xref: /qemu/target/arm/cpu.c (revision e4a8e093dc74be049f4829831dce76e5edab0003)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/exec-all.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 #endif /* CONFIG_TCG */
125 
126 /*
127  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
128  * IRQ without Superpriority. Moreover, if the GIC is configured so that
129  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
130  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
131  * unconditionally.
132  */
133 static bool arm_cpu_has_work(CPUState *cs)
134 {
135     ARMCPU *cpu = ARM_CPU(cs);
136 
137     return (cpu->power_state != PSCI_OFF)
138         && cs->interrupt_request &
139         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
140          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
141          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
142          | CPU_INTERRUPT_EXITTB);
143 }
144 
145 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
146 {
147     return arm_env_mmu_index(cpu_env(cs));
148 }
149 
150 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
151                                  void *opaque)
152 {
153     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
154 
155     entry->hook = hook;
156     entry->opaque = opaque;
157 
158     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
159 }
160 
161 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
162                                  void *opaque)
163 {
164     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
165 
166     entry->hook = hook;
167     entry->opaque = opaque;
168 
169     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
170 }
171 
172 /*
173  * Set the float_status behaviour to match the Arm defaults:
174  *  * tininess-before-rounding
175  *  * 2-input NaN propagation prefers SNaN over QNaN, and then
176  *    operand A over operand B (see FPProcessNaNs() pseudocode)
177  *  * 3-input NaN propagation prefers SNaN over QNaN, and then
178  *    operand C over A over B (see FPProcessNaNs3() pseudocode,
179  *    but note that for QEMU muladd is a * b + c, whereas for
180  *    the pseudocode function the arguments are in the order c, a, b.
181  *  * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
182  *    and the input NaN if it is signalling
183  *  * Default NaN has sign bit clear, msb frac bit set
184  */
185 static void arm_set_default_fp_behaviours(float_status *s)
186 {
187     set_float_detect_tininess(float_tininess_before_rounding, s);
188     set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
189     set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
190     set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
191     set_float_default_nan_pattern(0b01000000, s);
192 }
193 
194 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
195 {
196     /* Reset a single ARMCPRegInfo register */
197     ARMCPRegInfo *ri = value;
198     ARMCPU *cpu = opaque;
199 
200     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
201         return;
202     }
203 
204     if (ri->resetfn) {
205         ri->resetfn(&cpu->env, ri);
206         return;
207     }
208 
209     /* A zero offset is never possible as it would be regs[0]
210      * so we use it to indicate that reset is being handled elsewhere.
211      * This is basically only used for fields in non-core coprocessors
212      * (like the pxa2xx ones).
213      */
214     if (!ri->fieldoffset) {
215         return;
216     }
217 
218     if (cpreg_field_is_64bit(ri)) {
219         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
220     } else {
221         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
222     }
223 }
224 
225 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
226 {
227     /* Purely an assertion check: we've already done reset once,
228      * so now check that running the reset for the cpreg doesn't
229      * change its value. This traps bugs where two different cpregs
230      * both try to reset the same state field but to different values.
231      */
232     ARMCPRegInfo *ri = value;
233     ARMCPU *cpu = opaque;
234     uint64_t oldvalue, newvalue;
235 
236     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
237         return;
238     }
239 
240     oldvalue = read_raw_cp_reg(&cpu->env, ri);
241     cp_reg_reset(key, value, opaque);
242     newvalue = read_raw_cp_reg(&cpu->env, ri);
243     assert(oldvalue == newvalue);
244 }
245 
246 static void arm_cpu_reset_hold(Object *obj, ResetType type)
247 {
248     CPUState *cs = CPU(obj);
249     ARMCPU *cpu = ARM_CPU(cs);
250     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
251     CPUARMState *env = &cpu->env;
252 
253     if (acc->parent_phases.hold) {
254         acc->parent_phases.hold(obj, type);
255     }
256 
257     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
258 
259     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
260     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
261 
262     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
263     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
264     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
265     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
266 
267     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
268 
269     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
270         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
271     }
272 
273     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
274         /* 64 bit CPUs always start in 64 bit mode */
275         env->aarch64 = true;
276 #if defined(CONFIG_USER_ONLY)
277         env->pstate = PSTATE_MODE_EL0t;
278         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
279         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
280         /* Enable all PAC keys.  */
281         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
282                                   SCTLR_EnDA | SCTLR_EnDB);
283         /* Trap on btype=3 for PACIxSP. */
284         env->cp15.sctlr_el[1] |= SCTLR_BT0;
285         /* Trap on implementation defined registers. */
286         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
287             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
288         }
289         /* and to the FP/Neon instructions */
290         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
291                                          CPACR_EL1, FPEN, 3);
292         /* and to the SVE instructions, with default vector length */
293         if (cpu_isar_feature(aa64_sve, cpu)) {
294             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
295                                              CPACR_EL1, ZEN, 3);
296             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
297         }
298         /* and for SME instructions, with default vector length, and TPIDR2 */
299         if (cpu_isar_feature(aa64_sme, cpu)) {
300             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
301             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
302                                              CPACR_EL1, SMEN, 3);
303             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
304             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
305                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
306                                                  SMCR, FA64, 1);
307             }
308         }
309         /*
310          * Enable 48-bit address space (TODO: take reserved_va into account).
311          * Enable TBI0 but not TBI1.
312          * Note that this must match useronly_clean_ptr.
313          */
314         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
315 
316         /* Enable MTE */
317         if (cpu_isar_feature(aa64_mte, cpu)) {
318             /* Enable tag access, but leave TCF0 as No Effect (0). */
319             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
320             /*
321              * Exclude all tags, so that tag 0 is always used.
322              * This corresponds to Linux current->thread.gcr_incl = 0.
323              *
324              * Set RRND, so that helper_irg() will generate a seed later.
325              * Here in cpu_reset(), the crypto subsystem has not yet been
326              * initialized.
327              */
328             env->cp15.gcr_el1 = 0x1ffff;
329         }
330         /*
331          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
332          * This is not yet exposed from the Linux kernel in any way.
333          */
334         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
335         /* Disable access to Debug Communication Channel (DCC). */
336         env->cp15.mdscr_el1 |= 1 << 12;
337         /* Enable FEAT_MOPS */
338         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
339 #else
340         /* Reset into the highest available EL */
341         if (arm_feature(env, ARM_FEATURE_EL3)) {
342             env->pstate = PSTATE_MODE_EL3h;
343         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
344             env->pstate = PSTATE_MODE_EL2h;
345         } else {
346             env->pstate = PSTATE_MODE_EL1h;
347         }
348 
349         /* Sample rvbar at reset.  */
350         env->cp15.rvbar = cpu->rvbar_prop;
351         env->pc = env->cp15.rvbar;
352 #endif
353     } else {
354 #if defined(CONFIG_USER_ONLY)
355         /* Userspace expects access to cp10 and cp11 for FP/Neon */
356         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
357                                          CPACR, CP10, 3);
358         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
359                                          CPACR, CP11, 3);
360 #endif
361         if (arm_feature(env, ARM_FEATURE_V8)) {
362             env->cp15.rvbar = cpu->rvbar_prop;
363             env->regs[15] = cpu->rvbar_prop;
364         }
365     }
366 
367 #if defined(CONFIG_USER_ONLY)
368     env->uncached_cpsr = ARM_CPU_MODE_USR;
369     /* For user mode we must enable access to coprocessors */
370     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
371     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
372         env->cp15.c15_cpar = 3;
373     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
374         env->cp15.c15_cpar = 1;
375     }
376 #else
377 
378     /*
379      * If the highest available EL is EL2, AArch32 will start in Hyp
380      * mode; otherwise it starts in SVC. Note that if we start in
381      * AArch64 then these values in the uncached_cpsr will be ignored.
382      */
383     if (arm_feature(env, ARM_FEATURE_EL2) &&
384         !arm_feature(env, ARM_FEATURE_EL3)) {
385         env->uncached_cpsr = ARM_CPU_MODE_HYP;
386     } else {
387         env->uncached_cpsr = ARM_CPU_MODE_SVC;
388     }
389     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
390 
391     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
392      * executing as AArch32 then check if highvecs are enabled and
393      * adjust the PC accordingly.
394      */
395     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
396         env->regs[15] = 0xFFFF0000;
397     }
398 
399     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
400 #endif
401 
402     if (arm_feature(env, ARM_FEATURE_M)) {
403 #ifndef CONFIG_USER_ONLY
404         uint32_t initial_msp; /* Loaded from 0x0 */
405         uint32_t initial_pc; /* Loaded from 0x4 */
406         uint8_t *rom;
407         uint32_t vecbase;
408 #endif
409 
410         if (cpu_isar_feature(aa32_lob, cpu)) {
411             /*
412              * LTPSIZE is constant 4 if MVE not implemented, and resets
413              * to an UNKNOWN value if MVE is implemented. We choose to
414              * always reset to 4.
415              */
416             env->v7m.ltpsize = 4;
417             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
418             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
419             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
420         }
421 
422         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
423             env->v7m.secure = true;
424         } else {
425             /* This bit resets to 0 if security is supported, but 1 if
426              * it is not. The bit is not present in v7M, but we set it
427              * here so we can avoid having to make checks on it conditional
428              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
429              */
430             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
431             /*
432              * Set NSACR to indicate "NS access permitted to everything";
433              * this avoids having to have all the tests of it being
434              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
435              * v8.1M the guest-visible value of NSACR in a CPU without the
436              * Security Extension is 0xcff.
437              */
438             env->v7m.nsacr = 0xcff;
439         }
440 
441         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
442          * that it resets to 1, so QEMU always does that rather than making
443          * it dependent on CPU model. In v8M it is RES1.
444          */
445         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
446         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
447         if (arm_feature(env, ARM_FEATURE_V8)) {
448             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
449             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
450             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
451         }
452         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
453             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
454             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
455         }
456 
457         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
458             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
459             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
460                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
461         }
462 
463 #ifndef CONFIG_USER_ONLY
464         /* Unlike A/R profile, M profile defines the reset LR value */
465         env->regs[14] = 0xffffffff;
466 
467         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
468         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
469 
470         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
471         vecbase = env->v7m.vecbase[env->v7m.secure];
472         rom = rom_ptr_for_as(cs->as, vecbase, 8);
473         if (rom) {
474             /* Address zero is covered by ROM which hasn't yet been
475              * copied into physical memory.
