xref: /qemu/target/arm/cpu.c (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "exec/translation-block.h"
32 #include "accel/tcg/cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "cpu-features.h"
36 #include "exec/exec-all.h"
37 #include "hw/qdev-properties.h"
38 #if !defined(CONFIG_USER_ONLY)
39 #include "hw/loader.h"
40 #include "hw/boards.h"
41 #ifdef CONFIG_TCG
42 #include "hw/intc/armv7m_nvic.h"
43 #endif /* CONFIG_TCG */
44 #endif /* !CONFIG_USER_ONLY */
45 #include "system/tcg.h"
46 #include "system/qtest.h"
47 #include "system/hw_accel.h"
48 #include "kvm_arm.h"
49 #include "disas/capstone.h"
50 #include "fpu/softfloat.h"
51 #include "cpregs.h"
52 #include "target/arm/cpu-qom.h"
53 #include "target/arm/gtimer.h"
54 
55 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     if (is_a64(env)) {
61         env->pc = value;
62         env->thumb = false;
63     } else {
64         env->regs[15] = value & ~1;
65         env->thumb = value & 1;
66     }
67 }
68 
69 static vaddr arm_cpu_get_pc(CPUState *cs)
70 {
71     ARMCPU *cpu = ARM_CPU(cs);
72     CPUARMState *env = &cpu->env;
73 
74     if (is_a64(env)) {
75         return env->pc;
76     } else {
77         return env->regs[15];
78     }
79 }
80 
81 #ifdef CONFIG_TCG
82 void arm_cpu_synchronize_from_tb(CPUState *cs,
83                                  const TranslationBlock *tb)
84 {
85     /* The program counter is always up to date with CF_PCREL. */
86     if (!(tb_cflags(tb) & CF_PCREL)) {
87         CPUARMState *env = cpu_env(cs);
88         /*
89          * It's OK to look at env for the current mode here, because it's
90          * never possible for an AArch64 TB to chain to an AArch32 TB.
91          */
92         if (is_a64(env)) {
93             env->pc = tb->pc;
94         } else {
95             env->regs[15] = tb->pc;
96         }
97     }
98 }
99 
100 void arm_restore_state_to_opc(CPUState *cs,
101                               const TranslationBlock *tb,
102                               const uint64_t *data)
103 {
104     CPUARMState *env = cpu_env(cs);
105 
106     if (is_a64(env)) {
107         if (tb_cflags(tb) & CF_PCREL) {
108             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
109         } else {
110             env->pc = data[0];
111         }
112         env->condexec_bits = 0;
113         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
114     } else {
115         if (tb_cflags(tb) & CF_PCREL) {
116             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
117         } else {
118             env->regs[15] = data[0];
119         }
120         env->condexec_bits = data[1];
121         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
122     }
123 }
124 #endif /* CONFIG_TCG */
125 
126 /*
127  * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with
128  * IRQ without Superpriority. Moreover, if the GIC is configured so that
129  * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see
130  * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here
131  * unconditionally.
132  */
133 static bool arm_cpu_has_work(CPUState *cs)
134 {
135     ARMCPU *cpu = ARM_CPU(cs);
136 
137     return (cpu->power_state != PSCI_OFF)
138         && cs->interrupt_request &
139         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
140          | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI
141          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
142          | CPU_INTERRUPT_EXITTB);
143 }
144 
145 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch)
146 {
147     return arm_env_mmu_index(cpu_env(cs));
148 }
149 
150 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
151                                  void *opaque)
152 {
153     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
154 
155     entry->hook = hook;
156     entry->opaque = opaque;
157 
158     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
159 }
160 
161 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
162                                  void *opaque)
163 {
164     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
165 
166     entry->hook = hook;
167     entry->opaque = opaque;
168 
169     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
170 }
171 
172 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
173 {
174     /* Reset a single ARMCPRegInfo register */
175     ARMCPRegInfo *ri = value;
176     ARMCPU *cpu = opaque;
177 
178     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
179         return;
180     }
181 
182     if (ri->resetfn) {
183         ri->resetfn(&cpu->env, ri);
184         return;
185     }
186 
187     /* A zero offset is never possible as it would be regs[0]
188      * so we use it to indicate that reset is being handled elsewhere.
189      * This is basically only used for fields in non-core coprocessors
190      * (like the pxa2xx ones).
191      */
192     if (!ri->fieldoffset) {
193         return;
194     }
195 
196     if (cpreg_field_is_64bit(ri)) {
197         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
198     } else {
199         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
200     }
201 }
202 
203 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
204 {
205     /* Purely an assertion check: we've already done reset once,
206      * so now check that running the reset for the cpreg doesn't
207      * change its value. This traps bugs where two different cpregs
208      * both try to reset the same state field but to different values.
209      */
210     ARMCPRegInfo *ri = value;
211     ARMCPU *cpu = opaque;
212     uint64_t oldvalue, newvalue;
213 
214     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
215         return;
216     }
217 
218     oldvalue = read_raw_cp_reg(&cpu->env, ri);
219     cp_reg_reset(key, value, opaque);
220     newvalue = read_raw_cp_reg(&cpu->env, ri);
221     assert(oldvalue == newvalue);
222 }
223 
224 static void arm_cpu_reset_hold(Object *obj, ResetType type)
225 {
226     CPUState *cs = CPU(obj);
227     ARMCPU *cpu = ARM_CPU(cs);
228     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
229     CPUARMState *env = &cpu->env;
230 
231     if (acc->parent_phases.hold) {
232         acc->parent_phases.hold(obj, type);
233     }
234 
235     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
236 
237     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
238     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
239 
240     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
241     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
242     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
243     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
244 
245     cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON;
246 
247     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
248         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
249     }
250 
251     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
252         /* 64 bit CPUs always start in 64 bit mode */
253         env->aarch64 = true;
254 #if defined(CONFIG_USER_ONLY)
255         env->pstate = PSTATE_MODE_EL0t;
256         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
257         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
258         /* Enable all PAC keys.  */
259         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
260                                   SCTLR_EnDA | SCTLR_EnDB);
261         /* Trap on btype=3 for PACIxSP. */
262         env->cp15.sctlr_el[1] |= SCTLR_BT0;
263         /* Trap on implementation defined registers. */
264         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
265             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
266         }
267         /* and to the FP/Neon instructions */
268         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
269                                          CPACR_EL1, FPEN, 3);
270         /* and to the SVE instructions, with default vector length */
271         if (cpu_isar_feature(aa64_sve, cpu)) {
272             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
273                                              CPACR_EL1, ZEN, 3);
274             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
275         }
276         /* and for SME instructions, with default vector length, and TPIDR2 */
277         if (cpu_isar_feature(aa64_sme, cpu)) {
278             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
279             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
280                                              CPACR_EL1, SMEN, 3);
281             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
282             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
283                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
284                                                  SMCR, FA64, 1);
285             }
286         }
287         /*
288          * Enable 48-bit address space (TODO: take reserved_va into account).
289          * Enable TBI0 but not TBI1.
290          * Note that this must match useronly_clean_ptr.
291          */
292         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
293 
294         /* Enable MTE */
295         if (cpu_isar_feature(aa64_mte, cpu)) {
296             /* Enable tag access, but leave TCF0 as No Effect (0). */
297             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
298             /*
299              * Exclude all tags, so that tag 0 is always used.
300              * This corresponds to Linux current->thread.gcr_incl = 0.
301              *
302              * Set RRND, so that helper_irg() will generate a seed later.
303              * Here in cpu_reset(), the crypto subsystem has not yet been
304              * initialized.
305              */
306             env->cp15.gcr_el1 = 0x1ffff;
307         }
308         /*
309          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
310          * This is not yet exposed from the Linux kernel in any way.
311          */
312         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
313         /* Disable access to Debug Communication Channel (DCC). */
314         env->cp15.mdscr_el1 |= 1 << 12;
315         /* Enable FEAT_MOPS */
316         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
317 #else
318         /* Reset into the highest available EL */
319         if (arm_feature(env, ARM_FEATURE_EL3)) {
320             env->pstate = PSTATE_MODE_EL3h;
321         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
322             env->pstate = PSTATE_MODE_EL2h;
323         } else {
324             env->pstate = PSTATE_MODE_EL1h;
325         }
326 
327         /* Sample rvbar at reset.  */
328         env->cp15.rvbar = cpu->rvbar_prop;
329         env->pc = env->cp15.rvbar;
330 #endif
331     } else {
332 #if defined(CONFIG_USER_ONLY)
333         /* Userspace expects access to cp10 and cp11 for FP/Neon */
334         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
335                                          CPACR, CP10, 3);
336         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
337                                          CPACR, CP11, 3);
338 #endif
339         if (arm_feature(env, ARM_FEATURE_V8)) {
340             env->cp15.rvbar = cpu->rvbar_prop;
341             env->regs[15] = cpu->rvbar_prop;
342         }
343     }
344 
345 #if defined(CONFIG_USER_ONLY)
346     env->uncached_cpsr = ARM_CPU_MODE_USR;
347     /* For user mode we must enable access to coprocessors */
348     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
349     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
350         env->cp15.c15_cpar = 3;
351     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
352         env->cp15.c15_cpar = 1;
353     }
354 #else
355 
356     /*
357      * If the highest available EL is EL2, AArch32 will start in Hyp
358      * mode; otherwise it starts in SVC. Note that if we start in
359      * AArch64 then these values in the uncached_cpsr will be ignored.
360      */
361     if (arm_feature(env, ARM_FEATURE_EL2) &&
362         !arm_feature(env, ARM_FEATURE_EL3)) {
363         env->uncached_cpsr = ARM_CPU_MODE_HYP;
364     } else {
365         env->uncached_cpsr = ARM_CPU_MODE_SVC;
366     }
367     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
368 
369     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
370      * executing as AArch32 then check if highvecs are enabled and
371      * adjust the PC accordingly.
372      */
373     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
374         env->regs[15] = 0xFFFF0000;
375     }
376 
377     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
378 #endif
379 
380     if (arm_feature(env, ARM_FEATURE_M)) {
381 #ifndef CONFIG_USER_ONLY
382         uint32_t initial_msp; /* Loaded from 0x0 */
383         uint32_t initial_pc; /* Loaded from 0x4 */
384         uint8_t *rom;
385         uint32_t vecbase;
386 #endif
387 
388         if (cpu_isar_feature(aa32_lob, cpu)) {
389             /*
390              * LTPSIZE is constant 4 if MVE not implemented, and resets
391              * to an UNKNOWN value if MVE is implemented. We choose to
392              * always reset to 4.
