xref: /qemu/target/arm/cpu.h (revision 513823e7521a09ed7ad1e32e6454bac3b2cbf52d)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37 
38 #define EXCP_UDEF            1   /* undefined instruction */
39 #define EXCP_SWI             2   /* software interrupt */
40 #define EXCP_PREFETCH_ABORT  3
41 #define EXCP_DATA_ABORT      4
42 #define EXCP_IRQ             5
43 #define EXCP_FIQ             6
44 #define EXCP_BKPT            7
45 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47 #define EXCP_HVC            11   /* HyperVisor Call */
48 #define EXCP_HYP_TRAP       12
49 #define EXCP_SMC            13   /* Secure Monitor Call */
50 #define EXCP_VIRQ           14
51 #define EXCP_VFIQ           15
52 #define EXCP_SEMIHOST       16   /* semihosting call */
53 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR          24
61 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI            26
63 #define EXCP_VINMI          27
64 #define EXCP_VFNMI          28
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* ARM-specific extra insn start words:
103  * 1: Conditional execution bits
104  * 2: Partial exception syndrome for data aborts
105  */
106 #define TARGET_INSN_START_EXTRA_WORDS 2
107 
108 /* The 2nd extra word holding syndrome info for data aborts does not use
109  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110  * help the sleb128 encoder do a better job.
111  * When restoring the CPU state, we shift it back up.
112  */
113 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114 #define ARM_INSN_START_WORD2_SHIFT 13
115 
116 /* We currently assume float and double are IEEE single and double
117    precision respectively.
118    Doing runtime conversions is tricky because VFP registers may contain
119    integer values (eg. as the result of a FTOSI instruction).
120    s<2n> maps to the least significant half of d<n>
121    s<2n+1> maps to the most significant half of d<n>
122  */
123 
124 /**
125  * DynamicGDBFeatureInfo:
126  * @desc: Contains the feature descriptions.
127  * @data: A union with data specific to the set of registers
128  *    @cpregs_keys: Array that contains the corresponding Key of
129  *                  a given cpreg with the same order of the cpreg
130  *                  in the XML description.
131  */
132 typedef struct DynamicGDBFeatureInfo {
133     GDBFeature desc;
134     union {
135         struct {
136             uint32_t *keys;
137         } cpregs;
138     } data;
139 } DynamicGDBFeatureInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 /* Define a maximum sized vector register.
148  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149  * For 64-bit, this is a 2048-bit SVE register.
150  *
151  * Note that the mapping between S, D, and Q views of the register bank
152  * differs between AArch64 and AArch32.
153  * In AArch32:
154  *  Qn = regs[n].d[1]:regs[n].d[0]
155  *  Dn = regs[n / 2].d[n & 1]
156  *  Sn = regs[n / 4].d[n % 4 / 2],
157  *       bits 31..0 for even n, and bits 63..32 for odd n
158  *       (and regs[16] to regs[31] are inaccessible)
159  * In AArch64:
160  *  Zn = regs[n].d[*]
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n].d[0]
163  *  Sn = regs[n].d[0] bits 31..0
164  *  Hn = regs[n].d[0] bits 15..0
165  *
166  * This corresponds to the architecturally defined mapping between
167  * the two execution states, and means we do not need to explicitly
168  * map these registers when changing states.
169  *
170  * Align the data for use with TCG host vector operations.
171  */
172 
173 #ifdef TARGET_AARCH64
174 # define ARM_MAX_VQ    16
175 #else
176 # define ARM_MAX_VQ    1
177 #endif
178 
179 typedef struct ARMVectorReg {
180     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181 } ARMVectorReg;
182 
183 #ifdef TARGET_AARCH64
184 /* In AArch32 mode, predicate registers do not exist at all.  */
185 typedef struct ARMPredicateReg {
186     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187 } ARMPredicateReg;
188 
189 /* In AArch32 mode, PAC keys do not exist at all.  */
190 typedef struct ARMPACKey {
191     uint64_t lo, hi;
192 } ARMPACKey;
193 #endif
194 
195 /* See the commentary above the TBFLAG field definitions.  */
196 typedef struct CPUARMTBFlags {
197     uint32_t flags;
198     target_ulong flags2;
199 } CPUARMTBFlags;
200 
201 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202 
203 typedef struct NVICState NVICState;
204 
205 /*
206  * Enum for indexing vfp.fp_status[].
207  *
208  * FPST_A32: is the "normal" fp status for AArch32 insns
209  * FPST_A64: is the "normal" fp status for AArch64 insns
210  * FPST_A32_F16: used for AArch32 half-precision calculations
211  * FPST_A64_F16: used for AArch64 half-precision calculations
212  * FPST_STD: the ARM "Standard FPSCR Value"
213  * FPST_STD_F16: used for half-precision
214  *       calculations with the ARM "Standard FPSCR Value"
215  * FPST_AH: used for the A64 insns which change behaviour
216  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
217  *       and the reciprocal and square root estimate/step insns)
218  * FPST_AH_F16: used for the A64 insns which change behaviour
219  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
220  *       and the reciprocal and square root estimate/step insns);
221  *       for half-precision
222  *
223  * Half-precision operations are governed by a separate
224  * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
225  * status structure to control this.
226  *
227  * The "Standard FPSCR", ie default-NaN, flush-to-zero,
228  * round-to-nearest and is used by any operations (generally
229  * Neon) which the architecture defines as controlled by the
230  * standard FPSCR value rather than the FPSCR.
231  *
232  * The "standard FPSCR but for fp16 ops" is needed because
233  * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
234  * using a fixed value for it.
235  *
236  * FPST_AH is needed because some insns have different
237  * behaviour when FPCR.AH == 1: they don't update cumulative
238  * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and
239  * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16,
240  * which means we need an FPST_AH_F16 as well.
241  *
242  * To avoid having to transfer exception bits around, we simply
243  * say that the FPSCR cumulative exception flags are the logical
244  * OR of the flags in the four fp statuses. This relies on the
245  * only thing which needs to read the exception flags being
246  * an explicit FPSCR read.
247  */
248 typedef enum ARMFPStatusFlavour {
249     FPST_A32,
250     FPST_A64,
251     FPST_A32_F16,
252     FPST_A64_F16,
253     FPST_AH,
254     FPST_AH_F16,
255     FPST_STD,
256     FPST_STD_F16,
257 } ARMFPStatusFlavour;
258 #define FPST_COUNT  8
259 
260 typedef struct CPUArchState {
261     /* Regs for current mode.  */
262     uint32_t regs[16];
263 
264     /* 32/64 switch only happens when taking and returning from
265      * exceptions so the overlap semantics are taken care of then
266      * instead of having a complicated union.
267      */
268     /* Regs for A64 mode.  */
269     uint64_t xregs[32];
270     uint64_t pc;
271     /* PSTATE isn't an architectural register for ARMv8. However, it is
272      * convenient for us to assemble the underlying state into a 32 bit format
273      * identical to the architectural format used for the SPSR. (This is also
274      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
275      * 'pstate' register are.) Of the PSTATE bits:
276      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
277      *    semantics as for AArch32, as described in the comments on each field)
278      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
279      *  DAIF (exception masks) are kept in env->daif
280      *  BTYPE is kept in env->btype
281      *  SM and ZA are kept in env->svcr
282      *  all other bits are stored in their correct places in env->pstate
283      */
284     uint32_t pstate;
285     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
286     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
287 
288     /* Cached TBFLAGS state.  See below for which bits are included.  */
289     CPUARMTBFlags hflags;
290 
291     /* Frequently accessed CPSR bits are stored separately for efficiency.
292        This contains all the other bits.  Use cpsr_{read,write} to access
293        the whole CPSR.  */
294     uint32_t uncached_cpsr;
295     uint32_t spsr;
296 
297     /* Banked registers.  */
298     uint64_t banked_spsr[8];
299     uint32_t banked_r13[8];
300     uint32_t banked_r14[8];
301 
302     /* These hold r8-r12.  */
303     uint32_t usr_regs[5];
304     uint32_t fiq_regs[5];
305 
306     /* cpsr flag cache for faster execution */
307     uint32_t CF; /* 0 or 1 */
308     uint32_t VF; /* V is the bit 31. All other bits are undefined */
309     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
310     uint32_t ZF; /* Z set if zero.  */
311     uint32_t QF; /* 0 or 1 */
312     uint32_t GE; /* cpsr[19:16] */
313     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
314     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
315     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
316     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
317 
318     uint64_t elr_el[4]; /* AArch64 exception link regs  */
319     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
320 
321     /* System control coprocessor (cp15) */
322     struct {
323         uint32_t c0_cpuid;
324         union { /* Cache size selection */
325             struct {
326                 uint64_t _unused_csselr0;
327                 uint64_t csselr_ns;
328                 uint64_t _unused_csselr1;
329                 uint64_t csselr_s;
330             };
331             uint64_t csselr_el[4];
332         };
333         union { /* System control register. */
334             struct {
335                 uint64_t _unused_sctlr;
336                 uint64_t sctlr_ns;
337                 uint64_t hsctlr;
338                 uint64_t sctlr_s;
339             };
340             uint64_t sctlr_el[4];
341         };
342         uint64_t vsctlr; /* Virtualization System control register. */
343         uint64_t cpacr_el1; /* Architectural feature access control register */
344         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
345         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
346         uint64_t sder; /* Secure debug enable register. */
347         uint32_t nsacr; /* Non-secure access control register. */
348         union { /* MMU translation table base 0. */
349             struct {
350                 uint64_t _unused_ttbr0_0;
351                 uint64_t ttbr0_ns;
352                 uint64_t _unused_ttbr0_1;
353                 uint64_t ttbr0_s;
354             };
355             uint64_t ttbr0_el[4];
356         };
357         union { /* MMU translation table base 1. */
358             struct {
359                 uint64_t _unused_ttbr1_0;
360                 uint64_t ttbr1_ns;
361                 uint64_t _unused_ttbr1_1;
362                 uint64_t ttbr1_s;
363             };
364             uint64_t ttbr1_el[4];
365         };
366         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
367         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
368         /* MMU translation table base control. */
369         uint64_t tcr_el[4];
370         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
371         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
372         uint32_t c2_data; /* MPU data cacheable bits.  */
373         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
374         union { /* MMU domain access control register
375                  * MPU write buffer control.
376                  */
377             struct {
378                 uint64_t dacr_ns;
379                 uint64_t dacr_s;
380             };
381             struct {
382                 uint64_t dacr32_el2;
383             };
384         };
385         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
386         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
387         uint64_t hcr_el2; /* Hypervisor configuration register */
388         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
389         uint64_t scr_el3; /* Secure configuration register.  */
390         union { /* Fault status registers.  */
391             struct {
392                 uint64_t ifsr_ns;
393                 uint64_t ifsr_s;
394             };
395             struct {
396                 uint64_t ifsr32_el2;
397             };
398         };
399         union {
400             struct {
401                 uint64_t _unused_dfsr;
402                 uint64_t dfsr_ns;
403                 uint64_t hsr;
404                 uint64_t dfsr_s;
405             };
406             uint64_t esr_el[4];
407         };
408         uint32_t c6_region[8]; /* MPU base/size registers.  */
409         union { /* Fault address registers. */
410             struct {
411                 uint64_t _unused_far0;
412 #if HOST_BIG_ENDIAN
413                 uint32_t ifar_ns;
414                 uint32_t dfar_ns;
415                 uint32_t ifar_s;
416                 uint32_t dfar_s;
417 #else
418                 uint32_t dfar_ns;
419                 uint32_t ifar_ns;
420                 uint32_t dfar_s;
421                 uint32_t ifar_s;
422 #endif
423                 uint64_t _unused_far3;
424             };
425             uint64_t far_el[4];
426         };
427         uint64_t hpfar_el2;
428         uint64_t hstr_el2;
429         union { /* Translation result. */
430             struct {
431                 uint64_t _unused_par_0;
432                 uint64_t par_ns;
433                 uint64_t _unused_par_1;
434                 uint64_t par_s;
435             };
436             uint64_t par_el[4];
437         };
438 
439         uint32_t c9_insn; /* Cache lockdown registers.  */
440         uint32_t c9_data;
441         uint64_t c9_pmcr; /* performance monitor control register */
442         uint64_t c9_pmcnten; /* perf monitor counter enables */
443         uint64_t c9_pmovsr; /* perf monitor overflow status */
444         uint64_t c9_pmuserenr; /* perf monitor user enable */
445         uint64_t c9_pmselr; /* perf monitor counter selection register */
446         uint64_t c9_pminten; /* perf monitor interrupt enables */
447         union { /* Memory attribute redirection */
448             struct {
449 #if HOST_BIG_ENDIAN
450                 uint64_t _unused_mair_0;
451                 uint32_t mair1_ns;
452                 uint32_t mair0_ns;
453                 uint64_t _unused_mair_1;
454                 uint32_t mair1_s;
455                 uint32_t mair0_s;
456 #else
457                 uint64_t _unused_mair_0;
458                 uint32_t mair0_ns;
459                 uint32_t mair1_ns;
460                 uint64_t _unused_mair_1;
461                 uint32_t mair0_s;
462                 uint32_t mair1_s;
463 #endif
464             };
465             uint64_t mair_el[4];
466         };
467         union { /* vector base address register */
468             struct {
469                 uint64_t _unused_vbar;
470                 uint64_t vbar_ns;
471                 uint64_t hvbar;
472                 uint64_t vbar_s;
473             };
474             uint64_t vbar_el[4];
475         };
476         uint32_t mvbar; /* (monitor) vector base address register */
477         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
478         struct { /* FCSE PID. */
479             uint32_t fcseidr_ns;
480             uint32_t fcseidr_s;
481         };
482         union { /* Context ID. */
483             struct {
484                 uint64_t _unused_contextidr_0;
485                 uint64_t contextidr_ns;
486                 uint64_t _unused_contextidr_1;
487                 uint64_t contextidr_s;
488             };
489             uint64_t contextidr_el[4];
490         };
491         union { /* User RW Thread register. */
492             struct {
493                 uint64_t tpidrurw_ns;
494                 uint64_t tpidrprw_ns;
495                 uint64_t htpidr;
496                 uint64_t _tpidr_el3;
497             };
498             uint64_t tpidr_el[4];
499         };
500         uint64_t tpidr2_el0;
501         /* The secure banks of these registers don't map anywhere */
502         uint64_t tpidrurw_s;
503         uint64_t tpidrprw_s;
504         uint64_t tpidruro_s;
505 
506         union { /* User RO Thread register. */
507             uint64_t tpidruro_ns;
508             uint64_t tpidrro_el[1];
509         };
510         uint64_t c14_cntfrq; /* Counter Frequency register */
511         uint64_t c14_cntkctl; /* Timer Control register */
512         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
513         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
514         uint64_t cntpoff_el2; /* Counter Physical Offset register */
515         ARMGenericTimer c14_timer[NUM_GTIMERS];
516         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
517         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
518         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
519         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
520         uint32_t c15_threadid; /* TI debugger thread-ID.  */
521         uint32_t c15_config_base_address; /* SCU base address.  */
522         uint32_t c15_diagnostic; /* diagnostic register */
523         uint32_t c15_power_diagnostic;
524         uint32_t c15_power_control; /* power control */
525         uint64_t dbgbvr[16]; /* breakpoint value registers */
526         uint64_t dbgbcr[16]; /* breakpoint control registers */
527         uint64_t dbgwvr[16]; /* watchpoint value registers */
528         uint64_t dbgwcr[16]; /* watchpoint control registers */
529         uint64_t dbgclaim;   /* DBGCLAIM bits */
530         uint64_t mdscr_el1;
531         uint64_t oslsr_el1; /* OS Lock Status */
532         uint64_t osdlr_el1; /* OS DoubleLock status */
533         uint64_t mdcr_el2;
534         uint64_t mdcr_el3;
535         /* Stores the architectural value of the counter *the last time it was
536          * updated* by pmccntr_op_start. Accesses should always be surrounded
537          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
538          * architecturally-correct value is being read/set.
