1 /* 2 * QEMU ARM CPU 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #include "qemu/osdep.h" 22 #include "qemu/qemu-print.h" 23 #include "qemu/timer.h" 24 #include "qemu/log.h" 25 #include "exec/page-vary.h" 26 #include "target/arm/idau.h" 27 #include "qemu/module.h" 28 #include "qapi/error.h" 29 #include "cpu.h" 30 #ifdef CONFIG_TCG 31 #include "exec/translation-block.h" 32 #include "hw/core/tcg-cpu-ops.h" 33 #endif /* CONFIG_TCG */ 34 #include "internals.h" 35 #include "cpu-features.h" 36 #include "exec/exec-all.h" 37 #include "hw/qdev-properties.h" 38 #if !defined(CONFIG_USER_ONLY) 39 #include "hw/loader.h" 40 #include "hw/boards.h" 41 #ifdef CONFIG_TCG 42 #include "hw/intc/armv7m_nvic.h" 43 #endif /* CONFIG_TCG */ 44 #endif /* !CONFIG_USER_ONLY */ 45 #include "system/tcg.h" 46 #include "system/qtest.h" 47 #include "system/hw_accel.h" 48 #include "kvm_arm.h" 49 #include "disas/capstone.h" 50 #include "fpu/softfloat.h" 51 #include "cpregs.h" 52 #include "target/arm/cpu-qom.h" 53 #include "target/arm/gtimer.h" 54 55 static void arm_cpu_set_pc(CPUState *cs, vaddr value) 56 { 57 ARMCPU *cpu = ARM_CPU(cs); 58 CPUARMState *env = &cpu->env; 59 60 if (is_a64(env)) { 61 env->pc = value; 62 env->thumb = false; 63 } else { 64 env->regs[15] = value & ~1; 65 env->thumb = value & 1; 66 } 67 } 68 69 static vaddr arm_cpu_get_pc(CPUState *cs) 70 { 71 ARMCPU *cpu = ARM_CPU(cs); 72 CPUARMState *env = &cpu->env; 73 74 if (is_a64(env)) { 75 return env->pc; 76 } else { 77 return env->regs[15]; 78 } 79 } 80 81 #ifdef CONFIG_TCG 82 void arm_cpu_synchronize_from_tb(CPUState *cs, 83 const TranslationBlock *tb) 84 { 85 /* The program counter is always up to date with CF_PCREL. */ 86 if (!(tb_cflags(tb) & CF_PCREL)) { 87 CPUARMState *env = cpu_env(cs); 88 /* 89 * It's OK to look at env for the current mode here, because it's 90 * never possible for an AArch64 TB to chain to an AArch32 TB. 91 */ 92 if (is_a64(env)) { 93 env->pc = tb->pc; 94 } else { 95 env->regs[15] = tb->pc; 96 } 97 } 98 } 99 100 void arm_restore_state_to_opc(CPUState *cs, 101 const TranslationBlock *tb, 102 const uint64_t *data) 103 { 104 CPUARMState *env = cpu_env(cs); 105 106 if (is_a64(env)) { 107 if (tb_cflags(tb) & CF_PCREL) { 108 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; 109 } else { 110 env->pc = data[0]; 111 } 112 env->condexec_bits = 0; 113 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 114 } else { 115 if (tb_cflags(tb) & CF_PCREL) { 116 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; 117 } else { 118 env->regs[15] = data[0]; 119 } 120 env->condexec_bits = data[1]; 121 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; 122 } 123 } 124 #endif /* CONFIG_TCG */ 125 126 /* 127 * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with 128 * IRQ without Superpriority. Moreover, if the GIC is configured so that 129 * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see 130 * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here 131 * unconditionally. 132 */ 133 static bool arm_cpu_has_work(CPUState *cs) 134 { 135 ARMCPU *cpu = ARM_CPU(cs); 136 137 return (cpu->power_state != PSCI_OFF) 138 && cs->interrupt_request & 139 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD 140 | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI 141 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR 142 | CPU_INTERRUPT_EXITTB); 143 } 144 145 static int arm_cpu_mmu_index(CPUState *cs, bool ifetch) 146 { 147 return arm_env_mmu_index(cpu_env(cs)); 148 } 149 150 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 151 void *opaque) 152 { 153 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 154 155 entry->hook = hook; 156 entry->opaque = opaque; 157 158 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); 159 } 160 161 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 162 void *opaque) 163 { 164 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); 165 166 entry->hook = hook; 167 entry->opaque = opaque; 168 169 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); 170 } 171 172 /* 173 * Set the float_status behaviour to match the Arm defaults: 174 * * tininess-before-rounding 175 * * 2-input NaN propagation prefers SNaN over QNaN, and then 176 * operand A over operand B (see FPProcessNaNs() pseudocode) 177 * * 3-input NaN propagation prefers SNaN over QNaN, and then 178 * operand C over A over B (see FPProcessNaNs3() pseudocode, 179 * but note that for QEMU muladd is a * b + c, whereas for 180 * the pseudocode function the arguments are in the order c, a, b. 181 * * 0 * Inf + NaN returns the default NaN if the input NaN is quiet, 182 * and the input NaN if it is signalling 183 * * Default NaN has sign bit clear, msb frac bit set 184 */ 185 static void arm_set_default_fp_behaviours(float_status *s) 186 { 187 set_float_detect_tininess(float_tininess_before_rounding, s); 188 set_float_2nan_prop_rule(float_2nan_prop_s_ab, s); 189 set_float_3nan_prop_rule(float_3nan_prop_s_cab, s); 190 set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s); 191 set_float_default_nan_pattern(0b01000000, s); 192 } 193 194 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) 195 { 196 /* Reset a single ARMCPRegInfo register */ 197 ARMCPRegInfo *ri = value; 198 ARMCPU *cpu = opaque; 199 200 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { 201 return; 202 } 203 204 if (ri->resetfn) { 205 ri->resetfn(&cpu->env, ri); 206 return; 207 } 208 209 /* A zero offset is never possible as it would be regs[0] 210 * so we use it to indicate that reset is being handled elsewhere. 