xref: /qemu/target/arm/cpu.h (revision 4cfe9edb1b1961af9cda74351f73b0abb3159b67)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37 
38 #define EXCP_UDEF            1   /* undefined instruction */
39 #define EXCP_SWI             2   /* software interrupt */
40 #define EXCP_PREFETCH_ABORT  3
41 #define EXCP_DATA_ABORT      4
42 #define EXCP_IRQ             5
43 #define EXCP_FIQ             6
44 #define EXCP_BKPT            7
45 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47 #define EXCP_HVC            11   /* HyperVisor Call */
48 #define EXCP_HYP_TRAP       12
49 #define EXCP_SMC            13   /* Secure Monitor Call */
50 #define EXCP_VIRQ           14
51 #define EXCP_VFIQ           15
52 #define EXCP_SEMIHOST       16   /* semihosting call */
53 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR          24
61 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI            26
63 #define EXCP_VINMI          27
64 #define EXCP_VFNMI          28
65 #define EXCP_MON_TRAP       29   /* AArch32 trap to Monitor mode */
66 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
67 
68 #define ARMV7M_EXCP_RESET   1
69 #define ARMV7M_EXCP_NMI     2
70 #define ARMV7M_EXCP_HARD    3
71 #define ARMV7M_EXCP_MEM     4
72 #define ARMV7M_EXCP_BUS     5
73 #define ARMV7M_EXCP_USAGE   6
74 #define ARMV7M_EXCP_SECURE  7
75 #define ARMV7M_EXCP_SVC     11
76 #define ARMV7M_EXCP_DEBUG   12
77 #define ARMV7M_EXCP_PENDSV  14
78 #define ARMV7M_EXCP_SYSTICK 15
79 
80 /* ARM-specific interrupt pending bits.  */
81 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
82 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
83 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
84 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
85 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
86 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
87 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
88 
89 /* The usual mapping for an AArch64 system register to its AArch32
90  * counterpart is for the 32 bit world to have access to the lower
91  * half only (with writes leaving the upper half untouched). It's
92  * therefore useful to be able to pass TCG the offset of the least
93  * significant half of a uint64_t struct member.
94  */
95 #if HOST_BIG_ENDIAN
96 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
97 #define offsetofhigh32(S, M) offsetof(S, M)
98 #else
99 #define offsetoflow32(S, M) offsetof(S, M)
100 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #endif
102 
103 /* ARM-specific extra insn start words:
104  * 1: Conditional execution bits
105  * 2: Partial exception syndrome for data aborts
106  */
107 #define TARGET_INSN_START_EXTRA_WORDS 2
108 
109 /* The 2nd extra word holding syndrome info for data aborts does not use
110  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
111  * help the sleb128 encoder do a better job.
112  * When restoring the CPU state, we shift it back up.
113  */
114 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
115 #define ARM_INSN_START_WORD2_SHIFT 13
116 
117 /* We currently assume float and double are IEEE single and double
118    precision respectively.
119    Doing runtime conversions is tricky because VFP registers may contain
120    integer values (eg. as the result of a FTOSI instruction).
121    s<2n> maps to the least significant half of d<n>
122    s<2n+1> maps to the most significant half of d<n>
123  */
124 
125 /**
126  * DynamicGDBFeatureInfo:
127  * @desc: Contains the feature descriptions.
128  * @data: A union with data specific to the set of registers
129  *    @cpregs_keys: Array that contains the corresponding Key of
130  *                  a given cpreg with the same order of the cpreg
131  *                  in the XML description.
132  */
133 typedef struct DynamicGDBFeatureInfo {
134     GDBFeature desc;
135     union {
136         struct {
137             uint32_t *keys;
138         } cpregs;
139     } data;
140 } DynamicGDBFeatureInfo;
141 
142 /* CPU state for each instance of a generic timer (in cp15 c14) */
143 typedef struct ARMGenericTimer {
144     uint64_t cval; /* Timer CompareValue register */
145     uint64_t ctl; /* Timer Control register */
146 } ARMGenericTimer;
147 
148 /* Define a maximum sized vector register.
149  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
150  * For 64-bit, this is a 2048-bit SVE register.
151  *
152  * Note that the mapping between S, D, and Q views of the register bank
153  * differs between AArch64 and AArch32.
154  * In AArch32:
155  *  Qn = regs[n].d[1]:regs[n].d[0]
156  *  Dn = regs[n / 2].d[n & 1]
157  *  Sn = regs[n / 4].d[n % 4 / 2],
158  *       bits 31..0 for even n, and bits 63..32 for odd n
159  *       (and regs[16] to regs[31] are inaccessible)
160  * In AArch64:
161  *  Zn = regs[n].d[*]
162  *  Qn = regs[n].d[1]:regs[n].d[0]
163  *  Dn = regs[n].d[0]
164  *  Sn = regs[n].d[0] bits 31..0
165  *  Hn = regs[n].d[0] bits 15..0
166  *
167  * This corresponds to the architecturally defined mapping between
168  * the two execution states, and means we do not need to explicitly
169  * map these registers when changing states.
170  *
171  * Align the data for use with TCG host vector operations.
172  */
173 
174 #ifdef TARGET_AARCH64
175 # define ARM_MAX_VQ    16
176 #else
177 # define ARM_MAX_VQ    1
178 #endif
179 
180 typedef struct ARMVectorReg {
181     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
182 } ARMVectorReg;
183 
184 #ifdef TARGET_AARCH64
185 /* In AArch32 mode, predicate registers do not exist at all.  */
186 typedef struct ARMPredicateReg {
187     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
188 } ARMPredicateReg;
189 
190 /* In AArch32 mode, PAC keys do not exist at all.  */
191 typedef struct ARMPACKey {
192     uint64_t lo, hi;
193 } ARMPACKey;
194 #endif
195 
196 /* See the commentary above the TBFLAG field definitions.  */
197 typedef struct CPUARMTBFlags {
198     uint32_t flags;
199     target_ulong flags2;
200 } CPUARMTBFlags;
201 
202 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
203 
204 typedef struct NVICState NVICState;
205 
206 /*
207  * Enum for indexing vfp.fp_status[].
208  *
209  * FPST_A32: is the "normal" fp status for AArch32 insns
210  * FPST_A64: is the "normal" fp status for AArch64 insns
211  * FPST_A32_F16: used for AArch32 half-precision calculations
212  * FPST_A64_F16: used for AArch64 half-precision calculations
213  * FPST_STD: the ARM "Standard FPSCR Value"
214  * FPST_STD_F16: used for half-precision
215  *       calculations with the ARM "Standard FPSCR Value"
216  * FPST_AH: used for the A64 insns which change behaviour
217  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
218  *       and the reciprocal and square root estimate/step insns)
219  * FPST_AH_F16: used for the A64 insns which change behaviour
220  *       when FPCR.AH == 1 (bfloat16 conversions and multiplies,
221  *       and the reciprocal and square root estimate/step insns);
222  *       for half-precision
223  *
224  * Half-precision operations are governed by a separate
225  * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
226  * status structure to control this.
227  *
228  * The "Standard FPSCR", ie default-NaN, flush-to-zero,
229  * round-to-nearest and is used by any operations (generally
230  * Neon) which the architecture defines as controlled by the
231  * standard FPSCR value rather than the FPSCR.
232  *
233  * The "standard FPSCR but for fp16 ops" is needed because
234  * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
235  * using a fixed value for it.
236  *
237  * FPST_AH is needed because some insns have different
238  * behaviour when FPCR.AH == 1: they don't update cumulative
239  * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and
240  * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16,
241  * which means we need an FPST_AH_F16 as well.
242  *
243  * To avoid having to transfer exception bits around, we simply
244  * say that the FPSCR cumulative exception flags are the logical
245  * OR of the flags in the four fp statuses. This relies on the
246  * only thing which needs to read the exception flags being
247  * an explicit FPSCR read.
248  */
249 typedef enum ARMFPStatusFlavour {
250     FPST_A32,
251     FPST_A64,
252     FPST_A32_F16,
253     FPST_A64_F16,
254     FPST_AH,
255     FPST_AH_F16,
256     FPST_STD,
257     FPST_STD_F16,
258 } ARMFPStatusFlavour;
259 #define FPST_COUNT  8
260 
261 typedef struct CPUArchState {
262     /* Regs for current mode.  */
263     uint32_t regs[16];
264 
265     /* 32/64 switch only happens when taking and returning from
266      * exceptions so the overlap semantics are taken care of then
267      * instead of having a complicated union.
268      */
269     /* Regs for A64 mode.  */
270     uint64_t xregs[32];
271     uint64_t pc;
272     /* PSTATE isn't an architectural register for ARMv8. However, it is
273      * convenient for us to assemble the underlying state into a 32 bit format
274      * identical to the architectural format used for the SPSR. (This is also
275      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
276      * 'pstate' register are.) Of the PSTATE bits:
277      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
278      *    semantics as for AArch32, as described in the comments on each field)
279      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
280      *  DAIF (exception masks) are kept in env->daif
281      *  BTYPE is kept in env->btype
282      *  SM and ZA are kept in env->svcr
283      *  all other bits are stored in their correct places in env->pstate
284      */
285     uint32_t pstate;
286     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
287     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
288 
289     /* Cached TBFLAGS state.  See below for which bits are included.  */
290     CPUARMTBFlags hflags;
291 
292     /* Frequently accessed CPSR bits are stored separately for efficiency.
293        This contains all the other bits.  Use cpsr_{read,write} to access
294        the whole CPSR.  */
295     uint32_t uncached_cpsr;
296     uint32_t spsr;
297 
298     /* Banked registers.  */
299     uint64_t banked_spsr[8];
300     uint32_t banked_r13[8];
301     uint32_t banked_r14[8];
302 
303     /* These hold r8-r12.  */
304     uint32_t usr_regs[5];
305     uint32_t fiq_regs[5];
306 
307     /* cpsr flag cache for faster execution */
308     uint32_t CF; /* 0 or 1 */
309     uint32_t VF; /* V is the bit 31. All other bits are undefined */
310     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
311     uint32_t ZF; /* Z set if zero.  */
312     uint32_t QF; /* 0 or 1 */
313     uint32_t GE; /* cpsr[19:16] */
314     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
315     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
316     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
317     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
318 
319     uint64_t elr_el[4]; /* AArch64 exception link regs  */
320     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
321 
322     /* System control coprocessor (cp15) */
323     struct {
324         uint32_t c0_cpuid;
325         union { /* Cache size selection */
326             struct {
327                 uint64_t _unused_csselr0;
328                 uint64_t csselr_ns;
329                 uint64_t _unused_csselr1;
330                 uint64_t csselr_s;
331             };
332             uint64_t csselr_el[4];
333         };
334         union { /* System control register. */
335             struct {
336                 uint64_t _unused_sctlr;
337                 uint64_t sctlr_ns;
338                 uint64_t hsctlr;
339                 uint64_t sctlr_s;
340             };
341             uint64_t sctlr_el[4];
342         };
343         uint64_t vsctlr; /* Virtualization System control register. */
344         uint64_t cpacr_el1; /* Architectural feature access control register */
345         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
346         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
347         uint64_t sder; /* Secure debug enable register. */
348         uint32_t nsacr; /* Non-secure access control register. */
349         union { /* MMU translation table base 0. */
350             struct {
351                 uint64_t _unused_ttbr0_0;
352                 uint64_t ttbr0_ns;
353                 uint64_t _unused_ttbr0_1;
354                 uint64_t ttbr0_s;
355             };
356             uint64_t ttbr0_el[4];
357         };
358         union { /* MMU translation table base 1. */
359             struct {
360                 uint64_t _unused_ttbr1_0;
361                 uint64_t ttbr1_ns;
362                 uint64_t _unused_ttbr1_1;
363                 uint64_t ttbr1_s;
364             };
365             uint64_t ttbr1_el[4];
366         };
367         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
368         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
369         /* MMU translation table base control. */
370         uint64_t tcr_el[4];
371         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
372         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
373         uint32_t c2_data; /* MPU data cacheable bits.  */
374         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
375         union { /* MMU domain access control register
376                  * MPU write buffer control.
