xref: /qemu/target/arm/cpu.c (revision cc1f4b34d011e908dcaf24721f1d5808e02ab0bd)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "accel/tcg/cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/target_page.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 
125 int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
126 {
127     return arm_env_mmu_index(cpu_env(cs));
128 }
129 
130 #endif /* CONFIG_TCG */
131 
132 #ifndef CONFIG_USER_ONLY
133 /*
134  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
135  * IRQ without Superpriority. Moreover, if the GIC is configured so that
136  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
137  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
138  * unconditionally.
139  */
140 static bool arm_cpu_has_work(CPUState *cs)
141 {
142     ARMCPU *cpu = ARM_CPU(cs);
143 
144     return (cpu->power_state != PSCI_OFF)
145         && cs->interrupt_request &
146         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
147          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
148          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
149          | CPU_INTERRUPT_EXITTB);
150 }
151 #endif /* !CONFIG_USER_ONLY */
152 
153 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
154                                  void *opaque)
155 {
156     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
157 
158     entry->hook = hook;
159     entry->opaque = opaque;
160 
161     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
162 }
163 
164 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
165                                  void *opaque)
166 {
167     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
168 
169     entry->hook = hook;
170     entry->opaque = opaque;
171 
172     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
173 }
174 
175 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
176 {
177     /* Reset a single ARMCPRegInfo register */
178     ARMCPRegInfo *ri = value;
179     ARMCPU *cpu = opaque;
180 
181     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
182         return;
183     }
184 
185     if (ri->resetfn) {
186         ri->resetfn(&cpu->env, ri);
187         return;
188     }
189 
190     /* A zero offset is never possible as it would be regs[0]
191      * so we use it to indicate that reset is being handled elsewhere.
192      * This is basically only used for fields in non-core coprocessors
193      * (like the pxa2xx ones).
194      */
195     if (!ri->fieldoffset) {
196         return;
197     }
198 
199     if (cpreg_field_is_64bit(ri)) {
200         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
201     } else {
202         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
203     }
204 }
205 
206 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
207 {
208     /* Purely an assertion check: we've already done reset once,
209      * so now check that running the reset for the cpreg doesn't
210      * change its value. This traps bugs where two different cpregs
211      * both try to reset the same state field but to different values.
212      */
213     ARMCPRegInfo *ri = value;
214     ARMCPU *cpu = opaque;
215     uint64_t oldvalue, newvalue;
216 
217     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
218         return;
219     }
220 
221     oldvalue = read_raw_cp_reg(&cpu->env, ri);
222     cp_reg_reset(key, value, opaque);
223     newvalue = read_raw_cp_reg(&cpu->env, ri);
224     assert(oldvalue == newvalue);
225 }
226 
227 static void arm_cpu_reset_hold(Object *obj, ResetType type)
228 {
229     CPUState *cs = CPU(obj);
230     ARMCPU *cpu = ARM_CPU(cs);
231     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
232     CPUARMState *env = &cpu->env;
233 
234     if (acc->parent_phases.hold) {
235         acc->parent_phases.hold(obj, type);
236     }
237 
238     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
239 
240     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
241     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
242 
243     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
244     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
245     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
246     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
247 
248     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
249 
250     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
251         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
252     }
253 
254     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
255         /* 64 bit CPUs always start in 64 bit mode */
256         env->aarch64 = true;
257 #if defined(CONFIG_USER_ONLY)
258         env->pstate = PSTATE_MODE_EL0t;
259         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
260         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
261         /* Enable all PAC keys.  */
262         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
263                                   SCTLR_EnDA | SCTLR_EnDB);
264         /* Trap on btype=3 for PACIxSP. */
265         env->cp15.sctlr_el[1] |= SCTLR_BT0;
266         /* Trap on implementation defined registers. */
267         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
268             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
269         }
270         /* and to the FP/Neon instructions */
271         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
272                                          CPACR_EL1, FPEN, 3);
273         /* and to the SVE instructions, with default vector length */
274         if (cpu_isar_feature(aa64_sve, cpu)) {
275             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
276                                              CPACR_EL1, ZEN, 3);
277             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
278         }
279         /* and for SME instructions, with default vector length, and TPIDR2 */
280         if (cpu_isar_feature(aa64_sme, cpu)) {
281             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
282             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
283                                              CPACR_EL1, SMEN, 3);
284             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
285             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
286                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
287                                                  SMCR, FA64, 1);
288             }
289         }
290         /*
291          * Enable 48-bit address space (TODO: take reserved_va into account).
292          * Enable TBI0 but not TBI1.
293          * Note that this must match useronly_clean_ptr.
294          */
295         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
296 
297         /* Enable MTE */
298         if (cpu_isar_feature(aa64_mte, cpu)) {
299             /* Enable tag access, but leave TCF0 as No Effect (0). */
300             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
301             /*
302              * Exclude all tags, so that tag 0 is always used.
303              * This corresponds to Linux current->thread.gcr_incl = 0.
304              *
305              * Set RRND, so that helper_irg() will generate a seed later.
306              * Here in cpu_reset(), the crypto subsystem has not yet been
307              * initialized.
308              */
309             env->cp15.gcr_el1 = 0x1ffff;
310         }
311         /*
312          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
313          * This is not yet exposed from the Linux kernel in any way.
314          */
315         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
316         /* Disable access to Debug Communication Channel (DCC). */
317         env->cp15.mdscr_el1 |= 1 << 12;
318         /* Enable FEAT_MOPS */
319         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
320 #else
321         /* Reset into the highest available EL */
322         if (arm_feature(env, ARM_FEATURE_EL3)) {
323             env->pstate = PSTATE_MODE_EL3h;
324         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
325             env->pstate = PSTATE_MODE_EL2h;
326         } else {
327             env->pstate = PSTATE_MODE_EL1h;
328         }
329 
330         /* Sample rvbar at reset.  */
331         env->cp15.rvbar = cpu->rvbar_prop;
332         env->pc = env->cp15.rvbar;
333 #endif
334     } else {
335 #if defined(CONFIG_USER_ONLY)
336         /* Userspace expects access to cp10 and cp11 for FP/Neon */
337         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
338                                          CPACR, CP10, 3);
339         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
340                                          CPACR, CP11, 3);
341 #endif
342         if (arm_feature(env, ARM_FEATURE_V8)) {
343             env->cp15.rvbar = cpu->rvbar_prop;
344             env->regs[15] = cpu->rvbar_prop;
345         }
346     }
347 
348 #if defined(CONFIG_USER_ONLY)
349     env->uncached_cpsr = ARM_CPU_MODE_USR;
350     /* For user mode we must enable access to coprocessors */
351     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
352     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
353         env->cp15.c15_cpar = 3;
354     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
355         env->cp15.c15_cpar = 1;
356     }
357 #else
358 
359     /*
360      * If the highest available EL is EL2, AArch32 will start in Hyp
361      * mode; otherwise it starts in SVC. Note that if we start in
362      * AArch64 then these values in the uncached_cpsr will be ignored.
363      */
364     if (arm_feature(env, ARM_FEATURE_EL2) &&
365         !arm_feature(env, ARM_FEATURE_EL3)) {
366         env->uncached_cpsr = ARM_CPU_MODE_HYP;
367     } else {
368         env->uncached_cpsr = ARM_CPU_MODE_SVC;
369     }
370     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
371 
372     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
373      * executing as AArch32 then check if highvecs are enabled and
374      * adjust the PC accordingly.
375      */
376     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
377         env->regs[15] = 0xFFFF0000;
378     }
379 
380     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
381 #endif
382 
383     if (arm_feature(env, ARM_FEATURE_M)) {
384 #ifndef CONFIG_USER_ONLY
385         uint32_t initial_msp; /* Loaded from 0x0 */
386         uint32_t initial_pc; /* Loaded from 0x4 */
387         uint8_t *rom;
388         uint32_t vecbase;
389 #endif
390 
391         if (cpu_isar_feature(aa32_lob, cpu)) {
392             /*
393              * LTPSIZE is constant 4 if MVE not implemented, and resets
394              * to an UNKNOWN value if MVE is implemented. We choose to
395              * always reset to 4.
396              */
397             env->v7m.ltpsize = 4;
398             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
399             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
400             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
401         }
402 
403         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
404             env->v7m.secure = true;
405         } else {
406             /* This bit resets to 0 if security is supported, but 1 if
407              * it is not. The bit is not present in v7M, but we set it
408              * here so we can avoid having to make checks on it conditional
409              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
410              */
411             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
412             /*
413              * Set NSACR to indicate "NS access permitted to everything";
414              * this avoids having to have all the tests of it being
415              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
416              * v8.1M the guest-visible value of NSACR in a CPU without the
417              * Security Extension is 0xcff.
418              */
419             env->v7m.nsacr = 0xcff;
420         }
421 
422         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
423          * that it resets to 1, so QEMU always does that rather than making
424          * it dependent on CPU model. In v8M it is RES1.
425          */
426         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
427         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
428         if (arm_feature(env, ARM_FEATURE_V8)) {
429             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
430             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
431             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
432         }
433         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
434             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
435             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
436         }
437 
438         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
439             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
440             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
441                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
442         }
443 
444 #ifndef CONFIG_USER_ONLY
445         /* Unlike A/R profile, M profile defines the reset LR value */
446         env->regs[14] = 0xffffffff;
447 
448         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
449         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
450 
451         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
452         vecbase = env->v7m.vecbase[env->v7m.secure];
453         rom = rom_ptr_for_as(cs->as, vecbase, 8);
454         if (rom) {
455             /* Address zero is covered by ROM which hasn't yet been
456              * copied into physical memory.
457              */
458             initial_msp = ldl_p(rom);
459             initial_pc = ldl_p(rom + 4);
460         } else {
461             /* Address zero not covered by a ROM blob, or the ROM blob
462              * is in non-modifiable memory and this is a second reset after
463              * it got copied into memory. In the latter case, rom_ptr
464              * will return a NULL pointer and we should use ldl_phys instead.