476              */
477             initial_msp = ldl_p(rom);
478             initial_pc = ldl_p(rom + 4);
479         } else {
480             /* Address zero not covered by a ROM blob, or the ROM blob
481              * is in non-modifiable memory and this is a second reset after
482              * it got copied into memory. In the latter case, rom_ptr
483              * will return a NULL pointer and we should use ldl_phys instead.
484              */
485             initial_msp = ldl_phys(cs->as, vecbase);
486             initial_pc = ldl_phys(cs->as, vecbase + 4);
487         }
488 
489         qemu_log_mask(CPU_LOG_INT,
490                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
491                       initial_msp, initial_pc);
492 
493         env->regs[13] = initial_msp & 0xFFFFFFFC;
494         env->regs[15] = initial_pc & ~1;
495         env->thumb = initial_pc & 1;
496 #else
497         /*
498          * For user mode we run non-secure and with access to the FPU.
499          * The FPU context is active (ie does not need further setup)
500          * and is owned by non-secure.
501          */
502         env->v7m.secure = false;
503         env->v7m.nsacr = 0xcff;
504         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
505         env->v7m.fpccr[M_REG_S] &=
506             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
507         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
508 #endif
509     }
510 
511     /* M profile requires that reset clears the exclusive monitor;
512      * A profile does not, but clearing it makes more sense than having it
513      * set with an exclusive access on address zero.
514      */
515     arm_clear_exclusive(env);
516 
517     if (arm_feature(env, ARM_FEATURE_PMSA)) {
518         if (cpu->pmsav7_dregion > 0) {
519             if (arm_feature(env, ARM_FEATURE_V8)) {
520                 memset(env->pmsav8.rbar[M_REG_NS], 0,
521                        sizeof(*env->pmsav8.rbar[M_REG_NS])
522                        * cpu->pmsav7_dregion);
523                 memset(env->pmsav8.rlar[M_REG_NS], 0,
524                        sizeof(*env->pmsav8.rlar[M_REG_NS])
525                        * cpu->pmsav7_dregion);
526                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
527                     memset(env->pmsav8.rbar[M_REG_S], 0,
528                            sizeof(*env->pmsav8.rbar[M_REG_S])
529                            * cpu->pmsav7_dregion);
530                     memset(env->pmsav8.rlar[M_REG_S], 0,
531                            sizeof(*env->pmsav8.rlar[M_REG_S])
532                            * cpu->pmsav7_dregion);
533                 }
534             } else if (arm_feature(env, ARM_FEATURE_V7)) {
535                 memset(env->pmsav7.drbar, 0,
536                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
537                 memset(env->pmsav7.drsr, 0,
538                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
539                 memset(env->pmsav7.dracr, 0,
540                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
541             }
542         }
543 
544         if (cpu->pmsav8r_hdregion > 0) {
545             memset(env->pmsav8.hprbar, 0,
546                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
547             memset(env->pmsav8.hprlar, 0,
548                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
549         }
550 
551         env->pmsav7.rnr[M_REG_NS] = 0;
552         env->pmsav7.rnr[M_REG_S] = 0;
553         env->pmsav8.mair0[M_REG_NS] = 0;
554         env->pmsav8.mair0[M_REG_S] = 0;
555         env->pmsav8.mair1[M_REG_NS] = 0;
556         env->pmsav8.mair1[M_REG_S] = 0;
557     }
558 
559     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
560         if (cpu->sau_sregion > 0) {
561             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
562             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
563         }
564         env->sau.rnr = 0;
565         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
566          * the Cortex-M33 does.
567          */
568         env->sau.ctrl = 0;
569     }
570 
571     set_flush_to_zero(1, &env->vfp.standard_fp_status);
572     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
573     set_default_nan_mode(1, &env->vfp.standard_fp_status);
574     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
575     arm_set_default_fp_behaviours(&env->vfp.fp_status);
576     arm_set_default_fp_behaviours(&env->vfp.standard_fp_status);
577     arm_set_default_fp_behaviours(&env->vfp.fp_status_f16);
578     arm_set_default_fp_behaviours(&env->vfp.standard_fp_status_f16);
579 
580 #ifndef CONFIG_USER_ONLY
581     if (kvm_enabled()) {
582         kvm_arm_reset_vcpu(cpu);
583     }
584 #endif
585 
586     if (tcg_enabled()) {
587         hw_breakpoint_update_all(cpu);
588         hw_watchpoint_update_all(cpu);
589 
590         arm_rebuild_hflags(env);
591     }
592 }
593 
594 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
595 {
596     ARMCPU *cpu = ARM_CPU(cpustate);
597     CPUARMState *env = &cpu->env;
598     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
599     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
600 
601     /*
602      * Check we have the EL we're aiming for. If that is the
603      * highest implemented EL, then cpu_reset has already done
604      * all the work.
605      */
606     switch (target_el) {
607     case 3:
608         assert(have_el3);
609         return;
610     case 2:
611         assert(have_el2);
612         if (!have_el3) {
613             return;
614         }
615         break;
616     case 1:
617         if (!have_el3 && !have_el2) {
618             return;
619         }
620         break;
621     default:
622         g_assert_not_reached();
623     }
624 
625     if (have_el3) {
626         /*
627          * Set the EL3 state so code can run at EL2. This should match
628          * the requirements set by Linux in its booting spec.
629          */
630         if (env->aarch64) {
631             env->cp15.scr_el3 |= SCR_RW;
632             if (cpu_isar_feature(aa64_pauth, cpu)) {
633                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
634             }
635             if (cpu_isar_feature(aa64_mte, cpu)) {
636                 env->cp15.scr_el3 |= SCR_ATA;
637             }
638             if (cpu_isar_feature(aa64_sve, cpu)) {
639                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
640                 env->vfp.zcr_el[3] = 0xf;
641             }
642             if (cpu_isar_feature(aa64_sme, cpu)) {
643                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
644                 env->cp15.scr_el3 |= SCR_ENTP2;
645                 env->vfp.smcr_el[3] = 0xf;
646             }
647             if (cpu_isar_feature(aa64_hcx, cpu)) {
648                 env->cp15.scr_el3 |= SCR_HXEN;
649             }
650             if (cpu_isar_feature(aa64_fgt, cpu)) {
651                 env->cp15.scr_el3 |= SCR_FGTEN;
652             }
653         }
654 
655         if (target_el == 2) {
656             /* If the guest is at EL2 then Linux expects the HVC insn to work */
657             env->cp15.scr_el3 |= SCR_HCE;
658         }
659 
660         /* Put CPU into non-secure state */
661         env->cp15.scr_el3 |= SCR_NS;
662         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
663         env->cp15.nsacr |= 3 << 10;
664     }
665 
666     if (have_el2 && target_el < 2) {
667         /* Set EL2 state so code can run at EL1. */
668         if (env->aarch64) {
669             env->cp15.hcr_el2 |= HCR_RW;
670         }
671     }
672 
673     /* Set the CPU to the desired state */
674     if (env->aarch64) {
675         env->pstate = aarch64_pstate_mode(target_el, true);
676     } else {
677         static const uint32_t mode_for_el[] = {
678             0,
679             ARM_CPU_MODE_SVC,
680             ARM_CPU_MODE_HYP,
681             ARM_CPU_MODE_SVC,
682         };
683 
684         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
685     }
686 }
687 
688 
689 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
690 
691 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
692                                      unsigned int target_el,
693                                      unsigned int cur_el, bool secure,
694                                      uint64_t hcr_el2)
695 {
696     CPUARMState *env = cpu_env(cs);
697     bool pstate_unmasked;
698     bool unmasked = false;
699     bool allIntMask = false;
700 
701     /*
702      * Don't take exceptions if they target a lower EL.
703      * This check should catch any exceptions that would not be taken
704      * but left pending.
705      */
706     if (cur_el > target_el) {
707         return false;
708     }
709 
710     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
711         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
712         allIntMask = env->pstate & PSTATE_ALLINT ||
713                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
714                       (env->pstate & PSTATE_SP));
715     }
716 
717     switch (excp_idx) {
718     case EXCP_NMI:
719         pstate_unmasked = !allIntMask;
720         break;
721 
722     case EXCP_VINMI:
723         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
724             /* VINMIs are only taken when hypervized.  */
725             return false;
726         }
727         return !allIntMask;
728     case EXCP_VFNMI:
729         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
730             /* VFNMIs are only taken when hypervized.  */
731             return false;
732         }
733         return !allIntMask;
734     case EXCP_FIQ:
735         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
736         break;
737 
738     case EXCP_IRQ:
739         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
740         break;
741 
742     case EXCP_VFIQ:
743         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
744             /* VFIQs are only taken when hypervized.  */
745             return false;
746         }
747         return !(env->daif & PSTATE_F) && (!allIntMask);
748     case EXCP_VIRQ:
749         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
750             /* VIRQs are only taken when hypervized.  */
751             return false;
752         }
753         return !(env->daif & PSTATE_I) && (!allIntMask);
754     case EXCP_VSERR:
755         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
756             /* VIRQs are only taken when hypervized.  */
757             return false;
758         }
759         return !(env->daif & PSTATE_A);
760     default:
761         g_assert_not_reached();
762     }
763 
764     /*
765      * Use the target EL, current execution state and SCR/HCR settings to
766      * determine whether the corresponding CPSR bit is used to mask the
767      * interrupt.
768      */
769     if ((target_el > cur_el) && (target_el != 1)) {
770         /* Exceptions targeting a higher EL may not be maskable */
771         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
772             switch (target_el) {
773             case 2:
774                 /*
775                  * According to ARM DDI 0487H.a, an interrupt can be masked
776                  * when HCR_E2H and HCR_TGE are both set regardless of the
777                  * current Security state. Note that we need to revisit this
778                  * part again once we need to support NMI.