393              */
394             env->v7m.ltpsize = 4;
395             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
396             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
397             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
398         }
399 
400         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
401             env->v7m.secure = true;
402         } else {
403             /* This bit resets to 0 if security is supported, but 1 if
404              * it is not. The bit is not present in v7M, but we set it
405              * here so we can avoid having to make checks on it conditional
406              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
407              */
408             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
409             /*
410              * Set NSACR to indicate "NS access permitted to everything";
411              * this avoids having to have all the tests of it being
412              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
413              * v8.1M the guest-visible value of NSACR in a CPU without the
414              * Security Extension is 0xcff.
415              */
416             env->v7m.nsacr = 0xcff;
417         }
418 
419         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
420          * that it resets to 1, so QEMU always does that rather than making
421          * it dependent on CPU model. In v8M it is RES1.
422          */
423         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
424         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
425         if (arm_feature(env, ARM_FEATURE_V8)) {
426             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
427             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
428             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
429         }
430         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
431             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
432             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
433         }
434 
435         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
436             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
437             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
438                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
439         }
440 
441 #ifndef CONFIG_USER_ONLY
442         /* Unlike A/R profile, M profile defines the reset LR value */
443         env->regs[14] = 0xffffffff;
444 
445         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
446         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
447 
448         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
449         vecbase = env->v7m.vecbase[env->v7m.secure];
450         rom = rom_ptr_for_as(cs->as, vecbase, 8);
451         if (rom) {
452             /* Address zero is covered by ROM which hasn't yet been
453              * copied into physical memory.
454              */
455             initial_msp = ldl_p(rom);
456             initial_pc = ldl_p(rom + 4);
457         } else {
458             /* Address zero not covered by a ROM blob, or the ROM blob
459              * is in non-modifiable memory and this is a second reset after
460              * it got copied into memory. In the latter case, rom_ptr
461              * will return a NULL pointer and we should use ldl_phys instead.
462              */
463             initial_msp = ldl_phys(cs->as, vecbase);
464             initial_pc = ldl_phys(cs->as, vecbase + 4);
465         }
466 
467         qemu_log_mask(CPU_LOG_INT,
468                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
469                       initial_msp, initial_pc);
470 
471         env->regs[13] = initial_msp & 0xFFFFFFFC;
472         env->regs[15] = initial_pc & ~1;
473         env->thumb = initial_pc & 1;
474 #else
475         /*
476          * For user mode we run non-secure and with access to the FPU.
477          * The FPU context is active (ie does not need further setup)
478          * and is owned by non-secure.
479          */
480         env->v7m.secure = false;
481         env->v7m.nsacr = 0xcff;
482         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
483         env->v7m.fpccr[M_REG_S] &=
484             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
485         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
486 #endif
487     }
488 
489     /* M profile requires that reset clears the exclusive monitor;
490      * A profile does not, but clearing it makes more sense than having it
491      * set with an exclusive access on address zero.
492      */
493     arm_clear_exclusive(env);
494 
495     if (arm_feature(env, ARM_FEATURE_PMSA)) {
496         if (cpu->pmsav7_dregion > 0) {
497             if (arm_feature(env, ARM_FEATURE_V8)) {
498                 memset(env->pmsav8.rbar[M_REG_NS], 0,
499                        sizeof(*env->pmsav8.rbar[M_REG_NS])
500                        * cpu->pmsav7_dregion);
501                 memset(env->pmsav8.rlar[M_REG_NS], 0,
502                        sizeof(*env->pmsav8.rlar[M_REG_NS])
503                        * cpu->pmsav7_dregion);
504                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
505                     memset(env->pmsav8.rbar[M_REG_S], 0,
506                            sizeof(*env->pmsav8.rbar[M_REG_S])
507                            * cpu->pmsav7_dregion);
508                     memset(env->pmsav8.rlar[M_REG_S], 0,
509                            sizeof(*env->pmsav8.rlar[M_REG_S])
510                            * cpu->pmsav7_dregion);
511                 }
512             } else if (arm_feature(env, ARM_FEATURE_V7)) {
513                 memset(env->pmsav7.drbar, 0,
514                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
515                 memset(env->pmsav7.drsr, 0,
516                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
517                 memset(env->pmsav7.dracr, 0,
518                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
519             }
520         }
521 
522         if (cpu->pmsav8r_hdregion > 0) {
523             memset(env->pmsav8.hprbar, 0,
524                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
525             memset(env->pmsav8.hprlar, 0,
526                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
527         }
528 
529         env->pmsav7.rnr[M_REG_NS] = 0;
530         env->pmsav7.rnr[M_REG_S] = 0;
531         env->pmsav8.mair0[M_REG_NS] = 0;
532         env->pmsav8.mair0[M_REG_S] = 0;
533         env->pmsav8.mair1[M_REG_NS] = 0;
534         env->pmsav8.mair1[M_REG_S] = 0;
535     }
536 
537     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
538         if (cpu->sau_sregion > 0) {
539             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
540             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
541         }
542         env->sau.rnr = 0;
543         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
544          * the Cortex-M33 does.
545          */
546         env->sau.ctrl = 0;
547     }
548 
549     set_flush_to_zero(1, &env->vfp.fp_status[FPST_STD]);
550     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_STD]);
551     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD]);
552     set_default_nan_mode(1, &env->vfp.fp_status[FPST_STD_F16]);
553     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32]);
554     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
555     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD]);
556     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A32_F16]);
557     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
558     arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_STD_F16]);
559     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH]);
560     set_flush_to_zero(1, &env->vfp.fp_status[FPST_AH]);
561     set_flush_inputs_to_zero(1, &env->vfp.fp_status[FPST_AH]);
562     arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_AH_F16]);
563 
564 #ifndef CONFIG_USER_ONLY
565     if (kvm_enabled()) {
566         kvm_arm_reset_vcpu(cpu);
567     }
568 #endif
569 
570     if (tcg_enabled()) {
571         hw_breakpoint_update_all(cpu);
572         hw_watchpoint_update_all(cpu);
573 
574         arm_rebuild_hflags(env);
575     }
576 }
577 
578 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
579 {
580     ARMCPU *cpu = ARM_CPU(cpustate);
581     CPUARMState *env = &cpu->env;
582     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
583     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
584 
585     /*
586      * Check we have the EL we're aiming for. If that is the
587      * highest implemented EL, then cpu_reset has already done
588      * all the work.
589      */
590     switch (target_el) {
591     case 3:
592         assert(have_el3);
593         return;
594     case 2:
595         assert(have_el2);
596         if (!have_el3) {
597             return;
598         }
599         break;
600     case 1:
601         if (!have_el3 && !have_el2) {
602             return;
603         }
604         break;
605     default:
606         g_assert_not_reached();
607     }
608 
609     if (have_el3) {
610         /*
611          * Set the EL3 state so code can run at EL2. This should match
612          * the requirements set by Linux in its booting spec.
613          */
614         if (env->aarch64) {
615             env->cp15.scr_el3 |= SCR_RW;
616             if (cpu_isar_feature(aa64_pauth, cpu)) {
617                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
618             }
619             if (cpu_isar_feature(aa64_mte, cpu)) {
620                 env->cp15.scr_el3 |= SCR_ATA;
621             }
622             if (cpu_isar_feature(aa64_sve, cpu)) {
623                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
624                 env->vfp.zcr_el[3] = 0xf;
625             }
626             if (cpu_isar_feature(aa64_sme, cpu)) {
627                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
628                 env->cp15.scr_el3 |= SCR_ENTP2;
629                 env->vfp.smcr_el[3] = 0xf;
630             }
631             if (cpu_isar_feature(aa64_hcx, cpu)) {
632                 env->cp15.scr_el3 |= SCR_HXEN;
633             }
634             if (cpu_isar_feature(aa64_fgt, cpu)) {
635                 env->cp15.scr_el3 |= SCR_FGTEN;
636             }
637         }
638 
639         if (target_el == 2) {
640             /* If the guest is at EL2 then Linux expects the HVC insn to work */
641             env->cp15.scr_el3 |= SCR_HCE;
642         }
643 
644         /* Put CPU into non-secure state */
645         env->cp15.scr_el3 |= SCR_NS;
646         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
647         env->cp15.nsacr |= 3 << 10;
648     }
649 
650     if (have_el2 && target_el < 2) {
651         /* Set EL2 state so code can run at EL1. */
652         if (env->aarch64) {
653             env->cp15.hcr_el2 |= HCR_RW;
654         }
655     }
656 
657     /* Set the CPU to the desired state */
658     if (env->aarch64) {
659         env->pstate = aarch64_pstate_mode(target_el, true);
660     } else {
661         static const uint32_t mode_for_el[] = {
662             0,
663             ARM_CPU_MODE_SVC,
664             ARM_CPU_MODE_HYP,
665             ARM_CPU_MODE_SVC,
666         };
667 
668         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
669     }
670 }
671 
672 
673 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
674 
675 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
676                                      unsigned int target_el,
677                                      unsigned int cur_el, bool secure,
678                                      uint64_t hcr_el2)
679 {
680     CPUARMState *env = cpu_env(cs);
681     bool pstate_unmasked;
682     bool unmasked = false;
683     bool allIntMask = false;
684 
685     /*
686      * Don't take exceptions if they target a lower EL.
687      * This check should catch any exceptions that would not be taken
688      * but left pending.
689      */
690     if (cur_el > target_el) {
691         return false;
692     }
693 
694     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
695         env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) {
696         allIntMask = env->pstate & PSTATE_ALLINT ||
697                      ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) &&
698                       (env->pstate & PSTATE_SP));
699     }
700 
701     switch (excp_idx) {
702     case EXCP_NMI:
703         pstate_unmasked = !allIntMask;
704         break;
705 
706     case EXCP_VINMI:
707         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
708             /* VINMIs are only taken when hypervized.  */
709             return false;
710         }
711         return !allIntMask;
712     case EXCP_VFNMI:
713         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
714             /* VFNMIs are only taken when hypervized.  */
715             return false;
716         }
717         return !allIntMask;
718     case EXCP_FIQ:
719         pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask);
720         break;
721 
722     case EXCP_IRQ:
723         pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask);
724         break;
725 
726     case EXCP_VFIQ:
727         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
728             /* VFIQs are only taken when hypervized.  */
729             return false;
730         }
731         return !(env->daif & PSTATE_F) && (!allIntMask);
732     case EXCP_VIRQ:
733         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
734             /* VIRQs are only taken when hypervized.  */
735             return false;
736         }
737         return !(env->daif & PSTATE_I) && (!allIntMask);
738     case EXCP_VSERR:
739         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
740             /* VIRQs are only taken when hypervized.  */
741             return false;
742         }
743         return !(env->daif & PSTATE_A);
744     default:
745         g_assert_not_reached();
746     }
747 
748     /*
749      * Use the target EL, current execution state and SCR/HCR settings to
750      * determine whether the corresponding CPSR bit is used to mask the
751      * interrupt.
