1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "exec/page-protection.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/cputlb.h" 22 #include "exec/exec-all.h" 23 #include "exec/translation-block.h" 24 #include "hw/irq.h" 25 #include "system/cpu-timers.h" 26 #include "system/kvm.h" 27 #include "system/tcg.h" 28 #include "qapi/error.h" 29 #include "qemu/guest-random.h" 30 #ifdef CONFIG_TCG 31 #include "semihosting/common-semi.h" 32 #endif 33 #include "cpregs.h" 34 #include "target/arm/gtimer.h" 35 36 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 37 38 static void switch_mode(CPUARMState *env, int mode); 39 40 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 41 { 42 assert(ri->fieldoffset); 43 if (cpreg_field_is_64bit(ri)) { 44 return CPREG_FIELD64(env, ri); 45 } else { 46 return CPREG_FIELD32(env, ri); 47 } 48 } 49 50 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 51 { 52 assert(ri->fieldoffset); 53 if (cpreg_field_is_64bit(ri)) { 54 CPREG_FIELD64(env, ri) = value; 55 } else { 56 CPREG_FIELD32(env, ri) = value; 57 } 58 } 59 60 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 61 { 62 return (char *)env + ri->fieldoffset; 63 } 64 65 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 66 { 67 /* Raw read of a coprocessor register (as needed for migration, etc). */ 68 if (ri->type & ARM_CP_CONST) { 69 return ri->resetvalue; 70 } else if (ri->raw_readfn) { 71 return ri->raw_readfn(env, ri); 72 } else if (ri->readfn) { 73 return ri->readfn(env, ri); 74 } else { 75 return raw_read(env, ri); 76 } 77 } 78 79 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 80 uint64_t v) 81 { 82 /* 83 * Raw write of a coprocessor register (as needed for migration, etc). 84 * Note that constant registers are treated as write-ignored; the 85 * caller should check for success by whether a readback gives the 86 * value written. 87 */ 88 if (ri->type & ARM_CP_CONST) { 89 return; 90 } else if (ri->raw_writefn) { 91 ri->raw_writefn(env, ri, v); 92 } else if (ri->writefn) { 93 ri->writefn(env, ri, v); 94 } else { 95 raw_write(env, ri, v); 96 } 97 } 98 99 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 100 { 101 /* 102 * Return true if the regdef would cause an assertion if you called 103 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 104 * program bug for it not to have the NO_RAW flag). 105 * NB that returning false here doesn't necessarily mean that calling 106 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 107 * read/write access functions which are safe for raw use" from "has 108 * read/write access functions which have side effects but has forgotten 109 * to provide raw access functions". 110 * The tests here line up with the conditions in read/write_raw_cp_reg() 111 * and assertions in raw_read()/raw_write(). 112 */ 113 if ((ri->type & ARM_CP_CONST) || 114 ri->fieldoffset || 115 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 116 return false; 117 } 118 return true; 119 } 120 121 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 122 { 123 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 124 int i; 125 bool ok = true; 126 127 for (i = 0; i < cpu->cpreg_array_len; i++) { 128 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 129 const ARMCPRegInfo *ri; 130 uint64_t newval; 131 132 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 133 if (!ri) { 134 ok = false; 135 continue; 136 } 137 if (ri->type & ARM_CP_NO_RAW) { 138 continue; 139 } 140 141 newval = read_raw_cp_reg(&cpu->env, ri); 142 if (kvm_sync) { 143 /* 144 * Only sync if the previous list->cpustate sync succeeded. 145 * Rather than tracking the success/failure state for every 146 * item in the list, we just recheck "does the raw write we must 147 * have made in write_list_to_cpustate() read back OK" here. 148 */ 149 uint64_t oldval = cpu->cpreg_values[i]; 150 151 if (oldval == newval) { 152 continue; 153 } 154 155 write_raw_cp_reg(&cpu->env, ri, oldval); 156 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 157 continue; 158 } 159 160 write_raw_cp_reg(&cpu->env, ri, newval); 161 } 162 cpu->cpreg_values[i] = newval; 163 } 164 return ok; 165 } 166 167 bool write_list_to_cpustate(ARMCPU *cpu) 168 { 169 int i; 170 bool ok = true; 171 172 for (i = 0; i < cpu->cpreg_array_len; i++) { 173 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 174 uint64_t v = cpu->cpreg_values[i]; 175 const ARMCPRegInfo *ri; 176 177 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 178 if (!ri) { 179 ok = false; 180 continue; 181 } 182 if (ri->type & ARM_CP_NO_RAW) { 183 continue; 184 } 185 /* 186 * Write value and confirm it reads back as written 187 * (to catch read-only registers and partially read-only 188 * registers where the incoming migration value doesn't match) 189 */ 190 write_raw_cp_reg(&cpu->env, ri, v); 191 if (read_raw_cp_reg(&cpu->env, ri) != v) { 192 ok = false; 193 } 194 } 195 return ok; 196 } 197 198 static void add_cpreg_to_list(gpointer key, gpointer opaque) 199 { 200 ARMCPU *cpu = opaque; 201 uint32_t regidx = (uintptr_t)key; 202 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 203 204 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 205 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 206 /* The value array need not be initialized at this point */ 207 cpu->cpreg_array_len++; 208 } 209 } 210 211 static void count_cpreg(gpointer key, gpointer opaque) 212 { 213 ARMCPU *cpu = opaque; 214 const ARMCPRegInfo *ri; 215 216 ri = g_hash_table_lookup(cpu->cp_regs, key); 217 218 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 219 cpu->cpreg_array_len++; 220 } 221 } 222 223 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 224 { 225 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 226 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 227 228 if (aidx > bidx) { 229 return 1; 230 } 231 if (aidx < bidx) { 232 return -1; 233 } 234 return 0; 235 } 236 237 void init_cpreg_list(ARMCPU *cpu) 238 { 239 /* 240 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 static bool arm_pan_enabled(CPUARMState *env) 269 { 270 if (is_a64(env)) { 271 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 272 return false; 273 } 274 return env->pstate & PSTATE_PAN; 275 } else { 276 return env->uncached_cpsr & CPSR_PAN; 277 } 278 } 279 280 /* 281 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 282 */ 283 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 284 const ARMCPRegInfo *ri, 285 bool isread) 286 { 287 if (!is_a64(env) && arm_current_el(env) == 3 && 288 arm_is_secure_below_el3(env)) { 289 return CP_ACCESS_UNDEFINED; 290 } 291 return CP_ACCESS_OK; 292 } 293 294 /* 295 * Some secure-only AArch32 registers trap to EL3 if used from 296 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 297 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 298 * We assume that the .access field is set to PL1_RW. 299 */ 300 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 301 const ARMCPRegInfo *ri, 302 bool isread) 303 { 304 if (arm_current_el(env) == 3) { 305 return CP_ACCESS_OK; 306 } 307 if (arm_is_secure_below_el3(env)) { 308 if (env->cp15.scr_el3 & SCR_EEL2) { 309 return CP_ACCESS_TRAP_EL2; 310 } 311 return CP_ACCESS_TRAP_EL3; 312 } 313 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 314 return CP_ACCESS_UNDEFINED; 315 } 316 317 /* 318 * Check for traps to performance monitor registers, which are controlled 319 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 320 */ 321 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 322 bool isread) 323 { 324 int el = arm_current_el(env); 325 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 326 327 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 328 return CP_ACCESS_TRAP_EL2; 329 } 330 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 331 return CP_ACCESS_TRAP_EL3; 332 } 333 return CP_ACCESS_OK; 334 } 335 336 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 337 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 338 bool isread) 339 { 340 if (arm_current_el(env) == 1) { 341 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 342 if (arm_hcr_el2_eff(env) & trap) { 343 return CP_ACCESS_TRAP_EL2; 344 } 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 350 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 351 bool isread) 352 { 353 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 354 return CP_ACCESS_TRAP_EL2; 355 } 356 return CP_ACCESS_OK; 357 } 358 359 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 360 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 361 bool isread) 362 { 363 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 364 return CP_ACCESS_TRAP_EL2; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 370 { 371 ARMCPU *cpu = env_archcpu(env); 372 373 raw_write(env, ri, value); 374 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 375 } 376 377 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 378 { 379 ARMCPU *cpu = env_archcpu(env); 380 381 if (raw_read(env, ri) != value) { 382 /* 383 * Unlike real hardware the qemu TLB uses virtual addresses, 384 * not modified virtual addresses, so this causes a TLB flush. 385 */ 386 tlb_flush(CPU(cpu)); 387 raw_write(env, ri, value); 388 } 389 } 390 391 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 392 uint64_t value) 393 { 394 ARMCPU *cpu = env_archcpu(env); 395 396 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 397 && !extended_addresses_enabled(env)) { 398 /* 399 * For VMSA (when not using the LPAE long descriptor page table 400 * format) this register includes the ASID, so do a TLB flush. 401 * For PMSA it is purely a process ID and no action is needed. 402 */ 403 tlb_flush(CPU(cpu)); 404 } 405 raw_write(env, ri, value); 406 } 407 408 int alle1_tlbmask(CPUARMState *env) 409 { 410 /* 411 * Note that the 'ALL' scope must invalidate both stage 1 and 412 * stage 2 translations, whereas most other scopes only invalidate 413 * stage 1 translations. 414 * 415 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 416 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 417 */ 418 return (ARMMMUIdxBit_E10_1 | 419 ARMMMUIdxBit_E10_1_PAN | 420 ARMMMUIdxBit_E10_0 | 421 ARMMMUIdxBit_Stage2 | 422 ARMMMUIdxBit_Stage2_S); 423 } 424 425 static const ARMCPRegInfo cp_reginfo[] = { 426 /* 427 * Define the secure and non-secure FCSE identifier CP registers 428 * separately because there is no secure bank in V8 (no _EL3). This allows 429 * the secure register to be properly reset and migrated. There is also no 430 * v8 EL1 version of the register so the non-secure instance stands alone. 431 */ 432 { .name = "FCSEIDR", 433 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 434 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 435 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 436 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 437 { .name = "FCSEIDR_S", 438 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 439 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 440 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 441 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 442 /* 443 * Define the secure and non-secure context identifier CP registers 444 * separately because there is no secure bank in V8 (no _EL3). This allows 445 * the secure register to be properly reset and migrated. In the 446 * non-secure case, the 32-bit register will have reset and migration 447 * disabled during registration as it is handled by the 64-bit instance. 448 */ 449 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 450 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 451 .access = PL1_RW, .accessfn = access_tvm_trvm, 452 .fgt = FGT_CONTEXTIDR_EL1, 453 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 454 .secure = ARM_CP_SECSTATE_NS, 455 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 456 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 457 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 458 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 459 .access = PL1_RW, .accessfn = access_tvm_trvm, 460 .secure = ARM_CP_SECSTATE_S, 461 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 462 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 463 }; 464 465 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 466 /* 467 * NB: Some of these registers exist in v8 but with more precise 468 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 469 */ 470 /* MMU Domain access control / MPU write buffer control */ 471 { .name = "DACR", 472 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 473 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 474 .writefn = dacr_write, .raw_writefn = raw_write, 475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 476 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 477 /* 478 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 479 * For v6 and v5, these mappings are overly broad. 480 */ 481 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 482 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 483 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 484 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 485 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 486 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 487 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 488 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 489 /* Cache maintenance ops; some of this space may be overridden later. */ 490 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 491 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 492 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 493 }; 494 495 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 496 /* 497 * Not all pre-v6 cores implemented this WFI, so this is slightly 498 * over-broad. 499 */ 500 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 501 .access = PL1_W, .type = ARM_CP_WFI }, 502 }; 503 504 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 505 /* 506 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 507 * is UNPREDICTABLE; we choose to NOP as most implementations do). 508 */ 509 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 510 .access = PL1_W, .type = ARM_CP_WFI }, 511 /* 512 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 513 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 514 * OMAPCP will override this space. 515 */ 516 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 517 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 518 .resetvalue = 0 }, 519 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 520 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 521 .resetvalue = 0 }, 522 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 523 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 524 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 525 .resetvalue = 0 }, 526 /* 527 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 528 * implementing it as RAZ means the "debug architecture version" bits 529 * will read as a reserved value, which should cause Linux to not try 530 * to use the debug hardware. 531 */ 532 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 533 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 534 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 535 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 536 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 537 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 538 }; 539 540 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 uint32_t mask = 0; 544 545 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 546 if (!arm_feature(env, ARM_FEATURE_V8)) { 547 /* 548 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 549 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 550 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 551 */ 552 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 553 /* VFP coprocessor: cp10 & cp11 [23:20] */ 554 mask |= R_CPACR_ASEDIS_MASK | 555 R_CPACR_D32DIS_MASK | 556 R_CPACR_CP11_MASK | 557 R_CPACR_CP10_MASK; 558 559 if (!arm_feature(env, ARM_FEATURE_NEON)) { 560 /* ASEDIS [31] bit is RAO/WI */ 561 value |= R_CPACR_ASEDIS_MASK; 562 } 563 564 /* 565 * VFPv3 and upwards with NEON implement 32 double precision 566 * registers (D0-D31). 567 */ 568 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 569 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 570 value |= R_CPACR_D32DIS_MASK; 571 } 572 } 573 value &= mask; 574 } 575 576 /* 577 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 578 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 579 */ 580 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 581 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 582 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 583 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 584 } 585 586 env->cp15.cpacr_el1 = value; 587 } 588 589 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 590 { 591 /* 592 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 593 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 594 */ 595 uint64_t value = env->cp15.cpacr_el1; 596 597 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 598 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 599 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 600 } 601 return value; 602 } 603 604 605 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 606 { 607 /* 608 * Call cpacr_write() so that we reset with the correct RAO bits set 609 * for our CPU features. 610 */ 611 cpacr_write(env, ri, 0); 612 } 613 614 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 615 bool isread) 616 { 617 if (arm_feature(env, ARM_FEATURE_V8)) { 618 /* Check if CPACR accesses are to be trapped to EL2 */ 619 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 620 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 621 return CP_ACCESS_TRAP_EL2; 622 /* Check if CPACR accesses are to be trapped to EL3 */ 623 } else if (arm_current_el(env) < 3 && 624 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 625 return CP_ACCESS_TRAP_EL3; 626 } 627 } 628 629 return CP_ACCESS_OK; 630 } 631 632 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 633 bool isread) 634 { 635 /* Check if CPTR accesses are set to trap to EL3 */ 636 if (arm_current_el(env) == 2 && 637 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 638 return CP_ACCESS_TRAP_EL3; 639 } 640 641 return CP_ACCESS_OK; 642 } 643 644 static const ARMCPRegInfo v6_cp_reginfo[] = { 645 /* prefetch by MVA in v6, NOP in v7 */ 646 { .name = "MVA_prefetch", 647 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 648 .access = PL1_W, .type = ARM_CP_NOP }, 649 /* 650 * We need to break the TB after ISB to execute self-modifying code 651 * correctly and also to take any pending interrupts immediately. 652 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 653 */ 654 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 655 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 656 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 657 .access = PL0_W, .type = ARM_CP_NOP }, 658 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 659 .access = PL0_W, .type = ARM_CP_NOP }, 660 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 661 .access = PL1_RW, .accessfn = access_tvm_trvm, 662 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 663 offsetof(CPUARMState, cp15.ifar_ns) }, 664 .resetvalue = 0, }, 665 /* 666 * Watchpoint Fault Address Register : should actually only be present 667 * for 1136, 1176, 11MPCore. 668 */ 669 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 670 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 671 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 672 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 673 .fgt = FGT_CPACR_EL1, 674 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 675 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 676 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 677 }; 678 679 typedef struct pm_event { 680 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 681 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 682 bool (*supported)(CPUARMState *); 683 /* 684 * Retrieve the current count of the underlying event. The programmed 685 * counters hold a difference from the return value from this function 686 */ 687 uint64_t (*get_count)(CPUARMState *); 688 /* 689 * Return how many nanoseconds it will take (at a minimum) for count events 690 * to occur. A negative value indicates the counter will never overflow, or 691 * that the counter has otherwise arranged for the overflow bit to be set 692 * and the PMU interrupt to be raised on overflow. 693 */ 694 int64_t (*ns_per_count)(uint64_t); 695 } pm_event; 696 697 static bool event_always_supported(CPUARMState *env) 698 { 699 return true; 700 } 701 702 static uint64_t swinc_get_count(CPUARMState *env) 703 { 704 /* 705 * SW_INCR events are written directly to the pmevcntr's by writes to 706 * PMSWINC, so there is no underlying count maintained by the PMU itself 707 */ 708 return 0; 709 } 710 711 static int64_t swinc_ns_per(uint64_t ignored) 712 { 713 return -1; 714 } 715 716 /* 717 * Return the underlying cycle count for the PMU cycle counters. If we're in 718 * usermode, simply return 0. 719 */ 720 static uint64_t cycles_get_count(CPUARMState *env) 721 { 722 #ifndef CONFIG_USER_ONLY 723 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 724 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 725 #else 726 return cpu_get_host_ticks(); 727 #endif 728 } 729 730 #ifndef CONFIG_USER_ONLY 731 static int64_t cycles_ns_per(uint64_t cycles) 732 { 733 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 734 } 735 736 static bool instructions_supported(CPUARMState *env) 737 { 738 /* Precise instruction counting */ 739 return icount_enabled() == ICOUNT_PRECISE; 740 } 741 742 static uint64_t instructions_get_count(CPUARMState *env) 743 { 744 assert(icount_enabled() == ICOUNT_PRECISE); 745 return (uint64_t)icount_get_raw(); 746 } 747 748 static int64_t instructions_ns_per(uint64_t icount) 749 { 750 assert(icount_enabled() == ICOUNT_PRECISE); 751 return icount_to_ns((int64_t)icount); 752 } 753 #endif 754 755 static bool pmuv3p1_events_supported(CPUARMState *env) 756 { 757 /* For events which are supported in any v8.1 PMU */ 758 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 759 } 760 761 static bool pmuv3p4_events_supported(CPUARMState *env) 762 { 763 /* For events which are supported in any v8.1 PMU */ 764 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 765 } 766 767 static uint64_t zero_event_get_count(CPUARMState *env) 768 { 769 /* For events which on QEMU never fire, so their count is always zero */ 770 return 0; 771 } 772 773 static int64_t zero_event_ns_per(uint64_t cycles) 774 { 775 /* An event which never fires can never overflow */ 776 return -1; 777 } 778 779 static const pm_event pm_events[] = { 780 { .number = 0x000, /* SW_INCR */ 781 .supported = event_always_supported, 782 .get_count = swinc_get_count, 783 .ns_per_count = swinc_ns_per, 784 }, 785 #ifndef CONFIG_USER_ONLY 786 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 787 .supported = instructions_supported, 788 .get_count = instructions_get_count, 789 .ns_per_count = instructions_ns_per, 790 }, 791 { .number = 0x011, /* CPU_CYCLES, Cycle */ 792 .supported = event_always_supported, 793 .get_count = cycles_get_count, 794 .ns_per_count = cycles_ns_per, 795 }, 796 #endif 797 { .number = 0x023, /* STALL_FRONTEND */ 798 .supported = pmuv3p1_events_supported, 799 .get_count = zero_event_get_count, 800 .ns_per_count = zero_event_ns_per, 801 }, 802 { .number = 0x024, /* STALL_BACKEND */ 803 .supported = pmuv3p1_events_supported, 804 .get_count = zero_event_get_count, 805 .ns_per_count = zero_event_ns_per, 806 }, 807 { .number = 0x03c, /* STALL */ 808 .supported = pmuv3p4_events_supported, 809 .get_count = zero_event_get_count, 810 .ns_per_count = zero_event_ns_per, 811 }, 812 }; 813 814 /* 815 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 816 * events (i.e. the statistical profiling extension), this implementation 817 * should first be updated to something sparse instead of the current 818 * supported_event_map[] array. 819 */ 820 #define MAX_EVENT_ID 0x3c 821 #define UNSUPPORTED_EVENT UINT16_MAX 822 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 823 824 /* 825 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 826 * of ARM event numbers to indices in our pm_events array. 827 * 828 * Note: Events in the 0x40XX range are not currently supported. 829 */ 830 void pmu_init(ARMCPU *cpu) 831 { 832 unsigned int i; 833 834 /* 835 * Empty supported_event_map and cpu->pmceid[01] before adding supported 836 * events to them 837 */ 838 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 839 supported_event_map[i] = UNSUPPORTED_EVENT; 840 } 841 cpu->pmceid0 = 0; 842 cpu->pmceid1 = 0; 843 844 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 845 const pm_event *cnt = &pm_events[i]; 846 assert(cnt->number <= MAX_EVENT_ID); 847 /* We do not currently support events in the 0x40xx range */ 848 assert(cnt->number <= 0x3f); 849 850 if (cnt->supported(&cpu->env)) { 851 supported_event_map[cnt->number] = i; 852 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 853 if (cnt->number & 0x20) { 854 cpu->pmceid1 |= event_mask; 855 } else { 856 cpu->pmceid0 |= event_mask; 857 } 858 } 859 } 860 } 861 862 /* 863 * Check at runtime whether a PMU event is supported for the current machine 864 */ 865 static bool event_supported(uint16_t number) 866 { 867 if (number > MAX_EVENT_ID) { 868 return false; 869 } 870 return supported_event_map[number] != UNSUPPORTED_EVENT; 871 } 872 873 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 874 bool isread) 875 { 876 /* 877 * Performance monitor registers user accessibility is controlled 878 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 879 * trapping to EL2 or EL3 for other accesses. 880 */ 881 int el = arm_current_el(env); 882 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 883 884 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 885 return CP_ACCESS_TRAP_EL1; 886 } 887 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 888 return CP_ACCESS_TRAP_EL2; 889 } 890 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 891 return CP_ACCESS_TRAP_EL3; 892 } 893 894 return CP_ACCESS_OK; 895 } 896 897 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 898 const ARMCPRegInfo *ri, 899 bool isread) 900 { 901 /* ER: event counter read trap control */ 902 if (arm_feature(env, ARM_FEATURE_V8) 903 && arm_current_el(env) == 0 904 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 905 && isread) { 906 return CP_ACCESS_OK; 907 } 908 909 return pmreg_access(env, ri, isread); 910 } 911 912 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 913 const ARMCPRegInfo *ri, 914 bool isread) 915 { 916 /* SW: software increment write trap control */ 917 if (arm_feature(env, ARM_FEATURE_V8) 918 && arm_current_el(env) == 0 919 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 920 && !isread) { 921 return CP_ACCESS_OK; 922 } 923 924 return pmreg_access(env, ri, isread); 925 } 926 927 static CPAccessResult pmreg_access_selr(CPUARMState *env, 928 const ARMCPRegInfo *ri, 929 bool isread) 930 { 931 /* ER: event counter read trap control */ 932 if (arm_feature(env, ARM_FEATURE_V8) 933 && arm_current_el(env) == 0 934 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 935 return CP_ACCESS_OK; 936 } 937 938 return pmreg_access(env, ri, isread); 939 } 940 941 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 942 const ARMCPRegInfo *ri, 943 bool isread) 944 { 945 /* CR: cycle counter read trap control */ 946 if (arm_feature(env, ARM_FEATURE_V8) 947 && arm_current_el(env) == 0 948 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 949 && isread) { 950 return CP_ACCESS_OK; 951 } 952 953 return pmreg_access(env, ri, isread); 954 } 955 956 /* 957 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 958 * We use these to decide whether we need to wrap a write to MDCR_EL2 959 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 960 */ 961 #define MDCR_EL2_PMU_ENABLE_BITS \ 962 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 963 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 964 965 /* 966 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 967 * the current EL, security state, and register configuration. 968 */ 969 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 970 { 971 uint64_t filter; 972 bool e, p, u, nsk, nsu, nsh, m; 973 bool enabled, prohibited = false, filtered; 974 bool secure = arm_is_secure(env); 975 int el = arm_current_el(env); 976 uint64_t mdcr_el2; 977 uint8_t hpmn; 978 979 /* 980 * We might be called for M-profile cores where MDCR_EL2 doesn't 981 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 982 * must be before we read that value. 983 */ 984 if (!arm_feature(env, ARM_FEATURE_PMU)) { 985 return false; 986 } 987 988 mdcr_el2 = arm_mdcr_el2_eff(env); 989 hpmn = mdcr_el2 & MDCR_HPMN; 990 991 if (!arm_feature(env, ARM_FEATURE_EL2) || 992 (counter < hpmn || counter == 31)) { 993 e = env->cp15.c9_pmcr & PMCRE; 994 } else { 995 e = mdcr_el2 & MDCR_HPME; 996 } 997 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 998 999 /* Is event counting prohibited? */ 1000 if (el == 2 && (counter < hpmn || counter == 31)) { 1001 prohibited = mdcr_el2 & MDCR_HPMD; 1002 } 1003 if (secure) { 1004 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1005 } 1006 1007 if (counter == 31) { 1008 /* 1009 * The cycle counter defaults to running. PMCR.DP says "disable 1010 * the cycle counter when event counting is prohibited". 1011 * Some MDCR bits disable the cycle counter specifically. 1012 */ 1013 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1014 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1015 if (secure) { 1016 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1017 } 1018 if (el == 2) { 1019 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1020 } 1021 } 1022 } 1023 1024 if (counter == 31) { 1025 filter = env->cp15.pmccfiltr_el0; 1026 } else { 1027 filter = env->cp15.c14_pmevtyper[counter]; 1028 } 1029 1030 p = filter & PMXEVTYPER_P; 1031 u = filter & PMXEVTYPER_U; 1032 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1033 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1034 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1035 m = arm_el_is_aa64(env, 1) && 1036 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1037 1038 if (el == 0) { 1039 filtered = secure ? u : u != nsu; 1040 } else if (el == 1) { 1041 filtered = secure ? p : p != nsk; 1042 } else if (el == 2) { 1043 filtered = !nsh; 1044 } else { /* EL3 */ 1045 filtered = m != p; 1046 } 1047 1048 if (counter != 31) { 1049 /* 1050 * If not checking PMCCNTR, ensure the counter is setup to an event we 1051 * support 1052 */ 1053 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1054 if (!event_supported(event)) { 1055 return false; 1056 } 1057 } 1058 1059 return enabled && !prohibited && !filtered; 1060 } 1061 1062 static void pmu_update_irq(CPUARMState *env) 1063 { 1064 ARMCPU *cpu = env_archcpu(env); 1065 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1066 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1067 } 1068 1069 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1070 { 1071 /* 1072 * Return true if the clock divider is enabled and the cycle counter 1073 * is supposed to tick only once every 64 clock cycles. This is 1074 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1075 * (64-bit) cycle counter PMCR.D has no effect. 1076 */ 1077 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1078 } 1079 1080 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1081 { 1082 /* Return true if the specified event counter is configured to be 64 bit */ 1083 1084 /* This isn't intended to be used with the cycle counter */ 1085 assert(counter < 31); 1086 1087 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1088 return false; 1089 } 1090 1091 if (arm_feature(env, ARM_FEATURE_EL2)) { 1092 /* 1093 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1094 * current security state, so we don't use arm_mdcr_el2_eff() here. 1095 */ 1096 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1097 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1098 1099 if (counter >= hpmn) { 1100 return hlp; 1101 } 1102 } 1103 return env->cp15.c9_pmcr & PMCRLP; 1104 } 1105 1106 /* 1107 * Ensure c15_ccnt is the guest-visible count so that operations such as 1108 * enabling/disabling the counter or filtering, modifying the count itself, 1109 * etc. can be done logically. This is essentially a no-op if the counter is 1110 * not enabled at the time of the call. 1111 */ 1112 static void pmccntr_op_start(CPUARMState *env) 1113 { 1114 uint64_t cycles = cycles_get_count(env); 1115 1116 if (pmu_counter_enabled(env, 31)) { 1117 uint64_t eff_cycles = cycles; 1118 if (pmccntr_clockdiv_enabled(env)) { 1119 eff_cycles /= 64; 1120 } 1121 1122 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1123 1124 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1125 1ull << 63 : 1ull << 31; 1126 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1127 env->cp15.c9_pmovsr |= (1ULL << 31); 1128 pmu_update_irq(env); 1129 } 1130 1131 env->cp15.c15_ccnt = new_pmccntr; 1132 } 1133 env->cp15.c15_ccnt_delta = cycles; 1134 } 1135 1136 /* 1137 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1138 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1139 * pmccntr_op_start. 1140 */ 1141 static void pmccntr_op_finish(CPUARMState *env) 1142 { 1143 if (pmu_counter_enabled(env, 31)) { 1144 #ifndef CONFIG_USER_ONLY 1145 /* Calculate when the counter will next overflow */ 1146 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1147 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1148 remaining_cycles = (uint32_t)remaining_cycles; 1149 } 1150 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1151 1152 if (overflow_in > 0) { 1153 int64_t overflow_at; 1154 1155 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1156 overflow_in, &overflow_at)) { 1157 ARMCPU *cpu = env_archcpu(env); 1158 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1159 } 1160 } 1161 #endif 1162 1163 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1164 if (pmccntr_clockdiv_enabled(env)) { 1165 prev_cycles /= 64; 1166 } 1167 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1168 } 1169 } 1170 1171 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1172 { 1173 1174 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1175 uint64_t count = 0; 1176 if (event_supported(event)) { 1177 uint16_t event_idx = supported_event_map[event]; 1178 count = pm_events[event_idx].get_count(env); 1179 } 1180 1181 if (pmu_counter_enabled(env, counter)) { 1182 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1183 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1184 1ULL << 63 : 1ULL << 31; 1185 1186 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1187 env->cp15.c9_pmovsr |= (1 << counter); 1188 pmu_update_irq(env); 1189 } 1190 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1191 } 1192 env->cp15.c14_pmevcntr_delta[counter] = count; 1193 } 1194 1195 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1196 { 1197 if (pmu_counter_enabled(env, counter)) { 1198 #ifndef CONFIG_USER_ONLY 1199 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1200 uint16_t event_idx = supported_event_map[event]; 1201 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1202 int64_t overflow_in; 1203 1204 if (!pmevcntr_is_64_bit(env, counter)) { 1205 delta = (uint32_t)delta; 1206 } 1207 overflow_in = pm_events[event_idx].ns_per_count(delta); 1208 1209 if (overflow_in > 0) { 1210 int64_t overflow_at; 1211 1212 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1213 overflow_in, &overflow_at)) { 1214 ARMCPU *cpu = env_archcpu(env); 1215 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1216 } 1217 } 1218 #endif 1219 1220 env->cp15.c14_pmevcntr_delta[counter] -= 1221 env->cp15.c14_pmevcntr[counter]; 1222 } 1223 } 1224 1225 void pmu_op_start(CPUARMState *env) 1226 { 1227 unsigned int i; 1228 pmccntr_op_start(env); 1229 for (i = 0; i < pmu_num_counters(env); i++) { 1230 pmevcntr_op_start(env, i); 1231 } 1232 } 1233 1234 void pmu_op_finish(CPUARMState *env) 1235 { 1236 unsigned int i; 1237 pmccntr_op_finish(env); 1238 for (i = 0; i < pmu_num_counters(env); i++) { 1239 pmevcntr_op_finish(env, i); 1240 } 1241 } 1242 1243 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1244 { 1245 pmu_op_start(&cpu->env); 1246 } 1247 1248 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1249 { 1250 pmu_op_finish(&cpu->env); 1251 } 1252 1253 void arm_pmu_timer_cb(void *opaque) 1254 { 1255 ARMCPU *cpu = opaque; 1256 1257 /* 1258 * Update all the counter values based on the current underlying counts, 1259 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1260 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1261 * counter may expire. 1262 */ 1263 pmu_op_start(&cpu->env); 1264 pmu_op_finish(&cpu->env); 1265 } 1266 1267 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1268 uint64_t value) 1269 { 1270 pmu_op_start(env); 1271 1272 if (value & PMCRC) { 1273 /* The counter has been reset */ 1274 env->cp15.c15_ccnt = 0; 1275 } 1276 1277 if (value & PMCRP) { 1278 unsigned int i; 1279 for (i = 0; i < pmu_num_counters(env); i++) { 1280 env->cp15.c14_pmevcntr[i] = 0; 1281 } 1282 } 1283 1284 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1285 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1286 1287 pmu_op_finish(env); 1288 } 1289 1290 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1291 { 1292 uint64_t pmcr = env->cp15.c9_pmcr; 1293 1294 /* 1295 * If EL2 is implemented and enabled for the current security state, reads 1296 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1297 */ 1298 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1299 pmcr &= ~PMCRN_MASK; 1300 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1301 } 1302 1303 return pmcr; 1304 } 1305 1306 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1307 uint64_t value) 1308 { 1309 unsigned int i; 1310 uint64_t overflow_mask, new_pmswinc; 1311 1312 for (i = 0; i < pmu_num_counters(env); i++) { 1313 /* Increment a counter's count iff: */ 1314 if ((value & (1 << i)) && /* counter's bit is set */ 1315 /* counter is enabled and not filtered */ 1316 pmu_counter_enabled(env, i) && 1317 /* counter is SW_INCR */ 1318 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1319 pmevcntr_op_start(env, i); 1320 1321 /* 1322 * Detect if this write causes an overflow since we can't predict 1323 * PMSWINC overflows like we can for other events 1324 */ 1325 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1326 1327 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1328 1ULL << 63 : 1ULL << 31; 1329 1330 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1331 env->cp15.c9_pmovsr |= (1 << i); 1332 pmu_update_irq(env); 1333 } 1334 1335 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1336 1337 pmevcntr_op_finish(env, i); 1338 } 1339 } 1340 } 1341 1342 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1343 { 1344 uint64_t ret; 1345 pmccntr_op_start(env); 1346 ret = env->cp15.c15_ccnt; 1347 pmccntr_op_finish(env); 1348 return ret; 1349 } 1350 1351 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1352 uint64_t value) 1353 { 1354 /* 1355 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1356 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1357 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1358 * accessed. 1359 */ 1360 env->cp15.c9_pmselr = value & 0x1f; 1361 } 1362 1363 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1364 uint64_t value) 1365 { 1366 pmccntr_op_start(env); 1367 env->cp15.c15_ccnt = value; 1368 pmccntr_op_finish(env); 1369 } 1370 1371 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1372 uint64_t value) 1373 { 1374 uint64_t cur_val = pmccntr_read(env, NULL); 1375 1376 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1377 } 1378 1379 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1380 uint64_t value) 1381 { 1382 pmccntr_op_start(env); 1383 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1384 pmccntr_op_finish(env); 1385 } 1386 1387 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1388 uint64_t value) 1389 { 1390 pmccntr_op_start(env); 1391 /* M is not accessible from AArch32 */ 1392 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1393 (value & PMCCFILTR); 1394 pmccntr_op_finish(env); 1395 } 1396 1397 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1398 { 1399 /* M is not visible in AArch32 */ 1400 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1401 } 1402 1403 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 pmu_op_start(env); 1407 value &= pmu_counter_mask(env); 1408 env->cp15.c9_pmcnten |= value; 1409 pmu_op_finish(env); 1410 } 1411 1412 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1413 uint64_t value) 1414 { 1415 pmu_op_start(env); 1416 value &= pmu_counter_mask(env); 1417 env->cp15.c9_pmcnten &= ~value; 1418 pmu_op_finish(env); 1419 } 1420 1421 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1422 uint64_t value) 1423 { 1424 value &= pmu_counter_mask(env); 1425 env->cp15.c9_pmovsr &= ~value; 1426 pmu_update_irq(env); 1427 } 1428 1429 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1430 uint64_t value) 1431 { 1432 value &= pmu_counter_mask(env); 1433 env->cp15.c9_pmovsr |= value; 1434 pmu_update_irq(env); 1435 } 1436 1437 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1438 uint64_t value, const uint8_t counter) 1439 { 1440 if (counter == 31) { 1441 pmccfiltr_write(env, ri, value); 1442 } else if (counter < pmu_num_counters(env)) { 1443 pmevcntr_op_start(env, counter); 1444 1445 /* 1446 * If this counter's event type is changing, store the current 1447 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1448 * pmevcntr_op_finish has the correct baseline when it converts back to 1449 * a delta. 1450 */ 1451 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1452 PMXEVTYPER_EVTCOUNT; 1453 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1454 if (old_event != new_event) { 1455 uint64_t count = 0; 1456 if (event_supported(new_event)) { 1457 uint16_t event_idx = supported_event_map[new_event]; 1458 count = pm_events[event_idx].get_count(env); 1459 } 1460 env->cp15.c14_pmevcntr_delta[counter] = count; 1461 } 1462 1463 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1464 pmevcntr_op_finish(env, counter); 1465 } 1466 /* 1467 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1468 * PMSELR value is equal to or greater than the number of implemented 1469 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1470 */ 1471 } 1472 1473 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1474 const uint8_t counter) 1475 { 1476 if (counter == 31) { 1477 return env->cp15.pmccfiltr_el0; 1478 } else if (counter < pmu_num_counters(env)) { 1479 return env->cp15.c14_pmevtyper[counter]; 1480 } else { 1481 /* 1482 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1483 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1484 */ 1485 return 0; 1486 } 1487 } 1488 1489 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1490 uint64_t value) 1491 { 1492 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1493 pmevtyper_write(env, ri, value, counter); 1494 } 1495 1496 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1497 uint64_t value) 1498 { 1499 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1500 env->cp15.c14_pmevtyper[counter] = value; 1501 1502 /* 1503 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1504 * pmu_op_finish calls when loading saved state for a migration. Because 1505 * we're potentially updating the type of event here, the value written to 1506 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1507 * different counter type. Therefore, we need to set this value to the 1508 * current count for the counter type we're writing so that pmu_op_finish 1509 * has the correct count for its calculation. 1510 */ 1511 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1512 if (event_supported(event)) { 1513 uint16_t event_idx = supported_event_map[event]; 1514 env->cp15.c14_pmevcntr_delta[counter] = 1515 pm_events[event_idx].get_count(env); 1516 } 1517 } 1518 1519 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1520 { 1521 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1522 return pmevtyper_read(env, ri, counter); 1523 } 1524 1525 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1529 } 1530 1531 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1532 { 1533 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1534 } 1535 1536 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1537 uint64_t value, uint8_t counter) 1538 { 1539 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1540 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1541 value &= MAKE_64BIT_MASK(0, 32); 1542 } 1543 if (counter < pmu_num_counters(env)) { 1544 pmevcntr_op_start(env, counter); 1545 env->cp15.c14_pmevcntr[counter] = value; 1546 pmevcntr_op_finish(env, counter); 1547 } 1548 /* 1549 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1550 * are CONSTRAINED UNPREDICTABLE. 1551 */ 1552 } 1553 1554 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1555 uint8_t counter) 1556 { 1557 if (counter < pmu_num_counters(env)) { 1558 uint64_t ret; 1559 pmevcntr_op_start(env, counter); 1560 ret = env->cp15.c14_pmevcntr[counter]; 1561 pmevcntr_op_finish(env, counter); 1562 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1563 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1564 ret &= MAKE_64BIT_MASK(0, 32); 1565 } 1566 return ret; 1567 } else { 1568 /* 1569 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1570 * are CONSTRAINED UNPREDICTABLE. 1571 */ 1572 return 0; 1573 } 1574 } 1575 1576 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1577 uint64_t value) 1578 { 1579 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1580 pmevcntr_write(env, ri, value, counter); 1581 } 1582 1583 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1584 { 1585 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1586 return pmevcntr_read(env, ri, counter); 1587 } 1588 1589 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1590 uint64_t value) 1591 { 1592 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1593 assert(counter < pmu_num_counters(env)); 1594 env->cp15.c14_pmevcntr[counter] = value; 1595 pmevcntr_write(env, ri, value, counter); 1596 } 1597 1598 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1599 { 1600 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1601 assert(counter < pmu_num_counters(env)); 1602 return env->cp15.c14_pmevcntr[counter]; 1603 } 1604 1605 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1609 } 1610 1611 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1614 } 1615 1616 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1617 uint64_t value) 1618 { 1619 if (arm_feature(env, ARM_FEATURE_V8)) { 1620 env->cp15.c9_pmuserenr = value & 0xf; 1621 } else { 1622 env->cp15.c9_pmuserenr = value & 1; 1623 } 1624 } 1625 1626 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 /* We have no event counters so only the C bit can be changed */ 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pminten |= value; 1632 pmu_update_irq(env); 1633 } 1634 1635 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pminten &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 /* 1647 * Note that even though the AArch64 view of this register has bits 1648 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1649 * architectural requirements for bits which are RES0 only in some 1650 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1651 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1652 */ 1653 raw_write(env, ri, value & ~0x1FULL); 1654 } 1655 1656 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1657 { 1658 /* Begin with base v8.0 state. */ 1659 uint64_t valid_mask = 0x3fff; 1660 ARMCPU *cpu = env_archcpu(env); 1661 uint64_t changed; 1662 1663 /* 1664 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1665 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1666 * Instead, choose the format based on the mode of EL3. 