779                  */
780                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
781                         unmasked = true;
782                 }
783                 break;
784             case 3:
785                 /* Interrupt cannot be masked when the target EL is 3 */
786                 unmasked = true;
787                 break;
788             default:
789                 g_assert_not_reached();
790             }
791         } else {
792             /*
793              * The old 32-bit-only environment has a more complicated
794              * masking setup. HCR and SCR bits not only affect interrupt
795              * routing but also change the behaviour of masking.
796              */
797             bool hcr, scr;
798 
799             switch (excp_idx) {
800             case EXCP_FIQ:
801                 /*
802                  * If FIQs are routed to EL3 or EL2 then there are cases where
803                  * we override the CPSR.F in determining if the exception is
804                  * masked or not. If neither of these are set then we fall back
805                  * to the CPSR.F setting otherwise we further assess the state
806                  * below.
807                  */
808                 hcr = hcr_el2 & HCR_FMO;
809                 scr = (env->cp15.scr_el3 & SCR_FIQ);
810 
811                 /*
812                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
813                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
814                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
815                  * when non-secure but only when FIQs are only routed to EL3.
816                  */
817                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
818                 break;
819             case EXCP_IRQ:
820                 /*
821                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
822                  * we may override the CPSR.I masking when in non-secure state.
823                  * The SCR.IRQ setting has already been taken into consideration
824                  * when setting the target EL, so it does not have a further
825                  * affect here.
826                  */
827                 hcr = hcr_el2 & HCR_IMO;
828                 scr = false;
829                 break;
830             default:
831                 g_assert_not_reached();
832             }
833 
834             if ((scr || hcr) && !secure) {
835                 unmasked = true;
836             }
837         }
838     }
839 
840     /*
841      * The PSTATE bits only mask the interrupt if we have not overridden the
842      * ability above.
843      */
844     return unmasked || pstate_unmasked;
845 }
846 
847 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
848 {
849     CPUClass *cc = CPU_GET_CLASS(cs);
850     CPUARMState *env = cpu_env(cs);
851     uint32_t cur_el = arm_current_el(env);
852     bool secure = arm_is_secure(env);
853     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
854     uint32_t target_el;
855     uint32_t excp_idx;
856 
857     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
858 
859     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
860         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
861         if (interrupt_request & CPU_INTERRUPT_NMI) {
862             excp_idx = EXCP_NMI;
863             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
864             if (arm_excp_unmasked(cs, excp_idx, target_el,
865                                   cur_el, secure, hcr_el2)) {
866                 goto found;
867             }
868         }
869         if (interrupt_request & CPU_INTERRUPT_VINMI) {
870             excp_idx = EXCP_VINMI;
871             target_el = 1;
872             if (arm_excp_unmasked(cs, excp_idx, target_el,
873                                   cur_el, secure, hcr_el2)) {
874                 goto found;
875             }
876         }
877         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
878             excp_idx = EXCP_VFNMI;
879             target_el = 1;
880             if (arm_excp_unmasked(cs, excp_idx, target_el,
881                                   cur_el, secure, hcr_el2)) {
882                 goto found;
883             }
884         }
885     } else {
886         /*
887          * NMI disabled: interrupts with superpriority are handled
888          * as if they didn't have it
889          */
890         if (interrupt_request & CPU_INTERRUPT_NMI) {
891             interrupt_request |= CPU_INTERRUPT_HARD;
892         }
893         if (interrupt_request & CPU_INTERRUPT_VINMI) {
894             interrupt_request |= CPU_INTERRUPT_VIRQ;
895         }
896         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
897             interrupt_request |= CPU_INTERRUPT_VFIQ;
898         }
899     }
900 
901     if (interrupt_request & CPU_INTERRUPT_FIQ) {
902         excp_idx = EXCP_FIQ;
903         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
904         if (arm_excp_unmasked(cs, excp_idx, target_el,
905                               cur_el, secure, hcr_el2)) {
906             goto found;
907         }
908     }
909     if (interrupt_request & CPU_INTERRUPT_HARD) {
910         excp_idx = EXCP_IRQ;
911         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
912         if (arm_excp_unmasked(cs, excp_idx, target_el,
913                               cur_el, secure, hcr_el2)) {
914             goto found;
915         }
916     }
917     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
918         excp_idx = EXCP_VIRQ;
919         target_el = 1;
920         if (arm_excp_unmasked(cs, excp_idx, target_el,
921                               cur_el, secure, hcr_el2)) {
922             goto found;
923         }
924     }
925     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
926         excp_idx = EXCP_VFIQ;
927         target_el = 1;
928         if (arm_excp_unmasked(cs, excp_idx, target_el,
929                               cur_el, secure, hcr_el2)) {
930             goto found;
931         }
932     }
933     if (interrupt_request & CPU_INTERRUPT_VSERR) {
934         excp_idx = EXCP_VSERR;
935         target_el = 1;
936         if (arm_excp_unmasked(cs, excp_idx, target_el,
937                               cur_el, secure, hcr_el2)) {
938             /* Taking a virtual abort clears HCR_EL2.VSE */
939             env->cp15.hcr_el2 &= ~HCR_VSE;
940             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
941             goto found;
942         }
943     }
944     return false;
945 
946  found:
947     cs->exception_index = excp_idx;
948     env->exception.target_el = target_el;
949     cc->tcg_ops->do_interrupt(cs);
950     return true;
951 }
952 
953 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
954 
955 void arm_cpu_update_virq(ARMCPU *cpu)
956 {
957     /*
958      * Update the interrupt level for VIRQ, which is the logical OR of
959      * the HCR_EL2.VI bit and the input line level from the GIC.
960      */
961     CPUARMState *env = &cpu->env;
962     CPUState *cs = CPU(cpu);
963 
964     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
965         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
966         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
967 
968     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
969         if (new_state) {
970             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
971         } else {
972             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
973         }
974     }
975 }
976 
977 void arm_cpu_update_vfiq(ARMCPU *cpu)
978 {
979     /*
980      * Update the interrupt level for VFIQ, which is the logical OR of
981      * the HCR_EL2.VF bit and the input line level from the GIC.
982      */
983     CPUARMState *env = &cpu->env;
984     CPUState *cs = CPU(cpu);
985 
986     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
987         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
988         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
989 
990     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
991         if (new_state) {
992             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
993         } else {
994             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
995         }
996     }
997 }
998 
999 void arm_cpu_update_vinmi(ARMCPU *cpu)
1000 {
1001     /*
1002      * Update the interrupt level for VINMI, which is the logical OR of
1003      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
1004      */
1005     CPUARMState *env = &cpu->env;
1006     CPUState *cs = CPU(cpu);
1007 
1008     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
1009                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
1010         (env->irq_line_state & CPU_INTERRUPT_VINMI);
1011 
1012     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
1013         if (new_state) {
1014             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1015         } else {
1016             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1017         }
1018     }
1019 }
1020 
1021 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1022 {
1023     /*
1024      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1025      */
1026     CPUARMState *env = &cpu->env;
1027     CPUState *cs = CPU(cpu);
1028 
1029     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1030                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1031 
1032     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1033         if (new_state) {
1034             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1035         } else {
1036             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1037         }
1038     }
1039 }
1040 
1041 void arm_cpu_update_vserr(ARMCPU *cpu)
1042 {
1043     /*
1044      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1045      */
1046     CPUARMState *env = &cpu->env;
1047     CPUState *cs = CPU(cpu);
1048 
1049     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1050 
1051     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1052         if (new_state) {
1053             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1054         } else {
1055             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1056         }
1057     }
1058 }
1059 
1060 #ifndef CONFIG_USER_ONLY
1061 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1062 {
1063     ARMCPU *cpu = opaque;
1064     CPUARMState *env = &cpu->env;
1065     CPUState *cs = CPU(cpu);
1066     static const int mask[] = {
1067         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1068         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1069         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1070         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1071         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1072         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1073     };
1074 
1075     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1076         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1077         /*
1078          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1079          * have EL2 support we don't care. (Unless the guest is doing something
1080          * silly this will only be calls saying "level is still 0".)