211 * This is basically only used for fields in non-core coprocessors 212 * (like the pxa2xx ones). 213 */ 214 if (!ri->fieldoffset) { 215 return; 216 } 217 218 if (cpreg_field_is_64bit(ri)) { 219 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; 220 } else { 221 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; 222 } 223 } 224 225 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) 226 { 227 /* Purely an assertion check: we've already done reset once, 228 * so now check that running the reset for the cpreg doesn't 229 * change its value. This traps bugs where two different cpregs 230 * both try to reset the same state field but to different values. 231 */ 232 ARMCPRegInfo *ri = value; 233 ARMCPU *cpu = opaque; 234 uint64_t oldvalue, newvalue; 235 236 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { 237 return; 238 } 239 240 oldvalue = read_raw_cp_reg(&cpu->env, ri); 241 cp_reg_reset(key, value, opaque); 242 newvalue = read_raw_cp_reg(&cpu->env, ri); 243 assert(oldvalue == newvalue); 244 } 245 246 static void arm_cpu_reset_hold(Object *obj, ResetType type) 247 { 248 CPUState *cs = CPU(obj); 249 ARMCPU *cpu = ARM_CPU(cs); 250 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 251 CPUARMState *env = &cpu->env; 252 253 if (acc->parent_phases.hold) { 254 acc->parent_phases.hold(obj, type); 255 } 256 257 memset(env, 0, offsetof(CPUARMState, end_reset_fields)); 258 259 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); 260 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); 261 262 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; 263 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; 264 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; 265 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; 266 267 cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON; 268 269 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 270 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; 271 } 272 273 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 274 /* 64 bit CPUs always start in 64 bit mode */ 275 env->aarch64 = true; 276 #if defined(CONFIG_USER_ONLY) 277 env->pstate = PSTATE_MODE_EL0t; 278 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ 279 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; 280 /* Enable all PAC keys. */ 281 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | 282 SCTLR_EnDA | SCTLR_EnDB); 283 /* Trap on btype=3 for PACIxSP. */ 284 env->cp15.sctlr_el[1] |= SCTLR_BT0; 285 /* Trap on implementation defined registers. */ 286 if (cpu_isar_feature(aa64_tidcp1, cpu)) { 287 env->cp15.sctlr_el[1] |= SCTLR_TIDCP; 288 } 289 /* and to the FP/Neon instructions */ 290 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 291 CPACR_EL1, FPEN, 3); 292 /* and to the SVE instructions, with default vector length */ 293 if (cpu_isar_feature(aa64_sve, cpu)) { 294 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 295 CPACR_EL1, ZEN, 3); 296 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; 297 } 298 /* and for SME instructions, with default vector length, and TPIDR2 */ 299 if (cpu_isar_feature(aa64_sme, cpu)) { 300 env->cp15.sctlr_el[1] |= SCTLR_EnTP2; 301 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 302 CPACR_EL1, SMEN, 3); 303 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; 304 if (cpu_isar_feature(aa64_sme_fa64, cpu)) { 305 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], 306 SMCR, FA64, 1); 307 } 308 } 309 /* 310 * Enable 48-bit address space (TODO: take reserved_va into account). 311 * Enable TBI0 but not TBI1. 312 * Note that this must match useronly_clean_ptr. 313 */ 314 env->cp15.tcr_el[1] = 5 | (1ULL << 37); 315 316 /* Enable MTE */ 317 if (cpu_isar_feature(aa64_mte, cpu)) { 318 /* Enable tag access, but leave TCF0 as No Effect (0). */ 319 env->cp15.sctlr_el[1] |= SCTLR_ATA0; 320 /* 321 * Exclude all tags, so that tag 0 is always used. 322 * This corresponds to Linux current->thread.gcr_incl = 0. 323 * 324 * Set RRND, so that helper_irg() will generate a seed later. 325 * Here in cpu_reset(), the crypto subsystem has not yet been 326 * initialized. 327 */ 328 env->cp15.gcr_el1 = 0x1ffff; 329 } 330 /* 331 * Disable access to SCXTNUM_EL0 from CSV2_1p2. 