377                  */
378             struct {
379                 uint64_t dacr_ns;
380                 uint64_t dacr_s;
381             };
382             struct {
383                 uint64_t dacr32_el2;
384             };
385         };
386         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
387         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
388         uint64_t hcr_el2; /* Hypervisor configuration register */
389         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
390         uint64_t scr_el3; /* Secure configuration register.  */
391         union { /* Fault status registers.  */
392             struct {
393                 uint64_t ifsr_ns;
394                 uint64_t ifsr_s;
395             };
396             struct {
397                 uint64_t ifsr32_el2;
398             };
399         };
400         union {
401             struct {
402                 uint64_t _unused_dfsr;
403                 uint64_t dfsr_ns;
404                 uint64_t hsr;
405                 uint64_t dfsr_s;
406             };
407             uint64_t esr_el[4];
408         };
409         uint32_t c6_region[8]; /* MPU base/size registers.  */
410         union { /* Fault address registers. */
411             struct {
412                 uint64_t _unused_far0;
413 #if HOST_BIG_ENDIAN
414                 uint32_t ifar_ns;
415                 uint32_t dfar_ns;
416                 uint32_t ifar_s;
417                 uint32_t dfar_s;
418 #else
419                 uint32_t dfar_ns;
420                 uint32_t ifar_ns;
421                 uint32_t dfar_s;
422                 uint32_t ifar_s;
423 #endif
424                 uint64_t _unused_far3;
425             };
426             uint64_t far_el[4];
427         };
428         uint64_t hpfar_el2;
429         uint64_t hstr_el2;
430         union { /* Translation result. */
431             struct {
432                 uint64_t _unused_par_0;
433                 uint64_t par_ns;
434                 uint64_t _unused_par_1;
435                 uint64_t par_s;
436             };
437             uint64_t par_el[4];
438         };
439 
440         uint32_t c9_insn; /* Cache lockdown registers.  */
441         uint32_t c9_data;
442         uint64_t c9_pmcr; /* performance monitor control register */
443         uint64_t c9_pmcnten; /* perf monitor counter enables */
444         uint64_t c9_pmovsr; /* perf monitor overflow status */
445         uint64_t c9_pmuserenr; /* perf monitor user enable */
446         uint64_t c9_pmselr; /* perf monitor counter selection register */
447         uint64_t c9_pminten; /* perf monitor interrupt enables */
448         union { /* Memory attribute redirection */
449             struct {
450 #if HOST_BIG_ENDIAN
451                 uint64_t _unused_mair_0;
452                 uint32_t mair1_ns;
453                 uint32_t mair0_ns;
454                 uint64_t _unused_mair_1;
455                 uint32_t mair1_s;
456                 uint32_t mair0_s;
457 #else
458                 uint64_t _unused_mair_0;
459                 uint32_t mair0_ns;
460                 uint32_t mair1_ns;
461                 uint64_t _unused_mair_1;
462                 uint32_t mair0_s;
463                 uint32_t mair1_s;
464 #endif
465             };
466             uint64_t mair_el[4];
467         };
468         union { /* vector base address register */
469             struct {
470                 uint64_t _unused_vbar;
471                 uint64_t vbar_ns;
472                 uint64_t hvbar;
473                 uint64_t vbar_s;
474             };
475             uint64_t vbar_el[4];
476         };
477         uint32_t mvbar; /* (monitor) vector base address register */
478         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
479         struct { /* FCSE PID. */
480             uint32_t fcseidr_ns;
481             uint32_t fcseidr_s;
482         };
483         union { /* Context ID. */
484             struct {
485                 uint64_t _unused_contextidr_0;
486                 uint64_t contextidr_ns;
487                 uint64_t _unused_contextidr_1;
488                 uint64_t contextidr_s;
489             };
490             uint64_t contextidr_el[4];
491         };
492         union { /* User RW Thread register. */
493             struct {
494                 uint64_t tpidrurw_ns;
495                 uint64_t tpidrprw_ns;
496                 uint64_t htpidr;
497                 uint64_t _tpidr_el3;
498             };
499             uint64_t tpidr_el[4];
500         };
501         uint64_t tpidr2_el0;
502         /* The secure banks of these registers don't map anywhere */
503         uint64_t tpidrurw_s;
504         uint64_t tpidrprw_s;
505         uint64_t tpidruro_s;
506 
507         union { /* User RO Thread register. */
508             uint64_t tpidruro_ns;
509             uint64_t tpidrro_el[1];
510         };
511         uint64_t c14_cntfrq; /* Counter Frequency register */
512         uint64_t c14_cntkctl; /* Timer Control register */
513         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
514         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
515         uint64_t cntpoff_el2; /* Counter Physical Offset register */
516         ARMGenericTimer c14_timer[NUM_GTIMERS];
517         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
518         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
519         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
520         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
521         uint32_t c15_threadid; /* TI debugger thread-ID.  */
522         uint32_t c15_config_base_address; /* SCU base address.  */
523         uint32_t c15_diagnostic; /* diagnostic register */
524         uint32_t c15_power_diagnostic;
525         uint32_t c15_power_control; /* power control */
526         uint64_t dbgbvr[16]; /* breakpoint value registers */
527         uint64_t dbgbcr[16]; /* breakpoint control registers */
528         uint64_t dbgwvr[16]; /* watchpoint value registers */
529         uint64_t dbgwcr[16]; /* watchpoint control registers */
530         uint64_t dbgclaim;   /* DBGCLAIM bits */
531         uint64_t mdscr_el1;
532         uint64_t oslsr_el1; /* OS Lock Status */
533         uint64_t osdlr_el1; /* OS DoubleLock status */
534         uint64_t mdcr_el2;
535         uint64_t mdcr_el3;
536         /* Stores the architectural value of the counter *the last time it was
537          * updated* by pmccntr_op_start. Accesses should always be surrounded
538          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
539          * architecturally-correct value is being read/set.
540          */
541         uint64_t c15_ccnt;
542         /* Stores the delta between the architectural value and the underlying
543          * cycle count during normal operation. It is used to update c15_ccnt
544          * to be the correct architectural value before accesses. During
545          * accesses, c15_ccnt_delta contains the underlying count being used
546          * for the access, after which it reverts to the delta value in
547          * pmccntr_op_finish.
548          */
549         uint64_t c15_ccnt_delta;
550         uint64_t c14_pmevcntr[31];
551         uint64_t c14_pmevcntr_delta[31];
552         uint64_t c14_pmevtyper[31];
553         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
554         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
555         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
556         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
557         uint64_t gcr_el1;
558         uint64_t rgsr_el1;
559 
560         /* Minimal RAS registers */
561         uint64_t disr_el1;
562         uint64_t vdisr_el2;
563         uint64_t vsesr_el2;
564 
565         /*
566          * Fine-Grained Trap registers. We store these as arrays so the
567          * access checking code doesn't have to manually select
568          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
569          * FEAT_FGT2 will add more elements to these arrays.
570          */
571         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
572         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
573         uint64_t fgt_exec[1]; /* HFGITR */
574 
575         /* RME registers */
576         uint64_t gpccr_el3;
577         uint64_t gptbr_el3;
578         uint64_t mfar_el3;
579 
580         /* NV2 register */
581         uint64_t vncr_el2;
582     } cp15;
583 
584     struct {
585         /* M profile has up to 4 stack pointers:
586          * a Main Stack Pointer and a Process Stack Pointer for each
587          * of the Secure and Non-Secure states. (If the CPU doesn't support
588          * the security extension then it has only two SPs.)
589          * In QEMU we always store the currently active SP in regs[13],
590          * and the non-active SP for the current security state in
591          * v7m.other_sp. The stack pointers for the inactive security state
592          * are stored in other_ss_msp and other_ss_psp.
593          * switch_v7m_security_state() is responsible for rearranging them
594          * when we change security state.
595          */
596         uint32_t other_sp;
597         uint32_t other_ss_msp;
598         uint32_t other_ss_psp;
599         uint32_t vecbase[M_REG_NUM_BANKS];
600         uint32_t basepri[M_REG_NUM_BANKS];
601         uint32_t control[M_REG_NUM_BANKS];
602         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
603         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
604         uint32_t hfsr; /* HardFault Status */
605         uint32_t dfsr; /* Debug Fault Status Register */
606         uint32_t sfsr; /* Secure Fault Status Register */
607         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
608         uint32_t bfar; /* BusFault Address */
609         uint32_t sfar; /* Secure Fault Address Register */
610         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
611         int exception;
612         uint32_t primask[M_REG_NUM_BANKS];
613         uint32_t faultmask[M_REG_NUM_BANKS];
614         uint32_t aircr; /* only holds r/w state if security extn implemented */
615         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
616         uint32_t csselr[M_REG_NUM_BANKS];
617         uint32_t scr[M_REG_NUM_BANKS];
618         uint32_t msplim[M_REG_NUM_BANKS];
619         uint32_t psplim[M_REG_NUM_BANKS];
620         uint32_t fpcar[M_REG_NUM_BANKS];
621         uint32_t fpccr[M_REG_NUM_BANKS];
622         uint32_t fpdscr[M_REG_NUM_BANKS];
623         uint32_t cpacr[M_REG_NUM_BANKS];
624         uint32_t nsacr;
625         uint32_t ltpsize;
626         uint32_t vpr;
627     } v7m;
628 
629     /* Information associated with an exception about to be taken:
630      * code which raises an exception must set cs->exception_index and
631      * the relevant parts of this structure; the cpu_do_interrupt function
632      * will then set the guest-visible registers as part of the exception
633      * entry process.
634      */
635     struct {
636         uint32_t syndrome; /* AArch64 format syndrome register */
637         uint32_t fsr; /* AArch32 format fault status register info */
638         uint64_t vaddress; /* virtual addr associated with exception, if any */
639         uint32_t target_el; /* EL the exception should be targeted for */
640         /* If we implement EL2 we will also need to store information
641          * about the intermediate physical address for stage 2 faults.
642          */
643     } exception;
644 
645     /* Information associated with an SError */
646     struct {
647         uint8_t pending;
648         uint8_t has_esr;
649         uint64_t esr;
650     } serror;
651 
652     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
653 
654     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
655     uint32_t irq_line_state;
656 
657     /* Thumb-2 EE state.  */
658     uint32_t teecr;
659     uint32_t teehbr;
660 
661     /* VFP coprocessor state.  */
662     struct {
663         ARMVectorReg zregs[32];
664 
665 #ifdef TARGET_AARCH64
666         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
667 #define FFR_PRED_NUM 16
668         ARMPredicateReg pregs[17];
669         /* Scratch space for aa64 sve predicate temporary.  */
670         ARMPredicateReg preg_tmp;
671 #endif
672 
673         /* We store these fpcsr fields separately for convenience.  */
674         uint32_t qc[4] QEMU_ALIGNED(16);
675         int vec_len;
676         int vec_stride;
677 
678         /*
679          * Floating point status and control registers. Some bits are
680          * stored separately in other fields or in the float_status below.
681          */
682         uint64_t fpsr;
683         uint64_t fpcr;
684 
685         uint32_t xregs[16];
686 
687         /* Scratch space for aa32 neon expansion.  */
688         uint32_t scratch[8];
689 
690         /* There are a number of distinct float control structures. */
691         float_status fp_status[FPST_COUNT];
692 
693         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
694         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
695     } vfp;
696 
697     uint64_t exclusive_addr;
698     uint64_t exclusive_val;
699     /*
700      * Contains the 'val' for the second 64-bit register of LDXP, which comes
701      * from the higher address, not the high part of a complete 128-bit value.
702      * In some ways it might be more convenient to record the exclusive value
703      * as the low and high halves of a 128 bit data value, but the current
704      * semantics of these fields are baked into the migration format.
705      */
706     uint64_t exclusive_high;
707 
708     /* iwMMXt coprocessor state.  */
709     struct {
710         uint64_t regs[16];
711         uint64_t val;
712 
713         uint32_t cregs[16];
714     } iwmmxt;
715 
716 #ifdef TARGET_AARCH64
717     struct {
718         ARMPACKey apia;
719         ARMPACKey apib;
720         ARMPACKey apda;
721         ARMPACKey apdb;
722         ARMPACKey apga;
723     } keys;
724 
725     uint64_t scxtnum_el[4];
726 
727     /*
728      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
729      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
730      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
731      * When SVL is less than the architectural maximum, the accessible
732      * storage is restricted, such that if the SVL is X bytes the guest can
733      * see only the bottom X elements of zarray[], and only the least
734      * significant X bytes of each element of the array. (In other words,
735      * the observable part is always square.)
736      *
737      * The ZA storage can also be considered as a set of square tiles of
738      * elements of different sizes. The mapping from tiles to the ZA array
739      * is architecturally defined, such that for tiles of elements of esz
740      * bytes, the Nth row (or "horizontal slice") of tile T is in
741      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
742      * in the ZA storage, because its rows are striped through the ZA array.
743      *
744      * Because this is so large, keep this toward the end of the reset area,
745      * to keep the offsets into the rest of the structure smaller.
746      */
747     ARMVectorReg zarray[ARM_MAX_VQ * 16];
748 #endif
749 
750     struct CPUBreakpoint *cpu_breakpoint[16];
751     struct CPUWatchpoint *cpu_watchpoint[16];
752 
753     /* Optional fault info across tlb lookup. */
754     ARMMMUFaultInfo *tlb_fi;
755 
756     /* Fields up to this point are cleared by a CPU reset */
757     struct {} end_reset_fields;
758 
759     /* Fields after this point are preserved across CPU reset. */
760 
761     /* Internal CPU feature flags.  */
762     uint64_t features;
763 
764     /* PMSAv7 MPU */
765     struct {
766         uint32_t *drbar;
767         uint32_t *drsr;
768         uint32_t *dracr;
769         uint32_t rnr[M_REG_NUM_BANKS];
770     } pmsav7;
771 
772     /* PMSAv8 MPU */
773     struct {
774         /* The PMSAv8 implementation also shares some PMSAv7 config
775          * and state:
776          *  pmsav7.rnr (region number register)
777          *  pmsav7_dregion (number of configured regions)
778          */
779         uint32_t *rbar[M_REG_NUM_BANKS];
780         uint32_t *rlar[M_REG_NUM_BANKS];
781         uint32_t *hprbar;
782         uint32_t *hprlar;
783         uint32_t mair0[M_REG_NUM_BANKS];
784         uint32_t mair1[M_REG_NUM_BANKS];
785         uint32_t hprselr;
786     } pmsav8;
787 
788     /* v8M SAU */
789     struct {
790         uint32_t *rbar;
791         uint32_t *rlar;
792         uint32_t rnr;
793         uint32_t ctrl;
794     } sau;
795 
796 #if !defined(CONFIG_USER_ONLY)
797     NVICState *nvic;
798     const struct arm_boot_info *boot_info;
799     /* Store GICv3CPUState to access from this struct */
800     void *gicv3state;
801 #else /* CONFIG_USER_ONLY */
802     /* For usermode syscall translation.  */
803     bool eabi;
804 #endif /* CONFIG_USER_ONLY */
805 
806 #ifdef TARGET_TAGGED_ADDRESSES
807     /* Linux syscall tagged address support */
808     bool tagged_addr_enable;
809 #endif
810 } CPUARMState;
811 
812 static inline void set_feature(CPUARMState *env, int feature)
813 {
814     env->features |= 1ULL << feature;
815 }
816 
817 static inline void unset_feature(CPUARMState *env, int feature)
818 {
819     env->features &= ~(1ULL << feature);
820 }
821 
822 /**
823  * ARMELChangeHookFn:
824  * type of a function which can be registered via arm_register_el_change_hook()
825  * to get callbacks when the CPU changes its exception level or mode.