1081          */
1082         return;
1083     }
1084 
1085     if (level) {
1086         env->irq_line_state |= mask[irq];
1087     } else {
1088         env->irq_line_state &= ~mask[irq];
1089     }
1090 
1091     switch (irq) {
1092     case ARM_CPU_VIRQ:
1093         arm_cpu_update_virq(cpu);
1094         break;
1095     case ARM_CPU_VFIQ:
1096         arm_cpu_update_vfiq(cpu);
1097         break;
1098     case ARM_CPU_VINMI:
1099         arm_cpu_update_vinmi(cpu);
1100         break;
1101     case ARM_CPU_IRQ:
1102     case ARM_CPU_FIQ:
1103     case ARM_CPU_NMI:
1104         if (level) {
1105             cpu_interrupt(cs, mask[irq]);
1106         } else {
1107             cpu_reset_interrupt(cs, mask[irq]);
1108         }
1109         break;
1110     default:
1111         g_assert_not_reached();
1112     }
1113 }
1114 
1115 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1116 {
1117 #ifdef CONFIG_KVM
1118     ARMCPU *cpu = opaque;
1119     CPUARMState *env = &cpu->env;
1120     CPUState *cs = CPU(cpu);
1121     uint32_t linestate_bit;
1122     int irq_id;
1123 
1124     switch (irq) {
1125     case ARM_CPU_IRQ:
1126         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1127         linestate_bit = CPU_INTERRUPT_HARD;
1128         break;
1129     case ARM_CPU_FIQ:
1130         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1131         linestate_bit = CPU_INTERRUPT_FIQ;
1132         break;
1133     default:
1134         g_assert_not_reached();
1135     }
1136 
1137     if (level) {
1138         env->irq_line_state |= linestate_bit;
1139     } else {
1140         env->irq_line_state &= ~linestate_bit;
1141     }
1142     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1143 #endif
1144 }
1145 
1146 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1147 {
1148     ARMCPU *cpu = ARM_CPU(cs);
1149     CPUARMState *env = &cpu->env;
1150 
1151     cpu_synchronize_state(cs);
1152     return arm_cpu_data_is_big_endian(env);
1153 }
1154 
1155 #ifdef CONFIG_TCG
1156 bool arm_cpu_exec_halt(CPUState *cs)
1157 {
1158     bool leave_halt = cpu_has_work(cs);
1159 
1160     if (leave_halt) {
1161         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1162         ARMCPU *cpu = ARM_CPU(cs);
1163         if (cpu->wfxt_timer) {
1164             timer_del(cpu->wfxt_timer);
1165         }
1166     }
1167     return leave_halt;
1168 }
1169 #endif
1170 
1171 static void arm_wfxt_timer_cb(void *opaque)
1172 {
1173     ARMCPU *cpu = opaque;
1174     CPUState *cs = CPU(cpu);
1175 
1176     /*
1177      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1178      * to return true (so we will come out of halt even with no other
1179      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1180      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1181      */
1182     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1183 }
1184 #endif
1185 
1186 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1187 {
1188     ARMCPU *ac = ARM_CPU(cpu);
1189     CPUARMState *env = &ac->env;
1190     bool sctlr_b;
1191 
1192     if (is_a64(env)) {
1193         info->cap_arch = CS_ARCH_ARM64;
1194         info->cap_insn_unit = 4;
1195         info->cap_insn_split = 4;
1196     } else {
1197         int cap_mode;
1198         if (env->thumb) {
1199             info->cap_insn_unit = 2;
1200             info->cap_insn_split = 4;
1201             cap_mode = CS_MODE_THUMB;
1202         } else {
1203             info->cap_insn_unit = 4;
1204             info->cap_insn_split = 4;
1205             cap_mode = CS_MODE_ARM;
1206         }
1207         if (arm_feature(env, ARM_FEATURE_V8)) {
1208             cap_mode |= CS_MODE_V8;
1209         }
1210         if (arm_feature(env, ARM_FEATURE_M)) {
1211             cap_mode |= CS_MODE_MCLASS;
1212         }
1213         info->cap_arch = CS_ARCH_ARM;
1214         info->cap_mode = cap_mode;
1215     }
1216 
1217     sctlr_b = arm_sctlr_b(env);
1218     if (bswap_code(sctlr_b)) {
1219 #if TARGET_BIG_ENDIAN
1220         info->endian = BFD_ENDIAN_LITTLE;
1221 #else
1222         info->endian = BFD_ENDIAN_BIG;
1223 #endif
1224     }
1225     info->flags &= ~INSN_ARM_BE32;
1226 #ifndef CONFIG_USER_ONLY
1227     if (sctlr_b) {
1228         info->flags |= INSN_ARM_BE32;
1229     }
1230 #endif
1231 }
1232 
1233 #ifdef TARGET_AARCH64
1234 
1235 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1236 {
1237     ARMCPU *cpu = ARM_CPU(cs);
1238     CPUARMState *env = &cpu->env;
1239     uint32_t psr = pstate_read(env);
1240     int i, j;
1241     int el = arm_current_el(env);
1242     uint64_t hcr = arm_hcr_el2_eff(env);
1243     const char *ns_status;
1244     bool sve;
1245 
1246     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1247     for (i = 0; i < 32; i++) {
1248         if (i == 31) {
1249             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1250         } else {
1251             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1252                          (i + 2) % 3 ? " " : "\n");
1253         }
1254     }
1255 
1256     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1257         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1258     } else {
1259         ns_status = "";
1260     }
1261     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1262                  psr,
1263                  psr & PSTATE_N ? 'N' : '-',
1264                  psr & PSTATE_Z ? 'Z' : '-',
1265                  psr & PSTATE_C ? 'C' : '-',
1266                  psr & PSTATE_V ? 'V' : '-',
1267                  ns_status,
1268                  el,
1269                  psr & PSTATE_SP ? 'h' : 't');
1270 
1271     if (cpu_isar_feature(aa64_sme, cpu)) {
1272         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1273                      env->svcr,
1274                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1275                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1276     }
1277     if (cpu_isar_feature(aa64_bti, cpu)) {
1278         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1279     }
1280     qemu_fprintf(f, "%s%s%s",
1281                  (hcr & HCR_NV) ? " NV" : "",
1282                  (hcr & HCR_NV1) ? " NV1" : "",
1283                  (hcr & HCR_NV2) ? " NV2" : "");
1284     if (!(flags & CPU_DUMP_FPU)) {
1285         qemu_fprintf(f, "\n");
1286         return;
1287     }
1288     if (fp_exception_el(env, el) != 0) {
1289         qemu_fprintf(f, "    FPU disabled\n");
1290         return;
1291     }
1292     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1293                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1294 
1295     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1296         sve = sme_exception_el(env, el) == 0;
1297     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1298         sve = sve_exception_el(env, el) == 0;
1299     } else {
1300         sve = false;
1301     }
1302 
1303     if (sve) {
1304         int zcr_len = sve_vqm1_for_el(env, el);
1305 
1306         for (i = 0; i <= FFR_PRED_NUM; i++) {
1307             bool eol;
1308             if (i == FFR_PRED_NUM) {
1309                 qemu_fprintf(f, "FFR=");
1310                 /* It's last, so end the line.  */
1311                 eol = true;
1312             } else {
1313                 qemu_fprintf(f, "P%02d=", i);
1314                 switch (zcr_len) {
1315                 case 0:
1316                     eol = i % 8 == 7;
1317                     break;
1318                 case 1:
1319                     eol = i % 6 == 5;
1320                     break;
1321                 case 2:
1322                 case 3:
1323                     eol = i % 3 == 2;
1324                     break;
1325                 default:
1326                     /* More than one quadword per predicate.  */
1327                     eol = true;
1328                     break;
1329                 }
1330             }
1331             for (j = zcr_len / 4; j >= 0; j--) {
1332                 int digits;
1333                 if (j * 4 + 4 <= zcr_len + 1) {
1334                     digits = 16;
1335                 } else {
1336                     digits = (zcr_len % 4 + 1) * 4;
1337                 }
1338                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1339                              env->vfp.pregs[i].p[j],
1340                              j ? ":" : eol ? "\n" : " ");
1341             }
1342         }
1343 
1344         if (zcr_len == 0) {
1345             /*
1346              * With vl=16, there are only 37 columns per register,
1347              * so output two registers per line.
1348              */
1349             for (i = 0; i < 32; i++) {
1350                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1351                              i, env->vfp.zregs[i].d[1],
1352                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1353             }
1354         } else {
1355             for (i = 0; i < 32; i++) {
1356                 qemu_fprintf(f, "Z%02d=", i);
1357                 for (j = zcr_len; j >= 0; j--) {
1358                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1359                                  env->vfp.zregs[i].d[j * 2 + 1],
1360                                  env->vfp.zregs[i].d[j * 2 + 0],
1361                                  j ? ":" : "\n");
1362                 }
1363             }
1364         }
1365     } else {
1366         for (i = 0; i < 32; i++) {
1367             uint64_t *q = aa64_vfp_qreg(env, i);
1368             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1369                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1370         }
1371     }
1372 
1373     if (cpu_isar_feature(aa64_sme, cpu) &&
1374         FIELD_EX64(env->svcr, SVCR, ZA) &&
1375         sme_exception_el(env, el) == 0) {
1376         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1377         int svl = (zcr_len + 1) * 16;
1378         int svl_lg10 = svl < 100 ? 2 : 3;
1379 
1380         for (i = 0; i < svl; i++) {
1381             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1382             for (j = zcr_len; j >= 0; --j) {
1383                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1384                              env->zarray[i].d[2 * j + 1],
1385                              env->zarray[i].d[2 * j],
1386                              j ? ':' : '\n');
1387             }
1388         }
1389     }
1390 }
1391 
1392 #else
1393 
1394 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1395 {
1396     g_assert_not_reached();
1397 }
1398 
1399 #endif
1400 
1401 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1402 {
1403     ARMCPU *cpu = ARM_CPU(cs);
1404     CPUARMState *env = &cpu->env;
1405     int i;
1406 
1407     if (is_a64(env)) {
1408         aarch64_cpu_dump_state(cs, f, flags);
1409         return;
1410     }
1411 
1412     for (i = 0; i < 16; i++) {
1413         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1414         if ((i % 4) == 3) {
1415             qemu_fprintf(f, "\n");
1416         } else {
1417             qemu_fprintf(f, " ");
1418         }
1419     }
1420 
1421     if (arm_feature(env, ARM_FEATURE_M)) {
1422         uint32_t xpsr = xpsr_read(env);
1423         const char *mode;
1424         const char *ns_status = "";
1425 
1426         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1427             ns_status = env->v7m.secure ? "S " : "NS ";
1428         }
1429 
1430         if (xpsr & XPSR_EXCP) {
1431             mode = "handler";
1432         } else {
1433             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1434                 mode = "unpriv-thread";
1435             } else {
1436                 mode = "priv-thread";
1437             }
1438         }
1439 
1440         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1441                      xpsr,
1442                      xpsr & XPSR_N ? 'N' : '-',
1443                      xpsr & XPSR_Z ? 'Z' : '-',
1444                      xpsr & XPSR_C ? 'C' : '-',
1445                      xpsr & XPSR_V ? 'V' : '-',
1446                      xpsr & XPSR_T ? 'T' : 'A',
1447                      ns_status,
1448                      mode);
1449     } else {
1450         uint32_t psr = cpsr_read(env);
1451         const char *ns_status = "";
1452 
1453         if (arm_feature(env, ARM_FEATURE_EL3) &&
1454             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1455             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1456         }
1457 
1458         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1459                      psr,
1460                      psr & CPSR_N ? 'N' : '-',
1461                      psr & CPSR_Z ? 'Z' : '-',
1462                      psr & CPSR_C ? 'C' : '-',
1463                      psr & CPSR_V ? 'V' : '-',
1464                      psr & CPSR_T ? 'T' : 'A',
1465                      ns_status,
1466                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1467     }
1468 
1469     if (flags & CPU_DUMP_FPU) {
1470         int numvfpregs = 0;
1471         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1472             numvfpregs = 32;
1473         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1474             numvfpregs = 16;
1475         }
1476         for (i = 0; i < numvfpregs; i++) {
1477             uint64_t v = *aa32_vfp_dreg(env, i);
1478             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1479                          i * 2, (uint32_t)v,
1480                          i * 2 + 1, (uint32_t)(v >> 32),
1481                          i, v);
1482         }
1483         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1484         if (cpu_isar_feature(aa32_mve, cpu)) {
1485             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1486         }
1487     }
1488 }
1489 
1490 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1491 {
1492     uint32_t Aff1 = idx / clustersz;
1493     uint32_t Aff0 = idx % clustersz;
1494     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1495 }
1496 
1497 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1498 {
1499     return cpu->mp_affinity;
1500 }
1501 
1502 static void arm_cpu_initfn(Object *obj)
1503 {
1504     ARMCPU *cpu = ARM_CPU(obj);
1505 
1506     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1507                                          NULL, g_free);
1508 
1509     QLIST_INIT(&cpu->pre_el_change_hooks);
1510     QLIST_INIT(&cpu->el_change_hooks);
1511 
1512 #ifdef CONFIG_USER_ONLY
1513 # ifdef TARGET_AARCH64
1514     /*
1515      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1516      * These values were chosen to fit within the default signal frame.
