xref: /qemu/target/arm/cpu.h (revision 6e76d35f2375c3ef58aaaccbe5cee54b20a1f74a)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 typedef struct {
170     uint64_t raw_tcr;
171     uint32_t mask;
172     uint32_t base_mask;
173 } TCR;
174 
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
179 
180 /* Define a maximum sized vector register.
181  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182  * For 64-bit, this is a 2048-bit SVE register.
183  *
184  * Note that the mapping between S, D, and Q views of the register bank
185  * differs between AArch64 and AArch32.
186  * In AArch32:
187  *  Qn = regs[n].d[1]:regs[n].d[0]
188  *  Dn = regs[n / 2].d[n & 1]
189  *  Sn = regs[n / 4].d[n % 4 / 2],
190  *       bits 31..0 for even n, and bits 63..32 for odd n
191  *       (and regs[16] to regs[31] are inaccessible)
192  * In AArch64:
193  *  Zn = regs[n].d[*]
194  *  Qn = regs[n].d[1]:regs[n].d[0]
195  *  Dn = regs[n].d[0]
196  *  Sn = regs[n].d[0] bits 31..0
197  *  Hn = regs[n].d[0] bits 15..0
198  *
199  * This corresponds to the architecturally defined mapping between
200  * the two execution states, and means we do not need to explicitly
201  * map these registers when changing states.
202  *
203  * Align the data for use with TCG host vector operations.
204  */
205 
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ    16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ    1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
217 
218 typedef struct ARMVectorReg {
219     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
221 
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all.  */
224 typedef struct ARMPredicateReg {
225     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
227 
228 /* In AArch32 mode, PAC keys do not exist at all.  */
229 typedef struct ARMPACKey {
230     uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
233 
234 /* See the commentary above the TBFLAG field definitions.  */
235 typedef struct CPUARMTBFlags {
236     uint32_t flags;
237     target_ulong flags2;
238 } CPUARMTBFlags;
239 
240 typedef struct CPUArchState {
241     /* Regs for current mode.  */
242     uint32_t regs[16];
243 
244     /* 32/64 switch only happens when taking and returning from
245      * exceptions so the overlap semantics are taken care of then
246      * instead of having a complicated union.
247      */
248     /* Regs for A64 mode.  */
249     uint64_t xregs[32];
250     uint64_t pc;
251     /* PSTATE isn't an architectural register for ARMv8. However, it is
252      * convenient for us to assemble the underlying state into a 32 bit format
253      * identical to the architectural format used for the SPSR. (This is also
254      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255      * 'pstate' register are.) Of the PSTATE bits:
256      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257      *    semantics as for AArch32, as described in the comments on each field)
258      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
259      *  DAIF (exception masks) are kept in env->daif
260      *  BTYPE is kept in env->btype
261      *  all other bits are stored in their correct places in env->pstate
262      */
263     uint32_t pstate;
264     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
266 
267     /* Cached TBFLAGS state.  See below for which bits are included.  */
268     CPUARMTBFlags hflags;
269 
270     /* Frequently accessed CPSR bits are stored separately for efficiency.
271        This contains all the other bits.  Use cpsr_{read,write} to access
272        the whole CPSR.  */
273     uint32_t uncached_cpsr;
274     uint32_t spsr;
275 
276     /* Banked registers.  */
277     uint64_t banked_spsr[8];
278     uint32_t banked_r13[8];
279     uint32_t banked_r14[8];
280 
281     /* These hold r8-r12.  */
282     uint32_t usr_regs[5];
283     uint32_t fiq_regs[5];
284 
285     /* cpsr flag cache for faster execution */
286     uint32_t CF; /* 0 or 1 */
287     uint32_t VF; /* V is the bit 31. All other bits are undefined */
288     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
289     uint32_t ZF; /* Z set if zero.  */
290     uint32_t QF; /* 0 or 1 */
291     uint32_t GE; /* cpsr[19:16] */
292     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
293     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
294     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
295 
296     uint64_t elr_el[4]; /* AArch64 exception link regs  */
297     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
298 
299     /* System control coprocessor (cp15) */
300     struct {
301         uint32_t c0_cpuid;
302         union { /* Cache size selection */
303             struct {
304                 uint64_t _unused_csselr0;
305                 uint64_t csselr_ns;
306                 uint64_t _unused_csselr1;
307                 uint64_t csselr_s;
308             };
309             uint64_t csselr_el[4];
310         };
311         union { /* System control register. */
312             struct {
313                 uint64_t _unused_sctlr;
314                 uint64_t sctlr_ns;
315                 uint64_t hsctlr;
316                 uint64_t sctlr_s;
317             };
318             uint64_t sctlr_el[4];
319         };
320         uint64_t cpacr_el1; /* Architectural feature access control register */
321         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
322         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
323         uint64_t sder; /* Secure debug enable register. */
324         uint32_t nsacr; /* Non-secure access control register. */
325         union { /* MMU translation table base 0. */
326             struct {
327                 uint64_t _unused_ttbr0_0;
328                 uint64_t ttbr0_ns;
329                 uint64_t _unused_ttbr0_1;
330                 uint64_t ttbr0_s;
331             };
332             uint64_t ttbr0_el[4];
333         };
334         union { /* MMU translation table base 1. */
335             struct {
336                 uint64_t _unused_ttbr1_0;
337                 uint64_t ttbr1_ns;
338                 uint64_t _unused_ttbr1_1;
339                 uint64_t ttbr1_s;
340             };
341             uint64_t ttbr1_el[4];
342         };
343         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
344         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345         /* MMU translation table base control. */
346         TCR tcr_el[4];
347         TCR vtcr_el2; /* Virtualization Translation Control.  */
348         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349         uint32_t c2_data; /* MPU data cacheable bits.  */
350         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
351         union { /* MMU domain access control register
352                  * MPU write buffer control.
353                  */
354             struct {
355                 uint64_t dacr_ns;
356                 uint64_t dacr_s;
357             };
358             struct {
359                 uint64_t dacr32_el2;
360             };
361         };
362         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364         uint64_t hcr_el2; /* Hypervisor configuration register */
365         uint64_t scr_el3; /* Secure configuration register.  */
366         union { /* Fault status registers.  */
367             struct {
368                 uint64_t ifsr_ns;
369                 uint64_t ifsr_s;
370             };
371             struct {
372                 uint64_t ifsr32_el2;
373             };
374         };
375         union {
376             struct {
377                 uint64_t _unused_dfsr;
378                 uint64_t dfsr_ns;
379                 uint64_t hsr;
380                 uint64_t dfsr_s;
381             };
382             uint64_t esr_el[4];
383         };
384         uint32_t c6_region[8]; /* MPU base/size registers.  */
385         union { /* Fault address registers. */
386             struct {
387                 uint64_t _unused_far0;
388 #if HOST_BIG_ENDIAN
389                 uint32_t ifar_ns;
390                 uint32_t dfar_ns;
391                 uint32_t ifar_s;
392                 uint32_t dfar_s;
393 #else
394                 uint32_t dfar_ns;
395                 uint32_t ifar_ns;
396                 uint32_t dfar_s;
397                 uint32_t ifar_s;
398 #endif
399                 uint64_t _unused_far3;
400             };
401             uint64_t far_el[4];
402         };
403         uint64_t hpfar_el2;
404         uint64_t hstr_el2;
405         union { /* Translation result. */
406             struct {
407                 uint64_t _unused_par_0;
408                 uint64_t par_ns;
409                 uint64_t _unused_par_1;
410                 uint64_t par_s;
411             };
412             uint64_t par_el[4];
413         };
414 
415         uint32_t c9_insn; /* Cache lockdown registers.  */
416         uint32_t c9_data;
417         uint64_t c9_pmcr; /* performance monitor control register */
418         uint64_t c9_pmcnten; /* perf monitor counter enables */
419         uint64_t c9_pmovsr; /* perf monitor overflow status */
420         uint64_t c9_pmuserenr; /* perf monitor user enable */
421         uint64_t c9_pmselr; /* perf monitor counter selection register */
422         uint64_t c9_pminten; /* perf monitor interrupt enables */
423         union { /* Memory attribute redirection */
424             struct {
425 #if HOST_BIG_ENDIAN
426                 uint64_t _unused_mair_0;
427                 uint32_t mair1_ns;
428                 uint32_t mair0_ns;
429                 uint64_t _unused_mair_1;
430                 uint32_t mair1_s;
431                 uint32_t mair0_s;
432 #else
433                 uint64_t _unused_mair_0;
434                 uint32_t mair0_ns;
435                 uint32_t mair1_ns;
436                 uint64_t _unused_mair_1;
437                 uint32_t mair0_s;
438                 uint32_t mair1_s;
439 #endif
440             };
441             uint64_t mair_el[4];
442         };
443         union { /* vector base address register */
444             struct {
445                 uint64_t _unused_vbar;
446                 uint64_t vbar_ns;
447                 uint64_t hvbar;
448                 uint64_t vbar_s;
449             };
450             uint64_t vbar_el[4];
451         };
452         uint32_t mvbar; /* (monitor) vector base address register */
453         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
454         struct { /* FCSE PID. */
455             uint32_t fcseidr_ns;
456             uint32_t fcseidr_s;
457         };
458         union { /* Context ID. */
459             struct {
460                 uint64_t _unused_contextidr_0;
461                 uint64_t contextidr_ns;
462                 uint64_t _unused_contextidr_1;
463                 uint64_t contextidr_s;
464             };
465             uint64_t contextidr_el[4];
466         };
467         union { /* User RW Thread register. */
468             struct {
469                 uint64_t tpidrurw_ns;
470                 uint64_t tpidrprw_ns;
471                 uint64_t htpidr;
472                 uint64_t _tpidr_el3;
473             };
474             uint64_t tpidr_el[4];
475         };
476         /* The secure banks of these registers don't map anywhere */
477         uint64_t tpidrurw_s;
478         uint64_t tpidrprw_s;
479         uint64_t tpidruro_s;
480 
481         union { /* User RO Thread register. */
482             uint64_t tpidruro_ns;
483             uint64_t tpidrro_el[1];
484         };
485         uint64_t c14_cntfrq; /* Counter Frequency register */
486         uint64_t c14_cntkctl; /* Timer Control register */
487         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
488         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
489         ARMGenericTimer c14_timer[NUM_GTIMERS];
490         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
491         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
492         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
493         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
494         uint32_t c15_threadid; /* TI debugger thread-ID.  */
495         uint32_t c15_config_base_address; /* SCU base address.  */
496         uint32_t c15_diagnostic; /* diagnostic register */
497         uint32_t c15_power_diagnostic;
498         uint32_t c15_power_control; /* power control */
499         uint64_t dbgbvr[16]; /* breakpoint value registers */
500         uint64_t dbgbcr[16]; /* breakpoint control registers */
501         uint64_t dbgwvr[16]; /* watchpoint value registers */
502         uint64_t dbgwcr[16]; /* watchpoint control registers */
503         uint64_t mdscr_el1;
504         uint64_t oslsr_el1; /* OS Lock Status */
505         uint64_t mdcr_el2;
506         uint64_t mdcr_el3;
507         /* Stores the architectural value of the counter *the last time it was
508          * updated* by pmccntr_op_start. Accesses should always be surrounded
509          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510          * architecturally-correct value is being read/set.
511          */
512         uint64_t c15_ccnt;
513         /* Stores the delta between the architectural value and the underlying
514          * cycle count during normal operation. It is used to update c15_ccnt
515          * to be the correct architectural value before accesses. During
516          * accesses, c15_ccnt_delta contains the underlying count being used
517          * for the access, after which it reverts to the delta value in
518          * pmccntr_op_finish.
519          */
520         uint64_t c15_ccnt_delta;
521         uint64_t c14_pmevcntr[31];
522         uint64_t c14_pmevcntr_delta[31];
523         uint64_t c14_pmevtyper[31];
524         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
528         uint64_t gcr_el1;
529         uint64_t rgsr_el1;
530 
531         /* Minimal RAS registers */
532         uint64_t disr_el1;
533         uint64_t vdisr_el2;
534         uint64_t vsesr_el2;
535     } cp15;
536 
537     struct {
538         /* M profile has up to 4 stack pointers:
539          * a Main Stack Pointer and a Process Stack Pointer for each
540          * of the Secure and Non-Secure states. (If the CPU doesn't support
541          * the security extension then it has only two SPs.)
542          * In QEMU we always store the currently active SP in regs[13],
543          * and the non-active SP for the current security state in
544          * v7m.other_sp. The stack pointers for the inactive security state
545          * are stored in other_ss_msp and other_ss_psp.
546          * switch_v7m_security_state() is responsible for rearranging them
547          * when we change security state.
548          */
549         uint32_t other_sp;
550         uint32_t other_ss_msp;
551         uint32_t other_ss_psp;
552         uint32_t vecbase[M_REG_NUM_BANKS];
553         uint32_t basepri[M_REG_NUM_BANKS];
554         uint32_t control[M_REG_NUM_BANKS];
555         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
556         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
557         uint32_t hfsr; /* HardFault Status */
558         uint32_t dfsr; /* Debug Fault Status Register */
559         uint32_t sfsr; /* Secure Fault Status Register */
560         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
561         uint32_t bfar; /* BusFault Address */
562         uint32_t sfar; /* Secure Fault Address Register */
563         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
564         int exception;
565         uint32_t primask[M_REG_NUM_BANKS];
566         uint32_t faultmask[M_REG_NUM_BANKS];
567         uint32_t aircr; /* only holds r/w state if security extn implemented */
568         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
569         uint32_t csselr[M_REG_NUM_BANKS];
570         uint32_t scr[M_REG_NUM_BANKS];
571         uint32_t msplim[M_REG_NUM_BANKS];
572         uint32_t psplim[M_REG_NUM_BANKS];
573         uint32_t fpcar[M_REG_NUM_BANKS];
574         uint32_t fpccr[M_REG_NUM_BANKS];
575         uint32_t fpdscr[M_REG_NUM_BANKS];
576         uint32_t cpacr[M_REG_NUM_BANKS];
577         uint32_t nsacr;
578         uint32_t ltpsize;
579         uint32_t vpr;
580     } v7m;
581 
582     /* Information associated with an exception about to be taken:
583      * code which raises an exception must set cs->exception_index and
584      * the relevant parts of this structure; the cpu_do_interrupt function
585      * will then set the guest-visible registers as part of the exception
586      * entry process.
