xref: /qemu/target/arm/cpu.h (revision 407bc4bf9027f7ac4333e47cd900d773b99a23e3)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "exec/page-protection.h"
30 #include "qapi/qapi-types-common.h"
31 #include "target/arm/multiprocessing.h"
32 #include "target/arm/gtimer.h"
33 
34 #ifdef TARGET_AARCH64
35 #define KVM_HAVE_MCE_INJECTION 1
36 #endif
37 
38 #define EXCP_UDEF            1   /* undefined instruction */
39 #define EXCP_SWI             2   /* software interrupt */
40 #define EXCP_PREFETCH_ABORT  3
41 #define EXCP_DATA_ABORT      4
42 #define EXCP_IRQ             5
43 #define EXCP_FIQ             6
44 #define EXCP_BKPT            7
45 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
46 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
47 #define EXCP_HVC            11   /* HyperVisor Call */
48 #define EXCP_HYP_TRAP       12
49 #define EXCP_SMC            13   /* Secure Monitor Call */
50 #define EXCP_VIRQ           14
51 #define EXCP_VFIQ           15
52 #define EXCP_SEMIHOST       16   /* semihosting call */
53 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
54 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
55 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
56 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
57 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
58 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
59 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
60 #define EXCP_VSERR          24
61 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
62 #define EXCP_NMI            26
63 #define EXCP_VINMI          27
64 #define EXCP_VFNMI          28
65 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
66 
67 #define ARMV7M_EXCP_RESET   1
68 #define ARMV7M_EXCP_NMI     2
69 #define ARMV7M_EXCP_HARD    3
70 #define ARMV7M_EXCP_MEM     4
71 #define ARMV7M_EXCP_BUS     5
72 #define ARMV7M_EXCP_USAGE   6
73 #define ARMV7M_EXCP_SECURE  7
74 #define ARMV7M_EXCP_SVC     11
75 #define ARMV7M_EXCP_DEBUG   12
76 #define ARMV7M_EXCP_PENDSV  14
77 #define ARMV7M_EXCP_SYSTICK 15
78 
79 /* ARM-specific interrupt pending bits.  */
80 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
81 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
82 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
83 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
84 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
85 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
86 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
87 
88 /* The usual mapping for an AArch64 system register to its AArch32
89  * counterpart is for the 32 bit world to have access to the lower
90  * half only (with writes leaving the upper half untouched). It's
91  * therefore useful to be able to pass TCG the offset of the least
92  * significant half of a uint64_t struct member.
93  */
94 #if HOST_BIG_ENDIAN
95 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
96 #define offsetofhigh32(S, M) offsetof(S, M)
97 #else
98 #define offsetoflow32(S, M) offsetof(S, M)
99 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
100 #endif
101 
102 /* ARM-specific extra insn start words:
103  * 1: Conditional execution bits
104  * 2: Partial exception syndrome for data aborts
105  */
106 #define TARGET_INSN_START_EXTRA_WORDS 2
107 
108 /* The 2nd extra word holding syndrome info for data aborts does not use
109  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
110  * help the sleb128 encoder do a better job.
111  * When restoring the CPU state, we shift it back up.
112  */
113 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
114 #define ARM_INSN_START_WORD2_SHIFT 13
115 
116 /* We currently assume float and double are IEEE single and double
117    precision respectively.
118    Doing runtime conversions is tricky because VFP registers may contain
119    integer values (eg. as the result of a FTOSI instruction).
120    s<2n> maps to the least significant half of d<n>
121    s<2n+1> maps to the most significant half of d<n>
122  */
123 
124 /**
125  * DynamicGDBFeatureInfo:
126  * @desc: Contains the feature descriptions.
127  * @data: A union with data specific to the set of registers
128  *    @cpregs_keys: Array that contains the corresponding Key of
129  *                  a given cpreg with the same order of the cpreg
130  *                  in the XML description.
131  */
132 typedef struct DynamicGDBFeatureInfo {
133     GDBFeature desc;
134     union {
135         struct {
136             uint32_t *keys;
137         } cpregs;
138     } data;
139 } DynamicGDBFeatureInfo;
140 
141 /* CPU state for each instance of a generic timer (in cp15 c14) */
142 typedef struct ARMGenericTimer {
143     uint64_t cval; /* Timer CompareValue register */
144     uint64_t ctl; /* Timer Control register */
145 } ARMGenericTimer;
146 
147 /* Define a maximum sized vector register.
148  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
149  * For 64-bit, this is a 2048-bit SVE register.
150  *
151  * Note that the mapping between S, D, and Q views of the register bank
152  * differs between AArch64 and AArch32.
153  * In AArch32:
154  *  Qn = regs[n].d[1]:regs[n].d[0]
155  *  Dn = regs[n / 2].d[n & 1]
156  *  Sn = regs[n / 4].d[n % 4 / 2],
157  *       bits 31..0 for even n, and bits 63..32 for odd n
158  *       (and regs[16] to regs[31] are inaccessible)
159  * In AArch64:
160  *  Zn = regs[n].d[*]
161  *  Qn = regs[n].d[1]:regs[n].d[0]
162  *  Dn = regs[n].d[0]
163  *  Sn = regs[n].d[0] bits 31..0
164  *  Hn = regs[n].d[0] bits 15..0
165  *
166  * This corresponds to the architecturally defined mapping between
167  * the two execution states, and means we do not need to explicitly
168  * map these registers when changing states.
169  *
170  * Align the data for use with TCG host vector operations.
171  */
172 
173 #ifdef TARGET_AARCH64
174 # define ARM_MAX_VQ    16
175 #else
176 # define ARM_MAX_VQ    1
177 #endif
178 
179 typedef struct ARMVectorReg {
180     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
181 } ARMVectorReg;
182 
183 #ifdef TARGET_AARCH64
184 /* In AArch32 mode, predicate registers do not exist at all.  */
185 typedef struct ARMPredicateReg {
186     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
187 } ARMPredicateReg;
188 
189 /* In AArch32 mode, PAC keys do not exist at all.  */
190 typedef struct ARMPACKey {
191     uint64_t lo, hi;
192 } ARMPACKey;
193 #endif
194 
195 /* See the commentary above the TBFLAG field definitions.  */
196 typedef struct CPUARMTBFlags {
197     uint32_t flags;
198     target_ulong flags2;
199 } CPUARMTBFlags;
200 
201 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
202 
203 typedef struct NVICState NVICState;
204 
205 typedef struct CPUArchState {
206     /* Regs for current mode.  */
207     uint32_t regs[16];
208 
209     /* 32/64 switch only happens when taking and returning from
210      * exceptions so the overlap semantics are taken care of then
211      * instead of having a complicated union.
212      */
213     /* Regs for A64 mode.  */
214     uint64_t xregs[32];
215     uint64_t pc;
216     /* PSTATE isn't an architectural register for ARMv8. However, it is
217      * convenient for us to assemble the underlying state into a 32 bit format
218      * identical to the architectural format used for the SPSR. (This is also
219      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
220      * 'pstate' register are.) Of the PSTATE bits:
221      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
222      *    semantics as for AArch32, as described in the comments on each field)
223      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
224      *  DAIF (exception masks) are kept in env->daif
225      *  BTYPE is kept in env->btype
226      *  SM and ZA are kept in env->svcr
227      *  all other bits are stored in their correct places in env->pstate
228      */
229     uint32_t pstate;
230     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
231     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
232 
233     /* Cached TBFLAGS state.  See below for which bits are included.  */
234     CPUARMTBFlags hflags;
235 
236     /* Frequently accessed CPSR bits are stored separately for efficiency.
237        This contains all the other bits.  Use cpsr_{read,write} to access
238        the whole CPSR.  */
239     uint32_t uncached_cpsr;
240     uint32_t spsr;
241 
242     /* Banked registers.  */
243     uint64_t banked_spsr[8];
244     uint32_t banked_r13[8];
245     uint32_t banked_r14[8];
246 
247     /* These hold r8-r12.  */
248     uint32_t usr_regs[5];
249     uint32_t fiq_regs[5];
250 
251     /* cpsr flag cache for faster execution */
252     uint32_t CF; /* 0 or 1 */
253     uint32_t VF; /* V is the bit 31. All other bits are undefined */
254     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
255     uint32_t ZF; /* Z set if zero.  */
256     uint32_t QF; /* 0 or 1 */
257     uint32_t GE; /* cpsr[19:16] */
258     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
259     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
260     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
261     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
262 
263     uint64_t elr_el[4]; /* AArch64 exception link regs  */
264     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
265 
266     /* System control coprocessor (cp15) */
267     struct {
268         uint32_t c0_cpuid;
269         union { /* Cache size selection */
270             struct {
271                 uint64_t _unused_csselr0;
272                 uint64_t csselr_ns;
273                 uint64_t _unused_csselr1;
274                 uint64_t csselr_s;
275             };
276             uint64_t csselr_el[4];
277         };
278         union { /* System control register. */
279             struct {
280                 uint64_t _unused_sctlr;
281                 uint64_t sctlr_ns;
282                 uint64_t hsctlr;
283                 uint64_t sctlr_s;
284             };
285             uint64_t sctlr_el[4];
286         };
287         uint64_t vsctlr; /* Virtualization System control register. */
288         uint64_t cpacr_el1; /* Architectural feature access control register */
289         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
290         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
291         uint64_t sder; /* Secure debug enable register. */
292         uint32_t nsacr; /* Non-secure access control register. */
293         union { /* MMU translation table base 0. */
294             struct {
295                 uint64_t _unused_ttbr0_0;
296                 uint64_t ttbr0_ns;
297                 uint64_t _unused_ttbr0_1;
298                 uint64_t ttbr0_s;
299             };
300             uint64_t ttbr0_el[4];
301         };
302         union { /* MMU translation table base 1. */
303             struct {
304                 uint64_t _unused_ttbr1_0;
305                 uint64_t ttbr1_ns;
306                 uint64_t _unused_ttbr1_1;
307                 uint64_t ttbr1_s;
308             };
309             uint64_t ttbr1_el[4];
310         };
311         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
312         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
313         /* MMU translation table base control. */
314         uint64_t tcr_el[4];
315         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
316         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
317         uint32_t c2_data; /* MPU data cacheable bits.  */
318         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
319         union { /* MMU domain access control register
320                  * MPU write buffer control.
321                  */
322             struct {
323                 uint64_t dacr_ns;
324                 uint64_t dacr_s;
325             };
326             struct {
327                 uint64_t dacr32_el2;
328             };
329         };
330         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
331         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
332         uint64_t hcr_el2; /* Hypervisor configuration register */
333         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
334         uint64_t scr_el3; /* Secure configuration register.  */
335         union { /* Fault status registers.  */
336             struct {
337                 uint64_t ifsr_ns;
338                 uint64_t ifsr_s;
339             };
340             struct {
341                 uint64_t ifsr32_el2;
342             };
343         };
344         union {
345             struct {
346                 uint64_t _unused_dfsr;
347                 uint64_t dfsr_ns;
348                 uint64_t hsr;
349                 uint64_t dfsr_s;
350             };
351             uint64_t esr_el[4];
352         };
353         uint32_t c6_region[8]; /* MPU base/size registers.  */
354         union { /* Fault address registers. */
355             struct {
356                 uint64_t _unused_far0;
357 #if HOST_BIG_ENDIAN
358                 uint32_t ifar_ns;
359                 uint32_t dfar_ns;
360                 uint32_t ifar_s;
361                 uint32_t dfar_s;
362 #else
363                 uint32_t dfar_ns;
364                 uint32_t ifar_ns;
365                 uint32_t dfar_s;
366                 uint32_t ifar_s;
367 #endif
368                 uint64_t _unused_far3;
369             };
370             uint64_t far_el[4];
371         };
372         uint64_t hpfar_el2;
373         uint64_t hstr_el2;
374         union { /* Translation result. */
375             struct {
376                 uint64_t _unused_par_0;
377                 uint64_t par_ns;
378                 uint64_t _unused_par_1;
379                 uint64_t par_s;
380             };
381             uint64_t par_el[4];
382         };
383 
384         uint32_t c9_insn; /* Cache lockdown registers.  */
385         uint32_t c9_data;
386         uint64_t c9_pmcr; /* performance monitor control register */
387         uint64_t c9_pmcnten; /* perf monitor counter enables */
388         uint64_t c9_pmovsr; /* perf monitor overflow status */
389         uint64_t c9_pmuserenr; /* perf monitor user enable */
390         uint64_t c9_pmselr; /* perf monitor counter selection register */
391         uint64_t c9_pminten; /* perf monitor interrupt enables */
392         union { /* Memory attribute redirection */
393             struct {
394 #if HOST_BIG_ENDIAN
395                 uint64_t _unused_mair_0;
396                 uint32_t mair1_ns;
397                 uint32_t mair0_ns;
398                 uint64_t _unused_mair_1;
399                 uint32_t mair1_s;
400                 uint32_t mair0_s;
401 #else
402                 uint64_t _unused_mair_0;
403                 uint32_t mair0_ns;
404                 uint32_t mair1_ns;
405                 uint64_t _unused_mair_1;
406                 uint32_t mair0_s;
407                 uint32_t mair1_s;
408 #endif
409             };
410             uint64_t mair_el[4];
411         };
412         union { /* vector base address register */
413             struct {
414                 uint64_t _unused_vbar;
415                 uint64_t vbar_ns;
416                 uint64_t hvbar;
417                 uint64_t vbar_s;
418             };
419             uint64_t vbar_el[4];
420         };
421         uint32_t mvbar; /* (monitor) vector base address register */
422         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
423         struct { /* FCSE PID. */
424             uint32_t fcseidr_ns;
425             uint32_t fcseidr_s;
426         };
427         union { /* Context ID. */
428             struct {
429                 uint64_t _unused_contextidr_0;
430                 uint64_t contextidr_ns;
431                 uint64_t _unused_contextidr_1;
432                 uint64_t contextidr_s;
433             };
434             uint64_t contextidr_el[4];
435         };
436         union { /* User RW Thread register. */
437             struct {
438                 uint64_t tpidrurw_ns;
439                 uint64_t tpidrprw_ns;
440                 uint64_t htpidr;
441                 uint64_t _tpidr_el3;
442             };
443             uint64_t tpidr_el[4];
444         };
445         uint64_t tpidr2_el0;
446         /* The secure banks of these registers don't map anywhere */
447         uint64_t tpidrurw_s;
448         uint64_t tpidrprw_s;
449         uint64_t tpidruro_s;
450 
451         union { /* User RO Thread register. */
452             uint64_t tpidruro_ns;
453             uint64_t tpidrro_el[1];
454         };
455         uint64_t c14_cntfrq; /* Counter Frequency register */
456         uint64_t c14_cntkctl; /* Timer Control register */
457         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
458         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
459         uint64_t cntpoff_el2; /* Counter Physical Offset register */
460         ARMGenericTimer c14_timer[NUM_GTIMERS];
461         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
462         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
463         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
464         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
465         uint32_t c15_threadid; /* TI debugger thread-ID.  */
466         uint32_t c15_config_base_address; /* SCU base address.  */
467         uint32_t c15_diagnostic; /* diagnostic register */
468         uint32_t c15_power_diagnostic;
469         uint32_t c15_power_control; /* power control */
470         uint64_t dbgbvr[16]; /* breakpoint value registers */
471         uint64_t dbgbcr[16]; /* breakpoint control registers */
472         uint64_t dbgwvr[16]; /* watchpoint value registers */
473         uint64_t dbgwcr[16]; /* watchpoint control registers */
474         uint64_t dbgclaim;   /* DBGCLAIM bits */
475         uint64_t mdscr_el1;
476         uint64_t oslsr_el1; /* OS Lock Status */
477         uint64_t osdlr_el1; /* OS DoubleLock status */
478         uint64_t mdcr_el2;
479         uint64_t mdcr_el3;
480         /* Stores the architectural value of the counter *the last time it was
481          * updated* by pmccntr_op_start. Accesses should always be surrounded
482          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
483          * architecturally-correct value is being read/set.