465              */
466             initial_msp = ldl_phys(cs->as, vecbase);
467             initial_pc = ldl_phys(cs->as, vecbase + 4);
468         }
469 
470         qemu_log_mask(CPU_LOG_INT,
471                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
472                       initial_msp, initial_pc);
473 
474         env->regs[13] = initial_msp & 0xFFFFFFFC;
475         env->regs[15] = initial_pc & ~1;
476         env->thumb = initial_pc & 1;
477 #else
478         /*
479          * For user mode we run non-secure and with access to the FPU.
480          * The FPU context is active (ie does not need further setup)
481          * and is owned by non-secure.
482          */
483         env->v7m.secure = false;
484         env->v7m.nsacr = 0xcff;
485         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
486         env->v7m.fpccr[M_REG_S] &=
487             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
488         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
489 #endif
490     }
491 
492     /* M profile requires that reset clears the exclusive monitor;
493      * A profile does not, but clearing it makes more sense than having it
494      * set with an exclusive access on address zero.
495      */
496     arm_clear_exclusive(env);
497 
498     if (arm_feature(env, ARM_FEATURE_PMSA)) {
499         if (cpu->pmsav7_dregion > 0) {
500             if (arm_feature(env, ARM_FEATURE_V8)) {
501                 memset(env->pmsav8.rbar[M_REG_NS], 0,
502                        sizeof(*env->pmsav8.rbar[M_REG_NS])
503                        * cpu->pmsav7_dregion);
504                 memset(env->pmsav8.rlar[M_REG_NS], 0,
505                        sizeof(*env->pmsav8.rlar[M_REG_NS])
506                        * cpu->pmsav7_dregion);
507                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
508                     memset(env->pmsav8.rbar[M_REG_S], 0,
509                            sizeof(*env->pmsav8.rbar[M_REG_S])
510                            * cpu->pmsav7_dregion);
511                     memset(env->pmsav8.rlar[M_REG_S], 0,
512                            sizeof(*env->pmsav8.rlar[M_REG_S])
513                            * cpu->pmsav7_dregion);
514                 }
515             } else if (arm_feature(env, ARM_FEATURE_V7)) {
516                 memset(env->pmsav7.drbar, 0,
517                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
518                 memset(env->pmsav7.drsr, 0,
519                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
520                 memset(env->pmsav7.dracr, 0,
521                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
522             }
523         }
524 
525         if (cpu->pmsav8r_hdregion > 0) {
526             memset(env->pmsav8.hprbar, 0,
527                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
528             memset(env->pmsav8.hprlar, 0,
529                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
530         }
531 
532         env->pmsav7.rnr[M_REG_NS] = 0;
533         env->pmsav7.rnr[M_REG_S] = 0;
534         env->pmsav8.mair0[M_REG_NS] = 0;
535         env->pmsav8.mair0[M_REG_S] = 0;
536         env->pmsav8.mair1[M_REG_NS] = 0;
537         env->pmsav8.mair1[M_REG_S] = 0;
538     }
539 
540     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
541         if (cpu->sau_sregion > 0) {
542             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
543             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
544         }
545         env->sau.rnr = 0;
546         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
547          * the Cortex-M33 does.
548          */
549         env->sau.ctrl = 0;
550     }
551 
552     set_flush_to_zero(1, &env->vfp.fp_status[FPST_STD]);
553     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_STD]);
554     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD]);
555     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD_F16]);
556     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32]);
557     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
558     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD]);
559     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32_F16]);
560     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
561     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD_F16]);
562     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH]);
563     set_flush_to_zero(1, &env->vfp.fp_status[FPST_AH]);
564     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_AH]);
565     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH_F16]);
566 
567 #ifndef CONFIG_USER_ONLY
568     if (kvm_enabled()) {
569         kvm_arm_reset_vcpu(cpu);
570     }
571 #endif
572 
573     if (tcg_enabled()) {
574         hw_breakpoint_update_all(cpu);
575         hw_watchpoint_update_all(cpu);
576 
577         arm_rebuild_hflags(env);
578     }
579 }
580 
581 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
582 {
583     ARMCPU *cpu = ARM_CPU(cpustate);
584     CPUARMState *env = &cpu->env;
585     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
586     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
587 
588     /*
589      * Check we have the EL we're aiming for. If that is the
590      * highest implemented EL, then cpu_reset has already done
591      * all the work.
592      */
593     switch (target_el) {
594     case 3:
595         assert(have_el3);
596         return;
597     case 2:
598         assert(have_el2);
599         if (!have_el3) {
600             return;
601         }
602         break;
603     case 1:
604         if (!have_el3 && !have_el2) {
605             return;
606         }
607         break;
608     default:
609         g_assert_not_reached();
610     }
611 
612     if (have_el3) {
613         /*
614          * Set the EL3 state so code can run at EL2. This should match
615          * the requirements set by Linux in its booting spec.
616          */
617         if (env->aarch64) {
618             env->cp15.scr_el3 |= SCR_RW;
619             if (cpu_isar_feature(aa64_pauth, cpu)) {
620                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
621             }
622             if (cpu_isar_feature(aa64_mte, cpu)) {
623                 env->cp15.scr_el3 |= SCR_ATA;
624             }
625             if (cpu_isar_feature(aa64_sve, cpu)) {
626                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
627                 env->vfp.zcr_el[3] = 0xf;
628             }
629             if (cpu_isar_feature(aa64_sme, cpu)) {
630                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
631                 env->cp15.scr_el3 |= SCR_ENTP2;
632                 env->vfp.smcr_el[3] = 0xf;
633             }
634             if (cpu_isar_feature(aa64_hcx, cpu)) {
635                 env->cp15.scr_el3 |= SCR_HXEN;
636             }
637             if (cpu_isar_feature(aa64_fgt, cpu)) {
638                 env->cp15.scr_el3 |= SCR_FGTEN;
639             }
640         }
641 
642         if (target_el == 2) {
643             /* If the guest is at EL2 then Linux expects the HVC insn to work */
644             env->cp15.scr_el3 |= SCR_HCE;
645         }
646 
647         /* Put CPU into non-secure state */
648         env->cp15.scr_el3 |= SCR_NS;
649         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
650         env->cp15.nsacr |= 3 << 10;
651     }
652 
653     if (have_el2 && target_el < 2) {
654         /* Set EL2 state so code can run at EL1. */
655         if (env->aarch64) {
656             env->cp15.hcr_el2 |= HCR_RW;
657         }
658     }
659 
660     /* Set the CPU to the desired state */
661     if (env->aarch64) {
662         env->pstate = aarch64_pstate_mode(target_el, true);
663     } else {
664         static const uint32_t mode_for_el[] = {
665             0,
666             ARM_CPU_MODE_SVC,
667             ARM_CPU_MODE_HYP,
668             ARM_CPU_MODE_SVC,
669         };
670 
671         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
672     }
673 }
674 
675 
676 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
677 
678 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
679                                      unsigned int target_el,
680                                      unsigned int cur_el, bool secure,
681                                      uint64_t hcr_el2)
682 {
683     CPUARMState *env = cpu_env(cs);
684     bool pstate_unmasked;
685     bool unmasked = false;
686     bool allIntMask = false;
687 
688     /*
689      * Don't take exceptions if they target a lower EL.
690      * This check should catch any exceptions that would not be taken
691      * but left pending.
692      */
693     if (cur_el > target_el) {
694         return false;
695     }
696 
697     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
698         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
699         allIntMask = env->pstate & PSTATE_ALLINT ||
700                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
701                       (env->pstate & PSTATE_SP));
702     }
703 
704     switch (excp_idx) {
705     case EXCP_NMI:
706         pstate_unmasked = !allIntMask;
707         break;
708 
709     case EXCP_VINMI:
710         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
711             /* VINMIs are only taken when hypervized.  */
712             return false;
713         }
714         return !allIntMask;
715     case EXCP_VFNMI:
716         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
717             /* VFNMIs are only taken when hypervized.  */
718             return false;
719         }
720         return !allIntMask;
721     case EXCP_FIQ:
722         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
723         break;
724 
725     case EXCP_IRQ:
726         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
727         break;
728 
729     case EXCP_VFIQ:
730         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
731             /* VFIQs are only taken when hypervized.  */
732             return false;
733         }
734         return !(env->daif & PSTATE_F) && (!allIntMask);
735     case EXCP_VIRQ:
736         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
737             /* VIRQs are only taken when hypervized.  */
738             return false;
739         }
740         return !(env->daif & PSTATE_I) && (!allIntMask);
741     case EXCP_VSERR:
742         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
743             /* VIRQs are only taken when hypervized.  */
744             return false;
745         }
746         return !(env->daif & PSTATE_A);
747     default:
748         g_assert_not_reached();
749     }
750 
751     /*
752      * Use the target EL, current execution state and SCR/HCR settings to
753      * determine whether the corresponding CPSR bit is used to mask the
754      * interrupt.
755      */
756     if ((target_el > cur_el) && (target_el != 1)) {
757         /* Exceptions targeting a higher EL may not be maskable */
758         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
759             switch (target_el) {
760             case 2:
761                 /*
762                  * According to ARM DDI 0487H.a, an interrupt can be masked
763                  * when HCR_E2H and HCR_TGE are both set regardless of the
764                  * current Security state. Note that we need to revisit this
765                  * part again once we need to support NMI.
766                  */
767                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
768                         unmasked = true;
769                 }
770                 break;
771             case 3:
772                 /* Interrupt cannot be masked when the target EL is 3 */
773                 unmasked = true;
774                 break;
775             default:
776                 g_assert_not_reached();
777             }
778         } else {
779             /*
780              * The old 32-bit-only environment has a more complicated
781              * masking setup. HCR and SCR bits not only affect interrupt
782              * routing but also change the behaviour of masking.
783              */
784             bool hcr, scr;
785 
786             switch (excp_idx) {
787             case EXCP_FIQ:
788                 /*
789                  * If FIQs are routed to EL3 or EL2 then there are cases where
790                  * we override the CPSR.F in determining if the exception is
791                  * masked or not. If neither of these are set then we fall back
792                  * to the CPSR.F setting otherwise we further assess the state
793                  * below.
794                  */
795                 hcr = hcr_el2 & HCR_FMO;
796                 scr = (env->cp15.scr_el3 & SCR_FIQ);
797 
798                 /*
799                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
800                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
801                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
802                  * when non-secure but only when FIQs are only routed to EL3.