1667 */ 1668 if (arm_el_is_aa64(env, 3)) { 1669 value |= SCR_FW | SCR_AW; /* RES1 */ 1670 valid_mask &= ~SCR_NET; /* RES0 */ 1671 1672 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1673 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1674 value |= SCR_RW; /* RAO/WI */ 1675 } 1676 if (cpu_isar_feature(aa64_ras, cpu)) { 1677 valid_mask |= SCR_TERR; 1678 } 1679 if (cpu_isar_feature(aa64_lor, cpu)) { 1680 valid_mask |= SCR_TLOR; 1681 } 1682 if (cpu_isar_feature(aa64_pauth, cpu)) { 1683 valid_mask |= SCR_API | SCR_APK; 1684 } 1685 if (cpu_isar_feature(aa64_sel2, cpu)) { 1686 valid_mask |= SCR_EEL2; 1687 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1688 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1689 value |= SCR_NS; 1690 } 1691 if (cpu_isar_feature(aa64_mte, cpu)) { 1692 valid_mask |= SCR_ATA; 1693 } 1694 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1695 valid_mask |= SCR_ENSCXT; 1696 } 1697 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1698 valid_mask |= SCR_EASE | SCR_NMEA; 1699 } 1700 if (cpu_isar_feature(aa64_sme, cpu)) { 1701 valid_mask |= SCR_ENTP2; 1702 } 1703 if (cpu_isar_feature(aa64_hcx, cpu)) { 1704 valid_mask |= SCR_HXEN; 1705 } 1706 if (cpu_isar_feature(aa64_fgt, cpu)) { 1707 valid_mask |= SCR_FGTEN; 1708 } 1709 if (cpu_isar_feature(aa64_rme, cpu)) { 1710 valid_mask |= SCR_NSE | SCR_GPF; 1711 } 1712 if (cpu_isar_feature(aa64_ecv, cpu)) { 1713 valid_mask |= SCR_ECVEN; 1714 } 1715 } else { 1716 valid_mask &= ~(SCR_RW | SCR_ST); 1717 if (cpu_isar_feature(aa32_ras, cpu)) { 1718 valid_mask |= SCR_TERR; 1719 } 1720 } 1721 1722 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1723 valid_mask &= ~SCR_HCE; 1724 1725 /* 1726 * On ARMv7, SMD (or SCD as it is called in v7) is only 1727 * supported if EL2 exists. The bit is UNK/SBZP when 1728 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1729 * when EL2 is unavailable. 1730 * On ARMv8, this bit is always available. 1731 */ 1732 if (arm_feature(env, ARM_FEATURE_V7) && 1733 !arm_feature(env, ARM_FEATURE_V8)) { 1734 valid_mask &= ~SCR_SMD; 1735 } 1736 } 1737 1738 /* Clear all-context RES0 bits. */ 1739 value &= valid_mask; 1740 changed = env->cp15.scr_el3 ^ value; 1741 env->cp15.scr_el3 = value; 1742 1743 /* 1744 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1745 * we must invalidate all TLBs below EL3. 1746 */ 1747 if (changed & (SCR_NS | SCR_NSE)) { 1748 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1749 ARMMMUIdxBit_E20_0 | 1750 ARMMMUIdxBit_E10_1 | 1751 ARMMMUIdxBit_E20_2 | 1752 ARMMMUIdxBit_E10_1_PAN | 1753 ARMMMUIdxBit_E20_2_PAN | 1754 ARMMMUIdxBit_E2)); 1755 } 1756 } 1757 1758 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1759 { 1760 /* 1761 * scr_write will set the RES1 bits on an AArch64-only CPU. 1762 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1763 */ 1764 scr_write(env, ri, 0); 1765 } 1766 1767 static CPAccessResult access_tid4(CPUARMState *env, 1768 const ARMCPRegInfo *ri, 1769 bool isread) 1770 { 1771 if (arm_current_el(env) == 1 && 1772 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1773 return CP_ACCESS_TRAP_EL2; 1774 } 1775 1776 return CP_ACCESS_OK; 1777 } 1778 1779 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1780 { 1781 ARMCPU *cpu = env_archcpu(env); 1782 1783 /* 1784 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1785 * bank 1786 */ 1787 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1788 ri->secure & ARM_CP_SECSTATE_S); 1789 1790 return cpu->ccsidr[index]; 1791 } 1792 1793 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 raw_write(env, ri, value & 0xf); 1797 } 1798 1799 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1800 { 1801 CPUState *cs = env_cpu(env); 1802 bool el1 = arm_current_el(env) == 1; 1803 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1804 uint64_t ret = 0; 1805 1806 if (hcr_el2 & HCR_IMO) { 1807 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1808 ret |= CPSR_I; 1809 } 1810 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 1811 ret |= ISR_IS; 1812 ret |= CPSR_I; 1813 } 1814 } else { 1815 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1816 ret |= CPSR_I; 1817 } 1818 1819 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 1820 ret |= ISR_IS; 1821 ret |= CPSR_I; 1822 } 1823 } 1824 1825 if (hcr_el2 & HCR_FMO) { 1826 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1827 ret |= CPSR_F; 1828 } 1829 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 1830 ret |= ISR_FS; 1831 ret |= CPSR_F; 1832 } 1833 } else { 1834 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1835 ret |= CPSR_F; 1836 } 1837 } 1838 1839 if (hcr_el2 & HCR_AMO) { 1840 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1841 ret |= CPSR_A; 1842 } 1843 } 1844 1845 return ret; 1846 } 1847 1848 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1849 bool isread) 1850 { 1851 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1852 return CP_ACCESS_TRAP_EL2; 1853 } 1854 1855 return CP_ACCESS_OK; 1856 } 1857 1858 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1859 bool isread) 1860 { 1861 if (arm_feature(env, ARM_FEATURE_V8)) { 1862 return access_aa64_tid1(env, ri, isread); 1863 } 1864 1865 return CP_ACCESS_OK; 1866 } 1867 1868 static const ARMCPRegInfo v7_cp_reginfo[] = { 1869 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1870 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1871 .access = PL1_W, .type = ARM_CP_NOP }, 1872 /* 1873 * Performance monitors are implementation defined in v7, 1874 * but with an ARM recommended set of registers, which we 1875 * follow. 1876 * 1877 * Performance registers fall into three categories: 1878 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1879 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1880 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1881 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1882 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1883 */ 1884 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1885 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1886 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1887 .writefn = pmcntenset_write, 1888 .accessfn = pmreg_access, 1889 .fgt = FGT_PMCNTEN, 1890 .raw_writefn = raw_write }, 1891 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1892 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1893 .access = PL0_RW, .accessfn = pmreg_access, 1894 .fgt = FGT_PMCNTEN, 1895 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1896 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1897 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1898 .access = PL0_RW, 1899 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1900 .accessfn = pmreg_access, 1901 .fgt = FGT_PMCNTEN, 1902 .writefn = pmcntenclr_write, 1903 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1904 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1905 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1906 .access = PL0_RW, .accessfn = pmreg_access, 1907 .fgt = FGT_PMCNTEN, 1908 .type = ARM_CP_ALIAS | ARM_CP_IO, 1909 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1910 .writefn = pmcntenclr_write }, 1911 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1912 .access = PL0_RW, .type = ARM_CP_IO, 1913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1914 .accessfn = pmreg_access, 1915 .fgt = FGT_PMOVS, 1916 .writefn = pmovsr_write, 1917 .raw_writefn = raw_write }, 1918 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1920 .access = PL0_RW, .accessfn = pmreg_access, 1921 .fgt = FGT_PMOVS, 1922 .type = ARM_CP_ALIAS | ARM_CP_IO, 1923 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1924 .writefn = pmovsr_write, 1925 .raw_writefn = raw_write }, 1926 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1927 .access = PL0_W, .accessfn = pmreg_access_swinc, 1928 .fgt = FGT_PMSWINC_EL0, 1929 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1930 .writefn = pmswinc_write }, 1931 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1932 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1933 .access = PL0_W, .accessfn = pmreg_access_swinc, 1934 .fgt = FGT_PMSWINC_EL0, 1935 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1936 .writefn = pmswinc_write }, 1937 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1938 .access = PL0_RW, .type = ARM_CP_ALIAS, 1939 .fgt = FGT_PMSELR_EL0, 1940 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1941 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1942 .raw_writefn = raw_write}, 1943 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1944 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1945 .access = PL0_RW, .accessfn = pmreg_access_selr, 1946 .fgt = FGT_PMSELR_EL0, 1947 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1948 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1951 .fgt = FGT_PMCCNTR_EL0, 1952 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1953 .accessfn = pmreg_access_ccntr }, 1954 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1955 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1956 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1957 .fgt = FGT_PMCCNTR_EL0, 1958 .type = ARM_CP_IO, 1959 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1960 .readfn = pmccntr_read, .writefn = pmccntr_write, 1961 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1962 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1963 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1964 .access = PL0_RW, .accessfn = pmreg_access, 1965 .fgt = FGT_PMCCFILTR_EL0, 1966 .type = ARM_CP_ALIAS | ARM_CP_IO, 1967 .resetvalue = 0, }, 1968 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1970 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1971 .access = PL0_RW, .accessfn = pmreg_access, 1972 .fgt = FGT_PMCCFILTR_EL0, 1973 .type = ARM_CP_IO, 1974 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1975 .resetvalue = 0, }, 1976 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1977 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1978 .accessfn = pmreg_access, 1979 .fgt = FGT_PMEVTYPERN_EL0, 1980 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1981 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1983 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1984 .accessfn = pmreg_access, 1985 .fgt = FGT_PMEVTYPERN_EL0, 1986 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1987 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access_xevcntr, 1990 .fgt = FGT_PMEVCNTRN_EL0, 1991 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1992 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 1994 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1995 .accessfn = pmreg_access_xevcntr, 1996 .fgt = FGT_PMEVCNTRN_EL0, 1997 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 1998 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1999 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2001 .resetvalue = 0, 2002 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2003 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2004 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2005 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2006 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2007 .resetvalue = 0, 2008 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2009 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2010 .access = PL1_RW, .accessfn = access_tpm, 2011 .fgt = FGT_PMINTEN, 2012 .type = ARM_CP_ALIAS | ARM_CP_IO, 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2014 .resetvalue = 0, 2015 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2017 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2018 .access = PL1_RW, .accessfn = access_tpm, 2019 .fgt = FGT_PMINTEN, 2020 .type = ARM_CP_IO, 2021 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2022 .writefn = pmintenset_write, .raw_writefn = raw_write, 2023 .resetvalue = 0x0 }, 2024 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2025 .access = PL1_RW, .accessfn = access_tpm, 2026 .fgt = FGT_PMINTEN, 2027 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2029 .writefn = pmintenclr_write, }, 2030 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2032 .access = PL1_RW, .accessfn = access_tpm, 2033 .fgt = FGT_PMINTEN, 2034 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2035 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2036 .writefn = pmintenclr_write }, 2037 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2038 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2039 .access = PL1_R, 2040 .accessfn = access_tid4, 2041 .fgt = FGT_CCSIDR_EL1, 2042 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2043 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2044 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2045 .access = PL1_RW, 2046 .accessfn = access_tid4, 2047 .fgt = FGT_CSSELR_EL1, 2048 .writefn = csselr_write, .resetvalue = 0, 2049 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2050 offsetof(CPUARMState, cp15.csselr_ns) } }, 2051 /* 2052 * Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .fgt = FGT_AIDR_EL1, 2060 .resetvalue = 0 }, 2061 /* 2062 * Auxiliary fault status registers: these also are IMPDEF, and we 2063 * choose to RAZ/WI for all cores. 2064 */ 2065 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2067 .access = PL1_RW, .accessfn = access_tvm_trvm, 2068 .fgt = FGT_AFSR0_EL1, 2069 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2072 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2073 .access = PL1_RW, .accessfn = access_tvm_trvm, 2074 .fgt = FGT_AFSR1_EL1, 2075 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2076 .type = ARM_CP_CONST, .resetvalue = 0 }, 2077 /* 2078 * MAIR can just read-as-written because we don't implement caches 2079 * and so don't need to care about memory attributes. 2080 */ 2081 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2083 .access = PL1_RW, .accessfn = access_tvm_trvm, 2084 .fgt = FGT_MAIR_EL1, 2085 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2086 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2087 .resetvalue = 0 }, 2088 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2089 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2090 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2091 .resetvalue = 0 }, 2092 /* 2093 * For non-long-descriptor page tables these are PRRR and NMRR; 2094 * regardless they still act as reads-as-written for QEMU. 2095 */ 2096 /* 2097 * MAIR0/1 are defined separately from their 64-bit counterpart which 2098 * allows them to assign the correct fieldoffset based on the endianness 2099 * handled in the field definitions. 2100 */ 2101 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2102 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2103 .access = PL1_RW, .accessfn = access_tvm_trvm, 2104 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2105 offsetof(CPUARMState, cp15.mair0_ns) }, 2106 .resetfn = arm_cp_reset_ignore }, 2107 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2108 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2109 .access = PL1_RW, .accessfn = access_tvm_trvm, 2110 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2111 offsetof(CPUARMState, cp15.mair1_ns) }, 2112 .resetfn = arm_cp_reset_ignore }, 2113 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2114 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2115 .fgt = FGT_ISR_EL1, 2116 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2117 }; 2118 2119 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2120 /* PMOVSSET is not implemented in v7 before v7ve */ 2121 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2122 .access = PL0_RW, .accessfn = pmreg_access, 2123 .fgt = FGT_PMOVS, 2124 .type = ARM_CP_ALIAS | ARM_CP_IO, 2125 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2126 .writefn = pmovsset_write, 2127 .raw_writefn = raw_write }, 2128 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2129 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2130 .access = PL0_RW, .accessfn = pmreg_access, 2131 .fgt = FGT_PMOVS, 2132 .type = ARM_CP_ALIAS | ARM_CP_IO, 2133 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2134 .writefn = pmovsset_write, 2135 .raw_writefn = raw_write }, 2136 }; 2137 2138 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2139 uint64_t value) 2140 { 2141 value &= 1; 2142 env->teecr = value; 2143 } 2144 2145 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2146 bool isread) 2147 { 2148 /* 2149 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2150 * at all, so we don't need to check whether we're v8A. 2151 */ 2152 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2153 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2154 return CP_ACCESS_TRAP_EL2; 2155 } 2156 return CP_ACCESS_OK; 2157 } 2158 2159 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2160 bool isread) 2161 { 2162 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2163 return CP_ACCESS_TRAP_EL1; 2164 } 2165 return teecr_access(env, ri, isread); 2166 } 2167 2168 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2169 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2170 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2171 .resetvalue = 0, 2172 .writefn = teecr_write, .accessfn = teecr_access }, 2173 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2174 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2175 .accessfn = teehbr_access, .resetvalue = 0 }, 2176 }; 2177 2178 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2179 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2181 .access = PL0_RW, 2182 .fgt = FGT_TPIDR_EL0, 2183 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2184 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2185 .access = PL0_RW, 2186 .fgt = FGT_TPIDR_EL0, 2187 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2188 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2189 .resetfn = arm_cp_reset_ignore }, 2190 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2192 .access = PL0_R | PL1_W, 2193 .fgt = FGT_TPIDRRO_EL0, 2194 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2195 .resetvalue = 0}, 2196 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2197 .access = PL0_R | PL1_W, 2198 .fgt = FGT_TPIDRRO_EL0, 2199 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2200 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2201 .resetfn = arm_cp_reset_ignore }, 2202 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2203 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2204 .access = PL1_RW, 2205 .fgt = FGT_TPIDR_EL1, 2206 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2207 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2208 .access = PL1_RW, 2209 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2210 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2211 .resetvalue = 0 }, 2212 }; 2213 2214 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2215 { 2216 ARMCPU *cpu = env_archcpu(env); 2217 2218 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2219 } 2220 2221 #ifndef CONFIG_USER_ONLY 2222 2223 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2224 bool isread) 2225 { 2226 /* 2227 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2228 * Writable only at the highest implemented exception level. 2229 */ 2230 int el = arm_current_el(env); 2231 uint64_t hcr; 2232 uint32_t cntkctl; 2233 2234 switch (el) { 2235 case 0: 2236 hcr = arm_hcr_el2_eff(env); 2237 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2238 cntkctl = env->cp15.cnthctl_el2; 2239 } else { 2240 cntkctl = env->cp15.c14_cntkctl; 2241 } 2242 if (!extract32(cntkctl, 0, 2)) { 2243 return CP_ACCESS_TRAP_EL1; 2244 } 2245 break; 2246 case 1: 2247 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2248 arm_is_secure_below_el3(env)) { 2249 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2250 return CP_ACCESS_UNDEFINED; 2251 } 2252 break; 2253 case 2: 2254 case 3: 2255 break; 2256 } 2257 2258 if (!isread && el < arm_highest_el(env)) { 2259 return CP_ACCESS_UNDEFINED; 2260 } 2261 2262 return CP_ACCESS_OK; 2263 } 2264 2265 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2266 bool isread) 2267 { 2268 unsigned int cur_el = arm_current_el(env); 2269 bool has_el2 = arm_is_el2_enabled(env); 2270 uint64_t hcr = arm_hcr_el2_eff(env); 2271 2272 switch (cur_el) { 2273 case 0: 2274 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2276 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2277 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2278 } 2279 2280 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2281 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2282 return CP_ACCESS_TRAP_EL1; 2283 } 2284 /* fall through */ 2285 case 1: 2286 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2287 if (has_el2 && timeridx == GTIMER_PHYS && 2288 (hcr & HCR_E2H 2289 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2290 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2291 return CP_ACCESS_TRAP_EL2; 2292 } 2293 if (has_el2 && timeridx == GTIMER_VIRT) { 2294 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2295 return CP_ACCESS_TRAP_EL2; 2296 } 2297 } 2298 break; 2299 } 2300 return CP_ACCESS_OK; 2301 } 2302 2303 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2304 bool isread) 2305 { 2306 unsigned int cur_el = arm_current_el(env); 2307 bool has_el2 = arm_is_el2_enabled(env); 2308 uint64_t hcr = arm_hcr_el2_eff(env); 2309 2310 switch (cur_el) { 2311 case 0: 2312 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2313 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2314 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2315 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2316 } 2317 2318 /* 2319 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2320 * EL0 if EL0[PV]TEN is zero. 2321 */ 2322 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2323 return CP_ACCESS_TRAP_EL1; 2324 } 2325 /* fall through */ 2326 2327 case 1: 2328 if (has_el2 && timeridx == GTIMER_PHYS) { 2329 if (hcr & HCR_E2H) { 2330 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2331 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2332 return CP_ACCESS_TRAP_EL2; 2333 } 2334 } else { 2335 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2336 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2337 return CP_ACCESS_TRAP_EL2; 2338 } 2339 } 2340 } 2341 if (has_el2 && timeridx == GTIMER_VIRT) { 2342 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2343 return CP_ACCESS_TRAP_EL2; 2344 } 2345 } 2346 break; 2347 } 2348 return CP_ACCESS_OK; 2349 } 2350 2351 static CPAccessResult gt_pct_access(CPUARMState *env, 2352 const ARMCPRegInfo *ri, 2353 bool isread) 2354 { 2355 return gt_counter_access(env, GTIMER_PHYS, isread); 2356 } 2357 2358 static CPAccessResult gt_vct_access(CPUARMState *env, 2359 const ARMCPRegInfo *ri, 2360 bool isread) 2361 { 2362 return gt_counter_access(env, GTIMER_VIRT, isread); 2363 } 2364 2365 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2366 bool isread) 2367 { 2368 return gt_timer_access(env, GTIMER_PHYS, isread); 2369 } 2370 2371 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2372 bool isread) 2373 { 2374 return gt_timer_access(env, GTIMER_VIRT, isread); 2375 } 2376 2377 static CPAccessResult gt_stimer_access(CPUARMState *env, 2378 const ARMCPRegInfo *ri, 2379 bool isread) 2380 { 2381 /* 2382 * The AArch64 register view of the secure physical timer is 2383 * always accessible from EL3, and configurably accessible from 2384 * Secure EL1. 2385 */ 2386 switch (arm_current_el(env)) { 2387 case 1: 2388 if (!arm_is_secure(env)) { 2389 return CP_ACCESS_UNDEFINED; 2390 } 2391 if (arm_is_el2_enabled(env)) { 2392 return CP_ACCESS_UNDEFINED; 2393 } 2394 if (!(env->cp15.scr_el3 & SCR_ST)) { 2395 return CP_ACCESS_TRAP_EL3; 2396 } 2397 return CP_ACCESS_OK; 2398 case 0: 2399 case 2: 2400 return CP_ACCESS_UNDEFINED; 2401 case 3: 2402 return CP_ACCESS_OK; 2403 default: 2404 g_assert_not_reached(); 2405 } 2406 } 2407 2408 static CPAccessResult gt_sel2timer_access(CPUARMState *env, 2409 const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 /* 2413 * The AArch64 register view of the secure EL2 timers are mostly 2414 * accessible from EL3 and EL2 although can also be trapped to EL2 2415 * from EL1 depending on nested virt config. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 0: /* UNDEFINED */ 2419 return CP_ACCESS_UNDEFINED; 2420 case 1: 2421 if (!arm_is_secure(env)) { 2422 /* UNDEFINED */ 2423 return CP_ACCESS_UNDEFINED; 2424 } else if (arm_hcr_el2_eff(env) & HCR_NV) { 2425 /* Aarch64.SystemAccessTrap(EL2, 0x18) */ 2426 return CP_ACCESS_TRAP_EL2; 2427 } 2428 /* UNDEFINED */ 2429 return CP_ACCESS_UNDEFINED; 2430 case 2: 2431 if (!arm_is_secure(env)) { 2432 /* UNDEFINED */ 2433 return CP_ACCESS_UNDEFINED; 2434 } 2435 return CP_ACCESS_OK; 2436 case 3: 2437 if (env->cp15.scr_el3 & SCR_EEL2) { 2438 return CP_ACCESS_OK; 2439 } else { 2440 return CP_ACCESS_UNDEFINED; 2441 } 2442 default: 2443 g_assert_not_reached(); 2444 } 2445 } 2446 2447 uint64_t gt_get_countervalue(CPUARMState *env) 2448 { 2449 ARMCPU *cpu = env_archcpu(env); 2450 2451 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2452 } 2453 2454 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2455 { 2456 CPUARMState *env = &cpu->env; 2457 uint64_t cnthctl = env->cp15.cnthctl_el2; 2458 ARMSecuritySpace ss = arm_security_space(env); 2459 /* ISTATUS && !IMASK */ 2460 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2461 2462 /* 2463 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2464 * It is RES0 in Secure and NonSecure state. 2465 */ 2466 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2467 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2468 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2469 irqstate = 0; 2470 } 2471 2472 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2473 trace_arm_gt_update_irq(timeridx, irqstate); 2474 } 2475 2476 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2477 { 2478 /* 2479 * Changing security state between Root and Secure/NonSecure, which may 2480 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2481 * mask bits. Update the IRQ state accordingly. 2482 */ 2483 gt_update_irq(cpu, GTIMER_VIRT); 2484 gt_update_irq(cpu, GTIMER_PHYS); 2485 } 2486 2487 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2488 { 2489 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2490 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2491 arm_is_el2_enabled(env) && 2492 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2493 return env->cp15.cntpoff_el2; 2494 } 2495 return 0; 2496 } 2497 2498 static uint64_t gt_indirect_access_timer_offset(CPUARMState *env, int timeridx) 2499 { 2500 /* 2501 * Return the timer offset to use for indirect accesses to the timer. 2502 * This is the Offset value as defined in D12.2.4.1 "Operation of the 2503 * CompareValue views of the timers". 2504 * 2505 * The condition here is not always the same as the condition for 2506 * whether to apply an offset register when doing a direct read of 2507 * the counter sysreg; those conditions are described in the 2508 * access pseudocode for each counter register. 2509 */ 2510 switch (timeridx) { 2511 case GTIMER_PHYS: 2512 return gt_phys_raw_cnt_offset(env); 2513 case GTIMER_VIRT: 2514 return env->cp15.cntvoff_el2; 2515 case GTIMER_HYP: 2516 case GTIMER_SEC: 2517 case GTIMER_HYPVIRT: 2518 case GTIMER_S_EL2_PHYS: 2519 case GTIMER_S_EL2_VIRT: 2520 return 0; 2521 default: 2522 g_assert_not_reached(); 2523 } 2524 } 2525 2526 uint64_t gt_direct_access_timer_offset(CPUARMState *env, int timeridx) 2527 { 2528 /* 2529 * Return the timer offset to use for direct accesses to the 2530 * counter registers CNTPCT and CNTVCT, and for direct accesses 2531 * to the CNT*_TVAL registers. 2532 * 2533 * This isn't exactly the same as the indirect-access offset, 2534 * because here we also care about what EL the register access 2535 * is being made from. 2536 * 2537 * This corresponds to the access pseudocode for the registers. 2538 */ 2539 uint64_t hcr; 2540 2541 switch (timeridx) { 2542 case GTIMER_PHYS: 2543 if (arm_current_el(env) >= 2) { 2544 return 0; 2545 } 2546 return gt_phys_raw_cnt_offset(env); 2547 case GTIMER_VIRT: 2548 switch (arm_current_el(env)) { 2549 case 2: 2550 hcr = arm_hcr_el2_eff(env); 2551 if (hcr & HCR_E2H) { 2552 return 0; 2553 } 2554 break; 2555 case 0: 2556 hcr = arm_hcr_el2_eff(env); 2557 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2558 return 0; 2559 } 2560 break; 2561 } 2562 return env->cp15.cntvoff_el2; 2563 case GTIMER_HYP: 2564 case GTIMER_SEC: 2565 case GTIMER_HYPVIRT: 2566 case GTIMER_S_EL2_PHYS: 2567 case GTIMER_S_EL2_VIRT: 2568 return 0; 2569 default: 2570 g_assert_not_reached(); 2571 } 2572 } 2573 2574 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2575 { 2576 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2577 2578 if (gt->ctl & 1) { 2579 /* 2580 * Timer enabled: calculate and set current ISTATUS, irq, and 2581 * reset timer to when ISTATUS next has to change 2582 */ 2583 uint64_t offset = gt_indirect_access_timer_offset(&cpu->env, timeridx); 2584 uint64_t count = gt_get_countervalue(&cpu->env); 2585 /* Note that this must be unsigned 64 bit arithmetic: */ 2586 int istatus = count - offset >= gt->cval; 2587 uint64_t nexttick; 2588 2589 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2590 2591 if (istatus) { 2592 /* 2593 * Next transition is when (count - offset) rolls back over to 0. 2594 * If offset > count then this is when count == offset; 2595 * if offset <= count then this is when count == offset + 2^64 2596 * For the latter case we set nexttick to an "as far in future 2597 * as possible" value and let the code below handle it. 2598 */ 2599 if (offset > count) { 2600 nexttick = offset; 2601 } else { 2602 nexttick = UINT64_MAX; 2603 } 2604 } else { 2605 /* 2606 * Next transition is when (count - offset) == cval, i.e. 2607 * when count == (cval + offset). 2608 * If that would overflow, then again we set up the next interrupt 2609 * for "as far in the future as possible" for the code below. 2610 */ 2611 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2612 nexttick = UINT64_MAX; 2613 } 2614 } 2615 /* 2616 * Note that the desired next expiry time might be beyond the 2617 * signed-64-bit range of a QEMUTimer -- in this case we just 2618 * set the timer for as far in the future as possible. When the 2619 * timer expires we will reset the timer for any remaining period. 2620 */ 2621 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2622 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2623 } else { 2624 timer_mod(cpu->gt_timer[timeridx], nexttick); 2625 } 2626 trace_arm_gt_recalc(timeridx, nexttick); 2627 } else { 2628 /* Timer disabled: ISTATUS and timer output always clear */ 2629 gt->ctl &= ~4; 2630 timer_del(cpu->gt_timer[timeridx]); 2631 trace_arm_gt_recalc_disabled(timeridx); 2632 } 2633 gt_update_irq(cpu, timeridx); 2634 } 2635 2636 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2637 int timeridx) 2638 { 2639 ARMCPU *cpu = env_archcpu(env); 2640 2641 timer_del(cpu->gt_timer[timeridx]); 2642 } 2643 2644 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2645 { 2646 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_PHYS); 2647 return gt_get_countervalue(env) - offset; 2648 } 2649 2650 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2651 { 2652 uint64_t offset = gt_direct_access_timer_offset(env, GTIMER_VIRT); 2653 return gt_get_countervalue(env) - offset; 2654 } 2655 2656 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2657 int timeridx, 2658 uint64_t value) 2659 { 2660 trace_arm_gt_cval_write(timeridx, value); 2661 env->cp15.c14_timer[timeridx].cval = value; 2662 gt_recalc_timer(env_archcpu(env), timeridx); 2663 } 2664 2665 static uint64_t do_tval_read(CPUARMState *env, int timeridx, uint64_t offset) 2666 { 2667 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2668 (gt_get_countervalue(env) - offset)); 2669 } 2670 2671 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2672 int timeridx) 2673 { 2674 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2675 2676 return do_tval_read(env, timeridx, offset); 2677 } 2678 2679 static void do_tval_write(CPUARMState *env, int timeridx, uint64_t value, 2680 uint64_t offset) 2681 { 2682 trace_arm_gt_tval_write(timeridx, value); 2683 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2684 sextract64(value, 0, 32); 2685 gt_recalc_timer(env_archcpu(env), timeridx); 2686 } 2687 2688 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2689 int timeridx, 2690 uint64_t value) 2691 { 2692 uint64_t offset = gt_direct_access_timer_offset(env, timeridx); 2693 2694 do_tval_write(env, timeridx, value, offset); 2695 } 2696 2697 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2698 int timeridx, 2699 uint64_t value) 2700 { 2701 ARMCPU *cpu = env_archcpu(env); 2702 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2703 2704 trace_arm_gt_ctl_write(timeridx, value); 2705 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2706 if ((oldval ^ value) & 1) { 2707 /* Enable toggled */ 2708 gt_recalc_timer(cpu, timeridx); 2709 } else if ((oldval ^ value) & 2) { 2710 /* 2711 * IMASK toggled: don't need to recalculate, 2712 * just set the interrupt line based on ISTATUS 2713 */ 2714 trace_arm_gt_imask_toggle(timeridx); 2715 gt_update_irq(cpu, timeridx); 2716 } 2717 } 2718 2719 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2720 { 2721 gt_timer_reset(env, ri, GTIMER_PHYS); 2722 } 2723 2724 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 gt_cval_write(env, ri, GTIMER_PHYS, value); 2728 } 2729 2730 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2731 { 2732 return gt_tval_read(env, ri, GTIMER_PHYS); 2733 } 2734 2735 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2736 uint64_t value) 2737 { 2738 gt_tval_write(env, ri, GTIMER_PHYS, value); 2739 } 2740 2741 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2745 } 2746 2747 static int gt_phys_redir_timeridx(CPUARMState *env) 2748 { 2749 switch (arm_mmu_idx(env)) { 2750 case ARMMMUIdx_E20_0: 2751 case ARMMMUIdx_E20_2: 2752 case ARMMMUIdx_E20_2_PAN: 2753 return GTIMER_HYP; 2754 default: 2755 return GTIMER_PHYS; 2756 } 2757 } 2758 2759 static int gt_virt_redir_timeridx(CPUARMState *env) 2760 { 2761 switch (arm_mmu_idx(env)) { 2762 case ARMMMUIdx_E20_0: 2763 case ARMMMUIdx_E20_2: 2764 case ARMMMUIdx_E20_2_PAN: 2765 return GTIMER_HYPVIRT; 2766 default: 2767 return GTIMER_VIRT; 2768 } 2769 } 2770 2771 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2772 const ARMCPRegInfo *ri) 2773 { 2774 int timeridx = gt_phys_redir_timeridx(env); 2775 return env->cp15.c14_timer[timeridx].cval; 2776 } 2777 2778 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2779 uint64_t value) 2780 { 2781 int timeridx = gt_phys_redir_timeridx(env); 2782 gt_cval_write(env, ri, timeridx, value); 2783 } 2784 2785 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2786 const ARMCPRegInfo *ri) 2787 { 2788 int timeridx = gt_phys_redir_timeridx(env); 2789 return gt_tval_read(env, ri, timeridx); 2790 } 2791 2792 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2793 uint64_t value) 2794 { 2795 int timeridx = gt_phys_redir_timeridx(env); 2796 gt_tval_write(env, ri, timeridx, value); 2797 } 2798 2799 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2800 const ARMCPRegInfo *ri) 2801 { 2802 int timeridx = gt_phys_redir_timeridx(env); 2803 return env->cp15.c14_timer[timeridx].ctl; 2804 } 2805 2806 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2807 uint64_t value) 2808 { 2809 int timeridx = gt_phys_redir_timeridx(env); 2810 gt_ctl_write(env, ri, timeridx, value); 2811 } 2812 2813 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2814 { 2815 gt_timer_reset(env, ri, GTIMER_VIRT); 2816 } 2817 2818 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2819 uint64_t value) 2820 { 2821 gt_cval_write(env, ri, GTIMER_VIRT, value); 2822 } 2823 2824 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2825 { 2826 /* 2827 * This is CNTV_TVAL_EL02; unlike the underlying CNTV_TVAL_EL0 2828 * we always apply CNTVOFF_EL2. Special case that here rather 2829 * than going into the generic gt_tval_read() and then having 2830 * to re-detect that it's this register. 2831 * Note that the accessfn/perms mean we know we're at EL2 or EL3 here. 2832 */ 2833 return do_tval_read(env, GTIMER_VIRT, env->cp15.cntvoff_el2); 2834 } 2835 2836 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2837 uint64_t value) 2838 { 2839 /* Similarly for writes to CNTV_TVAL_EL02 */ 2840 do_tval_write(env, GTIMER_VIRT, value, env->cp15.cntvoff_el2); 2841 } 2842 2843 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2844 uint64_t value) 2845 { 2846 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2847 } 2848 2849 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 ARMCPU *cpu = env_archcpu(env); 2853 uint32_t oldval = env->cp15.cnthctl_el2; 2854 uint32_t valid_mask = 2855 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 2856 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 2857 R_CNTHCTL_EVNTEN_MASK | 2858 R_CNTHCTL_EVNTDIR_MASK | 2859 R_CNTHCTL_EVNTI_MASK | 2860 R_CNTHCTL_EL0VTEN_MASK | 2861 R_CNTHCTL_EL0PTEN_MASK | 2862 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 2863 R_CNTHCTL_EL1PTEN_MASK; 2864 2865 if (cpu_isar_feature(aa64_rme, cpu)) { 2866 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 2867 } 2868 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 2869 valid_mask |= 2870 R_CNTHCTL_EL1TVT_MASK | 2871 R_CNTHCTL_EL1TVCT_MASK | 2872 R_CNTHCTL_EL1NVPCT_MASK | 2873 R_CNTHCTL_EL1NVVCT_MASK | 2874 R_CNTHCTL_EVNTIS_MASK; 2875 } 2876 if (cpu_isar_feature(aa64_ecv, cpu)) { 2877 valid_mask |= R_CNTHCTL_ECV_MASK; 2878 } 2879 2880 /* Clear RES0 bits */ 2881 value &= valid_mask; 2882 2883 raw_write(env, ri, value); 2884 2885 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 2886 gt_update_irq(cpu, GTIMER_VIRT); 2887 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 2888 gt_update_irq(cpu, GTIMER_PHYS); 2889 } 2890 } 2891 2892 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2893 uint64_t value) 2894 { 2895 ARMCPU *cpu = env_archcpu(env); 2896 2897 trace_arm_gt_cntvoff_write(value); 2898 raw_write(env, ri, value); 2899 gt_recalc_timer(cpu, GTIMER_VIRT); 2900 } 2901 2902 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2903 const ARMCPRegInfo *ri) 2904 { 2905 int timeridx = gt_virt_redir_timeridx(env); 2906 return env->cp15.c14_timer[timeridx].cval; 2907 } 2908 2909 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2910 uint64_t value) 2911 { 2912 int timeridx = gt_virt_redir_timeridx(env); 2913 gt_cval_write(env, ri, timeridx, value); 2914 } 2915 2916 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2917 const ARMCPRegInfo *ri) 2918 { 2919 int timeridx = gt_virt_redir_timeridx(env); 2920 return gt_tval_read(env, ri, timeridx); 2921 } 2922 2923 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2924 uint64_t value) 2925 { 2926 int timeridx = gt_virt_redir_timeridx(env); 2927 gt_tval_write(env, ri, timeridx, value); 2928 } 2929 2930 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2931 const ARMCPRegInfo *ri) 2932 { 2933 int timeridx = gt_virt_redir_timeridx(env); 2934 return env->cp15.c14_timer[timeridx].ctl; 2935 } 2936 2937 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2938 uint64_t value) 2939 { 2940 int timeridx = gt_virt_redir_timeridx(env); 2941 gt_ctl_write(env, ri, timeridx, value); 2942 } 2943 2944 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2945 { 2946 gt_timer_reset(env, ri, GTIMER_HYP); 2947 } 2948 2949 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2950 uint64_t value) 2951 { 2952 gt_cval_write(env, ri, GTIMER_HYP, value); 2953 } 2954 2955 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2956 { 2957 return gt_tval_read(env, ri, GTIMER_HYP); 2958 } 2959 2960 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 gt_tval_write(env, ri, GTIMER_HYP, value); 2964 } 2965 2966 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2967 uint64_t value) 2968 { 2969 gt_ctl_write(env, ri, GTIMER_HYP, value); 2970 } 2971 2972 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2973 { 2974 gt_timer_reset(env, ri, GTIMER_SEC); 2975 } 2976 2977 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2978 uint64_t value) 2979 { 2980 gt_cval_write(env, ri, GTIMER_SEC, value); 2981 } 2982 2983 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2984 { 2985 return gt_tval_read(env, ri, GTIMER_SEC); 2986 } 2987 2988 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2989 uint64_t value) 2990 { 2991 gt_tval_write(env, ri, GTIMER_SEC, value); 2992 } 2993 2994 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2995 uint64_t value) 2996 { 2997 gt_ctl_write(env, ri, GTIMER_SEC, value); 2998 } 2999 3000 static void gt_sec_pel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3001 { 3002 gt_timer_reset(env, ri, GTIMER_S_EL2_PHYS); 3003 } 3004 3005 static void gt_sec_pel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3006 uint64_t value) 3007 { 3008 gt_cval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3009 } 3010 3011 static uint64_t gt_sec_pel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3012 { 3013 return gt_tval_read(env, ri, GTIMER_S_EL2_PHYS); 3014 } 3015 3016 static void gt_sec_pel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3017 uint64_t value) 3018 { 3019 gt_tval_write(env, ri, GTIMER_S_EL2_PHYS, value); 3020 } 3021 3022 static void gt_sec_pel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3023 uint64_t value) 3024 { 3025 gt_ctl_write(env, ri, GTIMER_S_EL2_PHYS, value); 3026 } 3027 3028 static void gt_sec_vel2_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3029 { 3030 gt_timer_reset(env, ri, GTIMER_S_EL2_VIRT); 3031 } 3032 3033 static void gt_sec_vel2_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3034 uint64_t value) 3035 { 3036 gt_cval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3037 } 3038 3039 static uint64_t gt_sec_vel2_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3040 { 3041 return gt_tval_read(env, ri, GTIMER_S_EL2_VIRT); 3042 } 3043 3044 static void gt_sec_vel2_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3045 uint64_t value) 3046 { 3047 gt_tval_write(env, ri, GTIMER_S_EL2_VIRT, value); 3048 } 3049 3050 static void gt_sec_vel2_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 gt_ctl_write(env, ri, GTIMER_S_EL2_VIRT, value); 3054 } 3055 3056 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3057 { 3058 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3059 } 3060 3061 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3062 uint64_t value) 3063 { 3064 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3065 } 3066 3067 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3068 { 3069 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3070 } 3071 3072 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3073 uint64_t value) 3074 { 3075 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3076 } 3077 3078 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3082 } 3083 3084 void arm_gt_ptimer_cb(void *opaque) 3085 { 3086 ARMCPU *cpu = opaque; 3087 3088 gt_recalc_timer(cpu, GTIMER_PHYS); 3089 } 3090 3091 void arm_gt_vtimer_cb(void *opaque) 3092 { 3093 ARMCPU *cpu = opaque; 3094 3095 gt_recalc_timer(cpu, GTIMER_VIRT); 3096 } 3097 3098 void arm_gt_htimer_cb(void *opaque) 3099 { 3100 ARMCPU *cpu = opaque; 3101 3102 gt_recalc_timer(cpu, GTIMER_HYP); 3103 } 3104 3105 void arm_gt_stimer_cb(void *opaque) 3106 { 3107 ARMCPU *cpu = opaque; 3108 3109 gt_recalc_timer(cpu, GTIMER_SEC); 3110 } 3111 3112 void arm_gt_sel2timer_cb(void *opaque) 3113 { 3114 ARMCPU *cpu = opaque; 3115 3116 gt_recalc_timer(cpu, GTIMER_S_EL2_PHYS); 3117 } 3118 3119 void arm_gt_sel2vtimer_cb(void *opaque) 3120 { 3121 ARMCPU *cpu = opaque; 3122 3123 gt_recalc_timer(cpu, GTIMER_S_EL2_VIRT); 3124 } 3125 3126 void arm_gt_hvtimer_cb(void *opaque) 3127 { 3128 ARMCPU *cpu = opaque; 3129 3130 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3131 } 3132 3133 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3134 /* 3135 * Note that CNTFRQ is purely reads-as-written for the benefit 3136 * of software; writing it doesn't actually change the timer frequency. 