587      */
588     struct {
589         uint32_t syndrome; /* AArch64 format syndrome register */
590         uint32_t fsr; /* AArch32 format fault status register info */
591         uint64_t vaddress; /* virtual addr associated with exception, if any */
592         uint32_t target_el; /* EL the exception should be targeted for */
593         /* If we implement EL2 we will also need to store information
594          * about the intermediate physical address for stage 2 faults.
595          */
596     } exception;
597 
598     /* Information associated with an SError */
599     struct {
600         uint8_t pending;
601         uint8_t has_esr;
602         uint64_t esr;
603     } serror;
604 
605     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
606 
607     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
608     uint32_t irq_line_state;
609 
610     /* Thumb-2 EE state.  */
611     uint32_t teecr;
612     uint32_t teehbr;
613 
614     /* VFP coprocessor state.  */
615     struct {
616         ARMVectorReg zregs[32];
617 
618 #ifdef TARGET_AARCH64
619         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
620 #define FFR_PRED_NUM 16
621         ARMPredicateReg pregs[17];
622         /* Scratch space for aa64 sve predicate temporary.  */
623         ARMPredicateReg preg_tmp;
624 #endif
625 
626         /* We store these fpcsr fields separately for convenience.  */
627         uint32_t qc[4] QEMU_ALIGNED(16);
628         int vec_len;
629         int vec_stride;
630 
631         uint32_t xregs[16];
632 
633         /* Scratch space for aa32 neon expansion.  */
634         uint32_t scratch[8];
635 
636         /* There are a number of distinct float control structures:
637          *
638          *  fp_status: is the "normal" fp status.
639          *  fp_status_fp16: used for half-precision calculations
640          *  standard_fp_status : the ARM "Standard FPSCR Value"
641          *  standard_fp_status_fp16 : used for half-precision
642          *       calculations with the ARM "Standard FPSCR Value"
643          *
644          * Half-precision operations are governed by a separate
645          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646          * status structure to control this.
647          *
648          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649          * round-to-nearest and is used by any operations (generally
650          * Neon) which the architecture defines as controlled by the
651          * standard FPSCR value rather than the FPSCR.
652          *
653          * The "standard FPSCR but for fp16 ops" is needed because
654          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655          * using a fixed value for it.
656          *
657          * To avoid having to transfer exception bits around, we simply
658          * say that the FPSCR cumulative exception flags are the logical
659          * OR of the flags in the four fp statuses. This relies on the
660          * only thing which needs to read the exception flags being
661          * an explicit FPSCR read.
662          */
663         float_status fp_status;
664         float_status fp_status_f16;
665         float_status standard_fp_status;
666         float_status standard_fp_status_f16;
667 
668         /* ZCR_EL[1-3] */
669         uint64_t zcr_el[4];
670     } vfp;
671     uint64_t exclusive_addr;
672     uint64_t exclusive_val;
673     uint64_t exclusive_high;
674 
675     /* iwMMXt coprocessor state.  */
676     struct {
677         uint64_t regs[16];
678         uint64_t val;
679 
680         uint32_t cregs[16];
681     } iwmmxt;
682 
683 #ifdef TARGET_AARCH64
684     struct {
685         ARMPACKey apia;
686         ARMPACKey apib;
687         ARMPACKey apda;
688         ARMPACKey apdb;
689         ARMPACKey apga;
690     } keys;
691 
692     uint64_t scxtnum_el[4];
693 #endif
694 
695 #if defined(CONFIG_USER_ONLY)
696     /* For usermode syscall translation.  */
697     int eabi;
698 #endif
699 
700     struct CPUBreakpoint *cpu_breakpoint[16];
701     struct CPUWatchpoint *cpu_watchpoint[16];
702 
703     /* Fields up to this point are cleared by a CPU reset */
704     struct {} end_reset_fields;
705 
706     /* Fields after this point are preserved across CPU reset. */
707 
708     /* Internal CPU feature flags.  */
709     uint64_t features;
710 
711     /* PMSAv7 MPU */
712     struct {
713         uint32_t *drbar;
714         uint32_t *drsr;
715         uint32_t *dracr;
716         uint32_t rnr[M_REG_NUM_BANKS];
717     } pmsav7;
718 
719     /* PMSAv8 MPU */
720     struct {
721         /* The PMSAv8 implementation also shares some PMSAv7 config
722          * and state:
723          *  pmsav7.rnr (region number register)
724          *  pmsav7_dregion (number of configured regions)
725          */
726         uint32_t *rbar[M_REG_NUM_BANKS];
727         uint32_t *rlar[M_REG_NUM_BANKS];
728         uint32_t mair0[M_REG_NUM_BANKS];
729         uint32_t mair1[M_REG_NUM_BANKS];
730     } pmsav8;
731 
732     /* v8M SAU */
733     struct {
734         uint32_t *rbar;
735         uint32_t *rlar;
736         uint32_t rnr;
737         uint32_t ctrl;
738     } sau;
739 
740     void *nvic;
741     const struct arm_boot_info *boot_info;
742     /* Store GICv3CPUState to access from this struct */
743     void *gicv3state;
744 
745 #ifdef TARGET_TAGGED_ADDRESSES
746     /* Linux syscall tagged address support */
747     bool tagged_addr_enable;
748 #endif
749 } CPUARMState;
750 
751 static inline void set_feature(CPUARMState *env, int feature)
752 {
753     env->features |= 1ULL << feature;
754 }
755 
756 static inline void unset_feature(CPUARMState *env, int feature)
757 {
758     env->features &= ~(1ULL << feature);
759 }
760 
761 /**
762  * ARMELChangeHookFn:
763  * type of a function which can be registered via arm_register_el_change_hook()
764  * to get callbacks when the CPU changes its exception level or mode.
765  */
766 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
767 typedef struct ARMELChangeHook ARMELChangeHook;
768 struct ARMELChangeHook {
769     ARMELChangeHookFn *hook;
770     void *opaque;
771     QLIST_ENTRY(ARMELChangeHook) node;
772 };
773 
774 /* These values map onto the return values for
775  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
776 typedef enum ARMPSCIState {
777     PSCI_ON = 0,
778     PSCI_OFF = 1,
779     PSCI_ON_PENDING = 2
780 } ARMPSCIState;
781 
782 typedef struct ARMISARegisters ARMISARegisters;
783 
784 /**
785  * ARMCPU:
786  * @env: #CPUARMState
787  *
788  * An ARM CPU core.
789  */
790 struct ArchCPU {
791     /*< private >*/
792     CPUState parent_obj;
793     /*< public >*/
794 
795     CPUNegativeOffsetState neg;
796     CPUARMState env;
797 
798     /* Coprocessor information */
799     GHashTable *cp_regs;
800     /* For marshalling (mostly coprocessor) register state between the
801      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
802      * we use these arrays.
803      */
804     /* List of register indexes managed via these arrays; (full KVM style
805      * 64 bit indexes, not CPRegInfo 32 bit indexes)
806      */
807     uint64_t *cpreg_indexes;
808     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
809     uint64_t *cpreg_values;
810     /* Length of the indexes, values, reset_values arrays */
811     int32_t cpreg_array_len;
812     /* These are used only for migration: incoming data arrives in
813      * these fields and is sanity checked in post_load before copying
814      * to the working data structures above.
815      */
816     uint64_t *cpreg_vmstate_indexes;
817     uint64_t *cpreg_vmstate_values;
818     int32_t cpreg_vmstate_array_len;
819 
820     DynamicGDBXMLInfo dyn_sysreg_xml;
821     DynamicGDBXMLInfo dyn_svereg_xml;
822 
823     /* Timers used by the generic (architected) timer */
824     QEMUTimer *gt_timer[NUM_GTIMERS];
825     /*
826      * Timer used by the PMU. Its state is restored after migration by
827      * pmu_op_finish() - it does not need other handling during migration
828      */
829     QEMUTimer *pmu_timer;
830     /* GPIO outputs for generic timer */
831     qemu_irq gt_timer_outputs[NUM_GTIMERS];
832     /* GPIO output for GICv3 maintenance interrupt signal */
833     qemu_irq gicv3_maintenance_interrupt;
834     /* GPIO output for the PMU interrupt */
835     qemu_irq pmu_interrupt;
836 
837     /* MemoryRegion to use for secure physical accesses */
838     MemoryRegion *secure_memory;
839 
840     /* MemoryRegion to use for allocation tag accesses */
841     MemoryRegion *tag_memory;
842     MemoryRegion *secure_tag_memory;
843 
844     /* For v8M, pointer to the IDAU interface provided by board/SoC */
845     Object *idau;
846 
847     /* 'compatible' string for this CPU for Linux device trees */
848     const char *dtb_compatible;
849 
850     /* PSCI version for this CPU
851      * Bits[31:16] = Major Version
852      * Bits[15:0] = Minor Version
853      */
854     uint32_t psci_version;
855 
856     /* Current power state, access guarded by BQL */
857     ARMPSCIState power_state;
858 
859     /* CPU has virtualization extension */
860     bool has_el2;
861     /* CPU has security extension */
862     bool has_el3;
863     /* CPU has PMU (Performance Monitor Unit) */
864     bool has_pmu;
865     /* CPU has VFP */
866     bool has_vfp;
867     /* CPU has Neon */
868     bool has_neon;
869     /* CPU has M-profile DSP extension */
870     bool has_dsp;
871 
872     /* CPU has memory protection unit */
873     bool has_mpu;
874     /* PMSAv7 MPU number of supported regions */
875     uint32_t pmsav7_dregion;
876     /* v8M SAU number of supported regions */
877     uint32_t sau_sregion;
878 
879     /* PSCI conduit used to invoke PSCI methods
880      * 0 - disabled, 1 - smc, 2 - hvc
881      */
882     uint32_t psci_conduit;
883 
884     /* For v8M, initial value of the Secure VTOR */
885     uint32_t init_svtor;
886     /* For v8M, initial value of the Non-secure VTOR */
887     uint32_t init_nsvtor;
888 
889     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
890      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
891      */
892     uint32_t kvm_target;
893 
894     /* KVM init features for this CPU */
895     uint32_t kvm_init_features[7];
896 
897     /* KVM CPU state */
898 
899     /* KVM virtual time adjustment */
900     bool kvm_adjvtime;
901     bool kvm_vtime_dirty;
902     uint64_t kvm_vtime;
903 
904     /* KVM steal time */
905     OnOffAuto kvm_steal_time;
906 
907     /* Uniprocessor system with MP extensions */
908     bool mp_is_up;
909 
910     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
911      * and the probe failed (so we need to report the error in realize)
912      */
913     bool host_cpu_probe_failed;
914 
915     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
916      * register.
917      */
918     int32_t core_count;
919 
920     /* The instance init functions for implementation-specific subclasses
921      * set these fields to specify the implementation-dependent values of
922      * various constant registers and reset values of non-constant
923      * registers.
924      * Some of these might become QOM properties eventually.
925      * Field names match the official register names as defined in the
926      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
927      * is used for reset values of non-constant registers; no reset_
928      * prefix means a constant register.
929      * Some of these registers are split out into a substructure that
930      * is shared with the translators to control the ISA.
931      *
932      * Note that if you add an ID register to the ARMISARegisters struct
933      * you need to also update the 32-bit and 64-bit versions of the
934      * kvm_arm_get_host_cpu_features() function to correctly populate the
935      * field by reading the value from the KVM vCPU.
936      */
937     struct ARMISARegisters {
938         uint32_t id_isar0;
939         uint32_t id_isar1;
940         uint32_t id_isar2;
941         uint32_t id_isar3;
942         uint32_t id_isar4;
943         uint32_t id_isar5;
944         uint32_t id_isar6;
945         uint32_t id_mmfr0;
946         uint32_t id_mmfr1;
947         uint32_t id_mmfr2;
948         uint32_t id_mmfr3;
949         uint32_t id_mmfr4;
950         uint32_t id_pfr0;
951         uint32_t id_pfr1;
952         uint32_t id_pfr2;
953         uint32_t mvfr0;
954         uint32_t mvfr1;
955         uint32_t mvfr2;
956         uint32_t id_dfr0;
957         uint32_t dbgdidr;
958         uint64_t id_aa64isar0;
959         uint64_t id_aa64isar1;
960         uint64_t id_aa64pfr0;
961         uint64_t id_aa64pfr1;
962         uint64_t id_aa64mmfr0;
963         uint64_t id_aa64mmfr1;
964         uint64_t id_aa64mmfr2;
965         uint64_t id_aa64dfr0;
966         uint64_t id_aa64dfr1;
967         uint64_t id_aa64zfr0;
968     } isar;
969     uint64_t midr;
970     uint32_t revidr;
971     uint32_t reset_fpsid;
972     uint64_t ctr;
973     uint32_t reset_sctlr;
974     uint64_t pmceid0;
975     uint64_t pmceid1;
976     uint32_t id_afr0;
977     uint64_t id_aa64afr0;
978     uint64_t id_aa64afr1;
979     uint64_t clidr;
980     uint64_t mp_affinity; /* MP ID without feature bits */
981     /* The elements of this array are the CCSIDR values for each cache,
982      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
983      */
984     uint64_t ccsidr[16];
985     uint64_t reset_cbar;
986     uint32_t reset_auxcr;
987     bool reset_hivecs;
988 
989     /*
990      * Intermediate values used during property parsing.
991      * Once finalized, the values should be read from ID_AA64*.
992      */
993     bool prop_pauth;
994     bool prop_pauth_impdef;
995     bool prop_lpa2;
996 
997     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
998     uint32_t dcz_blocksize;
999     uint64_t rvbar_prop; /* Property/input signals.  */
1000 
1001     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1002     int gic_num_lrs; /* number of list registers */
1003     int gic_vpribits; /* number of virtual priority bits */
1004     int gic_vprebits; /* number of virtual preemption bits */
1005     int gic_pribits; /* number of physical priority bits */
1006 
1007     /* Whether the cfgend input is high (i.e. this CPU should reset into
1008      * big-endian mode).  This setting isn't used directly: instead it modifies
1009      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1010      * architecture version.