803                  */
804                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
805                 break;
806             case EXCP_IRQ:
807                 /*
808                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
809                  * we may override the CPSR.I masking when in non-secure state.
810                  * The SCR.IRQ setting has already been taken into consideration
811                  * when setting the target EL, so it does not have a further
812                  * affect here.
813                  */
814                 hcr = hcr_el2 & HCR_IMO;
815                 scr = false;
816                 break;
817             default:
818                 g_assert_not_reached();
819             }
820 
821             if ((scr || hcr) && !secure) {
822                 unmasked = true;
823             }
824         }
825     }
826 
827     /*
828      * The PSTATE bits only mask the interrupt if we have not overridden the
829      * ability above.
830      */
831     return unmasked || pstate_unmasked;
832 }
833 
834 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
835 {
836     CPUARMState *env = cpu_env(cs);
837     uint32_t cur_el = arm_current_el(env);
838     bool secure = arm_is_secure(env);
839     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
840     uint32_t target_el;
841     uint32_t excp_idx;
842 
843     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
844 
845     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
846         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
847         if (interrupt_request & CPU_INTERRUPT_NMI) {
848             excp_idx = EXCP_NMI;
849             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
850             if (arm_excp_unmasked(cs, excp_idx, target_el,
851                                   cur_el, secure, hcr_el2)) {
852                 goto found;
853             }
854         }
855         if (interrupt_request & CPU_INTERRUPT_VINMI) {
856             excp_idx = EXCP_VINMI;
857             target_el = 1;
858             if (arm_excp_unmasked(cs, excp_idx, target_el,
859                                   cur_el, secure, hcr_el2)) {
860                 goto found;
861             }
862         }
863         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
864             excp_idx = EXCP_VFNMI;
865             target_el = 1;
866             if (arm_excp_unmasked(cs, excp_idx, target_el,
867                                   cur_el, secure, hcr_el2)) {
868                 goto found;
869             }
870         }
871     } else {
872         /*
873          * NMI disabled: interrupts with superpriority are handled
874          * as if they didn't have it
875          */
876         if (interrupt_request & CPU_INTERRUPT_NMI) {
877             interrupt_request |= CPU_INTERRUPT_HARD;
878         }
879         if (interrupt_request & CPU_INTERRUPT_VINMI) {
880             interrupt_request |= CPU_INTERRUPT_VIRQ;
881         }
882         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
883             interrupt_request |= CPU_INTERRUPT_VFIQ;
884         }
885     }
886 
887     if (interrupt_request & CPU_INTERRUPT_FIQ) {
888         excp_idx = EXCP_FIQ;
889         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
890         if (arm_excp_unmasked(cs, excp_idx, target_el,
891                               cur_el, secure, hcr_el2)) {
892             goto found;
893         }
894     }
895     if (interrupt_request & CPU_INTERRUPT_HARD) {
896         excp_idx = EXCP_IRQ;
897         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
898         if (arm_excp_unmasked(cs, excp_idx, target_el,
899                               cur_el, secure, hcr_el2)) {
900             goto found;
901         }
902     }
903     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
904         excp_idx = EXCP_VIRQ;
905         target_el = 1;
906         if (arm_excp_unmasked(cs, excp_idx, target_el,
907                               cur_el, secure, hcr_el2)) {
908             goto found;
909         }
910     }
911     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
912         excp_idx = EXCP_VFIQ;
913         target_el = 1;
914         if (arm_excp_unmasked(cs, excp_idx, target_el,
915                               cur_el, secure, hcr_el2)) {
916             goto found;
917         }
918     }
919     if (interrupt_request & CPU_INTERRUPT_VSERR) {
920         excp_idx = EXCP_VSERR;
921         target_el = 1;
922         if (arm_excp_unmasked(cs, excp_idx, target_el,
923                               cur_el, secure, hcr_el2)) {
924             /* Taking a virtual abort clears HCR_EL2.VSE */
925             env->cp15.hcr_el2 &= ~HCR_VSE;
926             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
927             goto found;
928         }
929     }
930     return false;
931 
932  found:
933     cs->exception_index = excp_idx;
934     env->exception.target_el = target_el;
935     cs->cc->tcg_ops->do_interrupt(cs);
936     return true;
937 }
938 
939 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
940 
941 void arm_cpu_update_virq(ARMCPU *cpu)
942 {
943     /*
944      * Update the interrupt level for VIRQ, which is the logical OR of
945      * the HCR_EL2.VI bit and the input line level from the GIC.
946      */
947     CPUARMState *env = &cpu->env;
948     CPUState *cs = CPU(cpu);
949 
950     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
951         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
952         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
953 
954     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
955         if (new_state) {
956             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
957         } else {
958             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
959         }
960     }
961 }
962 
963 void arm_cpu_update_vfiq(ARMCPU *cpu)
964 {
965     /*
966      * Update the interrupt level for VFIQ, which is the logical OR of
967      * the HCR_EL2.VF bit and the input line level from the GIC.
968      */
969     CPUARMState *env = &cpu->env;
970     CPUState *cs = CPU(cpu);
971 
972     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
973         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
974         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
975 
976     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
977         if (new_state) {
978             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
979         } else {
980             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
981         }
982     }
983 }
984 
985 void arm_cpu_update_vinmi(ARMCPU *cpu)
986 {
987     /*
988      * Update the interrupt level for VINMI, which is the logical OR of
989      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
990      */
991     CPUARMState *env = &cpu->env;
992     CPUState *cs = CPU(cpu);
993 
994     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
995                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
996         (env->irq_line_state & CPU_INTERRUPT_VINMI);
997 
998     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
999         if (new_state) {
1000             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1001         } else {
1002             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1003         }
1004     }
1005 }
1006 
1007 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1008 {
1009     /*
1010      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1011      */
1012     CPUARMState *env = &cpu->env;
1013     CPUState *cs = CPU(cpu);
1014 
1015     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1016                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1017 
1018     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1019         if (new_state) {
1020             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1021         } else {
1022             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1023         }
1024     }
1025 }
1026 
1027 void arm_cpu_update_vserr(ARMCPU *cpu)
1028 {
1029     /*
1030      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1031      */
1032     CPUARMState *env = &cpu->env;
1033     CPUState *cs = CPU(cpu);
1034 
1035     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1036 
1037     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1038         if (new_state) {
1039             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1040         } else {
1041             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1042         }
1043     }
1044 }
1045 
1046 #ifndef CONFIG_USER_ONLY
1047 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1048 {
1049     ARMCPU *cpu = opaque;
1050     CPUARMState *env = &cpu->env;
1051     CPUState *cs = CPU(cpu);
1052     static const int mask[] = {
1053         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1054         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1055         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1056         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1057         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1058         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1059     };
1060 
1061     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1062         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1063         /*
1064          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1065          * have EL2 support we don't care. (Unless the guest is doing something
1066          * silly this will only be calls saying "level is still 0".)
1067          */
1068         return;
1069     }
1070 
1071     if (level) {
1072         env->irq_line_state |= mask[irq];
1073     } else {
1074         env->irq_line_state &= ~mask[irq];
1075     }
1076 
1077     switch (irq) {
1078     case ARM_CPU_VIRQ:
1079         arm_cpu_update_virq(cpu);
1080         break;
1081     case ARM_CPU_VFIQ:
1082         arm_cpu_update_vfiq(cpu);
1083         break;
1084     case ARM_CPU_VINMI:
1085         arm_cpu_update_vinmi(cpu);
1086         break;
1087     case ARM_CPU_IRQ:
1088     case ARM_CPU_FIQ:
1089     case ARM_CPU_NMI:
1090         if (level) {
1091             cpu_interrupt(cs, mask[irq]);
1092         } else {
1093             cpu_reset_interrupt(cs, mask[irq]);
1094         }
1095         break;
1096     default:
1097         g_assert_not_reached();
1098     }
1099 }
1100 
1101 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1102 {
1103 #ifdef CONFIG_KVM
1104     ARMCPU *cpu = opaque;
1105     CPUARMState *env = &cpu->env;
1106     CPUState *cs = CPU(cpu);
1107     uint32_t linestate_bit;
1108     int irq_id;
1109 
1110     switch (irq) {
1111     case ARM_CPU_IRQ:
1112         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1113         linestate_bit = CPU_INTERRUPT_HARD;
1114         break;
1115     case ARM_CPU_FIQ:
1116         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1117         linestate_bit = CPU_INTERRUPT_FIQ;
1118         break;
1119     default:
1120         g_assert_not_reached();
1121     }
1122 
1123     if (level) {
1124         env->irq_line_state |= linestate_bit;
1125     } else {
1126         env->irq_line_state &= ~linestate_bit;
1127     }
1128     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1129 #endif
1130 }
1131 
1132 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1133 {
1134     ARMCPU *cpu = ARM_CPU(cs);
1135     CPUARMState *env = &cpu->env;
1136 
1137     cpu_synchronize_state(cs);
1138     return arm_cpu_data_is_big_endian(env);
1139 }
1140 
1141 #ifdef CONFIG_TCG
1142 bool arm_cpu_exec_halt(CPUState *cs)
1143 {
1144     bool leave_halt = cpu_has_work(cs);
1145 
1146     if (leave_halt) {
1147         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1148         ARMCPU *cpu = ARM_CPU(cs);
1149         if (cpu->wfxt_timer) {
1150             timer_del(cpu->wfxt_timer);
1151         }
1152     }
1153     return leave_halt;
1154 }
1155 #endif
1156 
1157 static void arm_wfxt_timer_cb(void *opaque)
1158 {
1159     ARMCPU *cpu = opaque;
1160     CPUState *cs = CPU(cpu);
1161 
1162     /*
1163      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1164      * to return true (so we will come out of halt even with no other
