xref: /qemu/target/arm/cpu.c (revision 8a2b516ba2855c4530388051de2b8d17bc780ea8)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "accel/tcg/cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/exec-all.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 #endif /* CONFIG_TCG */
125 
126 #ifndef CONFIG_USER_ONLY
127 /*
128  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
129  * IRQ without Superpriority. Moreover, if the GIC is configured so that
130  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
131  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
132  * unconditionally.
133  */
134 static bool arm_cpu_has_work(CPUState *cs)
135 {
136     ARMCPU *cpu = ARM_CPU(cs);
137 
138     return (cpu->power_state != PSCI_OFF)
139         && cs->interrupt_request &
140         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
141          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
142          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
143          | CPU_INTERRUPT_EXITTB);
144 }
145 #endif /* !CONFIG_USER_ONLY */
146 
147 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
148 {
149     return arm_env_mmu_index(cpu_env(cs));
150 }
151 
152 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
153                                  void *opaque)
154 {
155     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
156 
157     entry->hook = hook;
158     entry->opaque = opaque;
159 
160     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
161 }
162 
163 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
164                                  void *opaque)
165 {
166     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
167 
168     entry->hook = hook;
169     entry->opaque = opaque;
170 
171     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
172 }
173 
174 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
175 {
176     /* Reset a single ARMCPRegInfo register */
177     ARMCPRegInfo *ri = value;
178     ARMCPU *cpu = opaque;
179 
180     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
181         return;
182     }
183 
184     if (ri->resetfn) {
185         ri->resetfn(&cpu->env, ri);
186         return;
187     }
188 
189     /* A zero offset is never possible as it would be regs[0]
190      * so we use it to indicate that reset is being handled elsewhere.
191      * This is basically only used for fields in non-core coprocessors
192      * (like the pxa2xx ones).
193      */
194     if (!ri->fieldoffset) {
195         return;
196     }
197 
198     if (cpreg_field_is_64bit(ri)) {
199         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
200     } else {
201         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
202     }
203 }
204 
205 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
206 {
207     /* Purely an assertion check: we've already done reset once,
208      * so now check that running the reset for the cpreg doesn't
209      * change its value. This traps bugs where two different cpregs
210      * both try to reset the same state field but to different values.
211      */
212     ARMCPRegInfo *ri = value;
213     ARMCPU *cpu = opaque;
214     uint64_t oldvalue, newvalue;
215 
216     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
217         return;
218     }
219 
220     oldvalue = read_raw_cp_reg(&cpu->env, ri);
221     cp_reg_reset(key, value, opaque);
222     newvalue = read_raw_cp_reg(&cpu->env, ri);
223     assert(oldvalue == newvalue);
224 }
225 
226 static void arm_cpu_reset_hold(Object *obj, ResetType type)
227 {
228     CPUState *cs = CPU(obj);
229     ARMCPU *cpu = ARM_CPU(cs);
230     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
231     CPUARMState *env = &cpu->env;
232 
233     if (acc->parent_phases.hold) {
234         acc->parent_phases.hold(obj, type);
235     }
236 
237     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
238 
239     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
240     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
241 
242     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
243     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
244     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
245     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
246 
247     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
248 
249     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
251     }
252 
253     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
254         /* 64 bit CPUs always start in 64 bit mode */
255         env->aarch64 = true;
256 #if defined(CONFIG_USER_ONLY)
257         env->pstate = PSTATE_MODE_EL0t;
258         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
259         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
260         /* Enable all PAC keys.  */
261         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
262                                   SCTLR_EnDA | SCTLR_EnDB);
263         /* Trap on btype=3 for PACIxSP. */
264         env->cp15.sctlr_el[1] |= SCTLR_BT0;
265         /* Trap on implementation defined registers. */
266         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
267             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
268         }
269         /* and to the FP/Neon instructions */
270         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
271                                          CPACR_EL1, FPEN, 3);
272         /* and to the SVE instructions, with default vector length */
273         if (cpu_isar_feature(aa64_sve, cpu)) {
274             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
275                                              CPACR_EL1, ZEN, 3);
276             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
277         }
278         /* and for SME instructions, with default vector length, and TPIDR2 */
279         if (cpu_isar_feature(aa64_sme, cpu)) {
280             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
281             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
282                                              CPACR_EL1, SMEN, 3);
283             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
284             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
285                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
286                                                  SMCR, FA64, 1);
287             }
288         }
289         /*
290          * Enable 48-bit address space (TODO: take reserved_va into account).
291          * Enable TBI0 but not TBI1.
292          * Note that this must match useronly_clean_ptr.
293          */
294         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
295 
296         /* Enable MTE */
297         if (cpu_isar_feature(aa64_mte, cpu)) {
298             /* Enable tag access, but leave TCF0 as No Effect (0). */
299             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
300             /*
301              * Exclude all tags, so that tag 0 is always used.
302              * This corresponds to Linux current->thread.gcr_incl = 0.
303              *
304              * Set RRND, so that helper_irg() will generate a seed later.
305              * Here in cpu_reset(), the crypto subsystem has not yet been
306              * initialized.
307              */
308             env->cp15.gcr_el1 = 0x1ffff;
309         }
310         /*
311          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
312          * This is not yet exposed from the Linux kernel in any way.
313          */
314         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
315         /* Disable access to Debug Communication Channel (DCC). */
316         env->cp15.mdscr_el1 |= 1 << 12;
317         /* Enable FEAT_MOPS */
318         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
319 #else
320         /* Reset into the highest available EL */
321         if (arm_feature(env, ARM_FEATURE_EL3)) {
322             env->pstate = PSTATE_MODE_EL3h;
323         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
324             env->pstate = PSTATE_MODE_EL2h;
325         } else {
326             env->pstate = PSTATE_MODE_EL1h;
327         }
328 
329         /* Sample rvbar at reset.  */
330         env->cp15.rvbar = cpu->rvbar_prop;
331         env->pc = env->cp15.rvbar;
332 #endif
333     } else {
334 #if defined(CONFIG_USER_ONLY)
335         /* Userspace expects access to cp10 and cp11 for FP/Neon */
336         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
337                                          CPACR, CP10, 3);
338         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
339                                          CPACR, CP11, 3);
340 #endif
341         if (arm_feature(env, ARM_FEATURE_V8)) {
342             env->cp15.rvbar = cpu->rvbar_prop;
343             env->regs[15] = cpu->rvbar_prop;
344         }
345     }
346 
347 #if defined(CONFIG_USER_ONLY)
348     env->uncached_cpsr = ARM_CPU_MODE_USR;
349     /* For user mode we must enable access to coprocessors */
350     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
351     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
352         env->cp15.c15_cpar = 3;
353     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
354         env->cp15.c15_cpar = 1;
355     }
356 #else
357 
358     /*
359      * If the highest available EL is EL2, AArch32 will start in Hyp
360      * mode; otherwise it starts in SVC. Note that if we start in
361      * AArch64 then these values in the uncached_cpsr will be ignored.
362      */
363     if (arm_feature(env, ARM_FEATURE_EL2) &&
364         !arm_feature(env, ARM_FEATURE_EL3)) {
365         env->uncached_cpsr = ARM_CPU_MODE_HYP;
366     } else {
367         env->uncached_cpsr = ARM_CPU_MODE_SVC;
368     }
369     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
370 
371     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
372      * executing as AArch32 then check if highvecs are enabled and
373      * adjust the PC accordingly.
374      */
375     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
376         env->regs[15] = 0xFFFF0000;
377     }
378 
379     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
380 #endif
381 
382     if (arm_feature(env, ARM_FEATURE_M)) {
383 #ifndef CONFIG_USER_ONLY
384         uint32_t initial_msp; /* Loaded from 0x0 */
385         uint32_t initial_pc; /* Loaded from 0x4 */
386         uint8_t *rom;
387         uint32_t vecbase;
388 #endif
389 
390         if (cpu_isar_feature(aa32_lob, cpu)) {
391             /*
392              * LTPSIZE is constant 4 if MVE not implemented, and resets
393              * to an UNKNOWN value if MVE is implemented. We choose to
394              * always reset to 4.
395              */
396             env->v7m.ltpsize = 4;
397             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
398             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
399             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
400         }
401 
402         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
403             env->v7m.secure = true;
404         } else {
405             /* This bit resets to 0 if security is supported, but 1 if
406              * it is not. The bit is not present in v7M, but we set it
407              * here so we can avoid having to make checks on it conditional
408              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
409              */
410             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
411             /*
412              * Set NSACR to indicate "NS access permitted to everything";
413              * this avoids having to have all the tests of it being
414              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
415              * v8.1M the guest-visible value of NSACR in a CPU without the
416              * Security Extension is 0xcff.
417              */
418             env->v7m.nsacr = 0xcff;
419         }
420 
421         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
422          * that it resets to 1, so QEMU always does that rather than making
423          * it dependent on CPU model. In v8M it is RES1.
424          */
425         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
426         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
427         if (arm_feature(env, ARM_FEATURE_V8)) {
428             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
429             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
430             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
431         }
432         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
433             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
434             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
435         }
436 
437         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
438             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
439             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
440                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
441         }
442 
443 #ifndef CONFIG_USER_ONLY
444         /* Unlike A/R profile, M profile defines the reset LR value */
445         env->regs[14] = 0xffffffff;
446 
447         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
448         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
449 
450         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
451         vecbase = env->v7m.vecbase[env->v7m.secure];
452         rom = rom_ptr_for_as(cs->as, vecbase, 8);
453         if (rom) {
454             /* Address zero is covered by ROM which hasn't yet been
455              * copied into physical memory.
456              */
457             initial_msp = ldl_p(rom);
458             initial_pc = ldl_p(rom + 4);
459         } else {
460             /* Address zero not covered by a ROM blob, or the ROM blob
461              * is in non-modifiable memory and this is a second reset after
462              * it got copied into memory. In the latter case, rom_ptr
463              * will return a NULL pointer and we should use ldl_phys instead.