1011      */
1012     bool cfgend;
1013 
1014     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1015     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1016 
1017     int32_t node_id; /* NUMA node this CPU belongs to */
1018 
1019     /* Used to synchronize KVM and QEMU in-kernel device levels */
1020     uint8_t device_irq_level;
1021 
1022     /* Used to set the maximum vector length the cpu will support.  */
1023     uint32_t sve_max_vq;
1024 
1025 #ifdef CONFIG_USER_ONLY
1026     /* Used to set the default vector length at process start. */
1027     uint32_t sve_default_vq;
1028 #endif
1029 
1030     /*
1031      * In sve_vq_map each set bit is a supported vector length of
1032      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1033      * length in quadwords.
1034      *
1035      * While processing properties during initialization, corresponding
1036      * sve_vq_init bits are set for bits in sve_vq_map that have been
1037      * set by properties.
1038      *
1039      * Bits set in sve_vq_supported represent valid vector lengths for
1040      * the CPU type.
1041      */
1042     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1043     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1044     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1045 
1046     /* Generic timer counter frequency, in Hz */
1047     uint64_t gt_cntfrq_hz;
1048 };
1049 
1050 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1051 
1052 void arm_cpu_post_init(Object *obj);
1053 
1054 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1055 
1056 #ifndef CONFIG_USER_ONLY
1057 extern const VMStateDescription vmstate_arm_cpu;
1058 
1059 void arm_cpu_do_interrupt(CPUState *cpu);
1060 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1061 #endif /* !CONFIG_USER_ONLY */
1062 
1063 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1064                                          MemTxAttrs *attrs);
1065 
1066 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1067 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1068 
1069 /*
1070  * Helpers to dynamically generates XML descriptions of the sysregs
1071  * and SVE registers. Returns the number of registers in each set.
1072  */
1073 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1074 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1075 
1076 /* Returns the dynamically generated XML for the gdb stub.
1077  * Returns a pointer to the XML contents for the specified XML file or NULL
1078  * if the XML name doesn't match the predefined one.
1079  */
1080 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1081 
1082 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1083                              int cpuid, void *opaque);
1084 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1085                              int cpuid, void *opaque);
1086 
1087 #ifdef TARGET_AARCH64
1088 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1089 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1090 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1091 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1092                            int new_el, bool el0_a64);
1093 void aarch64_add_sve_properties(Object *obj);
1094 void aarch64_add_pauth_properties(Object *obj);
1095 
1096 /*
1097  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1098  * The byte at offset i from the start of the in-memory representation contains
1099  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1100  * lowest offsets are stored in the lowest memory addresses, then that nearly
1101  * matches QEMU's representation, which is to use an array of host-endian
1102  * uint64_t's, where the lower offsets are at the lower indices. To complete
1103  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1104  */
1105 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1106 {
1107 #if HOST_BIG_ENDIAN
1108     int i;
1109 
1110     for (i = 0; i < nr; ++i) {
1111         dst[i] = bswap64(src[i]);
1112     }
1113 
1114     return dst;
1115 #else
1116     return src;
1117 #endif
1118 }
1119 
1120 #else
1121 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1122 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1123                                          int n, bool a)
1124 { }
1125 static inline void aarch64_add_sve_properties(Object *obj) { }
1126 #endif
1127 
1128 void aarch64_sync_32_to_64(CPUARMState *env);
1129 void aarch64_sync_64_to_32(CPUARMState *env);
1130 
1131 int fp_exception_el(CPUARMState *env, int cur_el);
1132 int sve_exception_el(CPUARMState *env, int cur_el);
1133 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1134 
1135 static inline bool is_a64(CPUARMState *env)
1136 {
1137     return env->aarch64;
1138 }
1139 
1140 /**
1141  * pmu_op_start/finish
1142  * @env: CPUARMState
1143  *
1144  * Convert all PMU counters between their delta form (the typical mode when
1145  * they are enabled) and the guest-visible values. These two calls must
1146  * surround any action which might affect the counters.
1147  */
1148 void pmu_op_start(CPUARMState *env);
1149 void pmu_op_finish(CPUARMState *env);
1150 
1151 /*
1152  * Called when a PMU counter is due to overflow
1153  */
1154 void arm_pmu_timer_cb(void *opaque);
1155 
1156 /**
1157  * Functions to register as EL change hooks for PMU mode filtering
1158  */
1159 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1160 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1161 
1162 /*
1163  * pmu_init
1164  * @cpu: ARMCPU
1165  *
1166  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1167  * for the current configuration
1168  */
1169 void pmu_init(ARMCPU *cpu);
1170 
1171 /* SCTLR bit meanings. Several bits have been reused in newer
1172  * versions of the architecture; in that case we define constants
1173  * for both old and new bit meanings. Code which tests against those
1174  * bits should probably check or otherwise arrange that the CPU
1175  * is the architectural version it expects.
1176  */
1177 #define SCTLR_M       (1U << 0)
1178 #define SCTLR_A       (1U << 1)
1179 #define SCTLR_C       (1U << 2)
1180 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1181 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1182 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1183 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1184 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1185 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1186 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1187 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1188 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1189 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1190 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1191 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1192 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1193 #define SCTLR_SED     (1U << 8) /* v8 onward */
1194 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1195 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1196 #define SCTLR_F       (1U << 10) /* up to v6 */
1197 #define SCTLR_SW      (1U << 10) /* v7 */
1198 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1199 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1200 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1201 #define SCTLR_I       (1U << 12)
1202 #define SCTLR_V       (1U << 13) /* AArch32 only */
1203 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1204 #define SCTLR_RR      (1U << 14) /* up to v7 */
1205 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1206 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1207 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1208 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1209 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1210 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1211 #define SCTLR_BR      (1U << 17) /* PMSA only */
1212 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1213 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1214 #define SCTLR_WXN     (1U << 19)
1215 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1216 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1217 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1218 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1219 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1220 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1221 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1222 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1223 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1224 #define SCTLR_VE      (1U << 24) /* up to v7 */
1225 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1226 #define SCTLR_EE      (1U << 25)
1227 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1228 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1229 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1230 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1231 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1232 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1233 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1234 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1235 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1236 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1237 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1238 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1239 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1240 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1241 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1242 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1243 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1244 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1245 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1246 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1247 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1248 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1249 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1250 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1251 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1252 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1253 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1254 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1255 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1256 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1257 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1258 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1259 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1260 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1261 
1262 #define CPTR_TCPAC    (1U << 31)
1263 #define CPTR_TTA      (1U << 20)
1264 #define CPTR_TFP      (1U << 10)
1265 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1266 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1267 
1268 #define MDCR_EPMAD    (1U << 21)
1269 #define MDCR_EDAD     (1U << 20)
1270 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1271 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1272 #define MDCR_SDD      (1U << 16)
1273 #define MDCR_SPD      (3U << 14)
1274 #define MDCR_TDRA     (1U << 11)
1275 #define MDCR_TDOSA    (1U << 10)
1276 #define MDCR_TDA      (1U << 9)
1277 #define MDCR_TDE      (1U << 8)
1278 #define MDCR_HPME     (1U << 7)
1279 #define MDCR_TPM      (1U << 6)
1280 #define MDCR_TPMCR    (1U << 5)
1281 #define MDCR_HPMN     (0x1fU)
1282 
1283 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1284 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1285 
1286 #define CPSR_M (0x1fU)
1287 #define CPSR_T (1U << 5)
1288 #define CPSR_F (1U << 6)
1289 #define CPSR_I (1U << 7)
1290 #define CPSR_A (1U << 8)
1291 #define CPSR_E (1U << 9)
1292 #define CPSR_IT_2_7 (0xfc00U)
1293 #define CPSR_GE (0xfU << 16)
1294 #define CPSR_IL (1U << 20)
1295 #define CPSR_DIT (1U << 21)
1296 #define CPSR_PAN (1U << 22)
1297 #define CPSR_SSBS (1U << 23)
1298 #define CPSR_J (1U << 24)
1299 #define CPSR_IT_0_1 (3U << 25)
1300 #define CPSR_Q (1U << 27)
1301 #define CPSR_V (1U << 28)
1302 #define CPSR_C (1U << 29)
1303 #define CPSR_Z (1U << 30)
1304 #define CPSR_N (1U << 31)
1305 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1306 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1307 
1308 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1309 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1310     | CPSR_NZCV)
1311 /* Bits writable in user mode.  */
1312 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1313 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1314 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1315 
1316 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1317 #define XPSR_EXCP 0x1ffU
1318 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1319 #define XPSR_IT_2_7 CPSR_IT_2_7
1320 #define XPSR_GE CPSR_GE
1321 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1322 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1323 #define XPSR_IT_0_1 CPSR_IT_0_1
1324 #define XPSR_Q CPSR_Q
1325 #define XPSR_V CPSR_V
1326 #define XPSR_C CPSR_C
1327 #define XPSR_Z CPSR_Z
1328 #define XPSR_N CPSR_N
1329 #define XPSR_NZCV CPSR_NZCV
1330 #define XPSR_IT CPSR_IT
1331 
1332 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1333 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1334 #define TTBCR_PD0    (1U << 4)
1335 #define TTBCR_PD1    (1U << 5)
1336 #define TTBCR_EPD0   (1U << 7)
1337 #define TTBCR_IRGN0  (3U << 8)
1338 #define TTBCR_ORGN0  (3U << 10)
1339 #define TTBCR_SH0    (3U << 12)
1340 #define TTBCR_T1SZ   (3U << 16)
1341 #define TTBCR_A1     (1U << 22)
1342 #define TTBCR_EPD1   (1U << 23)
1343 #define TTBCR_IRGN1  (3U << 24)
1344 #define TTBCR_ORGN1  (3U << 26)
1345 #define TTBCR_SH1    (1U << 28)
1346 #define TTBCR_EAE    (1U << 31)
1347 
1348 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1349  * Only these are valid when in AArch64 mode; in
1350  * AArch32 mode SPSRs are basically CPSR-format.
1351  */
1352 #define PSTATE_SP (1U)
1353 #define PSTATE_M (0xFU)
1354 #define PSTATE_nRW (1U << 4)
1355 #define PSTATE_F (1U << 6)
1356 #define PSTATE_I (1U << 7)
1357 #define PSTATE_A (1U << 8)
1358 #define PSTATE_D (1U << 9)
1359 #define PSTATE_BTYPE (3U << 10)
1360 #define PSTATE_SSBS (1U << 12)
1361 #define PSTATE_IL (1U << 20)
1362 #define PSTATE_SS (1U << 21)
1363 #define PSTATE_PAN (1U << 22)
1364 #define PSTATE_UAO (1U << 23)
1365 #define PSTATE_DIT (1U << 24)
1366 #define PSTATE_TCO (1U << 25)
1367 #define PSTATE_V (1U << 28)
1368 #define PSTATE_C (1U << 29)
1369 #define PSTATE_Z (1U << 30)
1370 #define PSTATE_N (1U << 31)
1371 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1372 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1373 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1374 /* Mode values for AArch64 */
1375 #define PSTATE_MODE_EL3h 13
1376 #define PSTATE_MODE_EL3t 12
1377 #define PSTATE_MODE_EL2h 9
1378 #define PSTATE_MODE_EL2t 8
1379 #define PSTATE_MODE_EL1h 5
1380 #define PSTATE_MODE_EL1t 4
1381 #define PSTATE_MODE_EL0t 0
1382 
1383 /* Write a new value to v7m.exception, thus transitioning into or out
1384  * of Handler mode; this may result in a change of active stack pointer.
1385  */
1386 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1387 
1388 /* Map EL and handler into a PSTATE_MODE.  */
1389 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1390 {
1391     return (el << 2) | handler;
1392 }
1393 
1394 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1395  * interprocessing, so we don't attempt to sync with the cpsr state used by
1396  * the 32 bit decoder.
1397  */
1398 static inline uint32_t pstate_read(CPUARMState *env)
1399 {
1400     int ZF;
1401 
1402     ZF = (env->ZF == 0);
1403     return (env->NF & 0x80000000) | (ZF << 30)
1404         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1405         | env->pstate | env->daif | (env->btype << 10);
1406 }
1407 
1408 static inline void pstate_write(CPUARMState *env, uint32_t val)
1409 {
1410     env->ZF = (~val) & PSTATE_Z;
1411     env->NF = val;
1412     env->CF = (val >> 29) & 1;
1413     env->VF = (val << 3) & 0x80000000;
1414     env->daif = val & PSTATE_DAIF;
1415     env->btype = (val >> 10) & 3;
1416     env->pstate = val & ~CACHED_PSTATE_BITS;
1417 }
1418 
1419 /* Return the current CPSR value.  */
1420 uint32_t cpsr_read(CPUARMState *env);
1421 
1422 typedef enum CPSRWriteType {
1423     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1424     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1425     CPSRWriteRaw = 2,
1426         /* trust values, no reg bank switch, no hflags rebuild */
1427     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1428 } CPSRWriteType;
1429 
1430 /*
1431  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1432  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1433  * correspond to TB flags bits cached in the hflags, unless @write_type
1434  * is CPSRWriteRaw.