1165      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1166      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1167      */
1168     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1169 }
1170 #endif
1171 
1172 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1173 {
1174     ARMCPU *ac = ARM_CPU(cpu);
1175     CPUARMState *env = &ac->env;
1176     bool sctlr_b = arm_sctlr_b(env);
1177 
1178     if (is_a64(env)) {
1179         info->cap_arch = CS_ARCH_ARM64;
1180         info->cap_insn_unit = 4;
1181         info->cap_insn_split = 4;
1182     } else {
1183         int cap_mode;
1184         if (env->thumb) {
1185             info->cap_insn_unit = 2;
1186             info->cap_insn_split = 4;
1187             cap_mode = CS_MODE_THUMB;
1188         } else {
1189             info->cap_insn_unit = 4;
1190             info->cap_insn_split = 4;
1191             cap_mode = CS_MODE_ARM;
1192         }
1193         if (arm_feature(env, ARM_FEATURE_V8)) {
1194             cap_mode |= CS_MODE_V8;
1195         }
1196         if (arm_feature(env, ARM_FEATURE_M)) {
1197             cap_mode |= CS_MODE_MCLASS;
1198         }
1199         info->cap_arch = CS_ARCH_ARM;
1200         info->cap_mode = cap_mode;
1201     }
1202 
1203     info->endian = BFD_ENDIAN_LITTLE;
1204     if (bswap_code(sctlr_b)) {
1205         info->endian = TARGET_BIG_ENDIAN ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_BIG;
1206     }
1207     info->flags &= ~INSN_ARM_BE32;
1208 #ifndef CONFIG_USER_ONLY
1209     if (sctlr_b) {
1210         info->flags |= INSN_ARM_BE32;
1211     }
1212 #endif
1213 }
1214 
1215 #ifdef TARGET_AARCH64
1216 
1217 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1218 {
1219     ARMCPU *cpu = ARM_CPU(cs);
1220     CPUARMState *env = &cpu->env;
1221     uint32_t psr = pstate_read(env);
1222     int i, j;
1223     int el = arm_current_el(env);
1224     uint64_t hcr = arm_hcr_el2_eff(env);
1225     const char *ns_status;
1226     bool sve;
1227 
1228     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1229     for (i = 0; i < 32; i++) {
1230         if (i == 31) {
1231             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1232         } else {
1233             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1234                          (i + 2) % 3 ? " " : "\n");
1235         }
1236     }
1237 
1238     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1239         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1240     } else {
1241         ns_status = "";
1242     }
1243     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1244                  psr,
1245                  psr & PSTATE_N ? 'N' : '-',
1246                  psr & PSTATE_Z ? 'Z' : '-',
1247                  psr & PSTATE_C ? 'C' : '-',
1248                  psr & PSTATE_V ? 'V' : '-',
1249                  ns_status,
1250                  el,
1251                  psr & PSTATE_SP ? 'h' : 't');
1252 
1253     if (cpu_isar_feature(aa64_sme, cpu)) {
1254         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1255                      env->svcr,
1256                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1257                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1258     }
1259     if (cpu_isar_feature(aa64_bti, cpu)) {
1260         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1261     }
1262     qemu_fprintf(f, "%s%s%s",
1263                  (hcr & HCR_NV) ? " NV" : "",
1264                  (hcr & HCR_NV1) ? " NV1" : "",
1265                  (hcr & HCR_NV2) ? " NV2" : "");
1266     if (!(flags & CPU_DUMP_FPU)) {
1267         qemu_fprintf(f, "\n");
1268         return;
1269     }
1270     if (fp_exception_el(env, el) != 0) {
1271         qemu_fprintf(f, "    FPU disabled\n");
1272         return;
1273     }
1274     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1275                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1276 
1277     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1278         sve = sme_exception_el(env, el) == 0;
1279     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1280         sve = sve_exception_el(env, el) == 0;
1281     } else {
1282         sve = false;
1283     }
1284 
1285     if (sve) {
1286         int zcr_len = sve_vqm1_for_el(env, el);
1287 
1288         for (i = 0; i <= FFR_PRED_NUM; i++) {
1289             bool eol;
1290             if (i == FFR_PRED_NUM) {
1291                 qemu_fprintf(f, "FFR=");
1292                 /* It's last, so end the line.  */
1293                 eol = true;
1294             } else {
1295                 qemu_fprintf(f, "P%02d=", i);
1296                 switch (zcr_len) {
1297                 case 0:
1298                     eol = i % 8 == 7;
1299                     break;
1300                 case 1:
1301                     eol = i % 6 == 5;
1302                     break;
1303                 case 2:
1304                 case 3:
1305                     eol = i % 3 == 2;
1306                     break;
1307                 default:
1308                     /* More than one quadword per predicate.  */
1309                     eol = true;
1310                     break;
1311                 }
1312             }
1313             for (j = zcr_len / 4; j >= 0; j--) {
1314                 int digits;
1315                 if (j * 4 + 4 <= zcr_len + 1) {
1316                     digits = 16;
1317                 } else {
1318                     digits = (zcr_len % 4 + 1) * 4;
1319                 }
1320                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1321                              env->vfp.pregs[i].p[j],
1322                              j ? ":" : eol ? "\n" : " ");
1323             }
1324         }
1325 
1326         if (zcr_len == 0) {
1327             /*
1328              * With vl=16, there are only 37 columns per register,
1329              * so output two registers per line.
1330              */
1331             for (i = 0; i < 32; i++) {
1332                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1333                              i, env->vfp.zregs[i].d[1],
1334                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1335             }
1336         } else {
1337             for (i = 0; i < 32; i++) {
1338                 qemu_fprintf(f, "Z%02d=", i);
1339                 for (j = zcr_len; j >= 0; j--) {
1340                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1341                                  env->vfp.zregs[i].d[j * 2 + 1],
1342                                  env->vfp.zregs[i].d[j * 2 + 0],
1343                                  j ? ":" : "\n");
1344                 }
1345             }
1346         }
1347     } else {
1348         for (i = 0; i < 32; i++) {
1349             uint64_t *q = aa64_vfp_qreg(env, i);
1350             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1351                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1352         }
1353     }
1354 
1355     if (cpu_isar_feature(aa64_sme, cpu) &&
1356         FIELD_EX64(env->svcr, SVCR, ZA) &&
1357         sme_exception_el(env, el) == 0) {
1358         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1359         int svl = (zcr_len + 1) * 16;
1360         int svl_lg10 = svl < 100 ? 2 : 3;
1361 
1362         for (i = 0; i < svl; i++) {
1363             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1364             for (j = zcr_len; j >= 0; --j) {
1365                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1366                              env->zarray[i].d[2 * j + 1],
1367                              env->zarray[i].d[2 * j],
1368                              j ? ':' : '\n');
1369             }
1370         }
1371     }
1372 }
1373 
1374 #else
1375 
1376 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1377 {
1378     g_assert_not_reached();
1379 }
1380 
1381 #endif
1382 
1383 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1384 {
1385     ARMCPU *cpu = ARM_CPU(cs);
1386     CPUARMState *env = &cpu->env;
1387     int i;
1388 
1389     if (is_a64(env)) {
1390         aarch64_cpu_dump_state(cs, f, flags);
1391         return;
1392     }
1393 
1394     for (i = 0; i < 16; i++) {
1395         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1396         if ((i % 4) == 3) {
1397             qemu_fprintf(f, "\n");
1398         } else {
1399             qemu_fprintf(f, " ");
1400         }
1401     }
1402 
1403     if (arm_feature(env, ARM_FEATURE_M)) {
1404         uint32_t xpsr = xpsr_read(env);
1405         const char *mode;
1406         const char *ns_status = "";
1407 
1408         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1409             ns_status = env->v7m.secure ? "S " : "NS ";
1410         }
1411 
1412         if (xpsr & XPSR_EXCP) {
1413             mode = "handler";
1414         } else {
1415             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1416                 mode = "unpriv-thread";
1417             } else {
1418                 mode = "priv-thread";
1419             }
1420         }
1421 
1422         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1423                      xpsr,
1424                      xpsr & XPSR_N ? 'N' : '-',
1425                      xpsr & XPSR_Z ? 'Z' : '-',
1426                      xpsr & XPSR_C ? 'C' : '-',
1427                      xpsr & XPSR_V ? 'V' : '-',
1428                      xpsr & XPSR_T ? 'T' : 'A',
1429                      ns_status,
1430                      mode);
1431     } else {
1432         uint32_t psr = cpsr_read(env);
1433         const char *ns_status = "";
1434 
1435         if (arm_feature(env, ARM_FEATURE_EL3) &&
1436             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1437             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1438         }
1439 
1440         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1441                      psr,
1442                      psr & CPSR_N ? 'N' : '-',
1443                      psr & CPSR_Z ? 'Z' : '-',
1444                      psr & CPSR_C ? 'C' : '-',
1445                      psr & CPSR_V ? 'V' : '-',
1446                      psr & CPSR_T ? 'T' : 'A',
1447                      ns_status,
1448                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1449     }
1450 
1451     if (flags & CPU_DUMP_FPU) {
1452         int numvfpregs = 0;
1453         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1454             numvfpregs = 32;
1455         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1456             numvfpregs = 16;
1457         }
1458         for (i = 0; i < numvfpregs; i++) {
1459             uint64_t v = *aa32_vfp_dreg(env, i);
1460             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1461                          i * 2, (uint32_t)v,
1462                          i * 2 + 1, (uint32_t)(v >> 32),
1463                          i, v);
1464         }
1465         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1466         if (cpu_isar_feature(aa32_mve, cpu)) {
1467             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1468         }
1469     }
1470 }
1471 
1472 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1473 {
1474     uint32_t Aff1 = idx / clustersz;
1475     uint32_t Aff0 = idx % clustersz;
1476     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1477 }
1478 
1479 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1480 {
1481     return cpu->mp_affinity;
1482 }
1483 
1484 static void arm_cpu_initfn(Object *obj)
1485 {
1486     ARMCPU *cpu = ARM_CPU(obj);
1487 
1488     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1489                                          NULL, g_free);
1490 
1491     QLIST_INIT(&cpu->pre_el_change_hooks);
1492     QLIST_INIT(&cpu->el_change_hooks);
1493 
1494 #ifdef CONFIG_USER_ONLY
1495 # ifdef TARGET_AARCH64
1496     /*
1497      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1498      * These values were chosen to fit within the default signal frame.
1499      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1500      * and our corresponding cpu property.
1501      */
1502     cpu->sve_default_vq = 4;
1503     cpu->sme_default_vq = 2;
1504 # endif
1505 #else
1506     /* Our inbound IRQ and FIQ lines */
1507     if (kvm_enabled()) {
1508         /*
1509          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1510          * them to maintain the same interface as non-KVM CPUs.