826  */
827 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
828 typedef struct ARMELChangeHook ARMELChangeHook;
829 struct ARMELChangeHook {
830     ARMELChangeHookFn *hook;
831     void *opaque;
832     QLIST_ENTRY(ARMELChangeHook) node;
833 };
834 
835 /* These values map onto the return values for
836  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
837 typedef enum ARMPSCIState {
838     PSCI_ON = 0,
839     PSCI_OFF = 1,
840     PSCI_ON_PENDING = 2
841 } ARMPSCIState;
842 
843 typedef struct ARMISARegisters ARMISARegisters;
844 
845 /*
846  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
847  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
848  *
849  * While processing properties during initialization, corresponding init bits
850  * are set for bits in sve_vq_map that have been set by properties.
851  *
852  * Bits set in supported represent valid vector lengths for the CPU type.
853  */
854 typedef struct {
855     uint32_t map, init, supported;
856 } ARMVQMap;
857 
858 /**
859  * ARMCPU:
860  * @env: #CPUARMState
861  *
862  * An ARM CPU core.
863  */
864 struct ArchCPU {
865     CPUState parent_obj;
866 
867     CPUARMState env;
868 
869     /* Coprocessor information */
870     GHashTable *cp_regs;
871     /* For marshalling (mostly coprocessor) register state between the
872      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
873      * we use these arrays.
874      */
875     /* List of register indexes managed via these arrays; (full KVM style
876      * 64 bit indexes, not CPRegInfo 32 bit indexes)
877      */
878     uint64_t *cpreg_indexes;
879     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
880     uint64_t *cpreg_values;
881     /* Length of the indexes, values, reset_values arrays */
882     int32_t cpreg_array_len;
883     /* These are used only for migration: incoming data arrives in
884      * these fields and is sanity checked in post_load before copying
885      * to the working data structures above.
886      */
887     uint64_t *cpreg_vmstate_indexes;
888     uint64_t *cpreg_vmstate_values;
889     int32_t cpreg_vmstate_array_len;
890 
891     DynamicGDBFeatureInfo dyn_sysreg_feature;
892     DynamicGDBFeatureInfo dyn_svereg_feature;
893     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
894     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
895 
896     /* Timers used by the generic (architected) timer */
897     QEMUTimer *gt_timer[NUM_GTIMERS];
898     /*
899      * Timer used by the PMU. Its state is restored after migration by
900      * pmu_op_finish() - it does not need other handling during migration
901      */
902     QEMUTimer *pmu_timer;
903     /* Timer used for WFxT timeouts */
904     QEMUTimer *wfxt_timer;
905 
906     /* GPIO outputs for generic timer */
907     qemu_irq gt_timer_outputs[NUM_GTIMERS];
908     /* GPIO output for GICv3 maintenance interrupt signal */
909     qemu_irq gicv3_maintenance_interrupt;
910     /* GPIO output for the PMU interrupt */
911     qemu_irq pmu_interrupt;
912 
913     /* MemoryRegion to use for secure physical accesses */
914     MemoryRegion *secure_memory;
915 
916     /* MemoryRegion to use for allocation tag accesses */
917     MemoryRegion *tag_memory;
918     MemoryRegion *secure_tag_memory;
919 
920     /* For v8M, pointer to the IDAU interface provided by board/SoC */
921     Object *idau;
922 
923     /* 'compatible' string for this CPU for Linux device trees */
924     const char *dtb_compatible;
925 
926     /* PSCI version for this CPU
927      * Bits[31:16] = Major Version
928      * Bits[15:0] = Minor Version
929      */
930     uint32_t psci_version;
931 
932     /* Current power state, access guarded by BQL */
933     ARMPSCIState power_state;
934 
935     /* CPU has virtualization extension */
936     bool has_el2;
937     /* CPU has security extension */
938     bool has_el3;
939     /* CPU has PMU (Performance Monitor Unit) */
940     bool has_pmu;
941     /* CPU has VFP */
942     bool has_vfp;
943     /* CPU has 32 VFP registers */
944     bool has_vfp_d32;
945     /* CPU has Neon */
946     bool has_neon;
947     /* CPU has M-profile DSP extension */
948     bool has_dsp;
949 
950     /* CPU has memory protection unit */
951     bool has_mpu;
952     /* CPU has MTE enabled in KVM mode */
953     bool kvm_mte;
954     /* PMSAv7 MPU number of supported regions */
955     uint32_t pmsav7_dregion;
956     /* PMSAv8 MPU number of supported hyp regions */
957     uint32_t pmsav8r_hdregion;
958     /* v8M SAU number of supported regions */
959     uint32_t sau_sregion;
960 
961     /* PSCI conduit used to invoke PSCI methods
962      * 0 - disabled, 1 - smc, 2 - hvc
963      */
964     uint32_t psci_conduit;
965 
966     /* For v8M, initial value of the Secure VTOR */
967     uint32_t init_svtor;
968     /* For v8M, initial value of the Non-secure VTOR */
969     uint32_t init_nsvtor;
970 
971     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
972      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
973      */
974     uint32_t kvm_target;
975 
976 #ifdef CONFIG_KVM
977     /* KVM init features for this CPU */
978     uint32_t kvm_init_features[7];
979 
980     /* KVM CPU state */
981 
982     /* KVM virtual time adjustment */
983     bool kvm_adjvtime;
984     bool kvm_vtime_dirty;
985     uint64_t kvm_vtime;
986 
987     /* KVM steal time */
988     OnOffAuto kvm_steal_time;
989 #endif /* CONFIG_KVM */
990 
991     /* Uniprocessor system with MP extensions */
992     bool mp_is_up;
993 
994     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
995      * and the probe failed (so we need to report the error in realize)
996      */
997     bool host_cpu_probe_failed;
998 
999     /* QOM property to indicate we should use the back-compat CNTFRQ default */
1000     bool backcompat_cntfrq;
1001 
1002     /* QOM property to indicate we should use the back-compat QARMA5 default */
1003     bool backcompat_pauth_default_use_qarma5;
1004 
1005     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
1006      * register.
1007      */
1008     int32_t core_count;
1009 
1010     /* The instance init functions for implementation-specific subclasses
1011      * set these fields to specify the implementation-dependent values of
1012      * various constant registers and reset values of non-constant
1013      * registers.
1014      * Some of these might become QOM properties eventually.
1015      * Field names match the official register names as defined in the
1016      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
1017      * is used for reset values of non-constant registers; no reset_
1018      * prefix means a constant register.
1019      * Some of these registers are split out into a substructure that
1020      * is shared with the translators to control the ISA.
1021      *
1022      * Note that if you add an ID register to the ARMISARegisters struct
1023      * you need to also update the 32-bit and 64-bit versions of the
1024      * kvm_arm_get_host_cpu_features() function to correctly populate the
1025      * field by reading the value from the KVM vCPU.
1026      */
1027     struct ARMISARegisters {
1028         uint32_t id_isar0;
1029         uint32_t id_isar1;
1030         uint32_t id_isar2;
1031         uint32_t id_isar3;
1032         uint32_t id_isar4;
1033         uint32_t id_isar5;
1034         uint32_t id_isar6;
1035         uint32_t id_mmfr0;
1036         uint32_t id_mmfr1;
1037         uint32_t id_mmfr2;
1038         uint32_t id_mmfr3;
1039         uint32_t id_mmfr4;
1040         uint32_t id_mmfr5;
1041         uint32_t id_pfr0;
1042         uint32_t id_pfr1;
1043         uint32_t id_pfr2;
1044         uint32_t mvfr0;
1045         uint32_t mvfr1;
1046         uint32_t mvfr2;
1047         uint32_t id_dfr0;
1048         uint32_t id_dfr1;
1049         uint32_t dbgdidr;
1050         uint32_t dbgdevid;
1051         uint32_t dbgdevid1;
1052         uint64_t id_aa64isar0;
1053         uint64_t id_aa64isar1;
1054         uint64_t id_aa64isar2;
1055         uint64_t id_aa64pfr0;
1056         uint64_t id_aa64pfr1;
1057         uint64_t id_aa64mmfr0;
1058         uint64_t id_aa64mmfr1;
1059         uint64_t id_aa64mmfr2;
1060         uint64_t id_aa64mmfr3;
1061         uint64_t id_aa64dfr0;
1062         uint64_t id_aa64dfr1;
1063         uint64_t id_aa64zfr0;
1064         uint64_t id_aa64smfr0;
1065         uint64_t reset_pmcr_el0;
1066     } isar;
1067     uint64_t midr;
1068     uint32_t revidr;
1069     uint32_t reset_fpsid;
1070     uint64_t ctr;
1071     uint32_t reset_sctlr;
1072     uint64_t pmceid0;
1073     uint64_t pmceid1;
1074     uint32_t id_afr0;
1075     uint64_t id_aa64afr0;
1076     uint64_t id_aa64afr1;
1077     uint64_t clidr;
1078     uint64_t mp_affinity; /* MP ID without feature bits */
1079     /* The elements of this array are the CCSIDR values for each cache,
1080      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1081      */
1082     uint64_t ccsidr[16];
1083     uint64_t reset_cbar;
1084     uint32_t reset_auxcr;
1085     bool reset_hivecs;
1086     uint8_t reset_l0gptsz;
1087 
1088     /*
1089      * Intermediate values used during property parsing.
1090      * Once finalized, the values should be read from ID_AA64*.
1091      */
1092     bool prop_pauth;
1093     bool prop_pauth_impdef;
1094     bool prop_pauth_qarma3;
1095     bool prop_pauth_qarma5;
1096     bool prop_lpa2;
1097 
1098     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1099     uint8_t dcz_blocksize;
1100     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1101     uint8_t gm_blocksize;
1102 
1103     uint64_t rvbar_prop; /* Property/input signals.  */
1104 
1105     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1106     int gic_num_lrs; /* number of list registers */
1107     int gic_vpribits; /* number of virtual priority bits */
1108     int gic_vprebits; /* number of virtual preemption bits */
1109     int gic_pribits; /* number of physical priority bits */
1110 
1111     /* Whether the cfgend input is high (i.e. this CPU should reset into
1112      * big-endian mode).  This setting isn't used directly: instead it modifies
1113      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1114      * architecture version.
1115      */
1116     bool cfgend;
1117 
1118     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1119     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1120 
1121     int32_t node_id; /* NUMA node this CPU belongs to */
1122 
1123     /* Used to synchronize KVM and QEMU in-kernel device levels */
1124     uint8_t device_irq_level;
1125 
1126     /* Used to set the maximum vector length the cpu will support.  */
1127     uint32_t sve_max_vq;
1128 
1129 #ifdef CONFIG_USER_ONLY
1130     /* Used to set the default vector length at process start. */
1131     uint32_t sve_default_vq;
1132     uint32_t sme_default_vq;
1133 #endif
1134 
1135     ARMVQMap sve_vq;
1136     ARMVQMap sme_vq;
1137 
1138     /* Generic timer counter frequency, in Hz */
1139     uint64_t gt_cntfrq_hz;
1140 };
1141 
1142 typedef struct ARMCPUInfo {
1143     const char *name;
1144     const char *deprecation_note;
1145     void (*initfn)(Object *obj);
1146     void (*class_init)(ObjectClass *oc, void *data);
1147 } ARMCPUInfo;
1148 
1149 /**
1150  * ARMCPUClass:
1151  * @parent_realize: The parent class' realize handler.
1152  * @parent_phases: The parent class' reset phase handlers.
1153  *
1154  * An ARM CPU model.
1155  */
1156 struct ARMCPUClass {
1157     CPUClass parent_class;
1158 
1159     const ARMCPUInfo *info;
1160     DeviceRealize parent_realize;
1161     ResettablePhases parent_phases;
1162 };
1163 
1164 struct AArch64CPUClass {
1165     ARMCPUClass parent_class;
1166 };
1167 
1168 /* Callback functions for the generic timer's timers. */
1169 void arm_gt_ptimer_cb(void *opaque);
1170 void arm_gt_vtimer_cb(void *opaque);
1171 void arm_gt_htimer_cb(void *opaque);
1172 void arm_gt_stimer_cb(void *opaque);
1173 void arm_gt_hvtimer_cb(void *opaque);
1174 
1175 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1176 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1177 
1178 void arm_cpu_post_init(Object *obj);
1179 
1180 #define ARM_AFF0_SHIFT 0
1181 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1182 #define ARM_AFF1_SHIFT 8
1183 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1184 #define ARM_AFF2_SHIFT 16
1185 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1186 #define ARM_AFF3_SHIFT 32
1187 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1188 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1189 
1190 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1191 #define ARM64_AFFINITY_MASK \
1192     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1193 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1194 
1195 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1196 
1197 #ifndef CONFIG_USER_ONLY
1198 extern const VMStateDescription vmstate_arm_cpu;
1199 
1200 void arm_cpu_do_interrupt(CPUState *cpu);
1201 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1202 
1203 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1204                                          MemTxAttrs *attrs);
1205 #endif /* !CONFIG_USER_ONLY */
1206 
1207 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1208 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1209 
1210 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1211                              int cpuid, DumpState *s);
1212 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1213                              int cpuid, DumpState *s);
1214 
1215 /**
1216  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1217  * @cpu: CPU (which must have been freshly reset)
1218  * @target_el: exception level to put the CPU into
1219  * @secure: whether to put the CPU in secure state
1220  *
1221  * When QEMU is directly running a guest kernel at a lower level than
1222  * EL3 it implicitly emulates some aspects of the guest firmware.
1223  * This includes that on reset we need to configure the parts of the
1224  * CPU corresponding to EL3 so that the real guest code can run at its
1225  * lower exception level. This function does that post-reset CPU setup,
1226  * for when we do direct boot of a guest kernel, and for when we
1227  * emulate PSCI and similar firmware interfaces starting a CPU at a
1228  * lower exception level.
1229  *
1230  * @target_el must be an EL implemented by the CPU between 1 and 3.