464              */
465             initial_msp = ldl_phys(cs->as, vecbase);
466             initial_pc = ldl_phys(cs->as, vecbase + 4);
467         }
468 
469         qemu_log_mask(CPU_LOG_INT,
470                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
471                       initial_msp, initial_pc);
472 
473         env->regs[13] = initial_msp & 0xFFFFFFFC;
474         env->regs[15] = initial_pc & ~1;
475         env->thumb = initial_pc & 1;
476 #else
477         /*
478          * For user mode we run non-secure and with access to the FPU.
479          * The FPU context is active (ie does not need further setup)
480          * and is owned by non-secure.
481          */
482         env->v7m.secure = false;
483         env->v7m.nsacr = 0xcff;
484         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
485         env->v7m.fpccr[M_REG_S] &=
486             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
487         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
488 #endif
489     }
490 
491     /* M profile requires that reset clears the exclusive monitor;
492      * A profile does not, but clearing it makes more sense than having it
493      * set with an exclusive access on address zero.
494      */
495     arm_clear_exclusive(env);
496 
497     if (arm_feature(env, ARM_FEATURE_PMSA)) {
498         if (cpu->pmsav7_dregion > 0) {
499             if (arm_feature(env, ARM_FEATURE_V8)) {
500                 memset(env->pmsav8.rbar[M_REG_NS], 0,
501                        sizeof(*env->pmsav8.rbar[M_REG_NS])
502                        * cpu->pmsav7_dregion);
503                 memset(env->pmsav8.rlar[M_REG_NS], 0,
504                        sizeof(*env->pmsav8.rlar[M_REG_NS])
505                        * cpu->pmsav7_dregion);
506                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
507                     memset(env->pmsav8.rbar[M_REG_S], 0,
508                            sizeof(*env->pmsav8.rbar[M_REG_S])
509                            * cpu->pmsav7_dregion);
510                     memset(env->pmsav8.rlar[M_REG_S], 0,
511                            sizeof(*env->pmsav8.rlar[M_REG_S])
512                            * cpu->pmsav7_dregion);
513                 }
514             } else if (arm_feature(env, ARM_FEATURE_V7)) {
515                 memset(env->pmsav7.drbar, 0,
516                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
517                 memset(env->pmsav7.drsr, 0,
518                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
519                 memset(env->pmsav7.dracr, 0,
520                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
521             }
522         }
523 
524         if (cpu->pmsav8r_hdregion > 0) {
525             memset(env->pmsav8.hprbar, 0,
526                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
527             memset(env->pmsav8.hprlar, 0,
528                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
529         }
530 
531         env->pmsav7.rnr[M_REG_NS] = 0;
532         env->pmsav7.rnr[M_REG_S] = 0;
533         env->pmsav8.mair0[M_REG_NS] = 0;
534         env->pmsav8.mair0[M_REG_S] = 0;
535         env->pmsav8.mair1[M_REG_NS] = 0;
536         env->pmsav8.mair1[M_REG_S] = 0;
537     }
538 
539     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
540         if (cpu->sau_sregion > 0) {
541             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
542             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
543         }
544         env->sau.rnr = 0;
545         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
546          * the Cortex-M33 does.
547          */
548         env->sau.ctrl = 0;
549     }
550 
551     set_flush_to_zero(1, &env->vfp.fp_status[FPST_STD]);
552     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_STD]);
553     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD]);
554     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD_F16]);
555     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32]);
556     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
557     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD]);
558     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32_F16]);
559     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
560     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD_F16]);
561     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH]);
562     set_flush_to_zero(1, &env->vfp.fp_status[FPST_AH]);
563     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_AH]);
564     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH_F16]);
565 
566 #ifndef CONFIG_USER_ONLY
567     if (kvm_enabled()) {
568         kvm_arm_reset_vcpu(cpu);
569     }
570 #endif
571 
572     if (tcg_enabled()) {
573         hw_breakpoint_update_all(cpu);
574         hw_watchpoint_update_all(cpu);
575 
576         arm_rebuild_hflags(env);
577     }
578 }
579 
580 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
581 {
582     ARMCPU *cpu = ARM_CPU(cpustate);
583     CPUARMState *env = &cpu->env;
584     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
585     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
586 
587     /*
588      * Check we have the EL we're aiming for. If that is the
589      * highest implemented EL, then cpu_reset has already done
590      * all the work.
591      */
592     switch (target_el) {
593     case 3:
594         assert(have_el3);
595         return;
596     case 2:
597         assert(have_el2);
598         if (!have_el3) {
599             return;
600         }
601         break;
602     case 1:
603         if (!have_el3 && !have_el2) {
604             return;
605         }
606         break;
607     default:
608         g_assert_not_reached();
609     }
610 
611     if (have_el3) {
612         /*
613          * Set the EL3 state so code can run at EL2. This should match
614          * the requirements set by Linux in its booting spec.
615          */
616         if (env->aarch64) {
617             env->cp15.scr_el3 |= SCR_RW;
618             if (cpu_isar_feature(aa64_pauth, cpu)) {
619                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
620             }
621             if (cpu_isar_feature(aa64_mte, cpu)) {
622                 env->cp15.scr_el3 |= SCR_ATA;
623             }
624             if (cpu_isar_feature(aa64_sve, cpu)) {
625                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
626                 env->vfp.zcr_el[3] = 0xf;
627             }
628             if (cpu_isar_feature(aa64_sme, cpu)) {
629                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
630                 env->cp15.scr_el3 |= SCR_ENTP2;
631                 env->vfp.smcr_el[3] = 0xf;
632             }
633             if (cpu_isar_feature(aa64_hcx, cpu)) {
634                 env->cp15.scr_el3 |= SCR_HXEN;
635             }
636             if (cpu_isar_feature(aa64_fgt, cpu)) {
637                 env->cp15.scr_el3 |= SCR_FGTEN;
638             }
639         }
640 
641         if (target_el == 2) {
642             /* If the guest is at EL2 then Linux expects the HVC insn to work */
643             env->cp15.scr_el3 |= SCR_HCE;
644         }
645 
646         /* Put CPU into non-secure state */
647         env->cp15.scr_el3 |= SCR_NS;
648         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
649         env->cp15.nsacr |= 3 << 10;
650     }
651 
652     if (have_el2 && target_el < 2) {
653         /* Set EL2 state so code can run at EL1. */
654         if (env->aarch64) {
655             env->cp15.hcr_el2 |= HCR_RW;
656         }
657     }
658 
659     /* Set the CPU to the desired state */
660     if (env->aarch64) {
661         env->pstate = aarch64_pstate_mode(target_el, true);
662     } else {
663         static const uint32_t mode_for_el[] = {
664             0,
665             ARM_CPU_MODE_SVC,
666             ARM_CPU_MODE_HYP,
667             ARM_CPU_MODE_SVC,
668         };
669 
670         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
671     }
672 }
673 
674 
675 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
676 
677 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
678                                      unsigned int target_el,
679                                      unsigned int cur_el, bool secure,
680                                      uint64_t hcr_el2)
681 {
682     CPUARMState *env = cpu_env(cs);
683     bool pstate_unmasked;
684     bool unmasked = false;
685     bool allIntMask = false;
686 
687     /*
688      * Don't take exceptions if they target a lower EL.
689      * This check should catch any exceptions that would not be taken
690      * but left pending.
691      */
692     if (cur_el > target_el) {
693         return false;
694     }
695 
696     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
697         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
698         allIntMask = env->pstate & PSTATE_ALLINT ||
699                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
700                       (env->pstate & PSTATE_SP));
701     }
702 
703     switch (excp_idx) {
704     case EXCP_NMI:
705         pstate_unmasked = !allIntMask;
706         break;
707 
708     case EXCP_VINMI:
709         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
710             /* VINMIs are only taken when hypervized.  */
711             return false;
712         }
713         return !allIntMask;
714     case EXCP_VFNMI:
715         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
716             /* VFNMIs are only taken when hypervized.  */
717             return false;
718         }
719         return !allIntMask;
720     case EXCP_FIQ:
721         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
722         break;
723 
724     case EXCP_IRQ:
725         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
726         break;
727 
728     case EXCP_VFIQ:
729         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
730             /* VFIQs are only taken when hypervized.  */
731             return false;
732         }
733         return !(env->daif & PSTATE_F) && (!allIntMask);
734     case EXCP_VIRQ:
735         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
736             /* VIRQs are only taken when hypervized.  */
737             return false;
738         }
739         return !(env->daif & PSTATE_I) && (!allIntMask);
740     case EXCP_VSERR:
741         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
742             /* VIRQs are only taken when hypervized.  */
743             return false;
744         }
745         return !(env->daif & PSTATE_A);
746     default:
747         g_assert_not_reached();
748     }
749 
750     /*
751      * Use the target EL, current execution state and SCR/HCR settings to
752      * determine whether the corresponding CPSR bit is used to mask the
753      * interrupt.
754      */
755     if ((target_el > cur_el) && (target_el != 1)) {
756         /* Exceptions targeting a higher EL may not be maskable */
757         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
758             switch (target_el) {
759             case 2:
760                 /*
761                  * According to ARM DDI 0487H.a, an interrupt can be masked
762                  * when HCR_E2H and HCR_TGE are both set regardless of the
763                  * current Security state. Note that we need to revisit this
764                  * part again once we need to support NMI.
765                  */
766                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
767                         unmasked = true;
768                 }
769                 break;
770             case 3:
771                 /* Interrupt cannot be masked when the target EL is 3 */
772                 unmasked = true;
773                 break;
774             default:
775                 g_assert_not_reached();
776             }
777         } else {
778             /*
779              * The old 32-bit-only environment has a more complicated
780              * masking setup. HCR and SCR bits not only affect interrupt
781              * routing but also change the behaviour of masking.
782              */
783             bool hcr, scr;
784 
785             switch (excp_idx) {
786             case EXCP_FIQ:
787                 /*
788                  * If FIQs are routed to EL3 or EL2 then there are cases where
789                  * we override the CPSR.F in determining if the exception is
790                  * masked or not. If neither of these are set then we fall back
791                  * to the CPSR.F setting otherwise we further assess the state
792                  * below.