1511          */
1512         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1513     } else {
1514         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1515     }
1516 
1517     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1518                        ARRAY_SIZE(cpu->gt_timer_outputs));
1519 
1520     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1521                              "gicv3-maintenance-interrupt", 1);
1522     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1523                              "pmu-interrupt", 1);
1524 #endif
1525 
1526     /* DTB consumers generally don't in fact care what the 'compatible'
1527      * string is, so always provide some string and trust that a hypothetical
1528      * picky DTB consumer will also provide a helpful error message.
1529      */
1530     cpu->dtb_compatible = "qemu,unknown";
1531     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1532     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1533 
1534     if (tcg_enabled() || hvf_enabled()) {
1535         /* TCG and HVF implement PSCI 1.1 */
1536         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1537     }
1538 }
1539 
1540 /*
1541  * 0 means "unset, use the default value". That default might vary depending
1542  * on the CPU type, and is set in the realize fn.
1543  */
1544 static const Property arm_cpu_gt_cntfrq_property =
1545             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1546 
1547 static const Property arm_cpu_reset_cbar_property =
1548             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1549 
1550 static const Property arm_cpu_reset_hivecs_property =
1551             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1552 
1553 #ifndef CONFIG_USER_ONLY
1554 static const Property arm_cpu_has_el2_property =
1555             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1556 
1557 static const Property arm_cpu_has_el3_property =
1558             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1559 #endif
1560 
1561 static const Property arm_cpu_cfgend_property =
1562             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1563 
1564 static const Property arm_cpu_has_vfp_property =
1565             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1566 
1567 static const Property arm_cpu_has_vfp_d32_property =
1568             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1569 
1570 static const Property arm_cpu_has_neon_property =
1571             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1572 
1573 static const Property arm_cpu_has_dsp_property =
1574             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1575 
1576 static const Property arm_cpu_has_mpu_property =
1577             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1578 
1579 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1580  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1581  * the right value for that particular CPU type, and we don't want
1582  * to override that with an incorrect constant value.
1583  */
1584 static const Property arm_cpu_pmsav7_dregion_property =
1585             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1586                                            pmsav7_dregion,
1587                                            qdev_prop_uint32, uint32_t);
1588 
1589 static bool arm_get_pmu(Object *obj, Error **errp)
1590 {
1591     ARMCPU *cpu = ARM_CPU(obj);
1592 
1593     return cpu->has_pmu;
1594 }
1595 
1596 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1597 {
1598     ARMCPU *cpu = ARM_CPU(obj);
1599 
1600     if (value) {
1601         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1602             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1603             return;
1604         }
1605         set_feature(&cpu->env, ARM_FEATURE_PMU);
1606     } else {
1607         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1608     }
1609     cpu->has_pmu = value;
1610 }
1611 
1612 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1613 {
1614     /*
1615      * The exact approach to calculating guest ticks is:
1616      *
1617      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1618      *              NANOSECONDS_PER_SECOND);
1619      *
1620      * We don't do that. Rather we intentionally use integer division
1621      * truncation below and in the caller for the conversion of host monotonic
1622      * time to guest ticks to provide the exact inverse for the semantics of
1623      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1624      * it loses precision when representing frequencies where
1625      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1626      * provide an exact inverse leads to scheduling timers with negative
1627      * periods, which in turn leads to sticky behaviour in the guest.
1628      *
1629      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1630      * cannot become zero.
1631      */
1632     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1633       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1634 }
1635 
1636 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1637 {
1638     CPUARMState *env = &cpu->env;
1639     bool no_aa32 = false;
1640 
1641     /*
1642      * Some features automatically imply others: set the feature
1643      * bits explicitly for these cases.
1644      */
1645 
1646     if (arm_feature(env, ARM_FEATURE_M)) {
1647         set_feature(env, ARM_FEATURE_PMSA);
1648     }
1649 
1650     if (arm_feature(env, ARM_FEATURE_V8)) {
1651         if (arm_feature(env, ARM_FEATURE_M)) {
1652             set_feature(env, ARM_FEATURE_V7);
1653         } else {
1654             set_feature(env, ARM_FEATURE_V7VE);
1655         }
1656     }
1657 
1658     /*
1659      * There exist AArch64 cpus without AArch32 support.  When KVM
1660      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1661      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1662      * As a general principle, we also do not make ID register
1663      * consistency checks anywhere unless using TCG, because only
1664      * for TCG would a consistency-check failure be a QEMU bug.
1665      */
1666     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1667         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1668     }
1669 
1670     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1671         /*
1672          * v7 Virtualization Extensions. In real hardware this implies
1673          * EL2 and also the presence of the Security Extensions.
1674          * For QEMU, for backwards-compatibility we implement some
1675          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1676          * include the various other features that V7VE implies.
1677          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1678          * Security Extensions is ARM_FEATURE_EL3.
1679          */
1680         assert(!tcg_enabled() || no_aa32 ||
1681                cpu_isar_feature(aa32_arm_div, cpu));
1682         set_feature(env, ARM_FEATURE_LPAE);
1683         set_feature(env, ARM_FEATURE_V7);
1684     }
1685     if (arm_feature(env, ARM_FEATURE_V7)) {
1686         set_feature(env, ARM_FEATURE_VAPA);
1687         set_feature(env, ARM_FEATURE_THUMB2);
1688         set_feature(env, ARM_FEATURE_MPIDR);
1689         if (!arm_feature(env, ARM_FEATURE_M)) {
1690             set_feature(env, ARM_FEATURE_V6K);
1691         } else {
1692             set_feature(env, ARM_FEATURE_V6);
1693         }
1694 
1695         /*
1696          * Always define VBAR for V7 CPUs even if it doesn't exist in
1697          * non-EL3 configs. This is needed by some legacy boards.
1698          */
1699         set_feature(env, ARM_FEATURE_VBAR);
1700     }
1701     if (arm_feature(env, ARM_FEATURE_V6K)) {
1702         set_feature(env, ARM_FEATURE_V6);
1703         set_feature(env, ARM_FEATURE_MVFR);
1704     }
1705     if (arm_feature(env, ARM_FEATURE_V6)) {
1706         set_feature(env, ARM_FEATURE_V5);
1707         if (!arm_feature(env, ARM_FEATURE_M)) {
1708             assert(!tcg_enabled() || no_aa32 ||
1709                    cpu_isar_feature(aa32_jazelle, cpu));
1710             set_feature(env, ARM_FEATURE_AUXCR);
1711         }
1712     }
1713     if (arm_feature(env, ARM_FEATURE_V5)) {
1714         set_feature(env, ARM_FEATURE_V4T);
1715     }
1716     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1717         set_feature(env, ARM_FEATURE_V7MP);
1718     }
1719     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1720         set_feature(env, ARM_FEATURE_CBAR);
1721     }
1722     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1723         !arm_feature(env, ARM_FEATURE_M)) {
1724         set_feature(env, ARM_FEATURE_THUMB_DSP);
1725     }
1726 }
1727 
1728 void arm_cpu_post_init(Object *obj)
1729 {
1730     ARMCPU *cpu = ARM_CPU(obj);
1731 
1732     /*
1733      * Some features imply others. Figure this out now, because we
1734      * are going to look at the feature bits in deciding which
1735      * properties to add.
1736      */
1737     arm_cpu_propagate_feature_implications(cpu);
1738 
1739     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1740         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1741         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1742     }
1743 
1744     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1745         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1746     }
1747 
1748     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1749         object_property_add_uint64_ptr(obj, "rvbar",
1750                                        &cpu->rvbar_prop,
1751                                        OBJ_PROP_FLAG_READWRITE);
1752     }
1753 
1754 #ifndef CONFIG_USER_ONLY
1755     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1756         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1757          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1758          */
1759         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1760 
1761         object_property_add_link(obj, "secure-memory",
1762                                  TYPE_MEMORY_REGION,
1763                                  (Object **)&cpu->secure_memory,
1764                                  qdev_prop_allow_set_link_before_realize,
1765                                  OBJ_PROP_LINK_STRONG);
1766     }
1767 
1768     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1769         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1770     }
1771 #endif
1772 
1773     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1774         cpu->has_pmu = true;
1775         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1776     }
1777 
1778     /*
1779      * Allow user to turn off VFP and Neon support, but only for TCG --
1780      * KVM does not currently allow us to lie to the guest about its
1781      * ID/feature registers, so the guest always sees what the host has.
1782      */
1783     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1784         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1785             cpu->has_vfp = true;
1786             cpu->has_vfp_d32 = true;
1787             if (tcg_enabled() || qtest_enabled()) {
1788                 qdev_property_add_static(DEVICE(obj),
1789                                          &arm_cpu_has_vfp_property);
1790             }
1791         }
1792     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1793         cpu->has_vfp = true;
1794         if (tcg_enabled() || qtest_enabled()) {
1795             qdev_property_add_static(DEVICE(obj),
1796                                      &arm_cpu_has_vfp_property);
1797         }
1798         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1799             cpu->has_vfp_d32 = true;
1800             /*
1801              * The permitted values of the SIMDReg bits [3:0] on
1802              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1803              * make sure that has_vfp_d32 can not be set to false.
1804              */
1805             if ((tcg_enabled() || qtest_enabled())
1806                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1807                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1808                 qdev_property_add_static(DEVICE(obj),
1809                                          &arm_cpu_has_vfp_d32_property);
1810             }
1811         }
1812     }
1813 
1814     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1815         cpu->has_neon = true;
1816         if (!kvm_enabled()) {
1817             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1818         }
1819     }
1820 
1821     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1822         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1823         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1824     }
1825 
1826     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1827         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1828         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1829             qdev_property_add_static(DEVICE(obj),
1830                                      &arm_cpu_pmsav7_dregion_property);
1831         }
1832     }
1833 
1834     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1835         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1836                                  qdev_prop_allow_set_link_before_realize,
1837                                  OBJ_PROP_LINK_STRONG);
1838         /*
1839          * M profile: initial value of the Secure VTOR. We can't just use
1840          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1841          * the property to be set after realize.