1231  * We do not support dropping into a Secure EL other than 3.
1232  *
1233  * It is the responsibility of the caller to call arm_rebuild_hflags().
1234  */
1235 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1236 
1237 #ifdef TARGET_AARCH64
1238 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1239 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1240 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1241 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1242                            int new_el, bool el0_a64);
1243 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1244 
1245 /*
1246  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1247  * The byte at offset i from the start of the in-memory representation contains
1248  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1249  * lowest offsets are stored in the lowest memory addresses, then that nearly
1250  * matches QEMU's representation, which is to use an array of host-endian
1251  * uint64_t's, where the lower offsets are at the lower indices. To complete
1252  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1253  */
1254 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1255 {
1256 #if HOST_BIG_ENDIAN
1257     int i;
1258 
1259     for (i = 0; i < nr; ++i) {
1260         dst[i] = bswap64(src[i]);
1261     }
1262 
1263     return dst;
1264 #else
1265     return src;
1266 #endif
1267 }
1268 
1269 #else
1270 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1271 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1272                                          int n, bool a)
1273 { }
1274 #endif
1275 
1276 void aarch64_sync_32_to_64(CPUARMState *env);
1277 void aarch64_sync_64_to_32(CPUARMState *env);
1278 
1279 int fp_exception_el(CPUARMState *env, int cur_el);
1280 int sve_exception_el(CPUARMState *env, int cur_el);
1281 int sme_exception_el(CPUARMState *env, int cur_el);
1282 
1283 /**
1284  * sve_vqm1_for_el_sm:
1285  * @env: CPUARMState
1286  * @el: exception level
1287  * @sm: streaming mode
1288  *
1289  * Compute the current vector length for @el & @sm, in units of
1290  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1291  * If @sm, compute for SVL, otherwise NVL.
1292  */
1293 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1294 
1295 /* Likewise, but using @sm = PSTATE.SM. */
1296 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1297 
1298 static inline bool is_a64(CPUARMState *env)
1299 {
1300     return env->aarch64;
1301 }
1302 
1303 /**
1304  * pmu_op_start/finish
1305  * @env: CPUARMState
1306  *
1307  * Convert all PMU counters between their delta form (the typical mode when
1308  * they are enabled) and the guest-visible values. These two calls must
1309  * surround any action which might affect the counters.
1310  */
1311 void pmu_op_start(CPUARMState *env);
1312 void pmu_op_finish(CPUARMState *env);
1313 
1314 /*
1315  * Called when a PMU counter is due to overflow
1316  */
1317 void arm_pmu_timer_cb(void *opaque);
1318 
1319 /**
1320  * Functions to register as EL change hooks for PMU mode filtering
1321  */
1322 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1323 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1324 
1325 /*
1326  * pmu_init
1327  * @cpu: ARMCPU
1328  *
1329  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1330  * for the current configuration
1331  */
1332 void pmu_init(ARMCPU *cpu);
1333 
1334 /* SCTLR bit meanings. Several bits have been reused in newer
1335  * versions of the architecture; in that case we define constants
1336  * for both old and new bit meanings. Code which tests against those
1337  * bits should probably check or otherwise arrange that the CPU
1338  * is the architectural version it expects.
1339  */
1340 #define SCTLR_M       (1U << 0)
1341 #define SCTLR_A       (1U << 1)
1342 #define SCTLR_C       (1U << 2)
1343 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1344 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1345 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1346 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1347 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1348 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1349 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1350 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1351 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1352 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1353 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1354 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1355 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1356 #define SCTLR_SED     (1U << 8) /* v8 onward */
1357 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1358 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1359 #define SCTLR_F       (1U << 10) /* up to v6 */
1360 #define SCTLR_SW      (1U << 10) /* v7 */
1361 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1362 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1363 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1364 #define SCTLR_I       (1U << 12)
1365 #define SCTLR_V       (1U << 13) /* AArch32 only */
1366 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1367 #define SCTLR_RR      (1U << 14) /* up to v7 */
1368 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1369 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1370 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1371 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1372 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1373 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1374 #define SCTLR_BR      (1U << 17) /* PMSA only */
1375 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1376 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1377 #define SCTLR_WXN     (1U << 19)
1378 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1379 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1380 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1381 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1382 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1383 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1384 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1385 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1386 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1387 #define SCTLR_VE      (1U << 24) /* up to v7 */
1388 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1389 #define SCTLR_EE      (1U << 25)
1390 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1391 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1392 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1393 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1394 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1395 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1396 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1397 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1398 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1399 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1400 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1401 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1402 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1403 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1404 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1405 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1406 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1407 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1408 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1409 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1410 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1411 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1412 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1413 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1414 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1415 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1416 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1417 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1418 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1419 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1420 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1421 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1422 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1423 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1424 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1425 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1426 
1427 #define CPSR_M (0x1fU)
1428 #define CPSR_T (1U << 5)
1429 #define CPSR_F (1U << 6)
1430 #define CPSR_I (1U << 7)
1431 #define CPSR_A (1U << 8)
1432 #define CPSR_E (1U << 9)
1433 #define CPSR_IT_2_7 (0xfc00U)
1434 #define CPSR_GE (0xfU << 16)
1435 #define CPSR_IL (1U << 20)
1436 #define CPSR_DIT (1U << 21)
1437 #define CPSR_PAN (1U << 22)
1438 #define CPSR_SSBS (1U << 23)
1439 #define CPSR_J (1U << 24)
1440 #define CPSR_IT_0_1 (3U << 25)
1441 #define CPSR_Q (1U << 27)
1442 #define CPSR_V (1U << 28)
1443 #define CPSR_C (1U << 29)
1444 #define CPSR_Z (1U << 30)
1445 #define CPSR_N (1U << 31)
1446 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1447 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1448 #define ISR_FS (1U << 9)
1449 #define ISR_IS (1U << 10)
1450 
1451 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1452 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1453     | CPSR_NZCV)
1454 /* Bits writable in user mode.  */
1455 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1456 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1457 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1458 
1459 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1460 #define XPSR_EXCP 0x1ffU
1461 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1462 #define XPSR_IT_2_7 CPSR_IT_2_7
1463 #define XPSR_GE CPSR_GE
1464 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1465 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1466 #define XPSR_IT_0_1 CPSR_IT_0_1
1467 #define XPSR_Q CPSR_Q
1468 #define XPSR_V CPSR_V
1469 #define XPSR_C CPSR_C
1470 #define XPSR_Z CPSR_Z
1471 #define XPSR_N CPSR_N
1472 #define XPSR_NZCV CPSR_NZCV
1473 #define XPSR_IT CPSR_IT
1474 
1475 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1476  * Only these are valid when in AArch64 mode; in
1477  * AArch32 mode SPSRs are basically CPSR-format.
1478  */
1479 #define PSTATE_SP (1U)
1480 #define PSTATE_M (0xFU)
1481 #define PSTATE_nRW (1U << 4)
1482 #define PSTATE_F (1U << 6)
1483 #define PSTATE_I (1U << 7)
1484 #define PSTATE_A (1U << 8)
1485 #define PSTATE_D (1U << 9)
1486 #define PSTATE_BTYPE (3U << 10)
1487 #define PSTATE_SSBS (1U << 12)
1488 #define PSTATE_ALLINT (1U << 13)
1489 #define PSTATE_IL (1U << 20)
1490 #define PSTATE_SS (1U << 21)
1491 #define PSTATE_PAN (1U << 22)
1492 #define PSTATE_UAO (1U << 23)
1493 #define PSTATE_DIT (1U << 24)
1494 #define PSTATE_TCO (1U << 25)
1495 #define PSTATE_V (1U << 28)
1496 #define PSTATE_C (1U << 29)
1497 #define PSTATE_Z (1U << 30)
1498 #define PSTATE_N (1U << 31)
1499 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1500 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1501 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1502 /* Mode values for AArch64 */
1503 #define PSTATE_MODE_EL3h 13
1504 #define PSTATE_MODE_EL3t 12
1505 #define PSTATE_MODE_EL2h 9
1506 #define PSTATE_MODE_EL2t 8
1507 #define PSTATE_MODE_EL1h 5
1508 #define PSTATE_MODE_EL1t 4
1509 #define PSTATE_MODE_EL0t 0
1510 
1511 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1512 FIELD(SVCR, SM, 0, 1)
1513 FIELD(SVCR, ZA, 1, 1)
1514 
1515 /* Fields for SMCR_ELx. */
1516 FIELD(SMCR, LEN, 0, 4)
1517 FIELD(SMCR, FA64, 31, 1)
1518 
1519 /* Write a new value to v7m.exception, thus transitioning into or out
1520  * of Handler mode; this may result in a change of active stack pointer.
1521  */
1522 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1523 
1524 /* Map EL and handler into a PSTATE_MODE.  */
1525 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1526 {
1527     return (el << 2) | handler;
1528 }
1529 
1530 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1531  * interprocessing, so we don't attempt to sync with the cpsr state used by
1532  * the 32 bit decoder.
1533  */
1534 static inline uint32_t pstate_read(CPUARMState *env)
1535 {
1536     int ZF;
1537 
1538     ZF = (env->ZF == 0);
1539     return (env->NF & 0x80000000) | (ZF << 30)
1540         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1541         | env->pstate | env->daif | (env->btype << 10);
1542 }
1543 
1544 static inline void pstate_write(CPUARMState *env, uint32_t val)
1545 {
1546     env->ZF = (~val) & PSTATE_Z;
1547     env->NF = val;
1548     env->CF = (val >> 29) & 1;
1549     env->VF = (val << 3) & 0x80000000;
1550     env->daif = val & PSTATE_DAIF;
1551     env->btype = (val >> 10) & 3;
1552     env->pstate = val & ~CACHED_PSTATE_BITS;
1553 }
1554 
1555 /* Return the current CPSR value.  */
1556 uint32_t cpsr_read(CPUARMState *env);
1557 
1558 typedef enum CPSRWriteType {
1559     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1560     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1561     CPSRWriteRaw = 2,
1562         /* trust values, no reg bank switch, no hflags rebuild */
1563     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1564 } CPSRWriteType;
1565 
1566 /*
1567  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1568  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1569  * correspond to TB flags bits cached in the hflags, unless @write_type
1570  * is CPSRWriteRaw.
