1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-common.h" 28 #include "exec/cpu-defs.h" 29 #include "exec/cpu-interrupt.h" 30 #include "exec/gdbstub.h" 31 #include "exec/page-protection.h" 32 #include "qapi/qapi-types-common.h" 33 #include "target/arm/multiprocessing.h" 34 #include "target/arm/gtimer.h" 35 36 #define EXCP_UDEF 1 /* undefined instruction */ 37 #define EXCP_SWI 2 /* software interrupt */ 38 #define EXCP_PREFETCH_ABORT 3 39 #define EXCP_DATA_ABORT 4 40 #define EXCP_IRQ 5 41 #define EXCP_FIQ 6 42 #define EXCP_BKPT 7 43 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 44 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 45 #define EXCP_HVC 11 /* HyperVisor Call */ 46 #define EXCP_HYP_TRAP 12 47 #define EXCP_SMC 13 /* Secure Monitor Call */ 48 #define EXCP_VIRQ 14 49 #define EXCP_VFIQ 15 50 #define EXCP_SEMIHOST 16 /* semihosting call */ 51 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 52 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 53 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 54 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 55 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 56 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 57 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 58 #define EXCP_VSERR 24 59 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */ 60 #define EXCP_NMI 26 61 #define EXCP_VINMI 27 62 #define EXCP_VFNMI 28 63 #define EXCP_MON_TRAP 29 /* AArch32 trap to Monitor mode */ 64 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 65 66 #define ARMV7M_EXCP_RESET 1 67 #define ARMV7M_EXCP_NMI 2 68 #define ARMV7M_EXCP_HARD 3 69 #define ARMV7M_EXCP_MEM 4 70 #define ARMV7M_EXCP_BUS 5 71 #define ARMV7M_EXCP_USAGE 6 72 #define ARMV7M_EXCP_SECURE 7 73 #define ARMV7M_EXCP_SVC 11 74 #define ARMV7M_EXCP_DEBUG 12 75 #define ARMV7M_EXCP_PENDSV 14 76 #define ARMV7M_EXCP_SYSTICK 15 77 78 /* ARM-specific interrupt pending bits. */ 79 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 80 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 81 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 82 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 83 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_4 84 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0 85 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1 86 87 /* The usual mapping for an AArch64 system register to its AArch32 88 * counterpart is for the 32 bit world to have access to the lower 89 * half only (with writes leaving the upper half untouched). It's 90 * therefore useful to be able to pass TCG the offset of the least 91 * significant half of a uint64_t struct member. 92 */ 93 #if HOST_BIG_ENDIAN 94 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 95 #define offsetofhigh32(S, M) offsetof(S, M) 96 #else 97 #define offsetoflow32(S, M) offsetof(S, M) 98 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 99 #endif 100 101 /* The 2nd extra word holding syndrome info for data aborts does not use 102 * the upper 6 bits nor the lower 13 bits. We mask and shift it down to 103 * help the sleb128 encoder do a better job. 104 * When restoring the CPU state, we shift it back up. 105 */ 106 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 107 #define ARM_INSN_START_WORD2_SHIFT 13 108 109 /* We currently assume float and double are IEEE single and double 110 precision respectively. 111 Doing runtime conversions is tricky because VFP registers may contain 112 integer values (eg. as the result of a FTOSI instruction). 113 s<2n> maps to the least significant half of d<n> 114 s<2n+1> maps to the most significant half of d<n> 115 */ 116 117 /** 118 * DynamicGDBFeatureInfo: 119 * @desc: Contains the feature descriptions. 120 * @data: A union with data specific to the set of registers 121 * @cpregs_keys: Array that contains the corresponding Key of 122 * a given cpreg with the same order of the cpreg 123 * in the XML description. 124 */ 125 typedef struct DynamicGDBFeatureInfo { 126 GDBFeature desc; 127 union { 128 struct { 129 uint32_t *keys; 130 } cpregs; 131 } data; 132 } DynamicGDBFeatureInfo; 133 134 /* CPU state for each instance of a generic timer (in cp15 c14) */ 135 typedef struct ARMGenericTimer { 136 uint64_t cval; /* Timer CompareValue register */ 137 uint64_t ctl; /* Timer Control register */ 138 } ARMGenericTimer; 139 140 /* Define a maximum sized vector register. 141 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 142 * For 64-bit, this is a 2048-bit SVE register. 143 * 144 * Note that the mapping between S, D, and Q views of the register bank 145 * differs between AArch64 and AArch32. 146 * In AArch32: 147 * Qn = regs[n].d[1]:regs[n].d[0] 148 * Dn = regs[n / 2].d[n & 1] 149 * Sn = regs[n / 4].d[n % 4 / 2], 150 * bits 31..0 for even n, and bits 63..32 for odd n 151 * (and regs[16] to regs[31] are inaccessible) 152 * In AArch64: 153 * Zn = regs[n].d[*] 154 * Qn = regs[n].d[1]:regs[n].d[0] 155 * Dn = regs[n].d[0] 156 * Sn = regs[n].d[0] bits 31..0 157 * Hn = regs[n].d[0] bits 15..0 158 * 159 * This corresponds to the architecturally defined mapping between 160 * the two execution states, and means we do not need to explicitly 161 * map these registers when changing states. 162 * 163 * Align the data for use with TCG host vector operations. 164 */ 165 166 #define ARM_MAX_VQ 16 167 168 typedef struct ARMVectorReg { 169 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 170 } ARMVectorReg; 171 172 /* In AArch32 mode, predicate registers do not exist at all. */ 173 typedef struct ARMPredicateReg { 174 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 175 } ARMPredicateReg; 176 177 /* In AArch32 mode, PAC keys do not exist at all. */ 178 typedef struct ARMPACKey { 179 uint64_t lo, hi; 180 } ARMPACKey; 181 182 /* See the commentary above the TBFLAG field definitions. */ 183 typedef struct CPUARMTBFlags { 184 uint32_t flags; 185 uint64_t flags2; 186 } CPUARMTBFlags; 187 188 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 189 190 typedef struct NVICState NVICState; 191 192 /* 193 * Enum for indexing vfp.fp_status[]. 194 * 195 * FPST_A32: is the "normal" fp status for AArch32 insns 196 * FPST_A64: is the "normal" fp status for AArch64 insns 197 * FPST_A32_F16: used for AArch32 half-precision calculations 198 * FPST_A64_F16: used for AArch64 half-precision calculations 199 * FPST_STD: the ARM "Standard FPSCR Value" 200 * FPST_STD_F16: used for half-precision 201 * calculations with the ARM "Standard FPSCR Value" 202 * FPST_AH: used for the A64 insns which change behaviour 203 * when FPCR.AH == 1 (bfloat16 conversions and multiplies, 204 * and the reciprocal and square root estimate/step insns) 205 * FPST_AH_F16: used for the A64 insns which change behaviour 206 * when FPCR.AH == 1 (bfloat16 conversions and multiplies, 207 * and the reciprocal and square root estimate/step insns); 208 * for half-precision 209 * 210 * Half-precision operations are governed by a separate 211 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 212 * status structure to control this. 213 * 214 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 215 * round-to-nearest and is used by any operations (generally 216 * Neon) which the architecture defines as controlled by the 217 * standard FPSCR value rather than the FPSCR. 218 * 219 * The "standard FPSCR but for fp16 ops" is needed because 220 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 221 * using a fixed value for it. 222 * 223 * FPST_AH is needed because some insns have different 224 * behaviour when FPCR.AH == 1: they don't update cumulative 225 * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and 226 * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16, 227 * which means we need an FPST_AH_F16 as well. 228 * 229 * To avoid having to transfer exception bits around, we simply 230 * say that the FPSCR cumulative exception flags are the logical 231 * OR of the flags in the four fp statuses. This relies on the 232 * only thing which needs to read the exception flags being 233 * an explicit FPSCR read. 234 */ 235 typedef enum ARMFPStatusFlavour { 236 FPST_A32, 237 FPST_A64, 238 FPST_A32_F16, 239 FPST_A64_F16, 240 FPST_AH, 241 FPST_AH_F16, 242 FPST_STD, 243 FPST_STD_F16, 244 } ARMFPStatusFlavour; 245 #define FPST_COUNT 8 246 247 typedef struct CPUArchState { 248 /* Regs for current mode. */ 249 uint32_t regs[16]; 250 251 /* 32/64 switch only happens when taking and returning from 252 * exceptions so the overlap semantics are taken care of then 253 * instead of having a complicated union. 254 */ 255 /* Regs for A64 mode. */ 256 uint64_t xregs[32]; 257 uint64_t pc; 258 /* PSTATE isn't an architectural register for ARMv8. However, it is 259 * convenient for us to assemble the underlying state into a 32 bit format 260 * identical to the architectural format used for the SPSR. (This is also 261 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 262 * 'pstate' register are.) Of the PSTATE bits: 263 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 264 * semantics as for AArch32, as described in the comments on each field) 265 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 266 * DAIF (exception masks) are kept in env->daif 267 * BTYPE is kept in env->btype 268 * SM and ZA are kept in env->svcr 269 * all other bits are stored in their correct places in env->pstate 270 */ 271 uint32_t pstate; 272 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 273 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 274 275 /* Cached TBFLAGS state. See below for which bits are included. */ 276 CPUARMTBFlags hflags; 277 278 /* Frequently accessed CPSR bits are stored separately for efficiency. 279 This contains all the other bits. Use cpsr_{read,write} to access 280 the whole CPSR. */ 281 uint32_t uncached_cpsr; 282 uint32_t spsr; 283 284 /* Banked registers. */ 285 uint64_t banked_spsr[8]; 286 uint32_t banked_r13[8]; 287 uint32_t banked_r14[8]; 288 289 /* These hold r8-r12. */ 290 uint32_t usr_regs[5]; 291 uint32_t fiq_regs[5]; 292 293 /* cpsr flag cache for faster execution */ 294 uint32_t CF; /* 0 or 1 */ 295 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 296 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 297 uint32_t ZF; /* Z set if zero. */ 298 uint32_t QF; /* 0 or 1 */ 299 uint32_t GE; /* cpsr[19:16] */ 300 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 301 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 302 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 303 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 304 305 uint64_t elr_el[4]; /* AArch64 exception link regs */ 306 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 307 308 /* System control coprocessor (cp15) */ 309 struct { 310 uint32_t c0_cpuid; 311 union { /* Cache size selection */ 312 struct { 313 uint64_t _unused_csselr0; 314 uint64_t csselr_ns; 315 uint64_t _unused_csselr1; 316 uint64_t csselr_s; 317 }; 318 uint64_t csselr_el[4]; 319 }; 320 union { /* System control register. */ 321 struct { 322 uint64_t _unused_sctlr; 323 uint64_t sctlr_ns; 324 uint64_t hsctlr; 325 uint64_t sctlr_s; 326 }; 327 uint64_t sctlr_el[4]; 328 }; 329 uint64_t vsctlr; /* Virtualization System control register. */ 330 uint64_t cpacr_el1; /* Architectural feature access control register */ 331 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 332 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 333 uint64_t sder; /* Secure debug enable register. */ 334 uint32_t nsacr; /* Non-secure access control register. */ 335 union { /* MMU translation table base 0. */ 336 struct { 337 uint64_t _unused_ttbr0_0; 338 uint64_t ttbr0_ns; 339 uint64_t _unused_ttbr0_1; 340 uint64_t ttbr0_s; 341 }; 342 uint64_t ttbr0_el[4]; 343 }; 344 union { /* MMU translation table base 1. */ 345 struct { 346 uint64_t _unused_ttbr1_0; 347 uint64_t ttbr1_ns; 348 uint64_t _unused_ttbr1_1; 349 uint64_t ttbr1_s; 350 }; 351 uint64_t ttbr1_el[4]; 352 }; 353 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 354 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 355 /* MMU translation table base control. */ 356 uint64_t tcr_el[4]; 357 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 358 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 359 uint32_t c2_data; /* MPU data cacheable bits. */ 360 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 361 union { /* MMU domain access control register 362 * MPU write buffer control. 363 */ 364 struct { 365 uint64_t dacr_ns; 366 uint64_t dacr_s; 367 }; 368 struct { 369 uint64_t dacr32_el2; 370 }; 371 }; 372 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 373 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 374 uint64_t hcr_el2; /* Hypervisor configuration register */ 375 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 376 uint64_t scr_el3; /* Secure configuration register. */ 377 union { /* Fault status registers. */ 378 struct { 379 uint64_t ifsr_ns; 380 uint64_t ifsr_s; 381 }; 382 struct { 383 uint64_t ifsr32_el2; 384 }; 385 }; 386 union { 387 struct { 388 uint64_t _unused_dfsr; 389 uint64_t dfsr_ns; 390 uint64_t hsr; 391 uint64_t dfsr_s; 392 }; 393 uint64_t esr_el[4]; 394 }; 395 uint32_t c6_region[8]; /* MPU base/size registers. */ 396 union { /* Fault address registers. */ 397 struct { 398 uint64_t _unused_far0; 399 #if HOST_BIG_ENDIAN 400 uint32_t ifar_ns; 401 uint32_t dfar_ns; 402 uint32_t ifar_s; 403 uint32_t dfar_s; 404 #else 405 uint32_t dfar_ns; 406 uint32_t ifar_ns; 407 uint32_t dfar_s; 408 uint32_t ifar_s; 409 #endif 410 uint64_t _unused_far3; 411 }; 412 uint64_t far_el[4]; 413 }; 414 uint64_t hpfar_el2; 415 uint64_t hstr_el2; 416 union { /* Translation result. */ 417 struct { 418 uint64_t _unused_par_0; 419 uint64_t par_ns; 420 uint64_t _unused_par_1; 421 uint64_t par_s; 422 }; 423 uint64_t par_el[4]; 424 }; 425 426 uint32_t c9_insn; /* Cache lockdown registers. */ 427 uint32_t c9_data; 428 uint64_t c9_pmcr; /* performance monitor control register */ 429 uint64_t c9_pmcnten; /* perf monitor counter enables */ 430 uint64_t c9_pmovsr; /* perf monitor overflow status */ 431 uint64_t c9_pmuserenr; /* perf monitor user enable */ 432 uint64_t c9_pmselr; /* perf monitor counter selection register */ 433 uint64_t c9_pminten; /* perf monitor interrupt enables */ 434 union { /* Memory attribute redirection */ 435 struct { 436 #if HOST_BIG_ENDIAN 437 uint64_t _unused_mair_0; 438 uint32_t mair1_ns; 439 uint32_t mair0_ns; 440 uint64_t _unused_mair_1; 441 uint32_t mair1_s; 442 uint32_t mair0_s; 443 #else 444 uint64_t _unused_mair_0; 445 uint32_t mair0_ns; 446 uint32_t mair1_ns; 447 uint64_t _unused_mair_1; 448 uint32_t mair0_s; 449 uint32_t mair1_s; 450 #endif 451 }; 452 uint64_t mair_el[4]; 453 }; 454 union { /* vector base address register */ 455 struct { 456 uint64_t _unused_vbar; 457 uint64_t vbar_ns; 458 uint64_t hvbar; 459 uint64_t