1842          */
1843         object_property_add_uint32_ptr(obj, "init-svtor",
1844                                        &cpu->init_svtor,
1845                                        OBJ_PROP_FLAG_READWRITE);
1846     }
1847     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1848         /*
1849          * Initial value of the NS VTOR (for cores without the Security
1850          * extension, this is the only VTOR)
1851          */
1852         object_property_add_uint32_ptr(obj, "init-nsvtor",
1853                                        &cpu->init_nsvtor,
1854                                        OBJ_PROP_FLAG_READWRITE);
1855     }
1856 
1857     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1858     object_property_add_uint32_ptr(obj, "psci-conduit",
1859                                    &cpu->psci_conduit,
1860                                    OBJ_PROP_FLAG_READWRITE);
1861 
1862     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1863 
1864     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1865         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1866     }
1867 
1868     if (kvm_enabled()) {
1869         kvm_arm_add_vcpu_properties(cpu);
1870     }
1871 
1872 #ifndef CONFIG_USER_ONLY
1873     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1874         cpu_isar_feature(aa64_mte, cpu)) {
1875         object_property_add_link(obj, "tag-memory",
1876                                  TYPE_MEMORY_REGION,
1877                                  (Object **)&cpu->tag_memory,
1878                                  qdev_prop_allow_set_link_before_realize,
1879                                  OBJ_PROP_LINK_STRONG);
1880 
1881         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1882             object_property_add_link(obj, "secure-tag-memory",
1883                                      TYPE_MEMORY_REGION,
1884                                      (Object **)&cpu->secure_tag_memory,
1885                                      qdev_prop_allow_set_link_before_realize,
1886                                      OBJ_PROP_LINK_STRONG);
1887         }
1888     }
1889 #endif
1890 }
1891 
1892 static void arm_cpu_finalizefn(Object *obj)
1893 {
1894     ARMCPU *cpu = ARM_CPU(obj);
1895     ARMELChangeHook *hook, *next;
1896 
1897     g_hash_table_destroy(cpu->cp_regs);
1898 
1899     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1900         QLIST_REMOVE(hook, node);
1901         g_free(hook);
1902     }
1903     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1904         QLIST_REMOVE(hook, node);
1905         g_free(hook);
1906     }
1907 #ifndef CONFIG_USER_ONLY
1908     if (cpu->pmu_timer) {
1909         timer_free(cpu->pmu_timer);
1910     }
1911     if (cpu->wfxt_timer) {
1912         timer_free(cpu->wfxt_timer);
1913     }
1914 #endif
1915 }
1916 
1917 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1918 {
1919     Error *local_err = NULL;
1920 
1921 #ifdef TARGET_AARCH64
1922     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1923         arm_cpu_sve_finalize(cpu, &local_err);
1924         if (local_err != NULL) {
1925             error_propagate(errp, local_err);
1926             return;
1927         }
1928 
1929         /*
1930          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1931          * FEAT_SME_FA64 is present). However our implementation currently
1932          * assumes it, so if the user asked for sve=off then turn off SME also.
1933          * (KVM doesn't currently support SME at all.)
1934          */
1935         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1936             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1937         }
1938 
1939         arm_cpu_sme_finalize(cpu, &local_err);
1940         if (local_err != NULL) {
1941             error_propagate(errp, local_err);
1942             return;
1943         }
1944 
1945         arm_cpu_pauth_finalize(cpu, &local_err);
1946         if (local_err != NULL) {
1947             error_propagate(errp, local_err);
1948             return;
1949         }
1950 
1951         arm_cpu_lpa2_finalize(cpu, &local_err);
1952         if (local_err != NULL) {
1953             error_propagate(errp, local_err);
1954             return;
1955         }
1956     }
1957 #endif
1958 
1959     if (kvm_enabled()) {
1960         kvm_arm_steal_time_finalize(cpu, &local_err);
1961         if (local_err != NULL) {
1962             error_propagate(errp, local_err);
1963             return;
1964         }
1965     }
1966 }
1967 
1968 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1969 {
1970     CPUState *cs = CPU(dev);
1971     ARMCPU *cpu = ARM_CPU(dev);
1972     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1973     CPUARMState *env = &cpu->env;
1974     Error *local_err = NULL;
1975 
1976 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1977     /* Use pc-relative instructions in system-mode */
1978     tcg_cflags_set(cs, CF_PCREL);
1979 #endif
1980 
1981     /* If we needed to query the host kernel for the CPU features
1982      * then it's possible that might have failed in the initfn, but
1983      * this is the first point where we can report it.
1984      */
1985     if (cpu->host_cpu_probe_failed) {
1986         if (!kvm_enabled() && !hvf_enabled()) {
1987             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1988         } else {
1989             error_setg(errp, "Failed to retrieve host CPU features");
1990         }
1991         return;
1992     }
1993 
1994     if (!cpu->gt_cntfrq_hz) {
1995         /*
1996          * 0 means "the board didn't set a value, use the default". (We also
1997          * get here for the CONFIG_USER_ONLY case.)
1998          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1999          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
2000          * which gives a 16ns tick period.
2001          *
2002          * We will use the back-compat value:
2003          *  - for QEMU CPU types added before we standardized on 1GHz
2004          *  - for versioned machine types with a version of 9.0 or earlier
2005          */
2006         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2007             cpu->backcompat_cntfrq) {
2008             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2009         } else {
2010             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2011         }
2012     }
2013 
2014 #ifndef CONFIG_USER_ONLY
2015     /* The NVIC and M-profile CPU are two halves of a single piece of
2016      * hardware; trying to use one without the other is a command line
2017      * error and will result in segfaults if not caught here.
2018      */
2019     if (arm_feature(env, ARM_FEATURE_M)) {
2020         if (!env->nvic) {
2021             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2022             return;
2023         }
2024     } else {
2025         if (env->nvic) {
2026             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2027             return;
2028         }
2029     }
2030 
2031     if (!tcg_enabled() && !qtest_enabled()) {
2032         /*
2033          * We assume that no accelerator except TCG (and the "not really an
2034          * accelerator" qtest) can handle these features, because Arm hardware
2035          * virtualization can't virtualize them.
2036          *
2037          * Catch all the cases which might cause us to create more than one
2038          * address space for the CPU (otherwise we will assert() later in
2039          * cpu_address_space_init()).
2040          */
2041         if (arm_feature(env, ARM_FEATURE_M)) {
2042             error_setg(errp,
2043                        "Cannot enable %s when using an M-profile guest CPU",
2044                        current_accel_name());
2045             return;
2046         }
2047         if (cpu->has_el3) {
2048             error_setg(errp,
2049                        "Cannot enable %s when guest CPU has EL3 enabled",
2050                        current_accel_name());
2051             return;
2052         }
2053         if (cpu->tag_memory) {
2054             error_setg(errp,
2055                        "Cannot enable %s when guest CPUs has MTE enabled",
2056                        current_accel_name());
2057             return;
2058         }
2059     }
2060 
2061     {
2062         uint64_t scale = gt_cntfrq_period_ns(cpu);
2063 
2064         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2065                                                arm_gt_ptimer_cb, cpu);
2066         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2067                                                arm_gt_vtimer_cb, cpu);
2068         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2069                                               arm_gt_htimer_cb, cpu);
2070         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2071                                               arm_gt_stimer_cb, cpu);
2072         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2073                                                   arm_gt_hvtimer_cb, cpu);
2074         cpu->gt_timer[GTIMER_S_EL2_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2075                                                      arm_gt_sel2timer_cb, cpu);
2076         cpu->gt_timer[GTIMER_S_EL2_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2077                                                      arm_gt_sel2vtimer_cb, cpu);
2078     }
2079 #endif
2080 
2081     cpu_exec_realizefn(cs, &local_err);
2082     if (local_err != NULL) {
2083         error_propagate(errp, local_err);
2084         return;
2085     }
2086 
2087     arm_cpu_finalize_features(cpu, &local_err);
2088     if (local_err != NULL) {
2089         error_propagate(errp, local_err);
2090         return;
2091     }
2092 
2093 #ifdef CONFIG_USER_ONLY
2094     /*
2095      * User mode relies on IC IVAU instructions to catch modification of
2096      * dual-mapped code.
2097      *
2098      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2099      * IC IVAU even if the emulated processor does not normally require it.