793                  */
794                 hcr = hcr_el2 & HCR_FMO;
795                 scr = (env->cp15.scr_el3 & SCR_FIQ);
796 
797                 /*
798                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
799                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
800                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
801                  * when non-secure but only when FIQs are only routed to EL3.
802                  */
803                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
804                 break;
805             case EXCP_IRQ:
806                 /*
807                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
808                  * we may override the CPSR.I masking when in non-secure state.
809                  * The SCR.IRQ setting has already been taken into consideration
810                  * when setting the target EL, so it does not have a further
811                  * affect here.
812                  */
813                 hcr = hcr_el2 & HCR_IMO;
814                 scr = false;
815                 break;
816             default:
817                 g_assert_not_reached();
818             }
819 
820             if ((scr || hcr) && !secure) {
821                 unmasked = true;
822             }
823         }
824     }
825 
826     /*
827      * The PSTATE bits only mask the interrupt if we have not overridden the
828      * ability above.
829      */
830     return unmasked || pstate_unmasked;
831 }
832 
833 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
834 {
835     CPUARMState *env = cpu_env(cs);
836     uint32_t cur_el = arm_current_el(env);
837     bool secure = arm_is_secure(env);
838     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
839     uint32_t target_el;
840     uint32_t excp_idx;
841 
842     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
843 
844     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
845         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
846         if (interrupt_request & CPU_INTERRUPT_NMI) {
847             excp_idx = EXCP_NMI;
848             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
849             if (arm_excp_unmasked(cs, excp_idx, target_el,
850                                   cur_el, secure, hcr_el2)) {
851                 goto found;
852             }
853         }
854         if (interrupt_request & CPU_INTERRUPT_VINMI) {
855             excp_idx = EXCP_VINMI;
856             target_el = 1;
857             if (arm_excp_unmasked(cs, excp_idx, target_el,
858                                   cur_el, secure, hcr_el2)) {
859                 goto found;
860             }
861         }
862         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
863             excp_idx = EXCP_VFNMI;
864             target_el = 1;
865             if (arm_excp_unmasked(cs, excp_idx, target_el,
866                                   cur_el, secure, hcr_el2)) {
867                 goto found;
868             }
869         }
870     } else {
871         /*
872          * NMI disabled: interrupts with superpriority are handled
873          * as if they didn't have it
874          */
875         if (interrupt_request & CPU_INTERRUPT_NMI) {
876             interrupt_request |= CPU_INTERRUPT_HARD;
877         }
878         if (interrupt_request & CPU_INTERRUPT_VINMI) {
879             interrupt_request |= CPU_INTERRUPT_VIRQ;
880         }
881         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
882             interrupt_request |= CPU_INTERRUPT_VFIQ;
883         }
884     }
885 
886     if (interrupt_request & CPU_INTERRUPT_FIQ) {
887         excp_idx = EXCP_FIQ;
888         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
889         if (arm_excp_unmasked(cs, excp_idx, target_el,
890                               cur_el, secure, hcr_el2)) {
891             goto found;
892         }
893     }
894     if (interrupt_request & CPU_INTERRUPT_HARD) {
895         excp_idx = EXCP_IRQ;
896         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
897         if (arm_excp_unmasked(cs, excp_idx, target_el,
898                               cur_el, secure, hcr_el2)) {
899             goto found;
900         }
901     }
902     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
903         excp_idx = EXCP_VIRQ;
904         target_el = 1;
905         if (arm_excp_unmasked(cs, excp_idx, target_el,
906                               cur_el, secure, hcr_el2)) {
907             goto found;
908         }
909     }
910     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
911         excp_idx = EXCP_VFIQ;
912         target_el = 1;
913         if (arm_excp_unmasked(cs, excp_idx, target_el,
914                               cur_el, secure, hcr_el2)) {
915             goto found;
916         }
917     }
918     if (interrupt_request & CPU_INTERRUPT_VSERR) {
919         excp_idx = EXCP_VSERR;
920         target_el = 1;
921         if (arm_excp_unmasked(cs, excp_idx, target_el,
922                               cur_el, secure, hcr_el2)) {
923             /* Taking a virtual abort clears HCR_EL2.VSE */
924             env->cp15.hcr_el2 &= ~HCR_VSE;
925             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
926             goto found;
927         }
928     }
929     return false;
930 
931  found:
932     cs->exception_index = excp_idx;
933     env->exception.target_el = target_el;
934     cs->cc->tcg_ops->do_interrupt(cs);
935     return true;
936 }
937 
938 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
939 
940 void arm_cpu_update_virq(ARMCPU *cpu)
941 {
942     /*
943      * Update the interrupt level for VIRQ, which is the logical OR of
944      * the HCR_EL2.VI bit and the input line level from the GIC.
945      */
946     CPUARMState *env = &cpu->env;
947     CPUState *cs = CPU(cpu);
948 
949     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
950         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
951         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
952 
953     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
954         if (new_state) {
955             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
956         } else {
957             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
958         }
959     }
960 }
961 
962 void arm_cpu_update_vfiq(ARMCPU *cpu)
963 {
964     /*
965      * Update the interrupt level for VFIQ, which is the logical OR of
966      * the HCR_EL2.VF bit and the input line level from the GIC.
967      */
968     CPUARMState *env = &cpu->env;
969     CPUState *cs = CPU(cpu);
970 
971     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
972         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
973         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
974 
975     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
976         if (new_state) {
977             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
978         } else {
979             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
980         }
981     }
982 }
983 
984 void arm_cpu_update_vinmi(ARMCPU *cpu)
985 {
986     /*
987      * Update the interrupt level for VINMI, which is the logical OR of
988      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
989      */
990     CPUARMState *env = &cpu->env;
991     CPUState *cs = CPU(cpu);
992 
993     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
994                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
995         (env->irq_line_state & CPU_INTERRUPT_VINMI);
996 
997     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
998         if (new_state) {
999             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
1000         } else {
1001             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1002         }
1003     }
1004 }
1005 
1006 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1007 {
1008     /*
1009      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1010      */
1011     CPUARMState *env = &cpu->env;
1012     CPUState *cs = CPU(cpu);
1013 
1014     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1015                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1016 
1017     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1018         if (new_state) {
1019             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1020         } else {
1021             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1022         }
1023     }
1024 }
1025 
1026 void arm_cpu_update_vserr(ARMCPU *cpu)
1027 {
1028     /*
1029      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1030      */
1031     CPUARMState *env = &cpu->env;
1032     CPUState *cs = CPU(cpu);
1033 
1034     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1035 
1036     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1037         if (new_state) {
1038             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1039         } else {
1040             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1041         }
1042     }
1043 }
1044 
1045 #ifndef CONFIG_USER_ONLY
1046 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1047 {
1048     ARMCPU *cpu = opaque;
1049     CPUARMState *env = &cpu->env;
1050     CPUState *cs = CPU(cpu);
1051     static const int mask[] = {
1052         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1053         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1054         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1055         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1056         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1057         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1058     };
1059 
1060     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1061         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1062         /*
1063          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1064          * have EL2 support we don't care. (Unless the guest is doing something
1065          * silly this will only be calls saying "level is still 0".)