539          */
540         uint64_t c15_ccnt;
541         /* Stores the delta between the architectural value and the underlying
542          * cycle count during normal operation. It is used to update c15_ccnt
543          * to be the correct architectural value before accesses. During
544          * accesses, c15_ccnt_delta contains the underlying count being used
545          * for the access, after which it reverts to the delta value in
546          * pmccntr_op_finish.
547          */
548         uint64_t c15_ccnt_delta;
549         uint64_t c14_pmevcntr[31];
550         uint64_t c14_pmevcntr_delta[31];
551         uint64_t c14_pmevtyper[31];
552         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
553         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
554         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
555         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
556         uint64_t gcr_el1;
557         uint64_t rgsr_el1;
558 
559         /* Minimal RAS registers */
560         uint64_t disr_el1;
561         uint64_t vdisr_el2;
562         uint64_t vsesr_el2;
563 
564         /*
565          * Fine-Grained Trap registers. We store these as arrays so the
566          * access checking code doesn't have to manually select
567          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
568          * FEAT_FGT2 will add more elements to these arrays.
569          */
570         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
571         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
572         uint64_t fgt_exec[1]; /* HFGITR */
573 
574         /* RME registers */
575         uint64_t gpccr_el3;
576         uint64_t gptbr_el3;
577         uint64_t mfar_el3;
578 
579         /* NV2 register */
580         uint64_t vncr_el2;
581     } cp15;
582 
583     struct {
584         /* M profile has up to 4 stack pointers:
585          * a Main Stack Pointer and a Process Stack Pointer for each
586          * of the Secure and Non-Secure states. (If the CPU doesn't support
587          * the security extension then it has only two SPs.)
588          * In QEMU we always store the currently active SP in regs[13],
589          * and the non-active SP for the current security state in
590          * v7m.other_sp. The stack pointers for the inactive security state
591          * are stored in other_ss_msp and other_ss_psp.
592          * switch_v7m_security_state() is responsible for rearranging them
593          * when we change security state.
594          */
595         uint32_t other_sp;
596         uint32_t other_ss_msp;
597         uint32_t other_ss_psp;
598         uint32_t vecbase[M_REG_NUM_BANKS];
599         uint32_t basepri[M_REG_NUM_BANKS];
600         uint32_t control[M_REG_NUM_BANKS];
601         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
602         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
603         uint32_t hfsr; /* HardFault Status */
604         uint32_t dfsr; /* Debug Fault Status Register */
605         uint32_t sfsr; /* Secure Fault Status Register */
606         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
607         uint32_t bfar; /* BusFault Address */
608         uint32_t sfar; /* Secure Fault Address Register */
609         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
610         int exception;
611         uint32_t primask[M_REG_NUM_BANKS];
612         uint32_t faultmask[M_REG_NUM_BANKS];
613         uint32_t aircr; /* only holds r/w state if security extn implemented */
614         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
615         uint32_t csselr[M_REG_NUM_BANKS];
616         uint32_t scr[M_REG_NUM_BANKS];
617         uint32_t msplim[M_REG_NUM_BANKS];
618         uint32_t psplim[M_REG_NUM_BANKS];
619         uint32_t fpcar[M_REG_NUM_BANKS];
620         uint32_t fpccr[M_REG_NUM_BANKS];
621         uint32_t fpdscr[M_REG_NUM_BANKS];
622         uint32_t cpacr[M_REG_NUM_BANKS];
623         uint32_t nsacr;
624         uint32_t ltpsize;
625         uint32_t vpr;
626     } v7m;
627 
628     /* Information associated with an exception about to be taken:
629      * code which raises an exception must set cs->exception_index and
630      * the relevant parts of this structure; the cpu_do_interrupt function
631      * will then set the guest-visible registers as part of the exception
632      * entry process.
633      */
634     struct {
635         uint32_t syndrome; /* AArch64 format syndrome register */
636         uint32_t fsr; /* AArch32 format fault status register info */
637         uint64_t vaddress; /* virtual addr associated with exception, if any */
638         uint32_t target_el; /* EL the exception should be targeted for */
639         /* If we implement EL2 we will also need to store information
640          * about the intermediate physical address for stage 2 faults.
641          */
642     } exception;
643 
644     /* Information associated with an SError */
645     struct {
646         uint8_t pending;
647         uint8_t has_esr;
648         uint64_t esr;
649     } serror;
650 
651     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
652 
653     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
654     uint32_t irq_line_state;
655 
656     /* Thumb-2 EE state.  */
657     uint32_t teecr;
658     uint32_t teehbr;
659 
660     /* VFP coprocessor state.  */
661     struct {
662         ARMVectorReg zregs[32];
663 
664 #ifdef TARGET_AARCH64
665         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
666 #define FFR_PRED_NUM 16
667         ARMPredicateReg pregs[17];
668         /* Scratch space for aa64 sve predicate temporary.  */
669         ARMPredicateReg preg_tmp;
670 #endif
671 
672         /* We store these fpcsr fields separately for convenience.  */
673         uint32_t qc[4] QEMU_ALIGNED(16);
674         int vec_len;
675         int vec_stride;
676 
677         /*
678          * Floating point status and control registers. Some bits are
679          * stored separately in other fields or in the float_status below.
680          */
681         uint64_t fpsr;
682         uint64_t fpcr;
683 
684         uint32_t xregs[16];
685 
686         /* Scratch space for aa32 neon expansion.  */
687         uint32_t scratch[8];
688 
689         /* There are a number of distinct float control structures. */
690         float_status fp_status[FPST_COUNT];
691 
692         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
693         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
694     } vfp;
695 
696     uint64_t exclusive_addr;
697     uint64_t exclusive_val;
698     /*
699      * Contains the 'val' for the second 64-bit register of LDXP, which comes
700      * from the higher address, not the high part of a complete 128-bit value.
701      * In some ways it might be more convenient to record the exclusive value
702      * as the low and high halves of a 128 bit data value, but the current
703      * semantics of these fields are baked into the migration format.
704      */
705     uint64_t exclusive_high;
706 
707     /* iwMMXt coprocessor state.  */
708     struct {
709         uint64_t regs[16];
710         uint64_t val;
711 
712         uint32_t cregs[16];
713     } iwmmxt;
714 
715 #ifdef TARGET_AARCH64
716     struct {
717         ARMPACKey apia;
718         ARMPACKey apib;
719         ARMPACKey apda;
720         ARMPACKey apdb;
721         ARMPACKey apga;
722     } keys;
723 
724     uint64_t scxtnum_el[4];
725 
726     /*
727      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
728      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
729      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
730      * When SVL is less than the architectural maximum, the accessible
731      * storage is restricted, such that if the SVL is X bytes the guest can
732      * see only the bottom X elements of zarray[], and only the least
733      * significant X bytes of each element of the array. (In other words,
734      * the observable part is always square.)
735      *
736      * The ZA storage can also be considered as a set of square tiles of
737      * elements of different sizes. The mapping from tiles to the ZA array
738      * is architecturally defined, such that for tiles of elements of esz
739      * bytes, the Nth row (or "horizontal slice") of tile T is in
740      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
741      * in the ZA storage, because its rows are striped through the ZA array.
742      *
743      * Because this is so large, keep this toward the end of the reset area,
744      * to keep the offsets into the rest of the structure smaller.
745      */
746     ARMVectorReg zarray[ARM_MAX_VQ * 16];
747 #endif
748 
749     struct CPUBreakpoint *cpu_breakpoint[16];
750     struct CPUWatchpoint *cpu_watchpoint[16];
751 
752     /* Optional fault info across tlb lookup. */
753     ARMMMUFaultInfo *tlb_fi;
754 
755     /* Fields up to this point are cleared by a CPU reset */
756     struct {} end_reset_fields;
757 
758     /* Fields after this point are preserved across CPU reset. */
759 
760     /* Internal CPU feature flags.  */
761     uint64_t features;
762 
763     /* PMSAv7 MPU */
764     struct {
765         uint32_t *drbar;
766         uint32_t *drsr;
767         uint32_t *dracr;
768         uint32_t rnr[M_REG_NUM_BANKS];
769     } pmsav7;
770 
771     /* PMSAv8 MPU */
772     struct {
773         /* The PMSAv8 implementation also shares some PMSAv7 config
774          * and state:
775          *  pmsav7.rnr (region number register)
776          *  pmsav7_dregion (number of configured regions)
777          */
778         uint32_t *rbar[M_REG_NUM_BANKS];
779         uint32_t *rlar[M_REG_NUM_BANKS];
780         uint32_t *hprbar;
781         uint32_t *hprlar;
782         uint32_t mair0[M_REG_NUM_BANKS];
783         uint32_t mair1[M_REG_NUM_BANKS];
784         uint32_t hprselr;
785     } pmsav8;
786 
787     /* v8M SAU */
788     struct {
789         uint32_t *rbar;
790         uint32_t *rlar;
791         uint32_t rnr;
792         uint32_t ctrl;
793     } sau;
794 
795 #if !defined(CONFIG_USER_ONLY)
796     NVICState *nvic;
797     const struct arm_boot_info *boot_info;
798     /* Store GICv3CPUState to access from this struct */
799     void *gicv3state;
800 #else /* CONFIG_USER_ONLY */
801     /* For usermode syscall translation.  */
802     bool eabi;
803 #endif /* CONFIG_USER_ONLY */
804 
805 #ifdef TARGET_TAGGED_ADDRESSES
806     /* Linux syscall tagged address support */
807     bool tagged_addr_enable;
808 #endif
809 } CPUARMState;
810 
811 static inline void set_feature(CPUARMState *env, int feature)
812 {
813     env->features |= 1ULL << feature;
814 }
815 
816 static inline void unset_feature(CPUARMState *env, int feature)
817 {
818     env->features &= ~(1ULL << feature);
819 }
820 
821 /**
822  * ARMELChangeHookFn:
823  * type of a function which can be registered via arm_register_el_change_hook()
824  * to get callbacks when the CPU changes its exception level or mode.
825  */
826 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
827 typedef struct ARMELChangeHook ARMELChangeHook;
828 struct ARMELChangeHook {
829     ARMELChangeHookFn *hook;
830     void *opaque;
831     QLIST_ENTRY(ARMELChangeHook) node;
832 };
833 
834 /* These values map onto the return values for
835  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
836 typedef enum ARMPSCIState {
837     PSCI_ON = 0,
838     PSCI_OFF = 1,
839     PSCI_ON_PENDING = 2
840 } ARMPSCIState;
841 
842 typedef struct ARMISARegisters ARMISARegisters;
843 
844 /*
845  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
846  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
847  *
848  * While processing properties during initialization, corresponding init bits
849  * are set for bits in sve_vq_map that have been set by properties.
850  *
851  * Bits set in supported represent valid vector lengths for the CPU type.
852  */
853 typedef struct {
854     uint32_t map, init, supported;
855 } ARMVQMap;
856 
857 /**
858  * ARMCPU:
859  * @env: #CPUARMState
860  *
861  * An ARM CPU core.
862  */
863 struct ArchCPU {
864     CPUState parent_obj;
865 
866     CPUARMState env;
867 
868     /* Coprocessor information */
869     GHashTable *cp_regs;
870     /* For marshalling (mostly coprocessor) register state between the
871      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
872      * we use these arrays.