2100      */
2101     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2102 #endif
2103 
2104     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2105         cpu->has_vfp != cpu->has_neon) {
2106         /*
2107          * This is an architectural requirement for AArch64; AArch32 is
2108          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2109          */
2110         error_setg(errp,
2111                    "AArch64 CPUs must have both VFP and Neon or neither");
2112         return;
2113     }
2114 
2115     if (cpu->has_vfp_d32 != cpu->has_neon) {
2116         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2117         return;
2118     }
2119 
2120    if (!cpu->has_vfp_d32) {
2121         uint32_t u;
2122 
2123         u = cpu->isar.mvfr0;
2124         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2125         cpu->isar.mvfr0 = u;
2126     }
2127 
2128     if (!cpu->has_vfp) {
2129         uint64_t t;
2130         uint32_t u;
2131 
2132         t = cpu->isar.id_aa64isar1;
2133         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2134         cpu->isar.id_aa64isar1 = t;
2135 
2136         t = cpu->isar.id_aa64pfr0;
2137         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2138         cpu->isar.id_aa64pfr0 = t;
2139 
2140         u = cpu->isar.id_isar6;
2141         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2142         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2143         cpu->isar.id_isar6 = u;
2144 
2145         u = cpu->isar.mvfr0;
2146         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2147         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2148         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2149         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2150         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2151         if (!arm_feature(env, ARM_FEATURE_M)) {
2152             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2153             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2154         }
2155         cpu->isar.mvfr0 = u;
2156 
2157         u = cpu->isar.mvfr1;
2158         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2159         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2160         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2161         if (arm_feature(env, ARM_FEATURE_M)) {
2162             u = FIELD_DP32(u, MVFR1, FP16, 0);
2163         }
2164         cpu->isar.mvfr1 = u;
2165 
2166         u = cpu->isar.mvfr2;
2167         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2168         cpu->isar.mvfr2 = u;
2169     }
2170 
2171     if (!cpu->has_neon) {
2172         uint64_t t;
2173         uint32_t u;
2174 
2175         unset_feature(env, ARM_FEATURE_NEON);
2176 
2177         t = cpu->isar.id_aa64isar0;
2178         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2179         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2180         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2181         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2182         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2183         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2184         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2185         cpu->isar.id_aa64isar0 = t;
2186 
2187         t = cpu->isar.id_aa64isar1;
2188         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2189         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2190         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2191         cpu->isar.id_aa64isar1 = t;
2192 
2193         t = cpu->isar.id_aa64pfr0;
2194         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2195         cpu->isar.id_aa64pfr0 = t;
2196 
2197         u = cpu->isar.id_isar5;
2198         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2199         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2200         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2201         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2202         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2203         cpu->isar.id_isar5 = u;
2204 
2205         u = cpu->isar.id_isar6;
2206         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2207         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2208         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2209         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2210         cpu->isar.id_isar6 = u;
2211 
2212         if (!arm_feature(env, ARM_FEATURE_M)) {
2213             u = cpu->isar.mvfr1;
2214             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2215             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2216             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2217             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2218             cpu->isar.mvfr1 = u;
2219 
2220             u = cpu->isar.mvfr2;
2221             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2222             cpu->isar.mvfr2 = u;
2223         }
2224     }
2225 
2226     if (!cpu->has_neon && !cpu->has_vfp) {
2227         uint64_t t;
2228         uint32_t u;
2229 
2230         t = cpu->isar.id_aa64isar0;
2231         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2232         cpu->isar.id_aa64isar0 = t;
2233 
2234         t = cpu->isar.id_aa64isar1;
2235         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2236         cpu->isar.id_aa64isar1 = t;
2237 
2238         u = cpu->isar.mvfr0;
2239         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2240         cpu->isar.mvfr0 = u;
2241 
2242         /* Despite the name, this field covers both VFP and Neon */
2243         u = cpu->isar.mvfr1;
2244         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2245         cpu->isar.mvfr1 = u;
2246     }
2247 
2248     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2249         uint32_t u;
2250 
2251         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2252 
2253         u = cpu->isar.id_isar1;
2254         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2255         cpu->isar.id_isar1 = u;
2256 
2257         u = cpu->isar.id_isar2;
2258         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2259         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2260         cpu->isar.id_isar2 = u;
2261 
2262         u = cpu->isar.id_isar3;
2263         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2264         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2265         cpu->isar.id_isar3 = u;
2266     }
2267 
2268 
2269     /*
2270      * We rely on no XScale CPU having VFP so we can use the same bits in the
2271      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2272      */
2273     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2274            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2275            !arm_feature(env, ARM_FEATURE_XSCALE));
2276 
2277 #ifndef CONFIG_USER_ONLY
2278     {
2279         int pagebits;
2280         if (arm_feature(env, ARM_FEATURE_V7) &&
2281             !arm_feature(env, ARM_FEATURE_M) &&
2282             !arm_feature(env, ARM_FEATURE_PMSA)) {
2283             /*
2284              * v7VMSA drops support for the old ARMv5 tiny pages,
2285              * so we can use 4K pages.
2286              */
2287             pagebits = 12;
2288         } else {
2289             /*
2290              * For CPUs which might have tiny 1K pages, or which have an
2291              * MPU and might have small region sizes, stick with 1K pages.
2292              */
2293             pagebits = 10;
2294         }
2295         if (!set_preferred_target_page_bits(pagebits)) {
2296             /*
2297              * This can only ever happen for hotplugging a CPU, or if
2298              * the board code incorrectly creates a CPU which it has
2299              * promised via minimum_page_size that it will not.
2300              */
2301             error_setg(errp, "This CPU requires a smaller page size "
2302                        "than the system is using");
2303             return;
2304         }
2305     }
2306 #endif
2307 
2308     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2309      * We don't support setting cluster ID ([16..23]) (known as Aff2
2310      * in later ARM ARM versions), or any of the higher affinity level fields,
2311      * so these bits always RAZ.
2312      */
2313     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2314         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2315                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2316     }
2317 
2318     if (cpu->reset_hivecs) {
2319             cpu->reset_sctlr |= (1 << 13);
2320     }
2321 
2322     if (cpu->cfgend) {
2323         if (arm_feature(env, ARM_FEATURE_V7)) {
2324             cpu->reset_sctlr |= SCTLR_EE;
2325         } else {
2326             cpu->reset_sctlr |= SCTLR_B;
2327         }
2328     }
2329 
2330     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2331         /* If the has_el3 CPU property is disabled then we need to disable the
2332          * feature.
2333          */
2334         unset_feature(env, ARM_FEATURE_EL3);
2335 
2336         /*
2337          * Disable the security extension feature bits in the processor
2338          * feature registers as well.
2339          */
2340         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2341         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2342         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2343                                            ID_AA64PFR0, EL3, 0);
2344 
2345         /* Disable the realm management extension, which requires EL3. */
2346         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2347                                            ID_AA64PFR0, RME, 0);
2348     }
2349 
2350     if (!cpu->has_el2) {
2351         unset_feature(env, ARM_FEATURE_EL2);
2352     }
2353 
2354     if (!cpu->has_pmu) {
2355         unset_feature(env, ARM_FEATURE_PMU);
2356     }
2357     if (arm_feature(env, ARM_FEATURE_PMU)) {
2358         pmu_init(cpu);
2359 
2360         if (!kvm_enabled()) {
2361             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2362             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2363         }
2364 
2365 #ifndef CONFIG_USER_ONLY
2366         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2367                 cpu);
2368 #endif
2369     } else {
2370         cpu->isar.id_aa64dfr0 =
2371             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2372         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2373         cpu->pmceid0 = 0;
2374         cpu->pmceid1 = 0;
2375     }
2376 
2377     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2378         /*
2379          * Disable the hypervisor feature bits in the processor feature
2380          * registers if we don't have EL2.
2381          */
2382         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2383                                            ID_AA64PFR0, EL2, 0);
2384         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2385                                        ID_PFR1, VIRTUALIZATION, 0);
2386     }
2387 
2388     if (cpu_isar_feature(aa64_mte, cpu)) {
2389         /*
2390          * The architectural range of GM blocksize is 2-6, however qemu
2391          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2392          */
2393         if (tcg_enabled()) {
2394             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2395         }
2396 
2397 #ifndef CONFIG_USER_ONLY
2398         /*
2399          * If we run with TCG and do not have tag-memory provided by
2400          * the machine, then reduce MTE support to instructions enabled at EL0.
2401          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2402          */
2403         if (tcg_enabled() && cpu->tag_memory == NULL) {
2404             cpu->isar.id_aa64pfr1 =
2405                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2406         }
2407 
2408         /*
2409          * If MTE is supported by the host, however it should not be
2410          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2411          */
2412         if (kvm_enabled() && !cpu->kvm_mte) {
2413                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2414         }
2415 #endif
2416     }
2417 
2418 #ifndef CONFIG_USER_ONLY
2419     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2420         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2421                                        arm_wfxt_timer_cb, cpu);
2422     }
2423 #endif
2424 
2425     if (tcg_enabled()) {
2426         /*
2427          * Don't report some architectural features in the ID registers
2428          * where TCG does not yet implement it (not even a minimal
2429          * stub version). This avoids guests falling over when they
2430          * try to access the non-existent system registers for them.
2431          */
2432         /* FEAT_SPE (Statistical Profiling Extension) */
2433         cpu->isar.id_aa64dfr0 =
2434             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2435         /* FEAT_TRBE (Trace Buffer Extension) */
2436         cpu->isar.id_aa64dfr0 =
2437             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2438         /* FEAT_TRF (Self-hosted Trace Extension) */
2439         cpu->isar.id_aa64dfr0 =
2440             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2441         cpu->isar.id_dfr0 =
2442             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2443         /* Trace Macrocell system register access */
2444         cpu->isar.id_aa64dfr0 =
2445             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2446         cpu->isar.id_dfr0 =
2447             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2448         /* Memory mapped trace */
2449         cpu->isar.id_dfr0 =
2450             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2451         /* FEAT_AMU (Activity Monitors Extension) */
2452         cpu->isar.id_aa64pfr0 =
2453             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2454         cpu->isar.id_pfr0 =
2455             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2456         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2457         cpu->isar.id_aa64pfr0 =
2458             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2459     }
2460 
2461     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2462      * to false or by setting pmsav7-dregion to 0.
2463      */
2464     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2465         cpu->has_mpu = false;
2466         cpu->pmsav7_dregion = 0;
2467         cpu->pmsav8r_hdregion = 0;
2468     }
2469 
2470     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2471         arm_feature(env, ARM_FEATURE_V7)) {
2472         uint32_t nr = cpu->pmsav7_dregion;
2473 
2474         if (nr > 0xff) {
2475             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2476             return;
2477         }
2478 
2479         if (nr) {
2480             if (arm_feature(env, ARM_FEATURE_V8)) {
2481                 /* PMSAv8 */
2482                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2483                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2484                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2485                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2486                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2487                 }
2488             } else {
2489                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2490                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2491                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2492             }
2493         }
2494 
2495         if (cpu->pmsav8r_hdregion > 0xff) {
2496             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2497                               cpu->pmsav8r_hdregion);
2498             return;
2499         }
2500 
2501         if (cpu->pmsav8r_hdregion) {
2502             env->pmsav8.hprbar = g_new0(uint32_t,
2503                                         cpu->pmsav8r_hdregion);
2504             env->pmsav8.hprlar = g_new0(uint32_t,
2505                                         cpu->pmsav8r_hdregion);
2506         }
2507     }
2508 
2509     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2510         uint32_t nr = cpu->sau_sregion;
2511 
2512         if (nr > 0xff) {
2513             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2514             return;
2515         }
2516 
2517         if (nr) {
2518             env->sau.rbar = g_new0(uint32_t, nr);
2519             env->sau.rlar = g_new0(uint32_t, nr);
2520         }
2521     }
2522 
2523     if (arm_feature(env, ARM_FEATURE_EL3)) {
2524         set_feature(env, ARM_FEATURE_VBAR);
2525     }
2526 
2527 #ifndef CONFIG_USER_ONLY
2528     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2529         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2530     }
2531 #endif
2532 
2533     register_cp_regs_for_features(cpu);
2534     arm_cpu_register_gdb_regs_for_features(cpu);
2535     arm_cpu_register_gdb_commands(cpu);
2536 
2537     init_cpreg_list(cpu);
2538 
2539 #ifndef CONFIG_USER_ONLY
2540     MachineState *ms = MACHINE(qdev_get_machine());
2541     unsigned int smp_cpus = ms->smp.cpus;
2542     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2543 
2544     /*
2545      * We must set cs->num_ases to the final value before
2546      * the first call to cpu_address_space_init.