1517      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1518      * and our corresponding cpu property.
1519      */
1520     cpu->sve_default_vq = 4;
1521     cpu->sme_default_vq = 2;
1522 # endif
1523 #else
1524     /* Our inbound IRQ and FIQ lines */
1525     if (kvm_enabled()) {
1526         /*
1527          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1528          * them to maintain the same interface as non-KVM CPUs.
1529          */
1530         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1531     } else {
1532         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1533     }
1534 
1535     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1536                        ARRAY_SIZE(cpu->gt_timer_outputs));
1537 
1538     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1539                              "gicv3-maintenance-interrupt", 1);
1540     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1541                              "pmu-interrupt", 1);
1542 #endif
1543 
1544     /* DTB consumers generally don't in fact care what the 'compatible'
1545      * string is, so always provide some string and trust that a hypothetical
1546      * picky DTB consumer will also provide a helpful error message.
1547      */
1548     cpu->dtb_compatible = "qemu,unknown";
1549     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1550     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1551 
1552     if (tcg_enabled() || hvf_enabled()) {
1553         /* TCG and HVF implement PSCI 1.1 */
1554         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1555     }
1556 }
1557 
1558 /*
1559  * 0 means "unset, use the default value". That default might vary depending
1560  * on the CPU type, and is set in the realize fn.
1561  */
1562 static const Property arm_cpu_gt_cntfrq_property =
1563             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1564 
1565 static const Property arm_cpu_reset_cbar_property =
1566             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1567 
1568 static const Property arm_cpu_reset_hivecs_property =
1569             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1570 
1571 #ifndef CONFIG_USER_ONLY
1572 static const Property arm_cpu_has_el2_property =
1573             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1574 
1575 static const Property arm_cpu_has_el3_property =
1576             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1577 #endif
1578 
1579 static const Property arm_cpu_cfgend_property =
1580             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1581 
1582 static const Property arm_cpu_has_vfp_property =
1583             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1584 
1585 static const Property arm_cpu_has_vfp_d32_property =
1586             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1587 
1588 static const Property arm_cpu_has_neon_property =
1589             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1590 
1591 static const Property arm_cpu_has_dsp_property =
1592             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1593 
1594 static const Property arm_cpu_has_mpu_property =
1595             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1596 
1597 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1598  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1599  * the right value for that particular CPU type, and we don't want
1600  * to override that with an incorrect constant value.
1601  */
1602 static const Property arm_cpu_pmsav7_dregion_property =
1603             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1604                                            pmsav7_dregion,
1605                                            qdev_prop_uint32, uint32_t);
1606 
1607 static bool arm_get_pmu(Object *obj, Error **errp)
1608 {
1609     ARMCPU *cpu = ARM_CPU(obj);
1610 
1611     return cpu->has_pmu;
1612 }
1613 
1614 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1615 {
1616     ARMCPU *cpu = ARM_CPU(obj);
1617 
1618     if (value) {
1619         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1620             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1621             return;
1622         }
1623         set_feature(&cpu->env, ARM_FEATURE_PMU);
1624     } else {
1625         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1626     }
1627     cpu->has_pmu = value;
1628 }
1629 
1630 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1631 {
1632     /*
1633      * The exact approach to calculating guest ticks is:
1634      *
1635      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1636      *              NANOSECONDS_PER_SECOND);
1637      *
1638      * We don't do that. Rather we intentionally use integer division
1639      * truncation below and in the caller for the conversion of host monotonic
1640      * time to guest ticks to provide the exact inverse for the semantics of
1641      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1642      * it loses precision when representing frequencies where
1643      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1644      * provide an exact inverse leads to scheduling timers with negative
1645      * periods, which in turn leads to sticky behaviour in the guest.
1646      *
1647      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1648      * cannot become zero.
1649      */
1650     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1651       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1652 }
1653 
1654 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1655 {
1656     CPUARMState *env = &cpu->env;
1657     bool no_aa32 = false;
1658 
1659     /*
1660      * Some features automatically imply others: set the feature
1661      * bits explicitly for these cases.
1662      */
1663 
1664     if (arm_feature(env, ARM_FEATURE_M)) {
1665         set_feature(env, ARM_FEATURE_PMSA);
1666     }
1667 
1668     if (arm_feature(env, ARM_FEATURE_V8)) {
1669         if (arm_feature(env, ARM_FEATURE_M)) {
1670             set_feature(env, ARM_FEATURE_V7);
1671         } else {
1672             set_feature(env, ARM_FEATURE_V7VE);
1673         }
1674     }
1675 
1676     /*
1677      * There exist AArch64 cpus without AArch32 support.  When KVM
1678      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1679      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1680      * As a general principle, we also do not make ID register
1681      * consistency checks anywhere unless using TCG, because only
1682      * for TCG would a consistency-check failure be a QEMU bug.
1683      */
1684     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1685         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1686     }
1687 
1688     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1689         /*
1690          * v7 Virtualization Extensions. In real hardware this implies
1691          * EL2 and also the presence of the Security Extensions.
1692          * For QEMU, for backwards-compatibility we implement some
1693          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1694          * include the various other features that V7VE implies.
1695          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1696          * Security Extensions is ARM_FEATURE_EL3.
1697          */
1698         assert(!tcg_enabled() || no_aa32 ||
1699                cpu_isar_feature(aa32_arm_div, cpu));
1700         set_feature(env, ARM_FEATURE_LPAE);
1701         set_feature(env, ARM_FEATURE_V7);
1702     }
1703     if (arm_feature(env, ARM_FEATURE_V7)) {
1704         set_feature(env, ARM_FEATURE_VAPA);
1705         set_feature(env, ARM_FEATURE_THUMB2);
1706         set_feature(env, ARM_FEATURE_MPIDR);
1707         if (!arm_feature(env, ARM_FEATURE_M)) {
1708             set_feature(env, ARM_FEATURE_V6K);
1709         } else {
1710             set_feature(env, ARM_FEATURE_V6);
1711         }
1712 
1713         /*
1714          * Always define VBAR for V7 CPUs even if it doesn't exist in
1715          * non-EL3 configs. This is needed by some legacy boards.
1716          */
1717         set_feature(env, ARM_FEATURE_VBAR);
1718     }
1719     if (arm_feature(env, ARM_FEATURE_V6K)) {
1720         set_feature(env, ARM_FEATURE_V6);
1721         set_feature(env, ARM_FEATURE_MVFR);
1722     }
1723     if (arm_feature(env, ARM_FEATURE_V6)) {
1724         set_feature(env, ARM_FEATURE_V5);
1725         if (!arm_feature(env, ARM_FEATURE_M)) {
1726             assert(!tcg_enabled() || no_aa32 ||
1727                    cpu_isar_feature(aa32_jazelle, cpu));
1728             set_feature(env, ARM_FEATURE_AUXCR);
1729         }
1730     }
1731     if (arm_feature(env, ARM_FEATURE_V5)) {
1732         set_feature(env, ARM_FEATURE_V4T);
1733     }
1734     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1735         set_feature(env, ARM_FEATURE_V7MP);
1736     }
1737     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1738         set_feature(env, ARM_FEATURE_CBAR);
1739     }
1740     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1741         !arm_feature(env, ARM_FEATURE_M)) {
1742         set_feature(env, ARM_FEATURE_THUMB_DSP);
1743     }
1744 }
1745 
1746 void arm_cpu_post_init(Object *obj)
1747 {
1748     ARMCPU *cpu = ARM_CPU(obj);
1749 
1750     /*
1751      * Some features imply others. Figure this out now, because we
1752      * are going to look at the feature bits in deciding which
1753      * properties to add.
1754      */
1755     arm_cpu_propagate_feature_implications(cpu);
1756 
1757     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1758         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1759         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1760     }
1761 
1762     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1763         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1764     }
1765 
1766     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1767         object_property_add_uint64_ptr(obj, "rvbar",
1768                                        &cpu->rvbar_prop,
1769                                        OBJ_PROP_FLAG_READWRITE);
1770     }
1771 
1772 #ifndef CONFIG_USER_ONLY
1773     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1774         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1775          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1776          */
1777         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1778 
1779         object_property_add_link(obj, "secure-memory",
1780                                  TYPE_MEMORY_REGION,
1781                                  (Object **)&cpu->secure_memory,
1782                                  qdev_prop_allow_set_link_before_realize,
1783                                  OBJ_PROP_LINK_STRONG);
1784     }
1785 
1786     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1787         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1788     }
1789 #endif
1790 
1791     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1792         cpu->has_pmu = true;
1793         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1794     }
1795 
1796     /*
1797      * Allow user to turn off VFP and Neon support, but only for TCG --
1798      * KVM does not currently allow us to lie to the guest about its
1799      * ID/feature registers, so the guest always sees what the host has.