332 * This is not yet exposed from the Linux kernel in any way. 333 */ 334 env->cp15.sctlr_el[1] |= SCTLR_TSCXT; 335 /* Disable access to Debug Communication Channel (DCC). */ 336 env->cp15.mdscr_el1 |= 1 << 12; 337 /* Enable FEAT_MOPS */ 338 env->cp15.sctlr_el[1] |= SCTLR_MSCEN; 339 #else 340 /* Reset into the highest available EL */ 341 if (arm_feature(env, ARM_FEATURE_EL3)) { 342 env->pstate = PSTATE_MODE_EL3h; 343 } else if (arm_feature(env, ARM_FEATURE_EL2)) { 344 env->pstate = PSTATE_MODE_EL2h; 345 } else { 346 env->pstate = PSTATE_MODE_EL1h; 347 } 348 349 /* Sample rvbar at reset. */ 350 env->cp15.rvbar = cpu->rvbar_prop; 351 env->pc = env->cp15.rvbar; 352 #endif 353 } else { 354 #if defined(CONFIG_USER_ONLY) 355 /* Userspace expects access to cp10 and cp11 for FP/Neon */ 356 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 357 CPACR, CP10, 3); 358 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, 359 CPACR, CP11, 3); 360 #endif 361 if (arm_feature(env, ARM_FEATURE_V8)) { 362 env->cp15.rvbar = cpu->rvbar_prop; 363 env->regs[15] = cpu->rvbar_prop; 364 } 365 } 366 367 #if defined(CONFIG_USER_ONLY) 368 env->uncached_cpsr = ARM_CPU_MODE_USR; 369 /* For user mode we must enable access to coprocessors */ 370 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; 371 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 372 env->cp15.c15_cpar = 3; 373 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { 374 env->cp15.c15_cpar = 1; 375 } 376 #else 377 378 /* 379 * If the highest available EL is EL2, AArch32 will start in Hyp 380 * mode; otherwise it starts in SVC. Note that if we start in 381 * AArch64 then these values in the uncached_cpsr will be ignored. 382 */ 383 if (arm_feature(env, ARM_FEATURE_EL2) && 384 !arm_feature(env, ARM_FEATURE_EL3)) { 385 env->uncached_cpsr = ARM_CPU_MODE_HYP; 386 } else { 387 env->uncached_cpsr = ARM_CPU_MODE_SVC; 388 } 389 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; 390 391 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently 392 * executing as AArch32 then check if highvecs are enabled and 393 * adjust the PC accordingly. 394 */ 395 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 396 env->regs[15] = 0xFFFF0000; 397 } 398 399 env->vfp.xregs[ARM_VFP_FPEXC] = 0; 400 #endif 401 402 if (arm_feature(env, ARM_FEATURE_M)) { 403 #ifndef CONFIG_USER_ONLY 404 uint32_t initial_msp; /* Loaded from 0x0 */ 405 uint32_t initial_pc; /* Loaded from 0x4 */ 406 uint8_t *rom; 407 uint32_t vecbase; 408 #endif 409 410 if (cpu_isar_feature(aa32_lob, cpu)) { 411 /* 412 * LTPSIZE is constant 4 if MVE not implemented, and resets 413 * to an UNKNOWN value if MVE is implemented. We choose to 414 * always reset to 4. 415 */ 416 env->v7m.ltpsize = 4; 417 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ 418 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; 419 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; 420 } 421 422 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 423 env->v7m.secure = true; 424 } else { 425 /* This bit resets to 0 if security is supported, but 1 if 426 * it is not. The bit is not present in v7M, but we set it 427 * here so we can avoid having to make checks on it conditional 428 * on ARM_FEATURE_V8 (we don't let the guest see the bit). 429 */ 430 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; 431 /* 432 * Set NSACR to indicate "NS access permitted to everything"; 433 * this avoids having to have all the tests of it being 434 * conditional on ARM_FEATURE_M_SECURITY. Note also that from 435 * v8.1M the guest-visible value of NSACR in a CPU without the 436 * Security Extension is 0xcff. 437 */ 438 env->v7m.nsacr = 0xcff; 439 } 440 441 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends 442 * that it resets to 1, so QEMU always does that rather than making 443 * it dependent on CPU model. In v8M it is RES1. 444 */ 445 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; 446 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; 447 if (arm_feature(env, ARM_FEATURE_V8)) { 448 /* in v8M the NONBASETHRDENA bit [0] is RES1 */ 449 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; 450 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; 451 } 452 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 453 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; 454 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; 455 } 456 457 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 458 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; 459 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | 460 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; 461 } 462 463 #ifndef CONFIG_USER_ONLY 464 /* Unlike A/R profile, M profile defines the reset LR value */ 465 env->regs[14] = 0xffffffff; 466 467 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; 468 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; 469 470 /* Load the initial SP and PC from offset 0 and 4 in the vector table */ 471 vecbase = env->v7m.vecbase[env->v7m.secure]; 472 rom = rom_ptr_for_as(cs->as, vecbase, 8); 473 if (rom) { 474 /* Address zero is covered by ROM which hasn't yet been 475 * copied into physical memory. 