1435  */
1436 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1437                 CPSRWriteType write_type);
1438 
1439 /* Return the current xPSR value.  */
1440 static inline uint32_t xpsr_read(CPUARMState *env)
1441 {
1442     int ZF;
1443     ZF = (env->ZF == 0);
1444     return (env->NF & 0x80000000) | (ZF << 30)
1445         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1446         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1447         | ((env->condexec_bits & 0xfc) << 8)
1448         | (env->GE << 16)
1449         | env->v7m.exception;
1450 }
1451 
1452 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1453 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1454 {
1455     if (mask & XPSR_NZCV) {
1456         env->ZF = (~val) & XPSR_Z;
1457         env->NF = val;
1458         env->CF = (val >> 29) & 1;
1459         env->VF = (val << 3) & 0x80000000;
1460     }
1461     if (mask & XPSR_Q) {
1462         env->QF = ((val & XPSR_Q) != 0);
1463     }
1464     if (mask & XPSR_GE) {
1465         env->GE = (val & XPSR_GE) >> 16;
1466     }
1467 #ifndef CONFIG_USER_ONLY
1468     if (mask & XPSR_T) {
1469         env->thumb = ((val & XPSR_T) != 0);
1470     }
1471     if (mask & XPSR_IT_0_1) {
1472         env->condexec_bits &= ~3;
1473         env->condexec_bits |= (val >> 25) & 3;
1474     }
1475     if (mask & XPSR_IT_2_7) {
1476         env->condexec_bits &= 3;
1477         env->condexec_bits |= (val >> 8) & 0xfc;
1478     }
1479     if (mask & XPSR_EXCP) {
1480         /* Note that this only happens on exception exit */
1481         write_v7m_exception(env, val & XPSR_EXCP);
1482     }
1483 #endif
1484 }
1485 
1486 #define HCR_VM        (1ULL << 0)
1487 #define HCR_SWIO      (1ULL << 1)
1488 #define HCR_PTW       (1ULL << 2)
1489 #define HCR_FMO       (1ULL << 3)
1490 #define HCR_IMO       (1ULL << 4)
1491 #define HCR_AMO       (1ULL << 5)
1492 #define HCR_VF        (1ULL << 6)
1493 #define HCR_VI        (1ULL << 7)
1494 #define HCR_VSE       (1ULL << 8)
1495 #define HCR_FB        (1ULL << 9)
1496 #define HCR_BSU_MASK  (3ULL << 10)
1497 #define HCR_DC        (1ULL << 12)
1498 #define HCR_TWI       (1ULL << 13)
1499 #define HCR_TWE       (1ULL << 14)
1500 #define HCR_TID0      (1ULL << 15)
1501 #define HCR_TID1      (1ULL << 16)
1502 #define HCR_TID2      (1ULL << 17)
1503 #define HCR_TID3      (1ULL << 18)
1504 #define HCR_TSC       (1ULL << 19)
1505 #define HCR_TIDCP     (1ULL << 20)
1506 #define HCR_TACR      (1ULL << 21)
1507 #define HCR_TSW       (1ULL << 22)
1508 #define HCR_TPCP      (1ULL << 23)
1509 #define HCR_TPU       (1ULL << 24)
1510 #define HCR_TTLB      (1ULL << 25)
1511 #define HCR_TVM       (1ULL << 26)
1512 #define HCR_TGE       (1ULL << 27)
1513 #define HCR_TDZ       (1ULL << 28)
1514 #define HCR_HCD       (1ULL << 29)
1515 #define HCR_TRVM      (1ULL << 30)
1516 #define HCR_RW        (1ULL << 31)
1517 #define HCR_CD        (1ULL << 32)
1518 #define HCR_ID        (1ULL << 33)
1519 #define HCR_E2H       (1ULL << 34)
1520 #define HCR_TLOR      (1ULL << 35)
1521 #define HCR_TERR      (1ULL << 36)
1522 #define HCR_TEA       (1ULL << 37)
1523 #define HCR_MIOCNCE   (1ULL << 38)
1524 /* RES0 bit 39 */
1525 #define HCR_APK       (1ULL << 40)
1526 #define HCR_API       (1ULL << 41)
1527 #define HCR_NV        (1ULL << 42)
1528 #define HCR_NV1       (1ULL << 43)
1529 #define HCR_AT        (1ULL << 44)
1530 #define HCR_NV2       (1ULL << 45)
1531 #define HCR_FWB       (1ULL << 46)
1532 #define HCR_FIEN      (1ULL << 47)
1533 /* RES0 bit 48 */
1534 #define HCR_TID4      (1ULL << 49)
1535 #define HCR_TICAB     (1ULL << 50)
1536 #define HCR_AMVOFFEN  (1ULL << 51)
1537 #define HCR_TOCU      (1ULL << 52)
1538 #define HCR_ENSCXT    (1ULL << 53)
1539 #define HCR_TTLBIS    (1ULL << 54)
1540 #define HCR_TTLBOS    (1ULL << 55)
1541 #define HCR_ATA       (1ULL << 56)
1542 #define HCR_DCT       (1ULL << 57)
1543 #define HCR_TID5      (1ULL << 58)
1544 #define HCR_TWEDEN    (1ULL << 59)
1545 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1546 
1547 #define HPFAR_NS      (1ULL << 63)
1548 
1549 #define SCR_NS                (1U << 0)
1550 #define SCR_IRQ               (1U << 1)
1551 #define SCR_FIQ               (1U << 2)
1552 #define SCR_EA                (1U << 3)
1553 #define SCR_FW                (1U << 4)
1554 #define SCR_AW                (1U << 5)
1555 #define SCR_NET               (1U << 6)
1556 #define SCR_SMD               (1U << 7)
1557 #define SCR_HCE               (1U << 8)
1558 #define SCR_SIF               (1U << 9)
1559 #define SCR_RW                (1U << 10)
1560 #define SCR_ST                (1U << 11)
1561 #define SCR_TWI               (1U << 12)
1562 #define SCR_TWE               (1U << 13)
1563 #define SCR_TLOR              (1U << 14)
1564 #define SCR_TERR              (1U << 15)
1565 #define SCR_APK               (1U << 16)
1566 #define SCR_API               (1U << 17)
1567 #define SCR_EEL2              (1U << 18)
1568 #define SCR_EASE              (1U << 19)
1569 #define SCR_NMEA              (1U << 20)
1570 #define SCR_FIEN              (1U << 21)
1571 #define SCR_ENSCXT            (1U << 25)
1572 #define SCR_ATA               (1U << 26)
1573 #define SCR_FGTEN             (1U << 27)
1574 #define SCR_ECVEN             (1U << 28)
1575 #define SCR_TWEDEN            (1U << 29)
1576 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1577 #define SCR_TME               (1ULL << 34)
1578 #define SCR_AMVOFFEN          (1ULL << 35)
1579 #define SCR_ENAS0             (1ULL << 36)
1580 #define SCR_ADEN              (1ULL << 37)
1581 #define SCR_HXEN              (1ULL << 38)
1582 #define SCR_TRNDR             (1ULL << 40)
1583 #define SCR_ENTP2             (1ULL << 41)
1584 #define SCR_GPF               (1ULL << 48)
1585 
1586 #define HSTR_TTEE (1 << 16)
1587 #define HSTR_TJDBX (1 << 17)
1588 
1589 /* Return the current FPSCR value.  */
1590 uint32_t vfp_get_fpscr(CPUARMState *env);
1591 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1592 
1593 /* FPCR, Floating Point Control Register
1594  * FPSR, Floating Poiht Status Register
1595  *
1596  * For A64 the FPSCR is split into two logically distinct registers,
1597  * FPCR and FPSR. However since they still use non-overlapping bits
1598  * we store the underlying state in fpscr and just mask on read/write.
1599  */
1600 #define FPSR_MASK 0xf800009f
1601 #define FPCR_MASK 0x07ff9f00
1602 
1603 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1604 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1605 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1606 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1607 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1608 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1609 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1610 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1611 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1612 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1613 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1614 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1615 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1616 #define FPCR_C      (1 << 29)   /* FP carry flag */
1617 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1618 #define FPCR_N      (1 << 31)   /* FP negative flag */
1619 
1620 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1621 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1622 #define FPCR_LTPSIZE_LENGTH 3
1623 
1624 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1625 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1626 
1627 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1628 {
1629     return vfp_get_fpscr(env) & FPSR_MASK;
1630 }
1631 
1632 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1633 {
1634     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1635     vfp_set_fpscr(env, new_fpscr);
1636 }
1637 
1638 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1639 {
1640     return vfp_get_fpscr(env) & FPCR_MASK;
1641 }
1642 
1643 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1644 {
1645     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1646     vfp_set_fpscr(env, new_fpscr);
1647 }
1648 
1649 enum arm_cpu_mode {
1650   ARM_CPU_MODE_USR = 0x10,
1651   ARM_CPU_MODE_FIQ = 0x11,
1652   ARM_CPU_MODE_IRQ = 0x12,
1653   ARM_CPU_MODE_SVC = 0x13,
1654   ARM_CPU_MODE_MON = 0x16,
1655   ARM_CPU_MODE_ABT = 0x17,
1656   ARM_CPU_MODE_HYP = 0x1a,
1657   ARM_CPU_MODE_UND = 0x1b,
1658   ARM_CPU_MODE_SYS = 0x1f
1659 };
1660 
1661 /* VFP system registers.  */
1662 #define ARM_VFP_FPSID   0
1663 #define ARM_VFP_FPSCR   1
1664 #define ARM_VFP_MVFR2   5
1665 #define ARM_VFP_MVFR1   6
1666 #define ARM_VFP_MVFR0   7
1667 #define ARM_VFP_FPEXC   8
1668 #define ARM_VFP_FPINST  9
1669 #define ARM_VFP_FPINST2 10
1670 /* These ones are M-profile only */
1671 #define ARM_VFP_FPSCR_NZCVQC 2
1672 #define ARM_VFP_VPR 12
1673 #define ARM_VFP_P0 13
1674 #define ARM_VFP_FPCXT_NS 14
1675 #define ARM_VFP_FPCXT_S 15
1676 
1677 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1678 #define QEMU_VFP_FPSCR_NZCV 0xffff
1679 
1680 /* iwMMXt coprocessor control registers.  */
1681 #define ARM_IWMMXT_wCID  0
1682 #define ARM_IWMMXT_wCon  1
1683 #define ARM_IWMMXT_wCSSF 2
1684 #define ARM_IWMMXT_wCASF 3
1685 #define ARM_IWMMXT_wCGR0 8
1686 #define ARM_IWMMXT_wCGR1 9
1687 #define ARM_IWMMXT_wCGR2 10
1688 #define ARM_IWMMXT_wCGR3 11
1689 
1690 /* V7M CCR bits */
1691 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1692 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1693 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1694 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1695 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1696 FIELD(V7M_CCR, STKALIGN, 9, 1)
1697 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1698 FIELD(V7M_CCR, DC, 16, 1)
1699 FIELD(V7M_CCR, IC, 17, 1)
1700 FIELD(V7M_CCR, BP, 18, 1)
1701 FIELD(V7M_CCR, LOB, 19, 1)
1702 FIELD(V7M_CCR, TRD, 20, 1)
1703 
1704 /* V7M SCR bits */
1705 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1706 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1707 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1708 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1709 
1710 /* V7M AIRCR bits */
1711 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1712 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1713 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1714 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1715 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1716 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1717 FIELD(V7M_AIRCR, PRIS, 14, 1)
1718 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1719 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1720 
1721 /* V7M CFSR bits for MMFSR */
1722 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1723 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1724 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1725 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1726 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1727 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1728 
1729 /* V7M CFSR bits for BFSR */
1730 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1731 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1732 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1733 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1734 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1735 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1736 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1737 
1738 /* V7M CFSR bits for UFSR */
1739 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1740 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1741 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1742 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1743 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1744 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1745 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1746 
1747 /* V7M CFSR bit masks covering all of the subregister bits */
1748 FIELD(V7M_CFSR, MMFSR, 0, 8)
1749 FIELD(V7M_CFSR, BFSR, 8, 8)
1750 FIELD(V7M_CFSR, UFSR, 16, 16)
1751 
1752 /* V7M HFSR bits */
1753 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1754 FIELD(V7M_HFSR, FORCED, 30, 1)
1755 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1756 
1757 /* V7M DFSR bits */
1758 FIELD(V7M_DFSR, HALTED, 0, 1)
1759 FIELD(V7M_DFSR, BKPT, 1, 1)
1760 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1761 FIELD(V7M_DFSR, VCATCH, 3, 1)
1762 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1763 
1764 /* V7M SFSR bits */
1765 FIELD(V7M_SFSR, INVEP, 0, 1)
1766 FIELD(V7M_SFSR, INVIS, 1, 1)
1767 FIELD(V7M_SFSR, INVER, 2, 1)
1768 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1769 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1770 FIELD(V7M_SFSR, LSPERR, 5, 1)
1771 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1772 FIELD(V7M_SFSR, LSERR, 7, 1)
1773 
1774 /* v7M MPU_CTRL bits */
1775 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1776 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1777 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1778 
1779 /* v7M CLIDR bits */
1780 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1781 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1782 FIELD(V7M_CLIDR, LOC, 24, 3)
1783 FIELD(V7M_CLIDR, LOUU, 27, 3)
1784 FIELD(V7M_CLIDR, ICB, 30, 2)
1785 
1786 FIELD(V7M_CSSELR, IND, 0, 1)
1787 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1788 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1789  * define a mask for this and check that it doesn't permit running off
1790  * the end of the array.
1791  */
1792 FIELD(V7M_CSSELR, INDEX, 0, 4)
1793 
1794 /* v7M FPCCR bits */
1795 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1796 FIELD(V7M_FPCCR, USER, 1, 1)
1797 FIELD(V7M_FPCCR, S, 2, 1)
1798 FIELD(V7M_FPCCR, THREAD, 3, 1)
1799 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1800 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1801 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1802 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1803 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1804 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1805 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1806 FIELD(V7M_FPCCR, RES0, 11, 15)
1807 FIELD(V7M_FPCCR, TS, 26, 1)
1808 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1809 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1810 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1811 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1812 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1813 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1814 #define R_V7M_FPCCR_BANKED_MASK                 \
1815     (R_V7M_FPCCR_LSPACT_MASK |                  \
1816      R_V7M_FPCCR_USER_MASK |                    \
1817      R_V7M_FPCCR_THREAD_MASK |                  \
1818      R_V7M_FPCCR_MMRDY_MASK |                   \
1819      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1820      R_V7M_FPCCR_UFRDY_MASK |                   \
1821      R_V7M_FPCCR_ASPEN_MASK)
1822 
1823 /* v7M VPR bits */
1824 FIELD(V7M_VPR, P0, 0, 16)
1825 FIELD(V7M_VPR, MASK01, 16, 4)
1826 FIELD(V7M_VPR, MASK23, 20, 4)
1827 
1828 /*
1829  * System register ID fields.