1800      */
1801     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1802         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1803             cpu->has_vfp = true;
1804             cpu->has_vfp_d32 = true;
1805             if (tcg_enabled() || qtest_enabled()) {
1806                 qdev_property_add_static(DEVICE(obj),
1807                                          &arm_cpu_has_vfp_property);
1808             }
1809         }
1810     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1811         cpu->has_vfp = true;
1812         if (tcg_enabled() || qtest_enabled()) {
1813             qdev_property_add_static(DEVICE(obj),
1814                                      &arm_cpu_has_vfp_property);
1815         }
1816         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1817             cpu->has_vfp_d32 = true;
1818             /*
1819              * The permitted values of the SIMDReg bits [3:0] on
1820              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1821              * make sure that has_vfp_d32 can not be set to false.
1822              */
1823             if ((tcg_enabled() || qtest_enabled())
1824                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1825                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1826                 qdev_property_add_static(DEVICE(obj),
1827                                          &arm_cpu_has_vfp_d32_property);
1828             }
1829         }
1830     }
1831 
1832     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1833         cpu->has_neon = true;
1834         if (!kvm_enabled()) {
1835             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1836         }
1837     }
1838 
1839     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1840         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1841         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1842     }
1843 
1844     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1845         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1846         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1847             qdev_property_add_static(DEVICE(obj),
1848                                      &arm_cpu_pmsav7_dregion_property);
1849         }
1850     }
1851 
1852     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1853         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1854                                  qdev_prop_allow_set_link_before_realize,
1855                                  OBJ_PROP_LINK_STRONG);
1856         /*
1857          * M profile: initial value of the Secure VTOR. We can't just use
1858          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1859          * the property to be set after realize.
1860          */
1861         object_property_add_uint32_ptr(obj, "init-svtor",
1862                                        &cpu->init_svtor,
1863                                        OBJ_PROP_FLAG_READWRITE);
1864     }
1865     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1866         /*
1867          * Initial value of the NS VTOR (for cores without the Security
1868          * extension, this is the only VTOR)
1869          */
1870         object_property_add_uint32_ptr(obj, "init-nsvtor",
1871                                        &cpu->init_nsvtor,
1872                                        OBJ_PROP_FLAG_READWRITE);
1873     }
1874 
1875     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1876     object_property_add_uint32_ptr(obj, "psci-conduit",
1877                                    &cpu->psci_conduit,
1878                                    OBJ_PROP_FLAG_READWRITE);
1879 
1880     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1881 
1882     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1883         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1884     }
1885 
1886     if (kvm_enabled()) {
1887         kvm_arm_add_vcpu_properties(cpu);
1888     }
1889 
1890 #ifndef CONFIG_USER_ONLY
1891     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1892         cpu_isar_feature(aa64_mte, cpu)) {
1893         object_property_add_link(obj, "tag-memory",
1894                                  TYPE_MEMORY_REGION,
1895                                  (Object **)&cpu->tag_memory,
1896                                  qdev_prop_allow_set_link_before_realize,
1897                                  OBJ_PROP_LINK_STRONG);
1898 
1899         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1900             object_property_add_link(obj, "secure-tag-memory",
1901                                      TYPE_MEMORY_REGION,
1902                                      (Object **)&cpu->secure_tag_memory,
1903                                      qdev_prop_allow_set_link_before_realize,
1904                                      OBJ_PROP_LINK_STRONG);
1905         }
1906     }
1907 #endif
1908 }
1909 
1910 static void arm_cpu_finalizefn(Object *obj)
1911 {
1912     ARMCPU *cpu = ARM_CPU(obj);
1913     ARMELChangeHook *hook, *next;
1914 
1915     g_hash_table_destroy(cpu->cp_regs);
1916 
1917     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1918         QLIST_REMOVE(hook, node);
1919         g_free(hook);
1920     }
1921     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1922         QLIST_REMOVE(hook, node);
1923         g_free(hook);
1924     }
1925 #ifndef CONFIG_USER_ONLY
1926     if (cpu->pmu_timer) {
1927         timer_free(cpu->pmu_timer);
1928     }
1929     if (cpu->wfxt_timer) {
1930         timer_free(cpu->wfxt_timer);
1931     }
1932 #endif
1933 }
1934 
1935 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1936 {
1937     Error *local_err = NULL;
1938 
1939 #ifdef TARGET_AARCH64
1940     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1941         arm_cpu_sve_finalize(cpu, &local_err);
1942         if (local_err != NULL) {
1943             error_propagate(errp, local_err);
1944             return;
1945         }
1946 
1947         /*
1948          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1949          * FEAT_SME_FA64 is present). However our implementation currently
1950          * assumes it, so if the user asked for sve=off then turn off SME also.
1951          * (KVM doesn't currently support SME at all.)
1952          */
1953         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1954             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1955         }
1956 
1957         arm_cpu_sme_finalize(cpu, &local_err);
1958         if (local_err != NULL) {
1959             error_propagate(errp, local_err);
1960             return;
1961         }
1962 
1963         arm_cpu_pauth_finalize(cpu, &local_err);
1964         if (local_err != NULL) {
1965             error_propagate(errp, local_err);
1966             return;
1967         }
1968 
1969         arm_cpu_lpa2_finalize(cpu, &local_err);
1970         if (local_err != NULL) {
1971             error_propagate(errp, local_err);
1972             return;
1973         }
1974     }
1975 #endif
1976 
1977     if (kvm_enabled()) {
1978         kvm_arm_steal_time_finalize(cpu, &local_err);
1979         if (local_err != NULL) {
1980             error_propagate(errp, local_err);
1981             return;
1982         }
1983     }
1984 }
1985 
1986 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1987 {
1988     CPUState *cs = CPU(dev);
1989     ARMCPU *cpu = ARM_CPU(dev);
1990     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1991     CPUARMState *env = &cpu->env;
1992     Error *local_err = NULL;
1993 
1994 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1995     /* Use pc-relative instructions in system-mode */
1996     tcg_cflags_set(cs, CF_PCREL);
1997 #endif
1998 
1999     /* If we needed to query the host kernel for the CPU features
2000      * then it's possible that might have failed in the initfn, but
2001      * this is the first point where we can report it.
2002      */
2003     if (cpu->host_cpu_probe_failed) {
2004         if (!kvm_enabled() && !hvf_enabled()) {
2005             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
2006         } else {
2007             error_setg(errp, "Failed to retrieve host CPU features");
2008         }
2009         return;
2010     }
2011 
2012     if (!cpu->gt_cntfrq_hz) {
2013         /*
2014          * 0 means "the board didn't set a value, use the default". (We also
2015          * get here for the CONFIG_USER_ONLY case.)
2016          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
2017          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
2018          * which gives a 16ns tick period.
2019          *
2020          * We will use the back-compat value:
2021          *  - for QEMU CPU types added before we standardized on 1GHz
2022          *  - for versioned machine types with a version of 9.0 or earlier
2023          */
2024         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2025             cpu->backcompat_cntfrq) {
2026             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2027         } else {
2028             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2029         }
2030     }
2031 
2032 #ifndef CONFIG_USER_ONLY
2033     /* The NVIC and M-profile CPU are two halves of a single piece of
2034      * hardware; trying to use one without the other is a command line
2035      * error and will result in segfaults if not caught here.
2036      */
2037     if (arm_feature(env, ARM_FEATURE_M)) {
2038         if (!env->nvic) {
2039             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2040             return;
2041         }
2042     } else {
2043         if (env->nvic) {
2044             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2045             return;
2046         }
2047     }
2048 
2049     if (!tcg_enabled() && !qtest_enabled()) {
2050         /*
2051          * We assume that no accelerator except TCG (and the "not really an
2052          * accelerator" qtest) can handle these features, because Arm hardware
2053          * virtualization can't virtualize them.
2054          *
2055          * Catch all the cases which might cause us to create more than one
2056          * address space for the CPU (otherwise we will assert() later in
2057          * cpu_address_space_init()).
2058          */
2059         if (arm_feature(env, ARM_FEATURE_M)) {
2060             error_setg(errp,
2061                        "Cannot enable %s when using an M-profile guest CPU",
2062                        current_accel_name());
2063             return;
2064         }
2065         if (cpu->has_el3) {
2066             error_setg(errp,
2067                        "Cannot enable %s when guest CPU has EL3 enabled",
2068                        current_accel_name());
2069             return;
2070         }
2071         if (cpu->tag_memory) {
2072             error_setg(errp,
2073                        "Cannot enable %s when guest CPUs has MTE enabled",
2074                        current_accel_name());
2075             return;
2076         }
2077     }
2078 
2079     {
2080         uint64_t scale = gt_cntfrq_period_ns(cpu);
2081 
2082         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2083                                                arm_gt_ptimer_cb, cpu);
2084         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2085                                                arm_gt_vtimer_cb, cpu);
2086         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2087                                               arm_gt_htimer_cb, cpu);
2088         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2089                                               arm_gt_stimer_cb, cpu);
2090         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2091                                                   arm_gt_hvtimer_cb, cpu);
2092     }
2093 #endif
2094 
2095     cpu_exec_realizefn(cs, &local_err);
2096     if (local_err != NULL) {
2097         error_propagate(errp, local_err);
2098         return;
2099     }
2100 
2101     arm_cpu_finalize_features(cpu, &local_err);
2102     if (local_err != NULL) {
2103         error_propagate(errp, local_err);
2104         return;
2105     }
2106 
2107 #ifdef CONFIG_USER_ONLY
2108     /*
2109      * User mode relies on IC IVAU instructions to catch modification of
2110      * dual-mapped code.
2111      *
2112      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2113      * IC IVAU even if the emulated processor does not normally require it.