1571  */
1572 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1573                 CPSRWriteType write_type);
1574 
1575 /* Return the current xPSR value.  */
1576 static inline uint32_t xpsr_read(CPUARMState *env)
1577 {
1578     int ZF;
1579     ZF = (env->ZF == 0);
1580     return (env->NF & 0x80000000) | (ZF << 30)
1581         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1582         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1583         | ((env->condexec_bits & 0xfc) << 8)
1584         | (env->GE << 16)
1585         | env->v7m.exception;
1586 }
1587 
1588 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1589 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1590 {
1591     if (mask & XPSR_NZCV) {
1592         env->ZF = (~val) & XPSR_Z;
1593         env->NF = val;
1594         env->CF = (val >> 29) & 1;
1595         env->VF = (val << 3) & 0x80000000;
1596     }
1597     if (mask & XPSR_Q) {
1598         env->QF = ((val & XPSR_Q) != 0);
1599     }
1600     if (mask & XPSR_GE) {
1601         env->GE = (val & XPSR_GE) >> 16;
1602     }
1603 #ifndef CONFIG_USER_ONLY
1604     if (mask & XPSR_T) {
1605         env->thumb = ((val & XPSR_T) != 0);
1606     }
1607     if (mask & XPSR_IT_0_1) {
1608         env->condexec_bits &= ~3;
1609         env->condexec_bits |= (val >> 25) & 3;
1610     }
1611     if (mask & XPSR_IT_2_7) {
1612         env->condexec_bits &= 3;
1613         env->condexec_bits |= (val >> 8) & 0xfc;
1614     }
1615     if (mask & XPSR_EXCP) {
1616         /* Note that this only happens on exception exit */
1617         write_v7m_exception(env, val & XPSR_EXCP);
1618     }
1619 #endif
1620 }
1621 
1622 #define HCR_VM        (1ULL << 0)
1623 #define HCR_SWIO      (1ULL << 1)
1624 #define HCR_PTW       (1ULL << 2)
1625 #define HCR_FMO       (1ULL << 3)
1626 #define HCR_IMO       (1ULL << 4)
1627 #define HCR_AMO       (1ULL << 5)
1628 #define HCR_VF        (1ULL << 6)
1629 #define HCR_VI        (1ULL << 7)
1630 #define HCR_VSE       (1ULL << 8)
1631 #define HCR_FB        (1ULL << 9)
1632 #define HCR_BSU_MASK  (3ULL << 10)
1633 #define HCR_DC        (1ULL << 12)
1634 #define HCR_TWI       (1ULL << 13)
1635 #define HCR_TWE       (1ULL << 14)
1636 #define HCR_TID0      (1ULL << 15)
1637 #define HCR_TID1      (1ULL << 16)
1638 #define HCR_TID2      (1ULL << 17)
1639 #define HCR_TID3      (1ULL << 18)
1640 #define HCR_TSC       (1ULL << 19)
1641 #define HCR_TIDCP     (1ULL << 20)
1642 #define HCR_TACR      (1ULL << 21)
1643 #define HCR_TSW       (1ULL << 22)
1644 #define HCR_TPCP      (1ULL << 23)
1645 #define HCR_TPU       (1ULL << 24)
1646 #define HCR_TTLB      (1ULL << 25)
1647 #define HCR_TVM       (1ULL << 26)
1648 #define HCR_TGE       (1ULL << 27)
1649 #define HCR_TDZ       (1ULL << 28)
1650 #define HCR_HCD       (1ULL << 29)
1651 #define HCR_TRVM      (1ULL << 30)
1652 #define HCR_RW        (1ULL << 31)
1653 #define HCR_CD        (1ULL << 32)
1654 #define HCR_ID        (1ULL << 33)
1655 #define HCR_E2H       (1ULL << 34)
1656 #define HCR_TLOR      (1ULL << 35)
1657 #define HCR_TERR      (1ULL << 36)
1658 #define HCR_TEA       (1ULL << 37)
1659 #define HCR_MIOCNCE   (1ULL << 38)
1660 #define HCR_TME       (1ULL << 39)
1661 #define HCR_APK       (1ULL << 40)
1662 #define HCR_API       (1ULL << 41)
1663 #define HCR_NV        (1ULL << 42)
1664 #define HCR_NV1       (1ULL << 43)
1665 #define HCR_AT        (1ULL << 44)
1666 #define HCR_NV2       (1ULL << 45)
1667 #define HCR_FWB       (1ULL << 46)
1668 #define HCR_FIEN      (1ULL << 47)
1669 #define HCR_GPF       (1ULL << 48)
1670 #define HCR_TID4      (1ULL << 49)
1671 #define HCR_TICAB     (1ULL << 50)
1672 #define HCR_AMVOFFEN  (1ULL << 51)
1673 #define HCR_TOCU      (1ULL << 52)
1674 #define HCR_ENSCXT    (1ULL << 53)
1675 #define HCR_TTLBIS    (1ULL << 54)
1676 #define HCR_TTLBOS    (1ULL << 55)
1677 #define HCR_ATA       (1ULL << 56)
1678 #define HCR_DCT       (1ULL << 57)
1679 #define HCR_TID5      (1ULL << 58)
1680 #define HCR_TWEDEN    (1ULL << 59)
1681 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1682 
1683 #define SCR_NS                (1ULL << 0)
1684 #define SCR_IRQ               (1ULL << 1)
1685 #define SCR_FIQ               (1ULL << 2)
1686 #define SCR_EA                (1ULL << 3)
1687 #define SCR_FW                (1ULL << 4)
1688 #define SCR_AW                (1ULL << 5)
1689 #define SCR_NET               (1ULL << 6)
1690 #define SCR_SMD               (1ULL << 7)
1691 #define SCR_HCE               (1ULL << 8)
1692 #define SCR_SIF               (1ULL << 9)
1693 #define SCR_RW                (1ULL << 10)
1694 #define SCR_ST                (1ULL << 11)
1695 #define SCR_TWI               (1ULL << 12)
1696 #define SCR_TWE               (1ULL << 13)
1697 #define SCR_TLOR              (1ULL << 14)
1698 #define SCR_TERR              (1ULL << 15)
1699 #define SCR_APK               (1ULL << 16)
1700 #define SCR_API               (1ULL << 17)
1701 #define SCR_EEL2              (1ULL << 18)
1702 #define SCR_EASE              (1ULL << 19)
1703 #define SCR_NMEA              (1ULL << 20)
1704 #define SCR_FIEN              (1ULL << 21)
1705 #define SCR_ENSCXT            (1ULL << 25)
1706 #define SCR_ATA               (1ULL << 26)
1707 #define SCR_FGTEN             (1ULL << 27)
1708 #define SCR_ECVEN             (1ULL << 28)
1709 #define SCR_TWEDEN            (1ULL << 29)
1710 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1711 #define SCR_TME               (1ULL << 34)
1712 #define SCR_AMVOFFEN          (1ULL << 35)
1713 #define SCR_ENAS0             (1ULL << 36)
1714 #define SCR_ADEN              (1ULL << 37)
1715 #define SCR_HXEN              (1ULL << 38)
1716 #define SCR_TRNDR             (1ULL << 40)
1717 #define SCR_ENTP2             (1ULL << 41)
1718 #define SCR_GPF               (1ULL << 48)
1719 #define SCR_NSE               (1ULL << 62)
1720 
1721 /* Return the current FPSCR value.  */
1722 uint32_t vfp_get_fpscr(CPUARMState *env);
1723 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1724 
1725 /*
1726  * FPCR, Floating Point Control Register
1727  * FPSR, Floating Point Status Register
1728  *
1729  * For A64 floating point control and status bits are stored in
1730  * two logically distinct registers, FPCR and FPSR. We store these
1731  * in QEMU in vfp.fpcr and vfp.fpsr.
1732  * For A32 there was only one register, FPSCR. The bits are arranged
1733  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1734  * so we can use appropriate masking to handle FPSCR reads and writes.
1735  * Note that the FPCR has some bits which are not visible in the
1736  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1737  */
1738 
1739 /* FPCR bits */
1740 #define FPCR_FIZ    (1 << 0)    /* Flush Inputs to Zero (FEAT_AFP) */
1741 #define FPCR_AH     (1 << 1)    /* Alternate Handling (FEAT_AFP) */
1742 #define FPCR_NEP    (1 << 2)    /* SIMD scalar ops preserve elts (FEAT_AFP) */
1743 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1744 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1745 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1746 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1747 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1748 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1749 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1750 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1751 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1752 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1753 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1754 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1755 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1756 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1757 
1758 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1759 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1760 #define FPCR_LTPSIZE_LENGTH 3
1761 
1762 /* Cumulative exception trap enable bits */
1763 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1764 
1765 /* FPSR bits */
1766 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1767 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1768 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1769 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1770 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1771 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1772 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1773 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1774 #define FPSR_C      (1 << 29)   /* FP carry flag */
1775 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1776 #define FPSR_N      (1 << 31)   /* FP negative flag */
1777 
1778 /* Cumulative exception status bits */
1779 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1780 
1781 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1782 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1783 
1784 /* A32 FPSCR bits which architecturally map to FPSR bits */
1785 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1786 /* A32 FPSCR bits which architecturally map to FPCR bits */
1787 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1788                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1789                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1790 /* These masks don't overlap: each bit lives in only one place */
1791 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1792 
1793 /**
1794  * vfp_get_fpsr: read the AArch64 FPSR
1795  * @env: CPU context
1796  *
1797  * Return the current AArch64 FPSR value
1798  */
1799 uint32_t vfp_get_fpsr(CPUARMState *env);
1800 
1801 /**
1802  * vfp_get_fpcr: read the AArch64 FPCR
1803  * @env: CPU context
1804  *
1805  * Return the current AArch64 FPCR value
1806  */
1807 uint32_t vfp_get_fpcr(CPUARMState *env);
1808 
1809 /**
1810  * vfp_set_fpsr: write the AArch64 FPSR
1811  * @env: CPU context
1812  * @value: new value
1813  */
1814 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1815 
1816 /**
1817  * vfp_set_fpcr: write the AArch64 FPCR
1818  * @env: CPU context
1819  * @value: new value
1820  */
1821 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1822 
1823 enum arm_cpu_mode {
1824   ARM_CPU_MODE_USR = 0x10,
1825   ARM_CPU_MODE_FIQ = 0x11,
1826   ARM_CPU_MODE_IRQ = 0x12,
1827   ARM_CPU_MODE_SVC = 0x13,
1828   ARM_CPU_MODE_MON = 0x16,
1829   ARM_CPU_MODE_ABT = 0x17,
1830   ARM_CPU_MODE_HYP = 0x1a,
1831   ARM_CPU_MODE_UND = 0x1b,
1832   ARM_CPU_MODE_SYS = 0x1f
1833 };
1834 
1835 /* VFP system registers.  */
1836 #define ARM_VFP_FPSID   0
1837 #define ARM_VFP_FPSCR   1
1838 #define ARM_VFP_MVFR2   5
1839 #define ARM_VFP_MVFR1   6
1840 #define ARM_VFP_MVFR0   7
1841 #define ARM_VFP_FPEXC   8
1842 #define ARM_VFP_FPINST  9
1843 #define ARM_VFP_FPINST2 10
1844 /* These ones are M-profile only */
1845 #define ARM_VFP_FPSCR_NZCVQC 2
1846 #define ARM_VFP_VPR 12
1847 #define ARM_VFP_P0 13
1848 #define ARM_VFP_FPCXT_NS 14
1849 #define ARM_VFP_FPCXT_S 15
1850 
1851 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1852 #define QEMU_VFP_FPSCR_NZCV 0xffff
1853 
1854 /* iwMMXt coprocessor control registers.  */
1855 #define ARM_IWMMXT_wCID  0
1856 #define ARM_IWMMXT_wCon  1
1857 #define ARM_IWMMXT_wCSSF 2
1858 #define ARM_IWMMXT_wCASF 3
1859 #define ARM_IWMMXT_wCGR0 8
1860 #define ARM_IWMMXT_wCGR1 9
1861 #define ARM_IWMMXT_wCGR2 10
1862 #define ARM_IWMMXT_wCGR3 11
1863 
1864 /* V7M CCR bits */
1865 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1866 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1867 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1868 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1869 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1870 FIELD(V7M_CCR, STKALIGN, 9, 1)
1871 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1872 FIELD(V7M_CCR, DC, 16, 1)
1873 FIELD(V7M_CCR, IC, 17, 1)
1874 FIELD(V7M_CCR, BP, 18, 1)
1875 FIELD(V7M_CCR, LOB, 19, 1)
1876 FIELD(V7M_CCR, TRD, 20, 1)
1877 
1878 /* V7M SCR bits */
1879 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1880 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1881 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1882 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1883 
1884 /* V7M AIRCR bits */
1885 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1886 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1887 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1888 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1889 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1890 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1891 FIELD(V7M_AIRCR, PRIS, 14, 1)
1892 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1893 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1894 
1895 /* V7M CFSR bits for MMFSR */
1896 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1897 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1898 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1899 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1900 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1901 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1902 
1903 /* V7M CFSR bits for BFSR */
1904 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1905 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1906 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1907 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1908 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1909 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1910 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1911 
1912 /* V7M CFSR bits for UFSR */
1913 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1914 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1915 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1916 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1917 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1918 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1919 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1920 
1921 /* V7M CFSR bit masks covering all of the subregister bits */
1922 FIELD(V7M_CFSR, MMFSR, 0, 8)
1923 FIELD(V7M_CFSR, BFSR, 8, 8)
1924 FIELD(V7M_CFSR, UFSR, 16, 16)
1925 
1926 /* V7M HFSR bits */
1927 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1928 FIELD(V7M_HFSR, FORCED, 30, 1)
1929 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1930 
1931 /* V7M DFSR bits */
1932 FIELD(V7M_DFSR, HALTED, 0, 1)
1933 FIELD(V7M_DFSR, BKPT, 1, 1)
1934 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1935 FIELD(V7M_DFSR, VCATCH, 3, 1)
1936 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1937 
1938 /* V7M SFSR bits */
1939 FIELD(V7M_SFSR, INVEP, 0, 1)
1940 FIELD(V7M_SFSR, INVIS, 1, 1)
1941 FIELD(V7M_SFSR, INVER, 2, 1)
1942 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1943 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1944 FIELD(V7M_SFSR, LSPERR, 5, 1)
1945 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1946 FIELD(V7M_SFSR, LSERR, 7, 1)
1947 
1948 /* v7M MPU_CTRL bits */
1949 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1950 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1951 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1952 
1953 /* v7M CLIDR bits */
1954 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1955 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1956 FIELD(V7M_CLIDR, LOC, 24, 3)
1957 FIELD(V7M_CLIDR, LOUU, 27, 3)
1958 FIELD(V7M_CLIDR, ICB, 30, 2)
1959 
1960 FIELD(V7M_CSSELR, IND, 0, 1)
1961 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1962 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1963  * define a mask for this and check that it doesn't permit running off
1964  * the end of the array.
1965  */
1966 FIELD(V7M_CSSELR, INDEX, 0, 4)
1967 
1968 /* v7M FPCCR bits */
1969 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1970 FIELD(V7M_FPCCR, USER, 1, 1)
1971 FIELD(V7M_FPCCR, S, 2, 1)
1972 FIELD(V7M_FPCCR, THREAD, 3, 1)
1973 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1974 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1975 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1976 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1977 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1978 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1979 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1980 FIELD(V7M_FPCCR, RES0, 11, 15)
1981 FIELD(V7M_FPCCR, TS, 26, 1)
1982 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1983 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1984 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1985 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1986 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1987 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1988 #define R_V7M_FPCCR_BANKED_MASK                 \
1989     (R_V7M_FPCCR_LSPACT_MASK |                  \
1990      R_V7M_FPCCR_USER_MASK |                    \
1991      R_V7M_FPCCR_THREAD_MASK |                  \
1992      R_V7M_FPCCR_MMRDY_MASK |                   \
1993      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1994      R_V7M_FPCCR_UFRDY_MASK |                   \
1995      R_V7M_FPCCR_ASPEN_MASK)
1996 
1997 /* v7M VPR bits */
1998 FIELD(V7M_VPR, P0, 0, 16)
1999 FIELD(V7M_VPR, MASK01, 16, 4)
2000 FIELD(V7M_VPR, MASK23, 20, 4)
2001 
2002 /*
2003  * System register ID fields.