484          */
485         uint64_t c15_ccnt;
486         /* Stores the delta between the architectural value and the underlying
487          * cycle count during normal operation. It is used to update c15_ccnt
488          * to be the correct architectural value before accesses. During
489          * accesses, c15_ccnt_delta contains the underlying count being used
490          * for the access, after which it reverts to the delta value in
491          * pmccntr_op_finish.
492          */
493         uint64_t c15_ccnt_delta;
494         uint64_t c14_pmevcntr[31];
495         uint64_t c14_pmevcntr_delta[31];
496         uint64_t c14_pmevtyper[31];
497         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
498         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
499         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
500         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
501         uint64_t gcr_el1;
502         uint64_t rgsr_el1;
503 
504         /* Minimal RAS registers */
505         uint64_t disr_el1;
506         uint64_t vdisr_el2;
507         uint64_t vsesr_el2;
508 
509         /*
510          * Fine-Grained Trap registers. We store these as arrays so the
511          * access checking code doesn't have to manually select
512          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
513          * FEAT_FGT2 will add more elements to these arrays.
514          */
515         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
516         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
517         uint64_t fgt_exec[1]; /* HFGITR */
518 
519         /* RME registers */
520         uint64_t gpccr_el3;
521         uint64_t gptbr_el3;
522         uint64_t mfar_el3;
523 
524         /* NV2 register */
525         uint64_t vncr_el2;
526     } cp15;
527 
528     struct {
529         /* M profile has up to 4 stack pointers:
530          * a Main Stack Pointer and a Process Stack Pointer for each
531          * of the Secure and Non-Secure states. (If the CPU doesn't support
532          * the security extension then it has only two SPs.)
533          * In QEMU we always store the currently active SP in regs[13],
534          * and the non-active SP for the current security state in
535          * v7m.other_sp. The stack pointers for the inactive security state
536          * are stored in other_ss_msp and other_ss_psp.
537          * switch_v7m_security_state() is responsible for rearranging them
538          * when we change security state.
539          */
540         uint32_t other_sp;
541         uint32_t other_ss_msp;
542         uint32_t other_ss_psp;
543         uint32_t vecbase[M_REG_NUM_BANKS];
544         uint32_t basepri[M_REG_NUM_BANKS];
545         uint32_t control[M_REG_NUM_BANKS];
546         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
547         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
548         uint32_t hfsr; /* HardFault Status */
549         uint32_t dfsr; /* Debug Fault Status Register */
550         uint32_t sfsr; /* Secure Fault Status Register */
551         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
552         uint32_t bfar; /* BusFault Address */
553         uint32_t sfar; /* Secure Fault Address Register */
554         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
555         int exception;
556         uint32_t primask[M_REG_NUM_BANKS];
557         uint32_t faultmask[M_REG_NUM_BANKS];
558         uint32_t aircr; /* only holds r/w state if security extn implemented */
559         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
560         uint32_t csselr[M_REG_NUM_BANKS];
561         uint32_t scr[M_REG_NUM_BANKS];
562         uint32_t msplim[M_REG_NUM_BANKS];
563         uint32_t psplim[M_REG_NUM_BANKS];
564         uint32_t fpcar[M_REG_NUM_BANKS];
565         uint32_t fpccr[M_REG_NUM_BANKS];
566         uint32_t fpdscr[M_REG_NUM_BANKS];
567         uint32_t cpacr[M_REG_NUM_BANKS];
568         uint32_t nsacr;
569         uint32_t ltpsize;
570         uint32_t vpr;
571     } v7m;
572 
573     /* Information associated with an exception about to be taken:
574      * code which raises an exception must set cs->exception_index and
575      * the relevant parts of this structure; the cpu_do_interrupt function
576      * will then set the guest-visible registers as part of the exception
577      * entry process.
578      */
579     struct {
580         uint32_t syndrome; /* AArch64 format syndrome register */
581         uint32_t fsr; /* AArch32 format fault status register info */
582         uint64_t vaddress; /* virtual addr associated with exception, if any */
583         uint32_t target_el; /* EL the exception should be targeted for */
584         /* If we implement EL2 we will also need to store information
585          * about the intermediate physical address for stage 2 faults.
586          */
587     } exception;
588 
589     /* Information associated with an SError */
590     struct {
591         uint8_t pending;
592         uint8_t has_esr;
593         uint64_t esr;
594     } serror;
595 
596     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
597 
598     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
599     uint32_t irq_line_state;
600 
601     /* Thumb-2 EE state.  */
602     uint32_t teecr;
603     uint32_t teehbr;
604 
605     /* VFP coprocessor state.  */
606     struct {
607         ARMVectorReg zregs[32];
608 
609 #ifdef TARGET_AARCH64
610         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
611 #define FFR_PRED_NUM 16
612         ARMPredicateReg pregs[17];
613         /* Scratch space for aa64 sve predicate temporary.  */
614         ARMPredicateReg preg_tmp;
615 #endif
616 
617         /* We store these fpcsr fields separately for convenience.  */
618         uint32_t qc[4] QEMU_ALIGNED(16);
619         int vec_len;
620         int vec_stride;
621 
622         /*
623          * Floating point status and control registers. Some bits are
624          * stored separately in other fields or in the float_status below.
625          */
626         uint64_t fpsr;
627         uint64_t fpcr;
628 
629         uint32_t xregs[16];
630 
631         /* Scratch space for aa32 neon expansion.  */
632         uint32_t scratch[8];
633 
634         /* There are a number of distinct float control structures:
635          *
636          *  fp_status_a32: is the "normal" fp status for AArch32 insns
637          *  fp_status_a64: is the "normal" fp status for AArch64 insns
638          *  fp_status_fp16_a32: used for AArch32 half-precision calculations
639          *  fp_status_fp16_a64: used for AArch64 half-precision calculations
640          *  standard_fp_status : the ARM "Standard FPSCR Value"
641          *  standard_fp_status_fp16 : used for half-precision
642          *       calculations with the ARM "Standard FPSCR Value"
643          *
644          * Half-precision operations are governed by a separate
645          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646          * status structure to control this.
647          *
648          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649          * round-to-nearest and is used by any operations (generally
650          * Neon) which the architecture defines as controlled by the
651          * standard FPSCR value rather than the FPSCR.
652          *
653          * The "standard FPSCR but for fp16 ops" is needed because
654          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655          * using a fixed value for it.
656          *
657          * To avoid having to transfer exception bits around, we simply
658          * say that the FPSCR cumulative exception flags are the logical
659          * OR of the flags in the four fp statuses. This relies on the
660          * only thing which needs to read the exception flags being
661          * an explicit FPSCR read.
662          */
663         float_status fp_status_a32;
664         float_status fp_status_a64;
665         float_status fp_status_f16_a32;
666         float_status fp_status_f16_a64;
667         float_status standard_fp_status;
668         float_status standard_fp_status_f16;
669 
670         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
671         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
672     } vfp;
673 
674     uint64_t exclusive_addr;
675     uint64_t exclusive_val;
676     /*
677      * Contains the 'val' for the second 64-bit register of LDXP, which comes
678      * from the higher address, not the high part of a complete 128-bit value.
679      * In some ways it might be more convenient to record the exclusive value
680      * as the low and high halves of a 128 bit data value, but the current
681      * semantics of these fields are baked into the migration format.
682      */
683     uint64_t exclusive_high;
684 
685     /* iwMMXt coprocessor state.  */
686     struct {
687         uint64_t regs[16];
688         uint64_t val;
689 
690         uint32_t cregs[16];
691     } iwmmxt;
692 
693 #ifdef TARGET_AARCH64
694     struct {
695         ARMPACKey apia;
696         ARMPACKey apib;
697         ARMPACKey apda;
698         ARMPACKey apdb;
699         ARMPACKey apga;
700     } keys;
701 
702     uint64_t scxtnum_el[4];
703 
704     /*
705      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
706      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
707      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
708      * When SVL is less than the architectural maximum, the accessible
709      * storage is restricted, such that if the SVL is X bytes the guest can
710      * see only the bottom X elements of zarray[], and only the least
711      * significant X bytes of each element of the array. (In other words,
712      * the observable part is always square.)
713      *
714      * The ZA storage can also be considered as a set of square tiles of
715      * elements of different sizes. The mapping from tiles to the ZA array
716      * is architecturally defined, such that for tiles of elements of esz
717      * bytes, the Nth row (or "horizontal slice") of tile T is in
718      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
719      * in the ZA storage, because its rows are striped through the ZA array.
720      *
721      * Because this is so large, keep this toward the end of the reset area,
722      * to keep the offsets into the rest of the structure smaller.
723      */
724     ARMVectorReg zarray[ARM_MAX_VQ * 16];
725 #endif
726 
727     struct CPUBreakpoint *cpu_breakpoint[16];
728     struct CPUWatchpoint *cpu_watchpoint[16];
729 
730     /* Optional fault info across tlb lookup. */
731     ARMMMUFaultInfo *tlb_fi;
732 
733     /* Fields up to this point are cleared by a CPU reset */
734     struct {} end_reset_fields;
735 
736     /* Fields after this point are preserved across CPU reset. */
737 
738     /* Internal CPU feature flags.  */
739     uint64_t features;
740 
741     /* PMSAv7 MPU */
742     struct {
743         uint32_t *drbar;
744         uint32_t *drsr;
745         uint32_t *dracr;
746         uint32_t rnr[M_REG_NUM_BANKS];
747     } pmsav7;
748 
749     /* PMSAv8 MPU */
750     struct {
751         /* The PMSAv8 implementation also shares some PMSAv7 config
752          * and state:
753          *  pmsav7.rnr (region number register)
754          *  pmsav7_dregion (number of configured regions)
755          */
756         uint32_t *rbar[M_REG_NUM_BANKS];
757         uint32_t *rlar[M_REG_NUM_BANKS];
758         uint32_t *hprbar;
759         uint32_t *hprlar;
760         uint32_t mair0[M_REG_NUM_BANKS];
761         uint32_t mair1[M_REG_NUM_BANKS];
762         uint32_t hprselr;
763     } pmsav8;
764 
765     /* v8M SAU */
766     struct {
767         uint32_t *rbar;
768         uint32_t *rlar;
769         uint32_t rnr;
770         uint32_t ctrl;
771     } sau;
772 
773 #if !defined(CONFIG_USER_ONLY)
774     NVICState *nvic;
775     const struct arm_boot_info *boot_info;
776     /* Store GICv3CPUState to access from this struct */
777     void *gicv3state;
778 #else /* CONFIG_USER_ONLY */
779     /* For usermode syscall translation.  */
780     bool eabi;
781 #endif /* CONFIG_USER_ONLY */
782 
783 #ifdef TARGET_TAGGED_ADDRESSES
784     /* Linux syscall tagged address support */
785     bool tagged_addr_enable;
786 #endif
787 } CPUARMState;
788 
789 static inline void set_feature(CPUARMState *env, int feature)
790 {
791     env->features |= 1ULL << feature;
792 }
793 
794 static inline void unset_feature(CPUARMState *env, int feature)
795 {
796     env->features &= ~(1ULL << feature);
797 }
798 
799 /**
800  * ARMELChangeHookFn:
801  * type of a function which can be registered via arm_register_el_change_hook()
802  * to get callbacks when the CPU changes its exception level or mode.
803  */
804 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
805 typedef struct ARMELChangeHook ARMELChangeHook;
806 struct ARMELChangeHook {
807     ARMELChangeHookFn *hook;
808     void *opaque;
809     QLIST_ENTRY(ARMELChangeHook) node;
810 };
811 
812 /* These values map onto the return values for
813  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
814 typedef enum ARMPSCIState {
815     PSCI_ON = 0,
816     PSCI_OFF = 1,
817     PSCI_ON_PENDING = 2
818 } ARMPSCIState;
819 
820 typedef struct ARMISARegisters ARMISARegisters;
821 
822 /*
823  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
824  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
825  *
826  * While processing properties during initialization, corresponding init bits
827  * are set for bits in sve_vq_map that have been set by properties.
828  *
829  * Bits set in supported represent valid vector lengths for the CPU type.
830  */
831 typedef struct {
832     uint32_t map, init, supported;
833 } ARMVQMap;
834 
835 /**
836  * ARMCPU:
837  * @env: #CPUARMState
838  *
839  * An ARM CPU core.