vbar_s; 460 }; 461 uint64_t vbar_el[4]; 462 }; 463 uint32_t mvbar; /* (monitor) vector base address register */ 464 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 465 struct { /* FCSE PID. */ 466 uint32_t fcseidr_ns; 467 uint32_t fcseidr_s; 468 }; 469 union { /* Context ID. */ 470 struct { 471 uint64_t _unused_contextidr_0; 472 uint64_t contextidr_ns; 473 uint64_t _unused_contextidr_1; 474 uint64_t contextidr_s; 475 }; 476 uint64_t contextidr_el[4]; 477 }; 478 union { /* User RW Thread register. */ 479 struct { 480 uint64_t tpidrurw_ns; 481 uint64_t tpidrprw_ns; 482 uint64_t htpidr; 483 uint64_t _tpidr_el3; 484 }; 485 uint64_t tpidr_el[4]; 486 }; 487 uint64_t tpidr2_el0; 488 /* The secure banks of these registers don't map anywhere */ 489 uint64_t tpidrurw_s; 490 uint64_t tpidrprw_s; 491 uint64_t tpidruro_s; 492 493 union { /* User RO Thread register. */ 494 uint64_t tpidruro_ns; 495 uint64_t tpidrro_el[1]; 496 }; 497 uint64_t c14_cntfrq; /* Counter Frequency register */ 498 uint64_t c14_cntkctl; /* Timer Control register */ 499 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 500 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 501 uint64_t cntpoff_el2; /* Counter Physical Offset register */ 502 ARMGenericTimer c14_timer[NUM_GTIMERS]; 503 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 504 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 505 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 506 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 507 uint32_t c15_threadid; /* TI debugger thread-ID. */ 508 uint32_t c15_config_base_address; /* SCU base address. */ 509 uint32_t c15_diagnostic; /* diagnostic register */ 510 uint32_t c15_power_diagnostic; 511 uint32_t c15_power_control; /* power control */ 512 uint64_t dbgbvr[16]; /* breakpoint value registers */ 513 uint64_t dbgbcr[16]; /* breakpoint control registers */ 514 uint64_t dbgwvr[16]; /* watchpoint value registers */ 515 uint64_t dbgwcr[16]; /* watchpoint control registers */ 516 uint64_t dbgclaim; /* DBGCLAIM bits */ 517 uint64_t mdscr_el1; 518 uint64_t oslsr_el1; /* OS Lock Status */ 519 uint64_t osdlr_el1; /* OS DoubleLock status */ 520 uint64_t mdcr_el2; 521 uint64_t mdcr_el3; 522 /* Stores the architectural value of the counter *the last time it was 523 * updated* by pmccntr_op_start. Accesses should always be surrounded 524 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 525 * architecturally-correct value is being read/set. 526 */ 527 uint64_t c15_ccnt; 528 /* Stores the delta between the architectural value and the underlying 529 * cycle count during normal operation. It is used to update c15_ccnt 530 * to be the correct architectural value before accesses. During 531 * accesses, c15_ccnt_delta contains the underlying count being used 532 * for the access, after which it reverts to the delta value in 533 * pmccntr_op_finish. 534 */ 535 uint64_t c15_ccnt_delta; 536 uint64_t c14_pmevcntr[31]; 537 uint64_t c14_pmevcntr_delta[31]; 538 uint64_t c14_pmevtyper[31]; 539 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 540 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 541 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 542 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 543 uint64_t gcr_el1; 544 uint64_t rgsr_el1; 545 546 /* Minimal RAS registers */ 547 uint64_t disr_el1; 548 uint64_t vdisr_el2; 549 uint64_t vsesr_el2; 550 551 /* 552 * Fine-Grained Trap registers. We store these as arrays so the 553 * access checking code doesn't have to manually select 554 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test. 555 * FEAT_FGT2 will add more elements to these arrays. 556 */ 557 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */ 558 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */ 559 uint64_t fgt_exec[1]; /* HFGITR */ 560 561 /* RME registers */ 562 uint64_t gpccr_el3; 563 uint64_t gptbr_el3; 564 uint64_t mfar_el3; 565 566 /* NV2 register */ 567 uint64_t vncr_el2; 568 } cp15; 569 570 struct { 571 /* M profile has up to 4 stack pointers: 572 * a Main Stack Pointer and a Process Stack Pointer for each 573 * of the Secure and Non-Secure states. (If the CPU doesn't support 574 * the security extension then it has only two SPs.) 575 * In QEMU we always store the currently active SP in regs[13], 576 * and the non-active SP for the current security state in 577 * v7m.other_sp. The stack pointers for the inactive security state 578 * are stored in other_ss_msp and other_ss_psp. 579 * switch_v7m_security_state() is responsible for rearranging them 580 * when we change security state. 581 */ 582 uint32_t other_sp; 583 uint32_t other_ss_msp; 584 uint32_t other_ss_psp; 585 uint32_t vecbase[M_REG_NUM_BANKS]; 586 uint32_t basepri[M_REG_NUM_BANKS]; 587 uint32_t control[M_REG_NUM_BANKS]; 588 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 589 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 590 uint32_t hfsr; /* HardFault Status */ 591 uint32_t dfsr; /* Debug Fault Status Register */ 592 uint32_t sfsr; /* Secure Fault Status Register */ 593 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 594 uint32_t bfar; /* BusFault Address */ 595 uint32_t sfar; /* Secure Fault Address Register */ 596 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 597 int exception; 598 uint32_t primask[M_REG_NUM_BANKS]; 599 uint32_t faultmask[M_REG_NUM_BANKS]; 600 uint32_t aircr; /* only holds r/w state if security extn implemented */ 601 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 602 uint32_t csselr[M_REG_NUM_BANKS]; 603 uint32_t scr[M_REG_NUM_BANKS]; 604 uint32_t msplim[M_REG_NUM_BANKS]; 605 uint32_t psplim[M_REG_NUM_BANKS]; 606 uint32_t fpcar[M_REG_NUM_BANKS]; 607 uint32_t fpccr[M_REG_NUM_BANKS]; 608 uint32_t fpdscr[M_REG_NUM_BANKS]; 609 uint32_t cpacr[M_REG_NUM_BANKS]; 610 uint32_t nsacr; 611 uint32_t ltpsize; 612 uint32_t vpr; 613 } v7m; 614 615 /* Information associated with an exception about to be taken: 616 * code which raises an exception must set cs->exception_index and 617 * the relevant parts of this structure; the cpu_do_interrupt function 618 * will then set the guest-visible registers as part of the exception 619 * entry process. 620 */ 621 struct { 622 uint32_t syndrome; /* AArch64 format syndrome register */ 623 uint32_t fsr; /* AArch32 format fault status register info */ 624 uint64_t vaddress; /* virtual addr associated with exception, if any */ 625 uint32_t target_el; /* EL the exception should be targeted for */ 626 /* If we implement EL2 we will also need to store information 627 * about the intermediate physical address for stage 2 faults. 628 */ 629 } exception; 630 631 /* Information associated with an SError */ 632 struct { 633 uint8_t pending; 634 uint8_t has_esr; 635 uint64_t esr; 636 } serror; 637 638 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 639 640 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 641 uint32_t irq_line_state; 642 643 /* Thumb-2 EE state. */ 644 uint32_t teecr; 645 uint32_t teehbr; 646 647 /* VFP coprocessor state. */ 648 struct { 649 ARMVectorReg zregs[32]; 650 651 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 652 #define FFR_PRED_NUM 16 653 ARMPredicateReg pregs[17]; 654 /* Scratch space for aa64 sve predicate temporary. */ 655 ARMPredicateReg preg_tmp; 656 657 /* We store these fpcsr fields separately for convenience. */ 658 uint32_t qc[4] QEMU_ALIGNED(16); 659 int vec_len; 660 int vec_stride; 661 662 /* 663 * Floating point status and control registers. Some bits are 664 * stored separately in other fields or in the float_status below. 665 */ 666 uint64_t fpsr; 667 uint64_t fpcr; 668 669 uint32_t xregs[16]; 670 671 /* Scratch space for aa32 neon expansion. */ 672 uint32_t scratch[8]; 673 674 /* There are a number of distinct float control structures. */ 675 float_status fp_status[FPST_COUNT]; 676 677 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 678 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 679 } vfp; 680 681 uint64_t exclusive_addr; 682 uint64_t exclusive_val; 683 /* 684 * Contains the 'val' for the second 64-bit register of LDXP, which comes 685 * from the higher address, not the high part of a complete 128-bit value. 686 * In some ways it might be more convenient to record the exclusive value 687 * as the low and high halves of a 128 bit data value, but the current 688 * semantics of these fields are baked into the migration format. 689 */ 690 uint64_t exclusive_high; 691 692 /* iwMMXt coprocessor state. */ 693 struct { 694 uint64_t regs[16]; 695 uint64_t val; 696 697 uint32_t cregs[16]; 698 } iwmmxt; 699 700 struct { 701 ARMPACKey apia; 702 ARMPACKey apib; 703 ARMPACKey apda; 704 ARMPACKey apdb; 705 ARMPACKey apga; 706 } keys; 707 708 uint64_t scxtnum_el[4]; 709 710 /* 711 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 712 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 713 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 714 * When SVL is less than the architectural maximum, the accessible 715 * storage is restricted, such that if the SVL is X bytes the guest can 716 * see only the bottom X elements of zarray[], and only the least 717 * significant X bytes of each element of the array. (In other words, 718 * the observable part is always square.) 719 * 720 * The ZA storage can also be considered as a set of square tiles of 721 * elements of different sizes. The mapping from tiles to the ZA array 722 * is architecturally defined, such that for tiles of elements of esz 723 * bytes, the Nth row (or "horizontal slice") of tile T is in 724 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 725 * in the ZA storage, because its rows are striped through the ZA array. 726 * 727 * Because this is so large, keep this toward the end of the reset area, 728 * to keep the offsets into the rest of the structure smaller. 729 */ 730 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 731 732 struct CPUBreakpoint *cpu_breakpoint[16]; 733 struct CPUWatchpoint *cpu_watchpoint[16]; 734 735 /* Optional fault info across tlb lookup. */ 736 ARMMMUFaultInfo *tlb_fi; 737 738 /* Fields up to this point are cleared by a CPU reset */ 739 struct {} end_reset_fields; 740 741 /* Fields after this point are preserved across CPU reset. */ 742 743 /* Internal CPU feature flags. */ 744 uint64_t features; 745 746 /* PMSAv7 MPU */ 747 struct { 748 uint32_t *drbar; 749 uint32_t *drsr; 750 uint32_t *dracr; 751 uint32_t rnr[M_REG_NUM_BANKS]; 752 } pmsav7; 753 754 /* PMSAv8 MPU */ 755 struct { 756 /* The PMSAv8 implementation also shares some PMSAv7 config 757 * and state: 758 * pmsav7.rnr (region number register) 759 * pmsav7_dregion (number of configured regions) 760 */ 761 uint32_t *rbar[M_REG_NUM_BANKS]; 762 uint32_t *rlar[M_REG_NUM_BANKS]; 763 uint32_t *hprbar; 764 uint32_t *hprlar; 765 uint32_t mair0[M_REG_NUM_BANKS]; 766 uint32_t mair1[M_REG_NUM_BANKS]; 767 uint32_t hprselr; 768 } pmsav8; 769 770 /* v8M SAU */ 771 struct { 772 uint32_t *rbar; 773 uint32_t *rlar; 774 uint32_t rnr; 775 uint32_t ctrl; 776 } sau; 777 778 #if !defined(CONFIG_USER_ONLY) 779 NVICState *nvic; 780 const struct arm_boot_info *boot_info; 781 /* Store GICv3CPUState to access from this struct */ 782 void *gicv3state; 783 #else /* CONFIG_USER_ONLY */ 784 /* For usermode syscall translation. */ 785 bool eabi; 786 #endif /* CONFIG_USER_ONLY */ 787 788 #ifdef TARGET_TAGGED_ADDRESSES 789 /* Linux syscall tagged address support */ 790 bool tagged_addr_enable; 791 #endif 792 } CPUARMState; 793 794 static inline void set_feature(CPUARMState *env, int feature) 795 { 796 env->features |= 1ULL << feature; 797 } 798 799 static inline void unset_feature(CPUARMState *env, int feature) 800 { 801 env->features &= ~(1ULL << feature); 802 } 803 804 /** 805 * ARMELChangeHookFn: 806 * type of a function which can be registered via arm_register_el_change_hook() 807 * to get callbacks when the CPU changes its exception level or mode. 808 */ 809 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 810 typedef struct ARMELChangeHook ARMELChangeHook; 811 struct ARMELChangeHook { 812 ARMELChangeHookFn *hook; 813 void *opaque; 814 QLIST_ENTRY(ARMELChangeHook) node; 815 }; 816 817 /* These values map onto the return values for 818 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 819 typedef enum ARMPSCIState { 820 PSCI_ON = 0, 821 PSCI_OFF = 1, 822 PSCI_ON_PENDING = 2 823 } ARMPSCIState; 824 825 typedef struct ARMISARegisters ARMISARegisters; 826 827 /* 828 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 829 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 830 * 831 * While processing properties during initialization, corresponding init bits 832 * are set for bits in sve_vq_map that have been set by properties. 833 * 834 * Bits set in supported represent valid vector lengths for the CPU type. 835 */ 836 typedef struct { 837 uint32_t map, init, supported; 838 } ARMVQMap; 839 840 /** 841 * ARMCPU: 842 * @env: #CPUARMState 843 * 844 * An ARM CPU core. 845 */ 846 struct ArchCPU { 847 CPUState parent_obj; 848 849 CPUARMState env; 850 851 /* Coprocessor information */ 852 GHashTable *cp_regs; 853 /* For marshalling (mostly coprocessor) register state between the 854 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 855 * we use these arrays. 856 */ 857 /* List of register indexes managed via these arrays; (full KVM style 858 * 64 bit indexes, not CPRegInfo 32 bit indexes) 859 */ 860 uint64_t *cpreg_indexes; 861 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 862 uint64_t *cpreg_values; 863 /* Length of the indexes, values, reset_values arrays */ 864 int32_t cpreg_array_len; 865 /* These are used only for migration: incoming data arrives in 866 * these fields and is sanity checked in post_load before copying 867 * to the working data structures above. 