476 */ 477 initial_msp = ldl_p(rom); 478 initial_pc = ldl_p(rom + 4); 479 } else { 480 /* Address zero not covered by a ROM blob, or the ROM blob 481 * is in non-modifiable memory and this is a second reset after 482 * it got copied into memory. In the latter case, rom_ptr 483 * will return a NULL pointer and we should use ldl_phys instead. 484 */ 485 initial_msp = ldl_phys(cs->as, vecbase); 486 initial_pc = ldl_phys(cs->as, vecbase + 4); 487 } 488 489 qemu_log_mask(CPU_LOG_INT, 490 "Loaded reset SP 0x%x PC 0x%x from vector table\n", 491 initial_msp, initial_pc); 492 493 env->regs[13] = initial_msp & 0xFFFFFFFC; 494 env->regs[15] = initial_pc & ~1; 495 env->thumb = initial_pc & 1; 496 #else 497 /* 498 * For user mode we run non-secure and with access to the FPU. 499 * The FPU context is active (ie does not need further setup) 500 * and is owned by non-secure. 501 */ 502 env->v7m.secure = false; 503 env->v7m.nsacr = 0xcff; 504 env->v7m.cpacr[M_REG_NS] = 0xf0ffff; 505 env->v7m.fpccr[M_REG_S] &= 506 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); 507 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 508 #endif 509 } 510 511 /* M profile requires that reset clears the exclusive monitor; 512 * A profile does not, but clearing it makes more sense than having it 513 * set with an exclusive access on address zero. 514 */ 515 arm_clear_exclusive(env); 516 517 if (arm_feature(env, ARM_FEATURE_PMSA)) { 518 if (cpu->pmsav7_dregion > 0) { 519 if (arm_feature(env, ARM_FEATURE_V8)) { 520 memset(env->pmsav8.rbar[M_REG_NS], 0, 521 sizeof(*env->pmsav8.rbar[M_REG_NS]) 522 * cpu->pmsav7_dregion); 523 memset(env->pmsav8.rlar[M_REG_NS], 0, 524 sizeof(*env->pmsav8.rlar[M_REG_NS]) 525 * cpu->pmsav7_dregion); 526 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 527 memset(env->pmsav8.rbar[M_REG_S], 0, 528 sizeof(*env->pmsav8.rbar[M_REG_S]) 529 * cpu->pmsav7_dregion); 530 memset(env->pmsav8.rlar[M_REG_S], 0, 531 sizeof(*env->pmsav8.rlar[M_REG_S]) 532 * cpu->pmsav7_dregion); 533 } 534 } else if (arm_feature(env, ARM_FEATURE_V7)) { 535 memset(env->pmsav7.drbar, 0, 536 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); 537 memset(env->pmsav7.drsr, 0, 538 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); 539 memset(env->pmsav7.dracr, 0, 540 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); 541 } 542 } 543 544 if (cpu->pmsav8r_hdregion > 0) { 545 memset(env->pmsav8.hprbar, 0, 546 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion); 547 memset(env->pmsav8.hprlar, 0, 548 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion); 549 } 550 551 env->pmsav7.rnr[M_REG_NS] = 0; 552 env->pmsav7.rnr[M_REG_S] = 0; 553 env->pmsav8.mair0[M_REG_NS] = 0; 554 env->pmsav8.mair0[M_REG_S] = 0; 555 env->pmsav8.mair1[M_REG_NS] = 0; 556 env->pmsav8.mair1[M_REG_S] = 0; 557 } 558 559 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 560 if (cpu->sau_sregion > 0) { 561 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); 562 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); 563 } 564 env->sau.rnr = 0; 565 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what 566 * the Cortex-M33 does. 567 */ 568 env->sau.ctrl = 0; 569 } 570 571 set_flush_to_zero(1, &env->vfp.standard_fp_status); 572 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); 573 set_default_nan_mode(1, &env->vfp.standard_fp_status); 574 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); 575 arm_set_default_fp_behaviours(&env->vfp.fp_status_a32); 576 arm_set_default_fp_behaviours(&env->vfp.fp_status_a64); 577 arm_set_default_fp_behaviours(&env->vfp.standard_fp_status); 578 arm_set_default_fp_behaviours(&env->vfp.fp_status_f16_a32); 579 arm_set_default_fp_behaviours(&env->vfp.fp_status_f16_a64); 580 arm_set_default_fp_behaviours(&env->vfp.standard_fp_status_f16); 581 582 #ifndef CONFIG_USER_ONLY 583 if (kvm_enabled()) { 584 kvm_arm_reset_vcpu(cpu); 585 } 586 #endif 587 588 if (tcg_enabled()) { 589 hw_breakpoint_update_all(cpu); 590 hw_watchpoint_update_all(cpu); 591 592 arm_rebuild_hflags(env); 593 } 594 } 595 596 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el) 597 { 598 ARMCPU *cpu = ARM_CPU(cpustate); 599 CPUARMState *env = &cpu->env; 600 bool have_el3 = arm_feature(env, ARM_FEATURE_EL3); 601 bool have_el2 = arm_feature(env, ARM_FEATURE_EL2); 602 603 /* 604 * Check we have the EL we're aiming for. If that is the 605 * highest implemented EL, then cpu_reset has already done 606 * all the work. 607 */ 608 switch (target_el) { 609 case 3: 610 assert(have_el3); 611 return; 612 case 2: 613 assert(have_el2); 614 if (!have_el3) { 615 return; 616 } 617 break; 618 case 1: 619 if (!have_el3 && !have_el2) { 620 return; 621 } 622 break; 623 default: 624 g_assert_not_reached(); 625 } 626 627 if (have_el3) { 628 /* 629 * Set the EL3 state so code can run at EL2. This should match 630 * the requirements set by Linux in its booting spec. 631 */ 632 if (env->aarch64) { 633 env->cp15.scr_el3 |= SCR_RW; 634 if (cpu_isar_feature(aa64_pauth, cpu)) { 635 env->cp15.scr_el3 |= SCR_API | SCR_APK; 636 } 637 if (cpu_isar_feature(aa64_mte, cpu)) { 638 env->cp15.scr_el3 |= SCR_ATA; 639 } 640 if (cpu_isar_feature(aa64_sve, cpu)) { 641 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK; 642 env->vfp.zcr_el[3] = 0xf; 643 } 644 if (cpu_isar_feature(aa64_sme, cpu)) { 645 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK; 646 env->cp15.scr_el3 |= SCR_ENTP2; 647 env->vfp.smcr_el[3] = 0xf; 648 } 649 if (cpu_isar_feature(aa64_hcx, cpu)) { 650 env->cp15.scr_el3 |= SCR_HXEN; 651 } 652 if (cpu_isar_feature(aa64_fgt, cpu)) { 653 env->cp15.scr_el3 |= SCR_FGTEN; 654 } 655 } 656 657 if (target_el == 2) { 658 /* If the guest is at EL2 then Linux expects the HVC insn to work */ 659 env->cp15.scr_el3 |= SCR_HCE; 660 } 661 662 /* Put CPU into non-secure state */ 663 env->cp15.scr_el3 |= SCR_NS; 664 /* Set NSACR.{CP11,CP10} so NS can access the FPU */ 665 env->cp15.nsacr |= 3 << 10; 666 } 667 668 if (have_el2 && target_el < 2) { 669 /* Set EL2 state so code can run at EL1. */ 670 if (env->aarch64) { 671 env->cp15.hcr_el2 |= HCR_RW; 672 } 673 } 674 675 /* Set the CPU to the desired state */ 676 if (env->aarch64) { 677 env->pstate = aarch64_pstate_mode(target_el, true); 678 } else { 679 static const uint32_t mode_for_el[] = { 680 0, 681 ARM_CPU_MODE_SVC, 682 ARM_CPU_MODE_HYP, 683 ARM_CPU_MODE_SVC, 684 }; 685 686 cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw); 687 } 688 } 689 690 691 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) 692 693 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, 694 unsigned int target_el, 695 unsigned int cur_el, bool secure, 696 uint64_t hcr_el2) 697 { 698 CPUARMState *env = cpu_env(cs); 699 bool pstate_unmasked; 700 bool unmasked = false; 701 bool allIntMask = false; 702 703 /* 704 * Don't take exceptions if they target a lower EL. 705 * This check should catch any exceptions that would not be taken 706 * but left pending. 707 */ 708 if (cur_el > target_el) { 709 return false; 710 } 711 712 if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) && 713 env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) { 714 allIntMask = env->pstate & PSTATE_ALLINT || 715 ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) && 716 (env->pstate & PSTATE_SP)); 717 } 718 719 switch (excp_idx) { 720 case EXCP_NMI: 721 pstate_unmasked = !allIntMask; 722 break; 723 724 case EXCP_VINMI: 725 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 726 /* VINMIs are only taken when hypervized. */ 727 return false; 728 } 729 return !allIntMask; 730 case EXCP_VFNMI: 731 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 732 /* VFNMIs are only taken when hypervized. */ 733 return false; 734 } 735 return !allIntMask; 736 case EXCP_FIQ: 737 pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask); 738 break; 739 740 case EXCP_IRQ: 741 pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask); 742 break; 743 744 case EXCP_VFIQ: 745 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { 746 /* VFIQs are only taken when hypervized. */ 747 return false; 748 } 749 return !(env->daif & PSTATE_F) && (!allIntMask); 750 case EXCP_VIRQ: 751 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { 752 /* VIRQs are only taken when hypervized. */ 753 return false; 754 } 755 return !(env->daif & PSTATE_I) && (!allIntMask); 756 case EXCP_VSERR: 757 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { 758 /* VIRQs are only taken when hypervized. */ 759 return false; 760 } 761 return !(env->daif & PSTATE_A); 762 default: 763 g_assert_not_reached(); 764 } 765 766 /* 767 * Use the target EL, current execution state and SCR/HCR settings to 768 * determine whether the corresponding CPSR bit is used to mask the 769 * interrupt. 770 */ 771 if ((target_el > cur_el) && (target_el != 1)) { 772 /* Exceptions targeting a higher EL may not be maskable */ 773 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 774 switch (target_el) { 775 case 2: 776 /* 777 * According to ARM DDI 0487H.a, an interrupt can be masked 778 * when HCR_E2H and HCR_TGE are both set regardless of the 779 * current Security state. Note that we need to revisit this 780 * part again once we need to support NMI. 781 */ 782 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 783 unmasked = true; 784 } 785 break; 786 case 3: 787 /* Interrupt cannot be masked when the target EL is 3 */ 788 unmasked = true; 789 break; 790 default: 791 g_assert_not_reached(); 792 } 793 } else { 794 /* 795 * The old 32-bit-only environment has a more complicated 796 * masking setup. HCR and SCR bits not only affect interrupt 797 * routing but also change the behaviour of masking. 