840  */
841 struct ArchCPU {
842     CPUState parent_obj;
843 
844     CPUARMState env;
845 
846     /* Coprocessor information */
847     GHashTable *cp_regs;
848     /* For marshalling (mostly coprocessor) register state between the
849      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
850      * we use these arrays.
851      */
852     /* List of register indexes managed via these arrays; (full KVM style
853      * 64 bit indexes, not CPRegInfo 32 bit indexes)
854      */
855     uint64_t *cpreg_indexes;
856     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
857     uint64_t *cpreg_values;
858     /* Length of the indexes, values, reset_values arrays */
859     int32_t cpreg_array_len;
860     /* These are used only for migration: incoming data arrives in
861      * these fields and is sanity checked in post_load before copying
862      * to the working data structures above.
863      */
864     uint64_t *cpreg_vmstate_indexes;
865     uint64_t *cpreg_vmstate_values;
866     int32_t cpreg_vmstate_array_len;
867 
868     DynamicGDBFeatureInfo dyn_sysreg_feature;
869     DynamicGDBFeatureInfo dyn_svereg_feature;
870     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
871     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
872 
873     /* Timers used by the generic (architected) timer */
874     QEMUTimer *gt_timer[NUM_GTIMERS];
875     /*
876      * Timer used by the PMU. Its state is restored after migration by
877      * pmu_op_finish() - it does not need other handling during migration
878      */
879     QEMUTimer *pmu_timer;
880     /* Timer used for WFxT timeouts */
881     QEMUTimer *wfxt_timer;
882 
883     /* GPIO outputs for generic timer */
884     qemu_irq gt_timer_outputs[NUM_GTIMERS];
885     /* GPIO output for GICv3 maintenance interrupt signal */
886     qemu_irq gicv3_maintenance_interrupt;
887     /* GPIO output for the PMU interrupt */
888     qemu_irq pmu_interrupt;
889 
890     /* MemoryRegion to use for secure physical accesses */
891     MemoryRegion *secure_memory;
892 
893     /* MemoryRegion to use for allocation tag accesses */
894     MemoryRegion *tag_memory;
895     MemoryRegion *secure_tag_memory;
896 
897     /* For v8M, pointer to the IDAU interface provided by board/SoC */
898     Object *idau;
899 
900     /* 'compatible' string for this CPU for Linux device trees */
901     const char *dtb_compatible;
902 
903     /* PSCI version for this CPU
904      * Bits[31:16] = Major Version
905      * Bits[15:0] = Minor Version
906      */
907     uint32_t psci_version;
908 
909     /* Current power state, access guarded by BQL */
910     ARMPSCIState power_state;
911 
912     /* CPU has virtualization extension */
913     bool has_el2;
914     /* CPU has security extension */
915     bool has_el3;
916     /* CPU has PMU (Performance Monitor Unit) */
917     bool has_pmu;
918     /* CPU has VFP */
919     bool has_vfp;
920     /* CPU has 32 VFP registers */
921     bool has_vfp_d32;
922     /* CPU has Neon */
923     bool has_neon;
924     /* CPU has M-profile DSP extension */
925     bool has_dsp;
926 
927     /* CPU has memory protection unit */
928     bool has_mpu;
929     /* CPU has MTE enabled in KVM mode */
930     bool kvm_mte;
931     /* PMSAv7 MPU number of supported regions */
932     uint32_t pmsav7_dregion;
933     /* PMSAv8 MPU number of supported hyp regions */
934     uint32_t pmsav8r_hdregion;
935     /* v8M SAU number of supported regions */
936     uint32_t sau_sregion;
937 
938     /* PSCI conduit used to invoke PSCI methods
939      * 0 - disabled, 1 - smc, 2 - hvc
940      */
941     uint32_t psci_conduit;
942 
943     /* For v8M, initial value of the Secure VTOR */
944     uint32_t init_svtor;
945     /* For v8M, initial value of the Non-secure VTOR */
946     uint32_t init_nsvtor;
947 
948     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
949      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
950      */
951     uint32_t kvm_target;
952 
953 #ifdef CONFIG_KVM
954     /* KVM init features for this CPU */
955     uint32_t kvm_init_features[7];
956 
957     /* KVM CPU state */
958 
959     /* KVM virtual time adjustment */
960     bool kvm_adjvtime;
961     bool kvm_vtime_dirty;
962     uint64_t kvm_vtime;
963 
964     /* KVM steal time */
965     OnOffAuto kvm_steal_time;
966 #endif /* CONFIG_KVM */
967 
968     /* Uniprocessor system with MP extensions */
969     bool mp_is_up;
970 
971     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
972      * and the probe failed (so we need to report the error in realize)
973      */
974     bool host_cpu_probe_failed;
975 
976     /* QOM property to indicate we should use the back-compat CNTFRQ default */
977     bool backcompat_cntfrq;
978 
979     /* QOM property to indicate we should use the back-compat QARMA5 default */
980     bool backcompat_pauth_default_use_qarma5;
981 
982     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
983      * register.
984      */
985     int32_t core_count;
986 
987     /* The instance init functions for implementation-specific subclasses
988      * set these fields to specify the implementation-dependent values of
989      * various constant registers and reset values of non-constant
990      * registers.
991      * Some of these might become QOM properties eventually.
992      * Field names match the official register names as defined in the
993      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
994      * is used for reset values of non-constant registers; no reset_
995      * prefix means a constant register.
996      * Some of these registers are split out into a substructure that
997      * is shared with the translators to control the ISA.
998      *
999      * Note that if you add an ID register to the ARMISARegisters struct
1000      * you need to also update the 32-bit and 64-bit versions of the
1001      * kvm_arm_get_host_cpu_features() function to correctly populate the
1002      * field by reading the value from the KVM vCPU.
1003      */
1004     struct ARMISARegisters {
1005         uint32_t id_isar0;
1006         uint32_t id_isar1;
1007         uint32_t id_isar2;
1008         uint32_t id_isar3;
1009         uint32_t id_isar4;
1010         uint32_t id_isar5;
1011         uint32_t id_isar6;
1012         uint32_t id_mmfr0;
1013         uint32_t id_mmfr1;
1014         uint32_t id_mmfr2;
1015         uint32_t id_mmfr3;
1016         uint32_t id_mmfr4;
1017         uint32_t id_mmfr5;
1018         uint32_t id_pfr0;
1019         uint32_t id_pfr1;
1020         uint32_t id_pfr2;
1021         uint32_t mvfr0;
1022         uint32_t mvfr1;
1023         uint32_t mvfr2;
1024         uint32_t id_dfr0;
1025         uint32_t id_dfr1;
1026         uint32_t dbgdidr;
1027         uint32_t dbgdevid;
1028         uint32_t dbgdevid1;
1029         uint64_t id_aa64isar0;
1030         uint64_t id_aa64isar1;
1031         uint64_t id_aa64isar2;
1032         uint64_t id_aa64pfr0;
1033         uint64_t id_aa64pfr1;
1034         uint64_t id_aa64mmfr0;
1035         uint64_t id_aa64mmfr1;
1036         uint64_t id_aa64mmfr2;
1037         uint64_t id_aa64mmfr3;
1038         uint64_t id_aa64dfr0;
1039         uint64_t id_aa64dfr1;
1040         uint64_t id_aa64zfr0;
1041         uint64_t id_aa64smfr0;
1042         uint64_t reset_pmcr_el0;
1043     } isar;
1044     uint64_t midr;
1045     uint32_t revidr;
1046     uint32_t reset_fpsid;
1047     uint64_t ctr;
1048     uint32_t reset_sctlr;
1049     uint64_t pmceid0;
1050     uint64_t pmceid1;
1051     uint32_t id_afr0;
1052     uint64_t id_aa64afr0;
1053     uint64_t id_aa64afr1;
1054     uint64_t clidr;
1055     uint64_t mp_affinity; /* MP ID without feature bits */
1056     /* The elements of this array are the CCSIDR values for each cache,
1057      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1058      */
1059     uint64_t ccsidr[16];
1060     uint64_t reset_cbar;
1061     uint32_t reset_auxcr;
1062     bool reset_hivecs;
1063     uint8_t reset_l0gptsz;
1064 
1065     /*
1066      * Intermediate values used during property parsing.
1067      * Once finalized, the values should be read from ID_AA64*.
1068      */
1069     bool prop_pauth;
1070     bool prop_pauth_impdef;
1071     bool prop_pauth_qarma3;
1072     bool prop_pauth_qarma5;
1073     bool prop_lpa2;
1074 
1075     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1076     uint8_t dcz_blocksize;
1077     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1078     uint8_t gm_blocksize;
1079 
1080     uint64_t rvbar_prop; /* Property/input signals.  */
1081 
1082     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1083     int gic_num_lrs; /* number of list registers */
1084     int gic_vpribits; /* number of virtual priority bits */
1085     int gic_vprebits; /* number of virtual preemption bits */
1086     int gic_pribits; /* number of physical priority bits */
1087 
1088     /* Whether the cfgend input is high (i.e. this CPU should reset into
1089      * big-endian mode).  This setting isn't used directly: instead it modifies
1090      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1091      * architecture version.
1092      */
1093     bool cfgend;
1094 
1095     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1096     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1097 
1098     int32_t node_id; /* NUMA node this CPU belongs to */
1099 
1100     /* Used to synchronize KVM and QEMU in-kernel device levels */
1101     uint8_t device_irq_level;
1102 
1103     /* Used to set the maximum vector length the cpu will support.  */
1104     uint32_t sve_max_vq;
1105 
1106 #ifdef CONFIG_USER_ONLY
1107     /* Used to set the default vector length at process start. */
1108     uint32_t sve_default_vq;
1109     uint32_t sme_default_vq;
1110 #endif
1111 
1112     ARMVQMap sve_vq;
1113     ARMVQMap sme_vq;
1114 
1115     /* Generic timer counter frequency, in Hz */
1116     uint64_t gt_cntfrq_hz;
1117 };
1118 
1119 typedef struct ARMCPUInfo {
1120     const char *name;
1121     void (*initfn)(Object *obj);
1122     void (*class_init)(ObjectClass *oc, void *data);
1123 } ARMCPUInfo;
1124 
1125 /**
1126  * ARMCPUClass:
1127  * @parent_realize: The parent class' realize handler.
1128  * @parent_phases: The parent class' reset phase handlers.
1129  *
1130  * An ARM CPU model.
1131  */
1132 struct ARMCPUClass {
1133     CPUClass parent_class;
1134 
1135     const ARMCPUInfo *info;
1136     DeviceRealize parent_realize;
1137     ResettablePhases parent_phases;
1138 };
1139 
1140 struct AArch64CPUClass {
1141     ARMCPUClass parent_class;
1142 };
1143 
1144 /* Callback functions for the generic timer's timers. */
1145 void arm_gt_ptimer_cb(void *opaque);
1146 void arm_gt_vtimer_cb(void *opaque);
1147 void arm_gt_htimer_cb(void *opaque);
1148 void arm_gt_stimer_cb(void *opaque);
1149 void arm_gt_hvtimer_cb(void *opaque);
1150 
1151 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1152 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1153 
1154 void arm_cpu_post_init(Object *obj);
1155 
1156 #define ARM_AFF0_SHIFT 0
1157 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1158 #define ARM_AFF1_SHIFT 8
1159 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1160 #define ARM_AFF2_SHIFT 16
1161 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1162 #define ARM_AFF3_SHIFT 32
1163 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1164 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1165 
1166 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1167 #define ARM64_AFFINITY_MASK \
1168     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1169 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1170 
1171 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1172 
1173 #ifndef CONFIG_USER_ONLY
1174 extern const VMStateDescription vmstate_arm_cpu;
1175 
1176 void arm_cpu_do_interrupt(CPUState *cpu);
1177 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1178 
1179 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1180                                          MemTxAttrs *attrs);
1181 #endif /* !CONFIG_USER_ONLY */
1182 
1183 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1184 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1185 
1186 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1187                              int cpuid, DumpState *s);
1188 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1189                              int cpuid, DumpState *s);
1190 
1191 /**
1192  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1193  * @cpu: CPU (which must have been freshly reset)
1194  * @target_el: exception level to put the CPU into
1195  * @secure: whether to put the CPU in secure state
1196  *
1197  * When QEMU is directly running a guest kernel at a lower level than
1198  * EL3 it implicitly emulates some aspects of the guest firmware.
1199  * This includes that on reset we need to configure the parts of the
1200  * CPU corresponding to EL3 so that the real guest code can run at its
1201  * lower exception level. This function does that post-reset CPU setup,
1202  * for when we do direct boot of a guest kernel, and for when we
1203  * emulate PSCI and similar firmware interfaces starting a CPU at a
1204  * lower exception level.
1205  *
1206  * @target_el must be an EL implemented by the CPU between 1 and 3.
1207  * We do not support dropping into a Secure EL other than 3.
1208  *
1209  * It is the responsibility of the caller to call arm_rebuild_hflags().
1210  */
1211 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1212 
1213 #ifdef TARGET_AARCH64
1214 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1215 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1216 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1217 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1218                            int new_el, bool el0_a64);
1219 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1220 
1221 /*
1222  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1223  * The byte at offset i from the start of the in-memory representation contains
1224  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1225  * lowest offsets are stored in the lowest memory addresses, then that nearly
1226  * matches QEMU's representation, which is to use an array of host-endian
1227  * uint64_t's, where the lower offsets are at the lower indices. To complete
1228  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1229  */
1230 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1231 {
1232 #if HOST_BIG_ENDIAN
1233     int i;
1234 
1235     for (i = 0; i < nr; ++i) {
1236         dst[i] = bswap64(src[i]);
1237     }
1238 
1239     return dst;
1240 #else
1241     return src;
1242 #endif
1243 }
1244 
1245 #else
1246 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1247 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1248                                          int n, bool a)
1249 { }
1250 #endif
1251 
1252 void aarch64_sync_32_to_64(CPUARMState *env);
1253 void aarch64_sync_64_to_32(CPUARMState *env);
1254 
1255 int fp_exception_el(CPUARMState *env, int cur_el);
1256 int sve_exception_el(CPUARMState *env, int cur_el);
1257 int sme_exception_el(CPUARMState *env, int cur_el);
1258 
1259 /**
1260  * sve_vqm1_for_el_sm:
1261  * @env: CPUARMState
1262  * @el: exception level
1263  * @sm: streaming mode
1264  *
1265  * Compute the current vector length for @el & @sm, in units of
1266  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1267  * If @sm, compute for SVL, otherwise NVL.