868 */ 869 uint64_t *cpreg_vmstate_indexes; 870 uint64_t *cpreg_vmstate_values; 871 int32_t cpreg_vmstate_array_len; 872 873 DynamicGDBFeatureInfo dyn_sysreg_feature; 874 DynamicGDBFeatureInfo dyn_svereg_feature; 875 DynamicGDBFeatureInfo dyn_m_systemreg_feature; 876 DynamicGDBFeatureInfo dyn_m_secextreg_feature; 877 878 /* Timers used by the generic (architected) timer */ 879 QEMUTimer *gt_timer[NUM_GTIMERS]; 880 /* 881 * Timer used by the PMU. Its state is restored after migration by 882 * pmu_op_finish() - it does not need other handling during migration 883 */ 884 QEMUTimer *pmu_timer; 885 /* Timer used for WFxT timeouts */ 886 QEMUTimer *wfxt_timer; 887 888 /* GPIO outputs for generic timer */ 889 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 890 /* GPIO output for GICv3 maintenance interrupt signal */ 891 qemu_irq gicv3_maintenance_interrupt; 892 /* GPIO output for the PMU interrupt */ 893 qemu_irq pmu_interrupt; 894 895 /* MemoryRegion to use for secure physical accesses */ 896 MemoryRegion *secure_memory; 897 898 /* MemoryRegion to use for allocation tag accesses */ 899 MemoryRegion *tag_memory; 900 MemoryRegion *secure_tag_memory; 901 902 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 903 Object *idau; 904 905 /* 'compatible' string for this CPU for Linux device trees */ 906 const char *dtb_compatible; 907 908 /* PSCI version for this CPU 909 * Bits[31:16] = Major Version 910 * Bits[15:0] = Minor Version 911 */ 912 uint32_t psci_version; 913 914 /* Current power state, access guarded by BQL */ 915 ARMPSCIState power_state; 916 917 /* CPU has virtualization extension */ 918 bool has_el2; 919 /* CPU has security extension */ 920 bool has_el3; 921 /* CPU has PMU (Performance Monitor Unit) */ 922 bool has_pmu; 923 /* CPU has VFP */ 924 bool has_vfp; 925 /* CPU has 32 VFP registers */ 926 bool has_vfp_d32; 927 /* CPU has Neon */ 928 bool has_neon; 929 /* CPU has M-profile DSP extension */ 930 bool has_dsp; 931 932 /* CPU has memory protection unit */ 933 bool has_mpu; 934 /* CPU has MTE enabled in KVM mode */ 935 bool kvm_mte; 936 /* PMSAv7 MPU number of supported regions */ 937 uint32_t pmsav7_dregion; 938 /* PMSAv8 MPU number of supported hyp regions */ 939 uint32_t pmsav8r_hdregion; 940 /* v8M SAU number of supported regions */ 941 uint32_t sau_sregion; 942 943 /* PSCI conduit used to invoke PSCI methods 944 * 0 - disabled, 1 - smc, 2 - hvc 945 */ 946 uint32_t psci_conduit; 947 948 /* For v8M, initial value of the Secure VTOR */ 949 uint32_t init_svtor; 950 /* For v8M, initial value of the Non-secure VTOR */ 951 uint32_t init_nsvtor; 952 953 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 954 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 955 */ 956 uint32_t kvm_target; 957 958 /* KVM init features for this CPU */ 959 uint32_t kvm_init_features[7]; 960 961 /* KVM CPU state */ 962 963 /* KVM virtual time adjustment */ 964 bool kvm_adjvtime; 965 bool kvm_vtime_dirty; 966 uint64_t kvm_vtime; 967 968 /* KVM steal time */ 969 OnOffAuto kvm_steal_time; 970 971 /* Uniprocessor system with MP extensions */ 972 bool mp_is_up; 973 974 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 975 * and the probe failed (so we need to report the error in realize) 976 */ 977 bool host_cpu_probe_failed; 978 979 /* QOM property to indicate we should use the back-compat CNTFRQ default */ 980 bool backcompat_cntfrq; 981 982 /* QOM property to indicate we should use the back-compat QARMA5 default */ 983 bool backcompat_pauth_default_use_qarma5; 984 985 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 986 * register. 987 */ 988 int32_t core_count; 989 990 /* The instance init functions for implementation-specific subclasses 991 * set these fields to specify the implementation-dependent values of 992 * various constant registers and reset values of non-constant 993 * registers. 994 * Some of these might become QOM properties eventually. 995 * Field names match the official register names as defined in the 996 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 997 * is used for reset values of non-constant registers; no reset_ 998 * prefix means a constant register. 999 * Some of these registers are split out into a substructure that 1000 * is shared with the translators to control the ISA. 1001 * 1002 * Note that if you add an ID register to the ARMISARegisters struct 1003 * you need to also update the 32-bit and 64-bit versions of the 1004 * kvm_arm_get_host_cpu_features() function to correctly populate the 1005 * field by reading the value from the KVM vCPU. 1006 */ 1007 struct ARMISARegisters { 1008 uint32_t id_isar0; 1009 uint32_t id_isar1; 1010 uint32_t id_isar2; 1011 uint32_t id_isar3; 1012 uint32_t id_isar4; 1013 uint32_t id_isar5; 1014 uint32_t id_isar6; 1015 uint32_t id_mmfr0; 1016 uint32_t id_mmfr1; 1017 uint32_t id_mmfr2; 1018 uint32_t id_mmfr3; 1019 uint32_t id_mmfr4; 1020 uint32_t id_mmfr5; 1021 uint32_t id_pfr0; 1022 uint32_t id_pfr1; 1023 uint32_t id_pfr2; 1024 uint32_t mvfr0; 1025 uint32_t mvfr1; 1026 uint32_t mvfr2; 1027 uint32_t id_dfr0; 1028 uint32_t id_dfr1; 1029 uint32_t dbgdidr; 1030 uint32_t dbgdevid; 1031 uint32_t dbgdevid1; 1032 uint64_t id_aa64isar0; 1033 uint64_t id_aa64isar1; 1034 uint64_t id_aa64isar2; 1035 uint64_t id_aa64pfr0; 1036 uint64_t id_aa64pfr1; 1037 uint64_t id_aa64mmfr0; 1038 uint64_t id_aa64mmfr1; 1039 uint64_t id_aa64mmfr2; 1040 uint64_t id_aa64mmfr3; 1041 uint64_t id_aa64dfr0; 1042 uint64_t id_aa64dfr1; 1043 uint64_t id_aa64zfr0; 1044 uint64_t id_aa64smfr0; 1045 uint64_t reset_pmcr_el0; 1046 } isar; 1047 uint64_t midr; 1048 uint32_t revidr; 1049 uint32_t reset_fpsid; 1050 uint64_t ctr; 1051 uint32_t reset_sctlr; 1052 uint64_t pmceid0; 1053 uint64_t pmceid1; 1054 uint32_t id_afr0; 1055 uint64_t id_aa64afr0; 1056 uint64_t id_aa64afr1; 1057 uint64_t clidr; 1058 uint64_t mp_affinity; /* MP ID without feature bits */ 1059 /* The elements of this array are the CCSIDR values for each cache, 1060 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1061 */ 1062 uint64_t ccsidr[16]; 1063 uint64_t reset_cbar; 1064 uint32_t reset_auxcr; 1065 bool reset_hivecs; 1066 uint8_t reset_l0gptsz; 1067 1068 /* 1069 * Intermediate values used during property parsing. 1070 * Once finalized, the values should be read from ID_AA64*. 1071 */ 1072 bool prop_pauth; 1073 bool prop_pauth_impdef; 1074 bool prop_pauth_qarma3; 1075 bool prop_pauth_qarma5; 1076 bool prop_lpa2; 1077 1078 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1079 uint8_t dcz_blocksize; 1080 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */ 1081 uint8_t gm_blocksize; 1082 1083 uint64_t rvbar_prop; /* Property/input signals. */ 1084 1085 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1086 int gic_num_lrs; /* number of list registers */ 1087 int gic_vpribits; /* number of virtual priority bits */ 1088 int gic_vprebits; /* number of virtual preemption bits */ 1089 int gic_pribits; /* number of physical priority bits */ 1090 1091 /* Whether the cfgend input is high (i.e. this CPU should reset into 1092 * big-endian mode). This setting isn't used directly: instead it modifies 1093 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1094 * architecture version. 1095 */ 1096 bool cfgend; 1097 1098 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1099 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1100 1101 int32_t node_id; /* NUMA node this CPU belongs to */ 1102 1103 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1104 uint8_t device_irq_level; 1105 1106 /* Used to set the maximum vector length the cpu will support. */ 1107 uint32_t sve_max_vq; 1108 1109 #ifdef CONFIG_USER_ONLY 1110 /* Used to set the default vector length at process start. */ 1111 uint32_t sve_default_vq; 1112 uint32_t sme_default_vq; 1113 #endif 1114 1115 ARMVQMap sve_vq; 1116 ARMVQMap sme_vq; 1117 1118 /* Generic timer counter frequency, in Hz */ 1119 uint64_t gt_cntfrq_hz; 1120 }; 1121 1122 typedef struct ARMCPUInfo { 1123 const char *name; 1124 const char *deprecation_note; 1125 void (*initfn)(Object *obj); 1126 void (*class_init)(ObjectClass *oc, const void *data); 1127 } ARMCPUInfo; 1128 1129 /** 1130 * ARMCPUClass: 1131 * @parent_realize: The parent class' realize handler. 1132 * @parent_phases: The parent class' reset phase handlers. 1133 * 1134 * An ARM CPU model. 1135 */ 1136 struct ARMCPUClass { 1137 CPUClass parent_class; 1138 1139 const ARMCPUInfo *info; 1140 DeviceRealize parent_realize; 1141 ResettablePhases parent_phases; 1142 }; 1143 1144 struct AArch64CPUClass { 1145 ARMCPUClass parent_class; 1146 }; 1147 1148 /* Callback functions for the generic timer's timers. */ 1149 void arm_gt_ptimer_cb(void *opaque); 1150 void arm_gt_vtimer_cb(void *opaque); 1151 void arm_gt_htimer_cb(void *opaque); 1152 void arm_gt_stimer_cb(void *opaque); 1153 void arm_gt_hvtimer_cb(void *opaque); 1154 void arm_gt_sel2timer_cb(void *opaque); 1155 void arm_gt_sel2vtimer_cb(void *opaque); 1156 1157 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1158 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque); 1159 1160 void arm_cpu_post_init(Object *obj); 1161 1162 #define ARM_AFF0_SHIFT 0 1163 #define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT) 1164 #define ARM_AFF1_SHIFT 8 1165 #define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT) 1166 #define ARM_AFF2_SHIFT 16 1167 #define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT) 1168 #define ARM_AFF3_SHIFT 32 1169 #define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT) 1170 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8 1171 1172 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK) 1173 #define ARM64_AFFINITY_MASK \ 1174 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK) 1175 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK) 1176 1177 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz); 1178 1179 #ifndef CONFIG_USER_ONLY 1180 extern const VMStateDescription vmstate_arm_cpu; 1181 1182 void arm_cpu_do_interrupt(CPUState *cpu); 1183 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1184 1185 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1186 MemTxAttrs *attrs); 1187 #endif /* !CONFIG_USER_ONLY */ 1188 1189 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1190 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1191 1192 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1193 int cpuid, DumpState *s); 1194 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1195 int cpuid, DumpState *s); 1196 1197 /** 1198 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling 1199 * @cpu: CPU (which must have been freshly reset) 1200 * @target_el: exception level to put the CPU into 1201 * @secure: whether to put the CPU in secure state 1202 * 1203 * When QEMU is directly running a guest kernel at a lower level than 1204 * EL3 it implicitly emulates some aspects of the guest firmware. 1205 * This includes that on reset we need to configure the parts of the 1206 * CPU corresponding to EL3 so that the real guest code can run at its 1207 * lower exception level. This function does that post-reset CPU setup, 1208 * for when we do direct boot of a guest kernel, and for when we 1209 * emulate PSCI and similar firmware interfaces starting a CPU at a 1210 * lower exception level. 1211 * 1212 * @target_el must be an EL implemented by the CPU between 1 and 3. 1213 * We do not support dropping into a Secure EL other than 3. 1214 * 1215 * It is the responsibility of the caller to call arm_rebuild_hflags(). 1216 */ 1217 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el); 1218 1219 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1220 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1221 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1222 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1223 int new_el, bool el0_a64); 1224 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask); 1225 1226 /* 1227 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1228 * The byte at offset i from the start of the in-memory representation contains 1229 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1230 * lowest offsets are stored in the lowest memory addresses, then that nearly 1231 * matches QEMU's representation, which is to use an array of host-endian 1232 * uint64_t's, where the lower offsets are at the lower indices. To complete 1233 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1234 */ 1235 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1236 { 1237 #if HOST_BIG_ENDIAN 1238 int i; 1239 1240 for (i = 0; i < nr; ++i) { 1241 dst[i] = bswap64(src[i]); 1242 } 1243 1244 return dst; 1245 #else 1246 return src; 1247 #endif 1248 } 1249 1250 void aarch64_sync_32_to_64(CPUARMState *env); 1251 void aarch64_sync_64_to_32(CPUARMState *env); 1252 1253 int fp_exception_el(CPUARMState *env, int cur_el); 1254 int sve_exception_el(CPUARMState *env, int cur_el); 1255 int sme_exception_el(CPUARMState *env, int cur_el); 1256 1257 /** 1258 * sve_vqm1_for_el_sm: 1259 * @env: CPUARMState 1260 * @el: exception level 1261 * @sm: streaming mode 1262 * 1263 * Compute the current vector length for @el & @sm, in units of 1264 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1265 * If @sm, compute for SVL, otherwise NVL. 1266 */ 1267 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1268 1269 /* Likewise, but using @sm = PSTATE.SM. */ 1270 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1271 1272 static inline bool is_a64(CPUARMState *env) 1273 { 1274 return env->aarch64; 1275 } 1276 1277 /** 1278 * pmu_op_start/finish 1279 * @env: CPUARMState 1280 * 1281 * Convert all PMU counters between their delta form (the typical mode when 1282 * they are enabled) and the guest-visible values. These two calls must 1283 * surround any action which might affect the counters. 1284 */ 1285 void pmu_op_start(CPUARMState *env); 1286 void pmu_op_finish(CPUARMState *env); 1287 1288 /* 1289 * Called when a PMU counter is due to overflow 1290 */ 1291 void arm_pmu_timer_cb(void *opaque); 1292 1293 /** 1294 * Functions to register as EL change hooks for PMU mode filtering 1295 */ 1296 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1297 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1298 1299 /* 1300 * pmu_init 1301 * @cpu: ARMCPU 1302 * 1303 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1304 * for the current configuration 1305 */ 1306 void pmu_init(ARMCPU *cpu); 1307 1308 /* SCTLR bit meanings. Several bits have been reused in newer 1309 * versions of the architecture; in that case we define constants 1310 * for both old and new bit meanings. Code which tests against those 1311 * bits should probably check or otherwise arrange that the CPU 1312 * is the architectural version it expects. 