3137 * Our reset value matches the fixed frequency we implement the timer at. 3138 */ 3139 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3140 .type = ARM_CP_ALIAS, 3141 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3142 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3143 }, 3144 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3145 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3146 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3147 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3148 .resetfn = arm_gt_cntfrq_reset, 3149 }, 3150 /* overall control: mostly access permissions */ 3151 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3152 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3153 .access = PL1_RW, 3154 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3155 .resetvalue = 0, 3156 }, 3157 /* per-timer control */ 3158 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3159 .secure = ARM_CP_SECSTATE_NS, 3160 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3161 .accessfn = gt_ptimer_access, 3162 .fieldoffset = offsetoflow32(CPUARMState, 3163 cp15.c14_timer[GTIMER_PHYS].ctl), 3164 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3165 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3166 }, 3167 { .name = "CNTP_CTL_S", 3168 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3169 .secure = ARM_CP_SECSTATE_S, 3170 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3171 .accessfn = gt_ptimer_access, 3172 .fieldoffset = offsetoflow32(CPUARMState, 3173 cp15.c14_timer[GTIMER_SEC].ctl), 3174 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3175 }, 3176 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3177 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3178 .type = ARM_CP_IO, .access = PL0_RW, 3179 .accessfn = gt_ptimer_access, 3180 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3181 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3182 .resetvalue = 0, 3183 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3184 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3185 }, 3186 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3187 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3188 .accessfn = gt_vtimer_access, 3189 .fieldoffset = offsetoflow32(CPUARMState, 3190 cp15.c14_timer[GTIMER_VIRT].ctl), 3191 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3192 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3193 }, 3194 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3195 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3196 .type = ARM_CP_IO, .access = PL0_RW, 3197 .accessfn = gt_vtimer_access, 3198 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3200 .resetvalue = 0, 3201 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3202 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3203 }, 3204 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3205 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3206 .secure = ARM_CP_SECSTATE_NS, 3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3208 .accessfn = gt_ptimer_access, 3209 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3210 }, 3211 { .name = "CNTP_TVAL_S", 3212 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3213 .secure = ARM_CP_SECSTATE_S, 3214 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3215 .accessfn = gt_ptimer_access, 3216 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3217 }, 3218 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3219 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3220 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3221 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3222 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3223 }, 3224 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3225 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3226 .accessfn = gt_vtimer_access, 3227 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3228 }, 3229 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3230 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3231 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3232 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3233 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3234 }, 3235 /* The counter itself */ 3236 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3237 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3238 .accessfn = gt_pct_access, 3239 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3240 }, 3241 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3242 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3243 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3244 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3245 }, 3246 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3247 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3248 .accessfn = gt_vct_access, 3249 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3250 }, 3251 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3252 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3253 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3254 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3255 }, 3256 /* Comparison value, indicating when the timer goes off */ 3257 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3258 .secure = ARM_CP_SECSTATE_NS, 3259 .access = PL0_RW, 3260 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3261 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3262 .accessfn = gt_ptimer_access, 3263 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3264 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3265 }, 3266 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3267 .secure = ARM_CP_SECSTATE_S, 3268 .access = PL0_RW, 3269 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3271 .accessfn = gt_ptimer_access, 3272 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3273 }, 3274 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3275 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3276 .access = PL0_RW, 3277 .type = ARM_CP_IO, 3278 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3280 .resetvalue = 0, .accessfn = gt_ptimer_access, 3281 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3282 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3283 }, 3284 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3285 .access = PL0_RW, 3286 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3288 .accessfn = gt_vtimer_access, 3289 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3290 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3291 }, 3292 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3293 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3294 .access = PL0_RW, 3295 .type = ARM_CP_IO, 3296 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3297 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3298 .resetvalue = 0, .accessfn = gt_vtimer_access, 3299 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3300 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3301 }, 3302 /* 3303 * Secure timer -- this is actually restricted to only EL3 3304 * and configurably Secure-EL1 via the accessfn. 3305 */ 3306 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3307 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3308 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3309 .accessfn = gt_stimer_access, 3310 .readfn = gt_sec_tval_read, 3311 .writefn = gt_sec_tval_write, 3312 .resetfn = gt_sec_timer_reset, 3313 }, 3314 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3315 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3316 .type = ARM_CP_IO, .access = PL1_RW, 3317 .accessfn = gt_stimer_access, 3318 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3319 .resetvalue = 0, 3320 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3321 }, 3322 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3323 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3324 .type = ARM_CP_IO, .access = PL1_RW, 3325 .accessfn = gt_stimer_access, 3326 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3327 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3328 }, 3329 }; 3330 3331 /* 3332 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3333 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3334 * so our implementations here are identical to the normal registers. 3335 */ 3336 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3337 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3338 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3339 .accessfn = gt_vct_access, 3340 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3341 }, 3342 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3343 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3344 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3345 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3346 }, 3347 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3348 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3349 .accessfn = gt_pct_access, 3350 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3351 }, 3352 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3353 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3354 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3355 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3356 }, 3357 }; 3358 3359 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3360 const ARMCPRegInfo *ri, 3361 bool isread) 3362 { 3363 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3364 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3365 return CP_ACCESS_TRAP_EL3; 3366 } 3367 return CP_ACCESS_OK; 3368 } 3369 3370 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3371 uint64_t value) 3372 { 3373 ARMCPU *cpu = env_archcpu(env); 3374 3375 trace_arm_gt_cntpoff_write(value); 3376 raw_write(env, ri, value); 3377 gt_recalc_timer(cpu, GTIMER_PHYS); 3378 } 3379 3380 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3381 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3382 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3383 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3384 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3385 .nv2_redirect_offset = 0x1a8, 3386 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3387 }; 3388 #else 3389 3390 /* 3391 * In user-mode most of the generic timer registers are inaccessible 3392 * however modern kernels (4.12+) allow access to cntvct_el0 3393 */ 3394 3395 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3396 { 3397 ARMCPU *cpu = env_archcpu(env); 3398 3399 /* 3400 * Currently we have no support for QEMUTimer in linux-user so we 3401 * can't call gt_get_countervalue(env), instead we directly 3402 * call the lower level functions. 3403 */ 3404 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3405 } 3406 3407 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3408 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3409 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3410 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3411 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3412 .resetfn = arm_gt_cntfrq_reset, 3413 }, 3414 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3416 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3417 .readfn = gt_virt_cnt_read, 3418 }, 3419 }; 3420 3421 /* 3422 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3423 * is exposed to userspace by Linux. 3424 */ 3425 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3426 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3428 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3429 .readfn = gt_virt_cnt_read, 3430 }, 3431 }; 3432 3433 #endif 3434 3435 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3436 { 3437 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3438 raw_write(env, ri, value); 3439 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3440 raw_write(env, ri, value & 0xfffff6ff); 3441 } else { 3442 raw_write(env, ri, value & 0xfffff1ff); 3443 } 3444 } 3445 3446 #ifndef CONFIG_USER_ONLY 3447 /* get_phys_addr() isn't present for user-mode-only targets */ 3448 3449 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3450 bool isread) 3451 { 3452 if (ri->opc2 & 4) { 3453 /* 3454 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3455 * Secure EL1 (which can only happen if EL3 is AArch64). 3456 * They are simply UNDEF if executed from NS EL1. 3457 * They function normally from EL2 or EL3. 3458 */ 3459 if (arm_current_el(env) == 1) { 3460 if (arm_is_secure_below_el3(env)) { 3461 if (env->cp15.scr_el3 & SCR_EEL2) { 3462 return CP_ACCESS_TRAP_EL2; 3463 } 3464 return CP_ACCESS_TRAP_EL3; 3465 } 3466 return CP_ACCESS_UNDEFINED; 3467 } 3468 } 3469 return CP_ACCESS_OK; 3470 } 3471 3472 #ifdef CONFIG_TCG 3473 static int par_el1_shareability(GetPhysAddrResult *res) 3474 { 3475 /* 3476 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3477 * memory -- see pseudocode PAREncodeShareability(). 3478 */ 3479 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3480 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3481 return 2; 3482 } 3483 return res->cacheattrs.shareability; 3484 } 3485 3486 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3487 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3488 ARMSecuritySpace ss) 3489 { 3490 bool ret; 3491 uint64_t par64; 3492 bool format64 = false; 3493 ARMMMUFaultInfo fi = {}; 3494 GetPhysAddrResult res = {}; 3495 3496 /* 3497 * I_MXTJT: Granule protection checks are not performed on the final 3498 * address of a successful translation. This is a translation not a 3499 * memory reference, so "memop = none = 0". 3500 */ 3501 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3502 mmu_idx, ss, &res, &fi); 3503 3504 /* 3505 * ATS operations only do S1 or S1+S2 translations, so we never 3506 * have to deal with the ARMCacheAttrs format for S2 only. 3507 */ 3508 assert(!res.cacheattrs.is_s2_format); 3509 3510 if (ret) { 3511 /* 3512 * Some kinds of translation fault must cause exceptions rather 3513 * than being reported in the PAR. 3514 */ 3515 int current_el = arm_current_el(env); 3516 int target_el; 3517 uint32_t syn, fsr, fsc; 3518 bool take_exc = false; 3519 3520 if (fi.s1ptw && current_el == 1 3521 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3522 /* 3523 * Synchronous stage 2 fault on an access made as part of the 3524 * translation table walk for AT S1E0* or AT S1E1* insn 3525 * executed from NS EL1. If this is a synchronous external abort 3526 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3527 * to EL3. Otherwise the fault is taken as an exception to EL2, 3528 * and HPFAR_EL2 holds the faulting IPA. 3529 */ 3530 if (fi.type == ARMFault_SyncExternalOnWalk && 3531 (env->cp15.scr_el3 & SCR_EA)) { 3532 target_el = 3; 3533 } else { 3534 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3535 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3536 env->cp15.hpfar_el2 |= HPFAR_NS; 3537 } 3538 target_el = 2; 3539 } 3540 take_exc = true; 3541 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3542 /* 3543 * Synchronous external aborts during a translation table walk 3544 * are taken as Data Abort exceptions. 3545 */ 3546 if (fi.stage2) { 3547 if (current_el == 3) { 3548 target_el = 3; 3549 } else { 3550 target_el = 2; 3551 } 3552 } else { 3553 target_el = exception_target_el(env); 3554 } 3555 take_exc = true; 3556 } 3557 3558 if (take_exc) { 3559 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3560 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3561 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3562 fsr = arm_fi_to_lfsc(&fi); 3563 fsc = extract32(fsr, 0, 6); 3564 } else { 3565 fsr = arm_fi_to_sfsc(&fi); 3566 fsc = 0x3f; 3567 } 3568 /* 3569 * Report exception with ESR indicating a fault due to a 3570 * translation table walk for a cache maintenance instruction. 3571 */ 3572 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3573 fi.ea, 1, fi.s1ptw, 1, fsc); 3574 env->exception.vaddress = value; 3575 env->exception.fsr = fsr; 3576 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3577 } 3578 } 3579 3580 if (is_a64(env)) { 3581 format64 = true; 3582 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3583 /* 3584 * ATS1Cxx: 3585 * * TTBCR.EAE determines whether the result is returned using the 3586 * 32-bit or the 64-bit PAR format 3587 * * Instructions executed in Hyp mode always use the 64bit format 3588 * 3589 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3590 * * The Non-secure TTBCR.EAE bit is set to 1 3591 * * The implementation includes EL2, and the value of HCR.VM is 1 3592 * 3593 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3594 * 3595 * ATS1Hx always uses the 64bit format. 3596 */ 3597 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3598 3599 if (arm_feature(env, ARM_FEATURE_EL2)) { 3600 if (mmu_idx == ARMMMUIdx_E10_0 || 3601 mmu_idx == ARMMMUIdx_E10_1 || 3602 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3603 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3604 } else { 3605 format64 |= arm_current_el(env) == 2; 3606 } 3607 } 3608 } 3609 3610 if (format64) { 3611 /* Create a 64-bit PAR */ 3612 par64 = (1 << 11); /* LPAE bit always set */ 3613 if (!ret) { 3614 par64 |= res.f.phys_addr & ~0xfffULL; 3615 if (!res.f.attrs.secure) { 3616 par64 |= (1 << 9); /* NS */ 3617 } 3618 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3619 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3620 } else { 3621 uint32_t fsr = arm_fi_to_lfsc(&fi); 3622 3623 par64 |= 1; /* F */ 3624 par64 |= (fsr & 0x3f) << 1; /* FS */ 3625 if (fi.stage2) { 3626 par64 |= (1 << 9); /* S */ 3627 } 3628 if (fi.s1ptw) { 3629 par64 |= (1 << 8); /* PTW */ 3630 } 3631 } 3632 } else { 3633 /* 3634 * fsr is a DFSR/IFSR value for the short descriptor 3635 * translation table format (with WnR always clear). 3636 * Convert it to a 32-bit PAR. 3637 */ 3638 if (!ret) { 3639 /* We do not set any attribute bits in the PAR */ 3640 if (res.f.lg_page_size == 24 3641 && arm_feature(env, ARM_FEATURE_V7)) { 3642 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3643 } else { 3644 par64 = res.f.phys_addr & 0xfffff000; 3645 } 3646 if (!res.f.attrs.secure) { 3647 par64 |= (1 << 9); /* NS */ 3648 } 3649 } else { 3650 uint32_t fsr = arm_fi_to_sfsc(&fi); 3651 3652 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3653 ((fsr & 0xf) << 1) | 1; 3654 } 3655 } 3656 return par64; 3657 } 3658 #endif /* CONFIG_TCG */ 3659 3660 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3661 { 3662 #ifdef CONFIG_TCG 3663 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3664 uint64_t par64; 3665 ARMMMUIdx mmu_idx; 3666 int el = arm_current_el(env); 3667 ARMSecuritySpace ss = arm_security_space(env); 3668 3669 switch (ri->opc2 & 6) { 3670 case 0: 3671 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3672 switch (el) { 3673 case 3: 3674 if (ri->crm == 9 && arm_pan_enabled(env)) { 3675 mmu_idx = ARMMMUIdx_E30_3_PAN; 3676 } else { 3677 mmu_idx = ARMMMUIdx_E3; 3678 } 3679 break; 3680 case 2: 3681 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3682 /* fall through */ 3683 case 1: 3684 if (ri->crm == 9 && arm_pan_enabled(env)) { 3685 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3686 } else { 3687 mmu_idx = ARMMMUIdx_Stage1_E1; 3688 } 3689 break; 3690 default: 3691 g_assert_not_reached(); 3692 } 3693 break; 3694 case 2: 3695 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3696 switch (el) { 3697 case 3: 3698 mmu_idx = ARMMMUIdx_E30_0; 3699 break; 3700 case 2: 3701 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3702 mmu_idx = ARMMMUIdx_Stage1_E0; 3703 break; 3704 case 1: 3705 mmu_idx = ARMMMUIdx_Stage1_E0; 3706 break; 3707 default: 3708 g_assert_not_reached(); 3709 } 3710 break; 3711 case 4: 3712 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3713 mmu_idx = ARMMMUIdx_E10_1; 3714 ss = ARMSS_NonSecure; 3715 break; 3716 case 6: 3717 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3718 mmu_idx = ARMMMUIdx_E10_0; 3719 ss = ARMSS_NonSecure; 3720 break; 3721 default: 3722 g_assert_not_reached(); 3723 } 3724 3725 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3726 3727 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3728 #else 3729 /* Handled by hardware accelerator. */ 3730 g_assert_not_reached(); 3731 #endif /* CONFIG_TCG */ 3732 } 3733 3734 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3735 uint64_t value) 3736 { 3737 #ifdef CONFIG_TCG 3738 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3739 uint64_t par64; 3740 3741 /* There is no SecureEL2 for AArch32. */ 3742 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3743 ARMSS_NonSecure); 3744 3745 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3746 #else 3747 /* Handled by hardware accelerator. */ 3748 g_assert_not_reached(); 3749 #endif /* CONFIG_TCG */ 3750 } 3751 3752 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3753 bool isread) 3754 { 3755 /* 3756 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3757 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3758 * only happen when executing at EL3 because that combination also causes an 3759 * illegal exception return. We don't need to check FEAT_RME either, because 3760 * scr_write() ensures that the NSE bit is not set otherwise. 3761 */ 3762 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3763 return CP_ACCESS_UNDEFINED; 3764 } 3765 return CP_ACCESS_OK; 3766 } 3767 3768 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3769 bool isread) 3770 { 3771 if (arm_current_el(env) == 3 && 3772 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3773 return CP_ACCESS_UNDEFINED; 3774 } 3775 return at_e012_access(env, ri, isread); 3776 } 3777 3778 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3779 bool isread) 3780 { 3781 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3782 return CP_ACCESS_TRAP_EL2; 3783 } 3784 return at_e012_access(env, ri, isread); 3785 } 3786 3787 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3788 uint64_t value) 3789 { 3790 #ifdef CONFIG_TCG 3791 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3792 ARMMMUIdx mmu_idx; 3793 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3794 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3795 bool for_el3 = false; 3796 ARMSecuritySpace ss; 3797 3798 switch (ri->opc2 & 6) { 3799 case 0: 3800 switch (ri->opc1) { 3801 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3802 if (ri->crm == 9 && arm_pan_enabled(env)) { 3803 mmu_idx = regime_e20 ? 3804 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3805 } else { 3806 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3807 } 3808 break; 3809 case 4: /* AT S1E2R, AT S1E2W */ 3810 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3811 break; 3812 case 6: /* AT S1E3R, AT S1E3W */ 3813 mmu_idx = ARMMMUIdx_E3; 3814 for_el3 = true; 3815 break; 3816 default: 3817 g_assert_not_reached(); 3818 } 3819 break; 3820 case 2: /* AT S1E0R, AT S1E0W */ 3821 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3822 break; 3823 case 4: /* AT S12E1R, AT S12E1W */ 3824 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3825 break; 3826 case 6: /* AT S12E0R, AT S12E0W */ 3827 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3828 break; 3829 default: 3830 g_assert_not_reached(); 3831 } 3832 3833 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3834 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3835 #else 3836 /* Handled by hardware accelerator. */ 3837 g_assert_not_reached(); 3838 #endif /* CONFIG_TCG */ 3839 } 3840 #endif 3841 3842 /* Return basic MPU access permission bits. */ 3843 static uint32_t simple_mpu_ap_bits(uint32_t val) 3844 { 3845 uint32_t ret; 3846 uint32_t mask; 3847 int i; 3848 ret = 0; 3849 mask = 3; 3850 for (i = 0; i < 16; i += 2) { 3851 ret |= (val >> i) & mask; 3852 mask <<= 2; 3853 } 3854 return ret; 3855 } 3856 3857 /* Pad basic MPU access permission bits to extended format. */ 3858 static uint32_t extended_mpu_ap_bits(uint32_t val) 3859 { 3860 uint32_t ret; 3861 uint32_t mask; 3862 int i; 3863 ret = 0; 3864 mask = 3; 3865 for (i = 0; i < 16; i += 2) { 3866 ret |= (val & mask) << i; 3867 mask <<= 2; 3868 } 3869 return ret; 3870 } 3871 3872 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3873 uint64_t value) 3874 { 3875 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3876 } 3877 3878 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3879 { 3880 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3881 } 3882 3883 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3884 uint64_t value) 3885 { 3886 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3887 } 3888 3889 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3890 { 3891 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3892 } 3893 3894 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3895 { 3896 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3897 3898 if (!u32p) { 3899 return 0; 3900 } 3901 3902 u32p += env->pmsav7.rnr[M_REG_NS]; 3903 return *u32p; 3904 } 3905 3906 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3907 uint64_t value) 3908 { 3909 ARMCPU *cpu = env_archcpu(env); 3910 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3911 3912 if (!u32p) { 3913 return; 3914 } 3915 3916 u32p += env->pmsav7.rnr[M_REG_NS]; 3917 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3918 *u32p = value; 3919 } 3920 3921 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3922 uint64_t value) 3923 { 3924 ARMCPU *cpu = env_archcpu(env); 3925 uint32_t nrgs = cpu->pmsav7_dregion; 3926 3927 if (value >= nrgs) { 3928 qemu_log_mask(LOG_GUEST_ERROR, 3929 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3930 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3931 return; 3932 } 3933 3934 raw_write(env, ri, value); 3935 } 3936 3937 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3938 uint64_t value) 3939 { 3940 ARMCPU *cpu = env_archcpu(env); 3941 3942 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3943 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3944 } 3945 3946 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3947 { 3948 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3949 } 3950 3951 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3952 uint64_t value) 3953 { 3954 ARMCPU *cpu = env_archcpu(env); 3955 3956 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3957 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3958 } 3959 3960 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3961 { 3962 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3963 } 3964 3965 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3966 uint64_t value) 3967 { 3968 ARMCPU *cpu = env_archcpu(env); 3969 3970 /* 3971 * Ignore writes that would select not implemented region. 3972 * This is architecturally UNPREDICTABLE. 3973 */ 3974 if (value >= cpu->pmsav7_dregion) { 3975 return; 3976 } 3977 3978 env->pmsav7.rnr[M_REG_NS] = value; 3979 } 3980 3981 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3982 uint64_t value) 3983 { 3984 ARMCPU *cpu = env_archcpu(env); 3985 3986 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3987 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3988 } 3989 3990 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3991 { 3992 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3993 } 3994 3995 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3996 uint64_t value) 3997 { 3998 ARMCPU *cpu = env_archcpu(env); 3999 4000 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4001 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4002 } 4003 4004 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4005 { 4006 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4007 } 4008 4009 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4010 uint64_t value) 4011 { 4012 uint32_t n; 4013 uint32_t bit; 4014 ARMCPU *cpu = env_archcpu(env); 4015 4016 /* Ignore writes to unimplemented regions */ 4017 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4018 value &= MAKE_64BIT_MASK(0, rmax); 4019 4020 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4021 4022 /* Register alias is only valid for first 32 indexes */ 4023 for (n = 0; n < rmax; ++n) { 4024 bit = extract32(value, n, 1); 4025 env->pmsav8.hprlar[n] = deposit32( 4026 env->pmsav8.hprlar[n], 0, 1, bit); 4027 } 4028 } 4029 4030 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4031 { 4032 uint32_t n; 4033 uint32_t result = 0x0; 4034 ARMCPU *cpu = env_archcpu(env); 4035 4036 /* Register alias is only valid for first 32 indexes */ 4037 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4038 if (env->pmsav8.hprlar[n] & 0x1) { 4039 result |= (0x1 << n); 4040 } 4041 } 4042 return result; 4043 } 4044 4045 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4046 uint64_t value) 4047 { 4048 ARMCPU *cpu = env_archcpu(env); 4049 4050 /* 4051 * Ignore writes that would select not implemented region. 4052 * This is architecturally UNPREDICTABLE. 4053 */ 4054 if (value >= cpu->pmsav8r_hdregion) { 4055 return; 4056 } 4057 4058 env->pmsav8.hprselr = value; 4059 } 4060 4061 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4062 uint64_t value) 4063 { 4064 ARMCPU *cpu = env_archcpu(env); 4065 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4066 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4067 4068 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4069 4070 if (ri->opc1 & 4) { 4071 if (index >= cpu->pmsav8r_hdregion) { 4072 return; 4073 } 4074 if (ri->opc2 & 0x1) { 4075 env->pmsav8.hprlar[index] = value; 4076 } else { 4077 env->pmsav8.hprbar[index] = value; 4078 } 4079 } else { 4080 if (index >= cpu->pmsav7_dregion) { 4081 return; 4082 } 4083 if (ri->opc2 & 0x1) { 4084 env->pmsav8.rlar[M_REG_NS][index] = value; 4085 } else { 4086 env->pmsav8.rbar[M_REG_NS][index] = value; 4087 } 4088 } 4089 } 4090 4091 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4092 { 4093 ARMCPU *cpu = env_archcpu(env); 4094 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4095 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4096 4097 if (ri->opc1 & 4) { 4098 if (index >= cpu->pmsav8r_hdregion) { 4099 return 0x0; 4100 } 4101 if (ri->opc2 & 0x1) { 4102 return env->pmsav8.hprlar[index]; 4103 } else { 4104 return env->pmsav8.hprbar[index]; 4105 } 4106 } else { 4107 if (index >= cpu->pmsav7_dregion) { 4108 return 0x0; 4109 } 4110 if (ri->opc2 & 0x1) { 4111 return env->pmsav8.rlar[M_REG_NS][index]; 4112 } else { 4113 return env->pmsav8.rbar[M_REG_NS][index]; 4114 } 4115 } 4116 } 4117 4118 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4119 { .name = "PRBAR", 4120 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4121 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4122 .accessfn = access_tvm_trvm, 4123 .readfn = prbar_read, .writefn = prbar_write }, 4124 { .name = "PRLAR", 4125 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4126 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4127 .accessfn = access_tvm_trvm, 4128 .readfn = prlar_read, .writefn = prlar_write }, 4129 { .name = "PRSELR", .resetvalue = 0, 4130 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4131 .access = PL1_RW, .accessfn = access_tvm_trvm, 4132 .writefn = prselr_write, 4133 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4134 { .name = "HPRBAR", .resetvalue = 0, 4135 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4136 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4137 .readfn = hprbar_read, .writefn = hprbar_write }, 4138 { .name = "HPRLAR", 4139 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4140 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4141 .readfn = hprlar_read, .writefn = hprlar_write }, 4142 { .name = "HPRSELR", .resetvalue = 0, 4143 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4144 .access = PL2_RW, 4145 .writefn = hprselr_write, 4146 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4147 { .name = "HPRENR", 4148 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4149 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4150 .readfn = hprenr_read, .writefn = hprenr_write }, 4151 }; 4152 4153 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4154 /* 4155 * Reset for all these registers is handled in arm_cpu_reset(), 4156 * because the PMSAv7 is also used by M-profile CPUs, which do 4157 * not register cpregs but still need the state to be reset. 4158 */ 4159 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4160 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4161 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4162 .readfn = pmsav7_read, .writefn = pmsav7_write, 4163 .resetfn = arm_cp_reset_ignore }, 4164 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4165 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4166 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4167 .readfn = pmsav7_read, .writefn = pmsav7_write, 4168 .resetfn = arm_cp_reset_ignore }, 4169 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4170 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4171 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4172 .readfn = pmsav7_read, .writefn = pmsav7_write, 4173 .resetfn = arm_cp_reset_ignore }, 4174 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4175 .access = PL1_RW, 4176 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4177 .writefn = pmsav7_rgnr_write, 4178 .resetfn = arm_cp_reset_ignore }, 4179 }; 4180 4181 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4182 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4183 .access = PL1_RW, .type = ARM_CP_ALIAS, 4184 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4185 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4186 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4187 .access = PL1_RW, .type = ARM_CP_ALIAS, 4188 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4189 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4190 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4191 .access = PL1_RW, 4192 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4193 .resetvalue = 0, }, 4194 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4195 .access = PL1_RW, 4196 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4197 .resetvalue = 0, }, 4198 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4199 .access = PL1_RW, 4200 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4201 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4202 .access = PL1_RW, 4203 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4204 /* Protection region base and size registers */ 4205 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4206 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4207 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4208 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4209 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4210 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4211 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4212 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4213 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4214 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4215 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4216 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4217 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4218 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4219 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4220 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4221 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4222 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4223 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4224 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4225 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4226 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4227 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4228 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4229 }; 4230 4231 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4232 uint64_t value) 4233 { 4234 ARMCPU *cpu = env_archcpu(env); 4235 4236 if (!arm_feature(env, ARM_FEATURE_V8)) { 4237 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4238 /* 4239 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4240 * using Long-descriptor translation table format 4241 */ 4242 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4243 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4244 /* 4245 * In an implementation that includes the Security Extensions 4246 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4247 * Short-descriptor translation table format. 4248 */ 4249 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4250 } else { 4251 value &= TTBCR_N; 4252 } 4253 } 4254 4255 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4256 /* 4257 * With LPAE the TTBCR could result in a change of ASID 4258 * via the TTBCR.A1 bit, so do a TLB flush. 4259 */ 4260 tlb_flush(CPU(cpu)); 4261 } 4262 raw_write(env, ri, value); 4263 } 4264 4265 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4266 uint64_t value) 4267 { 4268 ARMCPU *cpu = env_archcpu(env); 4269 4270 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4271 tlb_flush(CPU(cpu)); 4272 raw_write(env, ri, value); 4273 } 4274 4275 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4276 uint64_t value) 4277 { 4278 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4279 if (cpreg_field_is_64bit(ri) && 4280 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4281 ARMCPU *cpu = env_archcpu(env); 4282 tlb_flush(CPU(cpu)); 4283 } 4284 raw_write(env, ri, value); 4285 } 4286 4287 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4288 uint64_t value) 4289 { 4290 /* 4291 * If we are running with E2&0 regime, then an ASID is active. 4292 * Flush if that might be changing. Note we're not checking 4293 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4294 * holds the active ASID, only checking the field that might. 4295 */ 4296 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4297 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4298 uint16_t mask = ARMMMUIdxBit_E20_2 | 4299 ARMMMUIdxBit_E20_2_PAN | 4300 ARMMMUIdxBit_E20_0; 4301 tlb_flush_by_mmuidx(env_cpu(env), mask); 4302 } 4303 raw_write(env, ri, value); 4304 } 4305 4306 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4307 uint64_t value) 4308 { 4309 ARMCPU *cpu = env_archcpu(env); 4310 CPUState *cs = CPU(cpu); 4311 4312 /* 4313 * A change in VMID to the stage2 page table (Stage2) invalidates 4314 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4315 */ 4316 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4317 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4318 } 4319 raw_write(env, ri, value); 4320 } 4321 4322 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4323 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4324 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4325 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4326 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4327 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4328 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4329 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4330 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4331 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4332 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4333 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4334 offsetof(CPUARMState, cp15.dfar_ns) } }, 4335 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4337 .access = PL1_RW, .accessfn = access_tvm_trvm, 4338 .fgt = FGT_FAR_EL1, 4339 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4340 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4341 .resetvalue = 0, }, 4342 }; 4343 4344 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4345 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4346 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4347 .access = PL1_RW, .accessfn = access_tvm_trvm, 4348 .fgt = FGT_ESR_EL1, 4349 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4350 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4351 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4352 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4353 .access = PL1_RW, .accessfn = access_tvm_trvm, 4354 .fgt = FGT_TTBR0_EL1, 4355 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4356 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4357 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4358 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4359 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4360 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4361 .access = PL1_RW, .accessfn = access_tvm_trvm, 4362 .fgt = FGT_TTBR1_EL1, 4363 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4364 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4365 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4366 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4367 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4368 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4369 .access = PL1_RW, .accessfn = access_tvm_trvm, 4370 .fgt = FGT_TCR_EL1, 4371 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4372 .writefn = vmsa_tcr_el12_write, 4373 .raw_writefn = raw_write, 4374 .resetvalue = 0, 4375 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4376 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4377 .access = PL1_RW, .accessfn = access_tvm_trvm, 4378 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4379 .raw_writefn = raw_write, 4380 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4381 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4382 }; 4383 4384 /* 4385 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4386 * qemu tlbs nor adjusting cached masks. 4387 */ 4388 static const ARMCPRegInfo ttbcr2_reginfo = { 4389 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4390 .access = PL1_RW, .accessfn = access_tvm_trvm, 4391 .type = ARM_CP_ALIAS, 4392 .bank_fieldoffsets = { 4393 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4394 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4395 }, 4396 }; 4397 4398 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4399 uint64_t value) 4400 { 4401 env->cp15.c15_ticonfig = value & 0xe7; 4402 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4403 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4404 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4405 } 4406 4407 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4408 uint64_t value) 4409 { 4410 env->cp15.c15_threadid = value & 0xffff; 4411 } 4412 4413 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 /* Wait-for-interrupt (deprecated) */ 4417 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4418 } 4419 4420 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4421 uint64_t value) 4422 { 4423 /* 4424 * On OMAP there are registers indicating the max/min index of dcache lines 4425 * containing a dirty line; cache flush operations have to reset these. 4426 */ 4427 env->cp15.c15_i_max = 0x000; 4428 env->cp15.c15_i_min = 0xff0; 4429 } 4430 4431 static const ARMCPRegInfo omap_cp_reginfo[] = { 4432 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4433 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4434 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4435 .resetvalue = 0, }, 4436 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4437 .access = PL1_RW, .type = ARM_CP_NOP }, 4438 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4439 .access = PL1_RW, 4440 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4441 .writefn = omap_ticonfig_write }, 4442 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4443 .access = PL1_RW, 4444 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4445 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4446 .access = PL1_RW, .resetvalue = 0xff0, 4447 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4448 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4449 .access = PL1_RW, 4450 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4451 .writefn = omap_threadid_write }, 4452 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4453 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4454 .type = ARM_CP_NO_RAW, 4455 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4456 /* 4457 * TODO: Peripheral port remap register: 4458 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4459 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4460 * when MMU is off. 4461 */ 4462 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4463 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4464 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4465 .writefn = omap_cachemaint_write }, 4466 { .name = "C9", .cp = 15, .crn = 9, 4467 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4468 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4469 }; 4470 4471 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4472 uint64_t value) 4473 { 4474 env->cp15.c15_cpar = value & 0x3fff; 4475 } 4476 4477 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4478 { .name = "XSCALE_CPAR", 4479 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4480 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4481 .writefn = xscale_cpar_write, }, 4482 { .name = "XSCALE_AUXCR", 4483 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4484 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4485 .resetvalue = 0, }, 4486 /* 4487 * XScale specific cache-lockdown: since we have no cache we NOP these 4488 * and hope the guest does not really rely on cache behaviour. 4489 */ 4490 { .name = "XSCALE_LOCK_ICACHE_LINE", 4491 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4492 .access = PL1_W, .type = ARM_CP_NOP }, 4493 { .name = "XSCALE_UNLOCK_ICACHE", 4494 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4495 .access = PL1_W, .type = ARM_CP_NOP }, 4496 { .name = "XSCALE_DCACHE_LOCK", 4497 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4498 .access = PL1_RW, .type = ARM_CP_NOP }, 4499 { .name = "XSCALE_UNLOCK_DCACHE", 4500 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4501 .access = PL1_W, .type = ARM_CP_NOP }, 4502 }; 4503 4504 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4505 /* 4506 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4507 * implementation of this implementation-defined space. 4508 * Ideally this should eventually disappear in favour of actually 4509 * implementing the correct behaviour for all cores. 4510 */ 4511 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4512 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4513 .access = PL1_RW, 4514 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4515 .resetvalue = 0 }, 4516 }; 4517 4518 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4519 /* Cache status: RAZ because we have no cache so it's always clean */ 4520 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4521 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4522 .resetvalue = 0 }, 4523 }; 4524 4525 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4526 /* We never have a block transfer operation in progress */ 4527 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4528 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4529 .resetvalue = 0 }, 4530 /* The cache ops themselves: these all NOP for QEMU */ 4531 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4532 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4533 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4534 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4535 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4536 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4537 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4538 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4539 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4540 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4541 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4542 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4543 }; 4544 4545 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4546 /* 4547 * The cache test-and-clean instructions always return (1 << 30) 4548 * to indicate that there are no dirty cache lines. 4549 */ 4550 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4551 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4552 .resetvalue = (1 << 30) }, 4553 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4554 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4555 .resetvalue = (1 << 30) }, 4556 }; 4557 4558 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4559 /* Ignore ReadBuffer accesses */ 4560 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4561 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4562 .access = PL1_RW, .resetvalue = 0, 4563 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4564 }; 4565 4566 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4567 { 4568 unsigned int cur_el = arm_current_el(env); 4569 4570 if (arm_is_el2_enabled(env) && cur_el == 1) { 4571 return env->cp15.vpidr_el2; 4572 } 4573 return raw_read(env, ri); 4574 } 4575 4576 static uint64_t mpidr_read_val(CPUARMState *env) 4577 { 4578 ARMCPU *cpu = env_archcpu(env); 4579 uint64_t mpidr = cpu->mp_affinity; 4580 4581 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4582 mpidr |= (1U << 31); 4583 /* 4584 * Cores which are uniprocessor (non-coherent) 4585 * but still implement the MP extensions set 4586 * bit 30. (For instance, Cortex-R5). 