1066          */
1067         return;
1068     }
1069 
1070     if (level) {
1071         env->irq_line_state |= mask[irq];
1072     } else {
1073         env->irq_line_state &= ~mask[irq];
1074     }
1075 
1076     switch (irq) {
1077     case ARM_CPU_VIRQ:
1078         arm_cpu_update_virq(cpu);
1079         break;
1080     case ARM_CPU_VFIQ:
1081         arm_cpu_update_vfiq(cpu);
1082         break;
1083     case ARM_CPU_VINMI:
1084         arm_cpu_update_vinmi(cpu);
1085         break;
1086     case ARM_CPU_IRQ:
1087     case ARM_CPU_FIQ:
1088     case ARM_CPU_NMI:
1089         if (level) {
1090             cpu_interrupt(cs, mask[irq]);
1091         } else {
1092             cpu_reset_interrupt(cs, mask[irq]);
1093         }
1094         break;
1095     default:
1096         g_assert_not_reached();
1097     }
1098 }
1099 
1100 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1101 {
1102 #ifdef CONFIG_KVM
1103     ARMCPU *cpu = opaque;
1104     CPUARMState *env = &cpu->env;
1105     CPUState *cs = CPU(cpu);
1106     uint32_t linestate_bit;
1107     int irq_id;
1108 
1109     switch (irq) {
1110     case ARM_CPU_IRQ:
1111         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1112         linestate_bit = CPU_INTERRUPT_HARD;
1113         break;
1114     case ARM_CPU_FIQ:
1115         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1116         linestate_bit = CPU_INTERRUPT_FIQ;
1117         break;
1118     default:
1119         g_assert_not_reached();
1120     }
1121 
1122     if (level) {
1123         env->irq_line_state |= linestate_bit;
1124     } else {
1125         env->irq_line_state &= ~linestate_bit;
1126     }
1127     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1128 #endif
1129 }
1130 
1131 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1132 {
1133     ARMCPU *cpu = ARM_CPU(cs);
1134     CPUARMState *env = &cpu->env;
1135 
1136     cpu_synchronize_state(cs);
1137     return arm_cpu_data_is_big_endian(env);
1138 }
1139 
1140 #ifdef CONFIG_TCG
1141 bool arm_cpu_exec_halt(CPUState *cs)
1142 {
1143     bool leave_halt = cpu_has_work(cs);
1144 
1145     if (leave_halt) {
1146         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1147         ARMCPU *cpu = ARM_CPU(cs);
1148         if (cpu->wfxt_timer) {
1149             timer_del(cpu->wfxt_timer);
1150         }
1151     }
1152     return leave_halt;
1153 }
1154 #endif
1155 
1156 static void arm_wfxt_timer_cb(void *opaque)
1157 {
1158     ARMCPU *cpu = opaque;
1159     CPUState *cs = CPU(cpu);
1160 
1161     /*
1162      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1163      * to return true (so we will come out of halt even with no other
1164      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1165      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1166      */
1167     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1168 }
1169 #endif
1170 
1171 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1172 {
1173     ARMCPU *ac = ARM_CPU(cpu);
1174     CPUARMState *env = &ac->env;
1175     bool sctlr_b = arm_sctlr_b(env);
1176 
1177     if (is_a64(env)) {
1178         info->cap_arch = CS_ARCH_ARM64;
1179         info->cap_insn_unit = 4;
1180         info->cap_insn_split = 4;
1181     } else {
1182         int cap_mode;
1183         if (env->thumb) {
1184             info->cap_insn_unit = 2;
1185             info->cap_insn_split = 4;
1186             cap_mode = CS_MODE_THUMB;
1187         } else {
1188             info->cap_insn_unit = 4;
1189             info->cap_insn_split = 4;
1190             cap_mode = CS_MODE_ARM;
1191         }
1192         if (arm_feature(env, ARM_FEATURE_V8)) {
1193             cap_mode |= CS_MODE_V8;
1194         }
1195         if (arm_feature(env, ARM_FEATURE_M)) {
1196             cap_mode |= CS_MODE_MCLASS;
1197         }
1198         info->cap_arch = CS_ARCH_ARM;
1199         info->cap_mode = cap_mode;
1200     }
1201 
1202     info->endian = BFD_ENDIAN_LITTLE;
1203     if (bswap_code(sctlr_b)) {
1204         info->endian = TARGET_BIG_ENDIAN ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_BIG;
1205     }
1206     info->flags &= ~INSN_ARM_BE32;
1207 #ifndef CONFIG_USER_ONLY
1208     if (sctlr_b) {
1209         info->flags |= INSN_ARM_BE32;
1210     }
1211 #endif
1212 }
1213 
1214 #ifdef TARGET_AARCH64
1215 
1216 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1217 {
1218     ARMCPU *cpu = ARM_CPU(cs);
1219     CPUARMState *env = &cpu->env;
1220     uint32_t psr = pstate_read(env);
1221     int i, j;
1222     int el = arm_current_el(env);
1223     uint64_t hcr = arm_hcr_el2_eff(env);
1224     const char *ns_status;
1225     bool sve;
1226 
1227     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1228     for (i = 0; i < 32; i++) {
1229         if (i == 31) {
1230             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1231         } else {
1232             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1233                          (i + 2) % 3 ? " " : "\n");
1234         }
1235     }
1236 
1237     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1238         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1239     } else {
1240         ns_status = "";
1241     }
1242     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1243                  psr,
1244                  psr & PSTATE_N ? 'N' : '-',
1245                  psr & PSTATE_Z ? 'Z' : '-',
1246                  psr & PSTATE_C ? 'C' : '-',
1247                  psr & PSTATE_V ? 'V' : '-',
1248                  ns_status,
1249                  el,
1250                  psr & PSTATE_SP ? 'h' : 't');
1251 
1252     if (cpu_isar_feature(aa64_sme, cpu)) {
1253         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1254                      env->svcr,
1255                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1256                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1257     }
1258     if (cpu_isar_feature(aa64_bti, cpu)) {
1259         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1260     }
1261     qemu_fprintf(f, "%s%s%s",
1262                  (hcr & HCR_NV) ? " NV" : "",
1263                  (hcr & HCR_NV1) ? " NV1" : "",
1264                  (hcr & HCR_NV2) ? " NV2" : "");
1265     if (!(flags & CPU_DUMP_FPU)) {
1266         qemu_fprintf(f, "\n");
1267         return;
1268     }
1269     if (fp_exception_el(env, el) != 0) {
1270         qemu_fprintf(f, "    FPU disabled\n");
1271         return;
1272     }
1273     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1274                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1275 
1276     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1277         sve = sme_exception_el(env, el) == 0;
1278     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1279         sve = sve_exception_el(env, el) == 0;
1280     } else {
1281         sve = false;
1282     }
1283 
1284     if (sve) {
1285         int zcr_len = sve_vqm1_for_el(env, el);
1286 
1287         for (i = 0; i <= FFR_PRED_NUM; i++) {
1288             bool eol;
1289             if (i == FFR_PRED_NUM) {
1290                 qemu_fprintf(f, "FFR=");
1291                 /* It's last, so end the line.  */
1292                 eol = true;
1293             } else {
1294                 qemu_fprintf(f, "P%02d=", i);
1295                 switch (zcr_len) {
1296                 case 0:
1297                     eol = i % 8 == 7;
1298                     break;
1299                 case 1:
1300                     eol = i % 6 == 5;
1301                     break;
1302                 case 2:
1303                 case 3:
1304                     eol = i % 3 == 2;
1305                     break;
1306                 default:
1307                     /* More than one quadword per predicate.  */
1308                     eol = true;
1309                     break;
1310                 }
1311             }
1312             for (j = zcr_len / 4; j >= 0; j--) {
1313                 int digits;
1314                 if (j * 4 + 4 <= zcr_len + 1) {
1315                     digits = 16;
1316                 } else {
1317                     digits = (zcr_len % 4 + 1) * 4;
1318                 }
1319                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1320                              env->vfp.pregs[i].p[j],
1321                              j ? ":" : eol ? "\n" : " ");
1322             }
1323         }
1324 
1325         if (zcr_len == 0) {
1326             /*
1327              * With vl=16, there are only 37 columns per register,
1328              * so output two registers per line.
1329              */
1330             for (i = 0; i < 32; i++) {
1331                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1332                              i, env->vfp.zregs[i].d[1],
1333                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1334             }
1335         } else {
1336             for (i = 0; i < 32; i++) {
1337                 qemu_fprintf(f, "Z%02d=", i);
1338                 for (j = zcr_len; j >= 0; j--) {
1339                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1340                                  env->vfp.zregs[i].d[j * 2 + 1],
1341                                  env->vfp.zregs[i].d[j * 2 + 0],
1342                                  j ? ":" : "\n");
1343                 }
1344             }
1345         }
1346     } else {
1347         for (i = 0; i < 32; i++) {
1348             uint64_t *q = aa64_vfp_qreg(env, i);
1349             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1350                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1351         }
1352     }
1353 
1354     if (cpu_isar_feature(aa64_sme, cpu) &&
1355         FIELD_EX64(env->svcr, SVCR, ZA) &&
1356         sme_exception_el(env, el) == 0) {
1357         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1358         int svl = (zcr_len + 1) * 16;
1359         int svl_lg10 = svl < 100 ? 2 : 3;
1360 
1361         for (i = 0; i < svl; i++) {
1362             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1363             for (j = zcr_len; j >= 0; --j) {
1364                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1365                              env->zarray[i].d[2 * j + 1],
1366                              env->zarray[i].d[2 * j],
1367                              j ? ':' : '\n');
1368             }
1369         }
1370     }
1371 }
1372 
1373 #else
1374 
1375 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1376 {
1377     g_assert_not_reached();
1378 }
1379 
1380 #endif
1381 
1382 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1383 {
1384     ARMCPU *cpu = ARM_CPU(cs);
1385     CPUARMState *env = &cpu->env;
1386     int i;
1387 
1388     if (is_a64(env)) {
1389         aarch64_cpu_dump_state(cs, f, flags);
1390         return;
1391     }
1392 
1393     for (i = 0; i < 16; i++) {
1394         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1395         if ((i % 4) == 3) {
1396             qemu_fprintf(f, "\n");
1397         } else {
1398             qemu_fprintf(f, " ");
1399         }
1400     }
1401 
1402     if (arm_feature(env, ARM_FEATURE_M)) {
1403         uint32_t xpsr = xpsr_read(env);
1404         const char *mode;
1405         const char *ns_status = "";
1406 
1407         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1408             ns_status = env->v7m.secure ? "S " : "NS ";
1409         }
1410 
1411         if (xpsr & XPSR_EXCP) {
1412             mode = "handler";
1413         } else {
1414             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1415                 mode = "unpriv-thread";
1416             } else {
1417                 mode = "priv-thread";
1418             }
1419         }
1420 
1421         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1422                      xpsr,
1423                      xpsr & XPSR_N ? 'N' : '-',
1424                      xpsr & XPSR_Z ? 'Z' : '-',
1425                      xpsr & XPSR_C ? 'C' : '-',
1426                      xpsr & XPSR_V ? 'V' : '-',
1427                      xpsr & XPSR_T ? 'T' : 'A',
1428                      ns_status,
1429                      mode);
1430     } else {
1431         uint32_t psr = cpsr_read(env);
1432         const char *ns_status = "";
1433 
1434         if (arm_feature(env, ARM_FEATURE_EL3) &&
1435             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1436             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1437         }
1438 
1439         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1440                      psr,
1441                      psr & CPSR_N ? 'N' : '-',
1442                      psr & CPSR_Z ? 'Z' : '-',
1443                      psr & CPSR_C ? 'C' : '-',
1444                      psr & CPSR_V ? 'V' : '-',
1445                      psr & CPSR_T ? 'T' : 'A',
1446                      ns_status,
1447                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1448     }
1449 
1450     if (flags & CPU_DUMP_FPU) {
1451         int numvfpregs = 0;
1452         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1453             numvfpregs = 32;
1454         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1455             numvfpregs = 16;
1456         }
1457         for (i = 0; i < numvfpregs; i++) {
1458             uint64_t v = *aa32_vfp_dreg(env, i);
1459             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1460                          i * 2, (uint32_t)v,
1461                          i * 2 + 1, (uint32_t)(v >> 32),
1462                          i, v);
1463         }
1464         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1465         if (cpu_isar_feature(aa32_mve, cpu)) {
1466             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1467         }
1468     }
1469 }
1470 
1471 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1472 {
1473     uint32_t Aff1 = idx / clustersz;
1474     uint32_t Aff0 = idx % clustersz;
1475     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1476 }
1477 
1478 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1479 {
1480     return cpu->mp_affinity;
1481 }
1482 
1483 static void arm_cpu_initfn(Object *obj)
1484 {
1485     ARMCPU *cpu = ARM_CPU(obj);
1486 
1487     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1488                                          NULL, g_free);
1489 
1490     QLIST_INIT(&cpu->pre_el_change_hooks);
1491     QLIST_INIT(&cpu->el_change_hooks);
1492 
1493 #ifdef CONFIG_USER_ONLY
1494 # ifdef TARGET_AARCH64
1495     /*
1496      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1497      * These values were chosen to fit within the default signal frame.