1830  */
1831 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1832 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1833 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1834 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1835 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1836 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1837 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1838 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1839 FIELD(CLIDR_EL1, LOC, 24, 3)
1840 FIELD(CLIDR_EL1, LOUU, 27, 3)
1841 FIELD(CLIDR_EL1, ICB, 30, 3)
1842 
1843 /* When FEAT_CCIDX is implemented */
1844 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1845 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1846 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1847 
1848 /* When FEAT_CCIDX is not implemented */
1849 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1850 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1851 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1852 
1853 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1854 FIELD(CTR_EL0,  L1IP, 14, 2)
1855 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1856 FIELD(CTR_EL0,  ERG, 20, 4)
1857 FIELD(CTR_EL0,  CWG, 24, 4)
1858 FIELD(CTR_EL0,  IDC, 28, 1)
1859 FIELD(CTR_EL0,  DIC, 29, 1)
1860 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1861 
1862 FIELD(MIDR_EL1, REVISION, 0, 4)
1863 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1864 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1865 FIELD(MIDR_EL1, VARIANT, 20, 4)
1866 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1867 
1868 FIELD(ID_ISAR0, SWAP, 0, 4)
1869 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1870 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1871 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1872 FIELD(ID_ISAR0, COPROC, 16, 4)
1873 FIELD(ID_ISAR0, DEBUG, 20, 4)
1874 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1875 
1876 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1877 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1878 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1879 FIELD(ID_ISAR1, EXTEND, 12, 4)
1880 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1881 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1882 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1883 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1884 
1885 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1886 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1887 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1888 FIELD(ID_ISAR2, MULT, 12, 4)
1889 FIELD(ID_ISAR2, MULTS, 16, 4)
1890 FIELD(ID_ISAR2, MULTU, 20, 4)
1891 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1892 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1893 
1894 FIELD(ID_ISAR3, SATURATE, 0, 4)
1895 FIELD(ID_ISAR3, SIMD, 4, 4)
1896 FIELD(ID_ISAR3, SVC, 8, 4)
1897 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1898 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1899 FIELD(ID_ISAR3, T32COPY, 20, 4)
1900 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1901 FIELD(ID_ISAR3, T32EE, 28, 4)
1902 
1903 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1904 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1905 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1906 FIELD(ID_ISAR4, SMC, 12, 4)
1907 FIELD(ID_ISAR4, BARRIER, 16, 4)
1908 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1909 FIELD(ID_ISAR4, PSR_M, 24, 4)
1910 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1911 
1912 FIELD(ID_ISAR5, SEVL, 0, 4)
1913 FIELD(ID_ISAR5, AES, 4, 4)
1914 FIELD(ID_ISAR5, SHA1, 8, 4)
1915 FIELD(ID_ISAR5, SHA2, 12, 4)
1916 FIELD(ID_ISAR5, CRC32, 16, 4)
1917 FIELD(ID_ISAR5, RDM, 24, 4)
1918 FIELD(ID_ISAR5, VCMA, 28, 4)
1919 
1920 FIELD(ID_ISAR6, JSCVT, 0, 4)
1921 FIELD(ID_ISAR6, DP, 4, 4)
1922 FIELD(ID_ISAR6, FHM, 8, 4)
1923 FIELD(ID_ISAR6, SB, 12, 4)
1924 FIELD(ID_ISAR6, SPECRES, 16, 4)
1925 FIELD(ID_ISAR6, BF16, 20, 4)
1926 FIELD(ID_ISAR6, I8MM, 24, 4)
1927 
1928 FIELD(ID_MMFR0, VMSA, 0, 4)
1929 FIELD(ID_MMFR0, PMSA, 4, 4)
1930 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1931 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1932 FIELD(ID_MMFR0, TCM, 16, 4)
1933 FIELD(ID_MMFR0, AUXREG, 20, 4)
1934 FIELD(ID_MMFR0, FCSE, 24, 4)
1935 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1936 
1937 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1938 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1939 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1940 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1941 FIELD(ID_MMFR1, L1HVD, 16, 4)
1942 FIELD(ID_MMFR1, L1UNI, 20, 4)
1943 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1944 FIELD(ID_MMFR1, BPRED, 28, 4)
1945 
1946 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1947 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1948 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1949 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1950 FIELD(ID_MMFR2, UNITLB, 16, 4)
1951 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1952 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1953 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1954 
1955 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1956 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1957 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1958 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1959 FIELD(ID_MMFR3, PAN, 16, 4)
1960 FIELD(ID_MMFR3, COHWALK, 20, 4)
1961 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1962 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1963 
1964 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1965 FIELD(ID_MMFR4, AC2, 4, 4)
1966 FIELD(ID_MMFR4, XNX, 8, 4)
1967 FIELD(ID_MMFR4, CNP, 12, 4)
1968 FIELD(ID_MMFR4, HPDS, 16, 4)
1969 FIELD(ID_MMFR4, LSM, 20, 4)
1970 FIELD(ID_MMFR4, CCIDX, 24, 4)
1971 FIELD(ID_MMFR4, EVT, 28, 4)
1972 
1973 FIELD(ID_MMFR5, ETS, 0, 4)
1974 FIELD(ID_MMFR5, NTLBPA, 4, 4)
1975 
1976 FIELD(ID_PFR0, STATE0, 0, 4)
1977 FIELD(ID_PFR0, STATE1, 4, 4)
1978 FIELD(ID_PFR0, STATE2, 8, 4)
1979 FIELD(ID_PFR0, STATE3, 12, 4)
1980 FIELD(ID_PFR0, CSV2, 16, 4)
1981 FIELD(ID_PFR0, AMU, 20, 4)
1982 FIELD(ID_PFR0, DIT, 24, 4)
1983 FIELD(ID_PFR0, RAS, 28, 4)
1984 
1985 FIELD(ID_PFR1, PROGMOD, 0, 4)
1986 FIELD(ID_PFR1, SECURITY, 4, 4)
1987 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1988 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1989 FIELD(ID_PFR1, GENTIMER, 16, 4)
1990 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1991 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1992 FIELD(ID_PFR1, GIC, 28, 4)
1993 
1994 FIELD(ID_PFR2, CSV3, 0, 4)
1995 FIELD(ID_PFR2, SSBS, 4, 4)
1996 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1997 
1998 FIELD(ID_AA64ISAR0, AES, 4, 4)
1999 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2000 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2001 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2002 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2003 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2004 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2005 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2006 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2007 FIELD(ID_AA64ISAR0, DP, 44, 4)
2008 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2009 FIELD(ID_AA64ISAR0, TS, 52, 4)
2010 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2011 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2012 
2013 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2014 FIELD(ID_AA64ISAR1, APA, 4, 4)
2015 FIELD(ID_AA64ISAR1, API, 8, 4)
2016 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2017 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2018 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2019 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2020 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2021 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2022 FIELD(ID_AA64ISAR1, SB, 36, 4)
2023 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2024 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2025 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2026 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2027 FIELD(ID_AA64ISAR1, XS, 56, 4)
2028 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2029 
2030 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2031 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2032 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2033 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2034 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2035 FIELD(ID_AA64ISAR2, BC, 20, 4)
2036 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2037 
2038 FIELD(ID_AA64PFR0, EL0, 0, 4)
2039 FIELD(ID_AA64PFR0, EL1, 4, 4)
2040 FIELD(ID_AA64PFR0, EL2, 8, 4)
2041 FIELD(ID_AA64PFR0, EL3, 12, 4)
2042 FIELD(ID_AA64PFR0, FP, 16, 4)
2043 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2044 FIELD(ID_AA64PFR0, GIC, 24, 4)
2045 FIELD(ID_AA64PFR0, RAS, 28, 4)
2046 FIELD(ID_AA64PFR0, SVE, 32, 4)
2047 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2048 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2049 FIELD(ID_AA64PFR0, AMU, 44, 4)
2050 FIELD(ID_AA64PFR0, DIT, 48, 4)
2051 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2052 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2053 
2054 FIELD(ID_AA64PFR1, BT, 0, 4)
2055 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2056 FIELD(ID_AA64PFR1, MTE, 8, 4)
2057 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2058 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2059 FIELD(ID_AA64PFR1, SME, 24, 4)
2060 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2061 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2062 FIELD(ID_AA64PFR1, NMI, 36, 4)
2063 
2064 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2065 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2066 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2067 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2068 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2069 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2070 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2071 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2072 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2073 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2074 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2075 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2076 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2077 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2078 
2079 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2080 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2081 FIELD(ID_AA64MMFR1, VH, 8, 4)
2082 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2083 FIELD(ID_AA64MMFR1, LO, 16, 4)
2084 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2085 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2086 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2087 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2088 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2089 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2090 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2091 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2092 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2093 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2094 
2095 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2096 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2097 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2098 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2099 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2100 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2101 FIELD(ID_AA64MMFR2, NV, 24, 4)
2102 FIELD(ID_AA64MMFR2, ST, 28, 4)
2103 FIELD(ID_AA64MMFR2, AT, 32, 4)
2104 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2105 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2106 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2107 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2108 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2109 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2110 
2111 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2112 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2113 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2114 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2115 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2116 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2117 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2118 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2119 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2120 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2121 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2122 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2123 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2124 
2125 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2126 FIELD(ID_AA64ZFR0, AES, 4, 4)
2127 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2128 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2129 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2130 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2131 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2132 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2133 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2134 
2135 FIELD(ID_DFR0, COPDBG, 0, 4)
2136 FIELD(ID_DFR0, COPSDBG, 4, 4)
2137 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2138 FIELD(ID_DFR0, COPTRC, 12, 4)
2139 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2140 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2141 FIELD(ID_DFR0, PERFMON, 24, 4)
2142 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2143 
2144 FIELD(ID_DFR1, MTPMU, 0, 4)
2145 FIELD(ID_DFR1, HPMN0, 4, 4)
2146 
2147 FIELD(DBGDIDR, SE_IMP, 12, 1)
2148 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2149 FIELD(DBGDIDR, VERSION, 16, 4)
2150 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2151 FIELD(DBGDIDR, BRPS, 24, 4)
2152 FIELD(DBGDIDR, WRPS, 28, 4)
2153 
2154 FIELD(MVFR0, SIMDREG, 0, 4)
2155 FIELD(MVFR0, FPSP, 4, 4)
2156 FIELD(MVFR0, FPDP, 8, 4)
2157 FIELD(MVFR0, FPTRAP, 12, 4)
2158 FIELD(MVFR0, FPDIVIDE, 16, 4)
2159 FIELD(MVFR0, FPSQRT, 20, 4)
2160 FIELD(MVFR0, FPSHVEC, 24, 4)
2161 FIELD(MVFR0, FPROUND, 28, 4)
2162 
2163 FIELD(MVFR1, FPFTZ, 0, 4)
2164 FIELD(MVFR1, FPDNAN, 4, 4)
2165 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2166 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2167 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2168 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2169 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2170 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2171 FIELD(MVFR1, FPHP, 24, 4)
2172 FIELD(MVFR1, SIMDFMAC, 28, 4)
2173 
2174 FIELD(MVFR2, SIMDMISC, 0, 4)
2175 FIELD(MVFR2, FPMISC, 4, 4)
2176 
2177 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2178 
2179 /* If adding a feature bit which corresponds to a Linux ELF
2180  * HWCAP bit, remember to update the feature-bit-to-hwcap
2181  * mapping in linux-user/elfload.c:get_elf_hwcap().
2182  */
2183 enum arm_features {
2184     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2185     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2186     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2187     ARM_FEATURE_V6,
2188     ARM_FEATURE_V6K,
2189     ARM_FEATURE_V7,
2190     ARM_FEATURE_THUMB2,
2191     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2192     ARM_FEATURE_NEON,
2193     ARM_FEATURE_M, /* Microcontroller profile.  */
2194     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2195     ARM_FEATURE_THUMB2EE,
2196     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2197     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2198     ARM_FEATURE_V4T,
2199     ARM_FEATURE_V5,
2200     ARM_FEATURE_STRONGARM,
2201     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2202     ARM_FEATURE_GENERIC_TIMER,
2203     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2204     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2205     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2206     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2207     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2208     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2209     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2210     ARM_FEATURE_V8,
2211     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2212     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2213     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2214     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2215     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2216     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2217     ARM_FEATURE_PMU, /* has PMU support */
2218     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2219     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2220     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2221     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2222 };
2223 
2224 static inline int arm_feature(CPUARMState *env, int feature)
2225 {
2226     return (env->features & (1ULL << feature)) != 0;
2227 }
2228 
2229 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2230 
2231 #if !defined(CONFIG_USER_ONLY)
2232 /* Return true if exception levels below EL3 are in secure state,
2233  * or would be following an exception return to that level.
2234  * Unlike arm_is_secure() (which is always a question about the
2235  * _current_ state of the CPU) this doesn't care about the current
2236  * EL or mode.
2237  */
2238 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2239 {
2240     if (arm_feature(env, ARM_FEATURE_EL3)) {
2241         return !(env->cp15.scr_el3 & SCR_NS);
2242     } else {
2243         /* If EL3 is not supported then the secure state is implementation
2244          * defined, in which case QEMU defaults to non-secure.
2245          */
2246         return false;
2247     }
2248 }
2249 
2250 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2251 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2252 {
2253     if (arm_feature(env, ARM_FEATURE_EL3)) {
2254         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2255             /* CPU currently in AArch64 state and EL3 */
2256             return true;
2257         } else if (!is_a64(env) &&
2258                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2259             /* CPU currently in AArch32 state and monitor mode */
2260             return true;
2261         }
2262     }
2263     return false;
2264 }
2265 
2266 /* Return true if the processor is in secure state */
2267 static inline bool arm_is_secure(CPUARMState *env)
2268 {
2269     if (arm_is_el3_or_mon(env)) {
2270         return true;
2271     }
2272     return arm_is_secure_below_el3(env);
2273 }
2274 
2275 /*
2276  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2277  * This corresponds to the pseudocode EL2Enabled()
2278  */
2279 static inline bool arm_is_el2_enabled(CPUARMState *env)
2280 {
2281     if (arm_feature(env, ARM_FEATURE_EL2)) {
2282         if (arm_is_secure_below_el3(env)) {
2283             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2284         }
2285         return true;
2286     }
2287     return false;
2288 }
2289 
2290 #else
2291 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2292 {
2293     return false;
2294 }
2295 
2296 static inline bool arm_is_secure(CPUARMState *env)
2297 {
2298     return false;
2299 }
2300 
2301 static inline bool arm_is_el2_enabled(CPUARMState *env)
2302 {
2303     return false;
2304 }
2305 #endif
2306 
2307 /**
2308  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2309  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2310  * "for all purposes other than a direct read or write access of HCR_EL2."
2311  * Not included here is HCR_RW.
2312  */
2313 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2314 
2315 /* Return true if the specified exception level is running in AArch64 state. */
2316 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2317 {
2318     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2319      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2320      */
2321     assert(el >= 1 && el <= 3);
2322     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2323 
2324     /* The highest exception level is always at the maximum supported
2325      * register width, and then lower levels have a register width controlled
2326      * by bits in the SCR or HCR registers.