4587 */ 4588 if (cpu->mp_is_up) { 4589 mpidr |= (1u << 30); 4590 } 4591 } 4592 return mpidr; 4593 } 4594 4595 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4596 { 4597 unsigned int cur_el = arm_current_el(env); 4598 4599 if (arm_is_el2_enabled(env) && cur_el == 1) { 4600 return env->cp15.vmpidr_el2; 4601 } 4602 return mpidr_read_val(env); 4603 } 4604 4605 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4606 /* NOP AMAIR0/1 */ 4607 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4608 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4609 .access = PL1_RW, .accessfn = access_tvm_trvm, 4610 .fgt = FGT_AMAIR_EL1, 4611 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4612 .type = ARM_CP_CONST, .resetvalue = 0 }, 4613 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4614 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4615 .access = PL1_RW, .accessfn = access_tvm_trvm, 4616 .type = ARM_CP_CONST, .resetvalue = 0 }, 4617 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4618 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4619 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4620 offsetof(CPUARMState, cp15.par_ns)} }, 4621 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4622 .access = PL1_RW, .accessfn = access_tvm_trvm, 4623 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4624 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4625 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4626 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4627 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4628 .access = PL1_RW, .accessfn = access_tvm_trvm, 4629 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4630 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4631 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4632 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4633 }; 4634 4635 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4636 { 4637 return vfp_get_fpcr(env); 4638 } 4639 4640 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4641 uint64_t value) 4642 { 4643 vfp_set_fpcr(env, value); 4644 } 4645 4646 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4647 { 4648 return vfp_get_fpsr(env); 4649 } 4650 4651 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4652 uint64_t value) 4653 { 4654 vfp_set_fpsr(env, value); 4655 } 4656 4657 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4658 bool isread) 4659 { 4660 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4661 return CP_ACCESS_TRAP_EL1; 4662 } 4663 return CP_ACCESS_OK; 4664 } 4665 4666 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4667 uint64_t value) 4668 { 4669 env->daif = value & PSTATE_DAIF; 4670 } 4671 4672 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4673 { 4674 return env->pstate & PSTATE_PAN; 4675 } 4676 4677 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4678 uint64_t value) 4679 { 4680 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4681 } 4682 4683 static const ARMCPRegInfo pan_reginfo = { 4684 .name = "PAN", .state = ARM_CP_STATE_AA64, 4685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4686 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4687 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4688 }; 4689 4690 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4691 { 4692 return env->pstate & PSTATE_UAO; 4693 } 4694 4695 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4696 uint64_t value) 4697 { 4698 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4699 } 4700 4701 static const ARMCPRegInfo uao_reginfo = { 4702 .name = "UAO", .state = ARM_CP_STATE_AA64, 4703 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4704 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4705 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4706 }; 4707 4708 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4709 { 4710 return env->pstate & PSTATE_DIT; 4711 } 4712 4713 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4717 } 4718 4719 static const ARMCPRegInfo dit_reginfo = { 4720 .name = "DIT", .state = ARM_CP_STATE_AA64, 4721 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4722 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4723 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4724 }; 4725 4726 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4727 { 4728 return env->pstate & PSTATE_SSBS; 4729 } 4730 4731 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4732 uint64_t value) 4733 { 4734 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4735 } 4736 4737 static const ARMCPRegInfo ssbs_reginfo = { 4738 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4739 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4740 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4741 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4742 }; 4743 4744 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4745 const ARMCPRegInfo *ri, 4746 bool isread) 4747 { 4748 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4749 switch (arm_current_el(env)) { 4750 case 0: 4751 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4752 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4753 return CP_ACCESS_TRAP_EL1; 4754 } 4755 /* fall through */ 4756 case 1: 4757 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4758 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4759 return CP_ACCESS_TRAP_EL2; 4760 } 4761 break; 4762 } 4763 return CP_ACCESS_OK; 4764 } 4765 4766 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4767 { 4768 /* Cache invalidate/clean to Point of Unification... */ 4769 switch (arm_current_el(env)) { 4770 case 0: 4771 /* ... EL0 must trap to EL1 unless SCTLR_EL1.UCI is set. */ 4772 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4773 return CP_ACCESS_TRAP_EL1; 4774 } 4775 /* fall through */ 4776 case 1: 4777 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4778 if (arm_hcr_el2_eff(env) & hcrflags) { 4779 return CP_ACCESS_TRAP_EL2; 4780 } 4781 break; 4782 } 4783 return CP_ACCESS_OK; 4784 } 4785 4786 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4787 bool isread) 4788 { 4789 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4790 } 4791 4792 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4793 bool isread) 4794 { 4795 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4796 } 4797 4798 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4799 bool isread) 4800 { 4801 int cur_el = arm_current_el(env); 4802 4803 if (cur_el < 2) { 4804 uint64_t hcr = arm_hcr_el2_eff(env); 4805 4806 if (cur_el == 0) { 4807 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4808 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4809 return CP_ACCESS_TRAP_EL2; 4810 } 4811 } else { 4812 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4813 return CP_ACCESS_TRAP_EL1; 4814 } 4815 if (hcr & HCR_TDZ) { 4816 return CP_ACCESS_TRAP_EL2; 4817 } 4818 } 4819 } else if (hcr & HCR_TDZ) { 4820 return CP_ACCESS_TRAP_EL2; 4821 } 4822 } 4823 return CP_ACCESS_OK; 4824 } 4825 4826 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4827 { 4828 ARMCPU *cpu = env_archcpu(env); 4829 int dzp_bit = 1 << 4; 4830 4831 /* DZP indicates whether DC ZVA access is allowed */ 4832 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4833 dzp_bit = 0; 4834 } 4835 return cpu->dcz_blocksize | dzp_bit; 4836 } 4837 4838 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4839 bool isread) 4840 { 4841 if (!(env->pstate & PSTATE_SP)) { 4842 /* 4843 * Access to SP_EL0 is undefined if it's being used as 4844 * the stack pointer. 4845 */ 4846 return CP_ACCESS_UNDEFINED; 4847 } 4848 return CP_ACCESS_OK; 4849 } 4850 4851 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4852 { 4853 return env->pstate & PSTATE_SP; 4854 } 4855 4856 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4857 { 4858 update_spsel(env, val); 4859 } 4860 4861 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4862 uint64_t value) 4863 { 4864 ARMCPU *cpu = env_archcpu(env); 4865 4866 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4867 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4868 value &= ~SCTLR_M; 4869 } 4870 4871 /* ??? Lots of these bits are not implemented. */ 4872 4873 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4874 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4875 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4876 } else { 4877 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4878 SCTLR_ATA0 | SCTLR_ATA); 4879 } 4880 } 4881 4882 if (raw_read(env, ri) == value) { 4883 /* 4884 * Skip the TLB flush if nothing actually changed; Linux likes 4885 * to do a lot of pointless SCTLR writes. 4886 */ 4887 return; 4888 } 4889 4890 raw_write(env, ri, value); 4891 4892 /* This may enable/disable the MMU, so do a TLB flush. */ 4893 tlb_flush(CPU(cpu)); 4894 4895 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 4896 /* 4897 * Normally we would always end the TB on an SCTLR write; see the 4898 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4899 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4900 * of hflags from the translator, so do it here. 4901 */ 4902 arm_rebuild_hflags(env); 4903 } 4904 } 4905 4906 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4907 uint64_t value) 4908 { 4909 /* 4910 * Some MDCR_EL3 bits affect whether PMU counters are running: 4911 * if we are trying to change any of those then we must 4912 * bracket this update with PMU start/finish calls. 4913 */ 4914 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4915 4916 if (pmu_op) { 4917 pmu_op_start(env); 4918 } 4919 env->cp15.mdcr_el3 = value; 4920 if (pmu_op) { 4921 pmu_op_finish(env); 4922 } 4923 } 4924 4925 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4926 uint64_t value) 4927 { 4928 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4929 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4930 } 4931 4932 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4933 uint64_t value) 4934 { 4935 /* 4936 * Some MDCR_EL2 bits affect whether PMU counters are running: 4937 * if we are trying to change any of those then we must 4938 * bracket this update with PMU start/finish calls. 4939 */ 4940 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4941 4942 if (pmu_op) { 4943 pmu_op_start(env); 4944 } 4945 env->cp15.mdcr_el2 = value; 4946 if (pmu_op) { 4947 pmu_op_finish(env); 4948 } 4949 } 4950 4951 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 4952 bool isread) 4953 { 4954 if (arm_current_el(env) == 1) { 4955 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 4956 4957 if (hcr_nv == (HCR_NV | HCR_NV1)) { 4958 return CP_ACCESS_TRAP_EL2; 4959 } 4960 } 4961 return CP_ACCESS_OK; 4962 } 4963 4964 #ifdef CONFIG_USER_ONLY 4965 /* 4966 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 4967 * code to get around W^X restrictions, where one region is writable and the 4968 * other is executable. 4969 * 4970 * Since the executable region is never written to we cannot detect code 4971 * changes when running in user mode, and rely on the emulated JIT telling us 4972 * that the code has changed by executing this instruction. 4973 */ 4974 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 4975 uint64_t value) 4976 { 4977 uint64_t icache_line_mask, start_address, end_address; 4978 const ARMCPU *cpu; 4979 4980 cpu = env_archcpu(env); 4981 4982 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 4983 start_address = value & ~icache_line_mask; 4984 end_address = value | icache_line_mask; 4985 4986 mmap_lock(); 4987 4988 tb_invalidate_phys_range(start_address, end_address); 4989 4990 mmap_unlock(); 4991 } 4992 #endif 4993 4994 static const ARMCPRegInfo v8_cp_reginfo[] = { 4995 /* 4996 * Minimal set of EL0-visible registers. This will need to be expanded 4997 * significantly for system emulation of AArch64 CPUs. 4998 */ 4999 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5000 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5001 .access = PL0_RW, .type = ARM_CP_NZCV }, 5002 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5004 .type = ARM_CP_NO_RAW, 5005 .access = PL0_RW, .accessfn = aa64_daif_access, 5006 .fieldoffset = offsetof(CPUARMState, daif), 5007 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5008 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5009 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5010 .access = PL0_RW, .type = ARM_CP_FPU, 5011 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5012 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5013 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5014 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5015 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5016 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5017 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5018 .access = PL0_R, .type = ARM_CP_NO_RAW, 5019 .fgt = FGT_DCZID_EL0, 5020 .readfn = aa64_dczid_read }, 5021 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5023 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5024 #ifndef CONFIG_USER_ONLY 5025 /* Avoid overhead of an access check that always passes in user-mode */ 5026 .accessfn = aa64_zva_access, 5027 .fgt = FGT_DCZVA, 5028 #endif 5029 }, 5030 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5031 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5032 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5033 /* 5034 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5035 * don't emulate caches. 5036 */ 5037 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5039 .access = PL1_W, .type = ARM_CP_NOP, 5040 .fgt = FGT_ICIALLUIS, 5041 .accessfn = access_ticab }, 5042 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5044 .access = PL1_W, .type = ARM_CP_NOP, 5045 .fgt = FGT_ICIALLU, 5046 .accessfn = access_tocu }, 5047 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5049 .access = PL0_W, 5050 .fgt = FGT_ICIVAU, 5051 .accessfn = access_tocu, 5052 #ifdef CONFIG_USER_ONLY 5053 .type = ARM_CP_NO_RAW, 5054 .writefn = ic_ivau_write 5055 #else 5056 .type = ARM_CP_NOP 5057 #endif 5058 }, 5059 /* Cache ops: all NOPs since we don't emulate caches */ 5060 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5061 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5062 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5063 .fgt = FGT_DCIVAC, 5064 .type = ARM_CP_NOP }, 5065 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5067 .fgt = FGT_DCISW, 5068 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5069 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5071 .access = PL0_W, .type = ARM_CP_NOP, 5072 .fgt = FGT_DCCVAC, 5073 .accessfn = aa64_cacheop_poc_access }, 5074 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5075 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5076 .fgt = FGT_DCCSW, 5077 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5078 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5080 .access = PL0_W, .type = ARM_CP_NOP, 5081 .fgt = FGT_DCCVAU, 5082 .accessfn = access_tocu }, 5083 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5084 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5085 .access = PL0_W, .type = ARM_CP_NOP, 5086 .fgt = FGT_DCCIVAC, 5087 .accessfn = aa64_cacheop_poc_access }, 5088 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5089 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5090 .fgt = FGT_DCCISW, 5091 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5092 #ifndef CONFIG_USER_ONLY 5093 /* 64 bit address translation operations */ 5094 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5095 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5096 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5097 .fgt = FGT_ATS1E1R, 5098 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5099 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5101 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5102 .fgt = FGT_ATS1E1W, 5103 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5104 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5106 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5107 .fgt = FGT_ATS1E0R, 5108 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5109 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5111 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5112 .fgt = FGT_ATS1E0W, 5113 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5114 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5116 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5117 .accessfn = at_e012_access, .writefn = ats_write64 }, 5118 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5119 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5120 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5121 .accessfn = at_e012_access, .writefn = ats_write64 }, 5122 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5123 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5124 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5125 .accessfn = at_e012_access, .writefn = ats_write64 }, 5126 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5127 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5128 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5129 .accessfn = at_e012_access, .writefn = ats_write64 }, 5130 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5131 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5132 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5133 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5134 .writefn = ats_write64 }, 5135 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5136 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5137 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5138 .writefn = ats_write64 }, 5139 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5140 .type = ARM_CP_ALIAS, 5141 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5142 .access = PL1_RW, .resetvalue = 0, 5143 .fgt = FGT_PAR_EL1, 5144 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5145 .writefn = par_write }, 5146 #endif 5147 /* 32 bit cache operations */ 5148 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5149 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5150 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5151 .type = ARM_CP_NOP, .access = PL1_W }, 5152 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5153 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5154 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5155 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5156 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5157 .type = ARM_CP_NOP, .access = PL1_W }, 5158 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5159 .type = ARM_CP_NOP, .access = PL1_W }, 5160 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5161 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5162 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5163 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5164 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5165 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5166 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5167 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5168 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5169 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5170 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5171 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5172 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5173 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5174 /* MMU Domain access control / MPU write buffer control */ 5175 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5176 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5177 .writefn = dacr_write, .raw_writefn = raw_write, 5178 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5179 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5180 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5181 .type = ARM_CP_ALIAS, 5182 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5183 .access = PL1_RW, .accessfn = access_nv1, 5184 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5185 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5186 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5187 .type = ARM_CP_ALIAS, 5188 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5189 .access = PL1_RW, .accessfn = access_nv1, 5190 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5191 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5192 /* 5193 * We rely on the access checks not allowing the guest to write to the 5194 * state field when SPSel indicates that it's being used as the stack 5195 * pointer. 5196 */ 5197 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5198 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5199 .access = PL1_RW, .accessfn = sp_el0_access, 5200 .type = ARM_CP_ALIAS, 5201 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5202 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5203 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5204 .nv2_redirect_offset = 0x240, 5205 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5206 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5207 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5208 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5209 .type = ARM_CP_NO_RAW, 5210 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5211 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5212 .type = ARM_CP_ALIAS, 5213 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5214 .access = PL2_RW, 5215 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5216 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5217 .type = ARM_CP_ALIAS, 5218 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5219 .access = PL2_RW, 5220 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5221 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5222 .type = ARM_CP_ALIAS, 5223 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5224 .access = PL2_RW, 5225 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5226 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5227 .type = ARM_CP_ALIAS, 5228 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5229 .access = PL2_RW, 5230 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5231 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5232 .type = ARM_CP_IO, 5233 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5234 .resetvalue = 0, 5235 .access = PL3_RW, 5236 .writefn = mdcr_el3_write, 5237 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5238 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5239 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5240 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5241 .writefn = sdcr_write, 5242 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5243 }; 5244 5245 /* These are present only when EL1 supports AArch32 */ 5246 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5247 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5248 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5249 .access = PL2_RW, 5250 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5251 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5252 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5253 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5254 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5255 .writefn = dacr_write, .raw_writefn = raw_write, 5256 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5257 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5258 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5259 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5260 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5261 }; 5262 5263 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5264 { 5265 ARMCPU *cpu = env_archcpu(env); 5266 5267 if (arm_feature(env, ARM_FEATURE_V8)) { 5268 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5269 } else { 5270 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5271 } 5272 5273 if (arm_feature(env, ARM_FEATURE_EL3)) { 5274 valid_mask &= ~HCR_HCD; 5275 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5276 /* 5277 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5278 * However, if we're using the SMC PSCI conduit then QEMU is 5279 * effectively acting like EL3 firmware and so the guest at 5280 * EL2 should retain the ability to prevent EL1 from being 5281 * able to make SMC calls into the ersatz firmware, so in 5282 * that case HCR.TSC should be read/write. 5283 */ 5284 valid_mask &= ~HCR_TSC; 5285 } 5286 5287 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5288 if (cpu_isar_feature(aa64_vh, cpu)) { 5289 valid_mask |= HCR_E2H; 5290 } 5291 if (cpu_isar_feature(aa64_ras, cpu)) { 5292 valid_mask |= HCR_TERR | HCR_TEA; 5293 } 5294 if (cpu_isar_feature(aa64_lor, cpu)) { 5295 valid_mask |= HCR_TLOR; 5296 } 5297 if (cpu_isar_feature(aa64_pauth, cpu)) { 5298 valid_mask |= HCR_API | HCR_APK; 5299 } 5300 if (cpu_isar_feature(aa64_mte, cpu)) { 5301 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5302 } 5303 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5304 valid_mask |= HCR_ENSCXT; 5305 } 5306 if (cpu_isar_feature(aa64_fwb, cpu)) { 5307 valid_mask |= HCR_FWB; 5308 } 5309 if (cpu_isar_feature(aa64_rme, cpu)) { 5310 valid_mask |= HCR_GPF; 5311 } 5312 if (cpu_isar_feature(aa64_nv, cpu)) { 5313 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 5314 } 5315 if (cpu_isar_feature(aa64_nv2, cpu)) { 5316 valid_mask |= HCR_NV2; 5317 } 5318 } 5319 5320 if (cpu_isar_feature(any_evt, cpu)) { 5321 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5322 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5323 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5324 } 5325 5326 /* Clear RES0 bits. */ 5327 value &= valid_mask; 5328 5329 /* 5330 * These bits change the MMU setup: 5331 * HCR_VM enables stage 2 translation 5332 * HCR_PTW forbids certain page-table setups 5333 * HCR_DC disables stage1 and enables stage2 translation 5334 * HCR_DCT enables tagging on (disabled) stage1 translation 5335 * HCR_FWB changes the interpretation of stage2 descriptor bits 5336 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 5337 */ 5338 if ((env->cp15.hcr_el2 ^ value) & 5339 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 5340 tlb_flush(CPU(cpu)); 5341 } 5342 env->cp15.hcr_el2 = value; 5343 5344 /* 5345 * Updates to VI and VF require us to update the status of 5346 * virtual interrupts, which are the logical OR of these bits 5347 * and the state of the input lines from the GIC. (This requires 5348 * that we have the BQL, which is done by marking the 5349 * reginfo structs as ARM_CP_IO.) 5350 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 5351 * VFNMI, it is never possible for it to be taken immediately 5352 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 5353 * at EL0 or EL1, and HCR can only be written at EL2. 5354 */ 5355 g_assert(bql_locked()); 5356 arm_cpu_update_virq(cpu); 5357 arm_cpu_update_vfiq(cpu); 5358 arm_cpu_update_vserr(cpu); 5359 if (cpu_isar_feature(aa64_nmi, cpu)) { 5360 arm_cpu_update_vinmi(cpu); 5361 arm_cpu_update_vfnmi(cpu); 5362 } 5363 } 5364 5365 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5366 { 5367 do_hcr_write(env, value, 0); 5368 } 5369 5370 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5371 uint64_t value) 5372 { 5373 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5374 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5375 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5376 } 5377 5378 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5379 uint64_t value) 5380 { 5381 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5382 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5383 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5384 } 5385 5386 /* 5387 * Return the effective value of HCR_EL2, at the given security state. 5388 * Bits that are not included here: 5389 * RW (read from SCR_EL3.RW as needed) 5390 */ 5391 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 5392 { 5393 uint64_t ret = env->cp15.hcr_el2; 5394 5395 assert(space != ARMSS_Root); 5396 5397 if (!arm_is_el2_enabled_secstate(env, space)) { 5398 /* 5399 * "This register has no effect if EL2 is not enabled in the 5400 * current Security state". This is ARMv8.4-SecEL2 speak for 5401 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5402 * 5403 * Prior to that, the language was "In an implementation that 5404 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5405 * as if this field is 0 for all purposes other than a direct 5406 * read or write access of HCR_EL2". With lots of enumeration 5407 * on a per-field basis. In current QEMU, this is condition 5408 * is arm_is_secure_below_el3. 5409 * 5410 * Since the v8.4 language applies to the entire register, and 5411 * appears to be backward compatible, use that. 5412 */ 5413 return 0; 5414 } 5415 5416 /* 5417 * For a cpu that supports both aarch64 and aarch32, we can set bits 5418 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5419 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5420 */ 5421 if (!arm_el_is_aa64(env, 2)) { 5422 uint64_t aa32_valid; 5423 5424 /* 5425 * These bits are up-to-date as of ARMv8.6. 5426 * For HCR, it's easiest to list just the 2 bits that are invalid. 5427 * For HCR2, list those that are valid. 5428 */ 5429 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5430 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5431 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5432 ret &= aa32_valid; 5433 } 5434 5435 if (ret & HCR_TGE) { 5436 /* These bits are up-to-date as of ARMv8.6. */ 5437 if (ret & HCR_E2H) { 5438 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5439 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5440 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5441 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5442 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5443 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5444 } else { 5445 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5446 } 5447 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5448 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5449 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5450 HCR_TLOR); 5451 } 5452 5453 return ret; 5454 } 5455 5456 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5457 { 5458 if (arm_feature(env, ARM_FEATURE_M)) { 5459 return 0; 5460 } 5461 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 5462 } 5463 5464 /* 5465 * Corresponds to ARM pseudocode function ELIsInHost(). 5466 */ 5467 bool el_is_in_host(CPUARMState *env, int el) 5468 { 5469 uint64_t mask; 5470 5471 /* 5472 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5473 * Perform the simplest bit tests first, and validate EL2 afterward. 5474 */ 5475 if (el & 1) { 5476 return false; /* EL1 or EL3 */ 5477 } 5478 5479 /* 5480 * Note that hcr_write() checks isar_feature_aa64_vh(), 5481 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5482 */ 5483 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5484 if ((env->cp15.hcr_el2 & mask) != mask) { 5485 return false; 5486 } 5487 5488 /* TGE and/or E2H set: double check those bits are currently legal. */ 5489 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5490 } 5491 5492 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5493 uint64_t value) 5494 { 5495 ARMCPU *cpu = env_archcpu(env); 5496 uint64_t valid_mask = 0; 5497 5498 /* FEAT_MOPS adds MSCEn and MCE2 */ 5499 if (cpu_isar_feature(aa64_mops, cpu)) { 5500 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 5501 } 5502 5503 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 5504 if (cpu_isar_feature(aa64_nmi, cpu)) { 5505 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 5506 } 5507 /* FEAT_CMOW adds CMOW */ 5508 if (cpu_isar_feature(aa64_cmow, cpu)) { 5509 valid_mask |= HCRX_CMOW; 5510 } 5511 /* FEAT_XS adds FGTnXS, FnXS */ 5512 if (cpu_isar_feature(aa64_xs, cpu)) { 5513 valid_mask |= HCRX_FGTNXS | HCRX_FNXS; 5514 } 5515 5516 /* Clear RES0 bits. */ 5517 env->cp15.hcrx_el2 = value & valid_mask; 5518 5519 /* 5520 * Updates to VINMI and VFNMI require us to update the status of 5521 * virtual NMI, which are the logical OR of these bits 5522 * and the state of the input lines from the GIC. (This requires 5523 * that we have the BQL, which is done by marking the 5524 * reginfo structs as ARM_CP_IO.) 5525 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 5526 * possible for it to be taken immediately, because VINMI and 5527 * VFNMI are masked unless running at EL0 or EL1, and HCRX 5528 * can only be written at EL2. 5529 */ 5530 if (cpu_isar_feature(aa64_nmi, cpu)) { 5531 g_assert(bql_locked()); 5532 arm_cpu_update_vinmi(cpu); 5533 arm_cpu_update_vfnmi(cpu); 5534 } 5535 } 5536 5537 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5538 bool isread) 5539 { 5540 if (arm_current_el(env) == 2 5541 && arm_feature(env, ARM_FEATURE_EL3) 5542 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5543 return CP_ACCESS_TRAP_EL3; 5544 } 5545 return CP_ACCESS_OK; 5546 } 5547 5548 static const ARMCPRegInfo hcrx_el2_reginfo = { 5549 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5550 .type = ARM_CP_IO, 5551 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5552 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5553 .nv2_redirect_offset = 0xa0, 5554 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5555 }; 5556 5557 /* Return the effective value of HCRX_EL2. */ 5558 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5559 { 5560 /* 5561 * The bits in this register behave as 0 for all purposes other than 5562 * direct reads of the register if SCR_EL3.HXEn is 0. 5563 * If EL2 is not enabled in the current security state, then the 5564 * bit may behave as if 0, or as if 1, depending on the bit. 5565 * For the moment, we treat the EL2-disabled case as taking 5566 * priority over the HXEn-disabled case. This is true for the only 5567 * bit for a feature which we implement where the answer is different 5568 * for the two cases (MSCEn for FEAT_MOPS). 5569 * This may need to be revisited for future bits. 5570 */ 5571 if (!arm_is_el2_enabled(env)) { 5572 uint64_t hcrx = 0; 5573 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 5574 /* MSCEn behaves as 1 if EL2 is not enabled */ 5575 hcrx |= HCRX_MSCEN; 5576 } 5577 return hcrx; 5578 } 5579 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 5580 return 0; 5581 } 5582 return env->cp15.hcrx_el2; 5583 } 5584 5585 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5586 uint64_t value) 5587 { 5588 /* 5589 * For A-profile AArch32 EL3, if NSACR.CP10 5590 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5591 */ 5592 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5593 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5594 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5595 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5596 } 5597 env->cp15.cptr_el[2] = value; 5598 } 5599 5600 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5601 { 5602 /* 5603 * For A-profile AArch32 EL3, if NSACR.CP10 5604 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5605 */ 5606 uint64_t value = env->cp15.cptr_el[2]; 5607 5608 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5609 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5610 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5611 } 5612 return value; 5613 } 5614 5615 static const ARMCPRegInfo el2_cp_reginfo[] = { 5616 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5617 .type = ARM_CP_IO, 5618 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5619 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5620 .nv2_redirect_offset = 0x78, 5621 .writefn = hcr_write, .raw_writefn = raw_write }, 5622 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5623 .type = ARM_CP_ALIAS | ARM_CP_IO, 5624 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5625 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5626 .writefn = hcr_writelow }, 5627 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5628 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5629 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5630 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5631 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5632 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5633 .access = PL2_RW, 5634 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5635 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5636 .type = ARM_CP_NV2_REDIRECT, 5637 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5638 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5639 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5640 .type = ARM_CP_NV2_REDIRECT, 5641 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5642 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5643 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5644 .type = ARM_CP_ALIAS, 5645 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5646 .access = PL2_RW, 5647 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5648 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5649 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 5650 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5651 .access = PL2_RW, 5652 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5653 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5654 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5655 .access = PL2_RW, .writefn = vbar_write, 5656 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5657 .resetvalue = 0 }, 5658 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5659 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5660 .access = PL3_RW, .type = ARM_CP_ALIAS, 5661 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5662 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5663 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5664 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5665 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5666 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5667 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5668 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5669 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5670 .resetvalue = 0 }, 5671 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5672 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5673 .access = PL2_RW, .type = ARM_CP_ALIAS, 5674 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5675 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5676 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5677 .access = PL2_RW, .type = ARM_CP_CONST, 5678 .resetvalue = 0 }, 5679 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5680 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5681 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5682 .access = PL2_RW, .type = ARM_CP_CONST, 5683 .resetvalue = 0 }, 5684 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5685 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5686 .access = PL2_RW, .type = ARM_CP_CONST, 5687 .resetvalue = 0 }, 5688 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5689 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5690 .access = PL2_RW, .type = ARM_CP_CONST, 5691 .resetvalue = 0 }, 5692 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5693 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5694 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5695 .raw_writefn = raw_write, 5696 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5697 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5698 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5699 .type = ARM_CP_ALIAS, 5700 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5701 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5702 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5703 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5704 .access = PL2_RW, 5705 .nv2_redirect_offset = 0x40, 5706 /* no .writefn needed as this can't cause an ASID change */ 5707 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5708 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5709 .cp = 15, .opc1 = 6, .crm = 2, 5710 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5711 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5712 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5713 .writefn = vttbr_write, .raw_writefn = raw_write }, 5714 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5715 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5716 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 5717 .nv2_redirect_offset = 0x20, 5718 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5719 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5720 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5721 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5722 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5723 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5724 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5725 .access = PL2_RW, .resetvalue = 0, 5726 .nv2_redirect_offset = 0x90, 5727 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5728 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5729 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5730 .access = PL2_RW, .resetvalue = 0, 5731 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 5732 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5733 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5734 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5735 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5736 #ifndef CONFIG_USER_ONLY 5737 /* 5738 * Unlike the other EL2-related AT operations, these must 5739 * UNDEF from EL3 if EL2 is not implemented, which is why we 5740 * define them here rather than with the rest of the AT ops. 5741 */ 5742 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5743 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5744 .access = PL2_W, .accessfn = at_s1e2_access, 5745 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5746 .writefn = ats_write64 }, 5747 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5749 .access = PL2_W, .accessfn = at_s1e2_access, 5750 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5751 .writefn = ats_write64 }, 5752 /* 5753 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5754 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5755 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5756 * to behave as if SCR.NS was 1. 5757 */ 5758 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5759 .access = PL2_W, 5760 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5761 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5762 .access = PL2_W, 5763 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5764 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5765 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5766 /* 5767 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5768 * reset values as IMPDEF. We choose to reset to 3 to comply with 5769 * both ARMv7 and ARMv8. 5770 */ 5771 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 5772 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 5773 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5774 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5776 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5777 .writefn = gt_cntvoff_write, 5778 .nv2_redirect_offset = 0x60, 5779 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5780 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5781 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5782 .writefn = gt_cntvoff_write, 5783 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5784 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5785 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5786 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5787 .type = ARM_CP_IO, .access = PL2_RW, 5788 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5789 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5790 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5791 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5792 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5793 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5794 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5795 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5796 .resetfn = gt_hyp_timer_reset, 5797 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5798 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5799 .type = ARM_CP_IO, 5800 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5801 .access = PL2_RW, 5802 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5803 .resetvalue = 0, 5804 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5805 #endif 5806 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5807 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5808 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5809 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5810 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5812 .access = PL2_RW, 5813 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5814 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5815 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5816 .access = PL2_RW, 5817 .nv2_redirect_offset = 0x80, 5818 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5819 }; 5820 5821 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5822 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5823 .type = ARM_CP_ALIAS | ARM_CP_IO, 5824 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5825 .access = PL2_RW, 5826 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5827 .writefn = hcr_writehigh }, 5828 }; 5829 5830 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5831 bool isread) 5832 { 5833 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5834 return CP_ACCESS_OK; 5835 } 5836 return CP_ACCESS_UNDEFINED; 5837 } 5838 5839 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5840 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5842 .access = PL2_RW, .accessfn = sel2_access, 5843 .nv2_redirect_offset = 0x30, 5844 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5845 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5847 .access = PL2_RW, .accessfn = sel2_access, 5848 .nv2_redirect_offset = 0x48, 5849 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5850 #ifndef CONFIG_USER_ONLY 5851 /* Secure EL2 Physical Timer */ 5852 { .name = "CNTHPS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5853 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 0, 5854 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5855 .accessfn = gt_sel2timer_access, 5856 .readfn = gt_sec_pel2_tval_read, 5857 .writefn = gt_sec_pel2_tval_write, 5858 .resetfn = gt_sec_pel2_timer_reset, 5859 }, 5860 { .name = "CNTHPS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5861 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 1, 5862 .type = ARM_CP_IO, .access = PL2_RW, 5863 .accessfn = gt_sel2timer_access, 5864 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].ctl), 5865 .resetvalue = 0, 5866 .writefn = gt_sec_pel2_ctl_write, .raw_writefn = raw_write, 5867 }, 5868 { .name = "CNTHPS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5869 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 5, .opc2 = 2, 5870 .type = ARM_CP_IO, .access = PL2_RW, 5871 .accessfn = gt_sel2timer_access, 5872 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_PHYS].cval), 5873 .writefn = gt_sec_pel2_cval_write, .raw_writefn = raw_write, 5874 }, 5875 /* Secure EL2 Virtual Timer */ 5876 { .name = "CNTHVS_TVAL_EL2", .state = ARM_CP_STATE_AA64, 5877 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 0, 5878 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5879 .accessfn = gt_sel2timer_access, 5880 .readfn = gt_sec_vel2_tval_read, 5881 .writefn = gt_sec_vel2_tval_write, 5882 .resetfn = gt_sec_vel2_timer_reset, 5883 }, 5884 { .name = "CNTHVS_CTL_EL2", .state = ARM_CP_STATE_AA64, 5885 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 1, 5886 .type = ARM_CP_IO, .access = PL2_RW, 5887 .accessfn = gt_sel2timer_access, 5888 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].ctl), 5889 .resetvalue = 0, 5890 .writefn = gt_sec_vel2_ctl_write, .raw_writefn = raw_write, 5891 }, 5892 { .name = "CNTHVS_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5893 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 4, .opc2 = 2, 5894 .type = ARM_CP_IO, .access = PL2_RW, 5895 .accessfn = gt_sel2timer_access, 5896 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_S_EL2_VIRT].cval), 5897 .writefn = gt_sec_vel2_cval_write, .raw_writefn = raw_write, 5898 }, 5899 #endif 5900 }; 5901 5902 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5903 bool isread) 5904 { 5905 /* 5906 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5907 * At Secure EL1 it traps to EL3 or EL2. 