1313 */ 1314 #define SCTLR_M (1U << 0) 1315 #define SCTLR_A (1U << 1) 1316 #define SCTLR_C (1U << 2) 1317 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1318 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1319 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1320 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1321 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1322 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1323 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1324 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1325 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1326 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */ 1327 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1328 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1329 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1330 #define SCTLR_SED (1U << 8) /* v8 onward */ 1331 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1332 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1333 #define SCTLR_F (1U << 10) /* up to v6 */ 1334 #define SCTLR_SW (1U << 10) /* v7 */ 1335 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1336 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1337 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1338 #define SCTLR_I (1U << 12) 1339 #define SCTLR_V (1U << 13) /* AArch32 only */ 1340 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1341 #define SCTLR_RR (1U << 14) /* up to v7 */ 1342 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1343 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1344 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1345 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1346 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1347 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1348 #define SCTLR_BR (1U << 17) /* PMSA only */ 1349 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1350 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1351 #define SCTLR_WXN (1U << 19) 1352 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1353 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1354 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1355 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1356 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1357 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1358 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1359 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1360 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1361 #define SCTLR_VE (1U << 24) /* up to v7 */ 1362 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1363 #define SCTLR_EE (1U << 25) 1364 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1365 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1366 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1367 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1368 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1369 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1370 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1371 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1372 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1373 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1374 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1375 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1376 #define SCTLR_CMOW (1ULL << 32) /* FEAT_CMOW */ 1377 #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */ 1378 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1379 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1380 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1381 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1382 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1383 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1384 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1385 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1386 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1387 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1388 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1389 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1390 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1391 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1392 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1393 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1394 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1395 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1396 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1397 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1398 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1399 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1400 1401 #define CPSR_M (0x1fU) 1402 #define CPSR_T (1U << 5) 1403 #define CPSR_F (1U << 6) 1404 #define CPSR_I (1U << 7) 1405 #define CPSR_A (1U << 8) 1406 #define CPSR_E (1U << 9) 1407 #define CPSR_IT_2_7 (0xfc00U) 1408 #define CPSR_GE (0xfU << 16) 1409 #define CPSR_IL (1U << 20) 1410 #define CPSR_DIT (1U << 21) 1411 #define CPSR_PAN (1U << 22) 1412 #define CPSR_SSBS (1U << 23) 1413 #define CPSR_J (1U << 24) 1414 #define CPSR_IT_0_1 (3U << 25) 1415 #define CPSR_Q (1U << 27) 1416 #define CPSR_V (1U << 28) 1417 #define CPSR_C (1U << 29) 1418 #define CPSR_Z (1U << 30) 1419 #define CPSR_N (1U << 31) 1420 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1421 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1422 #define ISR_FS (1U << 9) 1423 #define ISR_IS (1U << 10) 1424 1425 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1426 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1427 | CPSR_NZCV) 1428 /* Bits writable in user mode. */ 1429 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1430 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1431 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1432 1433 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1434 #define XPSR_EXCP 0x1ffU 1435 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1436 #define XPSR_IT_2_7 CPSR_IT_2_7 1437 #define XPSR_GE CPSR_GE 1438 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1439 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1440 #define XPSR_IT_0_1 CPSR_IT_0_1 1441 #define XPSR_Q CPSR_Q 1442 #define XPSR_V CPSR_V 1443 #define XPSR_C CPSR_C 1444 #define XPSR_Z CPSR_Z 1445 #define XPSR_N CPSR_N 1446 #define XPSR_NZCV CPSR_NZCV 1447 #define XPSR_IT CPSR_IT 1448 1449 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1450 * Only these are valid when in AArch64 mode; in 1451 * AArch32 mode SPSRs are basically CPSR-format. 1452 */ 1453 #define PSTATE_SP (1U) 1454 #define PSTATE_M (0xFU) 1455 #define PSTATE_nRW (1U << 4) 1456 #define PSTATE_F (1U << 6) 1457 #define PSTATE_I (1U << 7) 1458 #define PSTATE_A (1U << 8) 1459 #define PSTATE_D (1U << 9) 1460 #define PSTATE_BTYPE (3U << 10) 1461 #define PSTATE_SSBS (1U << 12) 1462 #define PSTATE_ALLINT (1U << 13) 1463 #define PSTATE_IL (1U << 20) 1464 #define PSTATE_SS (1U << 21) 1465 #define PSTATE_PAN (1U << 22) 1466 #define PSTATE_UAO (1U << 23) 1467 #define PSTATE_DIT (1U << 24) 1468 #define PSTATE_TCO (1U << 25) 1469 #define PSTATE_V (1U << 28) 1470 #define PSTATE_C (1U << 29) 1471 #define PSTATE_Z (1U << 30) 1472 #define PSTATE_N (1U << 31) 1473 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1474 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1475 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1476 /* Mode values for AArch64 */ 1477 #define PSTATE_MODE_EL3h 13 1478 #define PSTATE_MODE_EL3t 12 1479 #define PSTATE_MODE_EL2h 9 1480 #define PSTATE_MODE_EL2t 8 1481 #define PSTATE_MODE_EL1h 5 1482 #define PSTATE_MODE_EL1t 4 1483 #define PSTATE_MODE_EL0t 0 1484 1485 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1486 FIELD(SVCR, SM, 0, 1) 1487 FIELD(SVCR, ZA, 1, 1) 1488 1489 /* Fields for SMCR_ELx. */ 1490 FIELD(SMCR, LEN, 0, 4) 1491 FIELD(SMCR, FA64, 31, 1) 1492 1493 /* Write a new value to v7m.exception, thus transitioning into or out 1494 * of Handler mode; this may result in a change of active stack pointer. 1495 */ 1496 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1497 1498 /* Map EL and handler into a PSTATE_MODE. */ 1499 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1500 { 1501 return (el << 2) | handler; 1502 } 1503 1504 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1505 * interprocessing, so we don't attempt to sync with the cpsr state used by 1506 * the 32 bit decoder. 1507 */ 1508 static inline uint32_t pstate_read(CPUARMState *env) 1509 { 1510 int ZF; 1511 1512 ZF = (env->ZF == 0); 1513 return (env->NF & 0x80000000) | (ZF << 30) 1514 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1515 | env->pstate | env->daif | (env->btype << 10); 1516 } 1517 1518 static inline void pstate_write(CPUARMState *env, uint32_t val) 1519 { 1520 env->ZF = (~val) & PSTATE_Z; 1521 env->NF = val; 1522 env->CF = (val >> 29) & 1; 1523 env->VF = (val << 3) & 0x80000000; 1524 env->daif = val & PSTATE_DAIF; 1525 env->btype = (val >> 10) & 3; 1526 env->pstate = val & ~CACHED_PSTATE_BITS; 1527 } 1528 1529 /* Return the current CPSR value. */ 1530 uint32_t cpsr_read(CPUARMState *env); 1531 1532 typedef enum CPSRWriteType { 1533 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1534 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1535 CPSRWriteRaw = 2, 1536 /* trust values, no reg bank switch, no hflags rebuild */ 1537 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1538 } CPSRWriteType; 1539 1540 /* 1541 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1542 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1543 * correspond to TB flags bits cached in the hflags, unless @write_type 1544 * is CPSRWriteRaw. 1545 */ 1546 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1547 CPSRWriteType write_type); 1548 1549 /* Return the current xPSR value. */ 1550 static inline uint32_t xpsr_read(CPUARMState *env) 1551 { 1552 int ZF; 1553 ZF = (env->ZF == 0); 1554 return (env->NF & 0x80000000) | (ZF << 30) 1555 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1556 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1557 | ((env->condexec_bits & 0xfc) << 8) 1558 | (env->GE << 16) 1559 | env->v7m.exception; 1560 } 1561 1562 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ 1563 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1564 { 1565 if (mask & XPSR_NZCV) { 1566 env->ZF = (~val) & XPSR_Z; 1567 env->NF = val; 1568 env->CF = (val >> 29) & 1; 1569 env->VF = (val << 3) & 0x80000000; 1570 } 1571 if (mask & XPSR_Q) { 1572 env->QF = ((val & XPSR_Q) != 0); 1573 } 1574 if (mask & XPSR_GE) { 1575 env->GE = (val & XPSR_GE) >> 16; 1576 } 1577 #ifndef CONFIG_USER_ONLY 1578 if (mask & XPSR_T) { 1579 env->thumb = ((val & XPSR_T) != 0); 1580 } 1581 if (mask & XPSR_IT_0_1) { 1582 env->condexec_bits &= ~3; 1583 env->condexec_bits |= (val >> 25) & 3; 1584 } 1585 if (mask & XPSR_IT_2_7) { 1586 env->condexec_bits &= 3; 1587 env->condexec_bits |= (val >> 8) & 0xfc; 1588 } 1589 if (mask & XPSR_EXCP) { 1590 /* Note that this only happens on exception exit */ 1591 write_v7m_exception(env, val & XPSR_EXCP); 1592 } 1593 #endif 1594 } 1595 1596 #define HCR_VM (1ULL << 0) 1597 #define HCR_SWIO (1ULL << 1) 1598 #define HCR_PTW (1ULL << 2) 1599 #define HCR_FMO (1ULL << 3) 1600 #define HCR_IMO (1ULL << 4) 1601 #define HCR_AMO (1ULL << 5) 1602 #define HCR_VF (1ULL << 6) 1603 #define HCR_VI (1ULL << 7) 1604 #define HCR_VSE (1ULL << 8) 1605 #define HCR_FB (1ULL << 9) 1606 #define HCR_BSU_MASK (3ULL << 10) 1607 #define HCR_DC (1ULL << 12) 1608 #define HCR_TWI (1ULL << 13) 1609 #define HCR_TWE (1ULL << 14) 1610 #define HCR_TID0 (1ULL << 15) 1611 #define HCR_TID1 (1ULL << 16) 1612 #define HCR_TID2 (1ULL << 17) 1613 #define HCR_TID3 (1ULL << 18) 1614 #define HCR_TSC (1ULL << 19) 1615 #define HCR_TIDCP (1ULL << 20) 1616 #define HCR_TACR (1ULL << 21) 1617 #define HCR_TSW (1ULL << 22) 1618 #define HCR_TPCP (1ULL << 23) 1619 #define HCR_TPU (1ULL << 24) 1620 #define HCR_TTLB (1ULL << 25) 1621 #define HCR_TVM (1ULL << 26) 1622 #define HCR_TGE (1ULL << 27) 1623 #define HCR_TDZ (1ULL << 28) 1624 #define HCR_HCD (1ULL << 29) 1625 #define HCR_TRVM (1ULL << 30) 1626 #define HCR_RW (1ULL << 31) 1627 #define HCR_CD (1ULL << 32) 1628 #define HCR_ID (1ULL << 33) 1629 #define HCR_E2H (1ULL << 34) 1630 #define HCR_TLOR (1ULL << 35) 1631 #define HCR_TERR (1ULL << 36) 1632 #define HCR_TEA (1ULL << 37) 1633 #define HCR_MIOCNCE (1ULL << 38) 1634 #define HCR_TME (1ULL << 39) 1635 #define HCR_APK (1ULL << 40) 1636 #define HCR_API (1ULL << 41) 1637 #define HCR_NV (1ULL << 42) 1638 #define HCR_NV1 (1ULL << 43) 1639 #define HCR_AT (1ULL << 44) 1640 #define HCR_NV2 (1ULL << 45) 1641 #define HCR_FWB (1ULL << 46) 1642 #define HCR_FIEN (1ULL << 47) 1643 #define HCR_GPF (1ULL << 48) 1644 #define HCR_TID4 (1ULL << 49) 1645 #define HCR_TICAB (1ULL << 50) 1646 #define HCR_AMVOFFEN (1ULL << 51) 1647 #define HCR_TOCU (1ULL << 52) 1648 #define HCR_ENSCXT (1ULL << 53) 1649 #define HCR_TTLBIS (1ULL << 54) 1650 #define HCR_TTLBOS (1ULL << 55) 1651 #define HCR_ATA (1ULL << 56) 1652 #define HCR_DCT (1ULL << 57) 1653 #define HCR_TID5 (1ULL << 58) 1654 #define HCR_TWEDEN (1ULL << 59) 1655 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1656 1657 #define SCR_NS (1ULL << 0) 1658 #define SCR_IRQ (1ULL << 1) 1659 #define SCR_FIQ (1ULL << 2) 1660 #define SCR_EA (1ULL << 3) 1661 #define SCR_FW (1ULL << 4) 1662 #define SCR_AW (1ULL << 5) 1663 #define SCR_NET (1ULL << 6) 1664 #define SCR_SMD (1ULL << 7) 1665 #define SCR_HCE (1ULL << 8) 1666 #define SCR_SIF (1ULL << 9) 1667 #define SCR_RW (1ULL << 10) 1668 #define SCR_ST (1ULL << 11) 1669 #define SCR_TWI (1ULL << 12) 1670 #define SCR_TWE (1ULL << 13) 1671 #define SCR_TLOR (1ULL << 14) 1672 #define SCR_TERR (1ULL << 15) 1673 #define SCR_APK (1ULL << 16) 1674 #define SCR_API (1ULL << 17) 1675 #define SCR_EEL2 (1ULL << 18) 1676 #define SCR_EASE (1ULL << 19) 1677 #define SCR_NMEA (1ULL << 20) 1678 #define SCR_FIEN (1ULL << 21) 1679 #define SCR_ENSCXT (1ULL << 25) 1680 #define SCR_ATA (1ULL << 26) 1681 #define SCR_FGTEN (1ULL << 27) 1682 #define SCR_ECVEN (1ULL << 28) 1683 #define SCR_TWEDEN (1ULL << 29) 1684 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1685 #define SCR_TME (1ULL << 34) 1686 #define SCR_AMVOFFEN (1ULL << 35) 1687 #define SCR_ENAS0 (1ULL << 36) 1688 #define SCR_ADEN (1ULL << 37) 1689 #define SCR_HXEN (1ULL << 38) 1690 #define SCR_TRNDR (1ULL << 40) 1691 #define SCR_ENTP2 (1ULL << 41) 1692 #define SCR_GPF (1ULL << 48) 1693 #define SCR_NSE (1ULL << 62) 1694 1695 /* Return the current FPSCR value. */ 1696 uint32_t vfp_get_fpscr(CPUARMState *env); 1697 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1698 1699 /* 1700 * FPCR, Floating Point Control Register 1701 * FPSR, Floating Point Status Register 1702 * 1703 * For A64 floating point control and status bits are stored in 1704 * two logically distinct registers, FPCR and FPSR. We store these 1705 * in QEMU in vfp.fpcr and vfp.fpsr. 1706 * For A32 there was only one register, FPSCR. The bits are arranged 1707 * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions, 1708 * so we can use appropriate masking to handle FPSCR reads and writes. 