798 */ 799 bool hcr, scr; 800 801 switch (excp_idx) { 802 case EXCP_FIQ: 803 /* 804 * If FIQs are routed to EL3 or EL2 then there are cases where 805 * we override the CPSR.F in determining if the exception is 806 * masked or not. If neither of these are set then we fall back 807 * to the CPSR.F setting otherwise we further assess the state 808 * below. 809 */ 810 hcr = hcr_el2 & HCR_FMO; 811 scr = (env->cp15.scr_el3 & SCR_FIQ); 812 813 /* 814 * When EL3 is 32-bit, the SCR.FW bit controls whether the 815 * CPSR.F bit masks FIQ interrupts when taken in non-secure 816 * state. If SCR.FW is set then FIQs can be masked by CPSR.F 817 * when non-secure but only when FIQs are only routed to EL3. 818 */ 819 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); 820 break; 821 case EXCP_IRQ: 822 /* 823 * When EL3 execution state is 32-bit, if HCR.IMO is set then 824 * we may override the CPSR.I masking when in non-secure state. 825 * The SCR.IRQ setting has already been taken into consideration 826 * when setting the target EL, so it does not have a further 827 * affect here. 828 */ 829 hcr = hcr_el2 & HCR_IMO; 830 scr = false; 831 break; 832 default: 833 g_assert_not_reached(); 834 } 835 836 if ((scr || hcr) && !secure) { 837 unmasked = true; 838 } 839 } 840 } 841 842 /* 843 * The PSTATE bits only mask the interrupt if we have not overridden the 844 * ability above. 845 */ 846 return unmasked || pstate_unmasked; 847 } 848 849 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 850 { 851 CPUClass *cc = CPU_GET_CLASS(cs); 852 CPUARMState *env = cpu_env(cs); 853 uint32_t cur_el = arm_current_el(env); 854 bool secure = arm_is_secure(env); 855 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 856 uint32_t target_el; 857 uint32_t excp_idx; 858 859 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ 860 861 if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) && 862 (arm_sctlr(env, cur_el) & SCTLR_NMI)) { 863 if (interrupt_request & CPU_INTERRUPT_NMI) { 864 excp_idx = EXCP_NMI; 865 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 866 if (arm_excp_unmasked(cs, excp_idx, target_el, 867 cur_el, secure, hcr_el2)) { 868 goto found; 869 } 870 } 871 if (interrupt_request & CPU_INTERRUPT_VINMI) { 872 excp_idx = EXCP_VINMI; 873 target_el = 1; 874 if (arm_excp_unmasked(cs, excp_idx, target_el, 875 cur_el, secure, hcr_el2)) { 876 goto found; 877 } 878 } 879 if (interrupt_request & CPU_INTERRUPT_VFNMI) { 880 excp_idx = EXCP_VFNMI; 881 target_el = 1; 882 if (arm_excp_unmasked(cs, excp_idx, target_el, 883 cur_el, secure, hcr_el2)) { 884 goto found; 885 } 886 } 887 } else { 888 /* 889 * NMI disabled: interrupts with superpriority are handled 890 * as if they didn't have it 891 */ 892 if (interrupt_request & CPU_INTERRUPT_NMI) { 893 interrupt_request |= CPU_INTERRUPT_HARD; 894 } 895 if (interrupt_request & CPU_INTERRUPT_VINMI) { 896 interrupt_request |= CPU_INTERRUPT_VIRQ; 897 } 898 if (interrupt_request & CPU_INTERRUPT_VFNMI) { 899 interrupt_request |= CPU_INTERRUPT_VFIQ; 900 } 901 } 902 903 if (interrupt_request & CPU_INTERRUPT_FIQ) { 904 excp_idx = EXCP_FIQ; 905 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 906 if (arm_excp_unmasked(cs, excp_idx, target_el, 907 cur_el, secure, hcr_el2)) { 908 goto found; 909 } 910 } 911 if (interrupt_request & CPU_INTERRUPT_HARD) { 912 excp_idx = EXCP_IRQ; 913 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); 914 if (arm_excp_unmasked(cs, excp_idx, target_el, 915 cur_el, secure, hcr_el2)) { 916 goto found; 917 } 918 } 919 if (interrupt_request & CPU_INTERRUPT_VIRQ) { 920 excp_idx = EXCP_VIRQ; 921 target_el = 1; 922 if (arm_excp_unmasked(cs, excp_idx, target_el, 923 cur_el, secure, hcr_el2)) { 924 goto found; 925 } 926 } 927 if (interrupt_request & CPU_INTERRUPT_VFIQ) { 928 excp_idx = EXCP_VFIQ; 929 target_el = 1; 930 if (arm_excp_unmasked(cs, excp_idx, target_el, 931 cur_el, secure, hcr_el2)) { 932 goto found; 933 } 934 } 935 if (interrupt_request & CPU_INTERRUPT_VSERR) { 936 excp_idx = EXCP_VSERR; 937 target_el = 1; 938 if (arm_excp_unmasked(cs, excp_idx, target_el, 939 cur_el, secure, hcr_el2)) { 940 /* Taking a virtual abort clears HCR_EL2.VSE */ 941 env->cp15.hcr_el2 &= ~HCR_VSE; 942 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 943 goto found; 944 } 945 } 946 return false; 947 948 found: 949 cs->exception_index = excp_idx; 950 env->exception.target_el = target_el; 951 cc->tcg_ops->do_interrupt(cs); 952 return true; 953 } 954 955 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ 956 957 void arm_cpu_update_virq(ARMCPU *cpu) 958 { 959 /* 960 * Update the interrupt level for VIRQ, which is the logical OR of 961 * the HCR_EL2.VI bit and the input line level from the GIC. 962 */ 963 CPUARMState *env = &cpu->env; 964 CPUState *cs = CPU(cpu); 965 966 bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) && 967 !