5908 */ 5909 if (arm_current_el(env) == 3) { 5910 return CP_ACCESS_OK; 5911 } 5912 if (arm_is_secure_below_el3(env)) { 5913 if (env->cp15.scr_el3 & SCR_EEL2) { 5914 return CP_ACCESS_TRAP_EL2; 5915 } 5916 return CP_ACCESS_TRAP_EL3; 5917 } 5918 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5919 if (isread) { 5920 return CP_ACCESS_OK; 5921 } 5922 return CP_ACCESS_UNDEFINED; 5923 } 5924 5925 static const ARMCPRegInfo el3_cp_reginfo[] = { 5926 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5927 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5928 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5929 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 5930 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5931 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5932 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5933 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5934 .writefn = scr_write, .raw_writefn = raw_write }, 5935 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5936 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5937 .access = PL3_RW, .resetvalue = 0, 5938 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5939 { .name = "SDER", 5940 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5941 .access = PL3_RW, .resetvalue = 0, 5942 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5943 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5944 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5945 .writefn = vbar_write, .resetvalue = 0, 5946 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5947 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5948 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5949 .access = PL3_RW, .resetvalue = 0, 5950 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5951 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5952 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5953 .access = PL3_RW, 5954 /* no .writefn needed as this can't cause an ASID change */ 5955 .resetvalue = 0, 5956 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5957 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5958 .type = ARM_CP_ALIAS, 5959 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5960 .access = PL3_RW, 5961 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5962 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5963 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5964 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5965 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5966 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5967 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5968 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5969 .type = ARM_CP_ALIAS, 5970 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5971 .access = PL3_RW, 5972 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5973 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5974 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5975 .access = PL3_RW, .writefn = vbar_write, 5976 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5977 .resetvalue = 0 }, 5978 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5979 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5980 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5981 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5982 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5983 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5984 .access = PL3_RW, .resetvalue = 0, 5985 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5986 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5987 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5988 .access = PL3_RW, .type = ARM_CP_CONST, 5989 .resetvalue = 0 }, 5990 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5991 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5992 .access = PL3_RW, .type = ARM_CP_CONST, 5993 .resetvalue = 0 }, 5994 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5995 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5996 .access = PL3_RW, .type = ARM_CP_CONST, 5997 .resetvalue = 0 }, 5998 }; 5999 6000 #ifndef CONFIG_USER_ONLY 6001 6002 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6003 bool isread) 6004 { 6005 if (arm_current_el(env) == 1) { 6006 /* This must be a FEAT_NV access */ 6007 return CP_ACCESS_OK; 6008 } 6009 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6010 return CP_ACCESS_UNDEFINED; 6011 } 6012 return CP_ACCESS_OK; 6013 } 6014 6015 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6016 bool isread) 6017 { 6018 if (arm_current_el(env) == 1) { 6019 /* This must be a FEAT_NV access with NVx == 101 */ 6020 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6021 return CP_ACCESS_TRAP_EL2; 6022 } 6023 } 6024 return e2h_access(env, ri, isread); 6025 } 6026 6027 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6028 bool isread) 6029 { 6030 if (arm_current_el(env) == 1) { 6031 /* This must be a FEAT_NV access with NVx == 101 */ 6032 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6033 return CP_ACCESS_TRAP_EL2; 6034 } 6035 } 6036 return e2h_access(env, ri, isread); 6037 } 6038 6039 /* Test if system register redirection is to occur in the current state. */ 6040 static bool redirect_for_e2h(CPUARMState *env) 6041 { 6042 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6043 } 6044 6045 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6046 { 6047 CPReadFn *readfn; 6048 6049 if (redirect_for_e2h(env)) { 6050 /* Switch to the saved EL2 version of the register. */ 6051 ri = ri->opaque; 6052 readfn = ri->readfn; 6053 } else { 6054 readfn = ri->orig_readfn; 6055 } 6056 if (readfn == NULL) { 6057 readfn = raw_read; 6058 } 6059 return readfn(env, ri); 6060 } 6061 6062 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6063 uint64_t value) 6064 { 6065 CPWriteFn *writefn; 6066 6067 if (redirect_for_e2h(env)) { 6068 /* Switch to the saved EL2 version of the register. */ 6069 ri = ri->opaque; 6070 writefn = ri->writefn; 6071 } else { 6072 writefn = ri->orig_writefn; 6073 } 6074 if (writefn == NULL) { 6075 writefn = raw_write; 6076 } 6077 writefn(env, ri, value); 6078 } 6079 6080 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6081 { 6082 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6083 return ri->orig_readfn(env, ri->opaque); 6084 } 6085 6086 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6087 uint64_t value) 6088 { 6089 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6090 return ri->orig_writefn(env, ri->opaque, value); 6091 } 6092 6093 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6094 const ARMCPRegInfo *ri, 6095 bool isread) 6096 { 6097 if (arm_current_el(env) == 1) { 6098 /* 6099 * This must be a FEAT_NV access (will either trap or redirect 6100 * to memory). None of the registers with _EL12 aliases want to 6101 * apply their trap controls for this kind of access, so don't 6102 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6103 */ 6104 return CP_ACCESS_OK; 6105 } 6106 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6107 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6108 return CP_ACCESS_UNDEFINED; 6109 } 6110 if (ri->orig_accessfn) { 6111 return ri->orig_accessfn(env, ri->opaque, isread); 6112 } 6113 return CP_ACCESS_OK; 6114 } 6115 6116 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6117 { 6118 struct E2HAlias { 6119 uint32_t src_key, dst_key, new_key; 6120 const char *src_name, *dst_name, *new_name; 6121 bool (*feature)(const ARMISARegisters *id); 6122 }; 6123 6124 #define K(op0, op1, crn, crm, op2) \ 6125 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6126 6127 static const struct E2HAlias aliases[] = { 6128 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6129 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6130 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6131 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6132 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6133 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6134 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6135 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6136 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6137 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6138 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6139 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6140 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6141 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6142 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6143 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6144 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6145 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6146 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6147 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6148 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6149 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6150 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6151 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6152 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6153 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6154 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6155 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6156 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6157 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6158 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6159 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6160 6161 /* 6162 * Note that redirection of ZCR is mentioned in the description 6163 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6164 * not in the summary table. 6165 */ 6166 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6167 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6168 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6169 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6170 6171 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6172 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6173 6174 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6175 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6176 isar_feature_aa64_scxtnum }, 6177 6178 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6179 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6180 }; 6181 #undef K 6182 6183 size_t i; 6184 6185 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6186 const struct E2HAlias *a = &aliases[i]; 6187 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6188 bool ok; 6189 6190 if (a->feature && !a->feature(&cpu->isar)) { 6191 continue; 6192 } 6193 6194 src_reg = g_hash_table_lookup(cpu->cp_regs, 6195 (gpointer)(uintptr_t)a->src_key); 6196 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6197 (gpointer)(uintptr_t)a->dst_key); 6198 g_assert(src_reg != NULL); 6199 g_assert(dst_reg != NULL); 6200 6201 /* Cross-compare names to detect typos in the keys. */ 6202 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6203 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6204 6205 /* None of the core system registers use opaque; we will. */ 6206 g_assert(src_reg->opaque == NULL); 6207 6208 /* Create alias before redirection so we dup the right data. */ 6209 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6210 6211 new_reg->name = a->new_name; 6212 new_reg->type |= ARM_CP_ALIAS; 6213 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6214 new_reg->access &= PL2_RW | PL3_RW; 6215 /* The new_reg op fields are as per new_key, not the target reg */ 6216 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6217 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6218 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6219 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6220 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6221 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6222 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6223 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6224 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6225 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6226 new_reg->opaque = src_reg; 6227 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6228 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6229 new_reg->orig_accessfn = src_reg->accessfn; 6230 if (!new_reg->raw_readfn) { 6231 new_reg->raw_readfn = raw_read; 6232 } 6233 if (!new_reg->raw_writefn) { 6234 new_reg->raw_writefn = raw_write; 6235 } 6236 new_reg->readfn = el2_e2h_e12_read; 6237 new_reg->writefn = el2_e2h_e12_write; 6238 new_reg->accessfn = el2_e2h_e12_access; 6239 6240 /* 6241 * If the _EL1 register is redirected to memory by FEAT_NV2, 6242 * then it shares the offset with the _EL12 register, 6243 * and which one is redirected depends on HCR_EL2.NV1. 6244 */ 6245 if (new_reg->nv2_redirect_offset) { 6246 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6247 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6248 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6249 } 6250 6251 ok = g_hash_table_insert(cpu->cp_regs, 6252 (gpointer)(uintptr_t)a->new_key, new_reg); 6253 g_assert(ok); 6254 6255 src_reg->opaque = dst_reg; 6256 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6257 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6258 if (!src_reg->raw_readfn) { 6259 src_reg->raw_readfn = raw_read; 6260 } 6261 if (!src_reg->raw_writefn) { 6262 src_reg->raw_writefn = raw_write; 6263 } 6264 src_reg->readfn = el2_e2h_read; 6265 src_reg->writefn = el2_e2h_write; 6266 } 6267 } 6268 #endif 6269 6270 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6271 bool isread) 6272 { 6273 int cur_el = arm_current_el(env); 6274 6275 if (cur_el < 2) { 6276 uint64_t hcr = arm_hcr_el2_eff(env); 6277 6278 if (cur_el == 0) { 6279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6280 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6281 return CP_ACCESS_TRAP_EL2; 6282 } 6283 } else { 6284 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6285 return CP_ACCESS_TRAP_EL1; 6286 } 6287 if (hcr & HCR_TID2) { 6288 return CP_ACCESS_TRAP_EL2; 6289 } 6290 } 6291 } else if (hcr & HCR_TID2) { 6292 return CP_ACCESS_TRAP_EL2; 6293 } 6294 } 6295 6296 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6297 return CP_ACCESS_TRAP_EL2; 6298 } 6299 6300 return CP_ACCESS_OK; 6301 } 6302 6303 /* 6304 * Check for traps to RAS registers, which are controlled 6305 * by HCR_EL2.TERR and SCR_EL3.TERR. 6306 */ 6307 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6308 bool isread) 6309 { 6310 int el = arm_current_el(env); 6311 6312 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6313 return CP_ACCESS_TRAP_EL2; 6314 } 6315 if (!arm_is_el3_or_mon(env) && (env->cp15.scr_el3 & SCR_TERR)) { 6316 return CP_ACCESS_TRAP_EL3; 6317 } 6318 return CP_ACCESS_OK; 6319 } 6320 6321 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6322 { 6323 int el = arm_current_el(env); 6324 6325 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6326 return env->cp15.vdisr_el2; 6327 } 6328 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6329 return 0; /* RAZ/WI */ 6330 } 6331 return env->cp15.disr_el1; 6332 } 6333 6334 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6335 { 6336 int el = arm_current_el(env); 6337 6338 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6339 env->cp15.vdisr_el2 = val; 6340 return; 6341 } 6342 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6343 return; /* RAZ/WI */ 6344 } 6345 env->cp15.disr_el1 = val; 6346 } 6347 6348 /* 6349 * Minimal RAS implementation with no Error Records. 6350 * Which means that all of the Error Record registers: 6351 * ERXADDR_EL1 6352 * ERXCTLR_EL1 6353 * ERXFR_EL1 6354 * ERXMISC0_EL1 6355 * ERXMISC1_EL1 6356 * ERXMISC2_EL1 6357 * ERXMISC3_EL1 6358 * ERXPFGCDN_EL1 (RASv1p1) 6359 * ERXPFGCTL_EL1 (RASv1p1) 6360 * ERXPFGF_EL1 (RASv1p1) 6361 * ERXSTATUS_EL1 6362 * and 6363 * ERRSELR_EL1 6364 * may generate UNDEFINED, which is the effect we get by not 6365 * listing them at all. 6366 * 6367 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6368 * is higher priority than FGT-to-EL2 so we do not need to list them 6369 * in order to check for an FGT. 6370 */ 6371 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6372 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6373 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6374 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6375 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6376 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6377 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6378 .access = PL1_R, .accessfn = access_terr, 6379 .fgt = FGT_ERRIDR_EL1, 6380 .type = ARM_CP_CONST, .resetvalue = 0 }, 6381 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6382 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6383 .nv2_redirect_offset = 0x500, 6384 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6385 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6386 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6387 .nv2_redirect_offset = 0x508, 6388 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6389 }; 6390 6391 /* 6392 * Return the exception level to which exceptions should be taken 6393 * via SVEAccessTrap. This excludes the check for whether the exception 6394 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6395 * be found by testing 0 < fp_exception_el < sve_exception_el. 6396 * 6397 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6398 * pseudocode does *not* separate out the FP trap checks, but has them 6399 * all in one function. 6400 */ 6401 int sve_exception_el(CPUARMState *env, int el) 6402 { 6403 #ifndef CONFIG_USER_ONLY 6404 if (el <= 1 && !el_is_in_host(env, el)) { 6405 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6406 case 1: 6407 if (el != 0) { 6408 break; 6409 } 6410 /* fall through */ 6411 case 0: 6412 case 2: 6413 return 1; 6414 } 6415 } 6416 6417 if (el <= 2 && arm_is_el2_enabled(env)) { 6418 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6419 if (env->cp15.hcr_el2 & HCR_E2H) { 6420 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6421 case 1: 6422 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6423 break; 6424 } 6425 /* fall through */ 6426 case 0: 6427 case 2: 6428 return 2; 6429 } 6430 } else { 6431 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6432 return 2; 6433 } 6434 } 6435 } 6436 6437 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6438 if (arm_feature(env, ARM_FEATURE_EL3) 6439 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6440 return 3; 6441 } 6442 #endif 6443 return 0; 6444 } 6445 6446 /* 6447 * Return the exception level to which exceptions should be taken for SME. 6448 * C.f. the ARM pseudocode function CheckSMEAccess. 6449 */ 6450 int sme_exception_el(CPUARMState *env, int el) 6451 { 6452 #ifndef CONFIG_USER_ONLY 6453 if (el <= 1 && !el_is_in_host(env, el)) { 6454 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6455 case 1: 6456 if (el != 0) { 6457 break; 6458 } 6459 /* fall through */ 6460 case 0: 6461 case 2: 6462 return 1; 6463 } 6464 } 6465 6466 if (el <= 2 && arm_is_el2_enabled(env)) { 6467 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6468 if (env->cp15.hcr_el2 & HCR_E2H) { 6469 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6470 case 1: 6471 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6472 break; 6473 } 6474 /* fall through */ 6475 case 0: 6476 case 2: 6477 return 2; 6478 } 6479 } else { 6480 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6481 return 2; 6482 } 6483 } 6484 } 6485 6486 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6487 if (arm_feature(env, ARM_FEATURE_EL3) 6488 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6489 return 3; 6490 } 6491 #endif 6492 return 0; 6493 } 6494 6495 /* 6496 * Given that SVE is enabled, return the vector length for EL. 6497 */ 6498 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6499 { 6500 ARMCPU *cpu = env_archcpu(env); 6501 uint64_t *cr = env->vfp.zcr_el; 6502 uint32_t map = cpu->sve_vq.map; 6503 uint32_t len = ARM_MAX_VQ - 1; 6504 6505 if (sm) { 6506 cr = env->vfp.smcr_el; 6507 map = cpu->sme_vq.map; 6508 } 6509 6510 if (el <= 1 && !el_is_in_host(env, el)) { 6511 len = MIN(len, 0xf & (uint32_t)cr[1]); 6512 } 6513 if (el <= 2 && arm_is_el2_enabled(env)) { 6514 len = MIN(len, 0xf & (uint32_t)cr[2]); 6515 } 6516 if (arm_feature(env, ARM_FEATURE_EL3)) { 6517 len = MIN(len, 0xf & (uint32_t)cr[3]); 6518 } 6519 6520 map &= MAKE_64BIT_MASK(0, len + 1); 6521 if (map != 0) { 6522 return 31 - clz32(map); 6523 } 6524 6525 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6526 assert(sm); 6527 return ctz32(cpu->sme_vq.map); 6528 } 6529 6530 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6531 { 6532 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6533 } 6534 6535 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6536 uint64_t value) 6537 { 6538 int cur_el = arm_current_el(env); 6539 int old_len = sve_vqm1_for_el(env, cur_el); 6540 int new_len; 6541 6542 /* Bits other than [3:0] are RAZ/WI. */ 6543 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6544 raw_write(env, ri, value & 0xf); 6545 6546 /* 6547 * Because we arrived here, we know both FP and SVE are enabled; 6548 * otherwise we would have trapped access to the ZCR_ELn register. 6549 */ 6550 new_len = sve_vqm1_for_el(env, cur_el); 6551 if (new_len < old_len) { 6552 aarch64_sve_narrow_vq(env, new_len + 1); 6553 } 6554 } 6555 6556 static const ARMCPRegInfo zcr_reginfo[] = { 6557 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6558 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6559 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 6560 .access = PL1_RW, .type = ARM_CP_SVE, 6561 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6562 .writefn = zcr_write, .raw_writefn = raw_write }, 6563 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6564 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6565 .access = PL2_RW, .type = ARM_CP_SVE, 6566 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6567 .writefn = zcr_write, .raw_writefn = raw_write }, 6568 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6569 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6570 .access = PL3_RW, .type = ARM_CP_SVE, 6571 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6572 .writefn = zcr_write, .raw_writefn = raw_write }, 6573 }; 6574 6575 #ifdef TARGET_AARCH64 6576 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6577 bool isread) 6578 { 6579 int el = arm_current_el(env); 6580 6581 if (el == 0) { 6582 uint64_t sctlr = arm_sctlr(env, el); 6583 if (!(sctlr & SCTLR_EnTP2)) { 6584 return CP_ACCESS_TRAP_EL1; 6585 } 6586 } 6587 /* TODO: FEAT_FGT */ 6588 if (el < 3 6589 && arm_feature(env, ARM_FEATURE_EL3) 6590 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6591 return CP_ACCESS_TRAP_EL3; 6592 } 6593 return CP_ACCESS_OK; 6594 } 6595 6596 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 6597 bool isread) 6598 { 6599 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 6600 if (arm_current_el(env) == 2 6601 && arm_feature(env, ARM_FEATURE_EL3) 6602 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6603 return CP_ACCESS_TRAP_EL3; 6604 } 6605 return CP_ACCESS_OK; 6606 } 6607 6608 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 6609 bool isread) 6610 { 6611 if (arm_current_el(env) < 3 6612 && arm_feature(env, ARM_FEATURE_EL3) 6613 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6614 return CP_ACCESS_TRAP_EL3; 6615 } 6616 return CP_ACCESS_OK; 6617 } 6618 6619 /* ResetSVEState */ 6620 static void arm_reset_sve_state(CPUARMState *env) 6621 { 6622 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6623 /* Recall that FFR is stored as pregs[16]. */ 6624 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6625 vfp_set_fpsr(env, 0x0800009f); 6626 } 6627 6628 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6629 { 6630 uint64_t change = (env->svcr ^ new) & mask; 6631 6632 if (change == 0) { 6633 return; 6634 } 6635 env->svcr ^= change; 6636 6637 if (change & R_SVCR_SM_MASK) { 6638 arm_reset_sve_state(env); 6639 } 6640 6641 /* 6642 * ResetSMEState. 6643 * 6644 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6645 * on enable: while disabled, the storage is inaccessible and the 6646 * value does not matter. We're not saving the storage in vmstate 6647 * when disabled either. 6648 */ 6649 if (change & new & R_SVCR_ZA_MASK) { 6650 memset(env->zarray, 0, sizeof(env->zarray)); 6651 } 6652 6653 if (tcg_enabled()) { 6654 arm_rebuild_hflags(env); 6655 } 6656 } 6657 6658 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6659 uint64_t value) 6660 { 6661 aarch64_set_svcr(env, value, -1); 6662 } 6663 6664 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6665 uint64_t value) 6666 { 6667 int cur_el = arm_current_el(env); 6668 int old_len = sve_vqm1_for_el(env, cur_el); 6669 int new_len; 6670 6671 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6672 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6673 raw_write(env, ri, value); 6674 6675 /* 6676 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6677 * when SVL is widened (old values kept, or zeros). Choose to keep the 6678 * current values for simplicity. But for QEMU internals, we must still 6679 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6680 * above aarch64_sve_narrow_vq. 6681 */ 6682 new_len = sve_vqm1_for_el(env, cur_el); 6683 if (new_len < old_len) { 6684 aarch64_sve_narrow_vq(env, new_len + 1); 6685 } 6686 } 6687 6688 static const ARMCPRegInfo sme_reginfo[] = { 6689 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6690 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6691 .access = PL0_RW, .accessfn = access_tpidr2, 6692 .fgt = FGT_NTPIDR2_EL0, 6693 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6694 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6695 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6696 .access = PL0_RW, .type = ARM_CP_SME, 6697 .fieldoffset = offsetof(CPUARMState, svcr), 6698 .writefn = svcr_write, .raw_writefn = raw_write }, 6699 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6700 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6701 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 6702 .access = PL1_RW, .type = ARM_CP_SME, 6703 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6704 .writefn = smcr_write, .raw_writefn = raw_write }, 6705 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6706 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6707 .access = PL2_RW, .type = ARM_CP_SME, 6708 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6709 .writefn = smcr_write, .raw_writefn = raw_write }, 6710 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6711 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6712 .access = PL3_RW, .type = ARM_CP_SME, 6713 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6714 .writefn = smcr_write, .raw_writefn = raw_write }, 6715 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6716 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6717 .access = PL1_R, .accessfn = access_aa64_tid1, 6718 /* 6719 * IMPLEMENTOR = 0 (software) 6720 * REVISION = 0 (implementation defined) 6721 * SMPS = 0 (no streaming execution priority in QEMU) 6722 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6723 */ 6724 .type = ARM_CP_CONST, .resetvalue = 0, }, 6725 /* 6726 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6727 */ 6728 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6729 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6730 .access = PL1_RW, .accessfn = access_smpri, 6731 .fgt = FGT_NSMPRI_EL1, 6732 .type = ARM_CP_CONST, .resetvalue = 0 }, 6733 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6734 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6735 .nv2_redirect_offset = 0x1f8, 6736 .access = PL2_RW, .accessfn = access_smprimap, 6737 .type = ARM_CP_CONST, .resetvalue = 0 }, 6738 }; 6739 6740 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6741 uint64_t value) 6742 { 6743 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 6744 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 6745 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 6746 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 6747 6748 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 6749 } 6750 6751 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 6752 { 6753 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 6754 env_archcpu(env)->reset_l0gptsz); 6755 } 6756 6757 static const ARMCPRegInfo rme_reginfo[] = { 6758 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 6759 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 6760 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 6761 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 6762 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 6764 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 6765 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 6767 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 6768 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 6769 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 6770 .access = PL3_W, .type = ARM_CP_NOP }, 6771 }; 6772 6773 static const ARMCPRegInfo rme_mte_reginfo[] = { 6774 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 6776 .access = PL3_W, .type = ARM_CP_NOP }, 6777 }; 6778 6779 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 6780 uint64_t value) 6781 { 6782 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 6783 } 6784 6785 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 6786 { 6787 return env->pstate & PSTATE_ALLINT; 6788 } 6789 6790 static CPAccessResult aa64_allint_access(CPUARMState *env, 6791 const ARMCPRegInfo *ri, bool isread) 6792 { 6793 if (!isread && arm_current_el(env) == 1 && 6794 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 6795 return CP_ACCESS_TRAP_EL2; 6796 } 6797 return CP_ACCESS_OK; 6798 } 6799 6800 static const ARMCPRegInfo nmi_reginfo[] = { 6801 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 6802 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 6803 .type = ARM_CP_NO_RAW, 6804 .access = PL1_RW, .accessfn = aa64_allint_access, 6805 .fieldoffset = offsetof(CPUARMState, pstate), 6806 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 6807 .resetfn = arm_cp_reset_ignore }, 6808 }; 6809 #endif /* TARGET_AARCH64 */ 6810 6811 static void define_pmu_regs(ARMCPU *cpu) 6812 { 6813 /* 6814 * v7 performance monitor control register: same implementor 6815 * field as main ID register, and we implement four counters in 6816 * addition to the cycle count register. 6817 */ 6818 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6819 ARMCPRegInfo pmcr = { 6820 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6821 .access = PL0_RW, 6822 .fgt = FGT_PMCR_EL0, 6823 .type = ARM_CP_IO | ARM_CP_ALIAS, 6824 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6825 .accessfn = pmreg_access, 6826 .readfn = pmcr_read, .raw_readfn = raw_read, 6827 .writefn = pmcr_write, .raw_writefn = raw_write, 6828 }; 6829 ARMCPRegInfo pmcr64 = { 6830 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6831 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6832 .access = PL0_RW, .accessfn = pmreg_access, 6833 .fgt = FGT_PMCR_EL0, 6834 .type = ARM_CP_IO, 6835 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6836 .resetvalue = cpu->isar.reset_pmcr_el0, 6837 .readfn = pmcr_read, .raw_readfn = raw_read, 6838 .writefn = pmcr_write, .raw_writefn = raw_write, 6839 }; 6840 6841 define_one_arm_cp_reg(cpu, &pmcr); 6842 define_one_arm_cp_reg(cpu, &pmcr64); 6843 for (i = 0; i < pmcrn; i++) { 6844 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6845 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6846 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6847 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6848 ARMCPRegInfo pmev_regs[] = { 6849 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6850 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6851 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6852 .fgt = FGT_PMEVCNTRN_EL0, 6853 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6854 .accessfn = pmreg_access_xevcntr }, 6855 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6856 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6857 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6858 .type = ARM_CP_IO, 6859 .fgt = FGT_PMEVCNTRN_EL0, 6860 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6861 .raw_readfn = pmevcntr_rawread, 6862 .raw_writefn = pmevcntr_rawwrite }, 6863 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6864 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6865 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6866 .fgt = FGT_PMEVTYPERN_EL0, 6867 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6868 .accessfn = pmreg_access }, 6869 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6871 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6872 .fgt = FGT_PMEVTYPERN_EL0, 6873 .type = ARM_CP_IO, 6874 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6875 .raw_writefn = pmevtyper_rawwrite }, 6876 }; 6877 define_arm_cp_regs(cpu, pmev_regs); 6878 g_free(pmevcntr_name); 6879 g_free(pmevcntr_el0_name); 6880 g_free(pmevtyper_name); 6881 g_free(pmevtyper_el0_name); 6882 } 6883 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6884 ARMCPRegInfo v81_pmu_regs[] = { 6885 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6886 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6887 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6888 .fgt = FGT_PMCEIDN_EL0, 6889 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6890 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6891 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6892 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6893 .fgt = FGT_PMCEIDN_EL0, 6894 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6895 }; 6896 define_arm_cp_regs(cpu, v81_pmu_regs); 6897 } 6898 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6899 static const ARMCPRegInfo v84_pmmir = { 6900 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6901 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6902 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6903 .fgt = FGT_PMMIR_EL1, 6904 .resetvalue = 0 6905 }; 6906 define_one_arm_cp_reg(cpu, &v84_pmmir); 6907 } 6908 } 6909 6910 #ifndef CONFIG_USER_ONLY 6911 /* 6912 * We don't know until after realize whether there's a GICv3 6913 * attached, and that is what registers the gicv3 sysregs. 6914 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6915 * at runtime. 6916 */ 6917 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6918 { 6919 ARMCPU *cpu = env_archcpu(env); 6920 uint64_t pfr1 = cpu->isar.id_pfr1; 6921 6922 if (env->gicv3state) { 6923 pfr1 |= 1 << 28; 6924 } 6925 return pfr1; 6926 } 6927 6928 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6929 { 6930 ARMCPU *cpu = env_archcpu(env); 6931 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6932 6933 if (env->gicv3state) { 6934 pfr0 |= 1 << 24; 6935 } 6936 return pfr0; 6937 } 6938 #endif 6939 6940 /* 6941 * Shared logic between LORID and the rest of the LOR* registers. 6942 * Secure state exclusion has already been dealt with. 6943 */ 6944 static CPAccessResult access_lor_ns(CPUARMState *env, 6945 const ARMCPRegInfo *ri, bool isread) 6946 { 6947 int el = arm_current_el(env); 6948 6949 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6950 return CP_ACCESS_TRAP_EL2; 6951 } 6952 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6953 return CP_ACCESS_TRAP_EL3; 6954 } 6955 return CP_ACCESS_OK; 6956 } 6957 6958 static CPAccessResult access_lor_other(CPUARMState *env, 6959 const ARMCPRegInfo *ri, bool isread) 6960 { 6961 if (arm_is_secure_below_el3(env)) { 6962 /* UNDEF if SCR_EL3.NS == 0 */ 6963 return CP_ACCESS_UNDEFINED; 6964 } 6965 return access_lor_ns(env, ri, isread); 6966 } 6967 6968 /* 6969 * A trivial implementation of ARMv8.1-LOR leaves all of these 6970 * registers fixed at 0, which indicates that there are zero 6971 * supported Limited Ordering regions. 6972 */ 6973 static const ARMCPRegInfo lor_reginfo[] = { 6974 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6975 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6976 .access = PL1_RW, .accessfn = access_lor_other, 6977 .fgt = FGT_LORSA_EL1, 6978 .type = ARM_CP_CONST, .resetvalue = 0 }, 6979 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6981 .access = PL1_RW, .accessfn = access_lor_other, 6982 .fgt = FGT_LOREA_EL1, 6983 .type = ARM_CP_CONST, .resetvalue = 0 }, 6984 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6985 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6986 .access = PL1_RW, .accessfn = access_lor_other, 6987 .fgt = FGT_LORN_EL1, 6988 .type = ARM_CP_CONST, .resetvalue = 0 }, 6989 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6991 .access = PL1_RW, .accessfn = access_lor_other, 6992 .fgt = FGT_LORC_EL1, 6993 .type = ARM_CP_CONST, .resetvalue = 0 }, 6994 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6995 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6996 .access = PL1_R, .accessfn = access_lor_ns, 6997 .fgt = FGT_LORID_EL1, 6998 .type = ARM_CP_CONST, .resetvalue = 0 }, 6999 }; 7000 7001 #ifdef TARGET_AARCH64 7002 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7003 bool isread) 7004 { 7005 int el = arm_current_el(env); 7006 7007 if (el < 2 && 7008 arm_is_el2_enabled(env) && 7009 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7010 return CP_ACCESS_TRAP_EL2; 7011 } 7012 if (el < 3 && 7013 arm_feature(env, ARM_FEATURE_EL3) && 7014 !(env->cp15.scr_el3 & SCR_APK)) { 7015 return CP_ACCESS_TRAP_EL3; 7016 } 7017 return CP_ACCESS_OK; 7018 } 7019 7020 static const ARMCPRegInfo pauth_reginfo[] = { 7021 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7023 .access = PL1_RW, .accessfn = access_pauth, 7024 .fgt = FGT_APDAKEY, 7025 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7026 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7027 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7028 .access = PL1_RW, .accessfn = access_pauth, 7029 .fgt = FGT_APDAKEY, 7030 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7031 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7032 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7033 .access = PL1_RW, .accessfn = access_pauth, 7034 .fgt = FGT_APDBKEY, 7035 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7036 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7038 .access = PL1_RW, .accessfn = access_pauth, 7039 .fgt = FGT_APDBKEY, 7040 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7041 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7043 .access = PL1_RW, .accessfn = access_pauth, 7044 .fgt = FGT_APGAKEY, 7045 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7046 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7047 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7048 .access = PL1_RW, .accessfn = access_pauth, 7049 .fgt = FGT_APGAKEY, 7050 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7051 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7052 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7053 .access = PL1_RW, .accessfn = access_pauth, 7054 .fgt = FGT_APIAKEY, 7055 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7056 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7058 .access = PL1_RW, .accessfn = access_pauth, 7059 .fgt = FGT_APIAKEY, 7060 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7061 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7062 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7063 .access = PL1_RW, .accessfn = access_pauth, 7064 .fgt = FGT_APIBKEY, 7065 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7066 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7067 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7068 .access = PL1_RW, .accessfn = access_pauth, 7069 .fgt = FGT_APIBKEY, 7070 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7071 }; 7072 7073 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7074 { 7075 Error *err = NULL; 7076 uint64_t ret; 7077 7078 /* Success sets NZCV = 0000. */ 7079 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7080 7081 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7082 /* 7083 * ??? Failed, for unknown reasons in the crypto subsystem. 7084 * The best we can do is log the reason and return the 7085 * timed-out indication to the guest. There is no reason 7086 * we know to expect this failure to be transitory, so the 7087 * guest may well hang retrying the operation. 7088 */ 7089 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7090 ri->name, error_get_pretty(err)); 7091 error_free(err); 7092 7093 env->ZF = 0; /* NZCF = 0100 */ 7094 return 0; 7095 } 7096 return ret; 7097 } 7098 7099 /* We do not support re-seeding, so the two registers operate the same. */ 7100 static const ARMCPRegInfo rndr_reginfo[] = { 7101 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7102 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7103 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7104 .access = PL0_R, .readfn = rndr_readfn }, 7105 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7106 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7107 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7108 .access = PL0_R, .readfn = rndr_readfn }, 7109 }; 7110 7111 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7112 uint64_t value) 7113 { 7114 #ifdef CONFIG_TCG 7115 ARMCPU *cpu = env_archcpu(env); 7116 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7117 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7118 uint64_t vaddr_in = (uint64_t) value; 7119 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7120 void *haddr; 7121 int mem_idx = arm_env_mmu_index(env); 7122 7123 /* This won't be crossing page boundaries */ 7124 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7125 if (haddr) { 7126 #ifndef CONFIG_USER_ONLY 7127 7128 ram_addr_t offset; 7129 MemoryRegion *mr; 7130 7131 /* RCU lock is already being held */ 7132 mr = memory_region_from_host(haddr, &offset); 7133 7134 if (mr) { 7135 memory_region_writeback(mr, offset, dline_size); 7136 } 7137 #endif /*CONFIG_USER_ONLY*/ 7138 } 7139 #else 7140 /* Handled by hardware accelerator. */ 7141 g_assert_not_reached(); 7142 #endif /* CONFIG_TCG */ 7143 } 7144 7145 static const ARMCPRegInfo dcpop_reg[] = { 7146 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7147 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7148 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7149 .fgt = FGT_DCCVAP, 7150 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7151 }; 7152 7153 static const ARMCPRegInfo dcpodp_reg[] = { 7154 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7155 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7156 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7157 .fgt = FGT_DCCVADP, 7158 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7159 }; 7160 7161 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7162 bool isread) 7163 { 7164 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7165 return CP_ACCESS_TRAP_EL2; 7166 } 7167 7168 return CP_ACCESS_OK; 7169 } 7170 7171 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7172 bool isread) 7173 { 7174 int el = arm_current_el(env); 7175 if (el < 2 && arm_is_el2_enabled(env)) { 7176 uint64_t hcr = arm_hcr_el2_eff(env); 7177 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7178 return CP_ACCESS_TRAP_EL2; 7179 } 7180 } 7181 if (el < 3 && 7182 arm_feature(env, ARM_FEATURE_EL3) && 7183 !(env->cp15.scr_el3 & SCR_ATA)) { 7184 return CP_ACCESS_TRAP_EL3; 7185 } 7186 return CP_ACCESS_OK; 7187 } 7188 7189 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 7190 bool isread) 7191 { 7192 CPAccessResult nv1 = access_nv1(env, ri, isread); 7193 7194 if (nv1 != CP_ACCESS_OK) { 7195 return nv1; 7196 } 7197 return access_mte(env, ri, isread); 7198 } 7199 7200 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 7201 bool isread) 7202 { 7203 /* 7204 * TFSR_EL2: similar to generic access_mte(), but we need to 7205 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 7206 * if NV2 is enabled then we will redirect this to TFSR_EL1 7207 * after doing the HCR and SCR ATA traps; otherwise this will 7208 * be a trap to EL2 and the HCR/SCR traps do not apply. 7209 */ 7210 int el = arm_current_el(env); 7211 7212 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 7213 return CP_ACCESS_OK; 7214 } 7215 if (el < 2 && arm_is_el2_enabled(env)) { 7216 uint64_t hcr = arm_hcr_el2_eff(env); 7217 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7218 return CP_ACCESS_TRAP_EL2; 7219 } 7220 } 7221 if (el < 3 && 7222 arm_feature(env, ARM_FEATURE_EL3) && 7223 !