1709 * Note that the FPCR has some bits which are not visible in the 1710 * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged. 1711 */ 1712 1713 /* FPCR bits */ 1714 #define FPCR_FIZ (1 << 0) /* Flush Inputs to Zero (FEAT_AFP) */ 1715 #define FPCR_AH (1 << 1) /* Alternate Handling (FEAT_AFP) */ 1716 #define FPCR_NEP (1 << 2) /* SIMD scalar ops preserve elts (FEAT_AFP) */ 1717 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1718 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1719 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1720 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1721 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1722 #define FPCR_EBF (1 << 13) /* Extended BFloat16 behaviors */ 1723 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1724 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */ 1725 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1726 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */ 1727 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1728 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1729 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1730 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1731 1732 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1733 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1734 #define FPCR_LTPSIZE_LENGTH 3 1735 1736 /* Cumulative exception trap enable bits */ 1737 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE) 1738 1739 /* FPSR bits */ 1740 #define FPSR_IOC (1 << 0) /* Invalid Operation cumulative exception */ 1741 #define FPSR_DZC (1 << 1) /* Divide by Zero cumulative exception */ 1742 #define FPSR_OFC (1 << 2) /* Overflow cumulative exception */ 1743 #define FPSR_UFC (1 << 3) /* Underflow cumulative exception */ 1744 #define FPSR_IXC (1 << 4) /* Inexact cumulative exception */ 1745 #define FPSR_IDC (1 << 7) /* Input Denormal cumulative exception */ 1746 #define FPSR_QC (1 << 27) /* Cumulative saturation bit */ 1747 #define FPSR_V (1 << 28) /* FP overflow flag */ 1748 #define FPSR_C (1 << 29) /* FP carry flag */ 1749 #define FPSR_Z (1 << 30) /* FP zero flag */ 1750 #define FPSR_N (1 << 31) /* FP negative flag */ 1751 1752 /* Cumulative exception status bits */ 1753 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC) 1754 1755 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V) 1756 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC) 1757 1758 /* A32 FPSCR bits which architecturally map to FPSR bits */ 1759 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK) 1760 /* A32 FPSCR bits which architecturally map to FPCR bits */ 1761 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \ 1762 FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \ 1763 FPCR_FZ | FPCR_DN | FPCR_AHP) 1764 /* These masks don't overlap: each bit lives in only one place */ 1765 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK); 1766 1767 /** 1768 * vfp_get_fpsr: read the AArch64 FPSR 1769 * @env: CPU context 1770 * 1771 * Return the current AArch64 FPSR value 1772 */ 1773 uint32_t vfp_get_fpsr(CPUARMState *env); 1774 1775 /** 1776 * vfp_get_fpcr: read the AArch64 FPCR 1777 * @env: CPU context 1778 * 1779 * Return the current AArch64 FPCR value 1780 */ 1781 uint32_t vfp_get_fpcr(CPUARMState *env); 1782 1783 /** 1784 * vfp_set_fpsr: write the AArch64 FPSR 1785 * @env: CPU context 1786 * @value: new value 1787 */ 1788 void vfp_set_fpsr(CPUARMState *env, uint32_t value); 1789 1790 /** 1791 * vfp_set_fpcr: write the AArch64 FPCR 1792 * @env: CPU context 1793 * @value: new value 1794 */ 1795 void vfp_set_fpcr(CPUARMState *env, uint32_t value); 1796 1797 enum arm_cpu_mode { 1798 ARM_CPU_MODE_USR = 0x10, 1799 ARM_CPU_MODE_FIQ = 0x11, 1800 ARM_CPU_MODE_IRQ = 0x12, 1801 ARM_CPU_MODE_SVC = 0x13, 1802 ARM_CPU_MODE_MON = 0x16, 1803 ARM_CPU_MODE_ABT = 0x17, 1804 ARM_CPU_MODE_HYP = 0x1a, 1805 ARM_CPU_MODE_UND = 0x1b, 1806 ARM_CPU_MODE_SYS = 0x1f 1807 }; 1808 1809 /* VFP system registers. */ 1810 #define ARM_VFP_FPSID 0 1811 #define ARM_VFP_FPSCR 1 1812 #define ARM_VFP_MVFR2 5 1813 #define ARM_VFP_MVFR1 6 1814 #define ARM_VFP_MVFR0 7 1815 #define ARM_VFP_FPEXC 8 1816 #define ARM_VFP_FPINST 9 1817 #define ARM_VFP_FPINST2 10 1818 /* These ones are M-profile only */ 1819 #define ARM_VFP_FPSCR_NZCVQC 2 1820 #define ARM_VFP_VPR 12 1821 #define ARM_VFP_P0 13 1822 #define ARM_VFP_FPCXT_NS 14 1823 #define ARM_VFP_FPCXT_S 15 1824 1825 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1826 #define QEMU_VFP_FPSCR_NZCV 0xffff 1827 1828 /* iwMMXt coprocessor control registers. */ 1829 #define ARM_IWMMXT_wCID 0 1830 #define ARM_IWMMXT_wCon 1 1831 #define ARM_IWMMXT_wCSSF 2 1832 #define ARM_IWMMXT_wCASF 3 1833 #define ARM_IWMMXT_wCGR0 8 1834 #define ARM_IWMMXT_wCGR1 9 1835 #define ARM_IWMMXT_wCGR2 10 1836 #define ARM_IWMMXT_wCGR3 11 1837 1838 /* V7M CCR bits */ 1839 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1840 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1841 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1842 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1843 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1844 FIELD(V7M_CCR, STKALIGN, 9, 1) 1845 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1846 FIELD(V7M_CCR, DC, 16, 1) 1847 FIELD(V7M_CCR, IC, 17, 1) 1848 FIELD(V7M_CCR, BP, 18, 1) 1849 FIELD(V7M_CCR, LOB, 19, 1) 1850 FIELD(V7M_CCR, TRD, 20, 1) 1851 1852 /* V7M SCR bits */ 1853 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1854 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1855 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1856 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1857 1858 /* V7M AIRCR bits */ 1859 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1860 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1861 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1862 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1863 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1864 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1865 FIELD(V7M_AIRCR, PRIS, 14, 1) 1866 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1867 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1868 1869 /* V7M CFSR bits for MMFSR */ 1870 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1871 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1872 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1873 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1874 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1875 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1876 1877 /* V7M CFSR bits for BFSR */ 1878 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1879 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1880 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1881 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1882 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1883 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1884 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1885 1886 /* V7M CFSR bits for UFSR */ 1887 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1888 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1889 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1890 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1891 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1892 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1893 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1894 1895 /* V7M CFSR bit masks covering all of the subregister bits */ 1896 FIELD(V7M_CFSR, MMFSR, 0, 8) 1897 FIELD(V7M_CFSR, BFSR, 8, 8) 1898 FIELD(V7M_CFSR, UFSR, 16, 16) 1899 1900 /* V7M HFSR bits */ 1901 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1902 FIELD(V7M_HFSR, FORCED, 30, 1) 1903 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1904 1905 /* V7M DFSR bits */ 1906 FIELD(V7M_DFSR, HALTED, 0, 1) 1907 FIELD(V7M_DFSR, BKPT, 1, 1) 1908 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1909 FIELD(V7M_DFSR, VCATCH, 3, 1) 1910 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1911 1912 /* V7M SFSR bits */ 1913 FIELD(V7M_SFSR, INVEP, 0, 1) 1914 FIELD(V7M_SFSR, INVIS, 1, 1) 1915 FIELD(V7M_SFSR, INVER, 2, 1) 1916 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1917 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1918 FIELD(V7M_SFSR, LSPERR, 5, 1) 1919 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1920 FIELD(V7M_SFSR, LSERR, 7, 1) 1921 1922 /* v7M MPU_CTRL bits */ 1923 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1924 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1925 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1926 1927 /* v7M CLIDR bits */ 1928 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1929 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1930 FIELD(V7M_CLIDR, LOC, 24, 3) 1931 FIELD(V7M_CLIDR, LOUU, 27, 3) 1932 FIELD(V7M_CLIDR, ICB, 30, 2) 1933 1934 FIELD(V7M_CSSELR, IND, 0, 1) 1935 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1936 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1937 * define a mask for this and check that it doesn't permit running off 1938 * the end of the array. 1939 */ 1940 FIELD(V7M_CSSELR, INDEX, 0, 4) 1941 1942 /* v7M FPCCR bits */ 1943 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1944 FIELD(V7M_FPCCR, USER, 1, 1) 1945 FIELD(V7M_FPCCR, S, 2, 1) 1946 FIELD(V7M_FPCCR, THREAD, 3, 1) 1947 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1948 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1949 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1950 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1951 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1952 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1953 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1954 FIELD(V7M_FPCCR, RES0, 11, 15) 1955 FIELD(V7M_FPCCR, TS, 26, 1) 1956 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1957 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1958 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1959 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1960 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1961 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1962 #define R_V7M_FPCCR_BANKED_MASK \ 1963 (R_V7M_FPCCR_LSPACT_MASK | \ 1964 R_V7M_FPCCR_USER_MASK | \ 1965 R_V7M_FPCCR_THREAD_MASK | \ 1966 R_V7M_FPCCR_MMRDY_MASK | \ 1967 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1968 R_V7M_FPCCR_UFRDY_MASK | \ 1969 R_V7M_FPCCR_ASPEN_MASK) 1970 1971 /* v7M VPR bits */ 1972 FIELD(V7M_VPR, P0, 0, 16) 1973 FIELD(V7M_VPR, MASK01, 16, 4) 1974 FIELD(V7M_VPR, MASK23, 20, 4) 1975 1976 /* 1977 * System register ID fields. 1978 */ 1979 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1980 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1981 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1982 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1983 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1984 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1985 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1986 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1987 FIELD(CLIDR_EL1, LOC, 24, 3) 1988 FIELD(CLIDR_EL1, LOUU, 27, 3) 1989 FIELD(CLIDR_EL1, ICB, 30, 3) 1990 1991 /* When FEAT_CCIDX is implemented */ 1992 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1993 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1994 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1995 1996 /* When FEAT_CCIDX is not implemented */ 1997 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1998 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1999 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 2000 2001 FIELD(CTR_EL0, IMINLINE, 0, 4) 2002 FIELD(CTR_EL0, L1IP, 14, 2) 2003 FIELD(CTR_EL0, DMINLINE, 16, 4) 2004 FIELD(CTR_EL0, ERG, 20, 4) 2005 FIELD(CTR_EL0, CWG, 24, 4) 2006 FIELD(CTR_EL0, IDC, 28, 1) 2007 FIELD(CTR_EL0, DIC, 29, 1) 2008 FIELD(CTR_EL0, TMINLINE, 32, 6) 2009 2010 FIELD(MIDR_EL1, REVISION, 0, 4) 2011 FIELD(MIDR_EL1, PARTNUM, 4, 12) 2012 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 2013 FIELD(MIDR_EL1, VARIANT, 20, 4) 2014 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 2015 2016 FIELD(ID_ISAR0, SWAP, 0, 4) 2017 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 2018 FIELD(ID_ISAR0, BITFIELD, 8, 4) 2019 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 2020 FIELD(ID_ISAR0, COPROC, 16, 4) 2021 FIELD(ID_ISAR0, DEBUG, 20, 4) 2022 FIELD(ID_ISAR0, DIVIDE, 24, 4) 2023 2024 FIELD(ID_ISAR1, ENDIAN, 0, 4) 2025 FIELD(ID_ISAR1, EXCEPT, 4, 4) 2026 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 2027 FIELD(ID_ISAR1, EXTEND, 12, 4) 2028 FIELD(ID_ISAR1, IFTHEN, 16, 4) 2029 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 2030 FIELD(ID_ISAR1, INTERWORK, 24, 4) 2031 FIELD(ID_ISAR1, JAZELLE, 28, 4) 2032 2033 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 2034 FIELD(ID_ISAR2, MEMHINT, 4, 4) 2035 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 2036 FIELD(ID_ISAR2, MULT, 12, 4) 2037 FIELD(ID_ISAR2, MULTS, 16, 4) 2038 FIELD(ID_ISAR2, MULTU, 20, 4) 2039 FIELD(ID_ISAR2, PSR_AR, 24, 4) 2040 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2041 2042 FIELD(ID_ISAR3, SATURATE, 0, 4) 2043 FIELD(ID_ISAR3, SIMD, 4, 4) 2044 FIELD(ID_ISAR3, SVC, 8, 4) 2045 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2046 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2047 FIELD(ID_ISAR3, T32COPY, 20, 4) 2048 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2049 FIELD(ID_ISAR3, T32EE, 28, 4) 2050 2051 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2052 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2053 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2054 FIELD(ID_ISAR4, SMC, 12, 4) 2055 FIELD(ID_ISAR4, BARRIER, 16, 4) 2056 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2057 FIELD(ID_ISAR4, PSR_M, 24, 4) 2058 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2059 2060 FIELD(ID_ISAR5, SEVL, 0, 4) 2061 FIELD(ID_ISAR5, AES, 4, 4) 2062 FIELD(ID_ISAR5, SHA1, 8, 4) 2063 FIELD(ID_ISAR5, SHA2, 12, 4) 2064 FIELD(ID_ISAR5, CRC32, 16, 4) 2065 FIELD(ID_ISAR5, RDM, 24, 4) 2066 FIELD(ID_ISAR5, VCMA, 28, 4) 2067 2068 FIELD(ID_ISAR6, JSCVT, 0, 4) 2069 FIELD(ID_ISAR6, DP, 4, 4) 2070 FIELD(ID_ISAR6, FHM, 8, 4) 2071 FIELD(ID_ISAR6, SB, 12, 4) 2072 FIELD(ID_ISAR6, SPECRES, 16, 4) 2073 FIELD(ID_ISAR6, BF16, 20, 4) 2074 FIELD(ID_ISAR6, I8MM, 24, 4) 2075 2076 FIELD(ID_MMFR0, VMSA, 0, 4) 2077 FIELD(ID_MMFR0, PMSA, 4, 4) 2078 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2079 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2080 FIELD(ID_MMFR0, TCM, 16, 4) 2081 FIELD(ID_MMFR0, AUXREG, 20, 4) 2082 FIELD(ID_MMFR0, FCSE, 24, 4) 2083 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2084 2085 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2086 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2087 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2088 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2089 FIELD(ID_MMFR1, L1HVD, 16, 4) 2090 FIELD(ID_MMFR1, L1UNI, 20, 4) 2091 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2092 FIELD(ID_MMFR1, BPRED, 28, 4) 2093 2094 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2095 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2096 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2097 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2098 FIELD(ID_MMFR2, UNITLB, 16, 4) 2099 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2100 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2101 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2102 