752      */
753     if ((target_el > cur_el) && (target_el != 1)) {
754         /* Exceptions targeting a higher EL may not be maskable */
755         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
756             switch (target_el) {
757             case 2:
758                 /*
759                  * According to ARM DDI 0487H.a, an interrupt can be masked
760                  * when HCR_E2H and HCR_TGE are both set regardless of the
761                  * current Security state. Note that we need to revisit this
762                  * part again once we need to support NMI.
763                  */
764                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
765                         unmasked = true;
766                 }
767                 break;
768             case 3:
769                 /* Interrupt cannot be masked when the target EL is 3 */
770                 unmasked = true;
771                 break;
772             default:
773                 g_assert_not_reached();
774             }
775         } else {
776             /*
777              * The old 32-bit-only environment has a more complicated
778              * masking setup. HCR and SCR bits not only affect interrupt
779              * routing but also change the behaviour of masking.
780              */
781             bool hcr, scr;
782 
783             switch (excp_idx) {
784             case EXCP_FIQ:
785                 /*
786                  * If FIQs are routed to EL3 or EL2 then there are cases where
787                  * we override the CPSR.F in determining if the exception is
788                  * masked or not. If neither of these are set then we fall back
789                  * to the CPSR.F setting otherwise we further assess the state
790                  * below.
791                  */
792                 hcr = hcr_el2 & HCR_FMO;
793                 scr = (env->cp15.scr_el3 & SCR_FIQ);
794 
795                 /*
796                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
797                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
798                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
799                  * when non-secure but only when FIQs are only routed to EL3.
800                  */
801                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
802                 break;
803             case EXCP_IRQ:
804                 /*
805                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
806                  * we may override the CPSR.I masking when in non-secure state.
807                  * The SCR.IRQ setting has already been taken into consideration
808                  * when setting the target EL, so it does not have a further
809                  * affect here.
810                  */
811                 hcr = hcr_el2 & HCR_IMO;
812                 scr = false;
813                 break;
814             default:
815                 g_assert_not_reached();
816             }
817 
818             if ((scr || hcr) && !secure) {
819                 unmasked = true;
820             }
821         }
822     }
823 
824     /*
825      * The PSTATE bits only mask the interrupt if we have not overridden the
826      * ability above.
827      */
828     return unmasked || pstate_unmasked;
829 }
830 
831 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
832 {
833     CPUClass *cc = CPU_GET_CLASS(cs);
834     CPUARMState *env = cpu_env(cs);
835     uint32_t cur_el = arm_current_el(env);
836     bool secure = arm_is_secure(env);
837     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
838     uint32_t target_el;
839     uint32_t excp_idx;
840 
841     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
842 
843     if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) &&
844         (arm_sctlr(env, cur_el) & SCTLR_NMI)) {
845         if (interrupt_request & CPU_INTERRUPT_NMI) {
846             excp_idx = EXCP_NMI;
847             target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
848             if (arm_excp_unmasked(cs, excp_idx, target_el,
849                                   cur_el, secure, hcr_el2)) {
850                 goto found;
851             }
852         }
853         if (interrupt_request & CPU_INTERRUPT_VINMI) {
854             excp_idx = EXCP_VINMI;
855             target_el = 1;
856             if (arm_excp_unmasked(cs, excp_idx, target_el,
857                                   cur_el, secure, hcr_el2)) {
858                 goto found;
859             }
860         }
861         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
862             excp_idx = EXCP_VFNMI;
863             target_el = 1;
864             if (arm_excp_unmasked(cs, excp_idx, target_el,
865                                   cur_el, secure, hcr_el2)) {
866                 goto found;
867             }
868         }
869     } else {
870         /*
871          * NMI disabled: interrupts with superpriority are handled
872          * as if they didn't have it
873          */
874         if (interrupt_request & CPU_INTERRUPT_NMI) {
875             interrupt_request |= CPU_INTERRUPT_HARD;
876         }
877         if (interrupt_request & CPU_INTERRUPT_VINMI) {
878             interrupt_request |= CPU_INTERRUPT_VIRQ;
879         }
880         if (interrupt_request & CPU_INTERRUPT_VFNMI) {
881             interrupt_request |= CPU_INTERRUPT_VFIQ;
882         }
883     }
884 
885     if (interrupt_request & CPU_INTERRUPT_FIQ) {
886         excp_idx = EXCP_FIQ;
887         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
888         if (arm_excp_unmasked(cs, excp_idx, target_el,
889                               cur_el, secure, hcr_el2)) {
890             goto found;
891         }
892     }
893     if (interrupt_request & CPU_INTERRUPT_HARD) {
894         excp_idx = EXCP_IRQ;
895         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
896         if (arm_excp_unmasked(cs, excp_idx, target_el,
897                               cur_el, secure, hcr_el2)) {
898             goto found;
899         }
900     }
901     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
902         excp_idx = EXCP_VIRQ;
903         target_el = 1;
904         if (arm_excp_unmasked(cs, excp_idx, target_el,
905                               cur_el, secure, hcr_el2)) {
906             goto found;
907         }
908     }
909     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
910         excp_idx = EXCP_VFIQ;
911         target_el = 1;
912         if (arm_excp_unmasked(cs, excp_idx, target_el,
913                               cur_el, secure, hcr_el2)) {
914             goto found;
915         }
916     }
917     if (interrupt_request & CPU_INTERRUPT_VSERR) {
918         excp_idx = EXCP_VSERR;
919         target_el = 1;
920         if (arm_excp_unmasked(cs, excp_idx, target_el,
921                               cur_el, secure, hcr_el2)) {
922             /* Taking a virtual abort clears HCR_EL2.VSE */
923             env->cp15.hcr_el2 &= ~HCR_VSE;
924             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
925             goto found;
926         }
927     }
928     return false;
929 
930  found:
931     cs->exception_index = excp_idx;
932     env->exception.target_el = target_el;
933     cc->tcg_ops->do_interrupt(cs);
934     return true;
935 }
936 
937 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
938 
939 void arm_cpu_update_virq(ARMCPU *cpu)
940 {
941     /*
942      * Update the interrupt level for VIRQ, which is the logical OR of
943      * the HCR_EL2.VI bit and the input line level from the GIC.
944      */
945     CPUARMState *env = &cpu->env;
946     CPUState *cs = CPU(cpu);
947 
948     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
949         !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
950         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
951 
952     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
953         if (new_state) {
954             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
955         } else {
956             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
957         }
958     }
959 }
960 
961 void arm_cpu_update_vfiq(ARMCPU *cpu)
962 {
963     /*
964      * Update the interrupt level for VFIQ, which is the logical OR of
965      * the HCR_EL2.VF bit and the input line level from the GIC.
966      */
967     CPUARMState *env = &cpu->env;
968     CPUState *cs = CPU(cpu);
969 
970     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) &&
971         !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) ||
972         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
973 
974     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
975         if (new_state) {
976             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
977         } else {
978             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
979         }
980     }
981 }
982 
983 void arm_cpu_update_vinmi(ARMCPU *cpu)
984 {
985     /*
986      * Update the interrupt level for VINMI, which is the logical OR of
987      * the HCRX_EL2.VINMI bit and the input line level from the GIC.
988      */
989     CPUARMState *env = &cpu->env;
990     CPUState *cs = CPU(cpu);
991 
992     bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) &&
993                       (arm_hcrx_el2_eff(env) & HCRX_VINMI)) ||
994         (env->irq_line_state & CPU_INTERRUPT_VINMI);
995 
996     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) {
997         if (new_state) {
998             cpu_interrupt(cs, CPU_INTERRUPT_VINMI);
999         } else {
1000             cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI);
1001         }
1002     }
1003 }
1004 
1005 void arm_cpu_update_vfnmi(ARMCPU *cpu)
1006 {
1007     /*
1008      * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit.
1009      */
1010     CPUARMState *env = &cpu->env;
1011     CPUState *cs = CPU(cpu);
1012 
1013     bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) &&
1014                       (arm_hcrx_el2_eff(env) & HCRX_VFNMI);
1015 
1016     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) {
1017         if (new_state) {
1018             cpu_interrupt(cs, CPU_INTERRUPT_VFNMI);
1019         } else {
1020             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI);
1021         }
1022     }
1023 }
1024 
1025 void arm_cpu_update_vserr(ARMCPU *cpu)
1026 {
1027     /*
1028      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
1029      */
1030     CPUARMState *env = &cpu->env;
1031     CPUState *cs = CPU(cpu);
1032 
1033     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
1034 
1035     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
1036         if (new_state) {
1037             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
1038         } else {
1039             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
1040         }
1041     }
1042 }
1043 
1044 #ifndef CONFIG_USER_ONLY
1045 static void arm_cpu_set_irq(void *opaque, int irq, int level)
1046 {
1047     ARMCPU *cpu = opaque;
1048     CPUARMState *env = &cpu->env;
1049     CPUState *cs = CPU(cpu);
1050     static const int mask[] = {
1051         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
1052         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
1053         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
1054         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ,
1055         [ARM_CPU_NMI] = CPU_INTERRUPT_NMI,
1056         [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI,
1057     };
1058 
1059     if (!arm_feature(env, ARM_FEATURE_EL2) &&
1060         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
1061         /*
1062          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
1063          * have EL2 support we don't care. (Unless the guest is doing something
1064          * silly this will only be calls saying "level is still 0".)