2004  */
2005 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
2006 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
2007 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
2008 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
2009 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
2010 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
2011 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
2012 FIELD(CLIDR_EL1, LOUIS, 21, 3)
2013 FIELD(CLIDR_EL1, LOC, 24, 3)
2014 FIELD(CLIDR_EL1, LOUU, 27, 3)
2015 FIELD(CLIDR_EL1, ICB, 30, 3)
2016 
2017 /* When FEAT_CCIDX is implemented */
2018 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
2019 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
2020 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
2021 
2022 /* When FEAT_CCIDX is not implemented */
2023 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
2024 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
2025 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
2026 
2027 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2028 FIELD(CTR_EL0,  L1IP, 14, 2)
2029 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2030 FIELD(CTR_EL0,  ERG, 20, 4)
2031 FIELD(CTR_EL0,  CWG, 24, 4)
2032 FIELD(CTR_EL0,  IDC, 28, 1)
2033 FIELD(CTR_EL0,  DIC, 29, 1)
2034 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2035 
2036 FIELD(MIDR_EL1, REVISION, 0, 4)
2037 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2038 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2039 FIELD(MIDR_EL1, VARIANT, 20, 4)
2040 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2041 
2042 FIELD(ID_ISAR0, SWAP, 0, 4)
2043 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2044 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2045 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2046 FIELD(ID_ISAR0, COPROC, 16, 4)
2047 FIELD(ID_ISAR0, DEBUG, 20, 4)
2048 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2049 
2050 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2051 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2052 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2053 FIELD(ID_ISAR1, EXTEND, 12, 4)
2054 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2055 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2056 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2057 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2058 
2059 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2060 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2061 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2062 FIELD(ID_ISAR2, MULT, 12, 4)
2063 FIELD(ID_ISAR2, MULTS, 16, 4)
2064 FIELD(ID_ISAR2, MULTU, 20, 4)
2065 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2066 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2067 
2068 FIELD(ID_ISAR3, SATURATE, 0, 4)
2069 FIELD(ID_ISAR3, SIMD, 4, 4)
2070 FIELD(ID_ISAR3, SVC, 8, 4)
2071 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2072 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2073 FIELD(ID_ISAR3, T32COPY, 20, 4)
2074 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2075 FIELD(ID_ISAR3, T32EE, 28, 4)
2076 
2077 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2078 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2079 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2080 FIELD(ID_ISAR4, SMC, 12, 4)
2081 FIELD(ID_ISAR4, BARRIER, 16, 4)
2082 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2083 FIELD(ID_ISAR4, PSR_M, 24, 4)
2084 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2085 
2086 FIELD(ID_ISAR5, SEVL, 0, 4)
2087 FIELD(ID_ISAR5, AES, 4, 4)
2088 FIELD(ID_ISAR5, SHA1, 8, 4)
2089 FIELD(ID_ISAR5, SHA2, 12, 4)
2090 FIELD(ID_ISAR5, CRC32, 16, 4)
2091 FIELD(ID_ISAR5, RDM, 24, 4)
2092 FIELD(ID_ISAR5, VCMA, 28, 4)
2093 
2094 FIELD(ID_ISAR6, JSCVT, 0, 4)
2095 FIELD(ID_ISAR6, DP, 4, 4)
2096 FIELD(ID_ISAR6, FHM, 8, 4)
2097 FIELD(ID_ISAR6, SB, 12, 4)
2098 FIELD(ID_ISAR6, SPECRES, 16, 4)
2099 FIELD(ID_ISAR6, BF16, 20, 4)
2100 FIELD(ID_ISAR6, I8MM, 24, 4)
2101 
2102 FIELD(ID_MMFR0, VMSA, 0, 4)
2103 FIELD(ID_MMFR0, PMSA, 4, 4)
2104 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2105 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2106 FIELD(ID_MMFR0, TCM, 16, 4)
2107 FIELD(ID_MMFR0, AUXREG, 20, 4)
2108 FIELD(ID_MMFR0, FCSE, 24, 4)
2109 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2110 
2111 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2112 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2113 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2114 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2115 FIELD(ID_MMFR1, L1HVD, 16, 4)
2116 FIELD(ID_MMFR1, L1UNI, 20, 4)
2117 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2118 FIELD(ID_MMFR1, BPRED, 28, 4)
2119 
2120 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2121 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2122 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2123 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2124 FIELD(ID_MMFR2, UNITLB, 16, 4)
2125 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2126 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2127 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2128 
2129 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2130 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2131 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2132 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2133 FIELD(ID_MMFR3, PAN, 16, 4)
2134 FIELD(ID_MMFR3, COHWALK, 20, 4)
2135 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2136 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2137 
2138 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2139 FIELD(ID_MMFR4, AC2, 4, 4)
2140 FIELD(ID_MMFR4, XNX, 8, 4)
2141 FIELD(ID_MMFR4, CNP, 12, 4)
2142 FIELD(ID_MMFR4, HPDS, 16, 4)
2143 FIELD(ID_MMFR4, LSM, 20, 4)
2144 FIELD(ID_MMFR4, CCIDX, 24, 4)
2145 FIELD(ID_MMFR4, EVT, 28, 4)
2146 
2147 FIELD(ID_MMFR5, ETS, 0, 4)
2148 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2149 
2150 FIELD(ID_PFR0, STATE0, 0, 4)
2151 FIELD(ID_PFR0, STATE1, 4, 4)
2152 FIELD(ID_PFR0, STATE2, 8, 4)
2153 FIELD(ID_PFR0, STATE3, 12, 4)
2154 FIELD(ID_PFR0, CSV2, 16, 4)
2155 FIELD(ID_PFR0, AMU, 20, 4)
2156 FIELD(ID_PFR0, DIT, 24, 4)
2157 FIELD(ID_PFR0, RAS, 28, 4)
2158 
2159 FIELD(ID_PFR1, PROGMOD, 0, 4)
2160 FIELD(ID_PFR1, SECURITY, 4, 4)
2161 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2162 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2163 FIELD(ID_PFR1, GENTIMER, 16, 4)
2164 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2165 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2166 FIELD(ID_PFR1, GIC, 28, 4)
2167 
2168 FIELD(ID_PFR2, CSV3, 0, 4)
2169 FIELD(ID_PFR2, SSBS, 4, 4)
2170 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2171 
2172 FIELD(ID_AA64ISAR0, AES, 4, 4)
2173 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2174 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2175 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2176 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2177 FIELD(ID_AA64ISAR0, TME, 24, 4)
2178 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2179 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2180 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2181 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2182 FIELD(ID_AA64ISAR0, DP, 44, 4)
2183 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2184 FIELD(ID_AA64ISAR0, TS, 52, 4)
2185 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2186 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2187 
2188 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2189 FIELD(ID_AA64ISAR1, APA, 4, 4)
2190 FIELD(ID_AA64ISAR1, API, 8, 4)
2191 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2192 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2193 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2194 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2195 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2196 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2197 FIELD(ID_AA64ISAR1, SB, 36, 4)
2198 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2199 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2200 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2201 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2202 FIELD(ID_AA64ISAR1, XS, 56, 4)
2203 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2204 
2205 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2206 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2207 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2208 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2209 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2210 FIELD(ID_AA64ISAR2, BC, 20, 4)
2211 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2212 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2213 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2214 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2215 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2216 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2217 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2218 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2219 
2220 FIELD(ID_AA64PFR0, EL0, 0, 4)
2221 FIELD(ID_AA64PFR0, EL1, 4, 4)
2222 FIELD(ID_AA64PFR0, EL2, 8, 4)
2223 FIELD(ID_AA64PFR0, EL3, 12, 4)
2224 FIELD(ID_AA64PFR0, FP, 16, 4)
2225 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2226 FIELD(ID_AA64PFR0, GIC, 24, 4)
2227 FIELD(ID_AA64PFR0, RAS, 28, 4)
2228 FIELD(ID_AA64PFR0, SVE, 32, 4)
2229 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2230 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2231 FIELD(ID_AA64PFR0, AMU, 44, 4)
2232 FIELD(ID_AA64PFR0, DIT, 48, 4)
2233 FIELD(ID_AA64PFR0, RME, 52, 4)
2234 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2235 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2236 
2237 FIELD(ID_AA64PFR1, BT, 0, 4)
2238 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2239 FIELD(ID_AA64PFR1, MTE, 8, 4)
2240 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2241 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2242 FIELD(ID_AA64PFR1, SME, 24, 4)
2243 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2244 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2245 FIELD(ID_AA64PFR1, NMI, 36, 4)
2246 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2247 FIELD(ID_AA64PFR1, GCS, 44, 4)
2248 FIELD(ID_AA64PFR1, THE, 48, 4)
2249 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2250 FIELD(ID_AA64PFR1, DF2, 56, 4)
2251 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2252 
2253 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2254 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2255 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2256 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2257 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2258 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2259 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2260 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2261 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2262 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2263 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2264 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2265 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2266 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2267 
2268 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2269 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2270 FIELD(ID_AA64MMFR1, VH, 8, 4)
2271 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2272 FIELD(ID_AA64MMFR1, LO, 16, 4)
2273 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2274 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2275 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2276 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2277 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2278 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2279 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2280 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2281 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2282 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2283 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2284 
2285 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2286 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2287 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2288 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2289 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2290 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2291 FIELD(ID_AA64MMFR2, NV, 24, 4)
2292 FIELD(ID_AA64MMFR2, ST, 28, 4)
2293 FIELD(ID_AA64MMFR2, AT, 32, 4)
2294 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2295 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2296 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2297 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2298 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2299 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2300 
2301 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2302 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2303 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2304 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2305 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2306 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2307 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2308 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2309 FIELD(ID_AA64MMFR3, D128, 32, 4)
2310 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2311 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2312 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2313 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2314 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2315 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2316 
2317 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2318 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2319 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2320 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2321 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2322 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2323 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2324 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2325 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2326 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2327 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2328 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2329 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2330 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2331 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2332 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2333 
2334 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2335 FIELD(ID_AA64ZFR0, AES, 4, 4)
2336 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2337 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2338 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2339 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2340 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2341 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2342 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2343 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2344 
2345 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2346 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2347 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2348 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2349 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2350 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2351 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2352 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2353 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2354 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2355 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2356 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2357 
2358 FIELD(ID_DFR0, COPDBG, 0, 4)
2359 FIELD(ID_DFR0, COPSDBG, 4, 4)
2360 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2361 FIELD(ID_DFR0, COPTRC, 12, 4)
2362 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2363 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2364 FIELD(ID_DFR0, PERFMON, 24, 4)
2365 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2366 
2367 FIELD(ID_DFR1, MTPMU, 0, 4)
2368 FIELD(ID_DFR1, HPMN0, 4, 4)
2369 
2370 FIELD(DBGDIDR, SE_IMP, 12, 1)
2371 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2372 FIELD(DBGDIDR, VERSION, 16, 4)
2373 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2374 FIELD(DBGDIDR, BRPS, 24, 4)
2375 FIELD(DBGDIDR, WRPS, 28, 4)
2376 
2377 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2378 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2379 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2380 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2381 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2382 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2383 FIELD(DBGDEVID, AUXREGS, 24, 4)
2384 FIELD(DBGDEVID, CIDMASK, 28, 4)
2385 
2386 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2387 
2388 FIELD(MVFR0, SIMDREG, 0, 4)
2389 FIELD(MVFR0, FPSP, 4, 4)
2390 FIELD(MVFR0, FPDP, 8, 4)
2391 FIELD(MVFR0, FPTRAP, 12, 4)
2392 FIELD(MVFR0, FPDIVIDE, 16, 4)
2393 FIELD(MVFR0, FPSQRT, 20, 4)
2394 FIELD(MVFR0, FPSHVEC, 24, 4)
2395 FIELD(MVFR0, FPROUND, 28, 4)
2396 
2397 FIELD(MVFR1, FPFTZ, 0, 4)
2398 FIELD(MVFR1, FPDNAN, 4, 4)
2399 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2400 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2401 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2402 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2403 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2404 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2405 FIELD(MVFR1, FPHP, 24, 4)
2406 FIELD(MVFR1, SIMDFMAC, 28, 4)
2407 
2408 FIELD(MVFR2, SIMDMISC, 0, 4)
2409 FIELD(MVFR2, FPMISC, 4, 4)
2410 
2411 FIELD(GPCCR, PPS, 0, 3)
2412 FIELD(GPCCR, IRGN, 8, 2)
2413 FIELD(GPCCR, ORGN, 10, 2)
2414 FIELD(GPCCR, SH, 12, 2)
2415 FIELD(GPCCR, PGS, 14, 2)
2416 FIELD(GPCCR, GPC, 16, 1)
2417 FIELD(GPCCR, GPCP, 17, 1)
2418 FIELD(GPCCR, L0GPTSZ, 20, 4)
2419 
2420 FIELD(MFAR, FPA, 12, 40)
2421 FIELD(MFAR, NSE, 62, 1)
2422 FIELD(MFAR, NS, 63, 1)
2423 
2424 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2425 
2426 /* If adding a feature bit which corresponds to a Linux ELF
2427  * HWCAP bit, remember to update the feature-bit-to-hwcap
2428  * mapping in linux-user/elfload.c:get_elf_hwcap().
2429  */
2430 enum arm_features {
2431     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2432     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2433     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2434     ARM_FEATURE_V6,
2435     ARM_FEATURE_V6K,
2436     ARM_FEATURE_V7,
2437     ARM_FEATURE_THUMB2,
2438     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2439     ARM_FEATURE_NEON,
2440     ARM_FEATURE_M, /* Microcontroller profile.  */
2441     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2442     ARM_FEATURE_THUMB2EE,
2443     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2444     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2445     ARM_FEATURE_V4T,
2446     ARM_FEATURE_V5,
2447     ARM_FEATURE_STRONGARM,
2448     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2449     ARM_FEATURE_GENERIC_TIMER,
2450     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2451     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2452     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2453     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2454     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2455     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2456     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2457     ARM_FEATURE_V8,
2458     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2459     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2460     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2461     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2462     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2463     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2464     ARM_FEATURE_PMU, /* has PMU support */
2465     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2466     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2467     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2468     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2469     /*
2470      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2471      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2472      * compatibility and used only with CPU definitions that were already
2473      * in QEMU before we changed the default. It should not be set on any
2474      * CPU types added in future.
2475      */
2476     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2477 };
2478 
2479 static inline int arm_feature(CPUARMState *env, int feature)
2480 {
2481     return (env->features & (1ULL << feature)) != 0;
2482 }
2483 
2484 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2485 
2486 /*
2487  * ARM v9 security states.
2488  * The ordering of the enumeration corresponds to the low 2 bits
2489  * of the GPI value, and (except for Root) the concat of NSE:NS.