873      */
874     /* List of register indexes managed via these arrays; (full KVM style
875      * 64 bit indexes, not CPRegInfo 32 bit indexes)
876      */
877     uint64_t *cpreg_indexes;
878     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
879     uint64_t *cpreg_values;
880     /* Length of the indexes, values, reset_values arrays */
881     int32_t cpreg_array_len;
882     /* These are used only for migration: incoming data arrives in
883      * these fields and is sanity checked in post_load before copying
884      * to the working data structures above.
885      */
886     uint64_t *cpreg_vmstate_indexes;
887     uint64_t *cpreg_vmstate_values;
888     int32_t cpreg_vmstate_array_len;
889 
890     DynamicGDBFeatureInfo dyn_sysreg_feature;
891     DynamicGDBFeatureInfo dyn_svereg_feature;
892     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
893     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
894 
895     /* Timers used by the generic (architected) timer */
896     QEMUTimer *gt_timer[NUM_GTIMERS];
897     /*
898      * Timer used by the PMU. Its state is restored after migration by
899      * pmu_op_finish() - it does not need other handling during migration
900      */
901     QEMUTimer *pmu_timer;
902     /* Timer used for WFxT timeouts */
903     QEMUTimer *wfxt_timer;
904 
905     /* GPIO outputs for generic timer */
906     qemu_irq gt_timer_outputs[NUM_GTIMERS];
907     /* GPIO output for GICv3 maintenance interrupt signal */
908     qemu_irq gicv3_maintenance_interrupt;
909     /* GPIO output for the PMU interrupt */
910     qemu_irq pmu_interrupt;
911 
912     /* MemoryRegion to use for secure physical accesses */
913     MemoryRegion *secure_memory;
914 
915     /* MemoryRegion to use for allocation tag accesses */
916     MemoryRegion *tag_memory;
917     MemoryRegion *secure_tag_memory;
918 
919     /* For v8M, pointer to the IDAU interface provided by board/SoC */
920     Object *idau;
921 
922     /* 'compatible' string for this CPU for Linux device trees */
923     const char *dtb_compatible;
924 
925     /* PSCI version for this CPU
926      * Bits[31:16] = Major Version
927      * Bits[15:0] = Minor Version
928      */
929     uint32_t psci_version;
930 
931     /* Current power state, access guarded by BQL */
932     ARMPSCIState power_state;
933 
934     /* CPU has virtualization extension */
935     bool has_el2;
936     /* CPU has security extension */
937     bool has_el3;
938     /* CPU has PMU (Performance Monitor Unit) */
939     bool has_pmu;
940     /* CPU has VFP */
941     bool has_vfp;
942     /* CPU has 32 VFP registers */
943     bool has_vfp_d32;
944     /* CPU has Neon */
945     bool has_neon;
946     /* CPU has M-profile DSP extension */
947     bool has_dsp;
948 
949     /* CPU has memory protection unit */
950     bool has_mpu;
951     /* CPU has MTE enabled in KVM mode */
952     bool kvm_mte;
953     /* PMSAv7 MPU number of supported regions */
954     uint32_t pmsav7_dregion;
955     /* PMSAv8 MPU number of supported hyp regions */
956     uint32_t pmsav8r_hdregion;
957     /* v8M SAU number of supported regions */
958     uint32_t sau_sregion;
959 
960     /* PSCI conduit used to invoke PSCI methods
961      * 0 - disabled, 1 - smc, 2 - hvc
962      */
963     uint32_t psci_conduit;
964 
965     /* For v8M, initial value of the Secure VTOR */
966     uint32_t init_svtor;
967     /* For v8M, initial value of the Non-secure VTOR */
968     uint32_t init_nsvtor;
969 
970     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
971      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
972      */
973     uint32_t kvm_target;
974 
975 #ifdef CONFIG_KVM
976     /* KVM init features for this CPU */
977     uint32_t kvm_init_features[7];
978 
979     /* KVM CPU state */
980 
981     /* KVM virtual time adjustment */
982     bool kvm_adjvtime;
983     bool kvm_vtime_dirty;
984     uint64_t kvm_vtime;
985 
986     /* KVM steal time */
987     OnOffAuto kvm_steal_time;
988 #endif /* CONFIG_KVM */
989 
990     /* Uniprocessor system with MP extensions */
991     bool mp_is_up;
992 
993     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
994      * and the probe failed (so we need to report the error in realize)
995      */
996     bool host_cpu_probe_failed;
997 
998     /* QOM property to indicate we should use the back-compat CNTFRQ default */
999     bool backcompat_cntfrq;
1000 
1001     /* QOM property to indicate we should use the back-compat QARMA5 default */
1002     bool backcompat_pauth_default_use_qarma5;
1003 
1004     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
1005      * register.
1006      */
1007     int32_t core_count;
1008 
1009     /* The instance init functions for implementation-specific subclasses
1010      * set these fields to specify the implementation-dependent values of
1011      * various constant registers and reset values of non-constant
1012      * registers.
1013      * Some of these might become QOM properties eventually.
1014      * Field names match the official register names as defined in the
1015      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
1016      * is used for reset values of non-constant registers; no reset_
1017      * prefix means a constant register.
1018      * Some of these registers are split out into a substructure that
1019      * is shared with the translators to control the ISA.
1020      *
1021      * Note that if you add an ID register to the ARMISARegisters struct
1022      * you need to also update the 32-bit and 64-bit versions of the
1023      * kvm_arm_get_host_cpu_features() function to correctly populate the
1024      * field by reading the value from the KVM vCPU.
1025      */
1026     struct ARMISARegisters {
1027         uint32_t id_isar0;
1028         uint32_t id_isar1;
1029         uint32_t id_isar2;
1030         uint32_t id_isar3;
1031         uint32_t id_isar4;
1032         uint32_t id_isar5;
1033         uint32_t id_isar6;
1034         uint32_t id_mmfr0;
1035         uint32_t id_mmfr1;
1036         uint32_t id_mmfr2;
1037         uint32_t id_mmfr3;
1038         uint32_t id_mmfr4;
1039         uint32_t id_mmfr5;
1040         uint32_t id_pfr0;
1041         uint32_t id_pfr1;
1042         uint32_t id_pfr2;
1043         uint32_t mvfr0;
1044         uint32_t mvfr1;
1045         uint32_t mvfr2;
1046         uint32_t id_dfr0;
1047         uint32_t id_dfr1;
1048         uint32_t dbgdidr;
1049         uint32_t dbgdevid;
1050         uint32_t dbgdevid1;
1051         uint64_t id_aa64isar0;
1052         uint64_t id_aa64isar1;
1053         uint64_t id_aa64isar2;
1054         uint64_t id_aa64pfr0;
1055         uint64_t id_aa64pfr1;
1056         uint64_t id_aa64mmfr0;
1057         uint64_t id_aa64mmfr1;
1058         uint64_t id_aa64mmfr2;
1059         uint64_t id_aa64mmfr3;
1060         uint64_t id_aa64dfr0;
1061         uint64_t id_aa64dfr1;
1062         uint64_t id_aa64zfr0;
1063         uint64_t id_aa64smfr0;
1064         uint64_t reset_pmcr_el0;
1065     } isar;
1066     uint64_t midr;
1067     uint32_t revidr;
1068     uint32_t reset_fpsid;
1069     uint64_t ctr;
1070     uint32_t reset_sctlr;
1071     uint64_t pmceid0;
1072     uint64_t pmceid1;
1073     uint32_t id_afr0;
1074     uint64_t id_aa64afr0;
1075     uint64_t id_aa64afr1;
1076     uint64_t clidr;
1077     uint64_t mp_affinity; /* MP ID without feature bits */
1078     /* The elements of this array are the CCSIDR values for each cache,
1079      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1080      */
1081     uint64_t ccsidr[16];
1082     uint64_t reset_cbar;
1083     uint32_t reset_auxcr;
1084     bool reset_hivecs;
1085     uint8_t reset_l0gptsz;
1086 
1087     /*
1088      * Intermediate values used during property parsing.
1089      * Once finalized, the values should be read from ID_AA64*.
1090      */
1091     bool prop_pauth;
1092     bool prop_pauth_impdef;
1093     bool prop_pauth_qarma3;
1094     bool prop_pauth_qarma5;
1095     bool prop_lpa2;
1096 
1097     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1098     uint8_t dcz_blocksize;
1099     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1100     uint8_t gm_blocksize;
1101 
1102     uint64_t rvbar_prop; /* Property/input signals.  */
1103 
1104     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1105     int gic_num_lrs; /* number of list registers */
1106     int gic_vpribits; /* number of virtual priority bits */
1107     int gic_vprebits; /* number of virtual preemption bits */
1108     int gic_pribits; /* number of physical priority bits */
1109 
1110     /* Whether the cfgend input is high (i.e. this CPU should reset into
1111      * big-endian mode).  This setting isn't used directly: instead it modifies
1112      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1113      * architecture version.
1114      */
1115     bool cfgend;
1116 
1117     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1118     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1119 
1120     int32_t node_id; /* NUMA node this CPU belongs to */
1121 
1122     /* Used to synchronize KVM and QEMU in-kernel device levels */
1123     uint8_t device_irq_level;
1124 
1125     /* Used to set the maximum vector length the cpu will support.  */
1126     uint32_t sve_max_vq;
1127 
1128 #ifdef CONFIG_USER_ONLY
1129     /* Used to set the default vector length at process start. */
1130     uint32_t sve_default_vq;
1131     uint32_t sme_default_vq;
1132 #endif
1133 
1134     ARMVQMap sve_vq;
1135     ARMVQMap sme_vq;
1136 
1137     /* Generic timer counter frequency, in Hz */
1138     uint64_t gt_cntfrq_hz;
1139 };
1140 
1141 typedef struct ARMCPUInfo {
1142     const char *name;
1143     const char *deprecation_note;
1144     void (*initfn)(Object *obj);
1145     void (*class_init)(ObjectClass *oc, void *data);
1146 } ARMCPUInfo;
1147 
1148 /**
1149  * ARMCPUClass:
1150  * @parent_realize: The parent class' realize handler.
1151  * @parent_phases: The parent class' reset phase handlers.
1152  *
1153  * An ARM CPU model.
1154  */
1155 struct ARMCPUClass {
1156     CPUClass parent_class;
1157 
1158     const ARMCPUInfo *info;
1159     DeviceRealize parent_realize;
1160     ResettablePhases parent_phases;
1161 };
1162 
1163 struct AArch64CPUClass {
1164     ARMCPUClass parent_class;
1165 };
1166 
1167 /* Callback functions for the generic timer's timers. */
1168 void arm_gt_ptimer_cb(void *opaque);
1169 void arm_gt_vtimer_cb(void *opaque);
1170 void arm_gt_htimer_cb(void *opaque);
1171 void arm_gt_stimer_cb(void *opaque);
1172 void arm_gt_hvtimer_cb(void *opaque);
1173 
1174 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1175 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1176 
1177 void arm_cpu_post_init(Object *obj);
1178 
1179 #define ARM_AFF0_SHIFT 0
1180 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1181 #define ARM_AFF1_SHIFT 8
1182 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1183 #define ARM_AFF2_SHIFT 16
1184 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1185 #define ARM_AFF3_SHIFT 32
1186 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1187 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1188 
1189 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1190 #define ARM64_AFFINITY_MASK \
1191     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1192 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1193 
1194 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1195 
1196 #ifndef CONFIG_USER_ONLY
1197 extern const VMStateDescription vmstate_arm_cpu;
1198 
1199 void arm_cpu_do_interrupt(CPUState *cpu);
1200 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1201 
1202 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1203                                          MemTxAttrs *attrs);
1204 #endif /* !CONFIG_USER_ONLY */
1205 
1206 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1207 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1208 
1209 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1210                              int cpuid, DumpState *s);
1211 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1212                              int cpuid, DumpState *s);
1213 
1214 /**
1215  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1216  * @cpu: CPU (which must have been freshly reset)
1217  * @target_el: exception level to put the CPU into
1218  * @secure: whether to put the CPU in secure state
1219  *
1220  * When QEMU is directly running a guest kernel at a lower level than
1221  * EL3 it implicitly emulates some aspects of the guest firmware.
1222  * This includes that on reset we need to configure the parts of the
1223  * CPU corresponding to EL3 so that the real guest code can run at its
1224  * lower exception level. This function does that post-reset CPU setup,
1225  * for when we do direct boot of a guest kernel, and for when we
1226  * emulate PSCI and similar firmware interfaces starting a CPU at a
1227  * lower exception level.
1228  *
1229  * @target_el must be an EL implemented by the CPU between 1 and 3.
1230  * We do not support dropping into a Secure EL other than 3.
1231  *
1232  * It is the responsibility of the caller to call arm_rebuild_hflags().
1233  */
1234 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1235 
1236 #ifdef TARGET_AARCH64
1237 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1238 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1239 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1240 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1241                            int new_el, bool el0_a64);
1242 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1243 
1244 /*
1245  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1246  * The byte at offset i from the start of the in-memory representation contains
1247  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1248  * lowest offsets are stored in the lowest memory addresses, then that nearly
1249  * matches QEMU's representation, which is to use an array of host-endian
1250  * uint64_t's, where the lower offsets are at the lower indices. To complete
1251  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1252  */
1253 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1254 {
1255 #if HOST_BIG_ENDIAN
1256     int i;
1257 
1258     for (i = 0; i < nr; ++i) {
1259         dst[i] = bswap64(src[i]);
1260     }
1261 
1262     return dst;
1263 #else
1264     return src;
1265 #endif
1266 }
1267 
1268 #else
1269 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1270 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1271                                          int n, bool a)
1272 { }
1273 #endif
1274 
1275 void aarch64_sync_32_to_64(CPUARMState *env);
1276 void aarch64_sync_64_to_32(CPUARMState *env);
1277 
1278 int fp_exception_el(CPUARMState *env, int cur_el);
1279 int sve_exception_el(CPUARMState *env, int cur_el);
1280 int sme_exception_el(CPUARMState *env, int cur_el);
1281 
1282 /**
1283  * sve_vqm1_for_el_sm:
1284  * @env: CPUARMState
1285  * @el: exception level
1286  * @sm: streaming mode
1287  *
1288  * Compute the current vector length for @el & @sm, in units of
1289  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1290  * If @sm, compute for SVL, otherwise NVL.