1065          */
1066         return;
1067     }
1068 
1069     if (level) {
1070         env->irq_line_state |= mask[irq];
1071     } else {
1072         env->irq_line_state &= ~mask[irq];
1073     }
1074 
1075     switch (irq) {
1076     case ARM_CPU_VIRQ:
1077         arm_cpu_update_virq(cpu);
1078         break;
1079     case ARM_CPU_VFIQ:
1080         arm_cpu_update_vfiq(cpu);
1081         break;
1082     case ARM_CPU_VINMI:
1083         arm_cpu_update_vinmi(cpu);
1084         break;
1085     case ARM_CPU_IRQ:
1086     case ARM_CPU_FIQ:
1087     case ARM_CPU_NMI:
1088         if (level) {
1089             cpu_interrupt(cs, mask[irq]);
1090         } else {
1091             cpu_reset_interrupt(cs, mask[irq]);
1092         }
1093         break;
1094     default:
1095         g_assert_not_reached();
1096     }
1097 }
1098 
1099 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
1100 {
1101 #ifdef CONFIG_KVM
1102     ARMCPU *cpu = opaque;
1103     CPUARMState *env = &cpu->env;
1104     CPUState *cs = CPU(cpu);
1105     uint32_t linestate_bit;
1106     int irq_id;
1107 
1108     switch (irq) {
1109     case ARM_CPU_IRQ:
1110         irq_id = KVM_ARM_IRQ_CPU_IRQ;
1111         linestate_bit = CPU_INTERRUPT_HARD;
1112         break;
1113     case ARM_CPU_FIQ:
1114         irq_id = KVM_ARM_IRQ_CPU_FIQ;
1115         linestate_bit = CPU_INTERRUPT_FIQ;
1116         break;
1117     default:
1118         g_assert_not_reached();
1119     }
1120 
1121     if (level) {
1122         env->irq_line_state |= linestate_bit;
1123     } else {
1124         env->irq_line_state &= ~linestate_bit;
1125     }
1126     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
1127 #endif
1128 }
1129 
1130 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
1131 {
1132     ARMCPU *cpu = ARM_CPU(cs);
1133     CPUARMState *env = &cpu->env;
1134 
1135     cpu_synchronize_state(cs);
1136     return arm_cpu_data_is_big_endian(env);
1137 }
1138 
1139 #ifdef CONFIG_TCG
1140 bool arm_cpu_exec_halt(CPUState *cs)
1141 {
1142     bool leave_halt = cpu_has_work(cs);
1143 
1144     if (leave_halt) {
1145         /* We're about to come out of WFI/WFE: disable the WFxT timer */
1146         ARMCPU *cpu = ARM_CPU(cs);
1147         if (cpu->wfxt_timer) {
1148             timer_del(cpu->wfxt_timer);
1149         }
1150     }
1151     return leave_halt;
1152 }
1153 #endif
1154 
1155 static void arm_wfxt_timer_cb(void *opaque)
1156 {
1157     ARMCPU *cpu = opaque;
1158     CPUState *cs = CPU(cpu);
1159 
1160     /*
1161      * We expect the CPU to be halted; this will cause arm_cpu_is_work()
1162      * to return true (so we will come out of halt even with no other
1163      * pending interrupt), and the TCG accelerator's cpu_exec_interrupt()
1164      * function auto-clears the CPU_INTERRUPT_EXITTB flag for us.
1165      */
1166     cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
1167 }
1168 #endif
1169 
1170 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1171 {
1172     ARMCPU *ac = ARM_CPU(cpu);
1173     CPUARMState *env = &ac->env;
1174     bool sctlr_b = arm_sctlr_b(env);
1175 
1176     if (is_a64(env)) {
1177         info->cap_arch = CS_ARCH_ARM64;
1178         info->cap_insn_unit = 4;
1179         info->cap_insn_split = 4;
1180     } else {
1181         int cap_mode;
1182         if (env->thumb) {
1183             info->cap_insn_unit = 2;
1184             info->cap_insn_split = 4;
1185             cap_mode = CS_MODE_THUMB;
1186         } else {
1187             info->cap_insn_unit = 4;
1188             info->cap_insn_split = 4;
1189             cap_mode = CS_MODE_ARM;
1190         }
1191         if (arm_feature(env, ARM_FEATURE_V8)) {
1192             cap_mode |= CS_MODE_V8;
1193         }
1194         if (arm_feature(env, ARM_FEATURE_M)) {
1195             cap_mode |= CS_MODE_MCLASS;
1196         }
1197         info->cap_arch = CS_ARCH_ARM;
1198         info->cap_mode = cap_mode;
1199     }
1200 
1201     info->endian = BFD_ENDIAN_LITTLE;
1202     if (bswap_code(sctlr_b)) {
1203         info->endian = TARGET_BIG_ENDIAN ? BFD_ENDIAN_LITTLE : BFD_ENDIAN_BIG;
1204     }
1205     info->flags &= ~INSN_ARM_BE32;
1206 #ifndef CONFIG_USER_ONLY
1207     if (sctlr_b) {
1208         info->flags |= INSN_ARM_BE32;
1209     }
1210 #endif
1211 }
1212 
1213 #ifdef TARGET_AARCH64
1214 
1215 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1216 {
1217     ARMCPU *cpu = ARM_CPU(cs);
1218     CPUARMState *env = &cpu->env;
1219     uint32_t psr = pstate_read(env);
1220     int i, j;
1221     int el = arm_current_el(env);
1222     uint64_t hcr = arm_hcr_el2_eff(env);
1223     const char *ns_status;
1224     bool sve;
1225 
1226     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1227     for (i = 0; i < 32; i++) {
1228         if (i == 31) {
1229             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1230         } else {
1231             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1232                          (i + 2) % 3 ? " " : "\n");
1233         }
1234     }
1235 
1236     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1237         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1238     } else {
1239         ns_status = "";
1240     }
1241     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1242                  psr,
1243                  psr & PSTATE_N ? 'N' : '-',
1244                  psr & PSTATE_Z ? 'Z' : '-',
1245                  psr & PSTATE_C ? 'C' : '-',
1246                  psr & PSTATE_V ? 'V' : '-',
1247                  ns_status,
1248                  el,
1249                  psr & PSTATE_SP ? 'h' : 't');
1250 
1251     if (cpu_isar_feature(aa64_sme, cpu)) {
1252         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1253                      env->svcr,
1254                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1255                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1256     }
1257     if (cpu_isar_feature(aa64_bti, cpu)) {
1258         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1259     }
1260     qemu_fprintf(f, "%s%s%s",
1261                  (hcr & HCR_NV) ? " NV" : "",
1262                  (hcr & HCR_NV1) ? " NV1" : "",
1263                  (hcr & HCR_NV2) ? " NV2" : "");
1264     if (!(flags & CPU_DUMP_FPU)) {
1265         qemu_fprintf(f, "\n");
1266         return;
1267     }
1268     if (fp_exception_el(env, el) != 0) {
1269         qemu_fprintf(f, "    FPU disabled\n");
1270         return;
1271     }
1272     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1273                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1274 
1275     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1276         sve = sme_exception_el(env, el) == 0;
1277     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1278         sve = sve_exception_el(env, el) == 0;
1279     } else {
1280         sve = false;
1281     }
1282 
1283     if (sve) {
1284         int zcr_len = sve_vqm1_for_el(env, el);
1285 
1286         for (i = 0; i <= FFR_PRED_NUM; i++) {
1287             bool eol;
1288             if (i == FFR_PRED_NUM) {
1289                 qemu_fprintf(f, "FFR=");
1290                 /* It's last, so end the line.  */
1291                 eol = true;
1292             } else {
1293                 qemu_fprintf(f, "P%02d=", i);
1294                 switch (zcr_len) {
1295                 case 0:
1296                     eol = i % 8 == 7;
1297                     break;
1298                 case 1:
1299                     eol = i % 6 == 5;
1300                     break;
1301                 case 2:
1302                 case 3:
1303                     eol = i % 3 == 2;
1304                     break;
1305                 default:
1306                     /* More than one quadword per predicate.  */
1307                     eol = true;
1308                     break;
1309                 }
1310             }
1311             for (j = zcr_len / 4; j >= 0; j--) {
1312                 int digits;
1313                 if (j * 4 + 4 <= zcr_len + 1) {
1314                     digits = 16;
1315                 } else {
1316                     digits = (zcr_len % 4 + 1) * 4;
1317                 }
1318                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1319                              env->vfp.pregs[i].p[j],
1320                              j ? ":" : eol ? "\n" : " ");
1321             }
1322         }
1323 
1324         if (zcr_len == 0) {
1325             /*
1326              * With vl=16, there are only 37 columns per register,
1327              * so output two registers per line.
1328              */
1329             for (i = 0; i < 32; i++) {
1330                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1331                              i, env->vfp.zregs[i].d[1],
1332                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1333             }
1334         } else {
1335             for (i = 0; i < 32; i++) {
1336                 qemu_fprintf(f, "Z%02d=", i);
1337                 for (j = zcr_len; j >= 0; j--) {
1338                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1339                                  env->vfp.zregs[i].d[j * 2 + 1],
1340                                  env->vfp.zregs[i].d[j * 2 + 0],
1341                                  j ? ":" : "\n");
1342                 }
1343             }
1344         }
1345     } else {
1346         for (i = 0; i < 32; i++) {
1347             uint64_t *q = aa64_vfp_qreg(env, i);
1348             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1349                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1350         }
1351     }
1352 
1353     if (cpu_isar_feature(aa64_sme, cpu) &&
1354         FIELD_EX64(env->svcr, SVCR, ZA) &&
1355         sme_exception_el(env, el) == 0) {
1356         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1357         int svl = (zcr_len + 1) * 16;
1358         int svl_lg10 = svl < 100 ? 2 : 3;
1359 
1360         for (i = 0; i < svl; i++) {
1361             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1362             for (j = zcr_len; j >= 0; --j) {
1363                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1364                              env->zarray[i].d[2 * j + 1],
1365                              env->zarray[i].d[2 * j],
1366                              j ? ':' : '\n');
1367             }
1368         }
1369     }
1370 }
1371 
1372 #else
1373 
1374 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1375 {
1376     g_assert_not_reached();
1377 }
1378 
1379 #endif
1380 
1381 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1382 {
1383     ARMCPU *cpu = ARM_CPU(cs);
1384     CPUARMState *env = &cpu->env;
1385     int i;
1386 
1387     if (is_a64(env)) {
1388         aarch64_cpu_dump_state(cs, f, flags);
1389         return;
1390     }
1391 
1392     for (i = 0; i < 16; i++) {
1393         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1394         if ((i % 4) == 3) {
1395             qemu_fprintf(f, "\n");
1396         } else {
1397             qemu_fprintf(f, " ");
1398         }
1399     }
1400 
1401     if (arm_feature(env, ARM_FEATURE_M)) {
1402         uint32_t xpsr = xpsr_read(env);
1403         const char *mode;
1404         const char *ns_status = "";
1405 
1406         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1407             ns_status = env->v7m.secure ? "S " : "NS ";
1408         }
1409 
1410         if (xpsr & XPSR_EXCP) {
1411             mode = "handler";
1412         } else {
1413             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1414                 mode = "unpriv-thread";
1415             } else {
1416                 mode = "priv-thread";
1417             }
1418         }
1419 
1420         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1421                      xpsr,
1422                      xpsr & XPSR_N ? 'N' : '-',
1423                      xpsr & XPSR_Z ? 'Z' : '-',
1424                      xpsr & XPSR_C ? 'C' : '-',
1425                      xpsr & XPSR_V ? 'V' : '-',
1426                      xpsr & XPSR_T ? 'T' : 'A',
1427                      ns_status,
1428                      mode);
1429     } else {
1430         uint32_t psr = cpsr_read(env);
1431         const char *ns_status = "";
1432 
1433         if (arm_feature(env, ARM_FEATURE_EL3) &&
1434             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1435             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1436         }
1437 
1438         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1439                      psr,
1440                      psr & CPSR_N ? 'N' : '-',
1441                      psr & CPSR_Z ? 'Z' : '-',
1442                      psr & CPSR_C ? 'C' : '-',
1443                      psr & CPSR_V ? 'V' : '-',
1444                      psr & CPSR_T ? 'T' : 'A',
1445                      ns_status,
1446                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1447     }
1448 
1449     if (flags & CPU_DUMP_FPU) {
1450         int numvfpregs = 0;
1451         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1452             numvfpregs = 32;
1453         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1454             numvfpregs = 16;
1455         }
1456         for (i = 0; i < numvfpregs; i++) {
1457             uint64_t v = *aa32_vfp_dreg(env, i);
1458             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1459                          i * 2, (uint32_t)v,
1460                          i * 2 + 1, (uint32_t)(v >> 32),
1461                          i, v);
1462         }
1463         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1464         if (cpu_isar_feature(aa32_mve, cpu)) {
1465             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1466         }
1467     }
1468 }
1469 
1470 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1471 {
1472     uint32_t Aff1 = idx / clustersz;
1473     uint32_t Aff0 = idx % clustersz;
1474     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1475 }
1476 
1477 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1478 {
1479     return cpu->mp_affinity;
1480 }
1481 
1482 static void arm_cpu_initfn(Object *obj)
1483 {
1484     ARMCPU *cpu = ARM_CPU(obj);
1485 
1486     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1487                                          NULL, g_free);
1488 
1489     QLIST_INIT(&cpu->pre_el_change_hooks);
1490     QLIST_INIT(&cpu->el_change_hooks);
1491 
1492 #ifdef CONFIG_USER_ONLY
1493 # ifdef TARGET_AARCH64
1494     /*
1495      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1496      * These values were chosen to fit within the default signal frame.