2114      */
2115     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2116 #endif
2117 
2118     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2119         cpu->has_vfp != cpu->has_neon) {
2120         /*
2121          * This is an architectural requirement for AArch64; AArch32 is
2122          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2123          */
2124         error_setg(errp,
2125                    "AArch64 CPUs must have both VFP and Neon or neither");
2126         return;
2127     }
2128 
2129     if (cpu->has_vfp_d32 != cpu->has_neon) {
2130         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2131         return;
2132     }
2133 
2134    if (!cpu->has_vfp_d32) {
2135         uint32_t u;
2136 
2137         u = cpu->isar.mvfr0;
2138         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2139         cpu->isar.mvfr0 = u;
2140     }
2141 
2142     if (!cpu->has_vfp) {
2143         uint64_t t;
2144         uint32_t u;
2145 
2146         t = cpu->isar.id_aa64isar1;
2147         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2148         cpu->isar.id_aa64isar1 = t;
2149 
2150         t = cpu->isar.id_aa64pfr0;
2151         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2152         cpu->isar.id_aa64pfr0 = t;
2153 
2154         u = cpu->isar.id_isar6;
2155         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2156         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2157         cpu->isar.id_isar6 = u;
2158 
2159         u = cpu->isar.mvfr0;
2160         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2161         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2162         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2163         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2164         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2165         if (!arm_feature(env, ARM_FEATURE_M)) {
2166             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2167             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2168         }
2169         cpu->isar.mvfr0 = u;
2170 
2171         u = cpu->isar.mvfr1;
2172         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2173         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2174         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2175         if (arm_feature(env, ARM_FEATURE_M)) {
2176             u = FIELD_DP32(u, MVFR1, FP16, 0);
2177         }
2178         cpu->isar.mvfr1 = u;
2179 
2180         u = cpu->isar.mvfr2;
2181         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2182         cpu->isar.mvfr2 = u;
2183     }
2184 
2185     if (!cpu->has_neon) {
2186         uint64_t t;
2187         uint32_t u;
2188 
2189         unset_feature(env, ARM_FEATURE_NEON);
2190 
2191         t = cpu->isar.id_aa64isar0;
2192         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2193         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2194         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2195         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2196         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2197         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2198         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2199         cpu->isar.id_aa64isar0 = t;
2200 
2201         t = cpu->isar.id_aa64isar1;
2202         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2203         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2204         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2205         cpu->isar.id_aa64isar1 = t;
2206 
2207         t = cpu->isar.id_aa64pfr0;
2208         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2209         cpu->isar.id_aa64pfr0 = t;
2210 
2211         u = cpu->isar.id_isar5;
2212         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2213         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2214         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2215         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2216         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2217         cpu->isar.id_isar5 = u;
2218 
2219         u = cpu->isar.id_isar6;
2220         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2221         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2222         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2223         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2224         cpu->isar.id_isar6 = u;
2225 
2226         if (!arm_feature(env, ARM_FEATURE_M)) {
2227             u = cpu->isar.mvfr1;
2228             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2229             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2230             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2231             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2232             cpu->isar.mvfr1 = u;
2233 
2234             u = cpu->isar.mvfr2;
2235             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2236             cpu->isar.mvfr2 = u;
2237         }
2238     }
2239 
2240     if (!cpu->has_neon && !cpu->has_vfp) {
2241         uint64_t t;
2242         uint32_t u;
2243 
2244         t = cpu->isar.id_aa64isar0;
2245         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2246         cpu->isar.id_aa64isar0 = t;
2247 
2248         t = cpu->isar.id_aa64isar1;
2249         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2250         cpu->isar.id_aa64isar1 = t;
2251 
2252         u = cpu->isar.mvfr0;
2253         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2254         cpu->isar.mvfr0 = u;
2255 
2256         /* Despite the name, this field covers both VFP and Neon */
2257         u = cpu->isar.mvfr1;
2258         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2259         cpu->isar.mvfr1 = u;
2260     }
2261 
2262     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2263         uint32_t u;
2264 
2265         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2266 
2267         u = cpu->isar.id_isar1;
2268         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2269         cpu->isar.id_isar1 = u;
2270 
2271         u = cpu->isar.id_isar2;
2272         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2273         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2274         cpu->isar.id_isar2 = u;
2275 
2276         u = cpu->isar.id_isar3;
2277         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2278         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2279         cpu->isar.id_isar3 = u;
2280     }
2281 
2282 
2283     /*
2284      * We rely on no XScale CPU having VFP so we can use the same bits in the
2285      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2286      */
2287     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2288            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2289            !arm_feature(env, ARM_FEATURE_XSCALE));
2290 
2291 #ifndef CONFIG_USER_ONLY
2292     {
2293         int pagebits;
2294         if (arm_feature(env, ARM_FEATURE_V7) &&
2295             !arm_feature(env, ARM_FEATURE_M) &&
2296             !arm_feature(env, ARM_FEATURE_PMSA)) {
2297             /*
2298              * v7VMSA drops support for the old ARMv5 tiny pages,
2299              * so we can use 4K pages.
2300              */
2301             pagebits = 12;
2302         } else {
2303             /*
2304              * For CPUs which might have tiny 1K pages, or which have an
2305              * MPU and might have small region sizes, stick with 1K pages.
2306              */
2307             pagebits = 10;
2308         }
2309         if (!set_preferred_target_page_bits(pagebits)) {
2310             /*
2311              * This can only ever happen for hotplugging a CPU, or if
2312              * the board code incorrectly creates a CPU which it has
2313              * promised via minimum_page_size that it will not.
2314              */
2315             error_setg(errp, "This CPU requires a smaller page size "
2316                        "than the system is using");
2317             return;
2318         }
2319     }
2320 #endif
2321 
2322     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2323      * We don't support setting cluster ID ([16..23]) (known as Aff2
2324      * in later ARM ARM versions), or any of the higher affinity level fields,
2325      * so these bits always RAZ.
2326      */
2327     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2328         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2329                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2330     }
2331 
2332     if (cpu->reset_hivecs) {
2333             cpu->reset_sctlr |= (1 << 13);
2334     }
2335 
2336     if (cpu->cfgend) {
2337         if (arm_feature(env, ARM_FEATURE_V7)) {
2338             cpu->reset_sctlr |= SCTLR_EE;
2339         } else {
2340             cpu->reset_sctlr |= SCTLR_B;
2341         }
2342     }
2343 
2344     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2345         /* If the has_el3 CPU property is disabled then we need to disable the
2346          * feature.
2347          */
2348         unset_feature(env, ARM_FEATURE_EL3);
2349 
2350         /*
2351          * Disable the security extension feature bits in the processor
2352          * feature registers as well.
2353          */
2354         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2355         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2356         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2357                                            ID_AA64PFR0, EL3, 0);
2358 
2359         /* Disable the realm management extension, which requires EL3. */
2360         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2361                                            ID_AA64PFR0, RME, 0);
2362     }
2363 
2364     if (!cpu->has_el2) {
2365         unset_feature(env, ARM_FEATURE_EL2);
2366     }
2367 
2368     if (!cpu->has_pmu) {
2369         unset_feature(env, ARM_FEATURE_PMU);
2370     }
2371     if (arm_feature(env, ARM_FEATURE_PMU)) {
2372         pmu_init(cpu);
2373 
2374         if (!kvm_enabled()) {
2375             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2376             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2377         }
2378 
2379 #ifndef CONFIG_USER_ONLY
2380         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2381                 cpu);
2382 #endif
2383     } else {
2384         cpu->isar.id_aa64dfr0 =
2385             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2386         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2387         cpu->pmceid0 = 0;
2388         cpu->pmceid1 = 0;
2389     }
2390 
2391     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2392         /*
2393          * Disable the hypervisor feature bits in the processor feature
2394          * registers if we don't have EL2.
2395          */
2396         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2397                                            ID_AA64PFR0, EL2, 0);
2398         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2399                                        ID_PFR1, VIRTUALIZATION, 0);
2400     }
2401 
2402     if (cpu_isar_feature(aa64_mte, cpu)) {
2403         /*
2404          * The architectural range of GM blocksize is 2-6, however qemu
2405          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2406          */
2407         if (tcg_enabled()) {
2408             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2409         }
2410 
2411 #ifndef CONFIG_USER_ONLY
2412         /*
2413          * If we run with TCG and do not have tag-memory provided by
2414          * the machine, then reduce MTE support to instructions enabled at EL0.
2415          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2416          */
2417         if (tcg_enabled() && cpu->tag_memory == NULL) {
2418             cpu->isar.id_aa64pfr1 =
2419                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2420         }
2421 
2422         /*
2423          * If MTE is supported by the host, however it should not be
2424          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2425          */
2426         if (kvm_enabled() && !cpu->kvm_mte) {
2427                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2428         }
2429 #endif
2430     }
2431 
2432 #ifndef CONFIG_USER_ONLY
2433     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2434         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2435                                        arm_wfxt_timer_cb, cpu);
2436     }
2437 #endif
2438 
2439     if (tcg_enabled()) {
2440         /*
2441          * Don't report some architectural features in the ID registers
2442          * where TCG does not yet implement it (not even a minimal
2443          * stub version). This avoids guests falling over when they
2444          * try to access the non-existent system registers for them.
2445          */
2446         /* FEAT_SPE (Statistical Profiling Extension) */
2447         cpu->isar.id_aa64dfr0 =
2448             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2449         /* FEAT_TRBE (Trace Buffer Extension) */
2450         cpu->isar.id_aa64dfr0 =
2451             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2452         /* FEAT_TRF (Self-hosted Trace Extension) */
2453         cpu->isar.id_aa64dfr0 =
2454             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2455         cpu->isar.id_dfr0 =
2456             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2457         /* Trace Macrocell system register access */
2458         cpu->isar.id_aa64dfr0 =
2459             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2460         cpu->isar.id_dfr0 =
2461             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2462         /* Memory mapped trace */
2463         cpu->isar.id_dfr0 =
2464             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2465         /* FEAT_AMU (Activity Monitors Extension) */
2466         cpu->isar.id_aa64pfr0 =
2467             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2468         cpu->isar.id_pfr0 =
2469             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2470         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2471         cpu->isar.id_aa64pfr0 =
2472             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2473     }
2474 
2475     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2476      * to false or by setting pmsav7-dregion to 0.