1498      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1499      * and our corresponding cpu property.
1500      */
1501     cpu->sve_default_vq = 4;
1502     cpu->sme_default_vq = 2;
1503 # endif
1504 #else
1505     /* Our inbound IRQ and FIQ lines */
1506     if (kvm_enabled()) {
1507         /*
1508          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1509          * them to maintain the same interface as non-KVM CPUs.
1510          */
1511         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1512     } else {
1513         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1514     }
1515 
1516     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1517                        ARRAY_SIZE(cpu->gt_timer_outputs));
1518 
1519     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1520                              "gicv3-maintenance-interrupt", 1);
1521     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1522                              "pmu-interrupt", 1);
1523 #endif
1524 
1525     /* DTB consumers generally don't in fact care what the 'compatible'
1526      * string is, so always provide some string and trust that a hypothetical
1527      * picky DTB consumer will also provide a helpful error message.
1528      */
1529     cpu->dtb_compatible = "qemu,unknown";
1530     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1531     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1532 
1533     if (tcg_enabled() || hvf_enabled()) {
1534         /* TCG and HVF implement PSCI 1.1 */
1535         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1536     }
1537 }
1538 
1539 /*
1540  * 0 means "unset, use the default value". That default might vary depending
1541  * on the CPU type, and is set in the realize fn.
1542  */
1543 static const Property arm_cpu_gt_cntfrq_property =
1544             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1545 
1546 static const Property arm_cpu_reset_cbar_property =
1547             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1548 
1549 static const Property arm_cpu_reset_hivecs_property =
1550             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1551 
1552 #ifndef CONFIG_USER_ONLY
1553 static const Property arm_cpu_has_el2_property =
1554             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1555 
1556 static const Property arm_cpu_has_el3_property =
1557             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1558 #endif
1559 
1560 static const Property arm_cpu_cfgend_property =
1561             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1562 
1563 static const Property arm_cpu_has_vfp_property =
1564             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1565 
1566 static const Property arm_cpu_has_vfp_d32_property =
1567             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1568 
1569 static const Property arm_cpu_has_neon_property =
1570             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1571 
1572 static const Property arm_cpu_has_dsp_property =
1573             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1574 
1575 static const Property arm_cpu_has_mpu_property =
1576             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1577 
1578 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1579  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1580  * the right value for that particular CPU type, and we don't want
1581  * to override that with an incorrect constant value.
1582  */
1583 static const Property arm_cpu_pmsav7_dregion_property =
1584             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1585                                            pmsav7_dregion,
1586                                            qdev_prop_uint32, uint32_t);
1587 
1588 static bool arm_get_pmu(Object *obj, Error **errp)
1589 {
1590     ARMCPU *cpu = ARM_CPU(obj);
1591 
1592     return cpu->has_pmu;
1593 }
1594 
1595 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1596 {
1597     ARMCPU *cpu = ARM_CPU(obj);
1598 
1599     if (value) {
1600         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1601             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1602             return;
1603         }
1604         set_feature(&cpu->env, ARM_FEATURE_PMU);
1605     } else {
1606         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1607     }
1608     cpu->has_pmu = value;
1609 }
1610 
1611 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1612 {
1613     /*
1614      * The exact approach to calculating guest ticks is:
1615      *
1616      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1617      *              NANOSECONDS_PER_SECOND);
1618      *
1619      * We don't do that. Rather we intentionally use integer division
1620      * truncation below and in the caller for the conversion of host monotonic
1621      * time to guest ticks to provide the exact inverse for the semantics of
1622      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1623      * it loses precision when representing frequencies where
1624      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1625      * provide an exact inverse leads to scheduling timers with negative
1626      * periods, which in turn leads to sticky behaviour in the guest.
1627      *
1628      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1629      * cannot become zero.
1630      */
1631     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1632       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1633 }
1634 
1635 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1636 {
1637     CPUARMState *env = &cpu->env;
1638     bool no_aa32 = false;
1639 
1640     /*
1641      * Some features automatically imply others: set the feature
1642      * bits explicitly for these cases.
1643      */
1644 
1645     if (arm_feature(env, ARM_FEATURE_M)) {
1646         set_feature(env, ARM_FEATURE_PMSA);
1647     }
1648 
1649     if (arm_feature(env, ARM_FEATURE_V8)) {
1650         if (arm_feature(env, ARM_FEATURE_M)) {
1651             set_feature(env, ARM_FEATURE_V7);
1652         } else {
1653             set_feature(env, ARM_FEATURE_V7VE);
1654         }
1655     }
1656 
1657     /*
1658      * There exist AArch64 cpus without AArch32 support.  When KVM
1659      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1660      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1661      * As a general principle, we also do not make ID register
1662      * consistency checks anywhere unless using TCG, because only
1663      * for TCG would a consistency-check failure be a QEMU bug.
1664      */
1665     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1666         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1667     }
1668 
1669     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1670         /*
1671          * v7 Virtualization Extensions. In real hardware this implies
1672          * EL2 and also the presence of the Security Extensions.
1673          * For QEMU, for backwards-compatibility we implement some
1674          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1675          * include the various other features that V7VE implies.
1676          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1677          * Security Extensions is ARM_FEATURE_EL3.
1678          */
1679         assert(!tcg_enabled() || no_aa32 ||
1680                cpu_isar_feature(aa32_arm_div, cpu));
1681         set_feature(env, ARM_FEATURE_LPAE);
1682         set_feature(env, ARM_FEATURE_V7);
1683     }
1684     if (arm_feature(env, ARM_FEATURE_V7)) {
1685         set_feature(env, ARM_FEATURE_VAPA);
1686         set_feature(env, ARM_FEATURE_THUMB2);
1687         set_feature(env, ARM_FEATURE_MPIDR);
1688         if (!arm_feature(env, ARM_FEATURE_M)) {
1689             set_feature(env, ARM_FEATURE_V6K);
1690         } else {
1691             set_feature(env, ARM_FEATURE_V6);
1692         }
1693 
1694         /*
1695          * Always define VBAR for V7 CPUs even if it doesn't exist in
1696          * non-EL3 configs. This is needed by some legacy boards.
1697          */
1698         set_feature(env, ARM_FEATURE_VBAR);
1699     }
1700     if (arm_feature(env, ARM_FEATURE_V6K)) {
1701         set_feature(env, ARM_FEATURE_V6);
1702         set_feature(env, ARM_FEATURE_MVFR);
1703     }
1704     if (arm_feature(env, ARM_FEATURE_V6)) {
1705         set_feature(env, ARM_FEATURE_V5);
1706         if (!arm_feature(env, ARM_FEATURE_M)) {
1707             assert(!tcg_enabled() || no_aa32 ||
1708                    cpu_isar_feature(aa32_jazelle, cpu));
1709             set_feature(env, ARM_FEATURE_AUXCR);
1710         }
1711     }
1712     if (arm_feature(env, ARM_FEATURE_V5)) {
1713         set_feature(env, ARM_FEATURE_V4T);
1714     }
1715     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1716         set_feature(env, ARM_FEATURE_V7MP);
1717     }
1718     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1719         set_feature(env, ARM_FEATURE_CBAR);
1720     }
1721     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1722         !arm_feature(env, ARM_FEATURE_M)) {
1723         set_feature(env, ARM_FEATURE_THUMB_DSP);
1724     }
1725 }
1726 
1727 void arm_cpu_post_init(Object *obj)
1728 {
1729     ARMCPU *cpu = ARM_CPU(obj);
1730 
1731     /*
1732      * Some features imply others. Figure this out now, because we
1733      * are going to look at the feature bits in deciding which
1734      * properties to add.
1735      */
1736     arm_cpu_propagate_feature_implications(cpu);
1737 
1738     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1739         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1740         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1741     }
1742 
1743     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1744         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1745     }
1746 
1747     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1748         object_property_add_uint64_ptr(obj, "rvbar",
1749                                        &cpu->rvbar_prop,
1750                                        OBJ_PROP_FLAG_READWRITE);
1751     }
1752 
1753 #ifndef CONFIG_USER_ONLY
1754     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1755         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1756          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1757          */
1758         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1759 
1760         object_property_add_link(obj, "secure-memory",
1761                                  TYPE_MEMORY_REGION,
1762                                  (Object **)&cpu->secure_memory,
1763                                  qdev_prop_allow_set_link_before_realize,
1764                                  OBJ_PROP_LINK_STRONG);
1765     }
1766 
1767     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1768         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1769     }
1770 #endif
1771 
1772     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1773         cpu->has_pmu = true;
1774         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1775     }
1776 
1777     /*
1778      * Allow user to turn off VFP and Neon support, but only for TCG --
1779      * KVM does not currently allow us to lie to the guest about its
1780      * ID/feature registers, so the guest always sees what the host has.
1781      */
1782     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1783         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1784             cpu->has_vfp = true;
1785             cpu->has_vfp_d32 = true;
1786             if (tcg_enabled() || qtest_enabled()) {
1787                 qdev_property_add_static(DEVICE(obj),
1788                                          &arm_cpu_has_vfp_property);
1789             }
1790         }
1791     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1792         cpu->has_vfp = true;
1793         if (tcg_enabled() || qtest_enabled()) {
1794             qdev_property_add_static(DEVICE(obj),
1795                                      &arm_cpu_has_vfp_property);
1796         }
1797         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1798             cpu->has_vfp_d32 = true;
1799             /*
1800              * The permitted values of the SIMDReg bits [3:0] on
1801              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1802              * make sure that has_vfp_d32 can not be set to false.