1268  */
1269 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1270 
1271 /* Likewise, but using @sm = PSTATE.SM. */
1272 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1273 
1274 static inline bool is_a64(CPUARMState *env)
1275 {
1276     return env->aarch64;
1277 }
1278 
1279 /**
1280  * pmu_op_start/finish
1281  * @env: CPUARMState
1282  *
1283  * Convert all PMU counters between their delta form (the typical mode when
1284  * they are enabled) and the guest-visible values. These two calls must
1285  * surround any action which might affect the counters.
1286  */
1287 void pmu_op_start(CPUARMState *env);
1288 void pmu_op_finish(CPUARMState *env);
1289 
1290 /*
1291  * Called when a PMU counter is due to overflow
1292  */
1293 void arm_pmu_timer_cb(void *opaque);
1294 
1295 /**
1296  * Functions to register as EL change hooks for PMU mode filtering
1297  */
1298 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1299 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1300 
1301 /*
1302  * pmu_init
1303  * @cpu: ARMCPU
1304  *
1305  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1306  * for the current configuration
1307  */
1308 void pmu_init(ARMCPU *cpu);
1309 
1310 /* SCTLR bit meanings. Several bits have been reused in newer
1311  * versions of the architecture; in that case we define constants
1312  * for both old and new bit meanings. Code which tests against those
1313  * bits should probably check or otherwise arrange that the CPU
1314  * is the architectural version it expects.
1315  */
1316 #define SCTLR_M       (1U << 0)
1317 #define SCTLR_A       (1U << 1)
1318 #define SCTLR_C       (1U << 2)
1319 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1320 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1321 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1322 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1323 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1324 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1325 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1326 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1327 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1328 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1329 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1330 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1331 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1332 #define SCTLR_SED     (1U << 8) /* v8 onward */
1333 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1334 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1335 #define SCTLR_F       (1U << 10) /* up to v6 */
1336 #define SCTLR_SW      (1U << 10) /* v7 */
1337 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1338 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1339 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1340 #define SCTLR_I       (1U << 12)
1341 #define SCTLR_V       (1U << 13) /* AArch32 only */
1342 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1343 #define SCTLR_RR      (1U << 14) /* up to v7 */
1344 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1345 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1346 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1347 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1348 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1349 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1350 #define SCTLR_BR      (1U << 17) /* PMSA only */
1351 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1352 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1353 #define SCTLR_WXN     (1U << 19)
1354 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1355 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1356 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1357 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1358 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1359 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1360 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1361 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1362 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1363 #define SCTLR_VE      (1U << 24) /* up to v7 */
1364 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1365 #define SCTLR_EE      (1U << 25)
1366 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1367 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1368 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1369 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1370 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1371 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1372 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1373 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1374 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1375 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1376 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1377 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1378 #define SCTLR_CMOW    (1ULL << 32) /* FEAT_CMOW */
1379 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1380 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1381 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1382 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1383 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1384 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1385 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1386 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1387 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1388 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1389 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1390 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1391 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1392 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1393 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1394 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1395 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1396 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1397 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1398 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1399 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1400 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1401 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1402 
1403 #define CPSR_M (0x1fU)
1404 #define CPSR_T (1U << 5)
1405 #define CPSR_F (1U << 6)
1406 #define CPSR_I (1U << 7)
1407 #define CPSR_A (1U << 8)
1408 #define CPSR_E (1U << 9)
1409 #define CPSR_IT_2_7 (0xfc00U)
1410 #define CPSR_GE (0xfU << 16)
1411 #define CPSR_IL (1U << 20)
1412 #define CPSR_DIT (1U << 21)
1413 #define CPSR_PAN (1U << 22)
1414 #define CPSR_SSBS (1U << 23)
1415 #define CPSR_J (1U << 24)
1416 #define CPSR_IT_0_1 (3U << 25)
1417 #define CPSR_Q (1U << 27)
1418 #define CPSR_V (1U << 28)
1419 #define CPSR_C (1U << 29)
1420 #define CPSR_Z (1U << 30)
1421 #define CPSR_N (1U << 31)
1422 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1423 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1424 #define ISR_FS (1U << 9)
1425 #define ISR_IS (1U << 10)
1426 
1427 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1428 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1429     | CPSR_NZCV)
1430 /* Bits writable in user mode.  */
1431 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1432 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1433 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1434 
1435 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1436 #define XPSR_EXCP 0x1ffU
1437 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1438 #define XPSR_IT_2_7 CPSR_IT_2_7
1439 #define XPSR_GE CPSR_GE
1440 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1441 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1442 #define XPSR_IT_0_1 CPSR_IT_0_1
1443 #define XPSR_Q CPSR_Q
1444 #define XPSR_V CPSR_V
1445 #define XPSR_C CPSR_C
1446 #define XPSR_Z CPSR_Z
1447 #define XPSR_N CPSR_N
1448 #define XPSR_NZCV CPSR_NZCV
1449 #define XPSR_IT CPSR_IT
1450 
1451 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1452  * Only these are valid when in AArch64 mode; in
1453  * AArch32 mode SPSRs are basically CPSR-format.
1454  */
1455 #define PSTATE_SP (1U)
1456 #define PSTATE_M (0xFU)
1457 #define PSTATE_nRW (1U << 4)
1458 #define PSTATE_F (1U << 6)
1459 #define PSTATE_I (1U << 7)
1460 #define PSTATE_A (1U << 8)
1461 #define PSTATE_D (1U << 9)
1462 #define PSTATE_BTYPE (3U << 10)
1463 #define PSTATE_SSBS (1U << 12)
1464 #define PSTATE_ALLINT (1U << 13)
1465 #define PSTATE_IL (1U << 20)
1466 #define PSTATE_SS (1U << 21)
1467 #define PSTATE_PAN (1U << 22)
1468 #define PSTATE_UAO (1U << 23)
1469 #define PSTATE_DIT (1U << 24)
1470 #define PSTATE_TCO (1U << 25)
1471 #define PSTATE_V (1U << 28)
1472 #define PSTATE_C (1U << 29)
1473 #define PSTATE_Z (1U << 30)
1474 #define PSTATE_N (1U << 31)
1475 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1476 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1477 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1478 /* Mode values for AArch64 */
1479 #define PSTATE_MODE_EL3h 13
1480 #define PSTATE_MODE_EL3t 12
1481 #define PSTATE_MODE_EL2h 9
1482 #define PSTATE_MODE_EL2t 8
1483 #define PSTATE_MODE_EL1h 5
1484 #define PSTATE_MODE_EL1t 4
1485 #define PSTATE_MODE_EL0t 0
1486 
1487 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1488 FIELD(SVCR, SM, 0, 1)
1489 FIELD(SVCR, ZA, 1, 1)
1490 
1491 /* Fields for SMCR_ELx. */
1492 FIELD(SMCR, LEN, 0, 4)
1493 FIELD(SMCR, FA64, 31, 1)
1494 
1495 /* Write a new value to v7m.exception, thus transitioning into or out
1496  * of Handler mode; this may result in a change of active stack pointer.
1497  */
1498 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1499 
1500 /* Map EL and handler into a PSTATE_MODE.  */
1501 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1502 {
1503     return (el << 2) | handler;
1504 }
1505 
1506 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1507  * interprocessing, so we don't attempt to sync with the cpsr state used by
1508  * the 32 bit decoder.
1509  */
1510 static inline uint32_t pstate_read(CPUARMState *env)
1511 {
1512     int ZF;
1513 
1514     ZF = (env->ZF == 0);
1515     return (env->NF & 0x80000000) | (ZF << 30)
1516         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1517         | env->pstate | env->daif | (env->btype << 10);
1518 }
1519 
1520 static inline void pstate_write(CPUARMState *env, uint32_t val)
1521 {
1522     env->ZF = (~val) & PSTATE_Z;
1523     env->NF = val;
1524     env->CF = (val >> 29) & 1;
1525     env->VF = (val << 3) & 0x80000000;
1526     env->daif = val & PSTATE_DAIF;
1527     env->btype = (val >> 10) & 3;
1528     env->pstate = val & ~CACHED_PSTATE_BITS;
1529 }
1530 
1531 /* Return the current CPSR value.  */
1532 uint32_t cpsr_read(CPUARMState *env);
1533 
1534 typedef enum CPSRWriteType {
1535     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1536     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1537     CPSRWriteRaw = 2,
1538         /* trust values, no reg bank switch, no hflags rebuild */
1539     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1540 } CPSRWriteType;
1541 
1542 /*
1543  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1544  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1545  * correspond to TB flags bits cached in the hflags, unless @write_type
1546  * is CPSRWriteRaw.
1547  */
1548 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1549                 CPSRWriteType write_type);
1550 
1551 /* Return the current xPSR value.  */
1552 static inline uint32_t xpsr_read(CPUARMState *env)
1553 {
1554     int ZF;
1555     ZF = (env->ZF == 0);
1556     return (env->NF & 0x80000000) | (ZF << 30)
1557         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1558         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1559         | ((env->condexec_bits & 0xfc) << 8)
1560         | (env->GE << 16)
1561         | env->v7m.exception;
1562 }
1563 
1564 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1565 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1566 {
1567     if (mask & XPSR_NZCV) {
1568         env->ZF = (~val) & XPSR_Z;
1569         env->NF = val;
1570         env->CF = (val >> 29) & 1;
1571         env->VF = (val << 3) & 0x80000000;
1572     }
1573     if (mask & XPSR_Q) {
1574         env->QF = ((val & XPSR_Q) != 0);
1575     }
1576     if (mask & XPSR_GE) {
1577         env->GE = (val & XPSR_GE) >> 16;
1578     }
1579 #ifndef CONFIG_USER_ONLY
1580     if (mask & XPSR_T) {
1581         env->thumb = ((val & XPSR_T) != 0);
1582     }
1583     if (mask & XPSR_IT_0_1) {
1584         env->condexec_bits &= ~3;
1585         env->condexec_bits |= (val >> 25) & 3;
1586     }
1587     if (mask & XPSR_IT_2_7) {
1588         env->condexec_bits &= 3;
1589         env->condexec_bits |= (val >> 8) & 0xfc;
1590     }
1591     if (mask & XPSR_EXCP) {
1592         /* Note that this only happens on exception exit */
1593         write_v7m_exception(env, val & XPSR_EXCP);
1594     }
1595 #endif
1596 }
1597 
1598 #define HCR_VM        (1ULL << 0)
1599 #define HCR_SWIO      (1ULL << 1)
1600 #define HCR_PTW       (1ULL << 2)
1601 #define HCR_FMO       (1ULL << 3)
1602 #define HCR_IMO       (1ULL << 4)
1603 #define HCR_AMO       (1ULL << 5)
1604 #define HCR_VF        (1ULL << 6)
1605 #define HCR_VI        (1ULL << 7)
1606 #define HCR_VSE       (1ULL << 8)
1607 #define HCR_FB        (1ULL << 9)
1608 #define HCR_BSU_MASK  (3ULL << 10)
1609 #define HCR_DC        (1ULL << 12)
1610 #define HCR_TWI       (1ULL << 13)
1611 #define HCR_TWE       (1ULL << 14)
1612 #define HCR_TID0      (1ULL << 15)
1613 #define HCR_TID1      (1ULL << 16)
1614 #define HCR_TID2      (1ULL << 17)
1615 #define HCR_TID3      (1ULL << 18)
1616 #define HCR_TSC       (1ULL << 19)
1617 #define HCR_TIDCP     (1ULL << 20)
1618 #define HCR_TACR      (1ULL << 21)
1619 #define HCR_TSW       (1ULL << 22)
1620 #define HCR_TPCP      (1ULL << 23)
1621 #define HCR_TPU       (1ULL << 24)
1622 #define HCR_TTLB      (1ULL << 25)
1623 #define HCR_TVM       (1ULL << 26)
1624 #define HCR_TGE       (1ULL << 27)
1625 #define HCR_TDZ       (1ULL << 28)
1626 #define HCR_HCD       (1ULL << 29)
1627 #define HCR_TRVM      (1ULL << 30)
1628 #define HCR_RW        (1ULL << 31)
1629 #define HCR_CD        (1ULL << 32)
1630 #define HCR_ID        (1ULL << 33)
1631 #define HCR_E2H       (1ULL << 34)
1632 #define HCR_TLOR      (1ULL << 35)
1633 #define HCR_TERR      (1ULL << 36)
1634 #define HCR_TEA       (1ULL << 37)
1635 #define HCR_MIOCNCE   (1ULL << 38)
1636 #define HCR_TME       (1ULL << 39)
1637 #define HCR_APK       (1ULL << 40)
1638 #define HCR_API       (1ULL << 41)
1639 #define HCR_NV        (1ULL << 42)
1640 #define HCR_NV1       (1ULL << 43)
1641 #define HCR_AT        (1ULL << 44)
1642 #define HCR_NV2       (1ULL << 45)
1643 #define HCR_FWB       (1ULL << 46)
1644 #define HCR_FIEN      (1ULL << 47)
1645 #define HCR_GPF       (1ULL << 48)
1646 #define HCR_TID4      (1ULL << 49)
1647 #define HCR_TICAB     (1ULL << 50)
1648 #define HCR_AMVOFFEN  (1ULL << 51)
1649 #define HCR_TOCU      (1ULL << 52)
1650 #define HCR_ENSCXT    (1ULL << 53)
1651 #define HCR_TTLBIS    (1ULL << 54)
1652 #define HCR_TTLBOS    (1ULL << 55)
1653 #define HCR_ATA       (1ULL << 56)
1654 #define HCR_DCT       (1ULL << 57)
1655 #define HCR_TID5      (1ULL << 58)
1656 #define HCR_TWEDEN    (1ULL << 59)
1657 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1658 
1659 #define SCR_NS                (1ULL << 0)
1660 #define SCR_IRQ               (1ULL << 1)
1661 #define SCR_FIQ               (1ULL << 2)
1662 #define SCR_EA                (1ULL << 3)
1663 #define SCR_FW                (1ULL << 4)
1664 #define SCR_AW                (1ULL << 5)
1665 #define SCR_NET               (1ULL << 6)
1666 #define SCR_SMD               (1ULL << 7)
1667 #define SCR_HCE               (1ULL << 8)
1668 #define SCR_SIF               (1ULL << 9)
1669 #define SCR_RW                (1ULL << 10)
1670 #define SCR_ST                (1ULL << 11)
1671 #define SCR_TWI               (1ULL << 12)
1672 #define SCR_TWE               (1ULL << 13)
1673 #define SCR_TLOR              (1ULL << 14)
1674 #define SCR_TERR              (1ULL << 15)
1675 #define SCR_APK               (1ULL << 16)
1676 #define SCR_API               (1ULL << 17)
1677 #define SCR_EEL2              (1ULL << 18)
1678 #define SCR_EASE              (1ULL << 19)
1679 #define SCR_NMEA              (1ULL << 20)
1680 #define SCR_FIEN              (1ULL << 21)
1681 #define SCR_ENSCXT            (1ULL << 25)
1682 #define SCR_ATA               (1ULL << 26)
1683 #define SCR_FGTEN             (1ULL << 27)
1684 #define SCR_ECVEN             (1ULL << 28)
1685 #define SCR_TWEDEN            (1ULL << 29)
1686 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1687 #define SCR_TME               (1ULL << 34)
1688 #define SCR_AMVOFFEN          (1ULL << 35)
1689 #define SCR_ENAS0             (1ULL << 36)
1690 #define SCR_ADEN              (1ULL << 37)
1691 #define SCR_HXEN              (1ULL << 38)
1692 #define SCR_TRNDR             (1ULL << 40)
1693 #define SCR_ENTP2             (1ULL << 41)
1694 #define SCR_GPF               (1ULL << 48)
1695 #define SCR_NSE               (1ULL << 62)
1696 
1697 /* Return the current FPSCR value.  */
1698 uint32_t vfp_get_fpscr(CPUARMState *env);
1699 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1700 
1701 /*
1702  * FPCR, Floating Point Control Register
1703  * FPSR, Floating Point Status Register
1704  *
1705  * For A64 floating point control and status bits are stored in
1706  * two logically distinct registers, FPCR and FPSR. We store these
1707  * in QEMU in vfp.fpcr and vfp.fpsr.