2103 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2104 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2105 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2106 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2107 FIELD(ID_MMFR3, PAN, 16, 4) 2108 FIELD(ID_MMFR3, COHWALK, 20, 4) 2109 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2110 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2111 2112 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2113 FIELD(ID_MMFR4, AC2, 4, 4) 2114 FIELD(ID_MMFR4, XNX, 8, 4) 2115 FIELD(ID_MMFR4, CNP, 12, 4) 2116 FIELD(ID_MMFR4, HPDS, 16, 4) 2117 FIELD(ID_MMFR4, LSM, 20, 4) 2118 FIELD(ID_MMFR4, CCIDX, 24, 4) 2119 FIELD(ID_MMFR4, EVT, 28, 4) 2120 2121 FIELD(ID_MMFR5, ETS, 0, 4) 2122 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2123 2124 FIELD(ID_PFR0, STATE0, 0, 4) 2125 FIELD(ID_PFR0, STATE1, 4, 4) 2126 FIELD(ID_PFR0, STATE2, 8, 4) 2127 FIELD(ID_PFR0, STATE3, 12, 4) 2128 FIELD(ID_PFR0, CSV2, 16, 4) 2129 FIELD(ID_PFR0, AMU, 20, 4) 2130 FIELD(ID_PFR0, DIT, 24, 4) 2131 FIELD(ID_PFR0, RAS, 28, 4) 2132 2133 FIELD(ID_PFR1, PROGMOD, 0, 4) 2134 FIELD(ID_PFR1, SECURITY, 4, 4) 2135 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2136 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2137 FIELD(ID_PFR1, GENTIMER, 16, 4) 2138 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2139 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2140 FIELD(ID_PFR1, GIC, 28, 4) 2141 2142 FIELD(ID_PFR2, CSV3, 0, 4) 2143 FIELD(ID_PFR2, SSBS, 4, 4) 2144 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2145 2146 FIELD(ID_AA64ISAR0, AES, 4, 4) 2147 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2148 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2149 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2150 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2151 FIELD(ID_AA64ISAR0, TME, 24, 4) 2152 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2153 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2154 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2155 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2156 FIELD(ID_AA64ISAR0, DP, 44, 4) 2157 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2158 FIELD(ID_AA64ISAR0, TS, 52, 4) 2159 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2160 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2161 2162 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2163 FIELD(ID_AA64ISAR1, APA, 4, 4) 2164 FIELD(ID_AA64ISAR1, API, 8, 4) 2165 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2166 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2167 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2168 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2169 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2170 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2171 FIELD(ID_AA64ISAR1, SB, 36, 4) 2172 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2173 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2174 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2175 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2176 FIELD(ID_AA64ISAR1, XS, 56, 4) 2177 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2178 2179 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2180 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2181 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2182 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2183 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2184 FIELD(ID_AA64ISAR2, BC, 20, 4) 2185 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2186 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4) 2187 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4) 2188 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4) 2189 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4) 2190 FIELD(ID_AA64ISAR2, RPRFM, 48, 4) 2191 FIELD(ID_AA64ISAR2, CSSC, 52, 4) 2192 FIELD(ID_AA64ISAR2, ATS1A, 60, 4) 2193 2194 FIELD(ID_AA64PFR0, EL0, 0, 4) 2195 FIELD(ID_AA64PFR0, EL1, 4, 4) 2196 FIELD(ID_AA64PFR0, EL2, 8, 4) 2197 FIELD(ID_AA64PFR0, EL3, 12, 4) 2198 FIELD(ID_AA64PFR0, FP, 16, 4) 2199 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2200 FIELD(ID_AA64PFR0, GIC, 24, 4) 2201 FIELD(ID_AA64PFR0, RAS, 28, 4) 2202 FIELD(ID_AA64PFR0, SVE, 32, 4) 2203 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2204 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2205 FIELD(ID_AA64PFR0, AMU, 44, 4) 2206 FIELD(ID_AA64PFR0, DIT, 48, 4) 2207 FIELD(ID_AA64PFR0, RME, 52, 4) 2208 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2209 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2210 2211 FIELD(ID_AA64PFR1, BT, 0, 4) 2212 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2213 FIELD(ID_AA64PFR1, MTE, 8, 4) 2214 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2215 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2216 FIELD(ID_AA64PFR1, SME, 24, 4) 2217 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2218 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2219 FIELD(ID_AA64PFR1, NMI, 36, 4) 2220 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4) 2221 FIELD(ID_AA64PFR1, GCS, 44, 4) 2222 FIELD(ID_AA64PFR1, THE, 48, 4) 2223 FIELD(ID_AA64PFR1, MTEX, 52, 4) 2224 FIELD(ID_AA64PFR1, DF2, 56, 4) 2225 FIELD(ID_AA64PFR1, PFAR, 60, 4) 2226 2227 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2228 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2229 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2230 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2231 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2232 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2233 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2234 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2235 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2236 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2237 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2238 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2239 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2240 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2241 2242 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2243 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2244 FIELD(ID_AA64MMFR1, VH, 8, 4) 2245 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2246 FIELD(ID_AA64MMFR1, LO, 16, 4) 2247 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2248 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2249 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2250 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2251 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2252 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2253 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2254 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2255 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2256 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2257 FIELD(ID_AA64MMFR1, ECBHB, 60, 4) 2258 2259 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2260 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2261 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2262 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2263 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2264 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2265 FIELD(ID_AA64MMFR2, NV, 24, 4) 2266 FIELD(ID_AA64MMFR2, ST, 28, 4) 2267 FIELD(ID_AA64MMFR2, AT, 32, 4) 2268 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2269 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2270 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2271 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2272 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2273 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2274 2275 FIELD(ID_AA64MMFR3, TCRX, 0, 4) 2276 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4) 2277 FIELD(ID_AA64MMFR3, S1PIE, 8, 4) 2278 FIELD(ID_AA64MMFR3, S2PIE, 12, 4) 2279 FIELD(ID_AA64MMFR3, S1POE, 16, 4) 2280 FIELD(ID_AA64MMFR3, S2POE, 20, 4) 2281 FIELD(ID_AA64MMFR3, AIE, 24, 4) 2282 FIELD(ID_AA64MMFR3, MEC, 28, 4) 2283 FIELD(ID_AA64MMFR3, D128, 32, 4) 2284 FIELD(ID_AA64MMFR3, D128_2, 36, 4) 2285 FIELD(ID_AA64MMFR3, SNERR, 40, 4) 2286 FIELD(ID_AA64MMFR3, ANERR, 44, 4) 2287 FIELD(ID_AA64MMFR3, SDERR, 52, 4) 2288 FIELD(ID_AA64MMFR3, ADERR, 56, 4) 2289 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4) 2290 2291 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2292 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2293 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2294 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2295 FIELD(ID_AA64DFR0, PMSS, 16, 4) 2296 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2297 FIELD(ID_AA64DFR0, SEBEP, 24, 4) 2298 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2299 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2300 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2301 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2302 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2303 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2304 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2305 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4) 2306 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2307 2308 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2309 FIELD(ID_AA64ZFR0, AES, 4, 4) 2310 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2311 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2312 FIELD(ID_AA64ZFR0, B16B16, 24, 4) 2313 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2314 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2315 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2316 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2317 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2318 2319 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2320 FIELD(ID_AA64SMFR0, BI32I32, 33, 1) 2321 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2322 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2323 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2324 FIELD(ID_AA64SMFR0, F16F16, 42, 1) 2325 FIELD(ID_AA64SMFR0, B16B16, 43, 1) 2326 FIELD(ID_AA64SMFR0, I16I32, 44, 4) 2327 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2328 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2329 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2330 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2331 2332 FIELD(ID_DFR0, COPDBG, 0, 4) 2333 FIELD(ID_DFR0, COPSDBG, 4, 4) 2334 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2335 FIELD(ID_DFR0, COPTRC, 12, 4) 2336 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2337 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2338 FIELD(ID_DFR0, PERFMON, 24, 4) 2339 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2340 2341 FIELD(ID_DFR1, MTPMU, 0, 4) 2342 FIELD(ID_DFR1, HPMN0, 4, 4) 2343 2344 FIELD(DBGDIDR, SE_IMP, 12, 1) 2345 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2346 FIELD(DBGDIDR, VERSION, 16, 4) 2347 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2348 FIELD(DBGDIDR, BRPS, 24, 4) 2349 FIELD(DBGDIDR, WRPS, 28, 4) 2350 2351 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2352 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2353 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2354 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2355 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2356 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2357 FIELD(DBGDEVID, AUXREGS, 24, 4) 2358 FIELD(DBGDEVID, CIDMASK, 28, 4) 2359 2360 FIELD(DBGDEVID1, PCSROFFSET, 0, 4) 2361 2362 FIELD(MVFR0, SIMDREG, 0, 4) 2363 FIELD(MVFR0, FPSP, 4, 4) 2364 FIELD(MVFR0, FPDP, 8, 4) 2365 FIELD(MVFR0, FPTRAP, 12, 4) 2366 FIELD(MVFR0, FPDIVIDE, 16, 4) 2367 FIELD(MVFR0, FPSQRT, 20, 4) 2368 FIELD(MVFR0, FPSHVEC, 24, 4) 2369 FIELD(MVFR0, FPROUND, 28, 4) 2370 2371 FIELD(MVFR1, FPFTZ, 0, 4) 2372 FIELD(MVFR1, FPDNAN, 4, 4) 2373 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2374 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2375 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2376 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2377 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2378 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2379 FIELD(MVFR1, FPHP, 24, 4) 2380 FIELD(MVFR1, SIMDFMAC, 28, 4) 2381 2382 FIELD(MVFR2, SIMDMISC, 0, 4) 2383 FIELD(MVFR2, FPMISC, 4, 4) 2384 2385 FIELD(GPCCR, PPS, 0, 3) 2386 FIELD(GPCCR, IRGN, 8, 2) 2387 FIELD(GPCCR, ORGN, 10, 2) 2388 FIELD(GPCCR, SH, 12, 2) 2389 FIELD(GPCCR, PGS, 14, 2) 2390 FIELD(GPCCR, GPC, 16, 1) 2391 FIELD(GPCCR, GPCP, 17, 1) 2392 FIELD(GPCCR, L0GPTSZ, 20, 4) 2393 2394 FIELD(MFAR, FPA, 12, 40) 2395 FIELD(MFAR, NSE, 62, 1) 2396 FIELD(MFAR, NS, 63, 1) 2397 2398 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2399 2400 /* If adding a feature bit which corresponds to a Linux ELF 2401 * HWCAP bit, remember to update the feature-bit-to-hwcap 2402 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2403 */ 2404 enum arm_features { 2405 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2406 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2407 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2408 ARM_FEATURE_V6, 2409 ARM_FEATURE_V6K, 2410 ARM_FEATURE_V7, 2411 ARM_FEATURE_THUMB2, 2412 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2413 ARM_FEATURE_NEON, 2414 ARM_FEATURE_M, /* Microcontroller profile. */ 2415 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2416 ARM_FEATURE_THUMB2EE, 2417 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2418 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2419 ARM_FEATURE_V4T, 2420 ARM_FEATURE_V5, 2421 ARM_FEATURE_STRONGARM, 2422 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2423 ARM_FEATURE_GENERIC_TIMER, 2424 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2425 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2426 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2427 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2428 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2429 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2430 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2431 ARM_FEATURE_V8, 2432 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2433 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2434 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2435 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2436 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2437 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2438 ARM_FEATURE_PMU, /* has PMU support */ 2439 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2440 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2441 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2442 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2443 /* 2444 * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz 2445 * if the board doesn't set a value, instead of 1GHz. It is for backwards 2446 * compatibility and used only with CPU definitions that were already 2447 * in QEMU before we changed the default. It should not be set on any 2448 * CPU types added in future. 