2327      */
2328     if (el == 3) {
2329         return aa64;
2330     }
2331 
2332     if (arm_feature(env, ARM_FEATURE_EL3) &&
2333         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2334         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2335     }
2336 
2337     if (el == 2) {
2338         return aa64;
2339     }
2340 
2341     if (arm_is_el2_enabled(env)) {
2342         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2343     }
2344 
2345     return aa64;
2346 }
2347 
2348 /* Function for determing whether guest cp register reads and writes should
2349  * access the secure or non-secure bank of a cp register.  When EL3 is
2350  * operating in AArch32 state, the NS-bit determines whether the secure
2351  * instance of a cp register should be used. When EL3 is AArch64 (or if
2352  * it doesn't exist at all) then there is no register banking, and all
2353  * accesses are to the non-secure version.
2354  */
2355 static inline bool access_secure_reg(CPUARMState *env)
2356 {
2357     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2358                 !arm_el_is_aa64(env, 3) &&
2359                 !(env->cp15.scr_el3 & SCR_NS));
2360 
2361     return ret;
2362 }
2363 
2364 /* Macros for accessing a specified CP register bank */
2365 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2366     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2367 
2368 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2369     do {                                                \
2370         if (_secure) {                                   \
2371             (_env)->cp15._regname##_s = (_val);            \
2372         } else {                                        \
2373             (_env)->cp15._regname##_ns = (_val);           \
2374         }                                               \
2375     } while (0)
2376 
2377 /* Macros for automatically accessing a specific CP register bank depending on
2378  * the current secure state of the system.  These macros are not intended for
2379  * supporting instruction translation reads/writes as these are dependent
2380  * solely on the SCR.NS bit and not the mode.
2381  */
2382 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2383     A32_BANKED_REG_GET((_env), _regname,                \
2384                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2385 
2386 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2387     A32_BANKED_REG_SET((_env), _regname,                                    \
2388                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2389                        (_val))
2390 
2391 void arm_cpu_list(void);
2392 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2393                                  uint32_t cur_el, bool secure);
2394 
2395 /* Interface between CPU and Interrupt controller.  */
2396 #ifndef CONFIG_USER_ONLY
2397 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2398 #else
2399 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2400 {
2401     return true;
2402 }
2403 #endif
2404 /**
2405  * armv7m_nvic_set_pending: mark the specified exception as pending
2406  * @opaque: the NVIC
2407  * @irq: the exception number to mark pending
2408  * @secure: false for non-banked exceptions or for the nonsecure
2409  * version of a banked exception, true for the secure version of a banked
2410  * exception.
2411  *
2412  * Marks the specified exception as pending. Note that we will assert()
2413  * if @secure is true and @irq does not specify one of the fixed set
2414  * of architecturally banked exceptions.
2415  */
2416 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2417 /**
2418  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2419  * @opaque: the NVIC
2420  * @irq: the exception number to mark pending
2421  * @secure: false for non-banked exceptions or for the nonsecure
2422  * version of a banked exception, true for the secure version of a banked
2423  * exception.
2424  *
2425  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2426  * exceptions (exceptions generated in the course of trying to take
2427  * a different exception).
2428  */
2429 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2430 /**
2431  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2432  * @opaque: the NVIC
2433  * @irq: the exception number to mark pending
2434  * @secure: false for non-banked exceptions or for the nonsecure
2435  * version of a banked exception, true for the secure version of a banked
2436  * exception.
2437  *
2438  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2439  * generated in the course of lazy stacking of FP registers.
2440  */
2441 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2442 /**
2443  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2444  *    exception, and whether it targets Secure state
2445  * @opaque: the NVIC
2446  * @pirq: set to pending exception number
2447  * @ptargets_secure: set to whether pending exception targets Secure
2448  *
2449  * This function writes the number of the highest priority pending
2450  * exception (the one which would be made active by
2451  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2452  * to true if the current highest priority pending exception should
2453  * be taken to Secure state, false for NS.
2454  */
2455 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2456                                       bool *ptargets_secure);
2457 /**
2458  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2459  * @opaque: the NVIC
2460  *
2461  * Move the current highest priority pending exception from the pending
2462  * state to the active state, and update v7m.exception to indicate that
2463  * it is the exception currently being handled.
2464  */
2465 void armv7m_nvic_acknowledge_irq(void *opaque);
2466 /**
2467  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2468  * @opaque: the NVIC
2469  * @irq: the exception number to complete
2470  * @secure: true if this exception was secure
2471  *
2472  * Returns: -1 if the irq was not active
2473  *           1 if completing this irq brought us back to base (no active irqs)
2474  *           0 if there is still an irq active after this one was completed
2475  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2476  */
2477 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2478 /**
2479  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2480  * @opaque: the NVIC
2481  * @irq: the exception number to mark pending
2482  * @secure: false for non-banked exceptions or for the nonsecure
2483  * version of a banked exception, true for the secure version of a banked
2484  * exception.
2485  *
2486  * Return whether an exception is "ready", i.e. whether the exception is
2487  * enabled and is configured at a priority which would allow it to
2488  * interrupt the current execution priority. This controls whether the
2489  * RDY bit for it in the FPCCR is set.
2490  */
2491 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2492 /**
2493  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2494  * @opaque: the NVIC
2495  *
2496  * Returns: the raw execution priority as defined by the v8M architecture.
2497  * This is the execution priority minus the effects of AIRCR.PRIS,
2498  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2499  * (v8M ARM ARM I_PKLD.)
2500  */
2501 int armv7m_nvic_raw_execution_priority(void *opaque);
2502 /**
2503  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2504  * priority is negative for the specified security state.
2505  * @opaque: the NVIC
2506  * @secure: the security state to test
2507  * This corresponds to the pseudocode IsReqExecPriNeg().
2508  */
2509 #ifndef CONFIG_USER_ONLY
2510 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2511 #else
2512 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2513 {
2514     return false;
2515 }
2516 #endif
2517 
2518 /* Interface for defining coprocessor registers.
2519  * Registers are defined in tables of arm_cp_reginfo structs
2520  * which are passed to define_arm_cp_regs().
2521  */
2522 
2523 /* When looking up a coprocessor register we look for it
2524  * via an integer which encodes all of:
2525  *  coprocessor number
2526  *  Crn, Crm, opc1, opc2 fields
2527  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2528  *    or via MRRC/MCRR?)
2529  *  non-secure/secure bank (AArch32 only)
2530  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2531  * (In this case crn and opc2 should be zero.)
2532  * For AArch64, there is no 32/64 bit size distinction;
2533  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2534  * and 4 bit CRn and CRm. The encoding patterns are chosen
2535  * to be easy to convert to and from the KVM encodings, and also
2536  * so that the hashtable can contain both AArch32 and AArch64
2537  * registers (to allow for interprocessing where we might run
2538  * 32 bit code on a 64 bit core).
2539  */
2540 /* This bit is private to our hashtable cpreg; in KVM register
2541  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2542  * in the upper bits of the 64 bit ID.
2543  */
2544 #define CP_REG_AA64_SHIFT 28
2545 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2546 
2547 /* To enable banking of coprocessor registers depending on ns-bit we
2548  * add a bit to distinguish between secure and non-secure cpregs in the
2549  * hashtable.
2550  */
2551 #define CP_REG_NS_SHIFT 29
2552 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2553 
2554 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2555     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2556      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2557 
2558 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2559     (CP_REG_AA64_MASK |                                 \
2560      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2561      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2562      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2563      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2564      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2565      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2566 
2567 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2568  * version used as a key for the coprocessor register hashtable
2569  */
2570 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2571 {
2572     uint32_t cpregid = kvmid;
2573     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2574         cpregid |= CP_REG_AA64_MASK;
2575     } else {
2576         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2577             cpregid |= (1 << 15);
2578         }
2579 
2580         /* KVM is always non-secure so add the NS flag on AArch32 register
2581          * entries.
2582          */
2583          cpregid |= 1 << CP_REG_NS_SHIFT;
2584     }
2585     return cpregid;
2586 }
2587 
2588 /* Convert a truncated 32 bit hashtable key into the full
2589  * 64 bit KVM register ID.
2590  */
2591 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2592 {
2593     uint64_t kvmid;
2594 
2595     if (cpregid & CP_REG_AA64_MASK) {
2596         kvmid = cpregid & ~CP_REG_AA64_MASK;
2597         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2598     } else {
2599         kvmid = cpregid & ~(1 << 15);
2600         if (cpregid & (1 << 15)) {
2601             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2602         } else {
2603             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2604         }
2605     }
2606     return kvmid;
2607 }
2608 
2609 /* Return the highest implemented Exception Level */
2610 static inline int arm_highest_el(CPUARMState *env)
2611 {
2612     if (arm_feature(env, ARM_FEATURE_EL3)) {
2613         return 3;
2614     }
2615     if (arm_feature(env, ARM_FEATURE_EL2)) {
2616         return 2;
2617     }
2618     return 1;
2619 }
2620 
2621 /* Return true if a v7M CPU is in Handler mode */
2622 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2623 {
2624     return env->v7m.exception != 0;
2625 }
2626 
2627 /* Return the current Exception Level (as per ARMv8; note that this differs
2628  * from the ARMv7 Privilege Level).
2629  */
2630 static inline int arm_current_el(CPUARMState *env)
2631 {
2632     if (arm_feature(env, ARM_FEATURE_M)) {
2633         return arm_v7m_is_handler_mode(env) ||
2634             !(env->v7m.control[env->v7m.secure] & 1);
2635     }
2636 
2637     if (is_a64(env)) {
2638         return extract32(env->pstate, 2, 2);
2639     }
2640 
2641     switch (env->uncached_cpsr & 0x1f) {
2642     case ARM_CPU_MODE_USR:
2643         return 0;
2644     case ARM_CPU_MODE_HYP:
2645         return 2;
2646     case ARM_CPU_MODE_MON:
2647         return 3;
2648     default:
2649         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2650             /* If EL3 is 32-bit then all secure privileged modes run in
2651              * EL3
2652              */
2653             return 3;
2654         }
2655 
2656         return 1;
2657     }
2658 }
2659 
2660 /**
2661  * write_list_to_cpustate
2662  * @cpu: ARMCPU
2663  *
2664  * For each register listed in the ARMCPU cpreg_indexes list, write
2665  * its value from the cpreg_values list into the ARMCPUState structure.
2666  * This updates TCG's working data structures from KVM data or
2667  * from incoming migration state.
2668  *
2669  * Returns: true if all register values were updated correctly,
2670  * false if some register was unknown or could not be written.
2671  * Note that we do not stop early on failure -- we will attempt
2672  * writing all registers in the list.
2673  */
2674 bool write_list_to_cpustate(ARMCPU *cpu);
2675 
2676 /**
2677  * write_cpustate_to_list:
2678  * @cpu: ARMCPU
2679  * @kvm_sync: true if this is for syncing back to KVM
2680  *
2681  * For each register listed in the ARMCPU cpreg_indexes list, write
2682  * its value from the ARMCPUState structure into the cpreg_values list.
2683  * This is used to copy info from TCG's working data structures into
2684  * KVM or for outbound migration.
2685  *
2686  * @kvm_sync is true if we are doing this in order to sync the
2687  * register state back to KVM. In this case we will only update
2688  * values in the list if the previous list->cpustate sync actually
2689  * successfully wrote the CPU state. Otherwise we will keep the value
2690  * that is in the list.
2691  *
2692  * Returns: true if all register values were read correctly,
2693  * false if some register was unknown or could not be read.
2694  * Note that we do not stop early on failure -- we will attempt
2695  * reading all registers in the list.
2696  */
2697 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2698 
2699 #define ARM_CPUID_TI915T      0x54029152
2700 #define ARM_CPUID_TI925T      0x54029252
2701 
2702 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2703 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2704 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2705 
2706 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2707 
2708 #define cpu_list arm_cpu_list
2709 
2710 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2711  *
2712  * If EL3 is 64-bit:
2713  *  + NonSecure EL1 & 0 stage 1
2714  *  + NonSecure EL1 & 0 stage 2
2715  *  + NonSecure EL2
2716  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2717  *  + Secure EL1 & 0
2718  *  + Secure EL3
2719  * If EL3 is 32-bit:
2720  *  + NonSecure PL1 & 0 stage 1
2721  *  + NonSecure PL1 & 0 stage 2
2722  *  + NonSecure PL2
2723  *  + Secure PL0
2724  *  + Secure PL1
2725  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2726  *
2727  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2728  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2729  *     because they may differ in access permissions even if the VA->PA map is
2730  *     the same
2731  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2732  *     translation, which means that we have one mmu_idx that deals with two
2733  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2734  *     architecturally permitted]
2735  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2736  *     handling via the TLB. The only way to do a stage 1 translation without
2737  *     the immediate stage 2 translation is via the ATS or AT system insns,
2738  *     which can be slow-pathed and always do a page table walk.
2739  *     The only use of stage 2 translations is either as part of an s1+2
2740  *     lookup or when loading the descriptors during a stage 1 page table walk,
2741  *     and in both those cases we don't use the TLB.
2742  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2743  *     translation regimes, because they map reasonably well to each other
2744  *     and they can't both be active at the same time.
2745  *  5. we want to be able to use the TLB for accesses done as part of a
2746  *     stage1 page table walk, rather than having to walk the stage2 page
2747  *     table over and over.
2748  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2749  *     Never (PAN) bit within PSTATE.
2750  *
2751  * This gives us the following list of cases:
2752  *
2753  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2754  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2755  * NS EL1 EL1&0 stage 1+2 +PAN
2756  * NS EL0 EL2&0
2757  * NS EL2 EL2&0
2758  * NS EL2 EL2&0 +PAN
2759  * NS EL2 (aka NS PL2)
2760  * S EL0 EL1&0 (aka S PL0)
2761  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2762  * S EL1 EL1&0 +PAN
2763  * S EL3 (aka S PL1)
2764  *
2765  * for a total of 11 different mmu_idx.
2766  *
2767  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2768  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2769  * NS EL2 if we ever model a Cortex-R52).
2770  *
2771  * M profile CPUs are rather different as they do not have a true MMU.
2772  * They have the following different MMU indexes:
2773  *  User
2774  *  Privileged
2775  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2776  *  Privileged, execution priority negative (ditto)
2777  * If the CPU supports the v8M Security Extension then there are also:
2778  *  Secure User
2779  *  Secure Privileged
2780  *  Secure User, execution priority negative
2781  *  Secure Privileged, execution priority negative
2782  *
2783  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2784  * are not quite the same -- different CPU types (most notably M profile
2785  * vs A/R profile) would like to use MMU indexes with different semantics,
2786  * but since we don't ever need to use all of those in a single CPU we
2787  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2788  * modes + total number of M profile MMU modes". The lower bits of
2789  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2790  * the same for any particular CPU.