1708  * For A32 there was only one register, FPSCR. The bits are arranged
1709  * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions,
1710  * so we can use appropriate masking to handle FPSCR reads and writes.
1711  * Note that the FPCR has some bits which are not visible in the
1712  * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged.
1713  */
1714 
1715 /* FPCR bits */
1716 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1717 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1718 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1719 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1720 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1721 #define FPCR_EBF    (1 << 13)   /* Extended BFloat16 behaviors */
1722 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1723 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */
1724 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1725 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */
1726 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1727 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1728 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1729 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1730 
1731 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1732 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1733 #define FPCR_LTPSIZE_LENGTH 3
1734 
1735 /* Cumulative exception trap enable bits */
1736 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE)
1737 
1738 /* FPSR bits */
1739 #define FPSR_IOC    (1 << 0)    /* Invalid Operation cumulative exception */
1740 #define FPSR_DZC    (1 << 1)    /* Divide by Zero cumulative exception */
1741 #define FPSR_OFC    (1 << 2)    /* Overflow cumulative exception */
1742 #define FPSR_UFC    (1 << 3)    /* Underflow cumulative exception */
1743 #define FPSR_IXC    (1 << 4)    /* Inexact cumulative exception */
1744 #define FPSR_IDC    (1 << 7)    /* Input Denormal cumulative exception */
1745 #define FPSR_QC     (1 << 27)   /* Cumulative saturation bit */
1746 #define FPSR_V      (1 << 28)   /* FP overflow flag */
1747 #define FPSR_C      (1 << 29)   /* FP carry flag */
1748 #define FPSR_Z      (1 << 30)   /* FP zero flag */
1749 #define FPSR_N      (1 << 31)   /* FP negative flag */
1750 
1751 /* Cumulative exception status bits */
1752 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC)
1753 
1754 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V)
1755 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC)
1756 
1757 /* A32 FPSCR bits which architecturally map to FPSR bits */
1758 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK)
1759 /* A32 FPSCR bits which architecturally map to FPCR bits */
1760 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \
1761                          FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \
1762                          FPCR_FZ | FPCR_DN | FPCR_AHP)
1763 /* These masks don't overlap: each bit lives in only one place */
1764 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK);
1765 
1766 /**
1767  * vfp_get_fpsr: read the AArch64 FPSR
1768  * @env: CPU context
1769  *
1770  * Return the current AArch64 FPSR value
1771  */
1772 uint32_t vfp_get_fpsr(CPUARMState *env);
1773 
1774 /**
1775  * vfp_get_fpcr: read the AArch64 FPCR
1776  * @env: CPU context
1777  *
1778  * Return the current AArch64 FPCR value
1779  */
1780 uint32_t vfp_get_fpcr(CPUARMState *env);
1781 
1782 /**
1783  * vfp_set_fpsr: write the AArch64 FPSR
1784  * @env: CPU context
1785  * @value: new value
1786  */
1787 void vfp_set_fpsr(CPUARMState *env, uint32_t value);
1788 
1789 /**
1790  * vfp_set_fpcr: write the AArch64 FPCR
1791  * @env: CPU context
1792  * @value: new value
1793  */
1794 void vfp_set_fpcr(CPUARMState *env, uint32_t value);
1795 
1796 enum arm_cpu_mode {
1797   ARM_CPU_MODE_USR = 0x10,
1798   ARM_CPU_MODE_FIQ = 0x11,
1799   ARM_CPU_MODE_IRQ = 0x12,
1800   ARM_CPU_MODE_SVC = 0x13,
1801   ARM_CPU_MODE_MON = 0x16,
1802   ARM_CPU_MODE_ABT = 0x17,
1803   ARM_CPU_MODE_HYP = 0x1a,
1804   ARM_CPU_MODE_UND = 0x1b,
1805   ARM_CPU_MODE_SYS = 0x1f
1806 };
1807 
1808 /* VFP system registers.  */
1809 #define ARM_VFP_FPSID   0
1810 #define ARM_VFP_FPSCR   1
1811 #define ARM_VFP_MVFR2   5
1812 #define ARM_VFP_MVFR1   6
1813 #define ARM_VFP_MVFR0   7
1814 #define ARM_VFP_FPEXC   8
1815 #define ARM_VFP_FPINST  9
1816 #define ARM_VFP_FPINST2 10
1817 /* These ones are M-profile only */
1818 #define ARM_VFP_FPSCR_NZCVQC 2
1819 #define ARM_VFP_VPR 12
1820 #define ARM_VFP_P0 13
1821 #define ARM_VFP_FPCXT_NS 14
1822 #define ARM_VFP_FPCXT_S 15
1823 
1824 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1825 #define QEMU_VFP_FPSCR_NZCV 0xffff
1826 
1827 /* iwMMXt coprocessor control registers.  */
1828 #define ARM_IWMMXT_wCID  0
1829 #define ARM_IWMMXT_wCon  1
1830 #define ARM_IWMMXT_wCSSF 2
1831 #define ARM_IWMMXT_wCASF 3
1832 #define ARM_IWMMXT_wCGR0 8
1833 #define ARM_IWMMXT_wCGR1 9
1834 #define ARM_IWMMXT_wCGR2 10
1835 #define ARM_IWMMXT_wCGR3 11
1836 
1837 /* V7M CCR bits */
1838 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1839 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1840 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1841 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1842 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1843 FIELD(V7M_CCR, STKALIGN, 9, 1)
1844 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1845 FIELD(V7M_CCR, DC, 16, 1)
1846 FIELD(V7M_CCR, IC, 17, 1)
1847 FIELD(V7M_CCR, BP, 18, 1)
1848 FIELD(V7M_CCR, LOB, 19, 1)
1849 FIELD(V7M_CCR, TRD, 20, 1)
1850 
1851 /* V7M SCR bits */
1852 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1853 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1854 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1855 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1856 
1857 /* V7M AIRCR bits */
1858 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1859 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1860 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1861 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1862 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1863 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1864 FIELD(V7M_AIRCR, PRIS, 14, 1)
1865 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1866 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1867 
1868 /* V7M CFSR bits for MMFSR */
1869 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1870 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1871 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1872 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1873 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1874 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1875 
1876 /* V7M CFSR bits for BFSR */
1877 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1878 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1879 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1880 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1881 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1882 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1883 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1884 
1885 /* V7M CFSR bits for UFSR */
1886 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1887 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1888 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1889 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1890 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1891 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1892 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1893 
1894 /* V7M CFSR bit masks covering all of the subregister bits */
1895 FIELD(V7M_CFSR, MMFSR, 0, 8)
1896 FIELD(V7M_CFSR, BFSR, 8, 8)
1897 FIELD(V7M_CFSR, UFSR, 16, 16)
1898 
1899 /* V7M HFSR bits */
1900 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1901 FIELD(V7M_HFSR, FORCED, 30, 1)
1902 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1903 
1904 /* V7M DFSR bits */
1905 FIELD(V7M_DFSR, HALTED, 0, 1)
1906 FIELD(V7M_DFSR, BKPT, 1, 1)
1907 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1908 FIELD(V7M_DFSR, VCATCH, 3, 1)
1909 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1910 
1911 /* V7M SFSR bits */
1912 FIELD(V7M_SFSR, INVEP, 0, 1)
1913 FIELD(V7M_SFSR, INVIS, 1, 1)
1914 FIELD(V7M_SFSR, INVER, 2, 1)
1915 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1916 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1917 FIELD(V7M_SFSR, LSPERR, 5, 1)
1918 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1919 FIELD(V7M_SFSR, LSERR, 7, 1)
1920 
1921 /* v7M MPU_CTRL bits */
1922 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1923 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1924 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1925 
1926 /* v7M CLIDR bits */
1927 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1928 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1929 FIELD(V7M_CLIDR, LOC, 24, 3)
1930 FIELD(V7M_CLIDR, LOUU, 27, 3)
1931 FIELD(V7M_CLIDR, ICB, 30, 2)
1932 
1933 FIELD(V7M_CSSELR, IND, 0, 1)
1934 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1935 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1936  * define a mask for this and check that it doesn't permit running off
1937  * the end of the array.
1938  */
1939 FIELD(V7M_CSSELR, INDEX, 0, 4)
1940 
1941 /* v7M FPCCR bits */
1942 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1943 FIELD(V7M_FPCCR, USER, 1, 1)
1944 FIELD(V7M_FPCCR, S, 2, 1)
1945 FIELD(V7M_FPCCR, THREAD, 3, 1)
1946 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1947 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1948 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1949 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1950 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1951 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1952 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1953 FIELD(V7M_FPCCR, RES0, 11, 15)
1954 FIELD(V7M_FPCCR, TS, 26, 1)
1955 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1956 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1957 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1958 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1959 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1960 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1961 #define R_V7M_FPCCR_BANKED_MASK                 \
1962     (R_V7M_FPCCR_LSPACT_MASK |                  \
1963      R_V7M_FPCCR_USER_MASK |                    \
1964      R_V7M_FPCCR_THREAD_MASK |                  \
1965      R_V7M_FPCCR_MMRDY_MASK |                   \
1966      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1967      R_V7M_FPCCR_UFRDY_MASK |                   \
1968      R_V7M_FPCCR_ASPEN_MASK)
1969 
1970 /* v7M VPR bits */
1971 FIELD(V7M_VPR, P0, 0, 16)
1972 FIELD(V7M_VPR, MASK01, 16, 4)
1973 FIELD(V7M_VPR, MASK23, 20, 4)
1974 
1975 /*
1976  * System register ID fields.