2547      */
2548     if (cpu->tag_memory != NULL) {
2549         cs->num_ases = 3 + has_secure;
2550     } else {
2551         cs->num_ases = 1 + has_secure;
2552     }
2553 
2554     if (has_secure) {
2555         if (!cpu->secure_memory) {
2556             cpu->secure_memory = cs->memory;
2557         }
2558         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2559                                cpu->secure_memory);
2560     }
2561 
2562     if (cpu->tag_memory != NULL) {
2563         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2564                                cpu->tag_memory);
2565         if (has_secure) {
2566             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2567                                    cpu->secure_tag_memory);
2568         }
2569     }
2570 
2571     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2572 
2573     /* No core_count specified, default to smp_cpus. */
2574     if (cpu->core_count == -1) {
2575         cpu->core_count = smp_cpus;
2576     }
2577 #endif
2578 
2579     if (tcg_enabled()) {
2580         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2581 
2582         /*
2583          * We only support DCZ blocklen that fits on one page.
2584          *
2585          * Architectually this is always true.  However TARGET_PAGE_SIZE
2586          * is variable and, for compatibility with -machine virt-2.7,
2587          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2588          * But even then, while the largest architectural DCZ blocklen
2589          * is 2KiB, no cpu actually uses such a large blocklen.
2590          */
2591         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2592 
2593         /*
2594          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2595          * both nibbles of each byte storing tag data may be written at once.
2596          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2597          */
2598         if (cpu_isar_feature(aa64_mte, cpu)) {
2599             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2600         }
2601     }
2602 
2603     qemu_init_vcpu(cs);
2604     cpu_reset(cs);
2605 
2606     acc->parent_realize(dev, errp);
2607 }
2608 
2609 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2610 {
2611     ObjectClass *oc;
2612     char *typename;
2613     char **cpuname;
2614     const char *cpunamestr;
2615 
2616     cpuname = g_strsplit(cpu_model, ",", 1);
2617     cpunamestr = cpuname[0];
2618 #ifdef CONFIG_USER_ONLY
2619     /* For backwards compatibility usermode emulation allows "-cpu any",
2620      * which has the same semantics as "-cpu max".
2621      */
2622     if (!strcmp(cpunamestr, "any")) {
2623         cpunamestr = "max";
2624     }
2625 #endif
2626     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2627     oc = object_class_by_name(typename);
2628     g_strfreev(cpuname);
2629     g_free(typename);
2630 
2631     return oc;
2632 }
2633 
2634 static const Property arm_cpu_properties[] = {
2635     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2636     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2637                         mp_affinity, ARM64_AFFINITY_INVALID),
2638     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2639     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2640     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2641     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2642     DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU,
2643                       backcompat_pauth_default_use_qarma5, false),
2644 };
2645 
2646 static const gchar *arm_gdb_arch_name(CPUState *cs)
2647 {
2648     ARMCPU *cpu = ARM_CPU(cs);
2649     CPUARMState *env = &cpu->env;
2650 
2651     if (arm_gdbstub_is_aarch64(cpu)) {
2652         return "aarch64";
2653     }
2654     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2655         return "iwmmxt";
2656     }
2657     return "arm";
2658 }
2659 
2660 static const char *arm_gdb_get_core_xml_file(CPUState *cs)
2661 {
2662     ARMCPU *cpu = ARM_CPU(cs);
2663     CPUARMState *env = &cpu->env;
2664 
2665     if (arm_gdbstub_is_aarch64(cpu)) {
2666         return "aarch64-core.xml";
2667     }
2668     if (arm_feature(env, ARM_FEATURE_M)) {
2669         return "arm-m-profile.xml";
2670     }
2671     return "arm-core.xml";
2672 }
2673 
2674 #ifdef CONFIG_USER_ONLY
2675 /**
2676  * aarch64_untagged_addr:
2677  *
2678  * Remove any address tag from @x.  This is explicitly related to the
2679  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
2680  *
2681  * There should be a better place to put this, but we need this in
2682  * include/exec/cpu_ldst.h, and not some place linux-user specific.
2683  *
2684  * Note that arm-*-user will never set tagged_addr_enable.
2685  */
2686 static vaddr aarch64_untagged_addr(CPUState *cs, vaddr x)
2687 {
2688     CPUARMState *env = cpu_env(cs);
2689     if (env->tagged_addr_enable) {
2690         /*
2691          * TBI is enabled for userspace but not kernelspace addresses.
2692          * Only clear the tag if bit 55 is clear.
2693          */
2694         x &= sextract64(x, 0, 56);
2695     }
2696     return x;
2697 }
2698 #else
2699 #include "hw/core/sysemu-cpu-ops.h"
2700 
2701 static const struct SysemuCPUOps arm_sysemu_ops = {
2702     .has_work = arm_cpu_has_work,
2703     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2704     .asidx_from_attrs = arm_asidx_from_attrs,
2705     .write_elf32_note = arm_cpu_write_elf32_note,
2706     .write_elf64_note = arm_cpu_write_elf64_note,
2707     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2708     .legacy_vmsd = &vmstate_arm_cpu,
2709 };
2710 #endif
2711 
2712 #ifdef CONFIG_TCG
2713 static const TCGCPUOps arm_tcg_ops = {
2714     .mttcg_supported = true,
2715     /* ARM processors have a weak memory model */
2716     .guest_default_memory_order = 0,
2717 
2718     .initialize = arm_translate_init,
2719     .translate_code = arm_translate_code,
2720     .get_tb_cpu_state = arm_get_tb_cpu_state,
2721     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2722     .debug_excp_handler = arm_debug_excp_handler,
2723     .restore_state_to_opc = arm_restore_state_to_opc,
2724     .mmu_index = arm_cpu_mmu_index,
2725 
2726 #ifdef CONFIG_USER_ONLY
2727     .record_sigsegv = arm_cpu_record_sigsegv,
2728     .record_sigbus = arm_cpu_record_sigbus,
2729     .untagged_addr = aarch64_untagged_addr,
2730 #else
2731     .tlb_fill_align = arm_cpu_tlb_fill_align,
2732     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2733     .cpu_exec_halt = arm_cpu_exec_halt,
2734     .cpu_exec_reset = cpu_reset,
2735     .do_interrupt = arm_cpu_do_interrupt,
2736     .do_transaction_failed = arm_cpu_do_transaction_failed,
2737     .do_unaligned_access = arm_cpu_do_unaligned_access,
2738     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2739     .debug_check_watchpoint = arm_debug_check_watchpoint,
2740     .debug_check_breakpoint = arm_debug_check_breakpoint,
2741 #endif /* !CONFIG_USER_ONLY */
2742 };
2743 #endif /* CONFIG_TCG */
2744 
2745 static void arm_cpu_class_init(ObjectClass *oc, const void *data)
2746 {
2747     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2748     CPUClass *cc = CPU_CLASS(acc);
2749     DeviceClass *dc = DEVICE_CLASS(oc);
2750     ResettableClass *rc = RESETTABLE_CLASS(oc);
2751 
2752     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2753                                     &acc->parent_realize);
2754 
2755     device_class_set_props(dc, arm_cpu_properties);
2756 
2757     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2758                                        &acc->parent_phases);
2759 
2760     cc->class_by_name = arm_cpu_class_by_name;
2761     cc->dump_state = arm_cpu_dump_state;
2762     cc->set_pc = arm_cpu_set_pc;
2763     cc->get_pc = arm_cpu_get_pc;
2764     cc->gdb_read_register = arm_cpu_gdb_read_register;
2765     cc->gdb_write_register = arm_cpu_gdb_write_register;
2766 #ifndef CONFIG_USER_ONLY
2767     cc->sysemu_ops = &arm_sysemu_ops;
2768 #endif
2769     cc->gdb_arch_name = arm_gdb_arch_name;
2770     cc->gdb_get_core_xml_file = arm_gdb_get_core_xml_file;
2771     cc->gdb_stop_before_watchpoint = true;
2772     cc->disas_set_info = arm_disas_set_info;
2773 
2774 #ifdef CONFIG_TCG
2775     cc->tcg_ops = &arm_tcg_ops;
2776 #endif /* CONFIG_TCG */
2777 }
2778 
2779 static void arm_cpu_instance_init(Object *obj)
2780 {
2781     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2782 
2783     acc->info->initfn(obj);
2784     arm_cpu_post_init(obj);
2785 }
2786 
2787 static void cpu_register_class_init(ObjectClass *oc, const void *data)
2788 {
2789     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2790     CPUClass *cc = CPU_CLASS(acc);
2791 
2792     acc->info = data;
2793     if (acc->info->deprecation_note) {
2794         cc->deprecation_note = acc->info->deprecation_note;
2795     }
2796 }
2797 
2798 void arm_cpu_register(const ARMCPUInfo *info)
2799 {
2800     TypeInfo type_info = {
2801         .parent = TYPE_ARM_CPU,
2802         .instance_init = arm_cpu_instance_init,
2803         .class_init = info->class_init ?: cpu_register_class_init,
2804         .class_data = info,
2805     };
2806 
2807     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2808     type_register_static(&type_info);
2809     g_free((void *)type_info.name);
2810 }
2811 
2812 static const TypeInfo arm_cpu_type_info = {
2813     .name = TYPE_ARM_CPU,
2814     .parent = TYPE_CPU,
2815     .instance_size = sizeof(ARMCPU),
2816     .instance_align = __alignof__(ARMCPU),
2817     .instance_init = arm_cpu_initfn,
2818     .instance_finalize = arm_cpu_finalizefn,
2819     .abstract = true,
2820     .class_size = sizeof(ARMCPUClass),
2821     .class_init = arm_cpu_class_init,
2822 };
2823 
2824 static void arm_cpu_register_types(void)
2825 {
2826     type_register_static(&arm_cpu_type_info);
2827 }
2828 
2829 type_init(arm_cpu_register_types)
2830