(env->cp15.scr_el3 & SCR_ATA)) { 7224 return CP_ACCESS_TRAP_EL3; 7225 } 7226 return CP_ACCESS_OK; 7227 } 7228 7229 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7230 { 7231 return env->pstate & PSTATE_TCO; 7232 } 7233 7234 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7235 { 7236 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7237 } 7238 7239 static const ARMCPRegInfo mte_reginfo[] = { 7240 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7242 .access = PL1_RW, .accessfn = access_mte, 7243 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7244 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7245 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7246 .access = PL1_RW, .accessfn = access_tfsr_el1, 7247 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 7248 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7249 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7250 .type = ARM_CP_NV2_REDIRECT, 7251 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7252 .access = PL2_RW, .accessfn = access_tfsr_el2, 7253 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7254 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7255 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7256 .access = PL3_RW, 7257 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7258 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7260 .access = PL1_RW, .accessfn = access_mte, 7261 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7262 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7263 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7264 .access = PL1_RW, .accessfn = access_mte, 7265 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7266 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7268 .type = ARM_CP_NO_RAW, 7269 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7270 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7271 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7272 .type = ARM_CP_NOP, .access = PL1_W, 7273 .fgt = FGT_DCIVAC, 7274 .accessfn = aa64_cacheop_poc_access }, 7275 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7277 .fgt = FGT_DCISW, 7278 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7279 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7281 .type = ARM_CP_NOP, .access = PL1_W, 7282 .fgt = FGT_DCIVAC, 7283 .accessfn = aa64_cacheop_poc_access }, 7284 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7286 .fgt = FGT_DCISW, 7287 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7288 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7289 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7290 .fgt = FGT_DCCSW, 7291 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7292 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7294 .fgt = FGT_DCCSW, 7295 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7296 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7298 .fgt = FGT_DCCISW, 7299 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7300 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7301 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7302 .fgt = FGT_DCCISW, 7303 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7304 }; 7305 7306 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7307 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7309 .type = ARM_CP_CONST, .access = PL0_RW, }, 7310 }; 7311 7312 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7313 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7315 .type = ARM_CP_NOP, .access = PL0_W, 7316 .fgt = FGT_DCCVAC, 7317 .accessfn = aa64_cacheop_poc_access }, 7318 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7319 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7320 .type = ARM_CP_NOP, .access = PL0_W, 7321 .fgt = FGT_DCCVAC, 7322 .accessfn = aa64_cacheop_poc_access }, 7323 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7324 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7325 .type = ARM_CP_NOP, .access = PL0_W, 7326 .fgt = FGT_DCCVAP, 7327 .accessfn = aa64_cacheop_poc_access }, 7328 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7329 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7330 .type = ARM_CP_NOP, .access = PL0_W, 7331 .fgt = FGT_DCCVAP, 7332 .accessfn = aa64_cacheop_poc_access }, 7333 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7335 .type = ARM_CP_NOP, .access = PL0_W, 7336 .fgt = FGT_DCCVADP, 7337 .accessfn = aa64_cacheop_poc_access }, 7338 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7339 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7340 .type = ARM_CP_NOP, .access = PL0_W, 7341 .fgt = FGT_DCCVADP, 7342 .accessfn = aa64_cacheop_poc_access }, 7343 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7345 .type = ARM_CP_NOP, .access = PL0_W, 7346 .fgt = FGT_DCCIVAC, 7347 .accessfn = aa64_cacheop_poc_access }, 7348 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7350 .type = ARM_CP_NOP, .access = PL0_W, 7351 .fgt = FGT_DCCIVAC, 7352 .accessfn = aa64_cacheop_poc_access }, 7353 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7354 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7355 .access = PL0_W, .type = ARM_CP_DC_GVA, 7356 #ifndef CONFIG_USER_ONLY 7357 /* Avoid overhead of an access check that always passes in user-mode */ 7358 .accessfn = aa64_zva_access, 7359 .fgt = FGT_DCZVA, 7360 #endif 7361 }, 7362 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7363 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7364 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7365 #ifndef CONFIG_USER_ONLY 7366 /* Avoid overhead of an access check that always passes in user-mode */ 7367 .accessfn = aa64_zva_access, 7368 .fgt = FGT_DCZVA, 7369 #endif 7370 }, 7371 }; 7372 7373 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7374 bool isread) 7375 { 7376 uint64_t hcr = arm_hcr_el2_eff(env); 7377 int el = arm_current_el(env); 7378 7379 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7380 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7381 if (hcr & HCR_TGE) { 7382 return CP_ACCESS_TRAP_EL2; 7383 } 7384 return CP_ACCESS_TRAP_EL1; 7385 } 7386 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7387 return CP_ACCESS_TRAP_EL2; 7388 } 7389 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7390 return CP_ACCESS_TRAP_EL2; 7391 } 7392 if (el < 3 7393 && arm_feature(env, ARM_FEATURE_EL3) 7394 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7395 return CP_ACCESS_TRAP_EL3; 7396 } 7397 return CP_ACCESS_OK; 7398 } 7399 7400 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 7401 const ARMCPRegInfo *ri, 7402 bool isread) 7403 { 7404 CPAccessResult nv1 = access_nv1(env, ri, isread); 7405 7406 if (nv1 != CP_ACCESS_OK) { 7407 return nv1; 7408 } 7409 return access_scxtnum(env, ri, isread); 7410 } 7411 7412 static const ARMCPRegInfo scxtnum_reginfo[] = { 7413 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7414 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7415 .access = PL0_RW, .accessfn = access_scxtnum, 7416 .fgt = FGT_SCXTNUM_EL0, 7417 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7418 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7419 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7420 .access = PL1_RW, .accessfn = access_scxtnum_el1, 7421 .fgt = FGT_SCXTNUM_EL1, 7422 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 7423 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7424 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7425 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7426 .access = PL2_RW, .accessfn = access_scxtnum, 7427 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7428 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7429 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7430 .access = PL3_RW, 7431 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7432 }; 7433 7434 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7435 bool isread) 7436 { 7437 if (arm_current_el(env) == 2 && 7438 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7439 return CP_ACCESS_TRAP_EL3; 7440 } 7441 return CP_ACCESS_OK; 7442 } 7443 7444 static const ARMCPRegInfo fgt_reginfo[] = { 7445 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7446 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7447 .nv2_redirect_offset = 0x1b8, 7448 .access = PL2_RW, .accessfn = access_fgt, 7449 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7450 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7452 .nv2_redirect_offset = 0x1c0, 7453 .access = PL2_RW, .accessfn = access_fgt, 7454 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7455 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7457 .nv2_redirect_offset = 0x1d0, 7458 .access = PL2_RW, .accessfn = access_fgt, 7459 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7460 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7461 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7462 .nv2_redirect_offset = 0x1d8, 7463 .access = PL2_RW, .accessfn = access_fgt, 7464 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7465 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7467 .nv2_redirect_offset = 0x1c8, 7468 .access = PL2_RW, .accessfn = access_fgt, 7469 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7470 }; 7471 7472 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7473 uint64_t value) 7474 { 7475 /* 7476 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 7477 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 7478 * about the RESS bits at the top -- we choose the "generate an EL2 7479 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 7480 * the ptw.c code detect the resulting invalid address). 7481 */ 7482 env->cp15.vncr_el2 = value & ~0xfffULL; 7483 } 7484 7485 static const ARMCPRegInfo nv2_reginfo[] = { 7486 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 7487 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 7488 .access = PL2_RW, 7489 .writefn = vncr_write, 7490 .nv2_redirect_offset = 0xb0, 7491 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 7492 }; 7493 7494 #endif /* TARGET_AARCH64 */ 7495 7496 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7497 bool isread) 7498 { 7499 int el = arm_current_el(env); 7500 7501 if (el == 0) { 7502 uint64_t sctlr = arm_sctlr(env, el); 7503 if (!(sctlr & SCTLR_EnRCTX)) { 7504 return CP_ACCESS_TRAP_EL1; 7505 } 7506 } else if (el == 1) { 7507 uint64_t hcr = arm_hcr_el2_eff(env); 7508 if (hcr & HCR_NV) { 7509 return CP_ACCESS_TRAP_EL2; 7510 } 7511 } 7512 return CP_ACCESS_OK; 7513 } 7514 7515 static const ARMCPRegInfo predinv_reginfo[] = { 7516 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7517 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7518 .fgt = FGT_CFPRCTX, 7519 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7520 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7521 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7522 .fgt = FGT_DVPRCTX, 7523 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7524 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7525 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7526 .fgt = FGT_CPPRCTX, 7527 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7528 /* 7529 * Note the AArch32 opcodes have a different OPC1. 7530 */ 7531 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7532 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7533 .fgt = FGT_CFPRCTX, 7534 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7535 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7536 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7537 .fgt = FGT_DVPRCTX, 7538 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7539 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7540 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7541 .fgt = FGT_CPPRCTX, 7542 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7543 }; 7544 7545 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7546 { 7547 /* Read the high 32 bits of the current CCSIDR */ 7548 return extract64(ccsidr_read(env, ri), 32, 32); 7549 } 7550 7551 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7552 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7553 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7554 .access = PL1_R, 7555 .accessfn = access_tid4, 7556 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7557 }; 7558 7559 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7560 bool isread) 7561 { 7562 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7563 return CP_ACCESS_TRAP_EL2; 7564 } 7565 7566 return CP_ACCESS_OK; 7567 } 7568 7569 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7570 bool isread) 7571 { 7572 if (arm_feature(env, ARM_FEATURE_V8)) { 7573 return access_aa64_tid3(env, ri, isread); 7574 } 7575 7576 return CP_ACCESS_OK; 7577 } 7578 7579 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7580 bool isread) 7581 { 7582 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7583 return CP_ACCESS_TRAP_EL2; 7584 } 7585 7586 return CP_ACCESS_OK; 7587 } 7588 7589 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7590 const ARMCPRegInfo *ri, bool isread) 7591 { 7592 /* 7593 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7594 * in v7A, not in v8A. 7595 */ 7596 if (!arm_feature(env, ARM_FEATURE_V8) && 7597 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7598 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7599 return CP_ACCESS_TRAP_EL2; 7600 } 7601 return CP_ACCESS_OK; 7602 } 7603 7604 static const ARMCPRegInfo jazelle_regs[] = { 7605 { .name = "JIDR", 7606 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7607 .access = PL1_R, .accessfn = access_jazelle, 7608 .type = ARM_CP_CONST, .resetvalue = 0 }, 7609 { .name = "JOSCR", 7610 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7611 .accessfn = access_joscr_jmcr, 7612 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7613 { .name = "JMCR", 7614 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7615 .accessfn = access_joscr_jmcr, 7616 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7617 }; 7618 7619 static const ARMCPRegInfo contextidr_el2 = { 7620 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7621 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7622 .access = PL2_RW, 7623 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7624 }; 7625 7626 static const ARMCPRegInfo vhe_reginfo[] = { 7627 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7628 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7629 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7630 .raw_writefn = raw_write, 7631 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7632 #ifndef CONFIG_USER_ONLY 7633 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7634 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7635 .fieldoffset = 7636 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7637 .type = ARM_CP_IO, .access = PL2_RW, 7638 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7639 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7640 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7641 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7642 .resetfn = gt_hv_timer_reset, 7643 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7644 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7645 .type = ARM_CP_IO, 7646 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7647 .access = PL2_RW, 7648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7649 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7650 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7651 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7652 .type = ARM_CP_IO | ARM_CP_ALIAS, 7653 .access = PL2_RW, .accessfn = access_el1nvpct, 7654 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 7655 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7656 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7657 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7658 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7659 .type = ARM_CP_IO | ARM_CP_ALIAS, 7660 .access = PL2_RW, .accessfn = access_el1nvvct, 7661 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 7662 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7663 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7664 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7665 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7666 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7667 .access = PL2_RW, .accessfn = e2h_access, 7668 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7669 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7670 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7671 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7672 .access = PL2_RW, .accessfn = e2h_access, 7673 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7674 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7675 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7676 .type = ARM_CP_IO | ARM_CP_ALIAS, 7677 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7678 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 7679 .access = PL2_RW, .accessfn = access_el1nvpct, 7680 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7681 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7683 .type = ARM_CP_IO | ARM_CP_ALIAS, 7684 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 7685 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7686 .access = PL2_RW, .accessfn = access_el1nvvct, 7687 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7688 #endif 7689 }; 7690 7691 #ifndef CONFIG_USER_ONLY 7692 static const ARMCPRegInfo ats1e1_reginfo[] = { 7693 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7694 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7695 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7696 .fgt = FGT_ATS1E1RP, 7697 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7698 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7699 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7700 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7701 .fgt = FGT_ATS1E1WP, 7702 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 7703 }; 7704 7705 static const ARMCPRegInfo ats1cp_reginfo[] = { 7706 { .name = "ATS1CPRP", 7707 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7708 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7709 .writefn = ats_write }, 7710 { .name = "ATS1CPWP", 7711 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7712 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7713 .writefn = ats_write }, 7714 }; 7715 #endif 7716 7717 /* 7718 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7719 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7720 * is non-zero, which is never for ARMv7, optionally in ARMv8 7721 * and mandatorily for ARMv8.2 and up. 7722 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7723 * implementation is RAZ/WI we can ignore this detail, as we 7724 * do for ACTLR. 7725 */ 7726 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7727 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7728 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7729 .access = PL1_RW, .accessfn = access_tacr, 7730 .type = ARM_CP_CONST, .resetvalue = 0 }, 7731 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7732 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7733 .access = PL2_RW, .type = ARM_CP_CONST, 7734 .resetvalue = 0 }, 7735 }; 7736 7737 void register_cp_regs_for_features(ARMCPU *cpu) 7738 { 7739 /* Register all the coprocessor registers based on feature bits */ 7740 CPUARMState *env = &cpu->env; 7741 if (arm_feature(env, ARM_FEATURE_M)) { 7742 /* M profile has no coprocessor registers */ 7743 return; 7744 } 7745 7746 define_arm_cp_regs(cpu, cp_reginfo); 7747 if (!arm_feature(env, ARM_FEATURE_V8)) { 7748 /* 7749 * Must go early as it is full of wildcards that may be 7750 * overridden by later definitions. 7751 */ 7752 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7753 } 7754 7755 define_tlb_insn_regs(cpu); 7756 7757 if (arm_feature(env, ARM_FEATURE_V6)) { 7758 /* The ID registers all have impdef reset values */ 7759 ARMCPRegInfo v6_idregs[] = { 7760 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7761 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7762 .access = PL1_R, .type = ARM_CP_CONST, 7763 .accessfn = access_aa32_tid3, 7764 .resetvalue = cpu->isar.id_pfr0 }, 7765 /* 7766 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7767 * the value of the GIC field until after we define these regs. 7768 */ 7769 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7771 .access = PL1_R, .type = ARM_CP_NO_RAW, 7772 .accessfn = access_aa32_tid3, 7773 #ifdef CONFIG_USER_ONLY 7774 .type = ARM_CP_CONST, 7775 .resetvalue = cpu->isar.id_pfr1, 7776 #else 7777 .type = ARM_CP_NO_RAW, 7778 .accessfn = access_aa32_tid3, 7779 .readfn = id_pfr1_read, 7780 .writefn = arm_cp_write_ignore 7781 #endif 7782 }, 7783 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa32_tid3, 7787 .resetvalue = cpu->isar.id_dfr0 }, 7788 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa32_tid3, 7792 .resetvalue = cpu->id_afr0 }, 7793 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa32_tid3, 7797 .resetvalue = cpu->isar.id_mmfr0 }, 7798 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa32_tid3, 7802 .resetvalue = cpu->isar.id_mmfr1 }, 7803 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7805 .access = PL1_R, .type = ARM_CP_CONST, 7806 .accessfn = access_aa32_tid3, 7807 .resetvalue = cpu->isar.id_mmfr2 }, 7808 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7809 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7810 .access = PL1_R, .type = ARM_CP_CONST, 7811 .accessfn = access_aa32_tid3, 7812 .resetvalue = cpu->isar.id_mmfr3 }, 7813 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7815 .access = PL1_R, .type = ARM_CP_CONST, 7816 .accessfn = access_aa32_tid3, 7817 .resetvalue = cpu->isar.id_isar0 }, 7818 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7820 .access = PL1_R, .type = ARM_CP_CONST, 7821 .accessfn = access_aa32_tid3, 7822 .resetvalue = cpu->isar.id_isar1 }, 7823 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7825 .access = PL1_R, .type = ARM_CP_CONST, 7826 .accessfn = access_aa32_tid3, 7827 .resetvalue = cpu->isar.id_isar2 }, 7828 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7830 .access = PL1_R, .type = ARM_CP_CONST, 7831 .accessfn = access_aa32_tid3, 7832 .resetvalue = cpu->isar.id_isar3 }, 7833 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7835 .access = PL1_R, .type = ARM_CP_CONST, 7836 .accessfn = access_aa32_tid3, 7837 .resetvalue = cpu->isar.id_isar4 }, 7838 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7839 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7840 .access = PL1_R, .type = ARM_CP_CONST, 7841 .accessfn = access_aa32_tid3, 7842 .resetvalue = cpu->isar.id_isar5 }, 7843 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7845 .access = PL1_R, .type = ARM_CP_CONST, 7846 .accessfn = access_aa32_tid3, 7847 .resetvalue = cpu->isar.id_mmfr4 }, 7848 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7849 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7850 .access = PL1_R, .type = ARM_CP_CONST, 7851 .accessfn = access_aa32_tid3, 7852 .resetvalue = cpu->isar.id_isar6 }, 7853 }; 7854 define_arm_cp_regs(cpu, v6_idregs); 7855 define_arm_cp_regs(cpu, v6_cp_reginfo); 7856 } else { 7857 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7858 } 7859 if (arm_feature(env, ARM_FEATURE_V6K)) { 7860 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7861 } 7862 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7863 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7864 } 7865 if (arm_feature(env, ARM_FEATURE_V7)) { 7866 ARMCPRegInfo clidr = { 7867 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7868 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7869 .access = PL1_R, .type = ARM_CP_CONST, 7870 .accessfn = access_tid4, 7871 .fgt = FGT_CLIDR_EL1, 7872 .resetvalue = cpu->clidr 7873 }; 7874 define_one_arm_cp_reg(cpu, &clidr); 7875 define_arm_cp_regs(cpu, v7_cp_reginfo); 7876 define_debug_regs(cpu); 7877 define_pmu_regs(cpu); 7878 } else { 7879 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7880 } 7881 if (arm_feature(env, ARM_FEATURE_V8)) { 7882 /* 7883 * v8 ID registers, which all have impdef reset values. 7884 * Note that within the ID register ranges the unused slots 7885 * must all RAZ, not UNDEF; future architecture versions may 7886 * define new registers here. 7887 * ID registers which are AArch64 views of the AArch32 ID registers 7888 * which already existed in v6 and v7 are handled elsewhere, 7889 * in v6_idregs[]. 7890 */ 7891 int i; 7892 ARMCPRegInfo v8_idregs[] = { 7893 /* 7894 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7895 * emulation because we don't know the right value for the 7896 * GIC field until after we define these regs. 7897 */ 7898 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7900 .access = PL1_R, 7901 #ifdef CONFIG_USER_ONLY 7902 .type = ARM_CP_CONST, 7903 .resetvalue = cpu->isar.id_aa64pfr0 7904 #else 7905 .type = ARM_CP_NO_RAW, 7906 .accessfn = access_aa64_tid3, 7907 .readfn = id_aa64pfr0_read, 7908 .writefn = arm_cp_write_ignore 7909 #endif 7910 }, 7911 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7913 .access = PL1_R, .type = ARM_CP_CONST, 7914 .accessfn = access_aa64_tid3, 7915 .resetvalue = cpu->isar.id_aa64pfr1}, 7916 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7918 .access = PL1_R, .type = ARM_CP_CONST, 7919 .accessfn = access_aa64_tid3, 7920 .resetvalue = 0 }, 7921 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7923 .access = PL1_R, .type = ARM_CP_CONST, 7924 .accessfn = access_aa64_tid3, 7925 .resetvalue = 0 }, 7926 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7928 .access = PL1_R, .type = ARM_CP_CONST, 7929 .accessfn = access_aa64_tid3, 7930 .resetvalue = cpu->isar.id_aa64zfr0 }, 7931 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7933 .access = PL1_R, .type = ARM_CP_CONST, 7934 .accessfn = access_aa64_tid3, 7935 .resetvalue = cpu->isar.id_aa64smfr0 }, 7936 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7938 .access = PL1_R, .type = ARM_CP_CONST, 7939 .accessfn = access_aa64_tid3, 7940 .resetvalue = 0 }, 7941 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7943 .access = PL1_R, .type = ARM_CP_CONST, 7944 .accessfn = access_aa64_tid3, 7945 .resetvalue = 0 }, 7946 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7948 .access = PL1_R, .type = ARM_CP_CONST, 7949 .accessfn = access_aa64_tid3, 7950 .resetvalue = cpu->isar.id_aa64dfr0 }, 7951 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7953 .access = PL1_R, .type = ARM_CP_CONST, 7954 .accessfn = access_aa64_tid3, 7955 .resetvalue = cpu->isar.id_aa64dfr1 }, 7956 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7958 .access = PL1_R, .type = ARM_CP_CONST, 7959 .accessfn = access_aa64_tid3, 7960 .resetvalue = 0 }, 7961 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7963 .access = PL1_R, .type = ARM_CP_CONST, 7964 .accessfn = access_aa64_tid3, 7965 .resetvalue = 0 }, 7966 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7968 .access = PL1_R, .type = ARM_CP_CONST, 7969 .accessfn = access_aa64_tid3, 7970 .resetvalue = cpu->id_aa64afr0 }, 7971 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7973 .access = PL1_R, .type = ARM_CP_CONST, 7974 .accessfn = access_aa64_tid3, 7975 .resetvalue = cpu->id_aa64afr1 }, 7976 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7978 .access = PL1_R, .type = ARM_CP_CONST, 7979 .accessfn = access_aa64_tid3, 7980 .resetvalue = 0 }, 7981 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7983 .access = PL1_R, .type = ARM_CP_CONST, 7984 .accessfn = access_aa64_tid3, 7985 .resetvalue = 0 }, 7986 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7988 .access = PL1_R, .type = ARM_CP_CONST, 7989 .accessfn = access_aa64_tid3, 7990 .resetvalue = cpu->isar.id_aa64isar0 }, 7991 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7993 .access = PL1_R, .type = ARM_CP_CONST, 7994 .accessfn = access_aa64_tid3, 7995 .resetvalue = cpu->isar.id_aa64isar1 }, 7996 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 7997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7998 .access = PL1_R, .type = ARM_CP_CONST, 7999 .accessfn = access_aa64_tid3, 8000 .resetvalue = cpu->isar.id_aa64isar2 }, 8001 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8003 .access = PL1_R, .type = ARM_CP_CONST, 8004 .accessfn = access_aa64_tid3, 8005 .resetvalue = 0 }, 8006 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8008 .access = PL1_R, .type = ARM_CP_CONST, 8009 .accessfn = access_aa64_tid3, 8010 .resetvalue = 0 }, 8011 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8013 .access = PL1_R, .type = ARM_CP_CONST, 8014 .accessfn = access_aa64_tid3, 8015 .resetvalue = 0 }, 8016 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8018 .access = PL1_R, .type = ARM_CP_CONST, 8019 .accessfn = access_aa64_tid3, 8020 .resetvalue = 0 }, 8021 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8023 .access = PL1_R, .type = ARM_CP_CONST, 8024 .accessfn = access_aa64_tid3, 8025 .resetvalue = 0 }, 8026 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8028 .access = PL1_R, .type = ARM_CP_CONST, 8029 .accessfn = access_aa64_tid3, 8030 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8031 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8033 .access = PL1_R, .type = ARM_CP_CONST, 8034 .accessfn = access_aa64_tid3, 8035 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8036 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8038 .access = PL1_R, .type = ARM_CP_CONST, 8039 .accessfn = access_aa64_tid3, 8040 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8041 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 8042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8043 .access = PL1_R, .type = ARM_CP_CONST, 8044 .accessfn = access_aa64_tid3, 8045 .resetvalue = cpu->isar.id_aa64mmfr3 }, 8046 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8048 .access = PL1_R, .type = ARM_CP_CONST, 8049 .accessfn = access_aa64_tid3, 8050 .resetvalue = 0 }, 8051 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8052 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8053 .access = PL1_R, .type = ARM_CP_CONST, 8054 .accessfn = access_aa64_tid3, 8055 .resetvalue = 0 }, 8056 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8058 .access = PL1_R, .type = ARM_CP_CONST, 8059 .accessfn = access_aa64_tid3, 8060 .resetvalue = 0 }, 8061 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8063 .access = PL1_R, .type = ARM_CP_CONST, 8064 .accessfn = access_aa64_tid3, 8065 .resetvalue = 0 }, 8066 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8067 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8068 .access = PL1_R, .type = ARM_CP_CONST, 8069 .accessfn = access_aa64_tid3, 8070 .resetvalue = cpu->isar.mvfr0 }, 8071 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8072 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8073 .access = PL1_R, .type = ARM_CP_CONST, 8074 .accessfn = access_aa64_tid3, 8075 .resetvalue = cpu->isar.mvfr1 }, 8076 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8077 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8078 .access = PL1_R, .type = ARM_CP_CONST, 8079 .accessfn = access_aa64_tid3, 8080 .resetvalue = cpu->isar.mvfr2 }, 8081 /* 8082 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8083 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8084 * as RAZ, since it is in the "reserved for future ID 8085 * registers, RAZ" part of the AArch32 encoding space. 8086 */ 8087 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8088 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8089 .access = PL1_R, .type = ARM_CP_CONST, 8090 .accessfn = access_aa64_tid3, 8091 .resetvalue = 0 }, 8092 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8093 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8094 .access = PL1_R, .type = ARM_CP_CONST, 8095 .accessfn = access_aa64_tid3, 8096 .resetvalue = 0 }, 8097 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8098 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8099 .access = PL1_R, .type = ARM_CP_CONST, 8100 .accessfn = access_aa64_tid3, 8101 .resetvalue = 0 }, 8102 /* 8103 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8104 * they're also RAZ for AArch64, and in v8 are gradually 8105 * being filled with AArch64-view-of-AArch32-ID-register 8106 * for new ID registers. 8107 */ 8108 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8110 .access = PL1_R, .type = ARM_CP_CONST, 8111 .accessfn = access_aa64_tid3, 8112 .resetvalue = 0 }, 8113 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8115 .access = PL1_R, .type = ARM_CP_CONST, 8116 .accessfn = access_aa64_tid3, 8117 .resetvalue = cpu->isar.id_pfr2 }, 8118 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8119 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8120 .access = PL1_R, .type = ARM_CP_CONST, 8121 .accessfn = access_aa64_tid3, 8122 .resetvalue = cpu->isar.id_dfr1 }, 8123 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8124 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8125 .access = PL1_R, .type = ARM_CP_CONST, 8126 .accessfn = access_aa64_tid3, 8127 .resetvalue = cpu->isar.id_mmfr5 }, 8128 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8130 .access = PL1_R, .type = ARM_CP_CONST, 8131 .accessfn = access_aa64_tid3, 8132 .resetvalue = 0 }, 8133 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8134 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8135 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8136 .fgt = FGT_PMCEIDN_EL0, 8137 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8138 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8139 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8140 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8141 .fgt = FGT_PMCEIDN_EL0, 8142 .resetvalue = cpu->pmceid0 }, 8143 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8144 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8145 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8146 .fgt = FGT_PMCEIDN_EL0, 8147 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8148 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8150 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8151 .fgt = FGT_PMCEIDN_EL0, 8152 .resetvalue = cpu->pmceid1 }, 8153 }; 8154 #ifdef CONFIG_USER_ONLY 8155 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8156 { .name = "ID_AA64PFR0_EL1", 8157 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8158 R_ID_AA64PFR0_ADVSIMD_MASK | 8159 R_ID_AA64PFR0_SVE_MASK | 8160 R_ID_AA64PFR0_DIT_MASK, 8161 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8162 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8163 { .name = "ID_AA64PFR1_EL1", 8164 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8165 R_ID_AA64PFR1_SSBS_MASK | 8166 R_ID_AA64PFR1_MTE_MASK | 8167 R_ID_AA64PFR1_SME_MASK }, 8168 { .name = "ID_AA64PFR*_EL1_RESERVED", 8169 .is_glob = true }, 8170 { .name = "ID_AA64ZFR0_EL1", 8171 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8172 R_ID_AA64ZFR0_AES_MASK | 8173 R_ID_AA64ZFR0_BITPERM_MASK | 8174 R_ID_AA64ZFR0_BFLOAT16_MASK | 8175 R_ID_AA64ZFR0_B16B16_MASK | 8176 R_ID_AA64ZFR0_SHA3_MASK | 8177 R_ID_AA64ZFR0_SM4_MASK | 8178 R_ID_AA64ZFR0_I8MM_MASK | 8179 R_ID_AA64ZFR0_F32MM_MASK | 8180 R_ID_AA64ZFR0_F64MM_MASK }, 8181 { .name = "ID_AA64SMFR0_EL1", 8182 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8183 R_ID_AA64SMFR0_BI32I32_MASK | 8184 R_ID_AA64SMFR0_B16F32_MASK | 8185 R_ID_AA64SMFR0_F16F32_MASK | 8186 R_ID_AA64SMFR0_I8I32_MASK | 8187 R_ID_AA64SMFR0_F16F16_MASK | 8188 R_ID_AA64SMFR0_B16B16_MASK | 8189 R_ID_AA64SMFR0_I16I32_MASK | 8190 R_ID_AA64SMFR0_F64F64_MASK | 8191 R_ID_AA64SMFR0_I16I64_MASK | 8192 R_ID_AA64SMFR0_SMEVER_MASK | 8193 R_ID_AA64SMFR0_FA64_MASK }, 8194 { .name = "ID_AA64MMFR0_EL1", 8195 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8196 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8197 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8198 { .name = "ID_AA64MMFR1_EL1", 8199 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8200 { .name = "ID_AA64MMFR2_EL1", 8201 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8202 { .name = "ID_AA64MMFR3_EL1", 8203 .exported_bits = 0 }, 8204 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8205 .is_glob = true }, 8206 { .name = "ID_AA64DFR0_EL1", 8207 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8208 { .name = "ID_AA64DFR1_EL1" }, 8209 { .name = "ID_AA64DFR*_EL1_RESERVED", 8210 .is_glob = true }, 8211 { .name = "ID_AA64AFR*", 8212 .is_glob = true }, 8213 { .name = "ID_AA64ISAR0_EL1", 8214 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8215 R_ID_AA64ISAR0_SHA1_MASK | 8216 R_ID_AA64ISAR0_SHA2_MASK | 8217 R_ID_AA64ISAR0_CRC32_MASK | 8218 R_ID_AA64ISAR0_ATOMIC_MASK | 8219 R_ID_AA64ISAR0_RDM_MASK | 8220 R_ID_AA64ISAR0_SHA3_MASK | 8221 R_ID_AA64ISAR0_SM3_MASK | 8222 R_ID_AA64ISAR0_SM4_MASK | 8223 R_ID_AA64ISAR0_DP_MASK | 8224 R_ID_AA64ISAR0_FHM_MASK | 8225 R_ID_AA64ISAR0_TS_MASK | 8226 R_ID_AA64ISAR0_RNDR_MASK }, 8227 { .name = "ID_AA64ISAR1_EL1", 8228 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8229 R_ID_AA64ISAR1_APA_MASK | 8230 R_ID_AA64ISAR1_API_MASK | 8231 R_ID_AA64ISAR1_JSCVT_MASK | 8232 R_ID_AA64ISAR1_FCMA_MASK | 8233 R_ID_AA64ISAR1_LRCPC_MASK | 8234 R_ID_AA64ISAR1_GPA_MASK | 8235 R_ID_AA64ISAR1_GPI_MASK | 8236 R_ID_AA64ISAR1_FRINTTS_MASK | 8237 R_ID_AA64ISAR1_SB_MASK | 8238 R_ID_AA64ISAR1_BF16_MASK | 8239 R_ID_AA64ISAR1_DGH_MASK | 8240 R_ID_AA64ISAR1_I8MM_MASK }, 8241 { .name = "ID_AA64ISAR2_EL1", 8242 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8243 R_ID_AA64ISAR2_RPRES_MASK | 8244 R_ID_AA64ISAR2_GPA3_MASK | 8245 R_ID_AA64ISAR2_APA3_MASK | 8246 R_ID_AA64ISAR2_MOPS_MASK | 8247 R_ID_AA64ISAR2_BC_MASK | 8248 R_ID_AA64ISAR2_RPRFM_MASK | 8249 R_ID_AA64ISAR2_CSSC_MASK }, 8250 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8251 .is_glob = true }, 8252 }; 8253 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8254 #endif 8255 /* 8256 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 8257 * TODO: For RMR, a write with bit 1 set should do something with 8258 * cpu_reset(). In the meantime, "the bit is strictly a request", 8259 * so we are in spec just ignoring writes. 8260 */ 8261 if (!arm_feature(env, ARM_FEATURE_EL3) && 8262 !arm_feature(env, ARM_FEATURE_EL2)) { 8263 ARMCPRegInfo el1_reset_regs[] = { 8264 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8265 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8266 .access = PL1_R, 8267 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8268 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 8269 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8270 .access = PL1_RW, .type = ARM_CP_CONST, 8271 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 8272 }; 8273 define_arm_cp_regs(cpu, el1_reset_regs); 8274 } 8275 define_arm_cp_regs(cpu, v8_idregs); 8276 define_arm_cp_regs(cpu, v8_cp_reginfo); 8277 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 8278 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 8279 } 8280 8281 for (i = 4; i < 16; i++) { 8282 /* 8283 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8284 * For pre-v8 cores there are RAZ patterns for these in 8285 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8286 * v8 extends the "must RAZ" part of the ID register space 8287 * to also cover c0, 0, c{8-15}, {0-7}. 8288 * These are STATE_AA32 because in the AArch64 sysreg space 8289 * c4-c7 is where the AArch64 ID registers live (and we've 8290 * already defined those in v8_idregs[]), and c8-c15 are not 8291 * "must RAZ" for AArch64. 8292 */ 8293 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8294 ARMCPRegInfo v8_aa32_raz_idregs = { 8295 .name = name, 8296 .state = ARM_CP_STATE_AA32, 8297 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8298 .access = PL1_R, .type = ARM_CP_CONST, 8299 .accessfn = access_aa64_tid3, 8300 .resetvalue = 0 }; 8301 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8302 } 8303 } 8304 8305 /* 8306 * Register the base EL2 cpregs. 8307 * Pre v8, these registers are implemented only as part of the 8308 * Virtualization Extensions (EL2 present). Beginning with v8, 8309 * if EL2 is missing but EL3 is enabled, mostly these become 8310 * RES0 from EL3, with some specific exceptions. 8311 */ 8312 if (arm_feature(env, ARM_FEATURE_EL2) 8313 || (arm_feature(env, ARM_FEATURE_EL3) 8314 && arm_feature(env, ARM_FEATURE_V8))) { 8315 uint64_t vmpidr_def = mpidr_read_val(env); 8316 ARMCPRegInfo vpidr_regs[] = { 8317 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8318 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8319 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8320 .resetvalue = cpu->midr, 8321 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8322 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8323 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8324 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8325 .access = PL2_RW, .resetvalue = cpu->midr, 8326 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8327 .nv2_redirect_offset = 0x88, 8328 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8329 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8330 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8331 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8332 .resetvalue = vmpidr_def, 8333 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8334 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8335 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8336 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8337 .access = PL2_RW, .resetvalue = vmpidr_def, 8338 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8339 .nv2_redirect_offset = 0x50, 8340 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8341 }; 8342 /* 8343 * The only field of MDCR_EL2 that has a defined architectural reset 8344 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8345 */ 8346 ARMCPRegInfo mdcr_el2 = { 8347 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8348 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8349 .writefn = mdcr_el2_write, 8350 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8351 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8352 }; 8353 define_one_arm_cp_reg(cpu, &mdcr_el2); 8354 define_arm_cp_regs(cpu, vpidr_regs); 8355 define_arm_cp_regs(cpu, el2_cp_reginfo); 8356 if (arm_feature(env, ARM_FEATURE_V8)) { 8357 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8358 } 8359 if (cpu_isar_feature(aa64_sel2, cpu)) { 8360 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8361 } 8362 /* 8363 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 8364 * See commentary near RMR_EL1. 8365 */ 8366 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8367 static const ARMCPRegInfo el2_reset_regs[] = { 8368 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8369 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8370 .access = PL2_R, 8371 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8372 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8373 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8374 .access = PL2_R, 8375 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 8376 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 8377 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 8378 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8379 }; 8380 define_arm_cp_regs(cpu, el2_reset_regs); 8381 } 8382 } 8383 8384 /* Register the base EL3 cpregs. */ 8385 if (arm_feature(env, ARM_FEATURE_EL3)) { 8386 define_arm_cp_regs(cpu, el3_cp_reginfo); 8387 ARMCPRegInfo el3_regs[] = { 8388 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8389 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8390 .access = PL3_R, 8391 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 8392 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 8393 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 8394 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 8395 { .name = "RMR", .state = ARM_CP_STATE_AA32, 8396 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 8397 .access = PL3_RW, .type = ARM_CP_CONST, 8398 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 8399 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8400 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8401 .access = PL3_RW, 8402 .raw_writefn = raw_write, .writefn = sctlr_write, 8403 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8404 .resetvalue = cpu->reset_sctlr }, 8405 }; 8406 8407 define_arm_cp_regs(cpu, el3_regs); 8408 } 8409 /* 8410 * The behaviour of NSACR is sufficiently various that we don't 8411 * try to describe it in a single reginfo: 8412 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8413 * reads as constant 0xc00 from NS EL1 and NS EL2 8414 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8415 * if v7 without EL3, register doesn't exist 8416 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8417 */ 8418 if (arm_feature(env, ARM_FEATURE_EL3)) { 8419 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8420 static const ARMCPRegInfo nsacr = { 8421 .name = "NSACR", .type = ARM_CP_CONST, 8422 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8423 .access = PL1_RW, .accessfn = nsacr_access, 8424 .resetvalue = 0xc00 8425 }; 8426 define_one_arm_cp_reg(cpu, &nsacr); 8427 } else { 8428 static const ARMCPRegInfo nsacr = { 8429 .name = "NSACR", 8430 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8431 .access = PL3_RW | PL1_R, 8432 .resetvalue = 0, 8433 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8434 }; 8435 define_one_arm_cp_reg(cpu, &nsacr); 8436 } 8437 } else { 8438 if (arm_feature(env, ARM_FEATURE_V8)) { 8439 static const ARMCPRegInfo nsacr = { 8440 .name = "NSACR", .type = ARM_CP_CONST, 8441 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8442 .access = PL1_R, 8443 .resetvalue = 0xc00 8444 }; 8445 define_one_arm_cp_reg(cpu, &nsacr); 8446 } 8447 } 8448 8449 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8450 if (arm_feature(env, ARM_FEATURE_V6)) { 8451 /* PMSAv6 not implemented */ 8452 assert(arm_feature(env, ARM_FEATURE_V7)); 8453 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8454 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8455 } else { 8456 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8457 } 8458 } else { 8459 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8460 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8461 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8462 if (cpu_isar_feature(aa32_hpd, cpu)) { 8463 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8464 } 8465 } 8466 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8467 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8468 } 8469 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8470 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8471 } 8472 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 8473 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 8474 } 8475 #ifndef CONFIG_USER_ONLY 8476 if (cpu_isar_feature(aa64_ecv, cpu)) { 8477 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 8478 } 8479 #endif 8480 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8481 ARMCPRegInfo vapa_cp_reginfo[] = { 8482 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 8483 .access = PL1_RW, .resetvalue = 0, 8484 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 8485 offsetoflow32(CPUARMState, cp15.par_ns) }, 8486 .writefn = par_write}, 8487 #ifndef CONFIG_USER_ONLY 8488 /* This underdecoding is safe because the reginfo is NO_RAW. */ 8489 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 8490 .access = PL1_W, .accessfn = ats_access, 8491 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 8492 #endif 8493 }; 8494 8495 /* 8496 * When LPAE exists this 32-bit PAR register is an alias of the 8497 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 8498 */ 8499 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8500 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 8501 } 8502 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8503 } 8504 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8505 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8506 } 8507 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8508 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8509 } 8510 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8511 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8512 } 8513 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8514 define_arm_cp_regs(cpu, omap_cp_reginfo); 8515 } 8516 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8517 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8518 } 8519 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8520 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8521 } 8522 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8523 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8524 } 8525 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8526 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8527 } 8528 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8529 define_arm_cp_regs(cpu, jazelle_regs); 8530 } 8531 /* 8532 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8533 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8534 * be read-only (ie write causes UNDEF exception). 8535 */ 8536 { 8537 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8538 /* 8539 * Pre-v8 MIDR space. 8540 * Note that the MIDR isn't a simple constant register because 8541 * of the TI925 behaviour where writes to another register can 8542 * cause the MIDR value to change. 8543 * 8544 * Unimplemented registers in the c15 0 0 0 space default to 8545 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8546 * and friends override accordingly. 