1977  */
1978 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1979 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1980 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1981 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1982 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1983 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1984 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1985 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1986 FIELD(CLIDR_EL1, LOC, 24, 3)
1987 FIELD(CLIDR_EL1, LOUU, 27, 3)
1988 FIELD(CLIDR_EL1, ICB, 30, 3)
1989 
1990 /* When FEAT_CCIDX is implemented */
1991 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1992 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1993 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1994 
1995 /* When FEAT_CCIDX is not implemented */
1996 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1997 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1998 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1999 
2000 FIELD(CTR_EL0,  IMINLINE, 0, 4)
2001 FIELD(CTR_EL0,  L1IP, 14, 2)
2002 FIELD(CTR_EL0,  DMINLINE, 16, 4)
2003 FIELD(CTR_EL0,  ERG, 20, 4)
2004 FIELD(CTR_EL0,  CWG, 24, 4)
2005 FIELD(CTR_EL0,  IDC, 28, 1)
2006 FIELD(CTR_EL0,  DIC, 29, 1)
2007 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2008 
2009 FIELD(MIDR_EL1, REVISION, 0, 4)
2010 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2011 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2012 FIELD(MIDR_EL1, VARIANT, 20, 4)
2013 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2014 
2015 FIELD(ID_ISAR0, SWAP, 0, 4)
2016 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2017 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2018 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2019 FIELD(ID_ISAR0, COPROC, 16, 4)
2020 FIELD(ID_ISAR0, DEBUG, 20, 4)
2021 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2022 
2023 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2024 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2025 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2026 FIELD(ID_ISAR1, EXTEND, 12, 4)
2027 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2028 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2029 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2030 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2031 
2032 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2033 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2034 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2035 FIELD(ID_ISAR2, MULT, 12, 4)
2036 FIELD(ID_ISAR2, MULTS, 16, 4)
2037 FIELD(ID_ISAR2, MULTU, 20, 4)
2038 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2039 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2040 
2041 FIELD(ID_ISAR3, SATURATE, 0, 4)
2042 FIELD(ID_ISAR3, SIMD, 4, 4)
2043 FIELD(ID_ISAR3, SVC, 8, 4)
2044 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2045 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2046 FIELD(ID_ISAR3, T32COPY, 20, 4)
2047 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2048 FIELD(ID_ISAR3, T32EE, 28, 4)
2049 
2050 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2051 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2052 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2053 FIELD(ID_ISAR4, SMC, 12, 4)
2054 FIELD(ID_ISAR4, BARRIER, 16, 4)
2055 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2056 FIELD(ID_ISAR4, PSR_M, 24, 4)
2057 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2058 
2059 FIELD(ID_ISAR5, SEVL, 0, 4)
2060 FIELD(ID_ISAR5, AES, 4, 4)
2061 FIELD(ID_ISAR5, SHA1, 8, 4)
2062 FIELD(ID_ISAR5, SHA2, 12, 4)
2063 FIELD(ID_ISAR5, CRC32, 16, 4)
2064 FIELD(ID_ISAR5, RDM, 24, 4)
2065 FIELD(ID_ISAR5, VCMA, 28, 4)
2066 
2067 FIELD(ID_ISAR6, JSCVT, 0, 4)
2068 FIELD(ID_ISAR6, DP, 4, 4)
2069 FIELD(ID_ISAR6, FHM, 8, 4)
2070 FIELD(ID_ISAR6, SB, 12, 4)
2071 FIELD(ID_ISAR6, SPECRES, 16, 4)
2072 FIELD(ID_ISAR6, BF16, 20, 4)
2073 FIELD(ID_ISAR6, I8MM, 24, 4)
2074 
2075 FIELD(ID_MMFR0, VMSA, 0, 4)
2076 FIELD(ID_MMFR0, PMSA, 4, 4)
2077 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2078 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2079 FIELD(ID_MMFR0, TCM, 16, 4)
2080 FIELD(ID_MMFR0, AUXREG, 20, 4)
2081 FIELD(ID_MMFR0, FCSE, 24, 4)
2082 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2083 
2084 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2085 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2086 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2087 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2088 FIELD(ID_MMFR1, L1HVD, 16, 4)
2089 FIELD(ID_MMFR1, L1UNI, 20, 4)
2090 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2091 FIELD(ID_MMFR1, BPRED, 28, 4)
2092 
2093 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2094 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2095 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2096 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2097 FIELD(ID_MMFR2, UNITLB, 16, 4)
2098 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2099 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2100 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2101 
2102 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2103 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2104 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2105 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2106 FIELD(ID_MMFR3, PAN, 16, 4)
2107 FIELD(ID_MMFR3, COHWALK, 20, 4)
2108 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2109 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2110 
2111 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2112 FIELD(ID_MMFR4, AC2, 4, 4)
2113 FIELD(ID_MMFR4, XNX, 8, 4)
2114 FIELD(ID_MMFR4, CNP, 12, 4)
2115 FIELD(ID_MMFR4, HPDS, 16, 4)
2116 FIELD(ID_MMFR4, LSM, 20, 4)
2117 FIELD(ID_MMFR4, CCIDX, 24, 4)
2118 FIELD(ID_MMFR4, EVT, 28, 4)
2119 
2120 FIELD(ID_MMFR5, ETS, 0, 4)
2121 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2122 
2123 FIELD(ID_PFR0, STATE0, 0, 4)
2124 FIELD(ID_PFR0, STATE1, 4, 4)
2125 FIELD(ID_PFR0, STATE2, 8, 4)
2126 FIELD(ID_PFR0, STATE3, 12, 4)
2127 FIELD(ID_PFR0, CSV2, 16, 4)
2128 FIELD(ID_PFR0, AMU, 20, 4)
2129 FIELD(ID_PFR0, DIT, 24, 4)
2130 FIELD(ID_PFR0, RAS, 28, 4)
2131 
2132 FIELD(ID_PFR1, PROGMOD, 0, 4)
2133 FIELD(ID_PFR1, SECURITY, 4, 4)
2134 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2135 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2136 FIELD(ID_PFR1, GENTIMER, 16, 4)
2137 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2138 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2139 FIELD(ID_PFR1, GIC, 28, 4)
2140 
2141 FIELD(ID_PFR2, CSV3, 0, 4)
2142 FIELD(ID_PFR2, SSBS, 4, 4)
2143 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2144 
2145 FIELD(ID_AA64ISAR0, AES, 4, 4)
2146 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2147 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2148 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2149 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2150 FIELD(ID_AA64ISAR0, TME, 24, 4)
2151 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2152 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2153 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2154 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2155 FIELD(ID_AA64ISAR0, DP, 44, 4)
2156 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2157 FIELD(ID_AA64ISAR0, TS, 52, 4)
2158 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2159 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2160 
2161 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2162 FIELD(ID_AA64ISAR1, APA, 4, 4)
2163 FIELD(ID_AA64ISAR1, API, 8, 4)
2164 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2165 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2166 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2167 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2168 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2169 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2170 FIELD(ID_AA64ISAR1, SB, 36, 4)
2171 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2172 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2173 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2174 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2175 FIELD(ID_AA64ISAR1, XS, 56, 4)
2176 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2177 
2178 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2179 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2180 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2181 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2182 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2183 FIELD(ID_AA64ISAR2, BC, 20, 4)
2184 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2185 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2186 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2187 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2188 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2189 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2190 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2191 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2192 
2193 FIELD(ID_AA64PFR0, EL0, 0, 4)
2194 FIELD(ID_AA64PFR0, EL1, 4, 4)
2195 FIELD(ID_AA64PFR0, EL2, 8, 4)
2196 FIELD(ID_AA64PFR0, EL3, 12, 4)
2197 FIELD(ID_AA64PFR0, FP, 16, 4)
2198 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2199 FIELD(ID_AA64PFR0, GIC, 24, 4)
2200 FIELD(ID_AA64PFR0, RAS, 28, 4)
2201 FIELD(ID_AA64PFR0, SVE, 32, 4)
2202 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2203 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2204 FIELD(ID_AA64PFR0, AMU, 44, 4)
2205 FIELD(ID_AA64PFR0, DIT, 48, 4)
2206 FIELD(ID_AA64PFR0, RME, 52, 4)
2207 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2208 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2209 
2210 FIELD(ID_AA64PFR1, BT, 0, 4)
2211 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2212 FIELD(ID_AA64PFR1, MTE, 8, 4)
2213 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2214 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2215 FIELD(ID_AA64PFR1, SME, 24, 4)
2216 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2217 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2218 FIELD(ID_AA64PFR1, NMI, 36, 4)
2219 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2220 FIELD(ID_AA64PFR1, GCS, 44, 4)
2221 FIELD(ID_AA64PFR1, THE, 48, 4)
2222 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2223 FIELD(ID_AA64PFR1, DF2, 56, 4)
2224 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2225 
2226 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2227 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2228 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2229 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2230 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2231 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2232 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2233 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2234 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2235 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2236 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2237 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2238 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2239 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2240 
2241 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2242 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2243 FIELD(ID_AA64MMFR1, VH, 8, 4)
2244 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2245 FIELD(ID_AA64MMFR1, LO, 16, 4)
2246 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2247 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2248 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2249 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2250 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2251 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2252 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2253 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2254 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2255 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2256 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2257 
2258 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2259 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2260 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2261 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2262 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2263 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2264 FIELD(ID_AA64MMFR2, NV, 24, 4)
2265 FIELD(ID_AA64MMFR2, ST, 28, 4)
2266 FIELD(ID_AA64MMFR2, AT, 32, 4)
2267 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2268 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2269 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2270 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2271 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2272 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2273 
2274 FIELD(ID_AA64MMFR3, TCRX, 0, 4)
2275 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4)
2276 FIELD(ID_AA64MMFR3, S1PIE, 8, 4)
2277 FIELD(ID_AA64MMFR3, S2PIE, 12, 4)
2278 FIELD(ID_AA64MMFR3, S1POE, 16, 4)
2279 FIELD(ID_AA64MMFR3, S2POE, 20, 4)
2280 FIELD(ID_AA64MMFR3, AIE, 24, 4)
2281 FIELD(ID_AA64MMFR3, MEC, 28, 4)
2282 FIELD(ID_AA64MMFR3, D128, 32, 4)
2283 FIELD(ID_AA64MMFR3, D128_2, 36, 4)
2284 FIELD(ID_AA64MMFR3, SNERR, 40, 4)
2285 FIELD(ID_AA64MMFR3, ANERR, 44, 4)
2286 FIELD(ID_AA64MMFR3, SDERR, 52, 4)
2287 FIELD(ID_AA64MMFR3, ADERR, 56, 4)
2288 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4)
2289 
2290 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2291 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2292 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2293 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2294 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2295 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2296 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2297 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2298 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2299 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2300 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2301 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2302 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2303 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2304 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2305 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2306 
2307 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2308 FIELD(ID_AA64ZFR0, AES, 4, 4)
2309 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2310 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2311 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2312 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2313 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2314 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2315 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2316 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2317 
2318 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2319 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2320 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2321 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2322 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2323 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2324 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2325 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2326 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2327 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2328 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2329 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2330 
2331 FIELD(ID_DFR0, COPDBG, 0, 4)
2332 FIELD(ID_DFR0, COPSDBG, 4, 4)
2333 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2334 FIELD(ID_DFR0, COPTRC, 12, 4)
2335 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2336 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2337 FIELD(ID_DFR0, PERFMON, 24, 4)
2338 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2339 
2340 FIELD(ID_DFR1, MTPMU, 0, 4)
2341 FIELD(ID_DFR1, HPMN0, 4, 4)
2342 
2343 FIELD(DBGDIDR, SE_IMP, 12, 1)
2344 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2345 FIELD(DBGDIDR, VERSION, 16, 4)
2346 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2347 FIELD(DBGDIDR, BRPS, 24, 4)
2348 FIELD(DBGDIDR, WRPS, 28, 4)
2349 
2350 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2351 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2352 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2353 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2354 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2355 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2356 FIELD(DBGDEVID, AUXREGS, 24, 4)
2357 FIELD(DBGDEVID, CIDMASK, 28, 4)
2358 
2359 FIELD(DBGDEVID1, PCSROFFSET, 0, 4)
2360 
2361 FIELD(MVFR0, SIMDREG, 0, 4)
2362 FIELD(MVFR0, FPSP, 4, 4)
2363 FIELD(MVFR0, FPDP, 8, 4)
2364 FIELD(MVFR0, FPTRAP, 12, 4)
2365 FIELD(MVFR0, FPDIVIDE, 16, 4)
2366 FIELD(MVFR0, FPSQRT, 20, 4)
2367 FIELD(MVFR0, FPSHVEC, 24, 4)
2368 FIELD(MVFR0, FPROUND, 28, 4)
2369 
2370 FIELD(MVFR1, FPFTZ, 0, 4)
2371 FIELD(MVFR1, FPDNAN, 4, 4)
2372 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2373 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2374 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2375 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2376 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2377 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2378 FIELD(MVFR1, FPHP, 24, 4)
2379 FIELD(MVFR1, SIMDFMAC, 28, 4)
2380 
2381 FIELD(MVFR2, SIMDMISC, 0, 4)
2382 FIELD(MVFR2, FPMISC, 4, 4)
2383 
2384 FIELD(GPCCR, PPS, 0, 3)
2385 FIELD(GPCCR, IRGN, 8, 2)
2386 FIELD(GPCCR, ORGN, 10, 2)
2387 FIELD(GPCCR, SH, 12, 2)
2388 FIELD(GPCCR, PGS, 14, 2)
2389 FIELD(GPCCR, GPC, 16, 1)
2390 FIELD(GPCCR, GPCP, 17, 1)
2391 FIELD(GPCCR, L0GPTSZ, 20, 4)
2392 
2393 FIELD(MFAR, FPA, 12, 40)
2394 FIELD(MFAR, NSE, 62, 1)
2395 FIELD(MFAR, NS, 63, 1)
2396 
2397 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2398 
2399 /* If adding a feature bit which corresponds to a Linux ELF
2400  * HWCAP bit, remember to update the feature-bit-to-hwcap
2401  * mapping in linux-user/elfload.c:get_elf_hwcap().
2402  */
2403 enum arm_features {
2404     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2405     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2406     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2407     ARM_FEATURE_V6,
2408     ARM_FEATURE_V6K,
2409     ARM_FEATURE_V7,
2410     ARM_FEATURE_THUMB2,
2411     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2412     ARM_FEATURE_NEON,
2413     ARM_FEATURE_M, /* Microcontroller profile.  */
2414     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2415     ARM_FEATURE_THUMB2EE,
2416     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2417     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2418     ARM_FEATURE_V4T,
2419     ARM_FEATURE_V5,
2420     ARM_FEATURE_STRONGARM,
2421     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2422     ARM_FEATURE_GENERIC_TIMER,
2423     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2424     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2425     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2426     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2427     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2428     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2429     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2430     ARM_FEATURE_V8,
2431     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2432     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2433     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2434     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2435     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2436     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2437     ARM_FEATURE_PMU, /* has PMU support */
2438     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2439     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2440     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2441     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2442     /*
2443      * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz
2444      * if the board doesn't set a value, instead of 1GHz. It is for backwards
2445      * compatibility and used only with CPU definitions that were already
2446      * in QEMU before we changed the default. It should not be set on any
2447      * CPU types added in future.
2448      */
2449     ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */
2450 };
2451 
2452 static inline int arm_feature(CPUARMState *env, int feature)
2453 {
2454     return (env->features & (1ULL << feature)) != 0;
2455 }
2456 
2457 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2458 
2459 /*
2460  * ARM v9 security states.
2461  * The ordering of the enumeration corresponds to the low 2 bits
2462  * of the GPI value, and (except for Root) the concat of NSE:NS.
2463  */
2464 
2465 typedef enum ARMSecuritySpace {
2466     ARMSS_Secure     = 0,
2467     ARMSS_NonSecure  = 1,
2468     ARMSS_Root       = 2,
2469     ARMSS_Realm      = 3,
2470 } ARMSecuritySpace;
2471 
2472 /* Return true if @space is secure, in the pre-v9 sense. */
2473 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2474 {
2475     return space == ARMSS_Secure || space == ARMSS_Root;
2476 }
2477 
2478 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2479 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2480 {
2481     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2482 }
2483 
2484 #if !defined(CONFIG_USER_ONLY)
2485 /**
2486  * arm_security_space_below_el3:
2487  * @env: cpu context
2488  *
2489  * Return the security space of exception levels below EL3, following
2490  * an exception return to those levels.  Unlike arm_security_space,
2491  * this doesn't care about the current EL.