2490  */
2491 
2492 typedef enum ARMSecuritySpace {
2493     ARMSS_Secure     = 0,
2494     ARMSS_NonSecure  = 1,
2495     ARMSS_Root       = 2,
2496     ARMSS_Realm      = 3,
2497 } ARMSecuritySpace;
2498 
2499 /* Return true if @space is secure, in the pre-v9 sense. */
2500 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2501 {
2502     return space == ARMSS_Secure || space == ARMSS_Root;
2503 }
2504 
2505 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2506 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2507 {
2508     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2509 }
2510 
2511 #if !defined(CONFIG_USER_ONLY)
2512 /**
2513  * arm_security_space_below_el3:
2514  * @env: cpu context
2515  *
2516  * Return the security space of exception levels below EL3, following
2517  * an exception return to those levels.  Unlike arm_security_space,
2518  * this doesn't care about the current EL.
2519  */
2520 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2521 
2522 /**
2523  * arm_is_secure_below_el3:
2524  * @env: cpu context
2525  *
2526  * Return true if exception levels below EL3 are in secure state,
2527  * or would be following an exception return to those levels.
2528  */
2529 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2530 {
2531     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2532     return ss == ARMSS_Secure;
2533 }
2534 
2535 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2536 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2537 {
2538     assert(!arm_feature(env, ARM_FEATURE_M));
2539     if (arm_feature(env, ARM_FEATURE_EL3)) {
2540         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2541             /* CPU currently in AArch64 state and EL3 */
2542             return true;
2543         } else if (!is_a64(env) &&
2544                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2545             /* CPU currently in AArch32 state and monitor mode */
2546             return true;
2547         }
2548     }
2549     return false;
2550 }
2551 
2552 /**
2553  * arm_security_space:
2554  * @env: cpu context
2555  *
2556  * Return the current security space of the cpu.
2557  */
2558 ARMSecuritySpace arm_security_space(CPUARMState *env);
2559 
2560 /**
2561  * arm_is_secure:
2562  * @env: cpu context
2563  *
2564  * Return true if the processor is in secure state.
2565  */
2566 static inline bool arm_is_secure(CPUARMState *env)
2567 {
2568     return arm_space_is_secure(arm_security_space(env));
2569 }
2570 
2571 /*
2572  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2573  * This corresponds to the pseudocode EL2Enabled().
2574  */
2575 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2576                                                ARMSecuritySpace space)
2577 {
2578     assert(space != ARMSS_Root);
2579     return arm_feature(env, ARM_FEATURE_EL2)
2580            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2581 }
2582 
2583 static inline bool arm_is_el2_enabled(CPUARMState *env)
2584 {
2585     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2586 }
2587 
2588 #else
2589 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2590 {
2591     return ARMSS_NonSecure;
2592 }
2593 
2594 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2595 {
2596     return false;
2597 }
2598 
2599 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2600 {
2601     return false;
2602 }
2603 
2604 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2605 {
2606     return ARMSS_NonSecure;
2607 }
2608 
2609 static inline bool arm_is_secure(CPUARMState *env)
2610 {
2611     return false;
2612 }
2613 
2614 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2615                                                ARMSecuritySpace space)
2616 {
2617     return false;
2618 }
2619 
2620 static inline bool arm_is_el2_enabled(CPUARMState *env)
2621 {
2622     return false;
2623 }
2624 #endif
2625 
2626 /**
2627  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2628  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2629  * "for all purposes other than a direct read or write access of HCR_EL2."
2630  * Not included here is HCR_RW.
2631  */
2632 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2633 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2634 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2635 
2636 /* Return true if the specified exception level is running in AArch64 state. */
2637 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2638 {
2639     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2640      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2641      */
2642     assert(el >= 1 && el <= 3);
2643     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2644 
2645     /* The highest exception level is always at the maximum supported
2646      * register width, and then lower levels have a register width controlled
2647      * by bits in the SCR or HCR registers.
2648      */
2649     if (el == 3) {
2650         return aa64;
2651     }
2652 
2653     if (arm_feature(env, ARM_FEATURE_EL3) &&
2654         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2655         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2656     }
2657 
2658     if (el == 2) {
2659         return aa64;
2660     }
2661 
2662     if (arm_is_el2_enabled(env)) {
2663         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2664     }
2665 
2666     return aa64;
2667 }
2668 
2669 /* Function for determining whether guest cp register reads and writes should
2670  * access the secure or non-secure bank of a cp register.  When EL3 is
2671  * operating in AArch32 state, the NS-bit determines whether the secure
2672  * instance of a cp register should be used. When EL3 is AArch64 (or if
2673  * it doesn't exist at all) then there is no register banking, and all
2674  * accesses are to the non-secure version.
2675  */
2676 static inline bool access_secure_reg(CPUARMState *env)
2677 {
2678     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2679                 !arm_el_is_aa64(env, 3) &&
2680                 !(env->cp15.scr_el3 & SCR_NS));
2681 
2682     return ret;
2683 }
2684 
2685 /* Macros for accessing a specified CP register bank */
2686 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2687     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2688 
2689 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2690     do {                                                \
2691         if (_secure) {                                   \
2692             (_env)->cp15._regname##_s = (_val);            \
2693         } else {                                        \
2694             (_env)->cp15._regname##_ns = (_val);           \
2695         }                                               \
2696     } while (0)
2697 
2698 /* Macros for automatically accessing a specific CP register bank depending on
2699  * the current secure state of the system.  These macros are not intended for
2700  * supporting instruction translation reads/writes as these are dependent
2701  * solely on the SCR.NS bit and not the mode.
2702  */
2703 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2704     A32_BANKED_REG_GET((_env), _regname,                \
2705                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2706 
2707 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2708     A32_BANKED_REG_SET((_env), _regname,                                    \
2709                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2710                        (_val))
2711 
2712 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2713                                  uint32_t cur_el, bool secure);
2714 
2715 /* Return the highest implemented Exception Level */
2716 static inline int arm_highest_el(CPUARMState *env)
2717 {
2718     if (arm_feature(env, ARM_FEATURE_EL3)) {
2719         return 3;
2720     }
2721     if (arm_feature(env, ARM_FEATURE_EL2)) {
2722         return 2;
2723     }
2724     return 1;
2725 }
2726 
2727 /* Return true if a v7M CPU is in Handler mode */
2728 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2729 {
2730     return env->v7m.exception != 0;
2731 }
2732 
2733 /* Return the current Exception Level (as per ARMv8; note that this differs
2734  * from the ARMv7 Privilege Level).
2735  */
2736 static inline int arm_current_el(CPUARMState *env)
2737 {
2738     if (arm_feature(env, ARM_FEATURE_M)) {
2739         return arm_v7m_is_handler_mode(env) ||
2740             !(env->v7m.control[env->v7m.secure] & 1);
2741     }
2742 
2743     if (is_a64(env)) {
2744         return extract32(env->pstate, 2, 2);
2745     }
2746 
2747     switch (env->uncached_cpsr & 0x1f) {
2748     case ARM_CPU_MODE_USR:
2749         return 0;
2750     case ARM_CPU_MODE_HYP:
2751         return 2;
2752     case ARM_CPU_MODE_MON:
2753         return 3;
2754     default:
2755         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2756             /* If EL3 is 32-bit then all secure privileged modes run in
2757              * EL3
2758              */
2759             return 3;
2760         }
2761 
2762         return 1;
2763     }
2764 }
2765 
2766 /**
2767  * write_list_to_cpustate
2768  * @cpu: ARMCPU
2769  *
2770  * For each register listed in the ARMCPU cpreg_indexes list, write
2771  * its value from the cpreg_values list into the ARMCPUState structure.
2772  * This updates TCG's working data structures from KVM data or
2773  * from incoming migration state.
2774  *
2775  * Returns: true if all register values were updated correctly,
2776  * false if some register was unknown or could not be written.
2777  * Note that we do not stop early on failure -- we will attempt
2778  * writing all registers in the list.
2779  */
2780 bool write_list_to_cpustate(ARMCPU *cpu);
2781 
2782 /**
2783  * write_cpustate_to_list:
2784  * @cpu: ARMCPU
2785  * @kvm_sync: true if this is for syncing back to KVM
2786  *
2787  * For each register listed in the ARMCPU cpreg_indexes list, write
2788  * its value from the ARMCPUState structure into the cpreg_values list.
2789  * This is used to copy info from TCG's working data structures into
2790  * KVM or for outbound migration.
2791  *
2792  * @kvm_sync is true if we are doing this in order to sync the
2793  * register state back to KVM. In this case we will only update
2794  * values in the list if the previous list->cpustate sync actually
2795  * successfully wrote the CPU state. Otherwise we will keep the value
2796  * that is in the list.
2797  *
2798  * Returns: true if all register values were read correctly,
2799  * false if some register was unknown or could not be read.
2800  * Note that we do not stop early on failure -- we will attempt
2801  * reading all registers in the list.
2802  */
2803 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2804 
2805 #define ARM_CPUID_TI915T      0x54029152
2806 #define ARM_CPUID_TI925T      0x54029252
2807 
2808 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2809 
2810 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2811 
2812 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2813  *
2814  * If EL3 is 64-bit:
2815  *  + NonSecure EL1 & 0 stage 1
2816  *  + NonSecure EL1 & 0 stage 2
2817  *  + NonSecure EL2
2818  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2819  *  + Secure EL1 & 0 stage 1
2820  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2821  *  + Secure EL2 (FEAT_SEL2)
2822  *  + Secure EL2 & 0 (FEAT_SEL2)
2823  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2824  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2825  *  + Realm EL2 (FEAT_RME)
2826  *  + EL3
2827  * If EL3 is 32-bit:
2828  *  + NonSecure PL1 & 0 stage 1
2829  *  + NonSecure PL1 & 0 stage 2
2830  *  + NonSecure PL2
2831  *  + Secure PL1 & 0
2832  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2833  *
2834  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2835  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2836  *     because they may differ in access permissions even if the VA->PA map is
2837  *     the same
2838  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2839  *     translation, which means that we have one mmu_idx that deals with two
2840  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2841  *     architecturally permitted]
2842  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2843  *     handling via the TLB. The only way to do a stage 1 translation without
2844  *     the immediate stage 2 translation is via the ATS or AT system insns,
2845  *     which can be slow-pathed and always do a page table walk.
2846  *     The only use of stage 2 translations is either as part of an s1+2
2847  *     lookup or when loading the descriptors during a stage 1 page table walk,
2848  *     and in both those cases we don't use the TLB.
2849  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2850  *     translation regimes, because they map reasonably well to each other
2851  *     and they can't both be active at the same time.
2852  *  5. we want to be able to use the TLB for accesses done as part of a
2853  *     stage1 page table walk, rather than having to walk the stage2 page
2854  *     table over and over.
2855  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2856  *     Never (PAN) bit within PSTATE.
2857  *  7. we fold together most secure and non-secure regimes for A-profile,
2858  *     because there are no banked system registers for aarch64, so the
2859  *     process of switching between secure and non-secure is
2860  *     already heavyweight.
2861  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2862  *     because both are in use simultaneously for Secure EL2.
2863  *
2864  * This gives us the following list of cases:
2865  *
2866  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2867  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2868  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2869  * EL0 EL2&0
2870  * EL2 EL2&0
2871  * EL2 EL2&0 +PAN
2872  * EL2 (aka NS PL2)
2873  * EL3 (aka AArch32 S PL1 PL1&0)
2874  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2875  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2876  * Stage2 Secure
2877  * Stage2 NonSecure
2878  * plus one TLB per Physical address space: S, NS, Realm, Root
2879  *
2880  * for a total of 16 different mmu_idx.
2881  *
2882  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2883  * as A profile. They only need to distinguish EL0 and EL1 (and
2884  * EL2 for cores like the Cortex-R52).
2885  *
2886  * M profile CPUs are rather different as they do not have a true MMU.
2887  * They have the following different MMU indexes:
2888  *  User
2889  *  Privileged
2890  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2891  *  Privileged, execution priority negative (ditto)
2892  * If the CPU supports the v8M Security Extension then there are also:
2893  *  Secure User
2894  *  Secure Privileged
2895  *  Secure User, execution priority negative
2896  *  Secure Privileged, execution priority negative
2897  *
2898  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2899  * are not quite the same -- different CPU types (most notably M profile
2900  * vs A/R profile) would like to use MMU indexes with different semantics,
2901  * but since we don't ever need to use all of those in a single CPU we
2902  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2903  * modes + total number of M profile MMU modes". The lower bits of
2904  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2905  * the same for any particular CPU.
2906  * Variables of type ARMMUIdx are always full values, and the core
2907  * index values are in variables of type 'int'.
2908  *
2909  * Our enumeration includes at the end some entries which are not "true"
2910  * mmu_idx values in that they don't have corresponding TLBs and are only
2911  * valid for doing slow path page table walks.
2912  *
2913  * The constant names here are patterned after the general style of the names
2914  * of the AT/ATS operations.
2915  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2916  * For M profile we arrange them to have a bit for priv, a bit for negpri
2917  * and a bit for secure.
2918  */
2919 #define ARM_MMU_IDX_A     0x10  /* A profile */
2920 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2921 #define ARM_MMU_IDX_M     0x40  /* M profile */
2922 
2923 /* Meanings of the bits for M profile mmu idx values */
2924 #define ARM_MMU_IDX_M_PRIV   0x1
2925 #define ARM_MMU_IDX_M_NEGPRI 0x2
2926 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2927 
2928 #define ARM_MMU_IDX_TYPE_MASK \
2929     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2930 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2931 
2932 typedef enum ARMMMUIdx {
2933     /*
2934      * A-profile.
2935      */
2936     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2937     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2938     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2939     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2940     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2941     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2942     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2943     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2944     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2945     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2946 
2947     /*
2948      * Used for second stage of an S12 page table walk, or for descriptor
2949      * loads during first stage of an S1 page table walk.  Note that both
2950      * are in use simultaneously for SecureEL2: the security state for
2951      * the S2 ptw is selected by the NS bit from the S1 ptw.
2952      */
2953     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2954     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2955 
2956     /* TLBs with 1-1 mapping to the physical address spaces. */
2957     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2958     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2959     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2960     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2961 
2962     /*
2963      * These are not allocated TLBs and are used only for AT system
2964      * instructions or for the first stage of an S12 page table walk.