1291  */
1292 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1293 
1294 /* Likewise, but using @sm = PSTATE.SM. */
1295 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1296 
1297 static inline bool is_a64(CPUARMState *env)
1298 {
1299     return env->aarch64;
1300 }
1301 
1302 /**
1303  * pmu_op_start/finish
1304  * @env: CPUARMState
1305  *
1306  * Convert all PMU counters between their delta form (the typical mode when
1307  * they are enabled) and the guest-visible values. These two calls must
1308  * surround any action which might affect the counters.
1309  */
1310 void pmu_op_start(CPUARMState *env);
1311 void pmu_op_finish(CPUARMState *env);
1312 
1313 /*
1314  * Called when a PMU counter is due to overflow
1315  */
1316 void arm_pmu_timer_cb(void *opaque);
1317 
1318 /**
1319  * Functions to register as EL change hooks for PMU mode filtering
1320  */
1321 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1322 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1323 
1324 /*
1325  * pmu_init
1326  * @cpu: ARMCPU
1327  *
1328  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1329  * for the current configuration
1330  */
1331 void pmu_init(ARMCPU *cpu);
1332 
1333 /* SCTLR bit meanings. Several bits have been reused in newer
1334  * versions of the architecture; in that case we define constants
1335  * for both old and new bit meanings. Code which tests against those
1336  * bits should probably check or otherwise arrange that the CPU
1337  * is the architectural version it expects.
1338  */
1339 #define SCTLR_M       (1U << 0)
1340 #define SCTLR_A       (1U << 1)
1341 #define SCTLR_C       (1U << 2)
1342 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1343 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1344 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1345 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1346 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1347 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1348 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1349 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1350 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1351 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1352 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1353 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1354 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1355 #define SCTLR_SED     (1U << 8) /* v8 onward */
1356 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1357 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1358 #define SCTLR_F       (1U << 10) /* up to v6 */
1359 #define SCTLR_SW      (1U << 10) /* v7 */
1360 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1361 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1362 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1363 #define SCTLR_I       (1U << 12)
1364 #define SCTLR_V       (1U << 13) /* AArch32 only */
1365 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1366 #define SCTLR_RR      (1U << 14) /* up to v7 */
1367 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1368 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1369 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1370 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1371 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1372 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1373 #define SCTLR_BR      (1U << 17) /* PMSA only */
1374 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1375 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1376 #define SCTLR_WXN     (1U << 19)
1377 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1378 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1379 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1380 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1381 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1382 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1383 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1384 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1385 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1386 #define SCTLR_VE      (1U << 24) /* up to v7 */
1387 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1388 #define SCTLR_EE      (1U << 25)
1389 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1390 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1391 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1392 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1393 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1394 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1395 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1396 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1397 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1398 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1399 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1400 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1401 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1402 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1403 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1404 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1405 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1406 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1407 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1408 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1409 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1410 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1411 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1412 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1413 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1414 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1415 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1416 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1417 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1418 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1419 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1420 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1421 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1422 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1423 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1424 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1425 
1426 #define CPSR_M (0x1fU)
1427 #define CPSR_T (1U << 5)
1428 #define CPSR_F (1U << 6)
1429 #define CPSR_I (1U << 7)
1430 #define CPSR_A (1U << 8)
1431 #define CPSR_E (1U << 9)
1432 #define CPSR_IT_2_7 (0xfc00U)
1433 #define CPSR_GE (0xfU << 16)
1434 #define CPSR_IL (1U << 20)
1435 #define CPSR_DIT (1U << 21)
1436 #define CPSR_PAN (1U << 22)
1437 #define CPSR_SSBS (1U << 23)
1438 #define CPSR_J (1U << 24)
1439 #define CPSR_IT_0_1 (3U << 25)
1440 #define CPSR_Q (1U << 27)
1441 #define CPSR_V (1U << 28)
1442 #define CPSR_C (1U << 29)
1443 #define CPSR_Z (1U << 30)
1444 #define CPSR_N (1U << 31)
1445 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1446 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1447 #define ISR_FS (1U << 9)
1448 #define ISR_IS (1U << 10)
1449 
1450 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1451 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1452     | CPSR_NZCV)
1453 /* Bits writable in user mode.  */
1454 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1455 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1456 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1457 
1458 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1459 #define XPSR_EXCP 0x1ffU
1460 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1461 #define XPSR_IT_2_7 CPSR_IT_2_7
1462 #define XPSR_GE CPSR_GE
1463 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1464 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1465 #define XPSR_IT_0_1 CPSR_IT_0_1
1466 #define XPSR_Q CPSR_Q
1467 #define XPSR_V CPSR_V
1468 #define XPSR_C CPSR_C
1469 #define XPSR_Z CPSR_Z
1470 #define XPSR_N CPSR_N
1471 #define XPSR_NZCV CPSR_NZCV
1472 #define XPSR_IT CPSR_IT
1473 
1474 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1475  * Only these are valid when in AArch64 mode; in
1476  * AArch32 mode SPSRs are basically CPSR-format.
1477  */
1478 #define PSTATE_SP (1U)
1479 #define PSTATE_M (0xFU)
1480 #define PSTATE_nRW (1U << 4)
1481 #define PSTATE_F (1U << 6)
1482 #define PSTATE_I (1U << 7)
1483 #define PSTATE_A (1U << 8)
1484 #define PSTATE_D (1U << 9)
1485 #define PSTATE_BTYPE (3U << 10)
1486 #define PSTATE_SSBS (1U << 12)
1487 #define PSTATE_ALLINT (1U << 13)
1488 #define PSTATE_IL (1U << 20)
1489 #define PSTATE_SS (1U << 21)
1490 #define PSTATE_PAN (1U << 22)
1491 #define PSTATE_UAO (1U << 23)
1492 #define PSTATE_DIT (1U << 24)
1493 #define PSTATE_TCO (1U << 25)
1494 #define PSTATE_V (1U << 28)
1495 #define PSTATE_C (1U << 29)
1496 #define PSTATE_Z (1U << 30)
1497 #define PSTATE_N (1U << 31)
1498 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1499 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1500 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1501 /* Mode values for AArch64 */
1502 #define PSTATE_MODE_EL3h 13
1503 #define PSTATE_MODE_EL3t 12
1504 #define PSTATE_MODE_EL2h 9
1505 #define PSTATE_MODE_EL2t 8
1506 #define PSTATE_MODE_EL1h 5
1507 #define PSTATE_MODE_EL1t 4
1508 #define PSTATE_MODE_EL0t 0
1509 
1510 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1511 FIELD(SVCR, SM, 0, 1)
1512 FIELD(SVCR, ZA, 1, 1)
1513 
1514 /* Fields for SMCR_ELx. */
1515 FIELD(SMCR, LEN, 0, 4)
1516 FIELD(SMCR, FA64, 31, 1)
1517 
1518 /* Write a new value to v7m.exception, thus transitioning into or out
1519  * of Handler mode; this may result in a change of active stack pointer.
1520  */
1521 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1522 
1523 /* Map EL and handler into a PSTATE_MODE.  */
1524 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1525 {
1526     return (el << 2) | handler;
1527 }
1528 
1529 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1530  * interprocessing, so we don't attempt to sync with the cpsr state used by
1531  * the 32 bit decoder.
1532  */
1533 static inline uint32_t pstate_read(CPUARMState *env)
1534 {
1535     int ZF;
1536 
1537     ZF = (env->ZF == 0);
1538     return (env->NF & 0x80000000) | (ZF << 30)
1539         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1540         | env->pstate | env->daif | (env->btype << 10);
1541 }
1542 
1543 static inline void pstate_write(CPUARMState *env, uint32_t val)
1544 {
1545     env->ZF = (~val) & PSTATE_Z;
1546     env->NF = val;
1547     env->CF = (val >> 29) & 1;
1548     env->VF = (val << 3) & 0x80000000;
1549     env->daif = val & PSTATE_DAIF;
1550     env->btype = (val >> 10) & 3;
1551     env->pstate = val & ~CACHED_PSTATE_BITS;
1552 }
1553 
1554 /* Return the current CPSR value.  */
1555 uint32_t cpsr_read(CPUARMState *env);
1556 
1557 typedef enum CPSRWriteType {
1558     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1559     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1560     CPSRWriteRaw = 2,
1561         /* trust values, no reg bank switch, no hflags rebuild */
1562     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1563 } CPSRWriteType;
1564 
1565 /*
1566  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1567  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1568  * correspond to TB flags bits cached in the hflags, unless @write_type
1569  * is CPSRWriteRaw.
1570  */
1571 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1572                 CPSRWriteType write_type);
1573 
1574 /* Return the current xPSR value.  */
1575 static inline uint32_t xpsr_read(CPUARMState *env)
1576 {
1577     int ZF;
1578     ZF = (env->ZF == 0);
1579     return (env->NF & 0x80000000) | (ZF << 30)
1580         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1581         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1582         | ((env->condexec_bits & 0xfc) << 8)
1583         | (env->GE << 16)
1584         | env->v7m.exception;
1585 }
1586 
1587 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1588 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1589 {
1590     if (mask & XPSR_NZCV) {
1591         env->ZF = (~val) & XPSR_Z;
1592         env->NF = val;
1593         env->CF = (val >> 29) & 1;
1594         env->VF = (val << 3) & 0x80000000;
1595     }
1596     if (mask & XPSR_Q) {
1597         env->QF = ((val & XPSR_Q) != 0);
1598     }
1599     if (mask & XPSR_GE) {
1600         env->GE = (val & XPSR_GE) >> 16;
1601     }
1602 #ifndef CONFIG_USER_ONLY
1603     if (mask & XPSR_T) {
1604         env->thumb = ((val & XPSR_T) != 0);
1605     }
1606     if (mask & XPSR_IT_0_1) {
1607         env->condexec_bits &= ~3;
1608         env->condexec_bits |= (val >> 25) & 3;
1609     }
1610     if (mask & XPSR_IT_2_7) {
1611         env->condexec_bits &= 3;
1612         env->condexec_bits |= (val >> 8) & 0xfc;
1613     }
1614     if (mask & XPSR_EXCP) {
1615         /* Note that this only happens on exception exit */
1616         write_v7m_exception(env, val & XPSR_EXCP);
1617     }
1618 #endif
1619 }
1620 
1621 #define HCR_VM        (1ULL << 0)
1622 #define HCR_SWIO      (1ULL << 1)
1623 #define HCR_PTW       (1ULL << 2)
1624 #define HCR_FMO       (1ULL << 3)
1625 #define HCR_IMO       (1ULL << 4)
1626 #define HCR_AMO       (1ULL << 5)
1627 #define HCR_VF        (1ULL << 6)
1628 #define HCR_VI        (1ULL << 7)
1629 #define HCR_VSE       (1ULL << 8)
1630 #define HCR_FB        (1ULL << 9)
1631 #define HCR_BSU_MASK  (3ULL << 10)
1632 #define HCR_DC        (1ULL << 12)
1633 #define HCR_TWI       (1ULL << 13)
1634 #define HCR_TWE       (1ULL << 14)
1635 #define HCR_TID0      (1ULL << 15)
1636 #define HCR_TID1      (1ULL << 16)
1637 #define HCR_TID2      (1ULL << 17)
1638 #define HCR_TID3      (1ULL << 18)
1639 #define HCR_TSC       (1ULL << 19)
1640 #define HCR_TIDCP     (1ULL << 20)
1641 #define HCR_TACR      (1ULL << 21)
1642 #define HCR_TSW       (1ULL << 22)
1643 #define HCR_TPCP      (1ULL << 23)
1644 #define HCR_TPU       (1ULL << 24)
1645 #define HCR_TTLB      (1ULL << 25)
1646 #define HCR_TVM       (1ULL << 26)
1647 #define HCR_TGE       (1ULL << 27)
1648 #define HCR_TDZ       (1ULL << 28)
1649 #define HCR_HCD       (1ULL << 29)
1650 #define HCR_TRVM      (1ULL << 30)
1651 #define HCR_RW        (1ULL << 31)
1652 #define HCR_CD        (1ULL << 32)
1653 #define HCR_ID        (1ULL << 33)
1654 #define HCR_E2H       (1ULL << 34)
1655 #define HCR_TLOR      (1ULL << 35)
1656 #define HCR_TERR      (1ULL << 36)
1657 #define HCR_TEA       (1ULL << 37)
1658 #define HCR_MIOCNCE   (1ULL << 38)
1659 #define HCR_TME       (1ULL << 39)
1660 #define HCR_APK       (1ULL << 40)
1661 #define HCR_API       (1ULL << 41)
1662 #define HCR_NV        (1ULL << 42)
1663 #define HCR_NV1       (1ULL << 43)
1664 #define HCR_AT        (1ULL << 44)
1665 #define HCR_NV2       (1ULL << 45)
1666 #define HCR_FWB       (1ULL << 46)
1667 #define HCR_FIEN      (1ULL << 47)
1668 #define HCR_GPF       (1ULL << 48)
1669 #define HCR_TID4      (1ULL << 49)
1670 #define HCR_TICAB     (1ULL << 50)
1671 #define HCR_AMVOFFEN  (1ULL << 51)
1672 #define HCR_TOCU      (1ULL << 52)
1673 #define HCR_ENSCXT    (1ULL << 53)
1674 #define HCR_TTLBIS    (1ULL << 54)
1675 #define HCR_TTLBOS    (1ULL << 55)
1676 #define HCR_ATA       (1ULL << 56)
1677 #define HCR_DCT       (1ULL << 57)
1678 #define HCR_TID5      (1ULL << 58)
1679 #define HCR_TWEDEN    (1ULL << 59)
1680 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1681 
1682 #define SCR_NS                (1ULL << 0)
1683 #define SCR_IRQ               (1ULL << 1)
1684 #define SCR_FIQ               (1ULL << 2)
1685 #define SCR_EA                (1ULL << 3)
1686 #define SCR_FW                (1ULL << 4)
1687 #define SCR_AW                (1ULL << 5)
1688 #define SCR_NET               (1ULL << 6)
1689 #define SCR_SMD               (1ULL << 7)
1690 #define SCR_HCE               (1ULL << 8)
1691 #define SCR_SIF               (1ULL << 9)
1692 #define SCR_RW                (1ULL << 10)
1693 #define SCR_ST                (1ULL << 11)
1694 #define SCR_TWI               (1ULL << 12)
1695 #define SCR_TWE               (1ULL << 13)
1696 #define SCR_TLOR              (1ULL << 14)
1697 #define SCR_TERR              (1ULL << 15)
1698 #define SCR_APK               (1ULL << 16)
1699 #define SCR_API               (1ULL << 17)
1700 #define SCR_EEL2              (1ULL << 18)
1701 #define SCR_EASE              (1ULL << 19)
1702 #define SCR_NMEA              (1ULL << 20)
1703 #define SCR_FIEN              (1ULL << 21)
1704 #define SCR_ENSCXT            (1ULL << 25)
1705 #define SCR_ATA               (1ULL << 26)
1706 #define SCR_FGTEN             (1ULL << 27)
1707 #define SCR_ECVEN             (1ULL << 28)
1708 #define SCR_TWEDEN            (1ULL << 29)
1709 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1710 #define SCR_TME               (1ULL << 34)
1711 #define SCR_AMVOFFEN          (1ULL << 35)
1712 #define SCR_ENAS0             (1ULL << 36)
1713 #define SCR_ADEN              (1ULL << 37)
1714 #define SCR_HXEN              (1ULL << 38)
1715 #define SCR_TRNDR             (1ULL << 40)
1716 #define SCR_ENTP2             (1ULL << 41)
1717 #define SCR_GPF               (1ULL << 48)
1718 #define SCR_NSE               (1ULL << 62)
1719 
1720 /* Return the current FPSCR value.  */
1721 uint32_t vfp_get_fpscr(CPUARMState *env);
1722 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1723 
1724 /*
1725  * FPCR, Floating Point Control Register
1726  * FPSR, Floating Point Status Register
1727  *
1728  * For A64 floating point control and status bits are stored in
1729  * two logically distinct registers, FPCR and FPSR. We store these
1730  * in QEMU in vfp.fpcr and vfp.fpsr.