2492  */
2493 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2494 
2495 /**
2496  * arm_is_secure_below_el3:
2497  * @env: cpu context
2498  *
2499  * Return true if exception levels below EL3 are in secure state,
2500  * or would be following an exception return to those levels.
2501  */
2502 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2503 {
2504     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2505     return ss == ARMSS_Secure;
2506 }
2507 
2508 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2509 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2510 {
2511     assert(!arm_feature(env, ARM_FEATURE_M));
2512     if (arm_feature(env, ARM_FEATURE_EL3)) {
2513         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2514             /* CPU currently in AArch64 state and EL3 */
2515             return true;
2516         } else if (!is_a64(env) &&
2517                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2518             /* CPU currently in AArch32 state and monitor mode */
2519             return true;
2520         }
2521     }
2522     return false;
2523 }
2524 
2525 /**
2526  * arm_security_space:
2527  * @env: cpu context
2528  *
2529  * Return the current security space of the cpu.
2530  */
2531 ARMSecuritySpace arm_security_space(CPUARMState *env);
2532 
2533 /**
2534  * arm_is_secure:
2535  * @env: cpu context
2536  *
2537  * Return true if the processor is in secure state.
2538  */
2539 static inline bool arm_is_secure(CPUARMState *env)
2540 {
2541     return arm_space_is_secure(arm_security_space(env));
2542 }
2543 
2544 /*
2545  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2546  * This corresponds to the pseudocode EL2Enabled().
2547  */
2548 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2549                                                ARMSecuritySpace space)
2550 {
2551     assert(space != ARMSS_Root);
2552     return arm_feature(env, ARM_FEATURE_EL2)
2553            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2554 }
2555 
2556 static inline bool arm_is_el2_enabled(CPUARMState *env)
2557 {
2558     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2559 }
2560 
2561 #else
2562 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2563 {
2564     return ARMSS_NonSecure;
2565 }
2566 
2567 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2568 {
2569     return false;
2570 }
2571 
2572 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2573 {
2574     return ARMSS_NonSecure;
2575 }
2576 
2577 static inline bool arm_is_secure(CPUARMState *env)
2578 {
2579     return false;
2580 }
2581 
2582 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2583                                                ARMSecuritySpace space)
2584 {
2585     return false;
2586 }
2587 
2588 static inline bool arm_is_el2_enabled(CPUARMState *env)
2589 {
2590     return false;
2591 }
2592 #endif
2593 
2594 /**
2595  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2596  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2597  * "for all purposes other than a direct read or write access of HCR_EL2."
2598  * Not included here is HCR_RW.
2599  */
2600 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2601 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2602 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2603 
2604 /* Return true if the specified exception level is running in AArch64 state. */
2605 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2606 {
2607     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2608      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2609      */
2610     assert(el >= 1 && el <= 3);
2611     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2612 
2613     /* The highest exception level is always at the maximum supported
2614      * register width, and then lower levels have a register width controlled
2615      * by bits in the SCR or HCR registers.
2616      */
2617     if (el == 3) {
2618         return aa64;
2619     }
2620 
2621     if (arm_feature(env, ARM_FEATURE_EL3) &&
2622         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2623         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2624     }
2625 
2626     if (el == 2) {
2627         return aa64;
2628     }
2629 
2630     if (arm_is_el2_enabled(env)) {
2631         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2632     }
2633 
2634     return aa64;
2635 }
2636 
2637 /* Function for determining whether guest cp register reads and writes should
2638  * access the secure or non-secure bank of a cp register.  When EL3 is
2639  * operating in AArch32 state, the NS-bit determines whether the secure
2640  * instance of a cp register should be used. When EL3 is AArch64 (or if
2641  * it doesn't exist at all) then there is no register banking, and all
2642  * accesses are to the non-secure version.
2643  */
2644 static inline bool access_secure_reg(CPUARMState *env)
2645 {
2646     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2647                 !arm_el_is_aa64(env, 3) &&
2648                 !(env->cp15.scr_el3 & SCR_NS));
2649 
2650     return ret;
2651 }
2652 
2653 /* Macros for accessing a specified CP register bank */
2654 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2655     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2656 
2657 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2658     do {                                                \
2659         if (_secure) {                                   \
2660             (_env)->cp15._regname##_s = (_val);            \
2661         } else {                                        \
2662             (_env)->cp15._regname##_ns = (_val);           \
2663         }                                               \
2664     } while (0)
2665 
2666 /* Macros for automatically accessing a specific CP register bank depending on
2667  * the current secure state of the system.  These macros are not intended for
2668  * supporting instruction translation reads/writes as these are dependent
2669  * solely on the SCR.NS bit and not the mode.
2670  */
2671 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2672     A32_BANKED_REG_GET((_env), _regname,                \
2673                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2674 
2675 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2676     A32_BANKED_REG_SET((_env), _regname,                                    \
2677                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2678                        (_val))
2679 
2680 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2681                                  uint32_t cur_el, bool secure);
2682 
2683 /* Return the highest implemented Exception Level */
2684 static inline int arm_highest_el(CPUARMState *env)
2685 {
2686     if (arm_feature(env, ARM_FEATURE_EL3)) {
2687         return 3;
2688     }
2689     if (arm_feature(env, ARM_FEATURE_EL2)) {
2690         return 2;
2691     }
2692     return 1;
2693 }
2694 
2695 /* Return true if a v7M CPU is in Handler mode */
2696 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2697 {
2698     return env->v7m.exception != 0;
2699 }
2700 
2701 /* Return the current Exception Level (as per ARMv8; note that this differs
2702  * from the ARMv7 Privilege Level).
2703  */
2704 static inline int arm_current_el(CPUARMState *env)
2705 {
2706     if (arm_feature(env, ARM_FEATURE_M)) {
2707         return arm_v7m_is_handler_mode(env) ||
2708             !(env->v7m.control[env->v7m.secure] & 1);
2709     }
2710 
2711     if (is_a64(env)) {
2712         return extract32(env->pstate, 2, 2);
2713     }
2714 
2715     switch (env->uncached_cpsr & 0x1f) {
2716     case ARM_CPU_MODE_USR:
2717         return 0;
2718     case ARM_CPU_MODE_HYP:
2719         return 2;
2720     case ARM_CPU_MODE_MON:
2721         return 3;
2722     default:
2723         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2724             /* If EL3 is 32-bit then all secure privileged modes run in
2725              * EL3
2726              */
2727             return 3;
2728         }
2729 
2730         return 1;
2731     }
2732 }
2733 
2734 /**
2735  * write_list_to_cpustate
2736  * @cpu: ARMCPU
2737  *
2738  * For each register listed in the ARMCPU cpreg_indexes list, write
2739  * its value from the cpreg_values list into the ARMCPUState structure.
2740  * This updates TCG's working data structures from KVM data or
2741  * from incoming migration state.
2742  *
2743  * Returns: true if all register values were updated correctly,
2744  * false if some register was unknown or could not be written.
2745  * Note that we do not stop early on failure -- we will attempt
2746  * writing all registers in the list.
2747  */
2748 bool write_list_to_cpustate(ARMCPU *cpu);
2749 
2750 /**
2751  * write_cpustate_to_list:
2752  * @cpu: ARMCPU
2753  * @kvm_sync: true if this is for syncing back to KVM
2754  *
2755  * For each register listed in the ARMCPU cpreg_indexes list, write
2756  * its value from the ARMCPUState structure into the cpreg_values list.
2757  * This is used to copy info from TCG's working data structures into
2758  * KVM or for outbound migration.
2759  *
2760  * @kvm_sync is true if we are doing this in order to sync the
2761  * register state back to KVM. In this case we will only update
2762  * values in the list if the previous list->cpustate sync actually
2763  * successfully wrote the CPU state. Otherwise we will keep the value
2764  * that is in the list.
2765  *
2766  * Returns: true if all register values were read correctly,
2767  * false if some register was unknown or could not be read.
2768  * Note that we do not stop early on failure -- we will attempt
2769  * reading all registers in the list.
2770  */
2771 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2772 
2773 #define ARM_CPUID_TI915T      0x54029152
2774 #define ARM_CPUID_TI925T      0x54029252
2775 
2776 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2777 
2778 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2779 
2780 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2781  *
2782  * If EL3 is 64-bit:
2783  *  + NonSecure EL1 & 0 stage 1
2784  *  + NonSecure EL1 & 0 stage 2
2785  *  + NonSecure EL2
2786  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2787  *  + Secure EL1 & 0 stage 1
2788  *  + Secure EL1 & 0 stage 2 (FEAT_SEL2)
2789  *  + Secure EL2 (FEAT_SEL2)
2790  *  + Secure EL2 & 0 (FEAT_SEL2)
2791  *  + Realm EL1 & 0 stage 1 (FEAT_RME)
2792  *  + Realm EL1 & 0 stage 2 (FEAT_RME)
2793  *  + Realm EL2 (FEAT_RME)
2794  *  + EL3
2795  * If EL3 is 32-bit:
2796  *  + NonSecure PL1 & 0 stage 1
2797  *  + NonSecure PL1 & 0 stage 2
2798  *  + NonSecure PL2
2799  *  + Secure PL1 & 0
2800  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2801  *
2802  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2803  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2804  *     because they may differ in access permissions even if the VA->PA map is
2805  *     the same
2806  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2807  *     translation, which means that we have one mmu_idx that deals with two
2808  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2809  *     architecturally permitted]
2810  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2811  *     handling via the TLB. The only way to do a stage 1 translation without
2812  *     the immediate stage 2 translation is via the ATS or AT system insns,
2813  *     which can be slow-pathed and always do a page table walk.
2814  *     The only use of stage 2 translations is either as part of an s1+2
2815  *     lookup or when loading the descriptors during a stage 1 page table walk,
2816  *     and in both those cases we don't use the TLB.
2817  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2818  *     translation regimes, because they map reasonably well to each other
2819  *     and they can't both be active at the same time.
2820  *  5. we want to be able to use the TLB for accesses done as part of a
2821  *     stage1 page table walk, rather than having to walk the stage2 page
2822  *     table over and over.
2823  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2824  *     Never (PAN) bit within PSTATE.
2825  *  7. we fold together most secure and non-secure regimes for A-profile,
2826  *     because there are no banked system registers for aarch64, so the
2827  *     process of switching between secure and non-secure is
2828  *     already heavyweight.
2829  *  8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure,
2830  *     because both are in use simultaneously for Secure EL2.
2831  *
2832  * This gives us the following list of cases:
2833  *
2834  * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
2835  * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
2836  * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
2837  * EL0 EL2&0
2838  * EL2 EL2&0
2839  * EL2 EL2&0 +PAN
2840  * EL2 (aka NS PL2)
2841  * EL3 (aka AArch32 S PL1 PL1&0)
2842  * AArch32 S PL0 PL1&0 (we call this EL30_0)
2843  * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
2844  * Stage2 Secure
2845  * Stage2 NonSecure
2846  * plus one TLB per Physical address space: S, NS, Realm, Root
2847  *
2848  * for a total of 16 different mmu_idx.
2849  *
2850  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2851  * as A profile. They only need to distinguish EL0 and EL1 (and
2852  * EL2 for cores like the Cortex-R52).
2853  *
2854  * M profile CPUs are rather different as they do not have a true MMU.
2855  * They have the following different MMU indexes:
2856  *  User
2857  *  Privileged
2858  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2859  *  Privileged, execution priority negative (ditto)
2860  * If the CPU supports the v8M Security Extension then there are also:
2861  *  Secure User
2862  *  Secure Privileged
2863  *  Secure User, execution priority negative
2864  *  Secure Privileged, execution priority negative
2865  *
2866  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2867  * are not quite the same -- different CPU types (most notably M profile
2868  * vs A/R profile) would like to use MMU indexes with different semantics,
2869  * but since we don't ever need to use all of those in a single CPU we
2870  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2871  * modes + total number of M profile MMU modes". The lower bits of
2872  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2873  * the same for any particular CPU.
2874  * Variables of type ARMMUIdx are always full values, and the core
2875  * index values are in variables of type 'int'.
2876  *
2877  * Our enumeration includes at the end some entries which are not "true"
2878  * mmu_idx values in that they don't have corresponding TLBs and are only
2879  * valid for doing slow path page table walks.
2880  *
2881  * The constant names here are patterned after the general style of the names
2882  * of the AT/ATS operations.
2883  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2884  * For M profile we arrange them to have a bit for priv, a bit for negpri
2885  * and a bit for secure.
2886  */
2887 #define ARM_MMU_IDX_A     0x10  /* A profile */
2888 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2889 #define ARM_MMU_IDX_M     0x40  /* M profile */
2890 
2891 /* Meanings of the bits for M profile mmu idx values */
2892 #define ARM_MMU_IDX_M_PRIV   0x1
2893 #define ARM_MMU_IDX_M_NEGPRI 0x2
2894 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2895 
2896 #define ARM_MMU_IDX_TYPE_MASK \
2897     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2898 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2899 
2900 typedef enum ARMMMUIdx {
2901     /*
2902      * A-profile.
2903      */
2904     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2905     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2906     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2907     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2908     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2909     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2910     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2911     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2912     ARMMMUIdx_E30_0     = 8 | ARM_MMU_IDX_A,
2913     ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
2914 
2915     /*
2916      * Used for second stage of an S12 page table walk, or for descriptor
2917      * loads during first stage of an S1 page table walk.  Note that both
2918      * are in use simultaneously for SecureEL2: the security state for
2919      * the S2 ptw is selected by the NS bit from the S1 ptw.