2791  * Variables of type ARMMUIdx are always full values, and the core
2792  * index values are in variables of type 'int'.
2793  *
2794  * Our enumeration includes at the end some entries which are not "true"
2795  * mmu_idx values in that they don't have corresponding TLBs and are only
2796  * valid for doing slow path page table walks.
2797  *
2798  * The constant names here are patterned after the general style of the names
2799  * of the AT/ATS operations.
2800  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2801  * For M profile we arrange them to have a bit for priv, a bit for negpri
2802  * and a bit for secure.
2803  */
2804 #define ARM_MMU_IDX_A     0x10  /* A profile */
2805 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2806 #define ARM_MMU_IDX_M     0x40  /* M profile */
2807 
2808 /* Meanings of the bits for A profile mmu idx values */
2809 #define ARM_MMU_IDX_A_NS     0x8
2810 
2811 /* Meanings of the bits for M profile mmu idx values */
2812 #define ARM_MMU_IDX_M_PRIV   0x1
2813 #define ARM_MMU_IDX_M_NEGPRI 0x2
2814 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2815 
2816 #define ARM_MMU_IDX_TYPE_MASK \
2817     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2818 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2819 
2820 typedef enum ARMMMUIdx {
2821     /*
2822      * A-profile.
2823      */
2824     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2825     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2828     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2829     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2830     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2831     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2832 
2833     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2834     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2835     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2836     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2837     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2838     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2839     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2840 
2841     /*
2842      * These are not allocated TLBs and are used only for AT system
2843      * instructions or for the first stage of an S12 page table walk.
2844      */
2845     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2846     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2847     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2848     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2849     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2850     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2851     /*
2852      * Not allocated a TLB: used only for second stage of an S12 page
2853      * table walk, or for descriptor loads during first stage of an S1
2854      * page table walk. Note that if we ever want to have a TLB for this
2855      * then various TLB flush insns which currently are no-ops or flush
2856      * only stage 1 MMU indexes will need to change to flush stage 2.
2857      */
2858     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2859     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2860 
2861     /*
2862      * M-profile.
2863      */
2864     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2865     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2866     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2867     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2868     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2869     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2870     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2871     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2872 } ARMMMUIdx;
2873 
2874 /*
2875  * Bit macros for the core-mmu-index values for each index,
2876  * for use when calling tlb_flush_by_mmuidx() and friends.
2877  */
2878 #define TO_CORE_BIT(NAME) \
2879     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2880 
2881 typedef enum ARMMMUIdxBit {
2882     TO_CORE_BIT(E10_0),
2883     TO_CORE_BIT(E20_0),
2884     TO_CORE_BIT(E10_1),
2885     TO_CORE_BIT(E10_1_PAN),
2886     TO_CORE_BIT(E2),
2887     TO_CORE_BIT(E20_2),
2888     TO_CORE_BIT(E20_2_PAN),
2889     TO_CORE_BIT(SE10_0),
2890     TO_CORE_BIT(SE20_0),
2891     TO_CORE_BIT(SE10_1),
2892     TO_CORE_BIT(SE20_2),
2893     TO_CORE_BIT(SE10_1_PAN),
2894     TO_CORE_BIT(SE20_2_PAN),
2895     TO_CORE_BIT(SE2),
2896     TO_CORE_BIT(SE3),
2897 
2898     TO_CORE_BIT(MUser),
2899     TO_CORE_BIT(MPriv),
2900     TO_CORE_BIT(MUserNegPri),
2901     TO_CORE_BIT(MPrivNegPri),
2902     TO_CORE_BIT(MSUser),
2903     TO_CORE_BIT(MSPriv),
2904     TO_CORE_BIT(MSUserNegPri),
2905     TO_CORE_BIT(MSPrivNegPri),
2906 } ARMMMUIdxBit;
2907 
2908 #undef TO_CORE_BIT
2909 
2910 #define MMU_USER_IDX 0
2911 
2912 /* Indexes used when registering address spaces with cpu_address_space_init */
2913 typedef enum ARMASIdx {
2914     ARMASIdx_NS = 0,
2915     ARMASIdx_S = 1,
2916     ARMASIdx_TagNS = 2,
2917     ARMASIdx_TagS = 3,
2918 } ARMASIdx;
2919 
2920 /* Return the Exception Level targeted by debug exceptions. */
2921 static inline int arm_debug_target_el(CPUARMState *env)
2922 {
2923     bool secure = arm_is_secure(env);
2924     bool route_to_el2 = false;
2925 
2926     if (arm_is_el2_enabled(env)) {
2927         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2928                        env->cp15.mdcr_el2 & MDCR_TDE;
2929     }
2930 
2931     if (route_to_el2) {
2932         return 2;
2933     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2934                !arm_el_is_aa64(env, 3) && secure) {
2935         return 3;
2936     } else {
2937         return 1;
2938     }
2939 }
2940 
2941 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2942 {
2943     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2944      * CSSELR is RAZ/WI.
2945      */
2946     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2947 }
2948 
2949 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2950 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2951 {
2952     int cur_el = arm_current_el(env);
2953     int debug_el;
2954 
2955     if (cur_el == 3) {
2956         return false;
2957     }
2958 
2959     /* MDCR_EL3.SDD disables debug events from Secure state */
2960     if (arm_is_secure_below_el3(env)
2961         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2962         return false;
2963     }
2964 
2965     /*
2966      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2967      * while not masking the (D)ebug bit in DAIF.
2968      */
2969     debug_el = arm_debug_target_el(env);
2970 
2971     if (cur_el == debug_el) {
2972         return extract32(env->cp15.mdscr_el1, 13, 1)
2973             && !(env->daif & PSTATE_D);
2974     }
2975 
2976     /* Otherwise the debug target needs to be a higher EL */
2977     return debug_el > cur_el;
2978 }
2979 
2980 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2981 {
2982     int el = arm_current_el(env);
2983 
2984     if (el == 0 && arm_el_is_aa64(env, 1)) {
2985         return aa64_generate_debug_exceptions(env);
2986     }
2987 
2988     if (arm_is_secure(env)) {
2989         int spd;
2990 
2991         if (el == 0 && (env->cp15.sder & 1)) {
2992             /* SDER.SUIDEN means debug exceptions from Secure EL0
2993              * are always enabled. Otherwise they are controlled by
2994              * SDCR.SPD like those from other Secure ELs.
2995              */
2996             return true;
2997         }
2998 
2999         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3000         switch (spd) {
3001         case 1:
3002             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3003         case 0:
3004             /* For 0b00 we return true if external secure invasive debug
3005              * is enabled. On real hardware this is controlled by external
3006              * signals to the core. QEMU always permits debug, and behaves
3007              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3008              */
3009             return true;
3010         case 2:
3011             return false;
3012         case 3:
3013             return true;
3014         }
3015     }
3016 
3017     return el != 2;
3018 }
3019 
3020 /* Return true if debugging exceptions are currently enabled.
3021  * This corresponds to what in ARM ARM pseudocode would be
3022  *    if UsingAArch32() then
3023  *        return AArch32.GenerateDebugExceptions()
3024  *    else
3025  *        return AArch64.GenerateDebugExceptions()
3026  * We choose to push the if() down into this function for clarity,
3027  * since the pseudocode has it at all callsites except for the one in
3028  * CheckSoftwareStep(), where it is elided because both branches would
3029  * always return the same value.
3030  */
3031 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3032 {
3033     if (env->aarch64) {
3034         return aa64_generate_debug_exceptions(env);
3035     } else {
3036         return aa32_generate_debug_exceptions(env);
3037     }
3038 }
3039 
3040 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3041  * implicitly means this always returns false in pre-v8 CPUs.)
3042  */
3043 static inline bool arm_singlestep_active(CPUARMState *env)
3044 {
3045     return extract32(env->cp15.mdscr_el1, 0, 1)
3046         && arm_el_is_aa64(env, arm_debug_target_el(env))
3047         && arm_generate_debug_exceptions(env);
3048 }
3049 
3050 static inline bool arm_sctlr_b(CPUARMState *env)
3051 {
3052     return
3053         /* We need not implement SCTLR.ITD in user-mode emulation, so
3054          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3055          * This lets people run BE32 binaries with "-cpu any".
3056          */
3057 #ifndef CONFIG_USER_ONLY
3058         !arm_feature(env, ARM_FEATURE_V7) &&
3059 #endif
3060         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3061 }
3062 
3063 uint64_t arm_sctlr(CPUARMState *env, int el);
3064 
3065 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3066                                                   bool sctlr_b)
3067 {
3068 #ifdef CONFIG_USER_ONLY
3069     /*
3070      * In system mode, BE32 is modelled in line with the
3071      * architecture (as word-invariant big-endianness), where loads
3072      * and stores are done little endian but from addresses which
3073      * are adjusted by XORing with the appropriate constant. So the
3074      * endianness to use for the raw data access is not affected by
3075      * SCTLR.B.
3076      * In user mode, however, we model BE32 as byte-invariant
3077      * big-endianness (because user-only code cannot tell the
3078      * difference), and so we need to use a data access endianness
3079      * that depends on SCTLR.B.
3080      */
3081     if (sctlr_b) {
3082         return true;
3083     }
3084 #endif
3085     /* In 32bit endianness is determined by looking at CPSR's E bit */
3086     return env->uncached_cpsr & CPSR_E;
3087 }
3088 
3089 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3090 {
3091     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3092 }
3093 
3094 /* Return true if the processor is in big-endian mode. */
3095 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3096 {
3097     if (!is_a64(env)) {
3098         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3099     } else {
3100         int cur_el = arm_current_el(env);
3101         uint64_t sctlr = arm_sctlr(env, cur_el);
3102         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3103     }
3104 }
3105 
3106 #include "exec/cpu-all.h"
3107 
3108 /*
3109  * We have more than 32-bits worth of state per TB, so we split the data
3110  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3111  * We collect these two parts in CPUARMTBFlags where they are named
3112  * flags and flags2 respectively.
3113  *
3114  * The flags that are shared between all execution modes, TBFLAG_ANY,
3115  * are stored in flags.  The flags that are specific to a given mode
3116  * are stores in flags2.  Since cs_base is sized on the configured
3117  * address size, flags2 always has 64-bits for A64, and a minimum of
3118  * 32-bits for A32 and M32.
3119  *
3120  * The bits for 32-bit A-profile and M-profile partially overlap:
3121  *
3122  *  31         23         11 10             0
3123  * +-------------+----------+----------------+
3124  * |             |          |   TBFLAG_A32   |
3125  * | TBFLAG_AM32 |          +-----+----------+
3126  * |             |                |TBFLAG_M32|
3127  * +-------------+----------------+----------+
3128  *  31         23                6 5        0
3129  *
3130  * Unless otherwise noted, these bits are cached in env->hflags.
3131  */
3132 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3133 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3134 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3135 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3136 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3137 /* Target EL if we take a floating-point-disabled exception */
3138 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3139 /* For A-profile only, target EL for debug exceptions.  */
3140 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3141 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3142 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3143 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3144 
3145 /*
3146  * Bit usage when in AArch32 state, both A- and M-profile.
3147  */
3148 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3149 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3150 
3151 /*
3152  * Bit usage when in AArch32 state, for A-profile only.
3153  */
3154 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3155 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3156 /*
3157  * We store the bottom two bits of the CPAR as TB flags and handle
3158  * checks on the other bits at runtime. This shares the same bits as
3159  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3160  * Not cached, because VECLEN+VECSTRIDE are not cached.
3161  */
3162 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3163 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3164 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3165 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3166 /*
3167  * Indicates whether cp register reads and writes by guest code should access
3168  * the secure or nonsecure bank of banked registers; note that this is not
3169  * the same thing as the current security state of the processor!
3170  */
3171 FIELD(TBFLAG_A32, NS, 10, 1)
3172 
3173 /*
3174  * Bit usage when in AArch32 state, for M-profile only.
3175  */
3176 /* Handler (ie not Thread) mode */
3177 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3178 /* Whether we should generate stack-limit checks */
3179 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3180 /* Set if FPCCR.LSPACT is set */
3181 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3182 /* Set if we must create a new FP context */
3183 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3184 /* Set if FPCCR.S does not match current security state */
3185 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3186 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3187 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3188 
3189 /*
3190  * Bit usage when in AArch64 state
3191  */
3192 FIELD(TBFLAG_A64, TBII, 0, 2)
3193 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3194 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3195 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3196 FIELD(TBFLAG_A64, BT, 9, 1)
3197 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3198 FIELD(TBFLAG_A64, TBID, 12, 2)
3199 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3200 FIELD(TBFLAG_A64, ATA, 15, 1)
3201 FIELD(TBFLAG_A64, TCMA, 16, 2)
3202 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3203 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3204 
3205 /*
3206  * Helpers for using the above.
3207  */
3208 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3209     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3210 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3211     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3212 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3213     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3214 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3215     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3216 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3217     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3218 
3219 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3220 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3221 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3222 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3223 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3224 
3225 /**
3226  * cpu_mmu_index:
3227  * @env: The cpu environment
3228  * @ifetch: True for code access, false for data access.
3229  *
3230  * Return the core mmu index for the current translation regime.
3231  * This function is used by generic TCG code paths.
3232  */
3233 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3234 {
3235     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3236 }
3237 
3238 static inline bool bswap_code(bool sctlr_b)
3239 {
3240 #ifdef CONFIG_USER_ONLY
3241     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3242      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3243      * would also end up as a mixed-endian mode with BE code, LE data.
3244      */
3245     return
3246 #if TARGET_BIG_ENDIAN
3247         1 ^
3248 #endif
3249         sctlr_b;
3250 #else
3251     /* All code access in ARM is little endian, and there are no loaders
3252      * doing swaps that need to be reversed
3253      */
3254     return 0;
3255 #endif
3256 }
3257 
3258 #ifdef CONFIG_USER_ONLY
3259 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3260 {
3261     return
3262 #if TARGET_BIG_ENDIAN
3263        1 ^
3264 #endif
3265        arm_cpu_data_is_big_endian(env);
3266 }
3267 #endif
3268 
3269 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3270                           target_ulong *cs_base, uint32_t *flags);
3271 
3272 enum {
3273     QEMU_PSCI_CONDUIT_DISABLED = 0,
3274     QEMU_PSCI_CONDUIT_SMC = 1,
3275     QEMU_PSCI_CONDUIT_HVC = 2,
3276 };
3277 
3278 #ifndef CONFIG_USER_ONLY
3279 /* Return the address space index to use for a memory access */
3280 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3281 {
3282     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3283 }
3284 
3285 /* Return the AddressSpace to use for a memory access
3286  * (which depends on whether the access is S or NS, and whether
3287  * the board gave us a separate AddressSpace for S accesses).