1731  * For A32 there was only one register, FPSCR. The bits are arranged
1732  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1733  * so we can use appropriate masking to handle FPSCR reads and writes.
1734  * Note that the FPCR has some bits which are not visible in the
1735  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1736  */
1737 
1738 /* FPCR bits */
1739 #define FPCR_FIZ    (1 << 0)    /* Flush Inputs to Zero (FEAT_AFP) */
1740 #define FPCR_AH     (1 << 1)    /* Alternate Handling (FEAT_AFP) */
1741 #define FPCR_NEP    (1 << 2)    /* SIMD scalar ops preserve elts (FEAT_AFP) */
1742 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1743 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1744 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1745 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1746 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1747 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1748 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1749 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1750 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1751 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1752 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1753 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1754 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1755 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1756 
1757 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1758 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1759 #define FPCR_LTPSIZE_LENGTH 3
1760 
1761 /* Cumulative exception trap enable bits */
1762 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1763 
1764 /* FPSR bits */
1765 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1766 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1767 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1768 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1769 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1770 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1771 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1772 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1773 #define FPSR_C      (1 << 29)   /* FP carry flag */
1774 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1775 #define FPSR_N      (1 << 31)   /* FP negative flag */
1776 
1777 /* Cumulative exception status bits */
1778 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1779 
1780 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1781 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1782 
1783 /* A32 FPSCR bits which architecturally map to FPSR bits */
1784 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1785 /* A32 FPSCR bits which architecturally map to FPCR bits */
1786 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1787                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1788                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1789 /* These masks don't overlap: each bit lives in only one place */
1790 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1791 
1792 /**
1793  * vfp_get_fpsr: read the AArch64 FPSR
1794  * @env: CPU context
1795  *
1796  * Return the current AArch64 FPSR value
1797  */
1798 uint32_t vfp_get_fpsr(CPUARMState *env);
1799 
1800 /**
1801  * vfp_get_fpcr: read the AArch64 FPCR
1802  * @env: CPU context
1803  *
1804  * Return the current AArch64 FPCR value
1805  */
1806 uint32_t vfp_get_fpcr(CPUARMState *env);
1807 
1808 /**
1809  * vfp_set_fpsr: write the AArch64 FPSR
1810  * @env: CPU context
1811  * @value: new value
1812  */
1813 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1814 
1815 /**
1816  * vfp_set_fpcr: write the AArch64 FPCR
1817  * @env: CPU context
1818  * @value: new value
1819  */
1820 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1821 
1822 enum arm_cpu_mode {
1823   ARM_CPU_MODE_USR = 0x10,
1824   ARM_CPU_MODE_FIQ = 0x11,
1825   ARM_CPU_MODE_IRQ = 0x12,
1826   ARM_CPU_MODE_SVC = 0x13,
1827   ARM_CPU_MODE_MON = 0x16,
1828   ARM_CPU_MODE_ABT = 0x17,
1829   ARM_CPU_MODE_HYP = 0x1a,
1830   ARM_CPU_MODE_UND = 0x1b,
1831   ARM_CPU_MODE_SYS = 0x1f
1832 };
1833 
1834 /* VFP system registers.  */
1835 #define ARM_VFP_FPSID   0
1836 #define ARM_VFP_FPSCR   1
1837 #define ARM_VFP_MVFR2   5
1838 #define ARM_VFP_MVFR1   6
1839 #define ARM_VFP_MVFR0   7
1840 #define ARM_VFP_FPEXC   8
1841 #define ARM_VFP_FPINST  9
1842 #define ARM_VFP_FPINST2 10
1843 /* These ones are M-profile only */
1844 #define ARM_VFP_FPSCR_NZCVQC 2
1845 #define ARM_VFP_VPR 12
1846 #define ARM_VFP_P0 13
1847 #define ARM_VFP_FPCXT_NS 14
1848 #define ARM_VFP_FPCXT_S 15
1849 
1850 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1851 #define QEMU_VFP_FPSCR_NZCV 0xffff
1852 
1853 /* iwMMXt coprocessor control registers.  */
1854 #define ARM_IWMMXT_wCID  0
1855 #define ARM_IWMMXT_wCon  1
1856 #define ARM_IWMMXT_wCSSF 2
1857 #define ARM_IWMMXT_wCASF 3
1858 #define ARM_IWMMXT_wCGR0 8
1859 #define ARM_IWMMXT_wCGR1 9
1860 #define ARM_IWMMXT_wCGR2 10
1861 #define ARM_IWMMXT_wCGR3 11
1862 
1863 /* V7M CCR bits */
1864 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1865 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1866 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1867 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1868 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1869 FIELD(V7M_CCR, STKALIGN, 9, 1)
1870 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1871 FIELD(V7M_CCR, DC, 16, 1)
1872 FIELD(V7M_CCR, IC, 17, 1)
1873 FIELD(V7M_CCR, BP, 18, 1)
1874 FIELD(V7M_CCR, LOB, 19, 1)
1875 FIELD(V7M_CCR, TRD, 20, 1)
1876 
1877 /* V7M SCR bits */
1878 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1879 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1880 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1881 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1882 
1883 /* V7M AIRCR bits */
1884 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1885 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1886 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1887 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1888 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1889 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1890 FIELD(V7M_AIRCR, PRIS, 14, 1)
1891 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1892 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1893 
1894 /* V7M CFSR bits for MMFSR */
1895 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1896 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1897 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1898 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1899 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1900 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1901 
1902 /* V7M CFSR bits for BFSR */
1903 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1904 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1905 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1906 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1907 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1908 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1909 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1910 
1911 /* V7M CFSR bits for UFSR */
1912 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1913 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1914 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1915 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1916 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1917 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1918 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1919 
1920 /* V7M CFSR bit masks covering all of the subregister bits */
1921 FIELD(V7M_CFSR, MMFSR, 0, 8)
1922 FIELD(V7M_CFSR, BFSR, 8, 8)
1923 FIELD(V7M_CFSR, UFSR, 16, 16)
1924 
1925 /* V7M HFSR bits */
1926 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1927 FIELD(V7M_HFSR, FORCED, 30, 1)
1928 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1929 
1930 /* V7M DFSR bits */
1931 FIELD(V7M_DFSR, HALTED, 0, 1)
1932 FIELD(V7M_DFSR, BKPT, 1, 1)
1933 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1934 FIELD(V7M_DFSR, VCATCH, 3, 1)
1935 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1936 
1937 /* V7M SFSR bits */
1938 FIELD(V7M_SFSR, INVEP, 0, 1)
1939 FIELD(V7M_SFSR, INVIS, 1, 1)
1940 FIELD(V7M_SFSR, INVER, 2, 1)
1941 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1942 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1943 FIELD(V7M_SFSR, LSPERR, 5, 1)
1944 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1945 FIELD(V7M_SFSR, LSERR, 7, 1)
1946 
1947 /* v7M MPU_CTRL bits */
1948 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1949 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1950 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1951 
1952 /* v7M CLIDR bits */
1953 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1954 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1955 FIELD(V7M_CLIDR, LOC, 24, 3)
1956 FIELD(V7M_CLIDR, LOUU, 27, 3)
1957 FIELD(V7M_CLIDR, ICB, 30, 2)
1958 
1959 FIELD(V7M_CSSELR, IND, 0, 1)
1960 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1961 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1962  * define a mask for this and check that it doesn't permit running off
1963  * the end of the array.
1964  */
1965 FIELD(V7M_CSSELR, INDEX, 0, 4)
1966 
1967 /* v7M FPCCR bits */
1968 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1969 FIELD(V7M_FPCCR, USER, 1, 1)
1970 FIELD(V7M_FPCCR, S, 2, 1)
1971 FIELD(V7M_FPCCR, THREAD, 3, 1)
1972 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1973 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1974 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1975 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1976 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1977 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1978 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1979 FIELD(V7M_FPCCR, RES0, 11, 15)
1980 FIELD(V7M_FPCCR, TS, 26, 1)
1981 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1982 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1983 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1984 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1985 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1986 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1987 #define R_V7M_FPCCR_BANKED_MASK                 \
1988     (R_V7M_FPCCR_LSPACT_MASK |                  \
1989      R_V7M_FPCCR_USER_MASK |                    \
1990      R_V7M_FPCCR_THREAD_MASK |                  \
1991      R_V7M_FPCCR_MMRDY_MASK |                   \
1992      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1993      R_V7M_FPCCR_UFRDY_MASK |                   \
1994      R_V7M_FPCCR_ASPEN_MASK)
1995 
1996 /* v7M VPR bits */
1997 FIELD(V7M_VPR, P0, 0, 16)
1998 FIELD(V7M_VPR, MASK01, 16, 4)
1999 FIELD(V7M_VPR, MASK23, 20, 4)
2000 
2001 /*
2002  * System register ID fields.