1497      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1498      * and our corresponding cpu property.
1499      */
1500     cpu->sve_default_vq = 4;
1501     cpu->sme_default_vq = 2;
1502 # endif
1503 #else
1504     /* Our inbound IRQ and FIQ lines */
1505     if (kvm_enabled()) {
1506         /*
1507          * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add
1508          * them to maintain the same interface as non-KVM CPUs.
1509          */
1510         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6);
1511     } else {
1512         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6);
1513     }
1514 
1515     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1516                        ARRAY_SIZE(cpu->gt_timer_outputs));
1517 
1518     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1519                              "gicv3-maintenance-interrupt", 1);
1520     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1521                              "pmu-interrupt", 1);
1522 #endif
1523 
1524     /* DTB consumers generally don't in fact care what the 'compatible'
1525      * string is, so always provide some string and trust that a hypothetical
1526      * picky DTB consumer will also provide a helpful error message.
1527      */
1528     cpu->dtb_compatible = "qemu,unknown";
1529     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1530     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1531 
1532     if (tcg_enabled() || hvf_enabled()) {
1533         /* TCG and HVF implement PSCI 1.1 */
1534         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1535     }
1536 }
1537 
1538 /*
1539  * 0 means "unset, use the default value". That default might vary depending
1540  * on the CPU type, and is set in the realize fn.
1541  */
1542 static const Property arm_cpu_gt_cntfrq_property =
1543             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0);
1544 
1545 static const Property arm_cpu_reset_cbar_property =
1546             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1547 
1548 static const Property arm_cpu_reset_hivecs_property =
1549             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1550 
1551 #ifndef CONFIG_USER_ONLY
1552 static const Property arm_cpu_has_el2_property =
1553             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1554 
1555 static const Property arm_cpu_has_el3_property =
1556             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1557 #endif
1558 
1559 static const Property arm_cpu_cfgend_property =
1560             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1561 
1562 static const Property arm_cpu_has_vfp_property =
1563             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1564 
1565 static const Property arm_cpu_has_vfp_d32_property =
1566             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1567 
1568 static const Property arm_cpu_has_neon_property =
1569             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1570 
1571 static const Property arm_cpu_has_dsp_property =
1572             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1573 
1574 static const Property arm_cpu_has_mpu_property =
1575             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1576 
1577 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1578  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1579  * the right value for that particular CPU type, and we don't want
1580  * to override that with an incorrect constant value.
1581  */
1582 static const Property arm_cpu_pmsav7_dregion_property =
1583             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1584                                            pmsav7_dregion,
1585                                            qdev_prop_uint32, uint32_t);
1586 
1587 static bool arm_get_pmu(Object *obj, Error **errp)
1588 {
1589     ARMCPU *cpu = ARM_CPU(obj);
1590 
1591     return cpu->has_pmu;
1592 }
1593 
1594 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1595 {
1596     ARMCPU *cpu = ARM_CPU(obj);
1597 
1598     if (value) {
1599         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1600             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1601             return;
1602         }
1603         set_feature(&cpu->env, ARM_FEATURE_PMU);
1604     } else {
1605         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1606     }
1607     cpu->has_pmu = value;
1608 }
1609 
1610 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1611 {
1612     /*
1613      * The exact approach to calculating guest ticks is:
1614      *
1615      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1616      *              NANOSECONDS_PER_SECOND);
1617      *
1618      * We don't do that. Rather we intentionally use integer division
1619      * truncation below and in the caller for the conversion of host monotonic
1620      * time to guest ticks to provide the exact inverse for the semantics of
1621      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1622      * it loses precision when representing frequencies where
1623      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1624      * provide an exact inverse leads to scheduling timers with negative
1625      * periods, which in turn leads to sticky behaviour in the guest.
1626      *
1627      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1628      * cannot become zero.
1629      */
1630     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1631       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1632 }
1633 
1634 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1635 {
1636     CPUARMState *env = &cpu->env;
1637     bool no_aa32 = false;
1638 
1639     /*
1640      * Some features automatically imply others: set the feature
1641      * bits explicitly for these cases.
1642      */
1643 
1644     if (arm_feature(env, ARM_FEATURE_M)) {
1645         set_feature(env, ARM_FEATURE_PMSA);
1646     }
1647 
1648     if (arm_feature(env, ARM_FEATURE_V8)) {
1649         if (arm_feature(env, ARM_FEATURE_M)) {
1650             set_feature(env, ARM_FEATURE_V7);
1651         } else {
1652             set_feature(env, ARM_FEATURE_V7VE);
1653         }
1654     }
1655 
1656     /*
1657      * There exist AArch64 cpus without AArch32 support.  When KVM
1658      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1659      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1660      * As a general principle, we also do not make ID register
1661      * consistency checks anywhere unless using TCG, because only
1662      * for TCG would a consistency-check failure be a QEMU bug.
1663      */
1664     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1665         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1666     }
1667 
1668     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1669         /*
1670          * v7 Virtualization Extensions. In real hardware this implies
1671          * EL2 and also the presence of the Security Extensions.
1672          * For QEMU, for backwards-compatibility we implement some
1673          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1674          * include the various other features that V7VE implies.
1675          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1676          * Security Extensions is ARM_FEATURE_EL3.
1677          */
1678         assert(!tcg_enabled() || no_aa32 ||
1679                cpu_isar_feature(aa32_arm_div, cpu));
1680         set_feature(env, ARM_FEATURE_LPAE);
1681         set_feature(env, ARM_FEATURE_V7);
1682     }
1683     if (arm_feature(env, ARM_FEATURE_V7)) {
1684         set_feature(env, ARM_FEATURE_VAPA);
1685         set_feature(env, ARM_FEATURE_THUMB2);
1686         set_feature(env, ARM_FEATURE_MPIDR);
1687         if (!arm_feature(env, ARM_FEATURE_M)) {
1688             set_feature(env, ARM_FEATURE_V6K);
1689         } else {
1690             set_feature(env, ARM_FEATURE_V6);
1691         }
1692 
1693         /*
1694          * Always define VBAR for V7 CPUs even if it doesn't exist in
1695          * non-EL3 configs. This is needed by some legacy boards.
1696          */
1697         set_feature(env, ARM_FEATURE_VBAR);
1698     }
1699     if (arm_feature(env, ARM_FEATURE_V6K)) {
1700         set_feature(env, ARM_FEATURE_V6);
1701         set_feature(env, ARM_FEATURE_MVFR);
1702     }
1703     if (arm_feature(env, ARM_FEATURE_V6)) {
1704         set_feature(env, ARM_FEATURE_V5);
1705         if (!arm_feature(env, ARM_FEATURE_M)) {
1706             assert(!tcg_enabled() || no_aa32 ||
1707                    cpu_isar_feature(aa32_jazelle, cpu));
1708             set_feature(env, ARM_FEATURE_AUXCR);
1709         }
1710     }
1711     if (arm_feature(env, ARM_FEATURE_V5)) {
1712         set_feature(env, ARM_FEATURE_V4T);
1713     }
1714     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1715         set_feature(env, ARM_FEATURE_V7MP);
1716     }
1717     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1718         set_feature(env, ARM_FEATURE_CBAR);
1719     }
1720     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1721         !arm_feature(env, ARM_FEATURE_M)) {
1722         set_feature(env, ARM_FEATURE_THUMB_DSP);
1723     }
1724 }
1725 
1726 void arm_cpu_post_init(Object *obj)
1727 {
1728     ARMCPU *cpu = ARM_CPU(obj);
1729 
1730     /*
1731      * Some features imply others. Figure this out now, because we
1732      * are going to look at the feature bits in deciding which
1733      * properties to add.