8547 */ 8548 { .name = "MIDR", 8549 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8550 .access = PL1_R, .resetvalue = cpu->midr, 8551 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8552 .readfn = midr_read, 8553 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8554 .type = ARM_CP_OVERRIDE }, 8555 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8556 { .name = "DUMMY", 8557 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8558 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8559 { .name = "DUMMY", 8560 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8561 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8562 { .name = "DUMMY", 8563 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8564 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8565 { .name = "DUMMY", 8566 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8567 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8568 { .name = "DUMMY", 8569 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8570 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8571 }; 8572 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8573 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8574 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8575 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8576 .fgt = FGT_MIDR_EL1, 8577 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8578 .readfn = midr_read }, 8579 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8580 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8581 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8582 .access = PL1_R, .resetvalue = cpu->midr }, 8583 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8584 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8585 .access = PL1_R, 8586 .accessfn = access_aa64_tid1, 8587 .fgt = FGT_REVIDR_EL1, 8588 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8589 }; 8590 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8591 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 8592 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8593 .access = PL1_R, .resetvalue = cpu->midr 8594 }; 8595 ARMCPRegInfo id_cp_reginfo[] = { 8596 /* These are common to v8 and pre-v8 */ 8597 { .name = "CTR", 8598 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8599 .access = PL1_R, .accessfn = ctr_el0_access, 8600 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8601 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8602 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8603 .access = PL0_R, .accessfn = ctr_el0_access, 8604 .fgt = FGT_CTR_EL0, 8605 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8606 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8607 { .name = "TCMTR", 8608 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8609 .access = PL1_R, 8610 .accessfn = access_aa32_tid1, 8611 .type = ARM_CP_CONST, .resetvalue = 0 }, 8612 }; 8613 /* TLBTR is specific to VMSA */ 8614 ARMCPRegInfo id_tlbtr_reginfo = { 8615 .name = "TLBTR", 8616 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8617 .access = PL1_R, 8618 .accessfn = access_aa32_tid1, 8619 .type = ARM_CP_CONST, .resetvalue = 0, 8620 }; 8621 /* MPUIR is specific to PMSA V6+ */ 8622 ARMCPRegInfo id_mpuir_reginfo = { 8623 .name = "MPUIR", 8624 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8625 .access = PL1_R, .type = ARM_CP_CONST, 8626 .resetvalue = cpu->pmsav7_dregion << 8 8627 }; 8628 /* HMPUIR is specific to PMSA V8 */ 8629 ARMCPRegInfo id_hmpuir_reginfo = { 8630 .name = "HMPUIR", 8631 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8632 .access = PL2_R, .type = ARM_CP_CONST, 8633 .resetvalue = cpu->pmsav8r_hdregion 8634 }; 8635 static const ARMCPRegInfo crn0_wi_reginfo = { 8636 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8637 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8638 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8639 }; 8640 #ifdef CONFIG_USER_ONLY 8641 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8642 { .name = "MIDR_EL1", 8643 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8644 R_MIDR_EL1_PARTNUM_MASK | 8645 R_MIDR_EL1_ARCHITECTURE_MASK | 8646 R_MIDR_EL1_VARIANT_MASK | 8647 R_MIDR_EL1_IMPLEMENTER_MASK }, 8648 { .name = "REVIDR_EL1" }, 8649 }; 8650 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8651 #endif 8652 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8653 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8654 size_t i; 8655 /* 8656 * Register the blanket "writes ignored" value first to cover the 8657 * whole space. Then update the specific ID registers to allow write 8658 * access, so that they ignore writes rather than causing them to 8659 * UNDEF. 8660 */ 8661 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8662 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8663 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8664 } 8665 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8666 id_cp_reginfo[i].access = PL1_RW; 8667 } 8668 id_mpuir_reginfo.access = PL1_RW; 8669 id_tlbtr_reginfo.access = PL1_RW; 8670 } 8671 if (arm_feature(env, ARM_FEATURE_V8)) { 8672 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8673 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8674 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8675 } 8676 } else { 8677 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8678 } 8679 define_arm_cp_regs(cpu, id_cp_reginfo); 8680 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8681 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8682 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8683 arm_feature(env, ARM_FEATURE_V8)) { 8684 uint32_t i = 0; 8685 char *tmp_string; 8686 8687 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8688 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8689 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8690 8691 /* Register alias is only valid for first 32 indexes */ 8692 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8693 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8694 uint8_t opc1 = extract32(i, 4, 1); 8695 uint8_t opc2 = extract32(i, 0, 1) << 2; 8696 8697 tmp_string = g_strdup_printf("PRBAR%u", i); 8698 ARMCPRegInfo tmp_prbarn_reginfo = { 8699 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8700 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8701 .access = PL1_RW, .resetvalue = 0, 8702 .accessfn = access_tvm_trvm, 8703 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8704 }; 8705 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8706 g_free(tmp_string); 8707 8708 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8709 tmp_string = g_strdup_printf("PRLAR%u", i); 8710 ARMCPRegInfo tmp_prlarn_reginfo = { 8711 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8712 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8713 .access = PL1_RW, .resetvalue = 0, 8714 .accessfn = access_tvm_trvm, 8715 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8716 }; 8717 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8718 g_free(tmp_string); 8719 } 8720 8721 /* Register alias is only valid for first 32 indexes */ 8722 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8723 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8724 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8725 uint8_t opc2 = extract32(i, 0, 1) << 2; 8726 8727 tmp_string = g_strdup_printf("HPRBAR%u", i); 8728 ARMCPRegInfo tmp_hprbarn_reginfo = { 8729 .name = tmp_string, 8730 .type = ARM_CP_NO_RAW, 8731 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8732 .access = PL2_RW, .resetvalue = 0, 8733 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8734 }; 8735 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8736 g_free(tmp_string); 8737 8738 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8739 tmp_string = g_strdup_printf("HPRLAR%u", i); 8740 ARMCPRegInfo tmp_hprlarn_reginfo = { 8741 .name = tmp_string, 8742 .type = ARM_CP_NO_RAW, 8743 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8744 .access = PL2_RW, .resetvalue = 0, 8745 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8746 }; 8747 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8748 g_free(tmp_string); 8749 } 8750 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8751 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8752 } 8753 } 8754 8755 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8756 ARMCPRegInfo mpidr_cp_reginfo[] = { 8757 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8758 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8759 .fgt = FGT_MPIDR_EL1, 8760 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8761 }; 8762 #ifdef CONFIG_USER_ONLY 8763 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8764 { .name = "MPIDR_EL1", 8765 .fixed_bits = 0x0000000080000000 }, 8766 }; 8767 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8768 #endif 8769 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8770 } 8771 8772 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8773 ARMCPRegInfo auxcr_reginfo[] = { 8774 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8775 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8776 .access = PL1_RW, .accessfn = access_tacr, 8777 .nv2_redirect_offset = 0x118, 8778 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8779 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8780 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8781 .access = PL2_RW, .type = ARM_CP_CONST, 8782 .resetvalue = 0 }, 8783 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8784 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8785 .access = PL3_RW, .type = ARM_CP_CONST, 8786 .resetvalue = 0 }, 8787 }; 8788 define_arm_cp_regs(cpu, auxcr_reginfo); 8789 if (cpu_isar_feature(aa32_ac2, cpu)) { 8790 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8791 } 8792 } 8793 8794 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8795 /* 8796 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8797 * There are two flavours: 8798 * (1) older 32-bit only cores have a simple 32-bit CBAR 8799 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8800 * 32-bit register visible to AArch32 at a different encoding 8801 * to the "flavour 1" register and with the bits rearranged to 8802 * be able to squash a 64-bit address into the 32-bit view. 8803 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8804 * in future if we support AArch32-only configs of some of the 8805 * AArch64 cores we might need to add a specific feature flag 8806 * to indicate cores with "flavour 2" CBAR. 8807 */ 8808 if (arm_feature(env, ARM_FEATURE_V8)) { 8809 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8810 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8811 | extract64(cpu->reset_cbar, 32, 12); 8812 ARMCPRegInfo cbar_reginfo[] = { 8813 { .name = "CBAR", 8814 .type = ARM_CP_CONST, 8815 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8816 .access = PL1_R, .resetvalue = cbar32 }, 8817 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8818 .type = ARM_CP_CONST, 8819 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8820 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8821 }; 8822 /* We don't implement a r/w 64 bit CBAR currently */ 8823 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8824 define_arm_cp_regs(cpu, cbar_reginfo); 8825 } else { 8826 ARMCPRegInfo cbar = { 8827 .name = "CBAR", 8828 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8829 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 8830 .fieldoffset = offsetof(CPUARMState, 8831 cp15.c15_config_base_address) 8832 }; 8833 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8834 cbar.access = PL1_R; 8835 cbar.fieldoffset = 0; 8836 cbar.type = ARM_CP_CONST; 8837 } 8838 define_one_arm_cp_reg(cpu, &cbar); 8839 } 8840 } 8841 8842 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8843 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8844 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8845 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8846 .access = PL1_RW, .writefn = vbar_write, 8847 .accessfn = access_nv1, 8848 .fgt = FGT_VBAR_EL1, 8849 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 8850 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8851 offsetof(CPUARMState, cp15.vbar_ns) }, 8852 .resetvalue = 0 }, 8853 }; 8854 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8855 } 8856 8857 /* Generic registers whose values depend on the implementation */ 8858 { 8859 ARMCPRegInfo sctlr = { 8860 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8861 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8862 .access = PL1_RW, .accessfn = access_tvm_trvm, 8863 .fgt = FGT_SCTLR_EL1, 8864 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 8865 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8866 offsetof(CPUARMState, cp15.sctlr_ns) }, 8867 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8868 .raw_writefn = raw_write, 8869 }; 8870 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8871 /* 8872 * Normally we would always end the TB on an SCTLR write, but Linux 8873 * arch/arm/mach-pxa/sleep.S expects two instructions following 8874 * an MMU enable to execute from cache. Imitate this behaviour. 8875 */ 8876 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8877 } 8878 define_one_arm_cp_reg(cpu, &sctlr); 8879 8880 if (arm_feature(env, ARM_FEATURE_PMSA) && 8881 arm_feature(env, ARM_FEATURE_V8)) { 8882 ARMCPRegInfo vsctlr = { 8883 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 8884 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 8885 .access = PL2_RW, .resetvalue = 0x0, 8886 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 8887 }; 8888 define_one_arm_cp_reg(cpu, &vsctlr); 8889 } 8890 } 8891 8892 if (cpu_isar_feature(aa64_lor, cpu)) { 8893 define_arm_cp_regs(cpu, lor_reginfo); 8894 } 8895 if (cpu_isar_feature(aa64_pan, cpu)) { 8896 define_one_arm_cp_reg(cpu, &pan_reginfo); 8897 } 8898 #ifndef CONFIG_USER_ONLY 8899 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8900 define_arm_cp_regs(cpu, ats1e1_reginfo); 8901 } 8902 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8903 define_arm_cp_regs(cpu, ats1cp_reginfo); 8904 } 8905 #endif 8906 if (cpu_isar_feature(aa64_uao, cpu)) { 8907 define_one_arm_cp_reg(cpu, &uao_reginfo); 8908 } 8909 8910 if (cpu_isar_feature(aa64_dit, cpu)) { 8911 define_one_arm_cp_reg(cpu, &dit_reginfo); 8912 } 8913 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8914 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8915 } 8916 if (cpu_isar_feature(any_ras, cpu)) { 8917 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8918 } 8919 8920 if (cpu_isar_feature(aa64_vh, cpu) || 8921 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8922 define_one_arm_cp_reg(cpu, &contextidr_el2); 8923 } 8924 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8925 define_arm_cp_regs(cpu, vhe_reginfo); 8926 } 8927 8928 if (cpu_isar_feature(aa64_sve, cpu)) { 8929 define_arm_cp_regs(cpu, zcr_reginfo); 8930 } 8931 8932 if (cpu_isar_feature(aa64_hcx, cpu)) { 8933 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8934 } 8935 8936 #ifdef TARGET_AARCH64 8937 if (cpu_isar_feature(aa64_sme, cpu)) { 8938 define_arm_cp_regs(cpu, sme_reginfo); 8939 } 8940 if (cpu_isar_feature(aa64_pauth, cpu)) { 8941 define_arm_cp_regs(cpu, pauth_reginfo); 8942 } 8943 if (cpu_isar_feature(aa64_rndr, cpu)) { 8944 define_arm_cp_regs(cpu, rndr_reginfo); 8945 } 8946 /* Data Cache clean instructions up to PoP */ 8947 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8948 define_one_arm_cp_reg(cpu, dcpop_reg); 8949 8950 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8951 define_one_arm_cp_reg(cpu, dcpodp_reg); 8952 } 8953 } 8954 8955 /* 8956 * If full MTE is enabled, add all of the system registers. 8957 * If only "instructions available at EL0" are enabled, 8958 * then define only a RAZ/WI version of PSTATE.TCO. 8959 */ 8960 if (cpu_isar_feature(aa64_mte, cpu)) { 8961 ARMCPRegInfo gmid_reginfo = { 8962 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 8963 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 8964 .access = PL1_R, .accessfn = access_aa64_tid5, 8965 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 8966 }; 8967 define_one_arm_cp_reg(cpu, &gmid_reginfo); 8968 define_arm_cp_regs(cpu, mte_reginfo); 8969 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8970 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8971 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8972 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8973 } 8974 8975 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8976 define_arm_cp_regs(cpu, scxtnum_reginfo); 8977 } 8978 8979 if (cpu_isar_feature(aa64_fgt, cpu)) { 8980 define_arm_cp_regs(cpu, fgt_reginfo); 8981 } 8982 8983 if (cpu_isar_feature(aa64_rme, cpu)) { 8984 define_arm_cp_regs(cpu, rme_reginfo); 8985 if (cpu_isar_feature(aa64_mte, cpu)) { 8986 define_arm_cp_regs(cpu, rme_mte_reginfo); 8987 } 8988 } 8989 8990 if (cpu_isar_feature(aa64_nv2, cpu)) { 8991 define_arm_cp_regs(cpu, nv2_reginfo); 8992 } 8993 8994 if (cpu_isar_feature(aa64_nmi, cpu)) { 8995 define_arm_cp_regs(cpu, nmi_reginfo); 8996 } 8997 #endif 8998 8999 if (cpu_isar_feature(any_predinv, cpu)) { 9000 define_arm_cp_regs(cpu, predinv_reginfo); 9001 } 9002 9003 if (cpu_isar_feature(any_ccidx, cpu)) { 9004 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9005 } 9006 9007 #ifndef CONFIG_USER_ONLY 9008 /* 9009 * Register redirections and aliases must be done last, 9010 * after the registers from the other extensions have been defined. 9011 */ 9012 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9013 define_arm_vh_e2h_redirects_aliases(cpu); 9014 } 9015 #endif 9016 } 9017 9018 /* 9019 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9020 * add a single reginfo struct to the hash table. 9021 */ 9022 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9023 void *opaque, CPState state, 9024 CPSecureState secstate, 9025 int crm, int opc1, int opc2, 9026 const char *name) 9027 { 9028 CPUARMState *env = &cpu->env; 9029 uint32_t key; 9030 ARMCPRegInfo *r2; 9031 bool is64 = r->type & ARM_CP_64BIT; 9032 bool ns = secstate & ARM_CP_SECSTATE_NS; 9033 int cp = r->cp; 9034 size_t name_len; 9035 bool make_const; 9036 9037 switch (state) { 9038 case ARM_CP_STATE_AA32: 9039 /* We assume it is a cp15 register if the .cp field is left unset. */ 9040 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9041 cp = 15; 9042 } 9043 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9044 break; 9045 case ARM_CP_STATE_AA64: 9046 /* 9047 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9048 * cp == 0 as equivalent to the value for "standard guest-visible 9049 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9050 * in their AArch64 view (the .cp value may be non-zero for the 9051 * benefit of the AArch32 view). 9052 */ 9053 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9054 cp = CP_REG_ARM64_SYSREG_CP; 9055 } 9056 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9057 break; 9058 default: 9059 g_assert_not_reached(); 9060 } 9061 9062 /* Overriding of an existing definition must be explicitly requested. */ 9063 if (!(r->type & ARM_CP_OVERRIDE)) { 9064 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9065 if (oldreg) { 9066 assert(oldreg->type & ARM_CP_OVERRIDE); 9067 } 9068 } 9069 9070 /* 9071 * Eliminate registers that are not present because the EL is missing. 9072 * Doing this here makes it easier to put all registers for a given 9073 * feature into the same ARMCPRegInfo array and define them all at once. 9074 */ 9075 make_const = false; 9076 if (arm_feature(env, ARM_FEATURE_EL3)) { 9077 /* 9078 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9079 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9080 */ 9081 int min_el = ctz32(r->access) / 2; 9082 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9083 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9084 return; 9085 } 9086 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9087 } 9088 } else { 9089 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9090 ? PL2_RW : PL1_RW); 9091 if ((r->access & max_el) == 0) { 9092 return; 9093 } 9094 } 9095 9096 /* Combine cpreg and name into one allocation. */ 9097 name_len = strlen(name) + 1; 9098 r2 = g_malloc(sizeof(*r2) + name_len); 9099 *r2 = *r; 9100 r2->name = memcpy(r2 + 1, name, name_len); 9101 9102 /* 9103 * Update fields to match the instantiation, overwiting wildcards 9104 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9105 */ 9106 r2->cp = cp; 9107 r2->crm = crm; 9108 r2->opc1 = opc1; 9109 r2->opc2 = opc2; 9110 r2->state = state; 9111 r2->secure = secstate; 9112 if (opaque) { 9113 r2->opaque = opaque; 9114 } 9115 9116 if (make_const) { 9117 /* This should not have been a very special register to begin. */ 9118 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9119 assert(old_special == 0 || old_special == ARM_CP_NOP); 9120 /* 9121 * Set the special function to CONST, retaining the other flags. 9122 * This is important for e.g. ARM_CP_SVE so that we still 9123 * take the SVE trap if CPTR_EL3.EZ == 0. 9124 */ 9125 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9126 /* 9127 * Usually, these registers become RES0, but there are a few 9128 * special cases like VPIDR_EL2 which have a constant non-zero 9129 * value with writes ignored. 9130 */ 9131 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9132 r2->resetvalue = 0; 9133 } 9134 /* 9135 * ARM_CP_CONST has precedence, so removing the callbacks and 9136 * offsets are not strictly necessary, but it is potentially 9137 * less confusing to debug later. 9138 */ 9139 r2->readfn = NULL; 9140 r2->writefn = NULL; 9141 r2->raw_readfn = NULL; 9142 r2->raw_writefn = NULL; 9143 r2->resetfn = NULL; 9144 r2->fieldoffset = 0; 9145 r2->bank_fieldoffsets[0] = 0; 9146 r2->bank_fieldoffsets[1] = 0; 9147 } else { 9148 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9149 9150 if (isbanked) { 9151 /* 9152 * Register is banked (using both entries in array). 9153 * Overwriting fieldoffset as the array is only used to define 9154 * banked registers but later only fieldoffset is used. 9155 */ 9156 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9157 } 9158 if (state == ARM_CP_STATE_AA32) { 9159 if (isbanked) { 9160 /* 9161 * If the register is banked then we don't need to migrate or 9162 * reset the 32-bit instance in certain cases: 9163 * 9164 * 1) If the register has both 32-bit and 64-bit instances 9165 * then we can count on the 64-bit instance taking care 9166 * of the non-secure bank. 9167 * 2) If ARMv8 is enabled then we can count on a 64-bit 9168 * version taking care of the secure bank. This requires 9169 * that separate 32 and 64-bit definitions are provided. 9170 */ 9171 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9172 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9173 r2->type |= ARM_CP_ALIAS; 9174 } 9175 } else if ((secstate != r->secure) && !ns) { 9176 /* 9177 * The register is not banked so we only want to allow 9178 * migration of the non-secure instance. 9179 */ 9180 r2->type |= ARM_CP_ALIAS; 9181 } 9182 9183 if (HOST_BIG_ENDIAN && 9184 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9185 r2->fieldoffset += sizeof(uint32_t); 9186 } 9187 } 9188 } 9189 9190 /* 9191 * By convention, for wildcarded registers only the first 9192 * entry is used for migration; the others are marked as 9193 * ALIAS so we don't try to transfer the register 9194 * multiple times. Special registers (ie NOP/WFI) are 9195 * never migratable and not even raw-accessible. 9196 */ 9197 if (r2->type & ARM_CP_SPECIAL_MASK) { 9198 r2->type |= ARM_CP_NO_RAW; 9199 } 9200 if (((r->crm == CP_ANY) && crm != 0) || 9201 ((r->opc1 == CP_ANY) && opc1 != 0) || 9202 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9203 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9204 } 9205 9206 /* 9207 * Check that raw accesses are either forbidden or handled. Note that 9208 * we can't assert this earlier because the setup of fieldoffset for 9209 * banked registers has to be done first. 9210 */ 9211 if (!(r2->type & ARM_CP_NO_RAW)) { 9212 assert(!raw_accessors_invalid(r2)); 9213 } 9214 9215 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9216 } 9217 9218 9219 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9220 const ARMCPRegInfo *r, void *opaque) 9221 { 9222 /* 9223 * Define implementations of coprocessor registers. 9224 * We store these in a hashtable because typically 9225 * there are less than 150 registers in a space which 9226 * is 16*16*16*8*8 = 262144 in size. 9227 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9228 * If a register is defined twice then the second definition is 9229 * used, so this can be used to define some generic registers and 9230 * then override them with implementation specific variations. 9231 * At least one of the original and the second definition should 9232 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9233 * against accidental use. 9234 * 9235 * The state field defines whether the register is to be 9236 * visible in the AArch32 or AArch64 execution state. If the 9237 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9238 * reginfo structure for the AArch32 view, which sees the lower 9239 * 32 bits of the 64 bit register. 9240 * 9241 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9242 * be wildcarded. AArch64 registers are always considered to be 64 9243 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9244 * the register, if any. 9245 */ 9246 int crm, opc1, opc2; 9247 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9248 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9249 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9250 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9251 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9252 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9253 CPState state; 9254 9255 /* 64 bit registers have only CRm and Opc1 fields */ 9256 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9257 /* op0 only exists in the AArch64 encodings */ 9258 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9259 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9260 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9261 /* 9262 * This API is only for Arm's system coprocessors (14 and 15) or 9263 * (M-profile or v7A-and-earlier only) for implementation defined 9264 * coprocessors in the range 0..7. Our decode assumes this, since 9265 * 8..13 can be used for other insns including VFP and Neon. See 9266 * valid_cp() in translate.c. Assert here that we haven't tried 9267 * to use an invalid coprocessor number. 9268 */ 9269 switch (r->state) { 9270 case ARM_CP_STATE_BOTH: 9271 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9272 if (r->cp == 0) { 9273 break; 9274 } 9275 /* fall through */ 9276 case ARM_CP_STATE_AA32: 9277 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9278 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9279 assert(r->cp >= 14 && r->cp <= 15); 9280 } else { 9281 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9282 } 9283 break; 9284 case ARM_CP_STATE_AA64: 9285 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9286 break; 9287 default: 9288 g_assert_not_reached(); 9289 } 9290 /* 9291 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9292 * encodes a minimum access level for the register. We roll this 9293 * runtime check into our general permission check code, so check 9294 * here that the reginfo's specified permissions are strict enough 9295 * to encompass the generic architectural permission check. 9296 */ 9297 if (r->state != ARM_CP_STATE_AA32) { 9298 CPAccessRights mask; 9299 switch (r->opc1) { 9300 case 0: 9301 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9302 mask = PL0U_R | PL1_RW; 9303 break; 9304 case 1: case 2: 9305 /* min_EL EL1 */ 9306 mask = PL1_RW; 9307 break; 9308 case 3: 9309 /* min_EL EL0 */ 9310 mask = PL0_RW; 9311 break; 9312 case 4: 9313 case 5: 9314 /* min_EL EL2 */ 9315 mask = PL2_RW; 9316 break; 9317 case 6: 9318 /* min_EL EL3 */ 9319 mask = PL3_RW; 9320 break; 9321 case 7: 9322 /* min_EL EL1, secure mode only (we don't check the latter) */ 9323 mask = PL1_RW; 9324 break; 9325 default: 9326 /* broken reginfo with out-of-range opc1 */ 9327 g_assert_not_reached(); 9328 } 9329 /* assert our permissions are not too lax (stricter is fine) */ 9330 assert((r->access & ~mask) == 0); 9331 } 9332 9333 /* 9334 * Check that the register definition has enough info to handle 9335 * reads and writes if they are permitted. 9336 */ 9337 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9338 if (r->access & PL3_R) { 9339 assert((r->fieldoffset || 9340 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9341 r->readfn); 9342 } 9343 if (r->access & PL3_W) { 9344 assert((r->fieldoffset || 9345 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9346 r->writefn); 9347 } 9348 } 9349 9350 for (crm = crmmin; crm <= crmmax; crm++) { 9351 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9352 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9353 for (state = ARM_CP_STATE_AA32; 9354 state <= ARM_CP_STATE_AA64; state++) { 9355 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9356 continue; 9357 } 9358 if ((r->type & ARM_CP_ADD_TLBI_NXS) && 9359 cpu_isar_feature(aa64_xs, cpu)) { 9360 /* 9361 * This is a TLBI insn which has an NXS variant. The 9362 * NXS variant is at the same encoding except that 9363 * crn is +1, and has the same behaviour except for 9364 * fine-grained trapping. Add the NXS insn here and 9365 * then fall through to add the normal register. 9366 * add_cpreg_to_hashtable() copies the cpreg struct 9367 * and name that it is passed, so it's OK to use 9368 * a local struct here. 9369 */ 9370 ARMCPRegInfo nxs_ri = *r; 9371 g_autofree char *name = g_strdup_printf("%sNXS", r->name); 9372 9373 assert(state == ARM_CP_STATE_AA64); 9374 assert(nxs_ri.crn < 0xf); 9375 nxs_ri.crn++; 9376 if (nxs_ri.fgt) { 9377 nxs_ri.fgt |= R_FGT_NXS_MASK; 9378 } 9379 add_cpreg_to_hashtable(cpu, &nxs_ri, opaque, state, 9380 ARM_CP_SECSTATE_NS, 9381 crm, opc1, opc2, name); 9382 } 9383 if (state == ARM_CP_STATE_AA32) { 9384 /* 9385 * Under AArch32 CP registers can be common 9386 * (same for secure and non-secure world) or banked. 9387 */ 9388 char *name; 9389 9390 switch (r->secure) { 9391 case ARM_CP_SECSTATE_S: 9392 case ARM_CP_SECSTATE_NS: 9393 add_cpreg_to_hashtable(cpu, r, opaque, state, 9394 r->secure, crm, opc1, opc2, 9395 r->name); 9396 break; 9397 case ARM_CP_SECSTATE_BOTH: 9398 name = g_strdup_printf("%s_S", r->name); 9399 add_cpreg_to_hashtable(cpu, r, opaque, state, 9400 ARM_CP_SECSTATE_S, 9401 crm, opc1, opc2, name); 9402 g_free(name); 9403 add_cpreg_to_hashtable(cpu, r, opaque, state, 9404 ARM_CP_SECSTATE_NS, 9405 crm, opc1, opc2, r->name); 9406 break; 9407 default: 9408 g_assert_not_reached(); 9409 } 9410 } else { 9411 /* 9412 * AArch64 registers get mapped to non-secure instance 9413 * of AArch32 9414 */ 9415 add_cpreg_to_hashtable(cpu, r, opaque, state, 9416 ARM_CP_SECSTATE_NS, 9417 crm, opc1, opc2, r->name); 9418 } 9419 } 9420 } 9421 } 9422 } 9423 } 9424 9425 /* Define a whole list of registers */ 9426 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9427 void *opaque, size_t len) 9428 { 9429 size_t i; 9430 for (i = 0; i < len; ++i) { 9431 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9432 } 9433 } 9434 9435 /* 9436 * Modify ARMCPRegInfo for access from userspace. 9437 * 9438 * This is a data driven modification directed by 9439 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9440 * user-space cannot alter any values and dynamic values pertaining to 9441 * execution state are hidden from user space view anyway. 9442 */ 9443 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9444 const ARMCPRegUserSpaceInfo *mods, 9445 size_t mods_len) 9446 { 9447 for (size_t mi = 0; mi < mods_len; ++mi) { 9448 const ARMCPRegUserSpaceInfo *m = mods + mi; 9449 GPatternSpec *pat = NULL; 9450 9451 if (m->is_glob) { 9452 pat = g_pattern_spec_new(m->name); 9453 } 9454 for (size_t ri = 0; ri < regs_len; ++ri) { 9455 ARMCPRegInfo *r = regs + ri; 9456 9457 if (pat && g_pattern_match_string(pat, r->name)) { 9458 r->type = ARM_CP_CONST; 9459 r->access = PL0U_R; 9460 r->resetvalue = 0; 9461 /* continue */ 9462 } else if (strcmp(r->name, m->name) == 0) { 9463 r->type = ARM_CP_CONST; 9464 r->access = PL0U_R; 9465 r->resetvalue &= m->exported_bits; 9466 r->resetvalue |= m->fixed_bits; 9467 break; 9468 } 9469 } 9470 if (pat) { 9471 g_pattern_spec_free(pat); 9472 } 9473 } 9474 } 9475 9476 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9477 { 9478 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9479 } 9480 9481 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9482 uint64_t value) 9483 { 9484 /* Helper coprocessor write function for write-ignore registers */ 9485 } 9486 9487 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9488 { 9489 /* Helper coprocessor write function for read-as-zero registers */ 9490 return 0; 9491 } 9492 9493 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9494 { 9495 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9496 } 9497 9498 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9499 { 9500 /* 9501 * Return true if it is not valid for us to switch to 9502 * this CPU mode (ie all the UNPREDICTABLE cases in 9503 * the ARM ARM CPSRWriteByInstr pseudocode). 9504 */ 9505 9506 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9507 if (write_type == CPSRWriteByInstr && 9508 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9509 mode == ARM_CPU_MODE_HYP)) { 9510 return 1; 9511 } 9512 9513 switch (mode) { 9514 case ARM_CPU_MODE_USR: 9515 return 0; 9516 case ARM_CPU_MODE_SYS: 9517 case ARM_CPU_MODE_SVC: 9518 case ARM_CPU_MODE_ABT: 9519 case ARM_CPU_MODE_UND: 9520 case ARM_CPU_MODE_IRQ: 9521 case ARM_CPU_MODE_FIQ: 9522 /* 9523 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9524 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9525 */ 9526 /* 9527 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9528 * and CPS are treated as illegal mode changes. 9529 */ 9530 if (write_type == CPSRWriteByInstr && 9531 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9532 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9533 return 1; 9534 } 9535 return 0; 9536 case ARM_CPU_MODE_HYP: 9537 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9538 case ARM_CPU_MODE_MON: 9539 return arm_current_el(env) < 3; 9540 default: 9541 return 1; 9542 } 9543 } 9544 9545 uint32_t cpsr_read(CPUARMState *env) 9546 { 9547 int ZF; 9548 ZF = (env->ZF == 0); 9549 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9550 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9551 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9552 | ((env->condexec_bits & 0xfc) << 8) 9553 | (env->GE << 16) | (env->daif & CPSR_AIF); 9554 } 9555 9556 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9557 CPSRWriteType write_type) 9558 { 9559 uint32_t changed_daif; 9560 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9561 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9562 9563 if (mask & CPSR_NZCV) { 9564 env->ZF = (~val) & CPSR_Z; 9565 env->NF = val; 9566 env->CF = (val >> 29) & 1; 9567 env->VF = (val << 3) & 0x80000000; 9568 } 9569 if (mask & CPSR_Q) { 9570 env->QF = ((val & CPSR_Q) != 0); 9571 } 9572 if (mask & CPSR_T) { 9573 env->thumb = ((val & CPSR_T) != 0); 9574 } 9575 if (mask & CPSR_IT_0_1) { 9576 env->condexec_bits &= ~3; 9577 env->condexec_bits |= (val >> 25) & 3; 9578 } 9579 if (mask & CPSR_IT_2_7) { 9580 env->condexec_bits &= 3; 9581 env->condexec_bits |= (val >> 8) & 0xfc; 9582 } 9583 if (mask & CPSR_GE) { 9584 env->GE = (val >> 16) & 0xf; 9585 } 9586 9587 /* 9588 * In a V7 implementation that includes the security extensions but does 9589 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9590 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9591 * bits respectively. 9592 * 9593 * In a V8 implementation, it is permitted for privileged software to 9594 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9595 */ 9596 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9597 arm_feature(env, ARM_FEATURE_EL3) && 9598 !arm_feature(env, ARM_FEATURE_EL2) && 9599 !arm_is_secure(env)) { 9600 9601 changed_daif = (env->daif ^ val) & mask; 9602 9603 if (changed_daif & CPSR_A) { 9604 /* 9605 * Check to see if we are allowed to change the masking of async 9606 * abort exceptions from a non-secure state. 9607 */ 9608 if (!(env->cp15.scr_el3 & SCR_AW)) { 9609 qemu_log_mask(LOG_GUEST_ERROR, 9610 "Ignoring attempt to switch CPSR_A flag from " 9611 "non-secure world with SCR.AW bit clear\n"); 9612 mask &= ~CPSR_A; 9613 } 9614 } 9615 9616 if (changed_daif & CPSR_F) { 9617 /* 9618 * Check to see if we are allowed to change the masking of FIQ 9619 * exceptions from a non-secure state. 9620 */ 9621 if (!(env->cp15.scr_el3 & SCR_FW)) { 9622 qemu_log_mask(LOG_GUEST_ERROR, 9623 "Ignoring attempt to switch CPSR_F flag from " 9624 "non-secure world with SCR.FW bit clear\n"); 9625 mask &= ~CPSR_F; 9626 } 9627 9628 /* 9629 * Check whether non-maskable FIQ (NMFI) support is enabled. 9630 * If this bit is set software is not allowed to mask 9631 * FIQs, but is allowed to set CPSR_F to 0. 9632 */ 9633 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9634 (val & CPSR_F)) { 9635 qemu_log_mask(LOG_GUEST_ERROR, 9636 "Ignoring attempt to enable CPSR_F flag " 9637 "(non-maskable FIQ [NMFI] support enabled)\n"); 9638 mask &= ~CPSR_F; 9639 } 9640 } 9641 } 9642 9643 env->daif &= ~(CPSR_AIF & mask); 9644 env->daif |= val & CPSR_AIF & mask; 9645 9646 if (write_type != CPSRWriteRaw && 9647 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9648 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9649 /* 9650 * Note that we can only get here in USR mode if this is a 9651 * gdb stub write; for this case we follow the architectural 9652 * behaviour for guest writes in USR mode of ignoring an attempt 9653 * to switch mode. (Those are caught by translate.c for writes 9654 * triggered by guest instructions.) 9655 */ 9656 mask &= ~CPSR_M; 9657 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9658 /* 9659 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9660 * v7, and has defined behaviour in v8: 9661 * + leave CPSR.M untouched 9662 * + allow changes to the other CPSR fields 9663 * + set PSTATE.IL 9664 * For user changes via the GDB stub, we don't set PSTATE.IL, 9665 * as this would be unnecessarily harsh for a user error. 9666 */ 9667 mask &= ~CPSR_M; 9668 if (write_type != CPSRWriteByGDBStub && 9669 arm_feature(env, ARM_FEATURE_V8)) { 9670 mask |= CPSR_IL; 9671 val |= CPSR_IL; 9672 } 9673 qemu_log_mask(LOG_GUEST_ERROR, 9674 "Illegal AArch32 mode switch attempt from %s to %s\n", 9675 aarch32_mode_name(env->uncached_cpsr), 9676 aarch32_mode_name(val)); 9677 } else { 9678 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9679 write_type == CPSRWriteExceptionReturn ? 9680 "Exception return from AArch32" : 9681 "AArch32 mode switch from", 9682 aarch32_mode_name(env->uncached_cpsr), 9683 aarch32_mode_name(val), env->regs[15]); 9684 switch_mode(env, val & CPSR_M); 9685 } 9686 } 9687 mask &= ~CACHED_CPSR_BITS; 9688 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9689 if (tcg_enabled() && rebuild_hflags) { 9690 arm_rebuild_hflags(env); 9691 } 9692 } 9693 9694 #ifdef CONFIG_USER_ONLY 9695 9696 static void switch_mode(CPUARMState *env, int mode) 9697 { 9698 ARMCPU *cpu = env_archcpu(env); 9699 9700 if (mode != ARM_CPU_MODE_USR) { 9701 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9702 } 9703 } 9704 9705 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9706 uint32_t cur_el, bool secure) 9707 { 9708 return 1; 9709 } 9710 9711 void aarch64_sync_64_to_32(CPUARMState *env) 9712 { 9713 g_assert_not_reached(); 9714 } 9715 9716 #else 9717 9718 static void switch_mode(CPUARMState *env, int mode) 9719 { 9720 int old_mode; 9721 int i; 9722 9723 old_mode = env->uncached_cpsr & CPSR_M; 9724 if (mode == old_mode) { 9725 return; 9726 } 9727 9728 if (old_mode == ARM_CPU_MODE_FIQ) { 9729 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9730 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9731 } else if (mode == ARM_CPU_MODE_FIQ) { 9732 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9733 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9734 } 9735 9736 i = bank_number(old_mode); 9737 env->banked_r13[i] = env->regs[13]; 9738 env->banked_spsr[i] = env->spsr; 9739 9740 i = bank_number(mode); 9741 env->regs[13] = env->banked_r13[i]; 9742 env->spsr = env->banked_spsr[i]; 9743 9744 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9745 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9746 } 9747 9748 /* 9749 * Physical Interrupt Target EL Lookup Table 9750 * 9751 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9752 * 9753 * The below multi-dimensional table is used for looking up the target 9754 * exception level given numerous condition criteria. Specifically, the 9755 * target EL is based on SCR and HCR routing controls as well as the 9756 * currently executing EL and secure state. 9757 * 9758 * Dimensions: 9759 * target_el_table[2][2][2][2][2][4] 9760 * | | | | | +--- Current EL 9761 * | | | | +------ Non-secure(0)/Secure(1) 9762 * | | | +--------- HCR mask override 9763 * | | +------------ SCR exec state control 9764 * | +--------------- SCR mask override 9765 * +------------------ 32-bit(0)/64-bit(1) EL3 9766 * 9767 * The table values are as such: 9768 * 0-3 = EL0-EL3 9769 * -1 = Cannot occur 9770 * 9771 * The ARM ARM target EL table includes entries indicating that an "exception 9772 * is not taken". The two cases where this is applicable are: 9773 * 1) An exception is taken from EL3 but the SCR does not have the exception 9774 * routed to EL3. 9775 * 2) An exception is taken from EL2 but the HCR does not have the exception 9776 * routed to EL2. 9777 * In these two cases, the below table contain a target of EL1. This value is 9778 * returned as it is expected that the consumer of the table data will check 9779 * for "target EL >= current EL" to ensure the exception is not taken. 9780 * 9781 * SCR HCR 9782 * 64 EA AMO From 9783 * BIT IRQ IMO Non-secure Secure 9784 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9785 */ 9786 static const int8_t target_el_table[2][2][2][2][2][4] = { 9787 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9788 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9789 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9790 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9791 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9792 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9793 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9794 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9795 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9796 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9797 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9798 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9799 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9800 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9801 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9802 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9803 }; 9804 9805 /* 9806 * Determine the target EL for physical exceptions 9807 */ 9808 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9809 uint32_t cur_el, bool secure) 9810 { 9811 CPUARMState *env = cpu_env(cs); 9812 bool rw; 9813 bool scr; 9814 bool hcr; 9815 int target_el; 9816 /* Is the highest EL AArch64? */ 9817 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9818 uint64_t hcr_el2; 9819 9820 if (arm_feature(env, ARM_FEATURE_EL3)) { 9821 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9822 } else { 9823 /* 9824 * Either EL2 is the highest EL (and so the EL2 register width 9825 * is given by is64); or there is no EL2 or EL3, in which case 9826 * the value of 'rw' does not affect the table lookup anyway. 9827 */ 9828 rw = is64; 9829 } 9830 9831 hcr_el2 = arm_hcr_el2_eff(env); 9832 switch (excp_idx) { 9833 case EXCP_IRQ: 9834 case EXCP_NMI: 9835 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9836 hcr = hcr_el2 & HCR_IMO; 9837 break; 9838 case EXCP_FIQ: 9839 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9840 hcr = hcr_el2 & HCR_FMO; 9841 break; 9842 default: 9843 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9844 hcr = hcr_el2 & HCR_AMO; 9845 break; 9846 }; 9847 9848 /* 9849 * For these purposes, TGE and AMO/IMO/FMO both force the 9850 * interrupt to EL2. Fold TGE into the bit extracted above. 9851 */ 9852 hcr |= (hcr_el2 & HCR_TGE) != 0; 9853 9854 /* Perform a table-lookup for the target EL given the current state */ 9855 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9856 9857 assert(target_el > 0); 9858 9859 return target_el; 9860 } 9861 9862 void arm_log_exception(CPUState *cs) 9863 { 9864 int idx = cs->exception_index; 9865 9866 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9867 const char *exc = NULL; 9868 static const char * const excnames[] = { 9869 [EXCP_UDEF] = "Undefined Instruction", 9870 [EXCP_SWI] = "SVC", 9871 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9872 [EXCP_DATA_ABORT] = "Data Abort", 9873 [EXCP_IRQ] = "IRQ", 9874 [EXCP_FIQ] = "FIQ", 9875 [EXCP_BKPT] = "Breakpoint", 9876 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9877 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9878 [EXCP_HVC] = "Hypervisor Call", 9879 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9880 [EXCP_SMC] = "Secure Monitor Call", 9881 [EXCP_VIRQ] = "Virtual IRQ", 9882 [EXCP_VFIQ] = "Virtual FIQ", 9883 [EXCP_SEMIHOST] = "Semihosting call", 9884 [EXCP_NOCP] = "v7M NOCP UsageFault", 9885 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9886 [EXCP_STKOF] = "v8M STKOF UsageFault", 9887 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9888 [EXCP_LSERR] = "v8M LSERR UsageFault", 9889 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9890 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9891 [EXCP_VSERR] = "Virtual SERR", 9892 [EXCP_GPC] = "Granule Protection Check", 9893 [EXCP_NMI] = "NMI", 9894 [EXCP_VINMI] = "Virtual IRQ NMI", 9895 [EXCP_VFNMI] = "Virtual FIQ NMI", 9896 [EXCP_MON_TRAP] = "Monitor Trap", 9897 }; 9898 9899 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9900 exc = excnames[idx]; 9901 } 9902 if (!exc) { 9903 exc = "unknown"; 9904 } 9905 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9906 idx, exc, cs->cpu_index); 9907 } 9908 } 9909 9910 /* 9911 * Function used to synchronize QEMU's AArch64 register set with AArch32 9912 * register set. This is necessary when switching between AArch32 and AArch64 9913 * execution state. 9914 */ 9915 void aarch64_sync_32_to_64(CPUARMState *env) 9916 { 9917 int i; 9918 uint32_t mode = env->uncached_cpsr & CPSR_M; 9919 9920 /* We can blanket copy R[0:7] to X[0:7] */ 9921 for (i = 0; i < 8; i++) { 9922 env->xregs[i] = env->regs[i]; 9923 } 9924 9925 /* 9926 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9927 * Otherwise, they come from the banked user regs. 9928 */ 9929 if (mode == ARM_CPU_MODE_FIQ) { 9930 for (i = 8; i < 13; i++) { 9931 env->xregs[i] = env->usr_regs[i - 8]; 9932 } 9933 } else { 9934 for (i = 8; i < 13; i++) { 9935 env->xregs[i] = env->regs[i]; 9936 } 9937 } 9938 9939 /* 9940 * Registers x13-x23 are the various mode SP and FP registers. Registers 9941 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9942 * from the mode banked register. 9943 */ 9944 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9945 env->xregs[13] = env->regs[13]; 9946 env->xregs[14] = env->regs[14]; 9947 } else { 9948 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9949 /* HYP is an exception in that it is copied from r14 */ 9950 if (mode == ARM_CPU_MODE_HYP) { 9951 env->xregs[14] = env->regs[14]; 9952 } else { 9953 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9954 } 9955 } 9956 9957 if (mode == ARM_CPU_MODE_HYP) { 9958 env->xregs[15] = env->regs[13]; 9959 } else { 9960 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9961 } 9962 9963 if (mode == ARM_CPU_MODE_IRQ) { 9964 env->xregs[16] = env->regs[14]; 9965 env->xregs[17] = env->regs[13]; 9966 } else { 9967 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9968 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9969 } 9970 9971 if (mode == ARM_CPU_MODE_SVC) { 9972 env->xregs[18] = env->regs[14]; 9973 env->xregs[19] = env->regs[13]; 9974 } else { 9975 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9976 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9977 } 9978 9979 if (mode == ARM_CPU_MODE_ABT) { 9980 env->xregs[20] = env->regs[14]; 9981 env->xregs[21] = env->regs[13]; 9982 } else { 9983 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9984 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9985 } 9986 9987 if (mode == ARM_CPU_MODE_UND) { 9988 env->xregs[22] = env->regs[14]; 9989 env->xregs[23] = env->regs[13]; 9990 } else { 9991 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9992 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9993 } 9994 9995 /* 9996 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9997 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9998 * FIQ bank for r8-r14. 9999 */ 10000 if (mode == ARM_CPU_MODE_FIQ) { 10001 for (i = 24; i < 31; i++) { 10002 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10003 } 10004 } else { 10005 for (i = 24; i < 29; i++) { 10006 env->xregs[i] = env->fiq_regs[i - 24]; 10007 } 10008 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10009 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10010 } 10011 10012 env->pc = env->regs[15]; 10013 } 10014 10015 /* 10016 * Function used to synchronize QEMU's AArch32 register set with AArch64 10017 * register set. This is necessary when switching between AArch32 and AArch64 10018 * execution state. 