2003  */
2004 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2005 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2006 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2007 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2008 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2009 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2010 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2011 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2012 FIELD(CLIDR_EL1, LOC, 24, 3)
2013 FIELD(CLIDR_EL1, LOUU, 27, 3)
2014 FIELD(CLIDR_EL1, ICB, 30, 3)
2015 
2016 /* When FEAT_CCIDX is implemented */
2017 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2018 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2019 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2020 
2021 /* When FEAT_CCIDX is not implemented */
2022 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2023 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2024 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2025 
2026 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2027 FIELD(CTR_EL0,  L1IP, 14, 2)
2028 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2029 FIELD(CTR_EL0,  ERG, 20, 4)
2030 FIELD(CTR_EL0,  CWG, 24, 4)
2031 FIELD(CTR_EL0,  IDC, 28, 1)
2032 FIELD(CTR_EL0,  DIC, 29, 1)
2033 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2034 
2035 FIELD(MIDR_EL1, REVISION, 0, 4)
2036 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2037 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2038 FIELD(MIDR_EL1, VARIANT, 20, 4)
2039 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2040 
2041 FIELD(ID_ISAR0, SWAP, 0, 4)
2042 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2043 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2044 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2045 FIELD(ID_ISAR0, COPROC, 16, 4)
2046 FIELD(ID_ISAR0, DEBUG, 20, 4)
2047 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2048 
2049 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2050 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2051 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2052 FIELD(ID_ISAR1, EXTEND, 12, 4)
2053 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2054 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2055 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2056 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2057 
2058 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2059 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2060 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2061 FIELD(ID_ISAR2, MULT, 12, 4)
2062 FIELD(ID_ISAR2, MULTS, 16, 4)
2063 FIELD(ID_ISAR2, MULTU, 20, 4)
2064 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2065 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2066 
2067 FIELD(ID_ISAR3, SATURATE, 0, 4)
2068 FIELD(ID_ISAR3, SIMD, 4, 4)
2069 FIELD(ID_ISAR3, SVC, 8, 4)
2070 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2071 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2072 FIELD(ID_ISAR3, T32COPY, 20, 4)
2073 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2074 FIELD(ID_ISAR3, T32EE, 28, 4)
2075 
2076 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2077 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2078 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2079 FIELD(ID_ISAR4, SMC, 12, 4)
2080 FIELD(ID_ISAR4, BARRIER, 16, 4)
2081 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2082 FIELD(ID_ISAR4, PSR_M, 24, 4)
2083 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2084 
2085 FIELD(ID_ISAR5, SEVL, 0, 4)
2086 FIELD(ID_ISAR5, AES, 4, 4)
2087 FIELD(ID_ISAR5, SHA1, 8, 4)
2088 FIELD(ID_ISAR5, SHA2, 12, 4)
2089 FIELD(ID_ISAR5, CRC32, 16, 4)
2090 FIELD(ID_ISAR5, RDM, 24, 4)
2091 FIELD(ID_ISAR5, VCMA, 28, 4)
2092 
2093 FIELD(ID_ISAR6, JSCVT, 0, 4)
2094 FIELD(ID_ISAR6, DP, 4, 4)
2095 FIELD(ID_ISAR6, FHM, 8, 4)
2096 FIELD(ID_ISAR6, SB, 12, 4)
2097 FIELD(ID_ISAR6, SPECRES, 16, 4)
2098 FIELD(ID_ISAR6, BF16, 20, 4)
2099 FIELD(ID_ISAR6, I8MM, 24, 4)
2100 
2101 FIELD(ID_MMFR0, VMSA, 0, 4)
2102 FIELD(ID_MMFR0, PMSA, 4, 4)
2103 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2104 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2105 FIELD(ID_MMFR0, TCM, 16, 4)
2106 FIELD(ID_MMFR0, AUXREG, 20, 4)
2107 FIELD(ID_MMFR0, FCSE, 24, 4)
2108 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2109 
2110 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2111 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2112 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2113 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2114 FIELD(ID_MMFR1, L1HVD, 16, 4)
2115 FIELD(ID_MMFR1, L1UNI, 20, 4)
2116 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2117 FIELD(ID_MMFR1, BPRED, 28, 4)
2118 
2119 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2120 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2121 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2122 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2123 FIELD(ID_MMFR2, UNITLB, 16, 4)
2124 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2125 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2126 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2127 
2128 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2129 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2130 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2131 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2132 FIELD(ID_MMFR3, PAN, 16, 4)
2133 FIELD(ID_MMFR3, COHWALK, 20, 4)
2134 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2135 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2136 
2137 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2138 FIELD(ID_MMFR4, AC2, 4, 4)
2139 FIELD(ID_MMFR4, XNX, 8, 4)
2140 FIELD(ID_MMFR4, CNP, 12, 4)
2141 FIELD(ID_MMFR4, HPDS, 16, 4)
2142 FIELD(ID_MMFR4, LSM, 20, 4)
2143 FIELD(ID_MMFR4, CCIDX, 24, 4)
2144 FIELD(ID_MMFR4, EVT, 28, 4)
2145 
2146 FIELD(ID_MMFR5, ETS, 0, 4)
2147 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2148 
2149 FIELD(ID_PFR0, STATE0, 0, 4)
2150 FIELD(ID_PFR0, STATE1, 4, 4)
2151 FIELD(ID_PFR0, STATE2, 8, 4)
2152 FIELD(ID_PFR0, STATE3, 12, 4)
2153 FIELD(ID_PFR0, CSV2, 16, 4)
2154 FIELD(ID_PFR0, AMU, 20, 4)
2155 FIELD(ID_PFR0, DIT, 24, 4)
2156 FIELD(ID_PFR0, RAS, 28, 4)
2157 
2158 FIELD(ID_PFR1, PROGMOD, 0, 4)
2159 FIELD(ID_PFR1, SECURITY, 4, 4)
2160 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2161 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2162 FIELD(ID_PFR1, GENTIMER, 16, 4)
2163 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2164 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2165 FIELD(ID_PFR1, GIC, 28, 4)
2166 
2167 FIELD(ID_PFR2, CSV3, 0, 4)
2168 FIELD(ID_PFR2, SSBS, 4, 4)
2169 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2170 
2171 FIELD(ID_AA64ISAR0, AES, 4, 4)
2172 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2173 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2174 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2175 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2176 FIELD(ID_AA64ISAR0, TME, 24, 4)
2177 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2178 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2179 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2180 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2181 FIELD(ID_AA64ISAR0, DP, 44, 4)
2182 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2183 FIELD(ID_AA64ISAR0, TS, 52, 4)
2184 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2185 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2186 
2187 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2188 FIELD(ID_AA64ISAR1, APA, 4, 4)
2189 FIELD(ID_AA64ISAR1, API, 8, 4)
2190 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2191 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2192 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2193 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2194 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2195 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2196 FIELD(ID_AA64ISAR1, SB, 36, 4)
2197 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2198 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2199 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2200 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2201 FIELD(ID_AA64ISAR1, XS, 56, 4)
2202 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2203 
2204 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2205 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2206 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2207 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2208 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2209 FIELD(ID_AA64ISAR2, BC, 20, 4)
2210 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2211 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2212 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2213 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2214 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2215 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2216 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2217 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2218 
2219 FIELD(ID_AA64PFR0, EL0, 0, 4)
2220 FIELD(ID_AA64PFR0, EL1, 4, 4)
2221 FIELD(ID_AA64PFR0, EL2, 8, 4)
2222 FIELD(ID_AA64PFR0, EL3, 12, 4)
2223 FIELD(ID_AA64PFR0, FP, 16, 4)
2224 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2225 FIELD(ID_AA64PFR0, GIC, 24, 4)
2226 FIELD(ID_AA64PFR0, RAS, 28, 4)
2227 FIELD(ID_AA64PFR0, SVE, 32, 4)
2228 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2229 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2230 FIELD(ID_AA64PFR0, AMU, 44, 4)
2231 FIELD(ID_AA64PFR0, DIT, 48, 4)
2232 FIELD(ID_AA64PFR0, RME, 52, 4)
2233 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2234 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2235 
2236 FIELD(ID_AA64PFR1, BT, 0, 4)
2237 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2238 FIELD(ID_AA64PFR1, MTE, 8, 4)
2239 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2240 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2241 FIELD(ID_AA64PFR1, SME, 24, 4)
2242 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2243 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2244 FIELD(ID_AA64PFR1, NMI, 36, 4)
2245 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2246 FIELD(ID_AA64PFR1, GCS, 44, 4)
2247 FIELD(ID_AA64PFR1, THE, 48, 4)
2248 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2249 FIELD(ID_AA64PFR1, DF2, 56, 4)
2250 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2251 
2252 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2253 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2254 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2255 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2256 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2257 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2258 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2259 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2260 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2261 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2262 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2263 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2264 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2265 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2266 
2267 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2268 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2269 FIELD(ID_AA64MMFR1, VH, 8, 4)
2270 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2271 FIELD(ID_AA64MMFR1, LO, 16, 4)
2272 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2273 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2274 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2275 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2276 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2277 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2278 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2279 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2280 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2281 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2282 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2283 
2284 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2285 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2286 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2287 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2288 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2289 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2290 FIELD(ID_AA64MMFR2, NV, 24, 4)
2291 FIELD(ID_AA64MMFR2, ST, 28, 4)
2292 FIELD(ID_AA64MMFR2, AT, 32, 4)
2293 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2294 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2295 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2296 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2297 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2298 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2299 
2300 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2301 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2302 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2303 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2304 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2305 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2306 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2307 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2308 FIELD(ID_AA64MMFR3, D128, 32, 4)
2309 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2310 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2311 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2312 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2313 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2314 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2315 
2316 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2317 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2318 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2319 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2320 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2321 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2322 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2323 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2324 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2325 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2326 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2327 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2328 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2329 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2330 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2331 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2332 
2333 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2334 FIELD(ID_AA64ZFR0, AES, 4, 4)
2335 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2336 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2337 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2338 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2339 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2340 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2341 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2342 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2343 
2344 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2345 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2346 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2347 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2348 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2349 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2350 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2351 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2352 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2353 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2354 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2355 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2356 
2357 FIELD(ID_DFR0, COPDBG, 0, 4)
2358 FIELD(ID_DFR0, COPSDBG, 4, 4)
2359 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2360 FIELD(ID_DFR0, COPTRC, 12, 4)
2361 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2362 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2363 FIELD(ID_DFR0, PERFMON, 24, 4)
2364 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2365 
2366 FIELD(ID_DFR1, MTPMU, 0, 4)
2367 FIELD(ID_DFR1, HPMN0, 4, 4)
2368 
2369 FIELD(DBGDIDR, SE_IMP, 12, 1)
2370 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2371 FIELD(DBGDIDR, VERSION, 16, 4)
2372 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2373 FIELD(DBGDIDR, BRPS, 24, 4)
2374 FIELD(DBGDIDR, WRPS, 28, 4)
2375 
2376 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2377 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2378 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2379 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2380 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2381 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2382 FIELD(DBGDEVID, AUXREGS, 24, 4)
2383 FIELD(DBGDEVID, CIDMASK, 28, 4)
2384 
2385 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2386 
2387 FIELD(MVFR0, SIMDREG, 0, 4)
2388 FIELD(MVFR0, FPSP, 4, 4)
2389 FIELD(MVFR0, FPDP, 8, 4)
2390 FIELD(MVFR0, FPTRAP, 12, 4)
2391 FIELD(MVFR0, FPDIVIDE, 16, 4)
2392 FIELD(MVFR0, FPSQRT, 20, 4)
2393 FIELD(MVFR0, FPSHVEC, 24, 4)
2394 FIELD(MVFR0, FPROUND, 28, 4)
2395 
2396 FIELD(MVFR1, FPFTZ, 0, 4)
2397 FIELD(MVFR1, FPDNAN, 4, 4)
2398 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2399 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2400 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2401 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2402 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2403 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2404 FIELD(MVFR1, FPHP, 24, 4)
2405 FIELD(MVFR1, SIMDFMAC, 28, 4)
2406 
2407 FIELD(MVFR2, SIMDMISC, 0, 4)
2408 FIELD(MVFR2, FPMISC, 4, 4)
2409 
2410 FIELD(GPCCR, PPS, 0, 3)
2411 FIELD(GPCCR, IRGN, 8, 2)
2412 FIELD(GPCCR, ORGN, 10, 2)
2413 FIELD(GPCCR, SH, 12, 2)
2414 FIELD(GPCCR, PGS, 14, 2)
2415 FIELD(GPCCR, GPC, 16, 1)
2416 FIELD(GPCCR, GPCP, 17, 1)
2417 FIELD(GPCCR, L0GPTSZ, 20, 4)
2418 
2419 FIELD(MFAR, FPA, 12, 40)
2420 FIELD(MFAR, NSE, 62, 1)
2421 FIELD(MFAR, NS, 63, 1)
2422 
2423 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2424 
2425 /* If adding a feature bit which corresponds to a Linux ELF
2426  * HWCAP bit, remember to update the feature-bit-to-hwcap
2427  * mapping in linux-user/elfload.c:get_elf_hwcap().
2428  */
2429 enum arm_features {
2430     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2431     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2432     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2433     ARM_FEATURE_V6,
2434     ARM_FEATURE_V6K,
2435     ARM_FEATURE_V7,
2436     ARM_FEATURE_THUMB2,
2437     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2438     ARM_FEATURE_NEON,
2439     ARM_FEATURE_M, /* Microcontroller profile.  */
2440     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2441     ARM_FEATURE_THUMB2EE,
2442     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2443     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2444     ARM_FEATURE_V4T,
2445     ARM_FEATURE_V5,
2446     ARM_FEATURE_STRONGARM,
2447     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2448     ARM_FEATURE_GENERIC_TIMER,
2449     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2450     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2451     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2452     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2453     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2454     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2455     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2456     ARM_FEATURE_V8,
2457     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2458     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2459     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2460     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2461     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2462     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2463     ARM_FEATURE_PMU, /* has PMU support */
2464     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2465     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2466     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2467     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2468     /*
2469      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2470      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2471      * compatibility and used only with CPU definitions that were already
2472      * in QEMU before we changed the default. It should not be set on any
2473      * CPU types added in future.
2474      */
2475     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2476 };
2477 
2478 static inline int arm_feature(CPUARMState *env, int feature)
2479 {
2480     return (env->features & (1ULL << feature)) != 0;
2481 }
2482 
2483 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2484 
2485 /*
2486  * ARM v9 security states.
2487  * The ordering of the enumeration corresponds to the low 2 bits
2488  * of the GPI value, and (except for Root) the concat of NSE:NS.
2489  */
2490 
2491 typedef enum ARMSecuritySpace {
2492     ARMSS_Secure     = 0,
2493     ARMSS_NonSecure  = 1,
2494     ARMSS_Root       = 2,
2495     ARMSS_Realm      = 3,
2496 } ARMSecuritySpace;
2497 
2498 /* Return true if @space is secure, in the pre-v9 sense. */
2499 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2500 {
2501     return space == ARMSS_Secure || space == ARMSS_Root;
2502 }
2503 
2504 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2505 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2506 {
2507     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2508 }
2509 
2510 #if !defined(CONFIG_USER_ONLY)
2511 /**
2512  * arm_security_space_below_el3:
2513  * @env: cpu context
2514  *
2515  * Return the security space of exception levels below EL3, following
2516  * an exception return to those levels.  Unlike arm_security_space,
2517  * this doesn't care about the current EL.