2920      */
2921     ARMMMUIdx_Stage2_S  = 10 | ARM_MMU_IDX_A,
2922     ARMMMUIdx_Stage2    = 11 | ARM_MMU_IDX_A,
2923 
2924     /* TLBs with 1-1 mapping to the physical address spaces. */
2925     ARMMMUIdx_Phys_S     = 12 | ARM_MMU_IDX_A,
2926     ARMMMUIdx_Phys_NS    = 13 | ARM_MMU_IDX_A,
2927     ARMMMUIdx_Phys_Root  = 14 | ARM_MMU_IDX_A,
2928     ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
2929 
2930     /*
2931      * These are not allocated TLBs and are used only for AT system
2932      * instructions or for the first stage of an S12 page table walk.
2933      */
2934     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2935     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2936     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2937 
2938     /*
2939      * M-profile.
2940      */
2941     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2942     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2943     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2944     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2945     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2946     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2947     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2948     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2949 } ARMMMUIdx;
2950 
2951 /*
2952  * Bit macros for the core-mmu-index values for each index,
2953  * for use when calling tlb_flush_by_mmuidx() and friends.
2954  */
2955 #define TO_CORE_BIT(NAME) \
2956     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2957 
2958 typedef enum ARMMMUIdxBit {
2959     TO_CORE_BIT(E10_0),
2960     TO_CORE_BIT(E20_0),
2961     TO_CORE_BIT(E10_1),
2962     TO_CORE_BIT(E10_1_PAN),
2963     TO_CORE_BIT(E2),
2964     TO_CORE_BIT(E20_2),
2965     TO_CORE_BIT(E20_2_PAN),
2966     TO_CORE_BIT(E3),
2967     TO_CORE_BIT(E30_0),
2968     TO_CORE_BIT(E30_3_PAN),
2969     TO_CORE_BIT(Stage2),
2970     TO_CORE_BIT(Stage2_S),
2971 
2972     TO_CORE_BIT(MUser),
2973     TO_CORE_BIT(MPriv),
2974     TO_CORE_BIT(MUserNegPri),
2975     TO_CORE_BIT(MPrivNegPri),
2976     TO_CORE_BIT(MSUser),
2977     TO_CORE_BIT(MSPriv),
2978     TO_CORE_BIT(MSUserNegPri),
2979     TO_CORE_BIT(MSPrivNegPri),
2980 } ARMMMUIdxBit;
2981 
2982 #undef TO_CORE_BIT
2983 
2984 #define MMU_USER_IDX 0
2985 
2986 /* Indexes used when registering address spaces with cpu_address_space_init */
2987 typedef enum ARMASIdx {
2988     ARMASIdx_NS = 0,
2989     ARMASIdx_S = 1,
2990     ARMASIdx_TagNS = 2,
2991     ARMASIdx_TagS = 3,
2992 } ARMASIdx;
2993 
2994 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2995 {
2996     /* Assert the relative order of the physical mmu indexes. */
2997     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2998     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2999     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
3000     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
3001 
3002     return ARMMMUIdx_Phys_S + space;
3003 }
3004 
3005 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
3006 {
3007     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
3008     return idx - ARMMMUIdx_Phys_S;
3009 }
3010 
3011 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3012 {
3013     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3014      * CSSELR is RAZ/WI.
3015      */
3016     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3017 }
3018 
3019 static inline bool arm_sctlr_b(CPUARMState *env)
3020 {
3021     return
3022         /* We need not implement SCTLR.ITD in user-mode emulation, so
3023          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3024          * This lets people run BE32 binaries with "-cpu any".
3025          */
3026 #ifndef CONFIG_USER_ONLY
3027         !arm_feature(env, ARM_FEATURE_V7) &&
3028 #endif
3029         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3030 }
3031 
3032 uint64_t arm_sctlr(CPUARMState *env, int el);
3033 
3034 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3035                                                   bool sctlr_b)
3036 {
3037 #ifdef CONFIG_USER_ONLY
3038     /*
3039      * In system mode, BE32 is modelled in line with the
3040      * architecture (as word-invariant big-endianness), where loads
3041      * and stores are done little endian but from addresses which
3042      * are adjusted by XORing with the appropriate constant. So the
3043      * endianness to use for the raw data access is not affected by
3044      * SCTLR.B.
3045      * In user mode, however, we model BE32 as byte-invariant
3046      * big-endianness (because user-only code cannot tell the
3047      * difference), and so we need to use a data access endianness
3048      * that depends on SCTLR.B.
3049      */
3050     if (sctlr_b) {
3051         return true;
3052     }
3053 #endif
3054     /* In 32bit endianness is determined by looking at CPSR's E bit */
3055     return env->uncached_cpsr & CPSR_E;
3056 }
3057 
3058 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3059 {
3060     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3061 }
3062 
3063 /* Return true if the processor is in big-endian mode. */
3064 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3065 {
3066     if (!is_a64(env)) {
3067         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3068     } else {
3069         int cur_el = arm_current_el(env);
3070         uint64_t sctlr = arm_sctlr(env, cur_el);
3071         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3072     }
3073 }
3074 
3075 #include "exec/cpu-all.h"
3076 
3077 /*
3078  * We have more than 32-bits worth of state per TB, so we split the data
3079  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3080  * We collect these two parts in CPUARMTBFlags where they are named
3081  * flags and flags2 respectively.
3082  *
3083  * The flags that are shared between all execution modes, TBFLAG_ANY,
3084  * are stored in flags.  The flags that are specific to a given mode
3085  * are stores in flags2.  Since cs_base is sized on the configured
3086  * address size, flags2 always has 64-bits for A64, and a minimum of
3087  * 32-bits for A32 and M32.
3088  *
3089  * The bits for 32-bit A-profile and M-profile partially overlap:
3090  *
3091  *  31         23         11 10             0
3092  * +-------------+----------+----------------+
3093  * |             |          |   TBFLAG_A32   |
3094  * | TBFLAG_AM32 |          +-----+----------+
3095  * |             |                |TBFLAG_M32|
3096  * +-------------+----------------+----------+
3097  *  31         23                6 5        0
3098  *
3099  * Unless otherwise noted, these bits are cached in env->hflags.
3100  */
3101 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3102 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3103 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3104 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3105 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3106 /* Target EL if we take a floating-point-disabled exception */
3107 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3108 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3109 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3110 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3111 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3112 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3113 
3114 /*
3115  * Bit usage when in AArch32 state, both A- and M-profile.
3116  */
3117 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3118 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3119 
3120 /*
3121  * Bit usage when in AArch32 state, for A-profile only.
3122  */
3123 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3124 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3125 /*
3126  * We store the bottom two bits of the CPAR as TB flags and handle
3127  * checks on the other bits at runtime. This shares the same bits as
3128  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3129  * Not cached, because VECLEN+VECSTRIDE are not cached.
3130  */
3131 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3132 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3133 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3134 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3135 /*
3136  * Indicates whether cp register reads and writes by guest code should access
3137  * the secure or nonsecure bank of banked registers; note that this is not
3138  * the same thing as the current security state of the processor!
3139  */
3140 FIELD(TBFLAG_A32, NS, 10, 1)
3141 /*
3142  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3143  * This requires an SME trap from AArch32 mode when using NEON.
3144  */
3145 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3146 
3147 /*
3148  * Bit usage when in AArch32 state, for M-profile only.
3149  */
3150 /* Handler (ie not Thread) mode */
3151 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3152 /* Whether we should generate stack-limit checks */
3153 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3154 /* Set if FPCCR.LSPACT is set */
3155 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3156 /* Set if we must create a new FP context */
3157 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3158 /* Set if FPCCR.S does not match current security state */
3159 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3160 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3161 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3162 /* Set if in secure mode */
3163 FIELD(TBFLAG_M32, SECURE, 6, 1)
3164 
3165 /*
3166  * Bit usage when in AArch64 state
3167  */
3168 FIELD(TBFLAG_A64, TBII, 0, 2)
3169 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3170 /* The current vector length, either NVL or SVL. */
3171 FIELD(TBFLAG_A64, VL, 4, 4)
3172 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3173 FIELD(TBFLAG_A64, BT, 9, 1)
3174 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3175 FIELD(TBFLAG_A64, TBID, 12, 2)
3176 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3177 FIELD(TBFLAG_A64, ATA, 15, 1)
3178 FIELD(TBFLAG_A64, TCMA, 16, 2)
3179 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3180 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3181 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3182 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3183 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3184 FIELD(TBFLAG_A64, SVL, 24, 4)
3185 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3186 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3187 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3188 FIELD(TBFLAG_A64, NAA, 30, 1)
3189 FIELD(TBFLAG_A64, ATA0, 31, 1)
3190 FIELD(TBFLAG_A64, NV, 32, 1)
3191 FIELD(TBFLAG_A64, NV1, 33, 1)
3192 FIELD(TBFLAG_A64, NV2, 34, 1)
3193 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3194 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3195 /* Set if FEAT_NV2 RAM accesses are big-endian */
3196 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3197 
3198 /*
3199  * Helpers for using the above. Note that only the A64 accessors use
3200  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3201  * word either is or might be 32 bits only.
3202  */
3203 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3204     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3205 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3206     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3207 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3208     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3209 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3210     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3211 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3212     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3213 
3214 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3215 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3216 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3217 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3218 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3219 
3220 /**
3221  * sve_vq
3222  * @env: the cpu context
3223  *
3224  * Return the VL cached within env->hflags, in units of quadwords.
3225  */
3226 static inline int sve_vq(CPUARMState *env)
3227 {
3228     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3229 }
3230 
3231 /**
3232  * sme_vq
3233  * @env: the cpu context
3234  *
3235  * Return the SVL cached within env->hflags, in units of quadwords.
3236  */
3237 static inline int sme_vq(CPUARMState *env)
3238 {
3239     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3240 }
3241 
3242 static inline bool bswap_code(bool sctlr_b)
3243 {
3244 #ifdef CONFIG_USER_ONLY
3245     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3246      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3247      * would also end up as a mixed-endian mode with BE code, LE data.
3248      */
3249     return TARGET_BIG_ENDIAN ^ sctlr_b;
3250 #else
3251     /* All code access in ARM is little endian, and there are no loaders
3252      * doing swaps that need to be reversed
3253      */
3254     return 0;
3255 #endif
3256 }
3257 
3258 #ifdef CONFIG_USER_ONLY
3259 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3260 {
3261     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3262 }
3263 #endif
3264 
3265 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3266                           uint64_t *cs_base, uint32_t *flags);
3267 
3268 enum {
3269     QEMU_PSCI_CONDUIT_DISABLED = 0,
3270     QEMU_PSCI_CONDUIT_SMC = 1,
3271     QEMU_PSCI_CONDUIT_HVC = 2,
3272 };
3273 
3274 #ifndef CONFIG_USER_ONLY
3275 /* Return the address space index to use for a memory access */
3276 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3277 {
3278     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3279 }
3280 
3281 /* Return the AddressSpace to use for a memory access
3282  * (which depends on whether the access is S or NS, and whether
3283  * the board gave us a separate AddressSpace for S accesses).
3284  */
3285 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3286 {
3287     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3288 }
3289 #endif
3290 
3291 /**
3292  * arm_register_pre_el_change_hook:
3293  * Register a hook function which will be called immediately before this
3294  * CPU changes exception level or mode. The hook function will be
3295  * passed a pointer to the ARMCPU and the opaque data pointer passed
3296  * to this function when the hook was registered.
3297  *
3298  * Note that if a pre-change hook is called, any registered post-change hooks
3299  * are guaranteed to subsequently be called.
3300  */
3301 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3302                                  void *opaque);
3303 /**
3304  * arm_register_el_change_hook:
3305  * Register a hook function which will be called immediately after this
3306  * CPU changes exception level or mode. The hook function will be
3307  * passed a pointer to the ARMCPU and the opaque data pointer passed
3308  * to this function when the hook was registered.
3309  *
3310  * Note that any registered hooks registered here are guaranteed to be called
3311  * if pre-change hooks have been.
3312  */
3313 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3314         *opaque);
3315 
3316 /**
3317  * arm_rebuild_hflags:
3318  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3319  */
3320 void arm_rebuild_hflags(CPUARMState *env);
3321 
3322 /**
3323  * aa32_vfp_dreg:
3324  * Return a pointer to the Dn register within env in 32-bit mode.
3325  */
3326 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3327 {
3328     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3329 }
3330 
3331 /**
3332  * aa32_vfp_qreg:
3333  * Return a pointer to the Qn register within env in 32-bit mode.
3334  */
3335 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3336 {
3337     return &env->vfp.zregs[regno].d[0];
3338 }
3339 
3340 /**
3341  * aa64_vfp_qreg:
3342  * Return a pointer to the Qn register within env in 64-bit mode.
3343  */
3344 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3345 {
3346     return &env->vfp.zregs[regno].d[0];
3347 }
3348 
3349 /* Shared between translate-sve.c and sve_helper.c.  */
3350 extern const uint64_t pred_esz_masks[5];
3351 
3352 /*
3353  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3354  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3355  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3356  */
3357 #define PAGE_BTI            PAGE_TARGET_1
3358 #define PAGE_MTE            PAGE_TARGET_2
3359 #define PAGE_TARGET_STICKY  PAGE_MTE
3360 
3361 /* We associate one allocation tag per 16 bytes, the minimum.  */
3362 #define LOG2_TAG_GRANULE 4
3363 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3364 
3365 #ifdef CONFIG_USER_ONLY
3366 
3367 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3368 
3369 #ifdef TARGET_TAGGED_ADDRESSES
3370 /**
3371  * cpu_untagged_addr:
3372  * @cs: CPU context
3373  * @x: tagged address
3374  *
3375  * Remove any address tag from @x.  This is explicitly related to the
3376  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3377  *
3378  * There should be a better place to put this, but we need this in
3379  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3380  */
3381 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3382 {
3383     CPUARMState *env = cpu_env(cs);
3384     if (env->tagged_addr_enable) {
3385         /*
3386          * TBI is enabled for userspace but not kernelspace addresses.
3387          * Only clear the tag if bit 55 is clear.
3388          */
3389         x &= sextract64(x, 0, 56);
3390     }
3391     return x;
3392 }
3393 #endif /* TARGET_TAGGED_ADDRESSES */
3394 #endif /* CONFIG_USER_ONLY */
3395 
3396 #endif
3397