1803              */
1804             if ((tcg_enabled() || qtest_enabled())
1805                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1806                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1807                 qdev_property_add_static(DEVICE(obj),
1808                                          &arm_cpu_has_vfp_d32_property);
1809             }
1810         }
1811     }
1812 
1813     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1814         cpu->has_neon = true;
1815         if (!kvm_enabled()) {
1816             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1817         }
1818     }
1819 
1820     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1821         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1822         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1823     }
1824 
1825     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1826         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1827         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1828             qdev_property_add_static(DEVICE(obj),
1829                                      &arm_cpu_pmsav7_dregion_property);
1830         }
1831     }
1832 
1833     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1834         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1835                                  qdev_prop_allow_set_link_before_realize,
1836                                  OBJ_PROP_LINK_STRONG);
1837         /*
1838          * M profile: initial value of the Secure VTOR. We can't just use
1839          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1840          * the property to be set after realize.
1841          */
1842         object_property_add_uint32_ptr(obj, "init-svtor",
1843                                        &cpu->init_svtor,
1844                                        OBJ_PROP_FLAG_READWRITE);
1845     }
1846     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1847         /*
1848          * Initial value of the NS VTOR (for cores without the Security
1849          * extension, this is the only VTOR)
1850          */
1851         object_property_add_uint32_ptr(obj, "init-nsvtor",
1852                                        &cpu->init_nsvtor,
1853                                        OBJ_PROP_FLAG_READWRITE);
1854     }
1855 
1856     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1857     object_property_add_uint32_ptr(obj, "psci-conduit",
1858                                    &cpu->psci_conduit,
1859                                    OBJ_PROP_FLAG_READWRITE);
1860 
1861     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1862 
1863     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1864         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1865     }
1866 
1867     if (kvm_enabled()) {
1868         kvm_arm_add_vcpu_properties(cpu);
1869     }
1870 
1871 #ifndef CONFIG_USER_ONLY
1872     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1873         cpu_isar_feature(aa64_mte, cpu)) {
1874         object_property_add_link(obj, "tag-memory",
1875                                  TYPE_MEMORY_REGION,
1876                                  (Object **)&cpu->tag_memory,
1877                                  qdev_prop_allow_set_link_before_realize,
1878                                  OBJ_PROP_LINK_STRONG);
1879 
1880         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1881             object_property_add_link(obj, "secure-tag-memory",
1882                                      TYPE_MEMORY_REGION,
1883                                      (Object **)&cpu->secure_tag_memory,
1884                                      qdev_prop_allow_set_link_before_realize,
1885                                      OBJ_PROP_LINK_STRONG);
1886         }
1887     }
1888 #endif
1889 }
1890 
1891 static void arm_cpu_finalizefn(Object *obj)
1892 {
1893     ARMCPU *cpu = ARM_CPU(obj);
1894     ARMELChangeHook *hook, *next;
1895 
1896     g_hash_table_destroy(cpu->cp_regs);
1897 
1898     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1899         QLIST_REMOVE(hook, node);
1900         g_free(hook);
1901     }
1902     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1903         QLIST_REMOVE(hook, node);
1904         g_free(hook);
1905     }
1906 #ifndef CONFIG_USER_ONLY
1907     if (cpu->pmu_timer) {
1908         timer_free(cpu->pmu_timer);
1909     }
1910     if (cpu->wfxt_timer) {
1911         timer_free(cpu->wfxt_timer);
1912     }
1913 #endif
1914 }
1915 
1916 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1917 {
1918     Error *local_err = NULL;
1919 
1920 #ifdef TARGET_AARCH64
1921     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1922         arm_cpu_sve_finalize(cpu, &local_err);
1923         if (local_err != NULL) {
1924             error_propagate(errp, local_err);
1925             return;
1926         }
1927 
1928         /*
1929          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1930          * FEAT_SME_FA64 is present). However our implementation currently
1931          * assumes it, so if the user asked for sve=off then turn off SME also.
1932          * (KVM doesn't currently support SME at all.)
1933          */
1934         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1935             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1936         }
1937 
1938         arm_cpu_sme_finalize(cpu, &local_err);
1939         if (local_err != NULL) {
1940             error_propagate(errp, local_err);
1941             return;
1942         }
1943 
1944         arm_cpu_pauth_finalize(cpu, &local_err);
1945         if (local_err != NULL) {
1946             error_propagate(errp, local_err);
1947             return;
1948         }
1949 
1950         arm_cpu_lpa2_finalize(cpu, &local_err);
1951         if (local_err != NULL) {
1952             error_propagate(errp, local_err);
1953             return;
1954         }
1955     }
1956 #endif
1957 
1958     if (kvm_enabled()) {
1959         kvm_arm_steal_time_finalize(cpu, &local_err);
1960         if (local_err != NULL) {
1961             error_propagate(errp, local_err);
1962             return;
1963         }
1964     }
1965 }
1966 
1967 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1968 {
1969     CPUState *cs = CPU(dev);
1970     ARMCPU *cpu = ARM_CPU(dev);
1971     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1972     CPUARMState *env = &cpu->env;
1973     Error *local_err = NULL;
1974 
1975 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1976     /* Use pc-relative instructions in system-mode */
1977     tcg_cflags_set(cs, CF_PCREL);
1978 #endif
1979 
1980     /* If we needed to query the host kernel for the CPU features
1981      * then it's possible that might have failed in the initfn, but
1982      * this is the first point where we can report it.
1983      */
1984     if (cpu->host_cpu_probe_failed) {
1985         if (!kvm_enabled() && !hvf_enabled()) {
1986             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1987         } else {
1988             error_setg(errp, "Failed to retrieve host CPU features");
1989         }
1990         return;
1991     }
1992 
1993     if (!cpu->gt_cntfrq_hz) {
1994         /*
1995          * 0 means "the board didn't set a value, use the default". (We also
1996          * get here for the CONFIG_USER_ONLY case.)
1997          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1998          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1999          * which gives a 16ns tick period.
2000          *
2001          * We will use the back-compat value:
2002          *  - for QEMU CPU types added before we standardized on 1GHz
2003          *  - for versioned machine types with a version of 9.0 or earlier
2004          */
2005         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2006             cpu->backcompat_cntfrq) {
2007             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2008         } else {
2009             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2010         }
2011     }
2012 
2013 #ifndef CONFIG_USER_ONLY
2014     /* The NVIC and M-profile CPU are two halves of a single piece of
2015      * hardware; trying to use one without the other is a command line
2016      * error and will result in segfaults if not caught here.
2017      */
2018     if (arm_feature(env, ARM_FEATURE_M)) {
2019         if (!env->nvic) {
2020             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2021             return;
2022         }
2023     } else {
2024         if (env->nvic) {
2025             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2026             return;
2027         }
2028     }
2029 
2030     if (!tcg_enabled() && !qtest_enabled()) {
2031         /*
2032          * We assume that no accelerator except TCG (and the "not really an
2033          * accelerator" qtest) can handle these features, because Arm hardware
2034          * virtualization can't virtualize them.
2035          *
2036          * Catch all the cases which might cause us to create more than one
2037          * address space for the CPU (otherwise we will assert() later in
2038          * cpu_address_space_init()).
2039          */
2040         if (arm_feature(env, ARM_FEATURE_M)) {
2041             error_setg(errp,
2042                        "Cannot enable %s when using an M-profile guest CPU",
2043                        current_accel_name());
2044             return;
2045         }
2046         if (cpu->has_el3) {
2047             error_setg(errp,
2048                        "Cannot enable %s when guest CPU has EL3 enabled",
2049                        current_accel_name());
2050             return;
2051         }
2052         if (cpu->tag_memory) {
2053             error_setg(errp,
2054                        "Cannot enable %s when guest CPUs has MTE enabled",
2055                        current_accel_name());
2056             return;
2057         }
2058     }
2059 
2060     {
2061         uint64_t scale = gt_cntfrq_period_ns(cpu);
2062 
2063         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2064                                                arm_gt_ptimer_cb, cpu);
2065         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2066                                                arm_gt_vtimer_cb, cpu);
2067         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2068                                               arm_gt_htimer_cb, cpu);
2069         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2070                                               arm_gt_stimer_cb, cpu);
2071         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2072                                                   arm_gt_hvtimer_cb, cpu);
2073         cpu->gt_timer[GTIMER_S_EL2_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2074                                                      arm_gt_sel2timer_cb, cpu);
2075         cpu->gt_timer[GTIMER_S_EL2_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2076                                                      arm_gt_sel2vtimer_cb, cpu);
2077     }
2078 #endif
2079 
2080     cpu_exec_realizefn(cs, &local_err);
2081     if (local_err != NULL) {
2082         error_propagate(errp, local_err);
2083         return;
2084     }
2085 
2086     arm_cpu_finalize_features(cpu, &local_err);
2087     if (local_err != NULL) {
2088         error_propagate(errp, local_err);
2089         return;
2090     }
2091 
2092 #ifdef CONFIG_USER_ONLY
2093     /*
2094      * User mode relies on IC IVAU instructions to catch modification of
2095      * dual-mapped code.
2096      *
2097      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2098      * IC IVAU even if the emulated processor does not normally require it.