2477      */
2478     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2479         cpu->has_mpu = false;
2480         cpu->pmsav7_dregion = 0;
2481         cpu->pmsav8r_hdregion = 0;
2482     }
2483 
2484     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2485         arm_feature(env, ARM_FEATURE_V7)) {
2486         uint32_t nr = cpu->pmsav7_dregion;
2487 
2488         if (nr > 0xff) {
2489             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2490             return;
2491         }
2492 
2493         if (nr) {
2494             if (arm_feature(env, ARM_FEATURE_V8)) {
2495                 /* PMSAv8 */
2496                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2497                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2498                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2499                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2500                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2501                 }
2502             } else {
2503                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2504                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2505                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2506             }
2507         }
2508 
2509         if (cpu->pmsav8r_hdregion > 0xff) {
2510             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2511                               cpu->pmsav8r_hdregion);
2512             return;
2513         }
2514 
2515         if (cpu->pmsav8r_hdregion) {
2516             env->pmsav8.hprbar = g_new0(uint32_t,
2517                                         cpu->pmsav8r_hdregion);
2518             env->pmsav8.hprlar = g_new0(uint32_t,
2519                                         cpu->pmsav8r_hdregion);
2520         }
2521     }
2522 
2523     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2524         uint32_t nr = cpu->sau_sregion;
2525 
2526         if (nr > 0xff) {
2527             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2528             return;
2529         }
2530 
2531         if (nr) {
2532             env->sau.rbar = g_new0(uint32_t, nr);
2533             env->sau.rlar = g_new0(uint32_t, nr);
2534         }
2535     }
2536 
2537     if (arm_feature(env, ARM_FEATURE_EL3)) {
2538         set_feature(env, ARM_FEATURE_VBAR);
2539     }
2540 
2541 #ifndef CONFIG_USER_ONLY
2542     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2543         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2544     }
2545 #endif
2546 
2547     register_cp_regs_for_features(cpu);
2548     arm_cpu_register_gdb_regs_for_features(cpu);
2549     arm_cpu_register_gdb_commands(cpu);
2550 
2551     init_cpreg_list(cpu);
2552 
2553 #ifndef CONFIG_USER_ONLY
2554     MachineState *ms = MACHINE(qdev_get_machine());
2555     unsigned int smp_cpus = ms->smp.cpus;
2556     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2557 
2558     /*
2559      * We must set cs->num_ases to the final value before
2560      * the first call to cpu_address_space_init.
2561      */
2562     if (cpu->tag_memory != NULL) {
2563         cs->num_ases = 3 + has_secure;
2564     } else {
2565         cs->num_ases = 1 + has_secure;
2566     }
2567 
2568     if (has_secure) {
2569         if (!cpu->secure_memory) {
2570             cpu->secure_memory = cs->memory;
2571         }
2572         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2573                                cpu->secure_memory);
2574     }
2575 
2576     if (cpu->tag_memory != NULL) {
2577         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2578                                cpu->tag_memory);
2579         if (has_secure) {
2580             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2581                                    cpu->secure_tag_memory);
2582         }
2583     }
2584 
2585     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2586 
2587     /* No core_count specified, default to smp_cpus. */
2588     if (cpu->core_count == -1) {
2589         cpu->core_count = smp_cpus;
2590     }
2591 #endif
2592 
2593     if (tcg_enabled()) {
2594         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2595 
2596         /*
2597          * We only support DCZ blocklen that fits on one page.
2598          *
2599          * Architectually this is always true.  However TARGET_PAGE_SIZE
2600          * is variable and, for compatibility with -machine virt-2.7,
2601          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2602          * But even then, while the largest architectural DCZ blocklen
2603          * is 2KiB, no cpu actually uses such a large blocklen.
2604          */
2605         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2606 
2607         /*
2608          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2609          * both nibbles of each byte storing tag data may be written at once.
2610          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2611          */
2612         if (cpu_isar_feature(aa64_mte, cpu)) {
2613             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2614         }
2615     }
2616 
2617     qemu_init_vcpu(cs);
2618     cpu_reset(cs);
2619 
2620     acc->parent_realize(dev, errp);
2621 }
2622 
2623 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2624 {
2625     ObjectClass *oc;
2626     char *typename;
2627     char **cpuname;
2628     const char *cpunamestr;
2629 
2630     cpuname = g_strsplit(cpu_model, ",", 1);
2631     cpunamestr = cpuname[0];
2632 #ifdef CONFIG_USER_ONLY
2633     /* For backwards compatibility usermode emulation allows "-cpu any",
2634      * which has the same semantics as "-cpu max".
2635      */
2636     if (!strcmp(cpunamestr, "any")) {
2637         cpunamestr = "max";
2638     }
2639 #endif
2640     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2641     oc = object_class_by_name(typename);
2642     g_strfreev(cpuname);
2643     g_free(typename);
2644 
2645     return oc;
2646 }
2647 
2648 static const Property arm_cpu_properties[] = {
2649     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2650     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2651                         mp_affinity, ARM64_AFFINITY_INVALID),
2652     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2653     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2654     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2655     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2656 };
2657 
2658 static const gchar *arm_gdb_arch_name(CPUState *cs)
2659 {
2660     ARMCPU *cpu = ARM_CPU(cs);
2661     CPUARMState *env = &cpu->env;
2662 
2663     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2664         return "iwmmxt";
2665     }
2666     return "arm";
2667 }
2668 
2669 #ifndef CONFIG_USER_ONLY
2670 #include "hw/core/sysemu-cpu-ops.h"
2671 
2672 static const struct SysemuCPUOps arm_sysemu_ops = {
2673     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2674     .asidx_from_attrs = arm_asidx_from_attrs,
2675     .write_elf32_note = arm_cpu_write_elf32_note,
2676     .write_elf64_note = arm_cpu_write_elf64_note,
2677     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2678     .legacy_vmsd = &vmstate_arm_cpu,
2679 };
2680 #endif
2681 
2682 #ifdef CONFIG_TCG
2683 static const TCGCPUOps arm_tcg_ops = {
2684     .initialize = arm_translate_init,
2685     .translate_code = arm_translate_code,
2686     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2687     .debug_excp_handler = arm_debug_excp_handler,
2688     .restore_state_to_opc = arm_restore_state_to_opc,
2689 
2690 #ifdef CONFIG_USER_ONLY
2691     .record_sigsegv = arm_cpu_record_sigsegv,
2692     .record_sigbus = arm_cpu_record_sigbus,
2693 #else
2694     .tlb_fill_align = arm_cpu_tlb_fill_align,
2695     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2696     .cpu_exec_halt = arm_cpu_exec_halt,
2697     .do_interrupt = arm_cpu_do_interrupt,
2698     .do_transaction_failed = arm_cpu_do_transaction_failed,
2699     .do_unaligned_access = arm_cpu_do_unaligned_access,
2700     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2701     .debug_check_watchpoint = arm_debug_check_watchpoint,
2702     .debug_check_breakpoint = arm_debug_check_breakpoint,
2703 #endif /* !CONFIG_USER_ONLY */
2704 };
2705 #endif /* CONFIG_TCG */
2706 
2707 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2708 {
2709     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2710     CPUClass *cc = CPU_CLASS(acc);
2711     DeviceClass *dc = DEVICE_CLASS(oc);
2712     ResettableClass *rc = RESETTABLE_CLASS(oc);
2713 
2714     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2715                                     &acc->parent_realize);
2716 
2717     device_class_set_props(dc, arm_cpu_properties);
2718 
2719     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2720                                        &acc->parent_phases);
2721 
2722     cc->class_by_name = arm_cpu_class_by_name;
2723     cc->has_work = arm_cpu_has_work;
2724     cc->mmu_index = arm_cpu_mmu_index;
2725     cc->dump_state = arm_cpu_dump_state;
2726     cc->set_pc = arm_cpu_set_pc;
2727     cc->get_pc = arm_cpu_get_pc;
2728     cc->gdb_read_register = arm_cpu_gdb_read_register;
2729     cc->gdb_write_register = arm_cpu_gdb_write_register;
2730 #ifndef CONFIG_USER_ONLY
2731     cc->sysemu_ops = &arm_sysemu_ops;
2732 #endif
2733     cc->gdb_arch_name = arm_gdb_arch_name;
2734     cc->gdb_stop_before_watchpoint = true;
2735     cc->disas_set_info = arm_disas_set_info;
2736 
2737 #ifdef CONFIG_TCG
2738     cc->tcg_ops = &arm_tcg_ops;
2739 #endif /* CONFIG_TCG */
2740 }
2741 
2742 static void arm_cpu_instance_init(Object *obj)
2743 {
2744     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2745 
2746     acc->info->initfn(obj);
2747     arm_cpu_post_init(obj);
2748 }
2749 
2750 static void cpu_register_class_init(ObjectClass *oc, void *data)
2751 {
2752     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2753     CPUClass *cc = CPU_CLASS(acc);
2754 
2755     acc->info = data;
2756     cc->gdb_core_xml_file = "arm-core.xml";
2757 }
2758 
2759 void arm_cpu_register(const ARMCPUInfo *info)
2760 {
2761     TypeInfo type_info = {
2762         .parent = TYPE_ARM_CPU,
2763         .instance_init = arm_cpu_instance_init,
2764         .class_init = info->class_init ?: cpu_register_class_init,
2765         .class_data = (void *)info,
2766     };
2767 
2768     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2769     type_register_static(&type_info);
2770     g_free((void *)type_info.name);
2771 }
2772 
2773 static const TypeInfo arm_cpu_type_info = {
2774     .name = TYPE_ARM_CPU,
2775     .parent = TYPE_CPU,
2776     .instance_size = sizeof(ARMCPU),
2777     .instance_align = __alignof__(ARMCPU),
2778     .instance_init = arm_cpu_initfn,
2779     .instance_finalize = arm_cpu_finalizefn,
2780     .abstract = true,
2781     .class_size = sizeof(ARMCPUClass),
2782     .class_init = arm_cpu_class_init,
2783 };
2784 
2785 static void arm_cpu_register_types(void)
2786 {
2787     type_register_static(&arm_cpu_type_info);
2788 }
2789 
2790 type_init(arm_cpu_register_types)
2791