1734      */
1735     arm_cpu_propagate_feature_implications(cpu);
1736 
1737     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1738         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1739         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1740     }
1741 
1742     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1743         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1744     }
1745 
1746     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1747         object_property_add_uint64_ptr(obj, "rvbar",
1748                                        &cpu->rvbar_prop,
1749                                        OBJ_PROP_FLAG_READWRITE);
1750     }
1751 
1752 #ifndef CONFIG_USER_ONLY
1753     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1754         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1755          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1756          */
1757         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1758 
1759         object_property_add_link(obj, "secure-memory",
1760                                  TYPE_MEMORY_REGION,
1761                                  (Object **)&cpu->secure_memory,
1762                                  qdev_prop_allow_set_link_before_realize,
1763                                  OBJ_PROP_LINK_STRONG);
1764     }
1765 
1766     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1767         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1768     }
1769 #endif
1770 
1771     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1772         cpu->has_pmu = true;
1773         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1774     }
1775 
1776     /*
1777      * Allow user to turn off VFP and Neon support, but only for TCG --
1778      * KVM does not currently allow us to lie to the guest about its
1779      * ID/feature registers, so the guest always sees what the host has.
1780      */
1781     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1782         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1783             cpu->has_vfp = true;
1784             cpu->has_vfp_d32 = true;
1785             if (tcg_enabled() || qtest_enabled()) {
1786                 qdev_property_add_static(DEVICE(obj),
1787                                          &arm_cpu_has_vfp_property);
1788             }
1789         }
1790     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1791         cpu->has_vfp = true;
1792         if (tcg_enabled() || qtest_enabled()) {
1793             qdev_property_add_static(DEVICE(obj),
1794                                      &arm_cpu_has_vfp_property);
1795         }
1796         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1797             cpu->has_vfp_d32 = true;
1798             /*
1799              * The permitted values of the SIMDReg bits [3:0] on
1800              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1801              * make sure that has_vfp_d32 can not be set to false.
1802              */
1803             if ((tcg_enabled() || qtest_enabled())
1804                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1805                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1806                 qdev_property_add_static(DEVICE(obj),
1807                                          &arm_cpu_has_vfp_d32_property);
1808             }
1809         }
1810     }
1811 
1812     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1813         cpu->has_neon = true;
1814         if (!kvm_enabled()) {
1815             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1816         }
1817     }
1818 
1819     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1820         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1821         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1822     }
1823 
1824     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1825         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1826         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1827             qdev_property_add_static(DEVICE(obj),
1828                                      &arm_cpu_pmsav7_dregion_property);
1829         }
1830     }
1831 
1832     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1833         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1834                                  qdev_prop_allow_set_link_before_realize,
1835                                  OBJ_PROP_LINK_STRONG);
1836         /*
1837          * M profile: initial value of the Secure VTOR. We can't just use
1838          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1839          * the property to be set after realize.
1840          */
1841         object_property_add_uint32_ptr(obj, "init-svtor",
1842                                        &cpu->init_svtor,
1843                                        OBJ_PROP_FLAG_READWRITE);
1844     }
1845     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1846         /*
1847          * Initial value of the NS VTOR (for cores without the Security
1848          * extension, this is the only VTOR)
1849          */
1850         object_property_add_uint32_ptr(obj, "init-nsvtor",
1851                                        &cpu->init_nsvtor,
1852                                        OBJ_PROP_FLAG_READWRITE);
1853     }
1854 
1855     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1856     object_property_add_uint32_ptr(obj, "psci-conduit",
1857                                    &cpu->psci_conduit,
1858                                    OBJ_PROP_FLAG_READWRITE);
1859 
1860     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1861 
1862     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1863         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1864     }
1865 
1866     if (kvm_enabled()) {
1867         kvm_arm_add_vcpu_properties(cpu);
1868     }
1869 
1870 #ifndef CONFIG_USER_ONLY
1871     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1872         cpu_isar_feature(aa64_mte, cpu)) {
1873         object_property_add_link(obj, "tag-memory",
1874                                  TYPE_MEMORY_REGION,
1875                                  (Object **)&cpu->tag_memory,
1876                                  qdev_prop_allow_set_link_before_realize,
1877                                  OBJ_PROP_LINK_STRONG);
1878 
1879         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1880             object_property_add_link(obj, "secure-tag-memory",
1881                                      TYPE_MEMORY_REGION,
1882                                      (Object **)&cpu->secure_tag_memory,
1883                                      qdev_prop_allow_set_link_before_realize,
1884                                      OBJ_PROP_LINK_STRONG);
1885         }
1886     }
1887 #endif
1888 }
1889 
1890 static void arm_cpu_finalizefn(Object *obj)
1891 {
1892     ARMCPU *cpu = ARM_CPU(obj);
1893     ARMELChangeHook *hook, *next;
1894 
1895     g_hash_table_destroy(cpu->cp_regs);
1896 
1897     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1898         QLIST_REMOVE(hook, node);
1899         g_free(hook);
1900     }
1901     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1902         QLIST_REMOVE(hook, node);
1903         g_free(hook);
1904     }
1905 #ifndef CONFIG_USER_ONLY
1906     if (cpu->pmu_timer) {
1907         timer_free(cpu->pmu_timer);
1908     }
1909     if (cpu->wfxt_timer) {
1910         timer_free(cpu->wfxt_timer);
1911     }
1912 #endif
1913 }
1914 
1915 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1916 {
1917     Error *local_err = NULL;
1918 
1919 #ifdef TARGET_AARCH64
1920     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1921         arm_cpu_sve_finalize(cpu, &local_err);
1922         if (local_err != NULL) {
1923             error_propagate(errp, local_err);
1924             return;
1925         }
1926 
1927         /*
1928          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1929          * FEAT_SME_FA64 is present). However our implementation currently
1930          * assumes it, so if the user asked for sve=off then turn off SME also.
1931          * (KVM doesn't currently support SME at all.)
1932          */
1933         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1934             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1935         }
1936 
1937         arm_cpu_sme_finalize(cpu, &local_err);
1938         if (local_err != NULL) {
1939             error_propagate(errp, local_err);
1940             return;
1941         }
1942 
1943         arm_cpu_pauth_finalize(cpu, &local_err);
1944         if (local_err != NULL) {
1945             error_propagate(errp, local_err);
1946             return;
1947         }
1948 
1949         arm_cpu_lpa2_finalize(cpu, &local_err);
1950         if (local_err != NULL) {
1951             error_propagate(errp, local_err);
1952             return;
1953         }
1954     }
1955 #endif
1956 
1957     if (kvm_enabled()) {
1958         kvm_arm_steal_time_finalize(cpu, &local_err);
1959         if (local_err != NULL) {
1960             error_propagate(errp, local_err);
1961             return;
1962         }
1963     }
1964 }
1965 
1966 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1967 {
1968     CPUState *cs = CPU(dev);
1969     ARMCPU *cpu = ARM_CPU(dev);
1970     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1971     CPUARMState *env = &cpu->env;
1972     Error *local_err = NULL;
1973 
1974 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1975     /* Use pc-relative instructions in system-mode */
1976     tcg_cflags_set(cs, CF_PCREL);
1977 #endif
1978 
1979     /* If we needed to query the host kernel for the CPU features
1980      * then it's possible that might have failed in the initfn, but
1981      * this is the first point where we can report it.
1982      */
1983     if (cpu->host_cpu_probe_failed) {
1984         if (!kvm_enabled() && !hvf_enabled()) {
1985             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1986         } else {
1987             error_setg(errp, "Failed to retrieve host CPU features");
1988         }
1989         return;
1990     }
1991 
1992     if (!cpu->gt_cntfrq_hz) {
1993         /*
1994          * 0 means "the board didn't set a value, use the default". (We also
1995          * get here for the CONFIG_USER_ONLY case.)
1996          * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
1997          * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
1998          * which gives a 16ns tick period.
1999          *
2000          * We will use the back-compat value:
2001          *  - for QEMU CPU types added before we standardized on 1GHz
2002          *  - for versioned machine types with a version of 9.0 or earlier
2003          */
2004         if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) ||
2005             cpu->backcompat_cntfrq) {
2006             cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ;
2007         } else {
2008             cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ;
2009         }
2010     }
2011 
2012 #ifndef CONFIG_USER_ONLY
2013     /* The NVIC and M-profile CPU are two halves of a single piece of
2014      * hardware; trying to use one without the other is a command line
2015      * error and will result in segfaults if not caught here.
2016      */
2017     if (arm_feature(env, ARM_FEATURE_M)) {
2018         if (!env->nvic) {
2019             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
2020             return;
2021         }
2022     } else {
2023         if (env->nvic) {
2024             error_setg(errp, "This board can only be used with Cortex-M CPUs");
2025             return;
2026         }
2027     }
2028 
2029     if (!tcg_enabled() && !qtest_enabled()) {
2030         /*
2031          * We assume that no accelerator except TCG (and the "not really an
2032          * accelerator" qtest) can handle these features, because Arm hardware
2033          * virtualization can't virtualize them.
2034          *
2035          * Catch all the cases which might cause us to create more than one
2036          * address space for the CPU (otherwise we will assert() later in
2037          * cpu_address_space_init()).
2038          */
2039         if (arm_feature(env, ARM_FEATURE_M)) {
2040             error_setg(errp,
2041                        "Cannot enable %s when using an M-profile guest CPU",
2042                        current_accel_name());
2043             return;
2044         }
2045         if (cpu->has_el3) {
2046             error_setg(errp,
2047                        "Cannot enable %s when guest CPU has EL3 enabled",
2048                        current_accel_name());
2049             return;
2050         }
2051         if (cpu->tag_memory) {
2052             error_setg(errp,
2053                        "Cannot enable %s when guest CPUs has MTE enabled",
2054                        current_accel_name());
2055             return;
2056         }
2057     }
2058 
2059     {
2060         uint64_t scale = gt_cntfrq_period_ns(cpu);
2061 
2062         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2063                                                arm_gt_ptimer_cb, cpu);
2064         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2065                                                arm_gt_vtimer_cb, cpu);
2066         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2067                                               arm_gt_htimer_cb, cpu);
2068         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2069                                               arm_gt_stimer_cb, cpu);
2070         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
2071                                                   arm_gt_hvtimer_cb, cpu);
2072     }
2073 #endif
2074 
2075     cpu_exec_realizefn(cs, &local_err);
2076     if (local_err != NULL) {
2077         error_propagate(errp, local_err);
2078         return;
2079     }
2080 
2081     arm_cpu_finalize_features(cpu, &local_err);
2082     if (local_err != NULL) {
2083         error_propagate(errp, local_err);
2084         return;
2085     }
2086 
2087 #ifdef CONFIG_USER_ONLY
2088     /*
2089      * User mode relies on IC IVAU instructions to catch modification of
2090      * dual-mapped code.
2091      *
2092      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
2093      * IC IVAU even if the emulated processor does not normally require it.