2099      */
2100     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2101 #endif
2102 
2103     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2104         cpu->has_vfp != cpu->has_neon) {
2105         /*
2106          * This is an architectural requirement for AArch64; AArch32 is
2107          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2108          */
2109         error_setg(errp,
2110                    "AArch64 CPUs must have both VFP and Neon or neither");
2111         return;
2112     }
2113 
2114     if (cpu->has_vfp_d32 != cpu->has_neon) {
2115         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2116         return;
2117     }
2118 
2119    if (!cpu->has_vfp_d32) {
2120         uint32_t u;
2121 
2122         u = cpu->isar.mvfr0;
2123         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2124         cpu->isar.mvfr0 = u;
2125     }
2126 
2127     if (!cpu->has_vfp) {
2128         uint64_t t;
2129         uint32_t u;
2130 
2131         t = cpu->isar.id_aa64isar1;
2132         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2133         cpu->isar.id_aa64isar1 = t;
2134 
2135         t = cpu->isar.id_aa64pfr0;
2136         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2137         cpu->isar.id_aa64pfr0 = t;
2138 
2139         u = cpu->isar.id_isar6;
2140         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2141         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2142         cpu->isar.id_isar6 = u;
2143 
2144         u = cpu->isar.mvfr0;
2145         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2146         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2147         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2148         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2149         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2150         if (!arm_feature(env, ARM_FEATURE_M)) {
2151             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2152             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2153         }
2154         cpu->isar.mvfr0 = u;
2155 
2156         u = cpu->isar.mvfr1;
2157         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2158         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2159         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2160         if (arm_feature(env, ARM_FEATURE_M)) {
2161             u = FIELD_DP32(u, MVFR1, FP16, 0);
2162         }
2163         cpu->isar.mvfr1 = u;
2164 
2165         u = cpu->isar.mvfr2;
2166         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2167         cpu->isar.mvfr2 = u;
2168     }
2169 
2170     if (!cpu->has_neon) {
2171         uint64_t t;
2172         uint32_t u;
2173 
2174         unset_feature(env, ARM_FEATURE_NEON);
2175 
2176         t = cpu->isar.id_aa64isar0;
2177         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2178         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2179         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2180         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2181         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2182         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2183         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2184         cpu->isar.id_aa64isar0 = t;
2185 
2186         t = cpu->isar.id_aa64isar1;
2187         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2188         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2189         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2190         cpu->isar.id_aa64isar1 = t;
2191 
2192         t = cpu->isar.id_aa64pfr0;
2193         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2194         cpu->isar.id_aa64pfr0 = t;
2195 
2196         u = cpu->isar.id_isar5;
2197         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2198         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2199         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2200         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2201         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2202         cpu->isar.id_isar5 = u;
2203 
2204         u = cpu->isar.id_isar6;
2205         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2206         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2207         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2208         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2209         cpu->isar.id_isar6 = u;
2210 
2211         if (!arm_feature(env, ARM_FEATURE_M)) {
2212             u = cpu->isar.mvfr1;
2213             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2214             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2215             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2216             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2217             cpu->isar.mvfr1 = u;
2218 
2219             u = cpu->isar.mvfr2;
2220             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2221             cpu->isar.mvfr2 = u;
2222         }
2223     }
2224 
2225     if (!cpu->has_neon && !cpu->has_vfp) {
2226         uint64_t t;
2227         uint32_t u;
2228 
2229         t = cpu->isar.id_aa64isar0;
2230         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2231         cpu->isar.id_aa64isar0 = t;
2232 
2233         t = cpu->isar.id_aa64isar1;
2234         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2235         cpu->isar.id_aa64isar1 = t;
2236 
2237         u = cpu->isar.mvfr0;
2238         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2239         cpu->isar.mvfr0 = u;
2240 
2241         /* Despite the name, this field covers both VFP and Neon */
2242         u = cpu->isar.mvfr1;
2243         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2244         cpu->isar.mvfr1 = u;
2245     }
2246 
2247     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2248         uint32_t u;
2249 
2250         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2251 
2252         u = cpu->isar.id_isar1;
2253         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2254         cpu->isar.id_isar1 = u;
2255 
2256         u = cpu->isar.id_isar2;
2257         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2258         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2259         cpu->isar.id_isar2 = u;
2260 
2261         u = cpu->isar.id_isar3;
2262         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2263         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2264         cpu->isar.id_isar3 = u;
2265     }
2266 
2267 
2268     /*
2269      * We rely on no XScale CPU having VFP so we can use the same bits in the
2270      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2271      */
2272     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2273            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2274            !arm_feature(env, ARM_FEATURE_XSCALE));
2275 
2276 #ifndef CONFIG_USER_ONLY
2277     {
2278         int pagebits;
2279         if (arm_feature(env, ARM_FEATURE_V7) &&
2280             !arm_feature(env, ARM_FEATURE_M) &&
2281             !arm_feature(env, ARM_FEATURE_PMSA)) {
2282             /*
2283              * v7VMSA drops support for the old ARMv5 tiny pages,
2284              * so we can use 4K pages.
2285              */
2286             pagebits = 12;
2287         } else {
2288             /*
2289              * For CPUs which might have tiny 1K pages, or which have an
2290              * MPU and might have small region sizes, stick with 1K pages.
2291              */
2292             pagebits = 10;
2293         }
2294         if (!set_preferred_target_page_bits(pagebits)) {
2295             /*
2296              * This can only ever happen for hotplugging a CPU, or if
2297              * the board code incorrectly creates a CPU which it has
2298              * promised via minimum_page_size that it will not.
2299              */
2300             error_setg(errp, "This CPU requires a smaller page size "
2301                        "than the system is using");
2302             return;
2303         }
2304     }
2305 #endif
2306 
2307     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2308      * We don't support setting cluster ID ([16..23]) (known as Aff2
2309      * in later ARM ARM versions), or any of the higher affinity level fields,
2310      * so these bits always RAZ.
2311      */
2312     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2313         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2314                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2315     }
2316 
2317     if (cpu->reset_hivecs) {
2318             cpu->reset_sctlr |= (1 << 13);
2319     }
2320 
2321     if (cpu->cfgend) {
2322         if (arm_feature(env, ARM_FEATURE_V7)) {
2323             cpu->reset_sctlr |= SCTLR_EE;
2324         } else {
2325             cpu->reset_sctlr |= SCTLR_B;
2326         }
2327     }
2328 
2329     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2330         /* If the has_el3 CPU property is disabled then we need to disable the
2331          * feature.
2332          */
2333         unset_feature(env, ARM_FEATURE_EL3);
2334 
2335         /*
2336          * Disable the security extension feature bits in the processor
2337          * feature registers as well.
2338          */
2339         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2340         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2341         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2342                                            ID_AA64PFR0, EL3, 0);
2343 
2344         /* Disable the realm management extension, which requires EL3. */
2345         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2346                                            ID_AA64PFR0, RME, 0);
2347     }
2348 
2349     if (!cpu->has_el2) {
2350         unset_feature(env, ARM_FEATURE_EL2);
2351     }
2352 
2353     if (!cpu->has_pmu) {
2354         unset_feature(env, ARM_FEATURE_PMU);
2355     }
2356     if (arm_feature(env, ARM_FEATURE_PMU)) {
2357         pmu_init(cpu);
2358 
2359         if (!kvm_enabled()) {
2360             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2361             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2362         }
2363 
2364 #ifndef CONFIG_USER_ONLY
2365         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2366                 cpu);
2367 #endif
2368     } else {
2369         cpu->isar.id_aa64dfr0 =
2370             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2371         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2372         cpu->pmceid0 = 0;
2373         cpu->pmceid1 = 0;
2374     }
2375 
2376     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2377         /*
2378          * Disable the hypervisor feature bits in the processor feature
2379          * registers if we don't have EL2.
2380          */
2381         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2382                                            ID_AA64PFR0, EL2, 0);
2383         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2384                                        ID_PFR1, VIRTUALIZATION, 0);
2385     }
2386 
2387     if (cpu_isar_feature(aa64_mte, cpu)) {
2388         /*
2389          * The architectural range of GM blocksize is 2-6, however qemu
2390          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2391          */
2392         if (tcg_enabled()) {
2393             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2394         }
2395 
2396 #ifndef CONFIG_USER_ONLY
2397         /*
2398          * If we run with TCG and do not have tag-memory provided by
2399          * the machine, then reduce MTE support to instructions enabled at EL0.
2400          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2401          */
2402         if (tcg_enabled() && cpu->tag_memory == NULL) {
2403             cpu->isar.id_aa64pfr1 =
2404                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2405         }
2406 
2407         /*
2408          * If MTE is supported by the host, however it should not be
2409          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2410          */
2411         if (kvm_enabled() && !cpu->kvm_mte) {
2412                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2413         }
2414 #endif
2415     }
2416 
2417 #ifndef CONFIG_USER_ONLY
2418     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2419         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2420                                        arm_wfxt_timer_cb, cpu);
2421     }
2422 #endif
2423 
2424     if (tcg_enabled()) {
2425         /*
2426          * Don't report some architectural features in the ID registers
2427          * where TCG does not yet implement it (not even a minimal
2428          * stub version). This avoids guests falling over when they
2429          * try to access the non-existent system registers for them.
2430          */
2431         /* FEAT_SPE (Statistical Profiling Extension) */
2432         cpu->isar.id_aa64dfr0 =
2433             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2434         /* FEAT_TRBE (Trace Buffer Extension) */
2435         cpu->isar.id_aa64dfr0 =
2436             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2437         /* FEAT_TRF (Self-hosted Trace Extension) */
2438         cpu->isar.id_aa64dfr0 =
2439             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2440         cpu->isar.id_dfr0 =
2441             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2442         /* Trace Macrocell system register access */
2443         cpu->isar.id_aa64dfr0 =
2444             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2445         cpu->isar.id_dfr0 =
2446             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2447         /* Memory mapped trace */
2448         cpu->isar.id_dfr0 =
2449             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2450         /* FEAT_AMU (Activity Monitors Extension) */
2451         cpu->isar.id_aa64pfr0 =
2452             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2453         cpu->isar.id_pfr0 =
2454             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2455         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2456         cpu->isar.id_aa64pfr0 =
2457             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2458     }
2459 
2460     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2461      * to false or by setting pmsav7-dregion to 0.