10019 */ 10020 void aarch64_sync_64_to_32(CPUARMState *env) 10021 { 10022 int i; 10023 uint32_t mode = env->uncached_cpsr & CPSR_M; 10024 10025 /* We can blanket copy X[0:7] to R[0:7] */ 10026 for (i = 0; i < 8; i++) { 10027 env->regs[i] = env->xregs[i]; 10028 } 10029 10030 /* 10031 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10032 * Otherwise, we copy x8-x12 into the banked user regs. 10033 */ 10034 if (mode == ARM_CPU_MODE_FIQ) { 10035 for (i = 8; i < 13; i++) { 10036 env->usr_regs[i - 8] = env->xregs[i]; 10037 } 10038 } else { 10039 for (i = 8; i < 13; i++) { 10040 env->regs[i] = env->xregs[i]; 10041 } 10042 } 10043 10044 /* 10045 * Registers r13 & r14 depend on the current mode. 10046 * If we are in a given mode, we copy the corresponding x registers to r13 10047 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10048 * for the mode. 10049 */ 10050 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10051 env->regs[13] = env->xregs[13]; 10052 env->regs[14] = env->xregs[14]; 10053 } else { 10054 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10055 10056 /* 10057 * HYP is an exception in that it does not have its own banked r14 but 10058 * shares the USR r14 10059 */ 10060 if (mode == ARM_CPU_MODE_HYP) { 10061 env->regs[14] = env->xregs[14]; 10062 } else { 10063 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10064 } 10065 } 10066 10067 if (mode == ARM_CPU_MODE_HYP) { 10068 env->regs[13] = env->xregs[15]; 10069 } else { 10070 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10071 } 10072 10073 if (mode == ARM_CPU_MODE_IRQ) { 10074 env->regs[14] = env->xregs[16]; 10075 env->regs[13] = env->xregs[17]; 10076 } else { 10077 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10078 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10079 } 10080 10081 if (mode == ARM_CPU_MODE_SVC) { 10082 env->regs[14] = env->xregs[18]; 10083 env->regs[13] = env->xregs[19]; 10084 } else { 10085 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10086 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10087 } 10088 10089 if (mode == ARM_CPU_MODE_ABT) { 10090 env->regs[14] = env->xregs[20]; 10091 env->regs[13] = env->xregs[21]; 10092 } else { 10093 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10094 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10095 } 10096 10097 if (mode == ARM_CPU_MODE_UND) { 10098 env->regs[14] = env->xregs[22]; 10099 env->regs[13] = env->xregs[23]; 10100 } else { 10101 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10102 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10103 } 10104 10105 /* 10106 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10107 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10108 * FIQ bank for r8-r14. 10109 */ 10110 if (mode == ARM_CPU_MODE_FIQ) { 10111 for (i = 24; i < 31; i++) { 10112 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10113 } 10114 } else { 10115 for (i = 24; i < 29; i++) { 10116 env->fiq_regs[i - 24] = env->xregs[i]; 10117 } 10118 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10119 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10120 } 10121 10122 env->regs[15] = env->pc; 10123 } 10124 10125 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10126 uint32_t mask, uint32_t offset, 10127 uint32_t newpc) 10128 { 10129 int new_el; 10130 10131 /* Change the CPU state so as to actually take the exception. */ 10132 switch_mode(env, new_mode); 10133 10134 /* 10135 * For exceptions taken to AArch32 we must clear the SS bit in both 10136 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10137 */ 10138 env->pstate &= ~PSTATE_SS; 10139 env->spsr = cpsr_read(env); 10140 /* Clear IT bits. */ 10141 env->condexec_bits = 0; 10142 /* Switch to the new mode, and to the correct instruction set. */ 10143 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10144 10145 /* This must be after mode switching. */ 10146 new_el = arm_current_el(env); 10147 10148 /* Set new mode endianness */ 10149 env->uncached_cpsr &= ~CPSR_E; 10150 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10151 env->uncached_cpsr |= CPSR_E; 10152 } 10153 /* J and IL must always be cleared for exception entry */ 10154 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10155 env->daif |= mask; 10156 10157 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10158 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10159 env->uncached_cpsr |= CPSR_SSBS; 10160 } else { 10161 env->uncached_cpsr &= ~CPSR_SSBS; 10162 } 10163 } 10164 10165 if (new_mode == ARM_CPU_MODE_HYP) { 10166 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10167 env->elr_el[2] = env->regs[15]; 10168 } else { 10169 /* CPSR.PAN is normally preserved preserved unless... */ 10170 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10171 switch (new_el) { 10172 case 3: 10173 if (!arm_is_secure_below_el3(env)) { 10174 /* ... the target is EL3, from non-secure state. */ 10175 env->uncached_cpsr &= ~CPSR_PAN; 10176 break; 10177 } 10178 /* ... the target is EL3, from secure state ... */ 10179 /* fall through */ 10180 case 1: 10181 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10182 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10183 env->uncached_cpsr |= CPSR_PAN; 10184 } 10185 break; 10186 } 10187 } 10188 /* 10189 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10190 * and we should just guard the thumb mode on V4 10191 */ 10192 if (arm_feature(env, ARM_FEATURE_V4T)) { 10193 env->thumb = 10194 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10195 } 10196 env->regs[14] = env->regs[15] + offset; 10197 } 10198 env->regs[15] = newpc; 10199 10200 if (tcg_enabled()) { 10201 arm_rebuild_hflags(env); 10202 } 10203 } 10204 10205 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10206 { 10207 /* 10208 * Handle exception entry to Hyp mode; this is sufficiently 10209 * different to entry to other AArch32 modes that we handle it 10210 * separately here. 10211 * 10212 * The vector table entry used is always the 0x14 Hyp mode entry point, 10213 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10214 * The offset applied to the preferred return address is always zero 10215 * (see DDI0487C.a section G1.12.3). 10216 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10217 */ 10218 uint32_t addr, mask; 10219 ARMCPU *cpu = ARM_CPU(cs); 10220 CPUARMState *env = &cpu->env; 10221 10222 switch (cs->exception_index) { 10223 case EXCP_UDEF: 10224 addr = 0x04; 10225 break; 10226 case EXCP_SWI: 10227 addr = 0x08; 10228 break; 10229 case EXCP_BKPT: 10230 /* Fall through to prefetch abort. */ 10231 case EXCP_PREFETCH_ABORT: 10232 env->cp15.ifar_s = env->exception.vaddress; 10233 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10234 (uint32_t)env->exception.vaddress); 10235 addr = 0x0c; 10236 break; 10237 case EXCP_DATA_ABORT: 10238 env->cp15.dfar_s = env->exception.vaddress; 10239 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10240 (uint32_t)env->exception.vaddress); 10241 addr = 0x10; 10242 break; 10243 case EXCP_IRQ: 10244 addr = 0x18; 10245 break; 10246 case EXCP_FIQ: 10247 addr = 0x1c; 10248 break; 10249 case EXCP_HVC: 10250 addr = 0x08; 10251 break; 10252 case EXCP_HYP_TRAP: 10253 addr = 0x14; 10254 break; 10255 default: 10256 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10257 } 10258 10259 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10260 if (!arm_feature(env, ARM_FEATURE_V8)) { 10261 /* 10262 * QEMU syndrome values are v8-style. v7 has the IL bit 10263 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10264 * If this is a v7 CPU, squash the IL bit in those cases. 10265 */ 10266 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10267 (cs->exception_index == EXCP_DATA_ABORT && 10268 !(env->exception.syndrome & ARM_EL_ISV)) || 10269 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10270 env->exception.syndrome &= ~ARM_EL_IL; 10271 } 10272 } 10273 env->cp15.esr_el[2] = env->exception.syndrome; 10274 } 10275 10276 if (arm_current_el(env) != 2 && addr < 0x14) { 10277 addr = 0x14; 10278 } 10279 10280 mask = 0; 10281 if (!(env->cp15.scr_el3 & SCR_EA)) { 10282 mask |= CPSR_A; 10283 } 10284 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10285 mask |= CPSR_I; 10286 } 10287 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10288 mask |= CPSR_F; 10289 } 10290 10291 addr += env->cp15.hvbar; 10292 10293 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10294 } 10295 10296 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10297 { 10298 ARMCPU *cpu = ARM_CPU(cs); 10299 CPUARMState *env = &cpu->env; 10300 uint32_t addr; 10301 uint32_t mask; 10302 int new_mode; 10303 uint32_t offset; 10304 uint32_t moe; 10305 10306 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10307 switch (syn_get_ec(env->exception.syndrome)) { 10308 case EC_BREAKPOINT: 10309 case EC_BREAKPOINT_SAME_EL: 10310 moe = 1; 10311 break; 10312 case EC_WATCHPOINT: 10313 case EC_WATCHPOINT_SAME_EL: 10314 moe = 10; 10315 break; 10316 case EC_AA32_BKPT: 10317 moe = 3; 10318 break; 10319 case EC_VECTORCATCH: 10320 moe = 5; 10321 break; 10322 default: 10323 moe = 0; 10324 break; 10325 } 10326 10327 if (moe) { 10328 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10329 } 10330 10331 if (env->exception.target_el == 2) { 10332 /* Debug exceptions are reported differently on AArch32 */ 10333 switch (syn_get_ec(env->exception.syndrome)) { 10334 case EC_BREAKPOINT: 10335 case EC_BREAKPOINT_SAME_EL: 10336 case EC_AA32_BKPT: 10337 case EC_VECTORCATCH: 10338 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 10339 0, 0, 0x22); 10340 break; 10341 case EC_WATCHPOINT: 10342 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10343 EC_DATAABORT); 10344 break; 10345 case EC_WATCHPOINT_SAME_EL: 10346 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 10347 EC_DATAABORT_SAME_EL); 10348 break; 10349 } 10350 arm_cpu_do_interrupt_aarch32_hyp(cs); 10351 return; 10352 } 10353 10354 switch (cs->exception_index) { 10355 case EXCP_UDEF: 10356 new_mode = ARM_CPU_MODE_UND; 10357 addr = 0x04; 10358 mask = CPSR_I; 10359 if (env->thumb) { 10360 offset = 2; 10361 } else { 10362 offset = 4; 10363 } 10364 break; 10365 case EXCP_SWI: 10366 new_mode = ARM_CPU_MODE_SVC; 10367 addr = 0x08; 10368 mask = CPSR_I; 10369 /* The PC already points to the next instruction. */ 10370 offset = 0; 10371 break; 10372 case EXCP_BKPT: 10373 /* Fall through to prefetch abort. */ 10374 case EXCP_PREFETCH_ABORT: 10375 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10376 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10377 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10378 env->exception.fsr, (uint32_t)env->exception.vaddress); 10379 new_mode = ARM_CPU_MODE_ABT; 10380 addr = 0x0c; 10381 mask = CPSR_A | CPSR_I; 10382 offset = 4; 10383 break; 10384 case EXCP_DATA_ABORT: 10385 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10386 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10387 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10388 env->exception.fsr, 10389 (uint32_t)env->exception.vaddress); 10390 new_mode = ARM_CPU_MODE_ABT; 10391 addr = 0x10; 10392 mask = CPSR_A | CPSR_I; 10393 offset = 8; 10394 break; 10395 case EXCP_IRQ: 10396 new_mode = ARM_CPU_MODE_IRQ; 10397 addr = 0x18; 10398 /* Disable IRQ and imprecise data aborts. */ 10399 mask = CPSR_A | CPSR_I; 10400 offset = 4; 10401 if (env->cp15.scr_el3 & SCR_IRQ) { 10402 /* IRQ routed to monitor mode */ 10403 new_mode = ARM_CPU_MODE_MON; 10404 mask |= CPSR_F; 10405 } 10406 break; 10407 case EXCP_FIQ: 10408 new_mode = ARM_CPU_MODE_FIQ; 10409 addr = 0x1c; 10410 /* Disable FIQ, IRQ and imprecise data aborts. */ 10411 mask = CPSR_A | CPSR_I | CPSR_F; 10412 if (env->cp15.scr_el3 & SCR_FIQ) { 10413 /* FIQ routed to monitor mode */ 10414 new_mode = ARM_CPU_MODE_MON; 10415 } 10416 offset = 4; 10417 break; 10418 case EXCP_VIRQ: 10419 new_mode = ARM_CPU_MODE_IRQ; 10420 addr = 0x18; 10421 /* Disable IRQ and imprecise data aborts. */ 10422 mask = CPSR_A | CPSR_I; 10423 offset = 4; 10424 break; 10425 case EXCP_VFIQ: 10426 new_mode = ARM_CPU_MODE_FIQ; 10427 addr = 0x1c; 10428 /* Disable FIQ, IRQ and imprecise data aborts. */ 10429 mask = CPSR_A | CPSR_I | CPSR_F; 10430 offset = 4; 10431 break; 10432 case EXCP_VSERR: 10433 { 10434 /* 10435 * Note that this is reported as a data abort, but the DFAR 10436 * has an UNKNOWN value. Construct the SError syndrome from 10437 * AET and ExT fields. 10438 */ 10439 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10440 10441 if (extended_addresses_enabled(env)) { 10442 env->exception.fsr = arm_fi_to_lfsc(&fi); 10443 } else { 10444 env->exception.fsr = arm_fi_to_sfsc(&fi); 10445 } 10446 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10447 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10448 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10449 env->exception.fsr); 10450 10451 new_mode = ARM_CPU_MODE_ABT; 10452 addr = 0x10; 10453 mask = CPSR_A | CPSR_I; 10454 offset = 8; 10455 } 10456 break; 10457 case EXCP_SMC: 10458 new_mode = ARM_CPU_MODE_MON; 10459 addr = 0x08; 10460 mask = CPSR_A | CPSR_I | CPSR_F; 10461 offset = 0; 10462 break; 10463 case EXCP_MON_TRAP: 10464 new_mode = ARM_CPU_MODE_MON; 10465 addr = 0x04; 10466 mask = CPSR_A | CPSR_I | CPSR_F; 10467 if (env->thumb) { 10468 offset = 2; 10469 } else { 10470 offset = 4; 10471 } 10472 break; 10473 default: 10474 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10475 return; /* Never happens. Keep compiler happy. */ 10476 } 10477 10478 if (new_mode == ARM_CPU_MODE_MON) { 10479 addr += env->cp15.mvbar; 10480 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10481 /* High vectors. When enabled, base address cannot be remapped. */ 10482 addr += 0xffff0000; 10483 } else { 10484 /* 10485 * ARM v7 architectures provide a vector base address register to remap 10486 * the interrupt vector table. 10487 * This register is only followed in non-monitor mode, and is banked. 10488 * Note: only bits 31:5 are valid. 10489 */ 10490 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10491 } 10492 10493 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10494 env->cp15.scr_el3 &= ~SCR_NS; 10495 } 10496 10497 take_aarch32_exception(env, new_mode, mask, offset, addr); 10498 } 10499 10500 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10501 { 10502 /* 10503 * Return the register number of the AArch64 view of the AArch32 10504 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10505 * be that of the AArch32 mode the exception came from. 10506 */ 10507 int mode = env->uncached_cpsr & CPSR_M; 10508 10509 switch (aarch32_reg) { 10510 case 0 ... 7: 10511 return aarch32_reg; 10512 case 8 ... 12: 10513 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10514 case 13: 10515 switch (mode) { 10516 case ARM_CPU_MODE_USR: 10517 case ARM_CPU_MODE_SYS: 10518 return 13; 10519 case ARM_CPU_MODE_HYP: 10520 return 15; 10521 case ARM_CPU_MODE_IRQ: 10522 return 17; 10523 case ARM_CPU_MODE_SVC: 10524 return 19; 10525 case ARM_CPU_MODE_ABT: 10526 return 21; 10527 case ARM_CPU_MODE_UND: 10528 return 23; 10529 case ARM_CPU_MODE_FIQ: 10530 return 29; 10531 default: 10532 g_assert_not_reached(); 10533 } 10534 case 14: 10535 switch (mode) { 10536 case ARM_CPU_MODE_USR: 10537 case ARM_CPU_MODE_SYS: 10538 case ARM_CPU_MODE_HYP: 10539 return 14; 10540 case ARM_CPU_MODE_IRQ: 10541 return 16; 10542 case ARM_CPU_MODE_SVC: 10543 return 18; 10544 case ARM_CPU_MODE_ABT: 10545 return 20; 10546 case ARM_CPU_MODE_UND: 10547 return 22; 10548 case ARM_CPU_MODE_FIQ: 10549 return 30; 10550 default: 10551 g_assert_not_reached(); 10552 } 10553 case 15: 10554 return 31; 10555 default: 10556 g_assert_not_reached(); 10557 } 10558 } 10559 10560 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10561 { 10562 uint32_t ret = cpsr_read(env); 10563 10564 /* Move DIT to the correct location for SPSR_ELx */ 10565 if (ret & CPSR_DIT) { 10566 ret &= ~CPSR_DIT; 10567 ret |= PSTATE_DIT; 10568 } 10569 /* Merge PSTATE.SS into SPSR_ELx */ 10570 ret |= env->pstate & PSTATE_SS; 10571 10572 return ret; 10573 } 10574 10575 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10576 { 10577 /* Return true if this syndrome value is a synchronous external abort */ 10578 switch (syn_get_ec(syndrome)) { 10579 case EC_INSNABORT: 10580 case EC_INSNABORT_SAME_EL: 10581 case EC_DATAABORT: 10582 case EC_DATAABORT_SAME_EL: 10583 /* Look at fault status code for all the synchronous ext abort cases */ 10584 switch (syndrome & 0x3f) { 10585 case 0x10: 10586 case 0x13: 10587 case 0x14: 10588 case 0x15: 10589 case 0x16: 10590 case 0x17: 10591 return true; 10592 default: 10593 return false; 10594 } 10595 default: 10596 return false; 10597 } 10598 } 10599 10600 /* Handle exception entry to a target EL which is using AArch64 */ 10601 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10602 { 10603 ARMCPU *cpu = ARM_CPU(cs); 10604 CPUARMState *env = &cpu->env; 10605 unsigned int new_el = env->exception.target_el; 10606 target_ulong addr = env->cp15.vbar_el[new_el]; 10607 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10608 unsigned int old_mode; 10609 unsigned int cur_el = arm_current_el(env); 10610 int rt; 10611 10612 if (tcg_enabled()) { 10613 /* 10614 * Note that new_el can never be 0. If cur_el is 0, then 10615 * el0_a64 is is_a64(), else el0_a64 is ignored. 10616 */ 10617 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10618 } 10619 10620 if (cur_el < new_el) { 10621 /* 10622 * Entry vector offset depends on whether the implemented EL 10623 * immediately lower than the target level is using AArch32 or AArch64 10624 */ 10625 bool is_aa64; 10626 uint64_t hcr; 10627 10628 switch (new_el) { 10629 case 3: 10630 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10631 break; 10632 case 2: 10633 hcr = arm_hcr_el2_eff(env); 10634 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10635 is_aa64 = (hcr & HCR_RW) != 0; 10636 break; 10637 } 10638 /* fall through */ 10639 case 1: 10640 is_aa64 = is_a64(env); 10641 break; 10642 default: 10643 g_assert_not_reached(); 10644 } 10645 10646 if (is_aa64) { 10647 addr += 0x400; 10648 } else { 10649 addr += 0x600; 10650 } 10651 } else if (pstate_read(env) & PSTATE_SP) { 10652 addr += 0x200; 10653 } 10654 10655 switch (cs->exception_index) { 10656 case EXCP_GPC: 10657 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 10658 env->cp15.mfar_el3); 10659 /* fall through */ 10660 case EXCP_PREFETCH_ABORT: 10661 case EXCP_DATA_ABORT: 10662 /* 10663 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10664 * to be taken to the SError vector entrypoint. 10665 */ 10666 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10667 syndrome_is_sync_extabt(env->exception.syndrome)) { 10668 addr += 0x180; 10669 } 10670 env->cp15.far_el[new_el] = env->exception.vaddress; 10671 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10672 env->cp15.far_el[new_el]); 10673 /* fall through */ 10674 case EXCP_BKPT: 10675 case EXCP_UDEF: 10676 case EXCP_SWI: 10677 case EXCP_HVC: 10678 case EXCP_HYP_TRAP: 10679 case EXCP_SMC: 10680 switch (syn_get_ec(env->exception.syndrome)) { 10681 case EC_ADVSIMDFPACCESSTRAP: 10682 /* 10683 * QEMU internal FP/SIMD syndromes from AArch32 include the 10684 * TA and coproc fields which are only exposed if the exception 10685 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10686 * AArch64 format syndrome. 10687 */ 10688 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10689 break; 10690 case EC_CP14RTTRAP: 10691 case EC_CP15RTTRAP: 10692 case EC_CP14DTTRAP: 10693 /* 10694 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10695 * the raw register field from the insn; when taking this to 10696 * AArch64 we must convert it to the AArch64 view of the register 10697 * number. Notice that we read a 4-bit AArch32 register number and 10698 * write back a 5-bit AArch64 one. 10699 */ 10700 rt = extract32(env->exception.syndrome, 5, 4); 10701 rt = aarch64_regnum(env, rt); 10702 env->exception.syndrome = deposit32(env->exception.syndrome, 10703 5, 5, rt); 10704 break; 10705 case EC_CP15RRTTRAP: 10706 case EC_CP14RRTTRAP: 10707 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10708 rt = extract32(env->exception.syndrome, 5, 4); 10709 rt = aarch64_regnum(env, rt); 10710 env->exception.syndrome = deposit32(env->exception.syndrome, 10711 5, 5, rt); 10712 rt = extract32(env->exception.syndrome, 10, 4); 10713 rt = aarch64_regnum(env, rt); 10714 env->exception.syndrome = deposit32(env->exception.syndrome, 10715 10, 5, rt); 10716 break; 10717 } 10718 env->cp15.esr_el[new_el] = env->exception.syndrome; 10719 break; 10720 case EXCP_IRQ: 10721 case EXCP_VIRQ: 10722 case EXCP_NMI: 10723 case EXCP_VINMI: 10724 addr += 0x80; 10725 break; 10726 case EXCP_FIQ: 10727 case EXCP_VFIQ: 10728 case EXCP_VFNMI: 10729 addr += 0x100; 10730 break; 10731 case EXCP_VSERR: 10732 addr += 0x180; 10733 /* Construct the SError syndrome from IDS and ISS fields. */ 10734 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10735 env->cp15.esr_el[new_el] = env->exception.syndrome; 10736 break; 10737 default: 10738 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10739 } 10740 10741 if (is_a64(env)) { 10742 old_mode = pstate_read(env); 10743 aarch64_save_sp(env, arm_current_el(env)); 10744 env->elr_el[new_el] = env->pc; 10745 10746 if (cur_el == 1 && new_el == 1) { 10747 uint64_t hcr = arm_hcr_el2_eff(env); 10748 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 10749 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 10750 /* 10751 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 10752 * by setting M[3:2] to 0b10. 10753 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 10754 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 10755 */ 10756 old_mode = deposit32(old_mode, 2, 2, 2); 10757 } 10758 } 10759 } else { 10760 old_mode = cpsr_read_for_spsr_elx(env); 10761 env->elr_el[new_el] = env->regs[15]; 10762 10763 aarch64_sync_32_to_64(env); 10764 10765 env->condexec_bits = 0; 10766 } 10767 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10768 10769 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 10770 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10771 env->elr_el[new_el]); 10772 10773 if (cpu_isar_feature(aa64_pan, cpu)) { 10774 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10775 new_mode |= old_mode & PSTATE_PAN; 10776 switch (new_el) { 10777 case 2: 10778 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10779 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10780 != (HCR_E2H | HCR_TGE)) { 10781 break; 10782 } 10783 /* fall through */ 10784 case 1: 10785 /* ... the target is EL1 ... */ 10786 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10787 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10788 new_mode |= PSTATE_PAN; 10789 } 10790 break; 10791 } 10792 } 10793 if (cpu_isar_feature(aa64_mte, cpu)) { 10794 new_mode |= PSTATE_TCO; 10795 } 10796 10797 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10798 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10799 new_mode |= PSTATE_SSBS; 10800 } else { 10801 new_mode &= ~PSTATE_SSBS; 10802 } 10803 } 10804 10805 if (cpu_isar_feature(aa64_nmi, cpu)) { 10806 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 10807 new_mode |= PSTATE_ALLINT; 10808 } else { 10809 new_mode &= ~PSTATE_ALLINT; 10810 } 10811 } 10812 10813 pstate_write(env, PSTATE_DAIF | new_mode); 10814 env->aarch64 = true; 10815 aarch64_restore_sp(env, new_el); 10816 10817 if (tcg_enabled()) { 10818 helper_rebuild_hflags_a64(env, new_el); 10819 } 10820 10821 env->pc = addr; 10822 10823 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10824 new_el, env->pc, pstate_read(env)); 10825 } 10826 10827 /* 10828 * Do semihosting call and set the appropriate return value. All the 10829 * permission and validity checks have been done at translate time. 10830 * 10831 * We only see semihosting exceptions in TCG only as they are not 10832 * trapped to the hypervisor in KVM. 10833 */ 10834 #ifdef CONFIG_TCG 10835 static void tcg_handle_semihosting(CPUState *cs) 10836 { 10837 ARMCPU *cpu = ARM_CPU(cs); 10838 CPUARMState *env = &cpu->env; 10839 10840 if (is_a64(env)) { 10841 qemu_log_mask(CPU_LOG_INT, 10842 "...handling as semihosting call 0x%" PRIx64 "\n", 10843 env->xregs[0]); 10844 do_common_semihosting(cs); 10845 env->pc += 4; 10846 } else { 10847 qemu_log_mask(CPU_LOG_INT, 10848 "...handling as semihosting call 0x%x\n", 10849 env->regs[0]); 10850 do_common_semihosting(cs); 10851 env->regs[15] += env->thumb ? 2 : 4; 10852 } 10853 } 10854 #endif 10855 10856 /* 10857 * Handle a CPU exception for A and R profile CPUs. 10858 * Do any appropriate logging, handle PSCI calls, and then hand off 10859 * to the AArch64-entry or AArch32-entry function depending on the 10860 * target exception level's register width. 10861 * 10862 * Note: this is used for both TCG (as the do_interrupt tcg op), 10863 * and KVM to re-inject guest debug exceptions, and to 10864 * inject a Synchronous-External-Abort. 10865 */ 10866 void arm_cpu_do_interrupt(CPUState *cs) 10867 { 10868 ARMCPU *cpu = ARM_CPU(cs); 10869 CPUARMState *env = &cpu->env; 10870 unsigned int new_el = env->exception.target_el; 10871 10872 assert(!arm_feature(env, ARM_FEATURE_M)); 10873 10874 arm_log_exception(cs); 10875 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10876 new_el); 10877 if (qemu_loglevel_mask(CPU_LOG_INT) 10878 && !excp_is_internal(cs->exception_index)) { 10879 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10880 syn_get_ec(env->exception.syndrome), 10881 env->exception.syndrome); 10882 } 10883 10884 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 10885 arm_handle_psci_call(cpu); 10886 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10887 return; 10888 } 10889 10890 /* 10891 * Semihosting semantics depend on the register width of the code 10892 * that caused the exception, not the target exception level, so 10893 * must be handled here. 10894 */ 10895 #ifdef CONFIG_TCG 10896 if (cs->exception_index == EXCP_SEMIHOST) { 10897 tcg_handle_semihosting(cs); 10898 return; 10899 } 10900 #endif 10901 10902 /* 10903 * Hooks may change global state so BQL should be held, also the 10904 * BQL needs to be held for any modification of 10905 * cs->interrupt_request. 10906 */ 10907 g_assert(bql_locked()); 10908 10909 arm_call_pre_el_change_hook(cpu); 10910 10911 assert(!excp_is_internal(cs->exception_index)); 10912 if (arm_el_is_aa64(env, new_el)) { 10913 arm_cpu_do_interrupt_aarch64(cs); 10914 } else { 10915 arm_cpu_do_interrupt_aarch32(cs); 10916 } 10917 10918 arm_call_el_change_hook(cpu); 10919 10920 if (!kvm_enabled()) { 10921 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10922 } 10923 } 10924 #endif /* !CONFIG_USER_ONLY */ 10925 10926 uint64_t arm_sctlr(CPUARMState *env, int el) 10927 { 10928 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 10929 if (el == 0) { 10930 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10931 switch (mmu_idx) { 10932 case ARMMMUIdx_E20_0: 10933 el = 2; 10934 break; 10935 case ARMMMUIdx_E30_0: 10936 el = 3; 10937 break; 10938 default: 10939 el = 1; 10940 break; 10941 } 10942 } 10943 return env->cp15.sctlr_el[el]; 10944 } 10945 10946 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10947 { 10948 if (regime_has_2_ranges(mmu_idx)) { 10949 return extract64(tcr, 37, 2); 10950 } else if (regime_is_stage2(mmu_idx)) { 10951 return 0; /* VTCR_EL2 */ 10952 } else { 10953 /* Replicate the single TBI bit so we always have 2 bits. */ 10954 return extract32(tcr, 20, 1) * 3; 10955 } 10956 } 10957 10958 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10959 { 10960 if (regime_has_2_ranges(mmu_idx)) { 10961 return extract64(tcr, 51, 2); 10962 } else if (regime_is_stage2(mmu_idx)) { 10963 return 0; /* VTCR_EL2 */ 10964 } else { 10965 /* Replicate the single TBID bit so we always have 2 bits. */ 10966 return extract32(tcr, 29, 1) * 3; 10967 } 10968 } 10969 10970 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10971 { 10972 if (regime_has_2_ranges(mmu_idx)) { 10973 return extract64(tcr, 57, 2); 10974 } else { 10975 /* Replicate the single TCMA bit so we always have 2 bits. */ 10976 return extract32(tcr, 30, 1) * 3; 10977 } 10978 } 10979 10980 static ARMGranuleSize tg0_to_gran_size(int tg) 10981 { 10982 switch (tg) { 10983 case 0: 10984 return Gran4K; 10985 case 1: 10986 return Gran64K; 10987 case 2: 10988 return Gran16K; 10989 default: 10990 return GranInvalid; 10991 } 10992 } 10993 10994 static ARMGranuleSize tg1_to_gran_size(int tg) 10995 { 10996 switch (tg) { 10997 case 1: 10998 return Gran16K; 10999 case 2: 11000 return Gran4K; 11001 case 3: 11002 return Gran64K; 11003 default: 11004 return GranInvalid; 11005 } 11006 } 11007 11008 static inline bool have4k(ARMCPU *cpu, bool stage2) 11009 { 11010 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11011 : cpu_isar_feature(aa64_tgran4, cpu); 11012 } 11013 11014 static inline bool have16k(ARMCPU *cpu, bool stage2) 11015 { 11016 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11017 : cpu_isar_feature(aa64_tgran16, cpu); 11018 } 11019 11020 static inline bool have64k(ARMCPU *cpu, bool stage2) 11021 { 11022 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11023 : cpu_isar_feature(aa64_tgran64, cpu); 11024 } 11025 11026 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11027 bool stage2) 11028 { 11029 switch (gran) { 11030 case Gran4K: 11031 if (have4k(cpu, stage2)) { 11032 return gran; 11033 } 11034 break; 11035 case Gran16K: 11036 if (have16k(cpu, stage2)) { 11037 return gran; 11038 } 11039 break; 11040 case Gran64K: 11041 if (have64k(cpu, stage2)) { 11042 return gran; 11043 } 11044 break; 11045 case GranInvalid: 11046 break; 11047 } 11048 /* 11049 * If the guest selects a granule size that isn't implemented, 11050 * the architecture requires that we behave as if it selected one 11051 * that is (with an IMPDEF choice of which one to pick). We choose 11052 * to implement the smallest supported granule size. 11053 */ 11054 if (have4k(cpu, stage2)) { 11055 return Gran4K; 11056 } 11057 if (have16k(cpu, stage2)) { 11058 return Gran16K; 11059 } 11060 assert(have64k(cpu, stage2)); 11061 return Gran64K; 11062 } 11063 11064 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11065 ARMMMUIdx mmu_idx, bool data, 11066 bool el1_is_aa32) 11067 { 11068 uint64_t tcr = regime_tcr(env, mmu_idx); 11069 bool epd, hpd, tsz_oob, ds, ha, hd; 11070 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11071 ARMGranuleSize gran; 11072 ARMCPU *cpu = env_archcpu(env); 11073 bool stage2 = regime_is_stage2(mmu_idx); 11074 11075 if (!regime_has_2_ranges(mmu_idx)) { 11076 select = 0; 11077 tsz = extract32(tcr, 0, 6); 11078 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11079 if (stage2) { 11080 /* VTCR_EL2 */ 11081 hpd = false; 11082 } else { 11083 hpd = extract32(tcr, 24, 1); 11084 } 11085 epd = false; 11086 sh = extract32(tcr, 12, 2); 11087 ps = extract32(tcr, 16, 3); 11088 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11089 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11090 ds = extract64(tcr, 32, 1); 11091 } else { 11092 bool e0pd; 11093 11094 /* 11095 * Bit 55 is always between the two regions, and is canonical for 11096 * determining if address tagging is enabled. 11097 */ 11098 select = extract64(va, 55, 1); 11099 if (!select) { 11100 tsz = extract32(tcr, 0, 6); 11101 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11102 epd = extract32(tcr, 7, 1); 11103 sh = extract32(tcr, 12, 2); 11104 hpd = extract64(tcr, 41, 1); 11105 e0pd = extract64(tcr, 55, 1); 11106 } else { 11107 tsz = extract32(tcr, 16, 6); 11108 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11109 epd = extract32(tcr, 23, 1); 11110 sh = extract32(tcr, 28, 2); 11111 hpd = extract64(tcr, 42, 1); 11112 e0pd = extract64(tcr, 56, 1); 11113 } 11114 ps = extract64(tcr, 32, 3); 11115 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11116 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11117 ds = extract64(tcr, 59, 1); 11118 11119 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11120 regime_is_user(env, mmu_idx)) { 11121 epd = true; 11122 } 11123 } 11124 11125 gran = sanitize_gran_size(cpu, gran, stage2); 11126 11127 if (cpu_isar_feature(aa64_st, cpu)) { 11128 max_tsz = 48 - (gran == Gran64K); 11129 } else { 11130 max_tsz = 39; 11131 } 11132 11133 /* 11134 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11135 * adjust the effective value of DS, as documented. 11136 */ 11137 min_tsz = 16; 11138 if (gran == Gran64K) { 11139 if (cpu_isar_feature(aa64_lva, cpu)) { 11140 min_tsz = 12; 11141 } 11142 ds = false; 11143 } else if (ds) { 11144 if (regime_is_stage2(mmu_idx)) { 11145 if (gran == Gran16K) { 11146 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11147 } else { 11148 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11149 } 11150 } else { 11151 if (gran == Gran16K) { 11152 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11153 } else { 11154 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11155 } 11156 } 11157 if (ds) { 11158 min_tsz = 12; 11159 } 11160 } 11161 11162 if (stage2 && el1_is_aa32) { 11163 /* 11164 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11165 * are loosened: a configured IPA of 40 bits is permitted even if 11166 * the implemented PA is less than that (and so a 40 bit IPA would 11167 * fault for an AArch64 EL1). See R_DTLMN. 11168 */ 11169 min_tsz = MIN(min_tsz, 24); 11170 } 11171 11172 if (tsz > max_tsz) { 11173 tsz = max_tsz; 11174 tsz_oob = true; 11175 } else if (tsz < min_tsz) { 11176 tsz = min_tsz; 11177 tsz_oob = true; 11178 } else { 11179 tsz_oob = false; 11180 } 11181 11182 /* Present TBI as a composite with TBID. */ 11183 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11184 if (!data) { 11185 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11186 } 11187 tbi = (tbi >> select) & 1; 11188 11189 return (ARMVAParameters) { 11190 .tsz = tsz, 11191 .ps = ps, 11192 .sh = sh, 11193 .select = select, 11194 .tbi = tbi, 11195 .epd = epd, 11196 .hpd = hpd, 11197 .tsz_oob = tsz_oob, 11198 .ds = ds, 11199 .ha = ha, 11200 .hd = ha && hd, 11201 .gran = gran, 11202 }; 11203 } 11204 11205 11206 /* 11207 * Return the exception level to which FP-disabled exceptions should 11208 * be taken, or 0 if FP is enabled. 11209 */ 11210 int fp_exception_el(CPUARMState *env, int cur_el) 11211 { 11212 #ifndef CONFIG_USER_ONLY 11213 uint64_t hcr_el2; 11214 11215 /* 11216 * CPACR and the CPTR registers don't exist before v6, so FP is 11217 * always accessible 11218 */ 11219 if (!arm_feature(env, ARM_FEATURE_V6)) { 11220 return 0; 11221 } 11222 11223 if (arm_feature(env, ARM_FEATURE_M)) { 11224 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11225 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11226 return 1; 11227 } 11228 11229 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11230 if (!extract32(env->v7m.nsacr, 10, 1)) { 11231 /* FP insns cause a NOCP UsageFault taken to Secure */ 11232 return 3; 11233 } 11234 } 11235 11236 return 0; 11237 } 11238 11239 hcr_el2 = arm_hcr_el2_eff(env); 11240 11241 /* 11242 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11243 * 0, 2 : trap EL0 and EL1/PL1 accesses 11244 * 1 : trap only EL0 accesses 11245 * 3 : trap no accesses 11246 * This register is ignored if E2H+TGE are both set. 11247 */ 11248 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11249 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11250 11251 switch (fpen) { 11252 case 1: 11253 if (cur_el != 0) { 11254 break; 11255 } 11256 /* fall through */ 11257 case 0: 11258 case 2: 11259 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11260 if (!arm_el_is_aa64(env, 3) 11261 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11262 return 3; 11263 } 11264 if (cur_el <= 1) { 11265 return 1; 11266 } 11267 break; 11268 } 11269 } 11270 11271 /* 11272 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11273 * to control non-secure access to the FPU. It doesn't have any 11274 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11275 */ 11276 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11277 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11278 if (!extract32(env->cp15.nsacr, 10, 1)) { 11279 /* FP insns act as UNDEF */ 11280 return cur_el == 2 ? 2 : 1; 11281 } 11282 } 11283 11284 /* 11285 * CPTR_EL2 is present in v7VE or v8, and changes format 11286 * with HCR_EL2.E2H (regardless of TGE). 11287 */ 11288 if (cur_el <= 2) { 11289 if (hcr_el2 & HCR_E2H) { 11290 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11291 case 1: 11292 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11293 break; 11294 } 11295 /* fall through */ 11296 case 0: 11297 case 2: 11298 return 2; 11299 } 11300 } else if (arm_is_el2_enabled(env)) { 11301 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11302 return 2; 11303 } 11304 } 11305 } 11306 11307 /* CPTR_EL3 : present in v8 */ 11308 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11309 /* Trap all FP ops to EL3 */ 11310 return 3; 11311 } 11312 #endif 11313 return 0; 11314 } 11315 11316 /* Return the exception level we're running at if this is our mmu_idx */ 11317 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11318 { 11319 if (mmu_idx & ARM_MMU_IDX_M) { 11320 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11321 } 11322 11323 switch (mmu_idx) { 11324 case ARMMMUIdx_E10_0: 11325 case ARMMMUIdx_E20_0: 11326 case ARMMMUIdx_E30_0: 11327 return 0; 11328 case ARMMMUIdx_E10_1: 11329 case ARMMMUIdx_E10_1_PAN: 11330 return 1; 11331 case ARMMMUIdx_E2: 11332 case ARMMMUIdx_E20_2: 11333 case ARMMMUIdx_E20_2_PAN: 11334 return 2; 11335 case ARMMMUIdx_E3: 11336 case ARMMMUIdx_E30_3_PAN: 11337 return 3; 11338 default: 11339 g_assert_not_reached(); 11340 } 11341 } 11342 11343 #ifndef CONFIG_TCG 11344 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11345 { 11346 g_assert_not_reached(); 11347 } 11348 #endif 11349 11350 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11351 { 11352 ARMMMUIdx idx; 11353 uint64_t hcr; 11354 11355 if (arm_feature(env, ARM_FEATURE_M)) { 11356 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11357 } 11358 11359 /* See ARM pseudo-function ELIsInHost. */ 11360 switch (el) { 11361 case 0: 11362 hcr = arm_hcr_el2_eff(env); 11363 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11364 idx = ARMMMUIdx_E20_0; 11365 } else if (arm_is_secure_below_el3(env) && 11366 !arm_el_is_aa64(env, 3)) { 11367 idx = ARMMMUIdx_E30_0; 11368 } else { 11369 idx = ARMMMUIdx_E10_0; 11370 } 11371 break; 11372 case 1: 11373 if (arm_pan_enabled(env)) { 11374 idx = ARMMMUIdx_E10_1_PAN; 11375 } else { 11376 idx = ARMMMUIdx_E10_1; 11377 } 11378 break; 11379 case 2: 11380 /* Note that TGE does not apply at EL2. */ 11381 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11382 if (arm_pan_enabled(env)) { 11383 idx = ARMMMUIdx_E20_2_PAN; 11384 } else { 11385 idx = ARMMMUIdx_E20_2; 11386 } 11387 } else { 11388 idx = ARMMMUIdx_E2; 11389 } 11390 break; 11391 case 3: 11392 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 11393 return ARMMMUIdx_E30_3_PAN; 11394 } 11395 return ARMMMUIdx_E3; 11396 default: 11397 g_assert_not_reached(); 11398 } 11399 11400 return idx; 11401 } 11402 11403 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11404 { 11405 return arm_mmu_idx_el(env, arm_current_el(env)); 11406 } 11407 11408 static bool mve_no_pred(CPUARMState *env) 11409 { 11410 /* 11411 * Return true if there is definitely no predication of MVE 11412 * instructions by VPR or LTPSIZE. (Returning false even if there 11413 * isn't any predication is OK; generated code will just be 11414 * a little worse.) 11415 * If the CPU does not implement MVE then this TB flag is always 0. 11416 * 11417 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11418 * logic in gen_update_fp_context() needs to be updated to match. 11419 * 11420 * We do not include the effect of the ECI bits here -- they are 11421 * tracked in other TB flags. This simplifies the logic for 11422 * "when did we emit code that changes the MVE_NO_PRED TB flag 11423 * and thus need to end the TB?". 11424 */ 11425 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11426 return false; 11427 } 11428 if (env->v7m.vpr) { 11429 return false; 11430 } 11431 if (env->v7m.ltpsize < 4) { 11432 return false; 11433 } 11434 return true; 11435 } 11436 11437 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 11438 uint64_t *cs_base, uint32_t *pflags) 11439 { 11440 CPUARMTBFlags flags; 11441 11442 assert_hflags_rebuild_correctly(env); 11443 flags = env->hflags; 11444 11445 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11446 *pc = env->pc; 11447 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11448 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11449 } 11450 } else { 11451 *pc = env->regs[15]; 11452 11453 if (arm_feature(env, ARM_FEATURE_M)) { 11454 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11455 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11456 != env->v7m.secure) { 11457 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11458 } 11459 11460 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11461 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11462 (env->v7m.secure && 11463 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11464 /* 11465 * ASPEN is set, but FPCA/SFPA indicate that there is no 11466 * active FP context; we must create a new FP context before 11467 * executing any FP insn. 11468 */ 11469 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11470 } 11471 11472 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11473 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11474 DP_TBFLAG_M32(flags, LSPACT, 1); 11475 } 11476 11477 if (mve_no_pred(env)) { 11478 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11479 } 11480 } else { 11481 /* 11482 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11483 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11484 */ 11485 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11486 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11487 } else { 11488 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11489 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11490 } 11491 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11492 DP_TBFLAG_A32(flags, VFPEN, 1); 11493 } 11494 } 11495 11496 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11497 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11498 } 11499 11500 /* 11501 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11502 * states defined in the ARM ARM for software singlestep: 11503 * SS_ACTIVE PSTATE.SS State 11504 * 0 x Inactive (the TB flag for SS is always 0) 11505 * 1 0 Active-pending 11506 * 1 1 Active-not-pending 11507 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11508 */ 11509 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11510 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11511 } 11512 11513 *pflags = flags.flags; 11514 *cs_base = flags.flags2; 11515 } 11516 11517 #ifdef TARGET_AARCH64 11518 /* 11519 * The manual says that when SVE is enabled and VQ is widened the 11520 * implementation is allowed to zero the previously inaccessible 11521 * portion of the registers. The corollary to that is that when 11522 * SVE is enabled and VQ is narrowed we are also allowed to zero 11523 * the now inaccessible portion of the registers. 11524 * 11525 * The intent of this is that no predicate bit beyond VQ is ever set. 11526 * Which means that some operations on predicate registers themselves 11527 * may operate on full uint64_t or even unrolled across the maximum 11528 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11529 * may well be cheaper than conditionals to restrict the operation 11530 * to the relevant portion of a uint16_t[16]. 11531 */ 11532 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11533 { 11534 int i, j; 11535 uint64_t pmask; 11536 11537 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11538 assert(vq <= env_archcpu(env)->sve_max_vq); 11539 11540 /* Zap the high bits of the zregs. */ 11541 for (i = 0; i < 32; i++) { 11542 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11543 } 11544 11545 /* Zap the high bits of the pregs and ffr. */ 11546 pmask = 0; 11547 if (vq & 3) { 11548 pmask = ~(-1ULL << (16 * (vq & 3))); 11549 } 11550 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11551 for (i = 0; i < 17; ++i) { 11552 env->vfp.pregs[i].p[j] &= pmask; 11553 } 11554 pmask = 0; 11555 } 11556 } 11557 11558 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11559 { 11560 int exc_el; 11561 11562 if (sm) { 11563 exc_el = sme_exception_el(env, el); 11564 } else { 11565 exc_el = sve_exception_el(env, el); 11566 } 11567 if (exc_el) { 11568 return 0; /* disabled */ 11569 } 11570 return sve_vqm1_for_el_sm(env, el, sm); 11571 } 11572 11573 /* 11574 * Notice a change in SVE vector size when changing EL. 11575 */ 11576 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11577 int new_el, bool el0_a64) 11578 { 11579 ARMCPU *cpu = env_archcpu(env); 11580 int old_len, new_len; 11581 bool old_a64, new_a64, sm; 11582 11583 /* Nothing to do if no SVE. */ 11584 if (!cpu_isar_feature(aa64_sve, cpu)) { 11585 return; 11586 } 11587 11588 /* Nothing to do if FP is disabled in either EL. */ 11589 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11590 return; 11591 } 11592 11593 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11594 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11595 11596 /* 11597 * Both AArch64.TakeException and AArch64.ExceptionReturn 11598 * invoke ResetSVEState when taking an exception from, or 11599 * returning to, AArch32 state when PSTATE.SM is enabled. 11600 */ 11601 sm = FIELD_EX64(env->svcr, SVCR, SM); 11602 if (old_a64 != new_a64 && sm) { 11603 arm_reset_sve_state(env); 11604 return; 11605 } 11606 11607 /* 11608 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11609 * at ELx, or not available because the EL is in AArch32 state, then 11610 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11611 * has an effective value of 0". 11612 * 11613 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11614 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11615 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11616 * we already have the correct register contents when encountering the 11617 * vq0->vq0 transition between EL0->EL1. 11618 */ 11619 old_len = new_len = 0; 11620 if (old_a64) { 11621 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11622 } 11623 if (new_a64) { 11624 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11625 } 11626 11627 /* When changing vector length, clear inaccessible state. */ 11628 if (new_len < old_len) { 11629 aarch64_sve_narrow_vq(env, new_len + 1); 11630 } 11631 } 11632 #endif 11633 11634 #ifndef CONFIG_USER_ONLY 11635 ARMSecuritySpace arm_security_space(CPUARMState *env) 11636 { 11637 if (arm_feature(env, ARM_FEATURE_M)) { 11638 return arm_secure_to_space(env->v7m.secure); 11639 } 11640 11641 /* 11642 * If EL3 is not supported then the secure state is implementation 11643 * defined, in which case QEMU defaults to non-secure. 11644 */ 11645 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11646 return ARMSS_NonSecure; 11647 } 11648 11649 /* Check for AArch64 EL3 or AArch32 Mon. */ 11650 if (is_a64(env)) { 11651 if (extract32(env->pstate, 2, 2) == 3) { 11652 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 11653 return ARMSS_Root; 11654 } else { 11655 return ARMSS_Secure; 11656 } 11657 } 11658 } else { 11659 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11660 return ARMSS_Secure; 11661 } 11662 } 11663 11664 return arm_security_space_below_el3(env); 11665 } 11666 11667 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 11668 { 11669 assert(!arm_feature(env, ARM_FEATURE_M)); 11670 11671 /* 11672 * If EL3 is not supported then the secure state is implementation 11673 * defined, in which case QEMU defaults to non-secure. 11674 */ 11675 if (!arm_feature(env, ARM_FEATURE_EL3)) { 11676 return ARMSS_NonSecure; 11677 } 11678 11679 /* 11680 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 11681 * Ignoring NSE when !NS retains consistency without having to 11682 * modify other predicates. 11683 */ 11684 if (!(env->cp15.scr_el3 & SCR_NS)) { 11685 return ARMSS_Secure; 11686 } else if (env->cp15.scr_el3 & SCR_NSE) { 11687 return ARMSS_Realm; 11688 } else { 11689 return ARMSS_NonSecure; 11690 } 11691 } 11692 #endif /* !CONFIG_USER_ONLY */ 11693