2094      */
2095     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
2096 #endif
2097 
2098     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2099         cpu->has_vfp != cpu->has_neon) {
2100         /*
2101          * This is an architectural requirement for AArch64; AArch32 is
2102          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
2103          */
2104         error_setg(errp,
2105                    "AArch64 CPUs must have both VFP and Neon or neither");
2106         return;
2107     }
2108 
2109     if (cpu->has_vfp_d32 != cpu->has_neon) {
2110         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
2111         return;
2112     }
2113 
2114    if (!cpu->has_vfp_d32) {
2115         uint32_t u;
2116 
2117         u = cpu->isar.mvfr0;
2118         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
2119         cpu->isar.mvfr0 = u;
2120     }
2121 
2122     if (!cpu->has_vfp) {
2123         uint64_t t;
2124         uint32_t u;
2125 
2126         t = cpu->isar.id_aa64isar1;
2127         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
2128         cpu->isar.id_aa64isar1 = t;
2129 
2130         t = cpu->isar.id_aa64pfr0;
2131         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
2132         cpu->isar.id_aa64pfr0 = t;
2133 
2134         u = cpu->isar.id_isar6;
2135         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
2136         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2137         cpu->isar.id_isar6 = u;
2138 
2139         u = cpu->isar.mvfr0;
2140         u = FIELD_DP32(u, MVFR0, FPSP, 0);
2141         u = FIELD_DP32(u, MVFR0, FPDP, 0);
2142         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
2143         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
2144         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
2145         if (!arm_feature(env, ARM_FEATURE_M)) {
2146             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
2147             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
2148         }
2149         cpu->isar.mvfr0 = u;
2150 
2151         u = cpu->isar.mvfr1;
2152         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
2153         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
2154         u = FIELD_DP32(u, MVFR1, FPHP, 0);
2155         if (arm_feature(env, ARM_FEATURE_M)) {
2156             u = FIELD_DP32(u, MVFR1, FP16, 0);
2157         }
2158         cpu->isar.mvfr1 = u;
2159 
2160         u = cpu->isar.mvfr2;
2161         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
2162         cpu->isar.mvfr2 = u;
2163     }
2164 
2165     if (!cpu->has_neon) {
2166         uint64_t t;
2167         uint32_t u;
2168 
2169         unset_feature(env, ARM_FEATURE_NEON);
2170 
2171         t = cpu->isar.id_aa64isar0;
2172         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
2173         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
2174         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
2175         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
2176         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2177         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2178         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2179         cpu->isar.id_aa64isar0 = t;
2180 
2181         t = cpu->isar.id_aa64isar1;
2182         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2183         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2184         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2185         cpu->isar.id_aa64isar1 = t;
2186 
2187         t = cpu->isar.id_aa64pfr0;
2188         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2189         cpu->isar.id_aa64pfr0 = t;
2190 
2191         u = cpu->isar.id_isar5;
2192         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2193         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2194         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2195         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2196         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2197         cpu->isar.id_isar5 = u;
2198 
2199         u = cpu->isar.id_isar6;
2200         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2201         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2202         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2203         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2204         cpu->isar.id_isar6 = u;
2205 
2206         if (!arm_feature(env, ARM_FEATURE_M)) {
2207             u = cpu->isar.mvfr1;
2208             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2209             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2210             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2211             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2212             cpu->isar.mvfr1 = u;
2213 
2214             u = cpu->isar.mvfr2;
2215             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2216             cpu->isar.mvfr2 = u;
2217         }
2218     }
2219 
2220     if (!cpu->has_neon && !cpu->has_vfp) {
2221         uint64_t t;
2222         uint32_t u;
2223 
2224         t = cpu->isar.id_aa64isar0;
2225         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2226         cpu->isar.id_aa64isar0 = t;
2227 
2228         t = cpu->isar.id_aa64isar1;
2229         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2230         cpu->isar.id_aa64isar1 = t;
2231 
2232         u = cpu->isar.mvfr0;
2233         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2234         cpu->isar.mvfr0 = u;
2235 
2236         /* Despite the name, this field covers both VFP and Neon */
2237         u = cpu->isar.mvfr1;
2238         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2239         cpu->isar.mvfr1 = u;
2240     }
2241 
2242     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2243         uint32_t u;
2244 
2245         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2246 
2247         u = cpu->isar.id_isar1;
2248         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2249         cpu->isar.id_isar1 = u;
2250 
2251         u = cpu->isar.id_isar2;
2252         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2253         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2254         cpu->isar.id_isar2 = u;
2255 
2256         u = cpu->isar.id_isar3;
2257         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2258         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2259         cpu->isar.id_isar3 = u;
2260     }
2261 
2262 
2263     /*
2264      * We rely on no XScale CPU having VFP so we can use the same bits in the
2265      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2266      */
2267     assert(arm_feature(env, ARM_FEATURE_AARCH64) ||
2268            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2269            !arm_feature(env, ARM_FEATURE_XSCALE));
2270 
2271 #ifndef CONFIG_USER_ONLY
2272     {
2273         int pagebits;
2274         if (arm_feature(env, ARM_FEATURE_V7) &&
2275             !arm_feature(env, ARM_FEATURE_M) &&
2276             !arm_feature(env, ARM_FEATURE_PMSA)) {
2277             /*
2278              * v7VMSA drops support for the old ARMv5 tiny pages,
2279              * so we can use 4K pages.
2280              */
2281             pagebits = 12;
2282         } else {
2283             /*
2284              * For CPUs which might have tiny 1K pages, or which have an
2285              * MPU and might have small region sizes, stick with 1K pages.
2286              */
2287             pagebits = 10;
2288         }
2289         if (!set_preferred_target_page_bits(pagebits)) {
2290             /*
2291              * This can only ever happen for hotplugging a CPU, or if
2292              * the board code incorrectly creates a CPU which it has
2293              * promised via minimum_page_size that it will not.
2294              */
2295             error_setg(errp, "This CPU requires a smaller page size "
2296                        "than the system is using");
2297             return;
2298         }
2299     }
2300 #endif
2301 
2302     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2303      * We don't support setting cluster ID ([16..23]) (known as Aff2
2304      * in later ARM ARM versions), or any of the higher affinity level fields,
2305      * so these bits always RAZ.
2306      */
2307     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2308         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2309                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2310     }
2311 
2312     if (cpu->reset_hivecs) {
2313             cpu->reset_sctlr |= (1 << 13);
2314     }
2315 
2316     if (cpu->cfgend) {
2317         if (arm_feature(env, ARM_FEATURE_V7)) {
2318             cpu->reset_sctlr |= SCTLR_EE;
2319         } else {
2320             cpu->reset_sctlr |= SCTLR_B;
2321         }
2322     }
2323 
2324     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2325         /* If the has_el3 CPU property is disabled then we need to disable the
2326          * feature.
2327          */
2328         unset_feature(env, ARM_FEATURE_EL3);
2329 
2330         /*
2331          * Disable the security extension feature bits in the processor
2332          * feature registers as well.
2333          */
2334         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2335         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2336         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2337                                            ID_AA64PFR0, EL3, 0);
2338 
2339         /* Disable the realm management extension, which requires EL3. */
2340         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2341                                            ID_AA64PFR0, RME, 0);
2342     }
2343 
2344     if (!cpu->has_el2) {
2345         unset_feature(env, ARM_FEATURE_EL2);
2346     }
2347 
2348     if (!cpu->has_pmu) {
2349         unset_feature(env, ARM_FEATURE_PMU);
2350     }
2351     if (arm_feature(env, ARM_FEATURE_PMU)) {
2352         pmu_init(cpu);
2353 
2354         if (!kvm_enabled()) {
2355             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2356             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2357         }
2358 
2359 #ifndef CONFIG_USER_ONLY
2360         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2361                 cpu);
2362 #endif
2363     } else {
2364         cpu->isar.id_aa64dfr0 =
2365             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2366         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2367         cpu->pmceid0 = 0;
2368         cpu->pmceid1 = 0;
2369     }
2370 
2371     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2372         /*
2373          * Disable the hypervisor feature bits in the processor feature
2374          * registers if we don't have EL2.
2375          */
2376         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2377                                            ID_AA64PFR0, EL2, 0);
2378         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2379                                        ID_PFR1, VIRTUALIZATION, 0);
2380     }
2381 
2382     if (cpu_isar_feature(aa64_mte, cpu)) {
2383         /*
2384          * The architectural range of GM blocksize is 2-6, however qemu
2385          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2386          */
2387         if (tcg_enabled()) {
2388             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2389         }
2390 
2391 #ifndef CONFIG_USER_ONLY
2392         /*
2393          * If we run with TCG and do not have tag-memory provided by
2394          * the machine, then reduce MTE support to instructions enabled at EL0.
2395          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2396          */
2397         if (tcg_enabled() && cpu->tag_memory == NULL) {
2398             cpu->isar.id_aa64pfr1 =
2399                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2400         }
2401 
2402         /*
2403          * If MTE is supported by the host, however it should not be
2404          * enabled on the guest (i.e mte=off), clear guest's MTE bits."
2405          */
2406         if (kvm_enabled() && !cpu->kvm_mte) {
2407                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2408         }
2409 #endif
2410     }
2411 
2412 #ifndef CONFIG_USER_ONLY
2413     if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) {
2414         cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2415                                        arm_wfxt_timer_cb, cpu);
2416     }
2417 #endif
2418 
2419     if (tcg_enabled()) {
2420         /*
2421          * Don't report some architectural features in the ID registers
2422          * where TCG does not yet implement it (not even a minimal
2423          * stub version). This avoids guests falling over when they
2424          * try to access the non-existent system registers for them.
2425          */
2426         /* FEAT_SPE (Statistical Profiling Extension) */
2427         cpu->isar.id_aa64dfr0 =
2428             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2429         /* FEAT_TRBE (Trace Buffer Extension) */
2430         cpu->isar.id_aa64dfr0 =
2431             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2432         /* FEAT_TRF (Self-hosted Trace Extension) */
2433         cpu->isar.id_aa64dfr0 =
2434             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2435         cpu->isar.id_dfr0 =
2436             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2437         /* Trace Macrocell system register access */
2438         cpu->isar.id_aa64dfr0 =
2439             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2440         cpu->isar.id_dfr0 =
2441             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2442         /* Memory mapped trace */
2443         cpu->isar.id_dfr0 =
2444             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2445         /* FEAT_AMU (Activity Monitors Extension) */
2446         cpu->isar.id_aa64pfr0 =
2447             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2448         cpu->isar.id_pfr0 =
2449             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2450         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2451         cpu->isar.id_aa64pfr0 =
2452             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2453     }
2454 
2455     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2456      * to false or by setting pmsav7-dregion to 0.