3288  */
3289 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3290 {
3291     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3292 }
3293 #endif
3294 
3295 /**
3296  * arm_register_pre_el_change_hook:
3297  * Register a hook function which will be called immediately before this
3298  * CPU changes exception level or mode. The hook function will be
3299  * passed a pointer to the ARMCPU and the opaque data pointer passed
3300  * to this function when the hook was registered.
3301  *
3302  * Note that if a pre-change hook is called, any registered post-change hooks
3303  * are guaranteed to subsequently be called.
3304  */
3305 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3306                                  void *opaque);
3307 /**
3308  * arm_register_el_change_hook:
3309  * Register a hook function which will be called immediately after this
3310  * CPU changes exception level or mode. The hook function will be
3311  * passed a pointer to the ARMCPU and the opaque data pointer passed
3312  * to this function when the hook was registered.
3313  *
3314  * Note that any registered hooks registered here are guaranteed to be called
3315  * if pre-change hooks have been.
3316  */
3317 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3318         *opaque);
3319 
3320 /**
3321  * arm_rebuild_hflags:
3322  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3323  */
3324 void arm_rebuild_hflags(CPUARMState *env);
3325 
3326 /**
3327  * aa32_vfp_dreg:
3328  * Return a pointer to the Dn register within env in 32-bit mode.
3329  */
3330 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3331 {
3332     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3333 }
3334 
3335 /**
3336  * aa32_vfp_qreg:
3337  * Return a pointer to the Qn register within env in 32-bit mode.
3338  */
3339 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3340 {
3341     return &env->vfp.zregs[regno].d[0];
3342 }
3343 
3344 /**
3345  * aa64_vfp_qreg:
3346  * Return a pointer to the Qn register within env in 64-bit mode.
3347  */
3348 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3349 {
3350     return &env->vfp.zregs[regno].d[0];
3351 }
3352 
3353 /* Shared between translate-sve.c and sve_helper.c.  */
3354 extern const uint64_t pred_esz_masks[4];
3355 
3356 /* Helper for the macros below, validating the argument type. */
3357 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3358 {
3359     return x;
3360 }
3361 
3362 /*
3363  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3364  * Using these should be a bit more self-documenting than using the
3365  * generic target bits directly.
3366  */
3367 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3368 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3369 
3370 /*
3371  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3372  */
3373 #define PAGE_BTI  PAGE_TARGET_1
3374 #define PAGE_MTE  PAGE_TARGET_2
3375 
3376 #ifdef TARGET_TAGGED_ADDRESSES
3377 /**
3378  * cpu_untagged_addr:
3379  * @cs: CPU context
3380  * @x: tagged address
3381  *
3382  * Remove any address tag from @x.  This is explicitly related to the
3383  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3384  *
3385  * There should be a better place to put this, but we need this in
3386  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3387  */
3388 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3389 {
3390     ARMCPU *cpu = ARM_CPU(cs);
3391     if (cpu->env.tagged_addr_enable) {
3392         /*
3393          * TBI is enabled for userspace but not kernelspace addresses.
3394          * Only clear the tag if bit 55 is clear.
3395          */
3396         x &= sextract64(x, 0, 56);
3397     }
3398     return x;
3399 }
3400 #endif
3401 
3402 /*
3403  * Naming convention for isar_feature functions:
3404  * Functions which test 32-bit ID registers should have _aa32_ in
3405  * their name. Functions which test 64-bit ID registers should have
3406  * _aa64_ in their name. These must only be used in code where we
3407  * know for certain that the CPU has AArch32 or AArch64 respectively
3408  * or where the correct answer for a CPU which doesn't implement that
3409  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3410  * system registers that are specific to that CPU state, for "should
3411  * we let this system register bit be set" tests where the 32-bit
3412  * flavour of the register doesn't have the bit, and so on).
3413  * Functions which simply ask "does this feature exist at all" have
3414  * _any_ in their name, and always return the logical OR of the _aa64_
3415  * and the _aa32_ function.
3416  */
3417 
3418 /*
3419  * 32-bit feature tests via id registers.
3420  */
3421 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3422 {
3423     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3424 }
3425 
3426 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3427 {
3428     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3429 }
3430 
3431 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3432 {
3433     /* (M-profile) low-overhead loops and branch future */
3434     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3435 }
3436 
3437 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3438 {
3439     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3440 }
3441 
3442 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3443 {
3444     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3445 }
3446 
3447 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3448 {
3449     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3450 }
3451 
3452 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3453 {
3454     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3455 }
3456 
3457 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3458 {
3459     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3460 }
3461 
3462 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3463 {
3464     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3465 }
3466 
3467 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3468 {
3469     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3470 }
3471 
3472 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3473 {
3474     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3475 }
3476 
3477 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3478 {
3479     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3480 }
3481 
3482 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3483 {
3484     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3485 }
3486 
3487 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3488 {
3489     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3490 }
3491 
3492 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3493 {
3494     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3495 }
3496 
3497 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3498 {
3499     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3500 }
3501 
3502 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3505 }
3506 
3507 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3510 }
3511 
3512 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3513 {
3514     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3515 }
3516 
3517 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3518 {
3519     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3520 }
3521 
3522 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3523 {
3524     /*
3525      * Return true if M-profile state handling insns
3526      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3527      */
3528     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3529 }
3530 
3531 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3532 {
3533     /* Sadly this is encoded differently for A-profile and M-profile */
3534     if (isar_feature_aa32_mprofile(id)) {
3535         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3536     } else {
3537         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3538     }
3539 }
3540 
3541 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3542 {
3543     /*
3544      * Return true if MVE is supported (either integer or floating point).
3545      * We must check for M-profile as the MVFR1 field means something
3546      * else for A-profile.
3547      */
3548     return isar_feature_aa32_mprofile(id) &&
3549         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3550 }
3551 
3552 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3553 {
3554     /*
3555      * Return true if MVE is supported (either integer or floating point).
3556      * We must check for M-profile as the MVFR1 field means something
3557      * else for A-profile.
3558      */
3559     return isar_feature_aa32_mprofile(id) &&
3560         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3561 }
3562 
3563 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3564 {
3565     /*
3566      * Return true if either VFP or SIMD is implemented.
3567      * In this case, a minimum of VFP w/ D0-D15.
3568      */
3569     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3570 }
3571 
3572 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3573 {
3574     /* Return true if D16-D31 are implemented */
3575     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3576 }
3577 
3578 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3579 {
3580     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3581 }
3582 
3583 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3584 {
3585     /* Return true if CPU supports single precision floating point, VFPv2 */
3586     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3587 }
3588 
3589 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3590 {
3591     /* Return true if CPU supports single precision floating point, VFPv3 */
3592     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3593 }
3594 
3595 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3596 {
3597     /* Return true if CPU supports double precision floating point, VFPv2 */
3598     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3599 }
3600 
3601 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3602 {
3603     /* Return true if CPU supports double precision floating point, VFPv3 */
3604     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3605 }
3606 
3607 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3608 {
3609     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3610 }
3611 
3612 /*
3613  * We always set the FP and SIMD FP16 fields to indicate identical
3614  * levels of support (assuming SIMD is implemented at all), so
3615  * we only need one set of accessors.
3616  */
3617 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3618 {
3619     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3620 }
3621 
3622 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3623 {
3624     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3625 }
3626 
3627 /*
3628  * Note that this ID register field covers both VFP and Neon FMAC,
3629  * so should usually be tested in combination with some other
3630  * check that confirms the presence of whichever of VFP or Neon is
3631  * relevant, to avoid accidentally enabling a Neon feature on
3632  * a VFP-no-Neon core or vice-versa.
3633  */
3634 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3635 {
3636     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3637 }
3638 
3639 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3640 {
3641     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3642 }
3643 
3644 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3645 {
3646     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3647 }
3648 
3649 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3650 {
3651     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3652 }
3653 
3654 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3655 {
3656     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3657 }
3658 
3659 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3660 {
3661     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3662 }
3663 
3664 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3665 {
3666     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3667 }
3668 
3669 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3670 {
3671     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3672 }
3673 
3674 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3675 {
3676     /* 0xf means "non-standard IMPDEF PMU" */
3677     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3678         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3679 }
3680 
3681 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3682 {
3683     /* 0xf means "non-standard IMPDEF PMU" */
3684     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3685         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3686 }
3687 
3688 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3689 {
3690     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3691 }
3692 
3693 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3694 {
3695     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3696 }
3697 
3698 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3699 {
3700     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3701 }
3702 
3703 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3704 {
3705     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3706 }
3707 
3708 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3709 {
3710     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3711 }
3712 
3713 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3714 {
3715     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3716 }
3717 
3718 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3719 {
3720     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3721 }
3722 
3723 /*
3724  * 64-bit feature tests via id registers.
3725  */
3726 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3727 {
3728     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3729 }
3730 
3731 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3732 {
3733     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3734 }
3735 
3736 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3737 {
3738     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3739 }
3740 
3741 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3742 {
3743     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3744 }
3745 
3746 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3747 {
3748     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3749 }
3750 
3751 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3752 {
3753     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3754 }
3755 
3756 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3757 {
3758     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3759 }
3760 
3761 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3762 {
3763     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3764 }
3765 
3766 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3767 {
3768     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3769 }
3770 
3771 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3772 {
3773     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3774 }
3775 
3776 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3777 {
3778     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3779 }
3780 
3781 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3782 {
3783     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3784 }
3785 
3786 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3787 {
3788     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3789 }
3790 
3791 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3792 {
3793     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3794 }
3795 
3796 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3797 {
3798     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3799 }
3800 
3801 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3802 {
3803     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3804 }
3805 
3806 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3807 {
3808     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3809 }
3810 
3811 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3812 {
3813     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3814 }
3815 
3816 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3817 {
3818     /*
3819      * Return true if any form of pauth is enabled, as this
3820      * predicate controls migration of the 128-bit keys.
3821      */
3822     return (id->id_aa64isar1 &
3823             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3824              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3825              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3826              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3827 }
3828 
3829 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3830 {
3831     /*
3832      * Return true if pauth is enabled with the architected QARMA algorithm.
3833      * QEMU will always set APA+GPA to the same value.
3834      */
3835     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3836 }
3837 
3838 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3839 {
3840     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3841 }
3842 
3843 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3844 {
3845     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3846 }
3847 
3848 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3849 {
3850     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3851 }
3852 
3853 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3854 {
3855     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3856 }
3857 
3858 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3859 {
3860     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3861 }
3862 
3863 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3864 {
3865     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3866 }
3867 
3868 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3869 {
3870     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3871 }
3872 
3873 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3874 {
3875     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3876 }
3877 
3878 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3879 {
3880     /* We always set the AdvSIMD and FP fields identically.  */
3881     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3882 }
3883 
3884 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3885 {
3886     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3887     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3888 }
3889 
3890 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3891 {
3892     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3893 }
3894 
3895 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3896 {
3897     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3898 }
3899 
3900 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3901 {
3902     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3903 }
3904 
3905 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3906 {
3907     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3908 }
3909 
3910 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3911 {
3912     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3913 }
3914 
3915 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3916 {
3917     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3918 }
3919 
3920 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3921 {
3922     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3923 }
3924 
3925 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3926 {
3927     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3928 }
3929 
3930 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3931 {
3932     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3933 }
3934 
3935 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3936 {
3937     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3938 }
3939 
3940 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3941 {
3942     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3943 }
3944 
3945 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
3946 {
3947     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
3948 }
3949 
3950 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
3951 {
3952     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
3953 }
3954 
3955 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3956 {
3957     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3958 }
3959 
3960 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3961 {
3962     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3963 }
3964 
3965 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3968 }
3969 
3970 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3971 {
3972     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3973         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3974 }
3975 
3976 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3977 {
3978     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3979         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3980 }
3981 
3982 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3983 {
3984     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3985 }
3986 
3987 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3988 {
3989     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3990 }
3991 
3992 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3993 {
3994     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3995 }
3996 
3997 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3998 {
3999     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4000 }
4001 
4002 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4003 {
4004     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4005     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4006 }
4007 
4008 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4009 {
4010     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4011 }
4012 
4013 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4014 {
4015     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4016     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4017 }
4018 
4019 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4020 {
4021     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4022 }
4023 
4024 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4025 {
4026     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4027 }
4028 
4029 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4030 {
4031     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4032 }
4033 
4034 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4035 {
4036     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4037 }
4038 
4039 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4040 {
4041     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4042     if (key >= 2) {
4043         return true;      /* FEAT_CSV2_2 */
4044     }
4045     if (key == 1) {
4046         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4047         return key >= 2;  /* FEAT_CSV2_1p2 */
4048     }
4049     return false;
4050 }
4051 
4052 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4053 {
4054     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4055 }
4056 
4057 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4058 {
4059     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4060 }
4061 
4062 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4063 {
4064     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4065 }
4066 
4067 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4068 {
4069     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4070 }
4071 
4072 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4073 {
4074     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4075 }
4076 
4077 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4078 {
4079     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4080 }
4081 
4082 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4083 {
4084     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4085 }
4086 
4087 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4088 {
4089     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4090 }
4091 
4092 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4093 {
4094     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4095 }
4096 
4097 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4098 {
4099     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4100 }
4101 
4102 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4103 {
4104     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4105 }
4106 
4107 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4108 {
4109     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4110 }
4111 
4112 /*
4113  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4114  */
4115 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4116 {
4117     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4118 }
4119 
4120 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4121 {
4122     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4123 }
4124 
4125 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4126 {
4127     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4128 }
4129 
4130 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4131 {
4132     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4133 }
4134 
4135 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4136 {
4137     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4138 }
4139 
4140 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4141 {
4142     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4143 }
4144 
4145 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4146 {
4147     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4148 }
4149 
4150 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4151 {
4152     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4153 }
4154 
4155 /*
4156  * Forward to the above feature tests given an ARMCPU pointer.
4157  */
4158 #define cpu_isar_feature(name, cpu) \
4159     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4160 
4161 #endif
4162