2518  */
2519 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2520 
2521 /**
2522  * arm_is_secure_below_el3:
2523  * @env: cpu context
2524  *
2525  * Return true if exception levels below EL3 are in secure state,
2526  * or would be following an exception return to those levels.
2527  */
2528 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2529 {
2530     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2531     return ss == ARMSS_Secure;
2532 }
2533 
2534 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2535 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2536 {
2537     assert(!arm_feature(env, ARM_FEATURE_M));
2538     if (arm_feature(env, ARM_FEATURE_EL3)) {
2539         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2540             /* CPU currently in AArch64 state and EL3 */
2541             return true;
2542         } else if (!is_a64(env) &&
2543                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2544             /* CPU currently in AArch32 state and monitor mode */
2545             return true;
2546         }
2547     }
2548     return false;
2549 }
2550 
2551 /**
2552  * arm_security_space:
2553  * @env: cpu context
2554  *
2555  * Return the current security space of the cpu.
2556  */
2557 ARMSecuritySpace arm_security_space(CPUARMState *env);
2558 
2559 /**
2560  * arm_is_secure:
2561  * @env: cpu context
2562  *
2563  * Return true if the processor is in secure state.
2564  */
2565 static inline bool arm_is_secure(CPUARMState *env)
2566 {
2567     return arm_space_is_secure(arm_security_space(env));
2568 }
2569 
2570 /*
2571  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2572  * This corresponds to the pseudocode EL2Enabled().
2573  */
2574 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2575                                                ARMSecuritySpace space)
2576 {
2577     assert(space != ARMSS_Root);
2578     return arm_feature(env, ARM_FEATURE_EL2)
2579            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2580 }
2581 
2582 static inline bool arm_is_el2_enabled(CPUARMState *env)
2583 {
2584     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2585 }
2586 
2587 #else
2588 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2589 {
2590     return ARMSS_NonSecure;
2591 }
2592 
2593 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2594 {
2595     return false;
2596 }
2597 
2598 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2599 {
2600     return ARMSS_NonSecure;
2601 }
2602 
2603 static inline bool arm_is_secure(CPUARMState *env)
2604 {
2605     return false;
2606 }
2607 
2608 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2609                                                ARMSecuritySpace space)
2610 {
2611     return false;
2612 }
2613 
2614 static inline bool arm_is_el2_enabled(CPUARMState *env)
2615 {
2616     return false;
2617 }
2618 #endif
2619 
2620 /**
2621  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2622  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2623  * "for all purposes other than a direct read or write access of HCR_EL2."
2624  * Not included here is HCR_RW.
2625  */
2626 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2627 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2628 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2629 
2630 /* Return true if the specified exception level is running in AArch64 state. */
2631 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2632 {
2633     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2634      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2635      */
2636     assert(el >= 1 && el <= 3);
2637     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2638 
2639     /* The highest exception level is always at the maximum supported
2640      * register width, and then lower levels have a register width controlled
2641      * by bits in the SCR or HCR registers.
2642      */
2643     if (el == 3) {
2644         return aa64;
2645     }
2646 
2647     if (arm_feature(env, ARM_FEATURE_EL3) &&
2648         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2649         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2650     }
2651 
2652     if (el == 2) {
2653         return aa64;
2654     }
2655 
2656     if (arm_is_el2_enabled(env)) {
2657         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2658     }
2659 
2660     return aa64;
2661 }
2662 
2663 /* Function for determining whether guest cp register reads and writes should
2664  * access the secure or non-secure bank of a cp register.  When EL3 is
2665  * operating in AArch32 state, the NS-bit determines whether the secure
2666  * instance of a cp register should be used. When EL3 is AArch64 (or if
2667  * it doesn't exist at all) then there is no register banking, and all
2668  * accesses are to the non-secure version.
2669  */
2670 static inline bool access_secure_reg(CPUARMState *env)
2671 {
2672     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2673                 !arm_el_is_aa64(env, 3) &&
2674                 !(env->cp15.scr_el3 & SCR_NS));
2675 
2676     return ret;
2677 }
2678 
2679 /* Macros for accessing a specified CP register bank */
2680 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2681     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2682 
2683 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2684     do {                                                \
2685         if (_secure) {                                   \
2686             (_env)->cp15._regname##_s = (_val);            \
2687         } else {                                        \
2688             (_env)->cp15._regname##_ns = (_val);           \
2689         }                                               \
2690     } while (0)
2691 
2692 /* Macros for automatically accessing a specific CP register bank depending on
2693  * the current secure state of the system.  These macros are not intended for
2694  * supporting instruction translation reads/writes as these are dependent
2695  * solely on the SCR.NS bit and not the mode.
2696  */
2697 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2698     A32_BANKED_REG_GET((_env), _regname,                \
2699                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2700 
2701 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2702     A32_BANKED_REG_SET((_env), _regname,                                    \
2703                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2704                        (_val))
2705 
2706 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2707                                  uint32_t cur_el, bool secure);
2708 
2709 /* Return the highest implemented Exception Level */
2710 static inline int arm_highest_el(CPUARMState *env)
2711 {
2712     if (arm_feature(env, ARM_FEATURE_EL3)) {
2713         return 3;
2714     }
2715     if (arm_feature(env, ARM_FEATURE_EL2)) {
2716         return 2;
2717     }
2718     return 1;
2719 }
2720 
2721 /* Return true if a v7M CPU is in Handler mode */
2722 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2723 {
2724     return env->v7m.exception != 0;
2725 }
2726 
2727 /* Return the current Exception Level (as per ARMv8; note that this differs
2728  * from the ARMv7 Privilege Level).
2729  */
2730 static inline int arm_current_el(CPUARMState *env)
2731 {
2732     if (arm_feature(env, ARM_FEATURE_M)) {
2733         return arm_v7m_is_handler_mode(env) ||
2734             !(env->v7m.control[env->v7m.secure] & 1);
2735     }
2736 
2737     if (is_a64(env)) {
2738         return extract32(env->pstate, 2, 2);
2739     }
2740 
2741     switch (env->uncached_cpsr & 0x1f) {
2742     case ARM_CPU_MODE_USR:
2743         return 0;
2744     case ARM_CPU_MODE_HYP:
2745         return 2;
2746     case ARM_CPU_MODE_MON:
2747         return 3;
2748     default:
2749         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2750             /* If EL3 is 32-bit then all secure privileged modes run in
2751              * EL3
2752              */
2753             return 3;
2754         }
2755 
2756         return 1;
2757     }
2758 }
2759 
2760 /**
2761  * write_list_to_cpustate
2762  * @cpu: ARMCPU
2763  *
2764  * For each register listed in the ARMCPU cpreg_indexes list, write
2765  * its value from the cpreg_values list into the ARMCPUState structure.
2766  * This updates TCG's working data structures from KVM data or
2767  * from incoming migration state.
2768  *
2769  * Returns: true if all register values were updated correctly,
2770  * false if some register was unknown or could not be written.
2771  * Note that we do not stop early on failure -- we will attempt
2772  * writing all registers in the list.
2773  */
2774 bool write_list_to_cpustate(ARMCPU *cpu);
2775 
2776 /**
2777  * write_cpustate_to_list:
2778  * @cpu: ARMCPU
2779  * @kvm_sync: true if this is for syncing back to KVM
2780  *
2781  * For each register listed in the ARMCPU cpreg_indexes list, write
2782  * its value from the ARMCPUState structure into the cpreg_values list.
2783  * This is used to copy info from TCG's working data structures into
2784  * KVM or for outbound migration.
2785  *
2786  * @kvm_sync is true if we are doing this in order to sync the
2787  * register state back to KVM. In this case we will only update
2788  * values in the list if the previous list->cpustate sync actually
2789  * successfully wrote the CPU state. Otherwise we will keep the value
2790  * that is in the list.
2791  *
2792  * Returns: true if all register values were read correctly,
2793  * false if some register was unknown or could not be read.
2794  * Note that we do not stop early on failure -- we will attempt
2795  * reading all registers in the list.
2796  */
2797 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2798 
2799 #define ARM_CPUID_TI915T      0x54029152
2800 #define ARM_CPUID_TI925T      0x54029252
2801 
2802 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2803 
2804 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2805 
2806 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2807  *
2808  * If EL3 is 64-bit:
2809  *  + NonSecure EL1 & 0 stage 1
2810  *  + NonSecure EL1 & 0 stage 2
2811  *  + NonSecure EL2
2812  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2813  *  + Secure EL1 & 0 stage 1
2814  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2815  *  + Secure EL2 (FEAT_SEL2)
2816  *  + Secure EL2 & 0 (FEAT_SEL2)
2817  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2818  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2819  *  + Realm EL2 (FEAT_RME)
2820  *  + EL3
2821  * If EL3 is 32-bit:
2822  *  + NonSecure PL1 & 0 stage 1
2823  *  + NonSecure PL1 & 0 stage 2
2824  *  + NonSecure PL2
2825  *  + Secure PL1 & 0
2826  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2827  *
2828  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2829  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2830  *     because they may differ in access permissions even if the VA->PA map is
2831  *     the same
2832  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2833  *     translation, which means that we have one mmu_idx that deals with two
2834  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2835  *     architecturally permitted]
2836  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2837  *     handling via the TLB. The only way to do a stage 1 translation without
2838  *     the immediate stage 2 translation is via the ATS or AT system insns,
2839  *     which can be slow-pathed and always do a page table walk.
2840  *     The only use of stage 2 translations is either as part of an s1+2
2841  *     lookup or when loading the descriptors during a stage 1 page table walk,
2842  *     and in both those cases we don't use the TLB.
2843  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2844  *     translation regimes, because they map reasonably well to each other
2845  *     and they can't both be active at the same time.
2846  *  5. we want to be able to use the TLB for accesses done as part of a
2847  *     stage1 page table walk, rather than having to walk the stage2 page
2848  *     table over and over.
2849  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2850  *     Never (PAN) bit within PSTATE.
2851  *  7. we fold together most secure and non-secure regimes for A-profile,
2852  *     because there are no banked system registers for aarch64, so the
2853  *     process of switching between secure and non-secure is
2854  *     already heavyweight.
2855  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2856  *     because both are in use simultaneously for Secure EL2.
2857  *
2858  * This gives us the following list of cases:
2859  *
2860  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2861  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2862  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2863  * EL0 EL2&0
2864  * EL2 EL2&0
2865  * EL2 EL2&0 +PAN
2866  * EL2 (aka NS PL2)
2867  * EL3 (aka AArch32 S PL1 PL1&0)
2868  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2869  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2870  * Stage2 Secure
2871  * Stage2 NonSecure
2872  * plus one TLB per Physical address space: S, NS, Realm, Root
2873  *
2874  * for a total of 16 different mmu_idx.
2875  *
2876  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2877  * as A profile. They only need to distinguish EL0 and EL1 (and
2878  * EL2 for cores like the Cortex-R52).
2879  *
2880  * M profile CPUs are rather different as they do not have a true MMU.
2881  * They have the following different MMU indexes:
2882  *  User
2883  *  Privileged
2884  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2885  *  Privileged, execution priority negative (ditto)
2886  * If the CPU supports the v8M Security Extension then there are also:
2887  *  Secure User
2888  *  Secure Privileged
2889  *  Secure User, execution priority negative
2890  *  Secure Privileged, execution priority negative
2891  *
2892  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2893  * are not quite the same -- different CPU types (most notably M profile
2894  * vs A/R profile) would like to use MMU indexes with different semantics,
2895  * but since we don't ever need to use all of those in a single CPU we
2896  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2897  * modes + total number of M profile MMU modes". The lower bits of
2898  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2899  * the same for any particular CPU.
2900  * Variables of type ARMMUIdx are always full values, and the core
2901  * index values are in variables of type 'int'.
2902  *
2903  * Our enumeration includes at the end some entries which are not "true"
2904  * mmu_idx values in that they don't have corresponding TLBs and are only
2905  * valid for doing slow path page table walks.
2906  *
2907  * The constant names here are patterned after the general style of the names
2908  * of the AT/ATS operations.
2909  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2910  * For M profile we arrange them to have a bit for priv, a bit for negpri
2911  * and a bit for secure.
2912  */
2913 #define ARM_MMU_IDX_A     0x10  /* A profile */
2914 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2915 #define ARM_MMU_IDX_M     0x40  /* M profile */
2916 
2917 /* Meanings of the bits for M profile mmu idx values */
2918 #define ARM_MMU_IDX_M_PRIV   0x1
2919 #define ARM_MMU_IDX_M_NEGPRI 0x2
2920 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2921 
2922 #define ARM_MMU_IDX_TYPE_MASK \
2923     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2924 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2925 
2926 typedef enum ARMMMUIdx {
2927     /*
2928      * A-profile.
2929      */
2930     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2931     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2932     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2933     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2934     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2935     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2936     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2937     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2938     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2939     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2940 
2941     /*
2942      * Used for second stage of an S12 page table walk, or for descriptor
2943      * loads during first stage of an S1 page table walk.  Note that both
2944      * are in use simultaneously for SecureEL2: the security state for
2945      * the S2 ptw is selected by the NS bit from the S1 ptw.
2946      */
2947     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2948     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2949 
2950     /* TLBs with 1-1 mapping to the physical address spaces. */
2951     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2952     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2953     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2954     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2955 
2956     /*
2957      * These are not allocated TLBs and are used only for AT system
2958      * instructions or for the first stage of an S12 page table walk.
2959      */
2960     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2961     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2962     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2963 
2964     /*
2965      * M-profile.