2457      */
2458     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2459         cpu->has_mpu = false;
2460         cpu->pmsav7_dregion = 0;
2461         cpu->pmsav8r_hdregion = 0;
2462     }
2463 
2464     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2465         arm_feature(env, ARM_FEATURE_V7)) {
2466         uint32_t nr = cpu->pmsav7_dregion;
2467 
2468         if (nr > 0xff) {
2469             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2470             return;
2471         }
2472 
2473         if (nr) {
2474             if (arm_feature(env, ARM_FEATURE_V8)) {
2475                 /* PMSAv8 */
2476                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2477                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2478                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2479                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2480                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2481                 }
2482             } else {
2483                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2484                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2485                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2486             }
2487         }
2488 
2489         if (cpu->pmsav8r_hdregion > 0xff) {
2490             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2491                               cpu->pmsav8r_hdregion);
2492             return;
2493         }
2494 
2495         if (cpu->pmsav8r_hdregion) {
2496             env->pmsav8.hprbar = g_new0(uint32_t,
2497                                         cpu->pmsav8r_hdregion);
2498             env->pmsav8.hprlar = g_new0(uint32_t,
2499                                         cpu->pmsav8r_hdregion);
2500         }
2501     }
2502 
2503     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2504         uint32_t nr = cpu->sau_sregion;
2505 
2506         if (nr > 0xff) {
2507             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2508             return;
2509         }
2510 
2511         if (nr) {
2512             env->sau.rbar = g_new0(uint32_t, nr);
2513             env->sau.rlar = g_new0(uint32_t, nr);
2514         }
2515     }
2516 
2517     if (arm_feature(env, ARM_FEATURE_EL3)) {
2518         set_feature(env, ARM_FEATURE_VBAR);
2519     }
2520 
2521 #ifndef CONFIG_USER_ONLY
2522     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2523         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2524     }
2525 #endif
2526 
2527     register_cp_regs_for_features(cpu);
2528     arm_cpu_register_gdb_regs_for_features(cpu);
2529     arm_cpu_register_gdb_commands(cpu);
2530 
2531     init_cpreg_list(cpu);
2532 
2533 #ifndef CONFIG_USER_ONLY
2534     MachineState *ms = MACHINE(qdev_get_machine());
2535     unsigned int smp_cpus = ms->smp.cpus;
2536     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2537 
2538     /*
2539      * We must set cs->num_ases to the final value before
2540      * the first call to cpu_address_space_init.
2541      */
2542     if (cpu->tag_memory != NULL) {
2543         cs->num_ases = 3 + has_secure;
2544     } else {
2545         cs->num_ases = 1 + has_secure;
2546     }
2547 
2548     if (has_secure) {
2549         if (!cpu->secure_memory) {
2550             cpu->secure_memory = cs->memory;
2551         }
2552         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2553                                cpu->secure_memory);
2554     }
2555 
2556     if (cpu->tag_memory != NULL) {
2557         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2558                                cpu->tag_memory);
2559         if (has_secure) {
2560             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2561                                    cpu->secure_tag_memory);
2562         }
2563     }
2564 
2565     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2566 
2567     /* No core_count specified, default to smp_cpus. */
2568     if (cpu->core_count == -1) {
2569         cpu->core_count = smp_cpus;
2570     }
2571 #endif
2572 
2573     if (tcg_enabled()) {
2574         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2575 
2576         /*
2577          * We only support DCZ blocklen that fits on one page.
2578          *
2579          * Architectually this is always true.  However TARGET_PAGE_SIZE
2580          * is variable and, for compatibility with -machine virt-2.7,
2581          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2582          * But even then, while the largest architectural DCZ blocklen
2583          * is 2KiB, no cpu actually uses such a large blocklen.
2584          */
2585         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2586 
2587         /*
2588          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2589          * both nibbles of each byte storing tag data may be written at once.
2590          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2591          */
2592         if (cpu_isar_feature(aa64_mte, cpu)) {
2593             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2594         }
2595     }
2596 
2597     qemu_init_vcpu(cs);
2598     cpu_reset(cs);
2599 
2600     acc->parent_realize(dev, errp);
2601 }
2602 
2603 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2604 {
2605     ObjectClass *oc;
2606     char *typename;
2607     char **cpuname;
2608     const char *cpunamestr;
2609 
2610     cpuname = g_strsplit(cpu_model, ",", 1);
2611     cpunamestr = cpuname[0];
2612 #ifdef CONFIG_USER_ONLY
2613     /* For backwards compatibility usermode emulation allows "-cpu any",
2614      * which has the same semantics as "-cpu max".
2615      */
2616     if (!strcmp(cpunamestr, "any")) {
2617         cpunamestr = "max";
2618     }
2619 #endif
2620     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2621     oc = object_class_by_name(typename);
2622     g_strfreev(cpuname);
2623     g_free(typename);
2624 
2625     return oc;
2626 }
2627 
2628 static const Property arm_cpu_properties[] = {
2629     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2630     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2631                         mp_affinity, ARM64_AFFINITY_INVALID),
2632     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2633     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2634     /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */
2635     DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false),
2636     DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU,
2637                       backcompat_pauth_default_use_qarma5, false),
2638 };
2639 
2640 static const gchar *arm_gdb_arch_name(CPUState *cs)
2641 {
2642     ARMCPU *cpu = ARM_CPU(cs);
2643     CPUARMState *env = &cpu->env;
2644 
2645     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2646         return "iwmmxt";
2647     }
2648     return "arm";
2649 }
2650 
2651 #ifndef CONFIG_USER_ONLY
2652 #include "hw/core/sysemu-cpu-ops.h"
2653 
2654 static const struct SysemuCPUOps arm_sysemu_ops = {
2655     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2656     .asidx_from_attrs = arm_asidx_from_attrs,
2657     .write_elf32_note = arm_cpu_write_elf32_note,
2658     .write_elf64_note = arm_cpu_write_elf64_note,
2659     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2660     .legacy_vmsd = &vmstate_arm_cpu,
2661 };
2662 #endif
2663 
2664 #ifdef CONFIG_TCG
2665 static const TCGCPUOps arm_tcg_ops = {
2666     .initialize = arm_translate_init,
2667     .translate_code = arm_translate_code,
2668     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2669     .debug_excp_handler = arm_debug_excp_handler,
2670     .restore_state_to_opc = arm_restore_state_to_opc,
2671 
2672 #ifdef CONFIG_USER_ONLY
2673     .record_sigsegv = arm_cpu_record_sigsegv,
2674     .record_sigbus = arm_cpu_record_sigbus,
2675 #else
2676     .tlb_fill_align = arm_cpu_tlb_fill_align,
2677     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2678     .cpu_exec_halt = arm_cpu_exec_halt,
2679     .do_interrupt = arm_cpu_do_interrupt,
2680     .do_transaction_failed = arm_cpu_do_transaction_failed,
2681     .do_unaligned_access = arm_cpu_do_unaligned_access,
2682     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2683     .debug_check_watchpoint = arm_debug_check_watchpoint,
2684     .debug_check_breakpoint = arm_debug_check_breakpoint,
2685 #endif /* !CONFIG_USER_ONLY */
2686 };
2687 #endif /* CONFIG_TCG */
2688 
2689 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2690 {
2691     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2692     CPUClass *cc = CPU_CLASS(acc);
2693     DeviceClass *dc = DEVICE_CLASS(oc);
2694     ResettableClass *rc = RESETTABLE_CLASS(oc);
2695 
2696     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2697                                     &acc->parent_realize);
2698 
2699     device_class_set_props(dc, arm_cpu_properties);
2700 
2701     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2702                                        &acc->parent_phases);
2703 
2704     cc->class_by_name = arm_cpu_class_by_name;
2705     cc->has_work = arm_cpu_has_work;
2706     cc->mmu_index = arm_cpu_mmu_index;
2707     cc->dump_state = arm_cpu_dump_state;
2708     cc->set_pc = arm_cpu_set_pc;
2709     cc->get_pc = arm_cpu_get_pc;
2710     cc->gdb_read_register = arm_cpu_gdb_read_register;
2711     cc->gdb_write_register = arm_cpu_gdb_write_register;
2712 #ifndef CONFIG_USER_ONLY
2713     cc->sysemu_ops = &arm_sysemu_ops;
2714 #endif
2715     cc->gdb_arch_name = arm_gdb_arch_name;
2716     cc->gdb_stop_before_watchpoint = true;
2717     cc->disas_set_info = arm_disas_set_info;
2718 
2719 #ifdef CONFIG_TCG
2720     cc->tcg_ops = &arm_tcg_ops;
2721 #endif /* CONFIG_TCG */
2722 }
2723 
2724 static void arm_cpu_instance_init(Object *obj)
2725 {
2726     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2727 
2728     acc->info->initfn(obj);
2729     arm_cpu_post_init(obj);
2730 }
2731 
2732 static void cpu_register_class_init(ObjectClass *oc, void *data)
2733 {
2734     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2735     CPUClass *cc = CPU_CLASS(acc);
2736 
2737     acc->info = data;
2738     cc->gdb_core_xml_file = "arm-core.xml";
2739     if (acc->info->deprecation_note) {
2740         cc->deprecation_note = acc->info->deprecation_note;
2741     }
2742 }
2743 
2744 void arm_cpu_register(const ARMCPUInfo *info)
2745 {
2746     TypeInfo type_info = {
2747         .parent = TYPE_ARM_CPU,
2748         .instance_init = arm_cpu_instance_init,
2749         .class_init = info->class_init ?: cpu_register_class_init,
2750         .class_data = (void *)info,
2751     };
2752 
2753     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2754     type_register_static(&type_info);
2755     g_free((void *)type_info.name);
2756 }
2757 
2758 static const TypeInfo arm_cpu_type_info = {
2759     .name = TYPE_ARM_CPU,
2760     .parent = TYPE_CPU,
2761     .instance_size = sizeof(ARMCPU),
2762     .instance_align = __alignof__(ARMCPU),
2763     .instance_init = arm_cpu_initfn,
2764     .instance_finalize = arm_cpu_finalizefn,
2765     .abstract = true,
2766     .class_size = sizeof(ARMCPUClass),
2767     .class_init = arm_cpu_class_init,
2768 };
2769 
2770 static void arm_cpu_register_types(void)
2771 {
2772     type_register_static(&arm_cpu_type_info);
2773 }
2774 
2775 type_init(arm_cpu_register_types)
2776