2449 */ 2450 ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */ 2451 }; 2452 2453 static inline int arm_feature(CPUARMState *env, int feature) 2454 { 2455 return (env->features & (1ULL << feature)) != 0; 2456 } 2457 2458 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2459 2460 /* 2461 * ARM v9 security states. 2462 * The ordering of the enumeration corresponds to the low 2 bits 2463 * of the GPI value, and (except for Root) the concat of NSE:NS. 2464 */ 2465 2466 typedef enum ARMSecuritySpace { 2467 ARMSS_Secure = 0, 2468 ARMSS_NonSecure = 1, 2469 ARMSS_Root = 2, 2470 ARMSS_Realm = 3, 2471 } ARMSecuritySpace; 2472 2473 /* Return true if @space is secure, in the pre-v9 sense. */ 2474 static inline bool arm_space_is_secure(ARMSecuritySpace space) 2475 { 2476 return space == ARMSS_Secure || space == ARMSS_Root; 2477 } 2478 2479 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */ 2480 static inline ARMSecuritySpace arm_secure_to_space(bool secure) 2481 { 2482 return secure ? ARMSS_Secure : ARMSS_NonSecure; 2483 } 2484 2485 #if !defined(CONFIG_USER_ONLY) 2486 /** 2487 * arm_security_space_below_el3: 2488 * @env: cpu context 2489 * 2490 * Return the security space of exception levels below EL3, following 2491 * an exception return to those levels. Unlike arm_security_space, 2492 * this doesn't care about the current EL. 2493 */ 2494 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env); 2495 2496 /** 2497 * arm_is_secure_below_el3: 2498 * @env: cpu context 2499 * 2500 * Return true if exception levels below EL3 are in secure state, 2501 * or would be following an exception return to those levels. 2502 */ 2503 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2504 { 2505 ARMSecuritySpace ss = arm_security_space_below_el3(env); 2506 return ss == ARMSS_Secure; 2507 } 2508 2509 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ 2510 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2511 { 2512 assert(!arm_feature(env, ARM_FEATURE_M)); 2513 if (arm_feature(env, ARM_FEATURE_EL3)) { 2514 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2515 /* CPU currently in AArch64 state and EL3 */ 2516 return true; 2517 } else if (!is_a64(env) && 2518 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2519 /* CPU currently in AArch32 state and monitor mode */ 2520 return true; 2521 } 2522 } 2523 return false; 2524 } 2525 2526 /** 2527 * arm_security_space: 2528 * @env: cpu context 2529 * 2530 * Return the current security space of the cpu. 2531 */ 2532 ARMSecuritySpace arm_security_space(CPUARMState *env); 2533 2534 /** 2535 * arm_is_secure: 2536 * @env: cpu context 2537 * 2538 * Return true if the processor is in secure state. 2539 */ 2540 static inline bool arm_is_secure(CPUARMState *env) 2541 { 2542 return arm_space_is_secure(arm_security_space(env)); 2543 } 2544 2545 /* 2546 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2547 * This corresponds to the pseudocode EL2Enabled(). 2548 */ 2549 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, 2550 ARMSecuritySpace space) 2551 { 2552 assert(space != ARMSS_Root); 2553 return arm_feature(env, ARM_FEATURE_EL2) 2554 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2)); 2555 } 2556 2557 static inline bool arm_is_el2_enabled(CPUARMState *env) 2558 { 2559 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env)); 2560 } 2561 2562 #else 2563 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 2564 { 2565 return ARMSS_NonSecure; 2566 } 2567 2568 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2569 { 2570 return false; 2571 } 2572 2573 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2574 { 2575 return false; 2576 } 2577 2578 static inline ARMSecuritySpace arm_security_space(CPUARMState *env) 2579 { 2580 return ARMSS_NonSecure; 2581 } 2582 2583 static inline bool arm_is_secure(CPUARMState *env) 2584 { 2585 return false; 2586 } 2587 2588 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, 2589 ARMSecuritySpace space) 2590 { 2591 return false; 2592 } 2593 2594 static inline bool arm_is_el2_enabled(CPUARMState *env) 2595 { 2596 return false; 2597 } 2598 #endif 2599 2600 /** 2601 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2602 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2603 * "for all purposes other than a direct read or write access of HCR_EL2." 2604 * Not included here is HCR_RW. 2605 */ 2606 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space); 2607 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2608 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2609 2610 /* 2611 * Function for determining whether guest cp register reads and writes should 2612 * access the secure or non-secure bank of a cp register. When EL3 is 2613 * operating in AArch32 state, the NS-bit determines whether the secure 2614 * instance of a cp register should be used. When EL3 is AArch64 (or if 2615 * it doesn't exist at all) then there is no register banking, and all 2616 * accesses are to the non-secure version. 2617 */ 2618 bool access_secure_reg(CPUARMState *env); 2619 2620 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2621 uint32_t cur_el, bool secure); 2622 2623 /* Return the highest implemented Exception Level */ 2624 static inline int arm_highest_el(CPUARMState *env) 2625 { 2626 if (arm_feature(env, ARM_FEATURE_EL3)) { 2627 return 3; 2628 } 2629 if (arm_feature(env, ARM_FEATURE_EL2)) { 2630 return 2; 2631 } 2632 return 1; 2633 } 2634 2635 /* Return true if a v7M CPU is in Handler mode */ 2636 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2637 { 2638 return env->v7m.exception != 0; 2639 } 2640 2641 /** 2642 * write_list_to_cpustate 2643 * @cpu: ARMCPU 2644 * 2645 * For each register listed in the ARMCPU cpreg_indexes list, write 2646 * its value from the cpreg_values list into the ARMCPUState structure. 2647 * This updates TCG's working data structures from KVM data or 2648 * from incoming migration state. 2649 * 2650 * Returns: true if all register values were updated correctly, 2651 * false if some register was unknown or could not be written. 2652 * Note that we do not stop early on failure -- we will attempt 2653 * writing all registers in the list. 2654 */ 2655 bool write_list_to_cpustate(ARMCPU *cpu); 2656 2657 /** 2658 * write_cpustate_to_list: 2659 * @cpu: ARMCPU 2660 * @kvm_sync: true if this is for syncing back to KVM 2661 * 2662 * For each register listed in the ARMCPU cpreg_indexes list, write 2663 * its value from the ARMCPUState structure into the cpreg_values list. 2664 * This is used to copy info from TCG's working data structures into 2665 * KVM or for outbound migration. 2666 * 2667 * @kvm_sync is true if we are doing this in order to sync the 2668 * register state back to KVM. In this case we will only update 2669 * values in the list if the previous list->cpustate sync actually 2670 * successfully wrote the CPU state. Otherwise we will keep the value 2671 * that is in the list. 2672 * 2673 * Returns: true if all register values were read correctly, 2674 * false if some register was unknown or could not be read. 2675 * Note that we do not stop early on failure -- we will attempt 2676 * reading all registers in the list. 2677 */ 2678 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2679 2680 #define ARM_CPUID_TI915T 0x54029152 2681 #define ARM_CPUID_TI925T 0x54029252 2682 2683 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2684 2685 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2686 2687 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2688 * 2689 * If EL3 is 64-bit: 2690 * + NonSecure EL1 & 0 stage 1 2691 * + NonSecure EL1 & 0 stage 2 2692 * + NonSecure EL2 2693 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2694 * + Secure EL1 & 0 stage 1 2695 * + Secure EL1 & 0 stage 2 (FEAT_SEL2) 2696 * + Secure EL2 (FEAT_SEL2) 2697 * + Secure EL2 & 0 (FEAT_SEL2) 2698 * + Realm EL1 & 0 stage 1 (FEAT_RME) 2699 * + Realm EL1 & 0 stage 2 (FEAT_RME) 2700 * + Realm EL2 (FEAT_RME) 2701 * + EL3 2702 * If EL3 is 32-bit: 2703 * + NonSecure PL1 & 0 stage 1 2704 * + NonSecure PL1 & 0 stage 2 2705 * + NonSecure PL2 2706 * + Secure PL1 & 0 2707 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2708 * 2709 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2710 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2711 * because they may differ in access permissions even if the VA->PA map is 2712 * the same 2713 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2714 * translation, which means that we have one mmu_idx that deals with two 2715 * concatenated translation regimes [this sort of combined s1+2 TLB is 2716 * architecturally permitted] 2717 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2718 * handling via the TLB. The only way to do a stage 1 translation without 2719 * the immediate stage 2 translation is via the ATS or AT system insns, 2720 * which can be slow-pathed and always do a page table walk. 2721 * The only use of stage 2 translations is either as part of an s1+2 2722 * lookup or when loading the descriptors during a stage 1 page table walk, 2723 * and in both those cases we don't use the TLB. 2724 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2725 * translation regimes, because they map reasonably well to each other 2726 * and they can't both be active at the same time. 2727 * 5. we want to be able to use the TLB for accesses done as part of a 2728 * stage1 page table walk, rather than having to walk the stage2 page 2729 * table over and over. 2730 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2731 * Never (PAN) bit within PSTATE. 2732 * 7. we fold together most secure and non-secure regimes for A-profile, 2733 * because there are no banked system registers for aarch64, so the 2734 * process of switching between secure and non-secure is 2735 * already heavyweight. 2736 * 8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure, 2737 * because both are in use simultaneously for Secure EL2. 2738 * 2739 * This gives us the following list of cases: 2740 * 2741 * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2) 2742 * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2) 2743 * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN) 2744 * EL0 EL2&0 2745 * EL2 EL2&0 2746 * EL2 EL2&0 +PAN 2747 * EL2 (aka NS PL2) 2748 * EL3 (aka AArch32 S PL1 PL1&0) 2749 * AArch32 S PL0 PL1&0 (we call this EL30_0) 2750 * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN) 2751 * Stage2 Secure 2752 * Stage2 NonSecure 2753 * plus one TLB per Physical address space: S, NS, Realm, Root 2754 * 2755 * for a total of 16 different mmu_idx. 2756 * 2757 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2758 * as A profile. They only need to distinguish EL0 and EL1 (and 2759 * EL2 for cores like the Cortex-R52). 2760 * 2761 * M profile CPUs are rather different as they do not have a true MMU. 2762 * They have the following different MMU indexes: 2763 * User 2764 * Privileged 2765 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2766 * Privileged, execution priority negative (ditto) 2767 * If the CPU supports the v8M Security Extension then there are also: 2768 * Secure User 2769 * Secure Privileged 2770 * Secure User, execution priority negative 2771 * Secure Privileged, execution priority negative 2772 * 2773 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2774 * are not quite the same -- different CPU types (most notably M profile 2775 * vs A/R profile) would like to use MMU indexes with different semantics, 2776 * but since we don't ever need to use all of those in a single CPU we 2777 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2778 * modes + total number of M profile MMU modes". The lower bits of 2779 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2780 * the same for any particular CPU. 2781 * Variables of type ARMMUIdx are always full values, and the core 2782 * index values are in variables of type 'int'. 2783 * 2784 * Our enumeration includes at the end some entries which are not "true" 2785 * mmu_idx values in that they don't have corresponding TLBs and are only 2786 * valid for doing slow path page table walks. 2787 * 2788 * The constant names here are patterned after the general style of the names 2789 * of the AT/ATS operations. 2790 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2791 * For M profile we arrange them to have a bit for priv, a bit for negpri 2792 * and a bit for secure. 2793 */ 2794 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2795 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2796 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2797 2798 /* Meanings of the bits for M profile mmu idx values */ 2799 #define ARM_MMU_IDX_M_PRIV 0x1 2800 #define ARM_MMU_IDX_M_NEGPRI 0x2 2801 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2802 2803 #define ARM_MMU_IDX_TYPE_MASK \ 2804 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2805 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2806 2807 typedef enum ARMMMUIdx { 2808 /* 2809 * A-profile. 2810 */ 2811 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2812 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2813 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2814 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, 2815 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, 2816 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, 2817 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, 2818 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, 2819 ARMMMUIdx_E30_0 = 8 | ARM_MMU_IDX_A, 2820 ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A, 2821 2822 /* 2823 * Used for second stage of an S12 page table walk, or for descriptor 2824 * loads during first stage of an S1 page table walk. Note that both 2825 * are in use simultaneously for SecureEL2: the security state for 2826 * the S2 ptw is selected by the NS bit from the S1 ptw. 2827 */ 2828 ARMMMUIdx_Stage2_S = 10 | ARM_MMU_IDX_A, 2829 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A, 2830 2831 /* TLBs with 1-1 mapping to the physical address spaces. */ 2832 ARMMMUIdx_Phys_S = 12 | ARM_MMU_IDX_A, 2833 ARMMMUIdx_Phys_NS = 13 | ARM_MMU_IDX_A, 2834 ARMMMUIdx_Phys_Root = 14 | ARM_MMU_IDX_A, 2835 ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A, 2836 2837 /* 2838 * These are not allocated TLBs and are used only for AT system 2839 * instructions or for the first stage of an S12 page table walk. 2840 */ 2841 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2842 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2843 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2844 2845 /* 2846 * M-profile. 