2965      */
2966     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2967     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2968     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2969 
2970     /*
2971      * M-profile.
2972      */
2973     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2974     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2975     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2976     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2977     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2978     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2979     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2980     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2981 } ARMMMUIdx;
2982 
2983 /*
2984  * Bit macros for the core-mmu-index values for each index,
2985  * for use when calling tlb_flush_by_mmuidx() and friends.
2986  */
2987 #define TO_CORE_BIT(NAME) \
2988     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2989 
2990 typedef enum ARMMMUIdxBit {
2991     TO_CORE_BIT(E10_0),
2992     TO_CORE_BIT(E20_0),
2993     TO_CORE_BIT(E10_1),
2994     TO_CORE_BIT(E10_1_PAN),
2995     TO_CORE_BIT(E2),
2996     TO_CORE_BIT(E20_2),
2997     TO_CORE_BIT(E20_2_PAN),
2998     TO_CORE_BIT(E3),
2999     TO_CORE_BIT(E30_0),
3000     TO_CORE_BIT(E30_3_PAN),
3001     TO_CORE_BIT(Stage2),
3002     TO_CORE_BIT(Stage2_S),
3003 
3004     TO_CORE_BIT(MUser),
3005     TO_CORE_BIT(MPriv),
3006     TO_CORE_BIT(MUserNegPri),
3007     TO_CORE_BIT(MPrivNegPri),
3008     TO_CORE_BIT(MSUser),
3009     TO_CORE_BIT(MSPriv),
3010     TO_CORE_BIT(MSUserNegPri),
3011     TO_CORE_BIT(MSPrivNegPri),
3012 } ARMMMUIdxBit;
3013 
3014 #undef TO_CORE_BIT
3015 
3016 #define MMU_USER_IDX 0
3017 
3018 /* Indexes used when registering address spaces with cpu_address_space_init */
3019 typedef enum ARMASIdx {
3020     ARMASIdx_NS = 0,
3021     ARMASIdx_S = 1,
3022     ARMASIdx_TagNS = 2,
3023     ARMASIdx_TagS = 3,
3024 } ARMASIdx;
3025 
3026 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
3027 {
3028     /* Assert the relative order of the physical mmu indexes. */
3029     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
3030     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
3031     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3032     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3033 
3034     return ARMMMUIdx_Phys_S + space;
3035 }
3036 
3037 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3038 {
3039     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3040     return idx - ARMMMUIdx_Phys_S;
3041 }
3042 
3043 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3044 {
3045     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3046      * CSSELR is RAZ/WI.
3047      */
3048     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3049 }
3050 
3051 static inline bool arm_sctlr_b(CPUARMState *env)
3052 {
3053     return
3054         /* We need not implement SCTLR.ITD in user-mode emulation, so
3055          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3056          * This lets people run BE32 binaries with "-cpu any".
3057          */
3058 #ifndef CONFIG_USER_ONLY
3059         !arm_feature(env, ARM_FEATURE_V7) &&
3060 #endif
3061         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3062 }
3063 
3064 uint64_t arm_sctlr(CPUARMState *env, int el);
3065 
3066 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3067                                                   bool sctlr_b)
3068 {
3069 #ifdef CONFIG_USER_ONLY
3070     /*
3071      * In system mode, BE32 is modelled in line with the
3072      * architecture (as word-invariant big-endianness), where loads
3073      * and stores are done little endian but from addresses which
3074      * are adjusted by XORing with the appropriate constant. So the
3075      * endianness to use for the raw data access is not affected by
3076      * SCTLR.B.
3077      * In user mode, however, we model BE32 as byte-invariant
3078      * big-endianness (because user-only code cannot tell the
3079      * difference), and so we need to use a data access endianness
3080      * that depends on SCTLR.B.
3081      */
3082     if (sctlr_b) {
3083         return true;
3084     }
3085 #endif
3086     /* In 32bit endianness is determined by looking at CPSR's E bit */
3087     return env->uncached_cpsr & CPSR_E;
3088 }
3089 
3090 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3091 {
3092     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3093 }
3094 
3095 /* Return true if the processor is in big-endian mode. */
3096 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3097 {
3098     if (!is_a64(env)) {
3099         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3100     } else {
3101         int cur_el = arm_current_el(env);
3102         uint64_t sctlr = arm_sctlr(env, cur_el);
3103         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3104     }
3105 }
3106 
3107 #include "exec/cpu-all.h"
3108 
3109 /*
3110  * We have more than 32-bits worth of state per TB, so we split the data
3111  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3112  * We collect these two parts in CPUARMTBFlags where they are named
3113  * flags and flags2 respectively.
3114  *
3115  * The flags that are shared between all execution modes, TBFLAG_ANY,
3116  * are stored in flags.  The flags that are specific to a given mode
3117  * are stores in flags2.  Since cs_base is sized on the configured
3118  * address size, flags2 always has 64-bits for A64, and a minimum of
3119  * 32-bits for A32 and M32.
3120  *
3121  * The bits for 32-bit A-profile and M-profile partially overlap:
3122  *
3123  *  31         23         11 10             0
3124  * +-------------+----------+----------------+
3125  * |             |          |   TBFLAG_A32   |
3126  * | TBFLAG_AM32 |          +-----+----------+
3127  * |             |                |TBFLAG_M32|
3128  * +-------------+----------------+----------+
3129  *  31         23                6 5        0
3130  *
3131  * Unless otherwise noted, these bits are cached in env->hflags.
3132  */
3133 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3134 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3135 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3136 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3137 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3138 /* Target EL if we take a floating-point-disabled exception */
3139 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3140 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3141 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3142 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3143 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3144 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3145 
3146 /*
3147  * Bit usage when in AArch32 state, both A- and M-profile.
3148  */
3149 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3150 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3151 
3152 /*
3153  * Bit usage when in AArch32 state, for A-profile only.
3154  */
3155 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3156 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3157 /*
3158  * We store the bottom two bits of the CPAR as TB flags and handle
3159  * checks on the other bits at runtime. This shares the same bits as
3160  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3161  * Not cached, because VECLEN+VECSTRIDE are not cached.
3162  */
3163 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3164 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3165 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3166 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3167 /*
3168  * Indicates whether cp register reads and writes by guest code should access
3169  * the secure or nonsecure bank of banked registers; note that this is not
3170  * the same thing as the current security state of the processor!
3171  */
3172 FIELD(TBFLAG_A32, NS, 10, 1)
3173 /*
3174  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3175  * This requires an SME trap from AArch32 mode when using NEON.
3176  */
3177 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3178 
3179 /*
3180  * Bit usage when in AArch32 state, for M-profile only.
3181  */
3182 /* Handler (ie not Thread) mode */
3183 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3184 /* Whether we should generate stack-limit checks */
3185 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3186 /* Set if FPCCR.LSPACT is set */
3187 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3188 /* Set if we must create a new FP context */
3189 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3190 /* Set if FPCCR.S does not match current security state */
3191 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3192 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3193 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3194 /* Set if in secure mode */
3195 FIELD(TBFLAG_M32, SECURE, 6, 1)
3196 
3197 /*
3198  * Bit usage when in AArch64 state
3199  */
3200 FIELD(TBFLAG_A64, TBII, 0, 2)
3201 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3202 /* The current vector length, either NVL or SVL. */
3203 FIELD(TBFLAG_A64, VL, 4, 4)
3204 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3205 FIELD(TBFLAG_A64, BT, 9, 1)
3206 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3207 FIELD(TBFLAG_A64, TBID, 12, 2)
3208 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3209 FIELD(TBFLAG_A64, ATA, 15, 1)
3210 FIELD(TBFLAG_A64, TCMA, 16, 2)
3211 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3212 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3213 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3214 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3215 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3216 FIELD(TBFLAG_A64, SVL, 24, 4)
3217 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3218 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3219 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3220 FIELD(TBFLAG_A64, NAA, 30, 1)
3221 FIELD(TBFLAG_A64, ATA0, 31, 1)
3222 FIELD(TBFLAG_A64, NV, 32, 1)
3223 FIELD(TBFLAG_A64, NV1, 33, 1)
3224 FIELD(TBFLAG_A64, NV2, 34, 1)
3225 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3226 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3227 /* Set if FEAT_NV2 RAM accesses are big-endian */
3228 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3229 FIELD(TBFLAG_A64, AH, 37, 1)   /* FPCR.AH */
3230 FIELD(TBFLAG_A64, NEP, 38, 1)   /* FPCR.NEP */
3231 
3232 /*
3233  * Helpers for using the above. Note that only the A64 accessors use
3234  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3235  * word either is or might be 32 bits only.
3236  */
3237 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3238     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3239 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3240     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3241 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3242     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3243 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3244     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3245 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3246     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3247 
3248 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3249 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3250 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3251 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3252 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3253 
3254 /**
3255  * sve_vq
3256  * @env: the cpu context
3257  *
3258  * Return the VL cached within env->hflags, in units of quadwords.
3259  */
3260 static inline int sve_vq(CPUARMState *env)
3261 {
3262     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3263 }
3264 
3265 /**
3266  * sme_vq
3267  * @env: the cpu context
3268  *
3269  * Return the SVL cached within env->hflags, in units of quadwords.
3270  */
3271 static inline int sme_vq(CPUARMState *env)
3272 {
3273     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3274 }
3275 
3276 static inline bool bswap_code(bool sctlr_b)
3277 {
3278 #ifdef CONFIG_USER_ONLY
3279     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3280      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3281      * would also end up as a mixed-endian mode with BE code, LE data.
3282      */
3283     return TARGET_BIG_ENDIAN ^ sctlr_b;
3284 #else
3285     /* All code access in ARM is little endian, and there are no loaders
3286      * doing swaps that need to be reversed
3287      */
3288     return 0;
3289 #endif
3290 }
3291 
3292 #ifdef CONFIG_USER_ONLY
3293 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3294 {
3295     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3296 }
3297 #endif
3298 
3299 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3300                           uint64_t *cs_base, uint32_t *flags);
3301 
3302 enum {
3303     QEMU_PSCI_CONDUIT_DISABLED = 0,
3304     QEMU_PSCI_CONDUIT_SMC = 1,
3305     QEMU_PSCI_CONDUIT_HVC = 2,
3306 };
3307 
3308 #ifndef CONFIG_USER_ONLY
3309 /* Return the address space index to use for a memory access */
3310 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3311 {
3312     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3313 }
3314 
3315 /* Return the AddressSpace to use for a memory access
3316  * (which depends on whether the access is S or NS, and whether
3317  * the board gave us a separate AddressSpace for S accesses).
3318  */
3319 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3320 {
3321     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3322 }
3323 #endif
3324 
3325 /**
3326  * arm_register_pre_el_change_hook:
3327  * Register a hook function which will be called immediately before this
3328  * CPU changes exception level or mode. The hook function will be
3329  * passed a pointer to the ARMCPU and the opaque data pointer passed
3330  * to this function when the hook was registered.
3331  *
3332  * Note that if a pre-change hook is called, any registered post-change hooks
3333  * are guaranteed to subsequently be called.
3334  */
3335 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3336                                  void *opaque);
3337 /**
3338  * arm_register_el_change_hook:
3339  * Register a hook function which will be called immediately after this
3340  * CPU changes exception level or mode. The hook function will be
3341  * passed a pointer to the ARMCPU and the opaque data pointer passed
3342  * to this function when the hook was registered.
3343  *
3344  * Note that any registered hooks registered here are guaranteed to be called
3345  * if pre-change hooks have been.
3346  */
3347 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3348         *opaque);
3349 
3350 /**
3351  * arm_rebuild_hflags:
3352  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3353  */
3354 void arm_rebuild_hflags(CPUARMState *env);
3355 
3356 /**
3357  * aa32_vfp_dreg:
3358  * Return a pointer to the Dn register within env in 32-bit mode.
3359  */
3360 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3361 {
3362     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3363 }
3364 
3365 /**
3366  * aa32_vfp_qreg:
3367  * Return a pointer to the Qn register within env in 32-bit mode.
3368  */
3369 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3370 {
3371     return &env->vfp.zregs[regno].d[0];
3372 }
3373 
3374 /**
3375  * aa64_vfp_qreg:
3376  * Return a pointer to the Qn register within env in 64-bit mode.
3377  */
3378 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3379 {
3380     return &env->vfp.zregs[regno].d[0];
3381 }
3382 
3383 /* Shared between translate-sve.c and sve_helper.c.  */
3384 extern const uint64_t pred_esz_masks[5];
3385 
3386 /*
3387  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3388  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3389  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3390  */
3391 #define PAGE_BTI            PAGE_TARGET_1
3392 #define PAGE_MTE            PAGE_TARGET_2
3393 #define PAGE_TARGET_STICKY  PAGE_MTE
3394 
3395 /* We associate one allocation tag per 16 bytes, the minimum.  */
3396 #define LOG2_TAG_GRANULE 4
3397 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3398 
3399 #ifdef CONFIG_USER_ONLY
3400 
3401 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3402 
3403 #ifdef TARGET_TAGGED_ADDRESSES
3404 /**
3405  * cpu_untagged_addr:
3406  * @cs: CPU context
3407  * @x: tagged address
3408  *
3409  * Remove any address tag from @x.  This is explicitly related to the
3410  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3411  *
3412  * There should be a better place to put this, but we need this in
3413  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3414  */
3415 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3416 {
3417     CPUARMState *env = cpu_env(cs);
3418     if (env->tagged_addr_enable) {
3419         /*
3420          * TBI is enabled for userspace but not kernelspace addresses.
3421          * Only clear the tag if bit 55 is clear.
3422          */
3423         x &= sextract64(x, 0, 56);
3424     }
3425     return x;
3426 }
3427 #endif /* TARGET_TAGGED_ADDRESSES */
3428 #endif /* CONFIG_USER_ONLY */
3429 
3430 #endif
3431