2462      */
2463     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2464         cpu->has_mpu = false;
2465         cpu->pmsav7_dregion = 0;
2466         cpu->pmsav8r_hdregion = 0;
2467     }
2468 
2469     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2470         arm_feature(env, ARM_FEATURE_V7)) {
2471         uint32_t nr = cpu->pmsav7_dregion;
2472 
2473         if (nr > 0xff) {
2474             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2475             return;
2476         }
2477 
2478         if (nr) {
2479             if (arm_feature(env, ARM_FEATURE_V8)) {
2480                 /* PMSAv8 */
2481                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2482                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2483                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2484                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2485                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2486                 }
2487             } else {
2488                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2489                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2490                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2491             }
2492         }
2493 
2494         if (cpu->pmsav8r_hdregion > 0xff) {
2495             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2496                               cpu->pmsav8r_hdregion);
2497             return;
2498         }
2499 
2500         if (cpu->pmsav8r_hdregion) {
2501             env->pmsav8.hprbar = g_new0(uint32_t,
2502                                         cpu->pmsav8r_hdregion);
2503             env->pmsav8.hprlar = g_new0(uint32_t,
2504                                         cpu->pmsav8r_hdregion);
2505         }
2506     }
2507 
2508     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2509         uint32_t nr = cpu->sau_sregion;
2510 
2511         if (nr > 0xff) {
2512             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2513             return;
2514         }
2515 
2516         if (nr) {
2517             env->sau.rbar = g_new0(uint32_t, nr);
2518             env->sau.rlar = g_new0(uint32_t, nr);
2519         }
2520     }
2521 
2522     if (arm_feature(env, ARM_FEATURE_EL3)) {
2523         set_feature(env, ARM_FEATURE_VBAR);
2524     }
2525 
2526 #ifndef CONFIG_USER_ONLY
2527     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2528         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2529     }
2530 #endif
2531 
2532     register_cp_regs_for_features(cpu);
2533     arm_cpu_register_gdb_regs_for_features(cpu);
2534     arm_cpu_register_gdb_commands(cpu);
2535 
2536     init_cpreg_list(cpu);
2537 
2538 #ifndef CONFIG_USER_ONLY
2539     MachineState *ms = MACHINE(qdev_get_machine());
2540     unsigned int smp_cpus = ms->smp.cpus;
2541     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2542 
2543     /*
2544      * We must set cs->num_ases to the final value before
2545      * the first call to cpu_address_space_init.
2546      */
2547     if (cpu->tag_memory != NULL) {
2548         cs->num_ases = 3 + has_secure;
2549     } else {
2550         cs->num_ases = 1 + has_secure;
2551     }
2552 
2553     if (has_secure) {
2554         if (!cpu->secure_memory) {
2555             cpu->secure_memory = cs->memory;
2556         }
2557         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2558                                cpu->secure_memory);
2559     }
2560 
2561     if (cpu->tag_memory != NULL) {
2562         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2563                                cpu->tag_memory);
2564         if (has_secure) {
2565             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2566                                    cpu->secure_tag_memory);
2567         }
2568     }
2569 
2570     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2571 
2572     /* No core_count specified, default to smp_cpus. */
2573     if (cpu->core_count == -1) {
2574         cpu->core_count = smp_cpus;
2575     }
2576 #endif
2577 
2578     if (tcg_enabled()) {
2579         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2580 
2581         /*
2582          * We only support DCZ blocklen that fits on one page.
2583          *
2584          * Architectually this is always true.  However TARGET_PAGE_SIZE
2585          * is variable and, for compatibility with -machine virt-2.7,
2586          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2587          * But even then, while the largest architectural DCZ blocklen
2588          * is 2KiB, no cpu actually uses such a large blocklen.
2589          */
2590         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2591 
2592         /*
2593          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2594          * both nibbles of each byte storing tag data may be written at once.
2595          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2596          */
2597         if (cpu_isar_feature(aa64_mte, cpu)) {
2598             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2599         }
2600     }
2601 
2602     qemu_init_vcpu(cs);
2603     cpu_reset(cs);
2604 
2605     acc->parent_realize(dev, errp);
2606 }
2607 
2608 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2609 {
2610     ObjectClass *oc;
2611     char *typename;
2612     char **cpuname;
2613     const char *cpunamestr;
2614 
2615     cpuname = g_strsplit(cpu_model, ",", 1);
2616     cpunamestr = cpuname[0];
2617 #ifdef CONFIG_USER_ONLY
2618     /* For backwards compatibility usermode emulation allows "-cpu any",
2619      * which has the same semantics as "-cpu max".
2620      */
2621     if (!strcmp(cpunamestr, "any")) {
2622         cpunamestr = "max";
2623     }
2624 #endif
2625     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2626     oc = object_class_by_name(typename);
2627     g_strfreev(cpuname);
2628     g_free(typename);
2629 
2630     return oc;
2631 }
2632 
2633 static const Property arm_cpu_properties[] = {
2634     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2635     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2636                         mp_affinity, ARM64_AFFINITY_INVALID),
2637     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2638     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2639     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2640     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2641     DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU,
2642                       backcompat_pauth_default_use_qarma5, false),
2643 };
2644 
2645 static const gchar *arm_gdb_arch_name(CPUState *cs)
2646 {
2647     ARMCPU *cpu = ARM_CPU(cs);
2648     CPUARMState *env = &cpu->env;
2649 
2650     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2651         return "iwmmxt";
2652     }
2653     return "arm";
2654 }
2655 
2656 #ifndef CONFIG_USER_ONLY
2657 #include "hw/core/sysemu-cpu-ops.h"
2658 
2659 static const struct SysemuCPUOps arm_sysemu_ops = {
2660     .has_work = arm_cpu_has_work,
2661     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2662     .asidx_from_attrs = arm_asidx_from_attrs,
2663     .write_elf32_note = arm_cpu_write_elf32_note,
2664     .write_elf64_note = arm_cpu_write_elf64_note,
2665     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2666     .legacy_vmsd = &vmstate_arm_cpu,
2667 };
2668 #endif
2669 
2670 #ifdef CONFIG_TCG
2671 static const TCGCPUOps arm_tcg_ops = {
2672     .initialize = arm_translate_init,
2673     .translate_code = arm_translate_code,
2674     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2675     .debug_excp_handler = arm_debug_excp_handler,
2676     .restore_state_to_opc = arm_restore_state_to_opc,
2677 
2678 #ifdef CONFIG_USER_ONLY
2679     .record_sigsegv = arm_cpu_record_sigsegv,
2680     .record_sigbus = arm_cpu_record_sigbus,
2681 #else
2682     .tlb_fill_align = arm_cpu_tlb_fill_align,
2683     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2684     .cpu_exec_halt = arm_cpu_exec_halt,
2685     .do_interrupt = arm_cpu_do_interrupt,
2686     .do_transaction_failed = arm_cpu_do_transaction_failed,
2687     .do_unaligned_access = arm_cpu_do_unaligned_access,
2688     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2689     .debug_check_watchpoint = arm_debug_check_watchpoint,
2690     .debug_check_breakpoint = arm_debug_check_breakpoint,
2691 #endif /* !CONFIG_USER_ONLY */
2692 };
2693 #endif /* CONFIG_TCG */
2694 
2695 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2696 {
2697     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2698     CPUClass *cc = CPU_CLASS(acc);
2699     DeviceClass *dc = DEVICE_CLASS(oc);
2700     ResettableClass *rc = RESETTABLE_CLASS(oc);
2701 
2702     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2703                                     &acc->parent_realize);
2704 
2705     device_class_set_props(dc, arm_cpu_properties);
2706 
2707     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2708                                        &acc->parent_phases);
2709 
2710     cc->class_by_name = arm_cpu_class_by_name;
2711     cc->mmu_index = arm_cpu_mmu_index;
2712     cc->dump_state = arm_cpu_dump_state;
2713     cc->set_pc = arm_cpu_set_pc;
2714     cc->get_pc = arm_cpu_get_pc;
2715     cc->gdb_read_register = arm_cpu_gdb_read_register;
2716     cc->gdb_write_register = arm_cpu_gdb_write_register;
2717 #ifndef CONFIG_USER_ONLY
2718     cc->sysemu_ops = &arm_sysemu_ops;
2719 #endif
2720     cc->gdb_arch_name = arm_gdb_arch_name;
2721     cc->gdb_stop_before_watchpoint = true;
2722     cc->disas_set_info = arm_disas_set_info;
2723 
2724 #ifdef CONFIG_TCG
2725     cc->tcg_ops = &arm_tcg_ops;
2726 #endif /* CONFIG_TCG */
2727 }
2728 
2729 static void arm_cpu_instance_init(Object *obj)
2730 {
2731     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2732 
2733     acc->info->initfn(obj);
2734     arm_cpu_post_init(obj);
2735 }
2736 
2737 static void cpu_register_class_init(ObjectClass *oc, void *data)
2738 {
2739     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2740     CPUClass *cc = CPU_CLASS(acc);
2741 
2742     acc->info = data;
2743     cc->gdb_core_xml_file = "arm-core.xml";
2744     if (acc->info->deprecation_note) {
2745         cc->deprecation_note = acc->info->deprecation_note;
2746     }
2747 }
2748 
2749 void arm_cpu_register(const ARMCPUInfo *info)
2750 {
2751     TypeInfo type_info = {
2752         .parent = TYPE_ARM_CPU,
2753         .instance_init = arm_cpu_instance_init,
2754         .class_init = info->class_init ?: cpu_register_class_init,
2755         .class_data = (void *)info,
2756     };
2757 
2758     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2759     type_register_static(&type_info);
2760     g_free((void *)type_info.name);
2761 }
2762 
2763 static const TypeInfo arm_cpu_type_info = {
2764     .name = TYPE_ARM_CPU,
2765     .parent = TYPE_CPU,
2766     .instance_size = sizeof(ARMCPU),
2767     .instance_align = __alignof__(ARMCPU),
2768     .instance_init = arm_cpu_initfn,
2769     .instance_finalize = arm_cpu_finalizefn,
2770     .abstract = true,
2771     .class_size = sizeof(ARMCPUClass),
2772     .class_init = arm_cpu_class_init,
2773 };
2774 
2775 static void arm_cpu_register_types(void)
2776 {
2777     type_register_static(&arm_cpu_type_info);
2778 }
2779 
2780 type_init(arm_cpu_register_types)
2781