2966      */
2967     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2968     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2969     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2970     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2971     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2972     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2973     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2974     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2975 } ARMMMUIdx;
2976 
2977 /*
2978  * Bit macros for the core-mmu-index values for each index,
2979  * for use when calling tlb_flush_by_mmuidx() and friends.
2980  */
2981 #define TO_CORE_BIT(NAME) \
2982     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2983 
2984 typedef enum ARMMMUIdxBit {
2985     TO_CORE_BIT(E10_0),
2986     TO_CORE_BIT(E20_0),
2987     TO_CORE_BIT(E10_1),
2988     TO_CORE_BIT(E10_1_PAN),
2989     TO_CORE_BIT(E2),
2990     TO_CORE_BIT(E20_2),
2991     TO_CORE_BIT(E20_2_PAN),
2992     TO_CORE_BIT(E3),
2993     TO_CORE_BIT(E30_0),
2994     TO_CORE_BIT(E30_3_PAN),
2995     TO_CORE_BIT(Stage2),
2996     TO_CORE_BIT(Stage2_S),
2997 
2998     TO_CORE_BIT(MUser),
2999     TO_CORE_BIT(MPriv),
3000     TO_CORE_BIT(MUserNegPri),
3001     TO_CORE_BIT(MPrivNegPri),
3002     TO_CORE_BIT(MSUser),
3003     TO_CORE_BIT(MSPriv),
3004     TO_CORE_BIT(MSUserNegPri),
3005     TO_CORE_BIT(MSPrivNegPri),
3006 } ARMMMUIdxBit;
3007 
3008 #undef TO_CORE_BIT
3009 
3010 #define MMU_USER_IDX 0
3011 
3012 /* Indexes used when registering address spaces with cpu_address_space_init */
3013 typedef enum ARMASIdx {
3014     ARMASIdx_NS = 0,
3015     ARMASIdx_S = 1,
3016     ARMASIdx_TagNS = 2,
3017     ARMASIdx_TagS = 3,
3018 } ARMASIdx;
3019 
3020 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3021 {
3022     /* Assert the relative order of the physical mmu indexes. */
3023     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3024     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3025     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3026     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3027 
3028     return ARMMMUIdx_Phys_S + space;
3029 }
3030 
3031 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3032 {
3033     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3034     return idx - ARMMMUIdx_Phys_S;
3035 }
3036 
3037 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3038 {
3039     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3040      * CSSELR is RAZ/WI.
3041      */
3042     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3043 }
3044 
3045 static inline bool arm_sctlr_b(CPUARMState *env)
3046 {
3047     return
3048         /* We need not implement SCTLR.ITD in user-mode emulation, so
3049          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3050          * This lets people run BE32 binaries with "-cpu any".
3051          */
3052 #ifndef CONFIG_USER_ONLY
3053         !arm_feature(env, ARM_FEATURE_V7) &&
3054 #endif
3055         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3056 }
3057 
3058 uint64_t arm_sctlr(CPUARMState *env, int el);
3059 
3060 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3061                                                   bool sctlr_b)
3062 {
3063 #ifdef CONFIG_USER_ONLY
3064     /*
3065      * In system mode, BE32 is modelled in line with the
3066      * architecture (as word-invariant big-endianness), where loads
3067      * and stores are done little endian but from addresses which
3068      * are adjusted by XORing with the appropriate constant. So the
3069      * endianness to use for the raw data access is not affected by
3070      * SCTLR.B.
3071      * In user mode, however, we model BE32 as byte-invariant
3072      * big-endianness (because user-only code cannot tell the
3073      * difference), and so we need to use a data access endianness
3074      * that depends on SCTLR.B.
3075      */
3076     if (sctlr_b) {
3077         return true;
3078     }
3079 #endif
3080     /* In 32bit endianness is determined by looking at CPSR's E bit */
3081     return env->uncached_cpsr & CPSR_E;
3082 }
3083 
3084 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3085 {
3086     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3087 }
3088 
3089 /* Return true if the processor is in big-endian mode. */
3090 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3091 {
3092     if (!is_a64(env)) {
3093         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3094     } else {
3095         int cur_el = arm_current_el(env);
3096         uint64_t sctlr = arm_sctlr(env, cur_el);
3097         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3098     }
3099 }
3100 
3101 #include "exec/cpu-all.h"
3102 
3103 /*
3104  * We have more than 32-bits worth of state per TB, so we split the data
3105  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3106  * We collect these two parts in CPUARMTBFlags where they are named
3107  * flags and flags2 respectively.
3108  *
3109  * The flags that are shared between all execution modes, TBFLAG_ANY,
3110  * are stored in flags.  The flags that are specific to a given mode
3111  * are stores in flags2.  Since cs_base is sized on the configured
3112  * address size, flags2 always has 64-bits for A64, and a minimum of
3113  * 32-bits for A32 and M32.
3114  *
3115  * The bits for 32-bit A-profile and M-profile partially overlap:
3116  *
3117  *  31         23         11 10             0
3118  * +-------------+----------+----------------+
3119  * |             |          |   TBFLAG_A32   |
3120  * | TBFLAG_AM32 |          +-----+----------+
3121  * |             |                |TBFLAG_M32|
3122  * +-------------+----------------+----------+
3123  *  31         23                6 5        0
3124  *
3125  * Unless otherwise noted, these bits are cached in env->hflags.
3126  */
3127 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3128 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3129 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3130 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3131 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3132 /* Target EL if we take a floating-point-disabled exception */
3133 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3134 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3135 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3136 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3137 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3138 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3139 
3140 /*
3141  * Bit usage when in AArch32 state, both A- and M-profile.
3142  */
3143 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3144 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3145 
3146 /*
3147  * Bit usage when in AArch32 state, for A-profile only.
3148  */
3149 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3150 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3151 /*
3152  * We store the bottom two bits of the CPAR as TB flags and handle
3153  * checks on the other bits at runtime. This shares the same bits as
3154  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3155  * Not cached, because VECLEN+VECSTRIDE are not cached.
3156  */
3157 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3158 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3159 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3160 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3161 /*
3162  * Indicates whether cp register reads and writes by guest code should access
3163  * the secure or nonsecure bank of banked registers; note that this is not
3164  * the same thing as the current security state of the processor!
3165  */
3166 FIELD(TBFLAG_A32, NS, 10, 1)
3167 /*
3168  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3169  * This requires an SME trap from AArch32 mode when using NEON.
3170  */
3171 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3172 
3173 /*
3174  * Bit usage when in AArch32 state, for M-profile only.
3175  */
3176 /* Handler (ie not Thread) mode */
3177 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3178 /* Whether we should generate stack-limit checks */
3179 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3180 /* Set if FPCCR.LSPACT is set */
3181 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3182 /* Set if we must create a new FP context */
3183 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3184 /* Set if FPCCR.S does not match current security state */
3185 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3186 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3187 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3188 /* Set if in secure mode */
3189 FIELD(TBFLAG_M32, SECURE, 6, 1)
3190 
3191 /*
3192  * Bit usage when in AArch64 state
3193  */
3194 FIELD(TBFLAG_A64, TBII, 0, 2)
3195 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3196 /* The current vector length, either NVL or SVL. */
3197 FIELD(TBFLAG_A64, VL, 4, 4)
3198 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3199 FIELD(TBFLAG_A64, BT, 9, 1)
3200 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3201 FIELD(TBFLAG_A64, TBID, 12, 2)
3202 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3203 FIELD(TBFLAG_A64, ATA, 15, 1)
3204 FIELD(TBFLAG_A64, TCMA, 16, 2)
3205 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3206 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3207 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3208 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3209 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3210 FIELD(TBFLAG_A64, SVL, 24, 4)
3211 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3212 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3213 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3214 FIELD(TBFLAG_A64, NAA, 30, 1)
3215 FIELD(TBFLAG_A64, ATA0, 31, 1)
3216 FIELD(TBFLAG_A64, NV, 32, 1)
3217 FIELD(TBFLAG_A64, NV1, 33, 1)
3218 FIELD(TBFLAG_A64, NV2, 34, 1)
3219 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3220 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3221 /* Set if FEAT_NV2 RAM accesses are big-endian */
3222 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3223 FIELD(TBFLAG_A64, AH, 37, 1)   /* FPCR.AH */
3224 FIELD(TBFLAG_A64, NEP, 38, 1)   /* FPCR.NEP */
3225 
3226 /*
3227  * Helpers for using the above. Note that only the A64 accessors use
3228  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3229  * word either is or might be 32 bits only.
3230  */
3231 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3232     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3233 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3234     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3235 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3236     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3237 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3238     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3239 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3240     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3241 
3242 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3243 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3244 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3245 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3246 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3247 
3248 /**
3249  * sve_vq
3250  * @env: the cpu context
3251  *
3252  * Return the VL cached within env->hflags, in units of quadwords.
3253  */
3254 static inline int sve_vq(CPUARMState *env)
3255 {
3256     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3257 }
3258 
3259 /**
3260  * sme_vq
3261  * @env: the cpu context
3262  *
3263  * Return the SVL cached within env->hflags, in units of quadwords.
3264  */
3265 static inline int sme_vq(CPUARMState *env)
3266 {
3267     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3268 }
3269 
3270 static inline bool bswap_code(bool sctlr_b)
3271 {
3272 #ifdef CONFIG_USER_ONLY
3273     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3274      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3275      * would also end up as a mixed-endian mode with BE code, LE data.
3276      */
3277     return TARGET_BIG_ENDIAN ^ sctlr_b;
3278 #else
3279     /* All code access in ARM is little endian, and there are no loaders
3280      * doing swaps that need to be reversed
3281      */
3282     return 0;
3283 #endif
3284 }
3285 
3286 #ifdef CONFIG_USER_ONLY
3287 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3288 {
3289     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3290 }
3291 #endif
3292 
3293 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3294                           uint64_t *cs_base, uint32_t *flags);
3295 
3296 enum {
3297     QEMU_PSCI_CONDUIT_DISABLED = 0,
3298     QEMU_PSCI_CONDUIT_SMC = 1,
3299     QEMU_PSCI_CONDUIT_HVC = 2,
3300 };
3301 
3302 #ifndef CONFIG_USER_ONLY
3303 /* Return the address space index to use for a memory access */
3304 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3305 {
3306     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3307 }
3308 
3309 /* Return the AddressSpace to use for a memory access
3310  * (which depends on whether the access is S or NS, and whether
3311  * the board gave us a separate AddressSpace for S accesses).
3312  */
3313 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3314 {
3315     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3316 }
3317 #endif
3318 
3319 /**
3320  * arm_register_pre_el_change_hook:
3321  * Register a hook function which will be called immediately before this
3322  * CPU changes exception level or mode. The hook function will be
3323  * passed a pointer to the ARMCPU and the opaque data pointer passed
3324  * to this function when the hook was registered.
3325  *
3326  * Note that if a pre-change hook is called, any registered post-change hooks
3327  * are guaranteed to subsequently be called.
3328  */
3329 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3330                                  void *opaque);
3331 /**
3332  * arm_register_el_change_hook:
3333  * Register a hook function which will be called immediately after this
3334  * CPU changes exception level or mode. The hook function will be
3335  * passed a pointer to the ARMCPU and the opaque data pointer passed
3336  * to this function when the hook was registered.
3337  *
3338  * Note that any registered hooks registered here are guaranteed to be called
3339  * if pre-change hooks have been.
3340  */
3341 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3342         *opaque);
3343 
3344 /**
3345  * arm_rebuild_hflags:
3346  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3347  */
3348 void arm_rebuild_hflags(CPUARMState *env);
3349 
3350 /**
3351  * aa32_vfp_dreg:
3352  * Return a pointer to the Dn register within env in 32-bit mode.
3353  */
3354 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3355 {
3356     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3357 }
3358 
3359 /**
3360  * aa32_vfp_qreg:
3361  * Return a pointer to the Qn register within env in 32-bit mode.
3362  */
3363 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3364 {
3365     return &env->vfp.zregs[regno].d[0];
3366 }
3367 
3368 /**
3369  * aa64_vfp_qreg:
3370  * Return a pointer to the Qn register within env in 64-bit mode.
3371  */
3372 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3373 {
3374     return &env->vfp.zregs[regno].d[0];
3375 }
3376 
3377 /* Shared between translate-sve.c and sve_helper.c.  */
3378 extern const uint64_t pred_esz_masks[5];
3379 
3380 /*
3381  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3382  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3383  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3384  */
3385 #define PAGE_BTI            PAGE_TARGET_1
3386 #define PAGE_MTE            PAGE_TARGET_2
3387 #define PAGE_TARGET_STICKY  PAGE_MTE
3388 
3389 /* We associate one allocation tag per 16 bytes, the minimum.  */
3390 #define LOG2_TAG_GRANULE 4
3391 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3392 
3393 #ifdef CONFIG_USER_ONLY
3394 
3395 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3396 
3397 #ifdef TARGET_TAGGED_ADDRESSES
3398 /**
3399  * cpu_untagged_addr:
3400  * @cs: CPU context
3401  * @x: tagged address
3402  *
3403  * Remove any address tag from @x.  This is explicitly related to the
3404  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3405  *
3406  * There should be a better place to put this, but we need this in
3407  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3408  */
3409 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3410 {
3411     CPUARMState *env = cpu_env(cs);
3412     if (env->tagged_addr_enable) {
3413         /*
3414          * TBI is enabled for userspace but not kernelspace addresses.
3415          * Only clear the tag if bit 55 is clear.
3416          */
3417         x &= sextract64(x, 0, 56);
3418     }
3419     return x;
3420 }
3421 #endif /* TARGET_TAGGED_ADDRESSES */
3422 #endif /* CONFIG_USER_ONLY */
3423 
3424 #endif
3425