } 11138 11139 /* See ARM pseudo-function ELIsInHost. */ 11140 switch (el) { 11141 case 0: 11142 hcr = arm_hcr_el2_eff(env); 11143 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11144 idx = ARMMMUIdx_E20_0; 11145 } else if (arm_is_secure_below_el3(env) && 11146 !arm_el_is_aa64(env, 3)) { 11147 idx = ARMMMUIdx_E30_0; 11148 } else { 11149 idx = ARMMMUIdx_E10_0; 11150 } 11151 break; 11152 case 1: 11153 if (arm_pan_enabled(env)) { 11154 idx = ARMMMUIdx_E10_1_PAN; 11155 } else { 11156 idx = ARMMMUIdx_E10_1; 11157 } 11158 break; 11159 case 2: 11160 /* Note that TGE does not apply at EL2. */ 11161 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11162 if (arm_pan_enabled(env)) { 11163 idx = ARMMMUIdx_E20_2_PAN; 11164 } else { 11165 idx = ARMMMUIdx_E20_2; 11166 } 11167 } else { 11168 idx = ARMMMUIdx_E2; 11169 } 11170 break; 11171 case 3: 11172 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11173 return ARMMMUIdx_E30_3_PAN; 11174 } 11175 return ARMMMUIdx_E3; 11176 default: 11177 g_assert_not_reached(); 11178 } 11179 11180 return idx; 11181 } 11182 11183 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11184 { 11185 return arm_mmu_idx_el(env, arm_current_el(env)); 11186 } 11187 11188 static bool mve_no_pred(CPUARMState *env) 11189 { 11190 /* 11191 * Return true if there is definitely no predication of MVE 11192 * instructions by VPR or LTPSIZE. (Returning false even if there 11193 * isn't any predication is OK; generated code will just be 11194 * a little worse.) 11195 * If the CPU does not implement MVE then this TB flag is always 0. 11196 * 11197 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11198 * logic in gen_update_fp_context() needs to be updated to match. 11199 * 11200 * We do not include the effect of the ECI bits here -- they are 11201 * tracked in other TB flags. This simplifies the logic for 11202 * "when did we emit code that changes the MVE_NO_PRED TB flag 11203 * and thus need to end the TB?". 11204 */ 11205 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11206 return false; 11207 } 11208 if (env->v7m.vpr) { 11209 return false; 11210 } 11211 if (env->v7m.ltpsize < 4) { 11212 return false; 11213 } 11214 return true; 11215 } 11216 11217 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11218 uint64_t *cs_base, uint32_t *pflags) 11219 { 11220 CPUARMTBFlags flags; 11221 11222 assert_hflags_rebuild_correctly(env); 11223 flags = env->hflags; 11224 11225 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11226 *pc = env->pc; 11227 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11228 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11229 } 11230 } else { 11231 *pc = env->regs[15]; 11232 11233 if (arm_feature(env, ARM_FEATURE_M)) { 11234 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11235 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11236 != env->v7m.secure) { 11237 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11238 } 11239 11240 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11241 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11242 (env->v7m.secure && 11243 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11244 /* 11245 * ASPEN is set, but FPCA/SFPA indicate that there is no 11246 * active FP context; we must create a new FP context before 11247 * executing any FP insn. 11248 */ 11249 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11250 } 11251 11252 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11253 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11254 DP_TBFLAG_M32(flags, LSPACT, 1); 11255 } 11256 11257 if (mve_no_pred(env)) { 11258 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11259 } 11260 } else { 11261 /* 11262 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11263 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11264 */ 11265 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11266 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11267 } else { 11268 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11269 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11270 } 11271 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11272 DP_TBFLAG_A32(flags, VFPEN, 1); 11273 } 11274 } 11275 11276 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11277 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11278 } 11279 11280 /* 11281 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11282 * states defined in the ARM ARM for software singlestep: 11283 * SS_ACTIVE PSTATE.SS State 11284 * 0 x Inactive (the TB flag for SS is always 0) 11285 * 1 0 Active-pending 11286 * 1 1 Active-not-pending 11287 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11288 */ 11289 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11290 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11291 } 11292 11293 *pflags = flags.flags; 11294 *cs_base = flags.flags2; 11295 } 11296 11297 #ifdef TARGET_AARCH64 11298 /* 11299 * The manual says that when SVE is enabled and VQ is widened the 11300 * implementation is allowed to zero the previously inaccessible 11301 * portion of the registers. The corollary to that is that when 11302 * SVE is enabled and VQ is narrowed we are also allowed to zero 11303 * the now inaccessible portion of the registers. 