2847 */ 2848 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2849 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2850 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2851 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2852 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2853 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2854 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2855 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2856 } ARMMMUIdx; 2857 2858 /* 2859 * Bit macros for the core-mmu-index values for each index, 2860 * for use when calling tlb_flush_by_mmuidx() and friends. 2861 */ 2862 #define TO_CORE_BIT(NAME) \ 2863 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2864 2865 typedef enum ARMMMUIdxBit { 2866 TO_CORE_BIT(E10_0), 2867 TO_CORE_BIT(E20_0), 2868 TO_CORE_BIT(E10_1), 2869 TO_CORE_BIT(E10_1_PAN), 2870 TO_CORE_BIT(E2), 2871 TO_CORE_BIT(E20_2), 2872 TO_CORE_BIT(E20_2_PAN), 2873 TO_CORE_BIT(E3), 2874 TO_CORE_BIT(E30_0), 2875 TO_CORE_BIT(E30_3_PAN), 2876 TO_CORE_BIT(Stage2), 2877 TO_CORE_BIT(Stage2_S), 2878 2879 TO_CORE_BIT(MUser), 2880 TO_CORE_BIT(MPriv), 2881 TO_CORE_BIT(MUserNegPri), 2882 TO_CORE_BIT(MPrivNegPri), 2883 TO_CORE_BIT(MSUser), 2884 TO_CORE_BIT(MSPriv), 2885 TO_CORE_BIT(MSUserNegPri), 2886 TO_CORE_BIT(MSPrivNegPri), 2887 } ARMMMUIdxBit; 2888 2889 #undef TO_CORE_BIT 2890 2891 #define MMU_USER_IDX 0 2892 2893 /* Indexes used when registering address spaces with cpu_address_space_init */ 2894 typedef enum ARMASIdx { 2895 ARMASIdx_NS = 0, 2896 ARMASIdx_S = 1, 2897 ARMASIdx_TagNS = 2, 2898 ARMASIdx_TagS = 3, 2899 } ARMASIdx; 2900 2901 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space) 2902 { 2903 /* Assert the relative order of the physical mmu indexes. */ 2904 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0); 2905 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure); 2906 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root); 2907 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm); 2908 2909 return ARMMMUIdx_Phys_S + space; 2910 } 2911 2912 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx) 2913 { 2914 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm); 2915 return idx - ARMMMUIdx_Phys_S; 2916 } 2917 2918 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 2919 { 2920 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 2921 * CSSELR is RAZ/WI. 2922 */ 2923 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 2924 } 2925 2926 static inline bool arm_sctlr_b(CPUARMState *env) 2927 { 2928 return 2929 /* We need not implement SCTLR.ITD in user-mode emulation, so 2930 * let linux-user ignore the fact that it conflicts with SCTLR_B. 2931 * This lets people run BE32 binaries with "-cpu any". 2932 */ 2933 #ifndef CONFIG_USER_ONLY 2934 !arm_feature(env, ARM_FEATURE_V7) && 2935 #endif 2936 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 2937 } 2938 2939 uint64_t arm_sctlr(CPUARMState *env, int el); 2940 2941 /* 2942 * We have more than 32-bits worth of state per TB, so we split the data 2943 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 2944 * We collect these two parts in CPUARMTBFlags where they are named 2945 * flags and flags2 respectively. 2946 * 2947 * The flags that are shared between all execution modes, TBFLAG_ANY, are stored 2948 * in flags. The flags that are specific to a given mode are stored in flags2. 2949 * flags2 always has 64-bits, even though only 32-bits are used for A32 and M32. 2950 * 2951 * The bits for 32-bit A-profile and M-profile partially overlap: 2952 * 2953 * 31 23 11 10 0 2954 * +-------------+----------+----------------+ 2955 * | | | TBFLAG_A32 | 2956 * | TBFLAG_AM32 | +-----+----------+ 2957 * | | |TBFLAG_M32| 2958 * +-------------+----------------+----------+ 2959 * 31 23 6 5 0 2960 * 2961 * Unless otherwise noted, these bits are cached in env->hflags. 2962 */ 2963 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 2964 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 2965 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 2966 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 2967 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 2968 /* Target EL if we take a floating-point-disabled exception */ 2969 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 2970 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 2971 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 2972 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 2973 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1) 2974 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1) 2975 2976 /* 2977 * Bit usage when in AArch32 state, both A- and M-profile. 2978 */ 2979 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 2980 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 2981 2982 /* 2983 * Bit usage when in AArch32 state, for A-profile only. 2984 */ 2985 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 2986 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 2987 /* 2988 * We store the bottom two bits of the CPAR as TB flags and handle 2989 * checks on the other bits at runtime. This shares the same bits as 2990 * VECSTRIDE, which is OK as no XScale CPU has VFP. 2991 * Not cached, because VECLEN+VECSTRIDE are not cached. 2992 */ 2993 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 2994 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 2995 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 2996 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 2997 /* 2998 * Indicates whether cp register reads and writes by guest code should access 2999 * the secure or nonsecure bank of banked registers; note that this is not 3000 * the same thing as the current security state of the processor! 3001 */ 3002 FIELD(TBFLAG_A32, NS, 10, 1) 3003 /* 3004 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3005 * This requires an SME trap from AArch32 mode when using NEON. 3006 */ 3007 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3008 3009 /* 3010 * Bit usage when in AArch32 state, for M-profile only. 3011 */ 3012 /* Handler (ie not Thread) mode */ 3013 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3014 /* Whether we should generate stack-limit checks */ 3015 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3016 /* Set if FPCCR.LSPACT is set */ 3017 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3018 /* Set if we must create a new FP context */ 3019 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3020 /* Set if FPCCR.S does not match current security state */ 3021 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3022 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3023 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3024 /* Set if in secure mode */ 3025 FIELD(TBFLAG_M32, SECURE, 6, 1) 3026 3027 /* 3028 * Bit usage when in AArch64 state 3029 */ 3030 FIELD(TBFLAG_A64, TBII, 0, 2) 3031 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3032 /* The current vector length, either NVL or SVL. */ 3033 FIELD(TBFLAG_A64, VL, 4, 4) 3034 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3035 FIELD(TBFLAG_A64, BT, 9, 1) 3036 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3037 FIELD(TBFLAG_A64, TBID, 12, 2) 3038 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3039 FIELD(TBFLAG_A64, ATA, 15, 1) 3040 FIELD(TBFLAG_A64, TCMA, 16, 2) 3041 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3042 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3043 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3044 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3045 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3046 FIELD(TBFLAG_A64, SVL, 24, 4) 3047 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3048 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3049 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1) 3050 FIELD(TBFLAG_A64, NAA, 30, 1) 3051 FIELD(TBFLAG_A64, ATA0, 31, 1) 3052 FIELD(TBFLAG_A64, NV, 32, 1) 3053 FIELD(TBFLAG_A64, NV1, 33, 1) 3054 FIELD(TBFLAG_A64, NV2, 34, 1) 3055 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */ 3056 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1) 3057 /* Set if FEAT_NV2 RAM accesses are big-endian */ 3058 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1) 3059 FIELD(TBFLAG_A64, AH, 37, 1) /* FPCR.AH */ 3060 FIELD(TBFLAG_A64, NEP, 38, 1) /* FPCR.NEP */ 3061 3062 /* 3063 * Helpers for using the above. Note that only the A64 accessors use 3064 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags 3065 * word either is or might be 32 bits only. 3066 */ 3067 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3068 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3069 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3070 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3071 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3072 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3073 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3074 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3075 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3076 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3077 3078 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3079 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH) 3080 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3081 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3082 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3083 3084 /** 3085 * sve_vq 3086 * @env: the cpu context 3087 * 3088 * Return the VL cached within env->hflags, in units of quadwords. 3089 */ 3090 static inline int sve_vq(CPUARMState *env) 3091 { 3092 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3093 } 3094 3095 /** 3096 * sme_vq 3097 * @env: the cpu context 3098 * 3099 * Return the SVL cached within env->hflags, in units of quadwords. 3100 */ 3101 static inline int sme_vq(CPUARMState *env) 3102 { 3103 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3104 } 3105 3106 static inline bool bswap_code(bool sctlr_b) 3107 { 3108 #ifdef CONFIG_USER_ONLY 3109 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3110 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3111 * would also end up as a mixed-endian mode with BE code, LE data. 3112 */ 3113 return TARGET_BIG_ENDIAN ^ sctlr_b; 3114 #else 3115 /* All code access in ARM is little endian, and there are no loaders 3116 * doing swaps that need to be reversed 3117 */ 3118 return 0; 3119 #endif 3120 } 3121 3122 enum { 3123 QEMU_PSCI_CONDUIT_DISABLED = 0, 3124 QEMU_PSCI_CONDUIT_SMC = 1, 3125 QEMU_PSCI_CONDUIT_HVC = 2, 3126 }; 3127 3128 #ifndef CONFIG_USER_ONLY 3129 /* Return the address space index to use for a memory access */ 3130 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3131 { 3132 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3133 } 3134 3135 /* Return the AddressSpace to use for a memory access 3136 * (which depends on whether the access is S or NS, and whether 3137 * the board gave us a separate AddressSpace for S accesses). 3138 */ 3139 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3140 { 3141 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3142 } 3143 #endif 3144 3145 /** 3146 * arm_register_pre_el_change_hook: 3147 * Register a hook function which will be called immediately before this 3148 * CPU changes exception level or mode. The hook function will be 3149 * passed a pointer to the ARMCPU and the opaque data pointer passed 3150 * to this function when the hook was registered. 3151 * 3152 * Note that if a pre-change hook is called, any registered post-change hooks 3153 * are guaranteed to subsequently be called. 3154 */ 3155 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3156 void *opaque); 3157 /** 3158 * arm_register_el_change_hook: 3159 * Register a hook function which will be called immediately after this 3160 * CPU changes exception level or mode. The hook function will be 3161 * passed a pointer to the ARMCPU and the opaque data pointer passed 3162 * to this function when the hook was registered. 3163 * 3164 * Note that any registered hooks registered here are guaranteed to be called 3165 * if pre-change hooks have been. 3166 */ 3167 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3168 *opaque); 3169 3170 /** 3171 * arm_rebuild_hflags: 3172 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3173 */ 3174 void arm_rebuild_hflags(CPUARMState *env); 3175 3176 /** 3177 * aa32_vfp_dreg: 3178 * Return a pointer to the Dn register within env in 32-bit mode. 3179 */ 3180 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3181 { 3182 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3183 } 3184 3185 /** 3186 * aa32_vfp_qreg: 3187 * Return a pointer to the Qn register within env in 32-bit mode. 3188 */ 3189 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3190 { 3191 return &env->vfp.zregs[regno].d[0]; 3192 } 3193 3194 /** 3195 * aa64_vfp_qreg: 3196 * Return a pointer to the Qn register within env in 64-bit mode. 3197 */ 3198 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3199 { 3200 return &env->vfp.zregs[regno].d[0]; 3201 } 3202 3203 /* Shared between translate-sve.c and sve_helper.c. */ 3204 extern const uint64_t pred_esz_masks[5]; 3205 3206 /* 3207 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3208 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3209 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3210 */ 3211 #define PAGE_BTI PAGE_TARGET_1 3212 #define PAGE_MTE PAGE_TARGET_2 3213 #define PAGE_TARGET_STICKY PAGE_MTE 3214 3215 /* We associate one allocation tag per 16 bytes, the minimum. */ 3216 #define LOG2_TAG_GRANULE 4 3217 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 3218 3219 #ifdef CONFIG_USER_ONLY 3220 3221 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1)) 3222 3223 #ifdef TARGET_TAGGED_ADDRESSES 3224 /** 3225 * cpu_untagged_addr: 3226 * @cs: CPU context 3227 * @x: tagged address 3228 * 3229 * Remove any address tag from @x. This is explicitly related to the 3230 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3231 * 3232 * There should be a better place to put this, but we need this in 3233 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3234 */ 3235 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3236 { 3237 CPUARMState *env = cpu_env(cs); 3238 if (env->tagged_addr_enable) { 3239 /* 3240 * TBI is enabled for userspace but not kernelspace addresses. 3241 * Only clear the tag if bit 55 is clear. 3242 */ 3243 x &= sextract64(x, 0, 56); 3244 } 3245 return x; 3246 } 3247 #endif /* TARGET_TAGGED_ADDRESSES */ 3248 #endif /* CONFIG_USER_ONLY */ 3249 3250 #endif 3251