11304 * 11305 * The intent of this is that no predicate bit beyond VQ is ever set. 11306 * Which means that some operations on predicate registers themselves 11307 * may operate on full uint64_t or even unrolled across the maximum 11308 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11309 * may well be cheaper than conditionals to restrict the operation 11310 * to the relevant portion of a uint16_t[16]. 11311 */ 11312 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11313 { 11314 int i, j; 11315 uint64_t pmask; 11316 11317 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11318 assert(vq <= env_archcpu(env)->sve_max_vq); 11319 11320 /* Zap the high bits of the zregs. */ 11321 for (i = 0; i < 32; i++) { 11322 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11323 } 11324 11325 /* Zap the high bits of the pregs and ffr. */ 11326 pmask = 0; 11327 if (vq & 3) { 11328 pmask = ~(-1ULL << (16 * (vq & 3))); 11329 } 11330 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11331 for (i = 0; i < 17; ++i) { 11332 env->vfp.pregs[i].p[j] &= pmask; 11333 } 11334 pmask = 0; 11335 } 11336 } 11337 11338 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11339 { 11340 int exc_el; 11341 11342 if (sm) { 11343 exc_el = sme_exception_el(env, el); 11344 } else { 11345 exc_el = sve_exception_el(env, el); 11346 } 11347 if (exc_el) { 11348 return 0; /* disabled */ 11349 } 11350 return sve_vqm1_for_el_sm(env, el, sm); 11351 } 11352 11353 /* 11354 * Notice a change in SVE vector size when changing EL. 11355 */ 11356 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11357 int new_el, bool el0_a64) 11358 { 11359 ARMCPU *cpu = env_archcpu(env); 11360 int old_len, new_len; 11361 bool old_a64, new_a64, sm; 11362 11363 /* Nothing to do if no SVE. */ 11364 if (!cpu_isar_feature(aa64_sve, cpu)) { 11365 return; 11366 } 11367 11368 /* Nothing to do if FP is disabled in either EL. */ 11369 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11370 return; 11371 } 11372 11373 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11374 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11375 11376 /* 11377 * Both AArch64.TakeException and AArch64.ExceptionReturn 11378 * invoke ResetSVEState when taking an exception from, or 11379 * returning to, AArch32 state when PSTATE.SM is enabled. 11380 */ 11381 sm = FIELD_EX64(env->svcr, SVCR, SM); 11382 if (old_a64 != new_a64 && sm) { 11383 arm_reset_sve_state(env); 11384 return; 11385 } 11386 11387 /* 11388 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11389 * at ELx, or not available because the EL is in AArch32 state, then 11390 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11391 * has an effective value of 0". 11392 * 11393 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11394 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11395 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11396 * we already have the correct register contents when encountering the 11397 * vq0->vq0 transition between EL0->EL1. 11398 */ 11399 old_len = new_len = 0; 11400 if (old_a64) { 11401 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11402 } 11403 if (new_a64) { 11404 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11405 } 11406 11407 /* When changing vector length, clear inaccessible state. */ 11408 if (new_len < old_len) { 11409 aarch64_sve_narrow_vq(env, new_len + 1); 11410 } 11411 } 11412 #endif 11413 11414 #ifndef CONFIG_USER_ONLY 11415 ARMSecuritySpace arm_security_space(CPUARMState *env) 11416 { 11417 if (arm_feature(env, ARM_FEATURE_M)) { 11418 return arm_secure_to_space(env->v7m.secure); 11419 } 11420 11421 /* 11422 * If EL3 is not supported then the secure state is implementation 11423 * defined, in which case QEMU defaults to non-secure. 11424 */ 11425 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11426 return ARMSS_NonSecure; 11427 } 11428 11429 /* Check for AArch64 EL3 or AArch32 Mon. */ 11430 if (is_a64(env)) { 11431 if (extract32(env->pstate, 2, 2) == 3) { 11432 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11433 return ARMSS_Root; 11434 } else { 11435 return ARMSS_Secure; 11436 } 11437 } 11438 } else { 11439 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11440 return ARMSS_Secure; 11441 } 11442 } 11443 11444 return arm_security_space_below_el3(env); 11445 } 11446 11447 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11448 { 11449 assert(!arm_feature(env, ARM_FEATURE_M)); 11450 11451 /* 11452 * If EL3 is not supported then the secure state is implementation 11453 * defined, in which case QEMU defaults to non-secure. 11454 */ 11455 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11456 return ARMSS_NonSecure; 11457 } 11458 11459 /* 11460 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11461 * Ignoring NSE when !NS retains consistency without having to 11462 * modify other predicates. 11463 */ 11464 if (!(env->cp15.scr_el3 & SCR_NS)) { 11465 return ARMSS_Secure; 11466 } else if (env->cp15.scr_el3 & SCR_NSE) { 11467 return ARMSS_Realm; 11468 } else { 11469 return ARMSS_NonSecure; 11470 } 11471 } 11472 #endif /* !CONFIG_USER_ONLY */ 11473