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) || 968 (env->irq_line_state & CPU_INTERRUPT_VIRQ); 969 970 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { 971 if (new_state) { 972 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); 973 } else { 974 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); 975 } 976 } 977 } 978 979 void arm_cpu_update_vfiq(ARMCPU *cpu) 980 { 981 /* 982 * Update the interrupt level for VFIQ, which is the logical OR of 983 * the HCR_EL2.VF bit and the input line level from the GIC. 984 */ 985 CPUARMState *env = &cpu->env; 986 CPUState *cs = CPU(cpu); 987 988 bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) && 989 !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) || 990 (env->irq_line_state & CPU_INTERRUPT_VFIQ); 991 992 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { 993 if (new_state) { 994 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); 995 } else { 996 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); 997 } 998 } 999 } 1000 1001 void arm_cpu_update_vinmi(ARMCPU *cpu) 1002 { 1003 /* 1004 * Update the interrupt level for VINMI, which is the logical OR of 1005 * the HCRX_EL2.VINMI bit and the input line level from the GIC. 1006 */ 1007 CPUARMState *env = &cpu->env; 1008 CPUState *cs = CPU(cpu); 1009 1010 bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) && 1011 (arm_hcrx_el2_eff(env) & HCRX_VINMI)) || 1012 (env->irq_line_state & CPU_INTERRUPT_VINMI); 1013 1014 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) { 1015 if (new_state) { 1016 cpu_interrupt(cs, CPU_INTERRUPT_VINMI); 1017 } else { 1018 cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI); 1019 } 1020 } 1021 } 1022 1023 void arm_cpu_update_vfnmi(ARMCPU *cpu) 1024 { 1025 /* 1026 * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit. 1027 */ 1028 CPUARMState *env = &cpu->env; 1029 CPUState *cs = CPU(cpu); 1030 1031 bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) && 1032 (arm_hcrx_el2_eff(env) & HCRX_VFNMI); 1033 1034 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) { 1035 if (new_state) { 1036 cpu_interrupt(cs, CPU_INTERRUPT_VFNMI); 1037 } else { 1038 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI); 1039 } 1040 } 1041 } 1042 1043 void arm_cpu_update_vserr(ARMCPU *cpu) 1044 { 1045 /* 1046 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. 1047 */ 1048 CPUARMState *env = &cpu->env; 1049 CPUState *cs = CPU(cpu); 1050 1051 bool new_state = env->cp15.hcr_el2 & HCR_VSE; 1052 1053 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { 1054 if (new_state) { 1055 cpu_interrupt(cs, CPU_INTERRUPT_VSERR); 1056 } else { 1057 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); 1058 } 1059 } 1060 } 1061 1062 #ifndef CONFIG_USER_ONLY 1063 static void arm_cpu_set_irq(void *opaque, int irq, int level) 1064 { 1065 ARMCPU *cpu = opaque; 1066 CPUARMState *env = &cpu->env; 1067 CPUState *cs = CPU(cpu); 1068 static const int mask[] = { 1069 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, 1070 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, 1071 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, 1072 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ, 1073 [ARM_CPU_NMI] = CPU_INTERRUPT_NMI, 1074 [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI, 1075 }; 1076 1077 if (!arm_feature(env, ARM_FEATURE_EL2) && 1078 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { 1079 /* 1080 * The GIC might tell us about VIRQ and VFIQ state, but if we don't 1081 * have EL2 support we don't care. (Unless the guest is doing something 1082 * silly this will only be calls saying "level is still 0".) 1083 */ 1084 return; 1085 } 1086 1087 if (level) { 1088 env->irq_line_state |= mask[irq]; 1089 } else { 1090 env->irq_line_state &= ~mask[irq]; 1091 } 1092 1093 switch (irq) { 1094 case ARM_CPU_VIRQ: 1095 arm_cpu_update_virq(cpu); 1096 break; 1097 case ARM_CPU_VFIQ: 1098 arm_cpu_update_vfiq(cpu); 1099 break; 1100 case ARM_CPU_VINMI: 1101 arm_cpu_update_vinmi(cpu); 1102 break; 1103 case ARM_CPU_IRQ: 1104 case ARM_CPU_FIQ: 1105 case ARM_CPU_NMI: 1106 if (level) { 1107 cpu_interrupt(cs, mask[irq]); 1108 } else { 1109 cpu_reset_interrupt(cs, mask[irq]); 1110 } 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 } 1116 1117 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) 1118 { 1119 #ifdef CONFIG_KVM 1120 ARMCPU *cpu = opaque; 1121 CPUARMState *env = &cpu->env; 1122 CPUState *cs = CPU(cpu); 1123 uint32_t linestate_bit; 1124 int irq_id; 1125 1126 switch (irq) { 1127 case ARM_CPU_IRQ: 1128 irq_id = KVM_ARM_IRQ_CPU_IRQ; 1129 linestate_bit = CPU_INTERRUPT_HARD; 1130 break; 1131 case ARM_CPU_FIQ: 1132 irq_id = KVM_ARM_IRQ_CPU_FIQ; 1133 linestate_bit = CPU_INTERRUPT_FIQ; 1134 break; 1135 default: 1136 g_assert_not_reached(); 1137 } 1138 1139 if (level) { 1140 env->irq_line_state |= linestate_bit; 1141 } else { 1142 env->irq_line_state &= ~linestate_bit; 1143 } 1144 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); 1145 #endif 1146 } 1147 1148 static bool arm_cpu_virtio_is_big_endian(CPUState *cs) 1149 { 1150 ARMCPU *cpu = ARM_CPU(cs); 1151 CPUARMState *env = &cpu->env; 1152 1153 cpu_synchronize_state(cs); 1154 return arm_cpu_data_is_big_endian(env); 1155 } 1156 1157 #ifdef CONFIG_TCG 1158 bool arm_cpu_exec_halt(CPUState *cs) 1159 { 1160 bool leave_halt = cpu_has_work(cs); 1161 1162 if (leave_halt) { 1163 /* We're about to come out of WFI/WFE: disable the WFxT timer */ 1164 ARMCPU *cpu = ARM_CPU(cs); 1165 if (cpu->wfxt_timer) { 1166 timer_del(cpu->wfxt_timer); 1167 } 1168 } 1169 return leave_halt; 1170 } 1171 #endif 1172 1173 static void arm_wfxt_timer_cb(void *opaque) 1174 { 1175 ARMCPU *cpu = opaque; 1176 CPUState *cs = CPU(cpu); 1177 1178 /* 1179 * We expect the CPU to be halted; this will cause arm_cpu_is_work() 1180 * to return true (so we will come out of halt even with no other 1181 * pending interrupt), and the TCG accelerator's cpu_exec_interrupt() 1182 * function auto-clears the CPU_INTERRUPT_EXITTB flag for us. 1183 */ 1184 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB); 1185 } 1186 #endif 1187 1188 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) 1189 { 1190 ARMCPU *ac = ARM_CPU(cpu); 1191 CPUARMState *env = &ac->env; 1192 bool sctlr_b; 1193 1194 if (is_a64(env)) { 1195 info->cap_arch = CS_ARCH_ARM64; 1196 info->cap_insn_unit = 4; 1197 info->cap_insn_split = 4; 1198 } else { 1199 int cap_mode; 1200 if (env->thumb) { 1201 info->cap_insn_unit = 2; 1202 info->cap_insn_split = 4; 1203 cap_mode = CS_MODE_THUMB; 1204 } else { 1205 info->cap_insn_unit = 4; 1206 info->cap_insn_split = 4; 1207 cap_mode = CS_MODE_ARM; 1208 } 1209 if (arm_feature(env, ARM_FEATURE_V8)) { 1210 cap_mode |= CS_MODE_V8; 1211 } 1212 if (arm_feature(env, ARM_FEATURE_M)) { 1213 cap_mode |= CS_MODE_MCLASS; 1214 } 1215 info->cap_arch = CS_ARCH_ARM; 1216 info->cap_mode = cap_mode; 1217 } 1218 1219 sctlr_b = arm_sctlr_b(env); 1220 if (bswap_code(sctlr_b)) { 1221 #if TARGET_BIG_ENDIAN 1222 info->endian = BFD_ENDIAN_LITTLE; 1223 #else 1224 info->endian = BFD_ENDIAN_BIG; 1225 #endif 1226 } 1227 info->flags &= ~INSN_ARM_BE32; 1228 #ifndef CONFIG_USER_ONLY 1229 if (sctlr_b) { 1230 info->flags |= INSN_ARM_BE32; 1231 } 1232 #endif 1233 } 1234 1235 #ifdef TARGET_AARCH64 1236 1237 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1238 { 1239 ARMCPU *cpu = ARM_CPU(cs); 1240 CPUARMState *env = &cpu->env; 1241 uint32_t psr = pstate_read(env); 1242 int i, j; 1243 int el = arm_current_el(env); 1244 uint64_t hcr = arm_hcr_el2_eff(env); 1245 const char *ns_status; 1246 bool sve; 1247 1248 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); 1249 for (i = 0; i < 32; i++) { 1250 if (i == 31) { 1251 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); 1252 } else { 1253 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], 1254 (i + 2) % 3 ? " " : "\n"); 1255 } 1256 } 1257 1258 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { 1259 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1260 } else { 1261 ns_status = ""; 1262 } 1263 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", 1264 psr, 1265 psr & PSTATE_N ? 'N' : '-', 1266 psr & PSTATE_Z ? 'Z' : '-', 1267 psr & PSTATE_C ? 'C' : '-', 1268 psr & PSTATE_V ? 'V' : '-', 1269 ns_status, 1270 el, 1271 psr & PSTATE_SP ? 'h' : 't'); 1272 1273 if (cpu_isar_feature(aa64_sme, cpu)) { 1274 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", 1275 env->svcr, 1276 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), 1277 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); 1278 } 1279 if (cpu_isar_feature(aa64_bti, cpu)) { 1280 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); 1281 } 1282 qemu_fprintf(f, "%s%s%s", 1283 (hcr & HCR_NV) ? " NV" : "", 1284 (hcr & HCR_NV1) ? " NV1" : "", 1285 (hcr & HCR_NV2) ? " NV2" : ""); 1286 if (!(flags & CPU_DUMP_FPU)) { 1287 qemu_fprintf(f, "\n"); 1288 return; 1289 } 1290 if (fp_exception_el(env, el) != 0) { 1291 qemu_fprintf(f, " FPU disabled\n"); 1292 return; 1293 } 1294 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", 1295 vfp_get_fpcr(env), vfp_get_fpsr(env)); 1296 1297 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { 1298 sve = sme_exception_el(env, el) == 0; 1299 } else if (cpu_isar_feature(aa64_sve, cpu)) { 1300 sve = sve_exception_el(env, el) == 0; 1301 } else { 1302 sve = false; 1303 } 1304 1305 if (sve) { 1306 int zcr_len = sve_vqm1_for_el(env, el); 1307 1308 for (i = 0; i <= FFR_PRED_NUM; i++) { 1309 bool eol; 1310 if (i == FFR_PRED_NUM) { 1311 qemu_fprintf(f, "FFR="); 1312 /* It's last, so end the line. */ 1313 eol = true; 1314 } else { 1315 qemu_fprintf(f, "P%02d=", i); 1316 switch (zcr_len) { 1317 case 0: 1318 eol = i % 8 == 7; 1319 break; 1320 case 1: 1321 eol = i % 6 == 5; 1322 break; 1323 case 2: 1324 case 3: 1325 eol = i % 3 == 2; 1326 break; 1327 default: 1328 /* More than one quadword per predicate. */ 1329 eol = true; 1330 break; 1331 } 1332 } 1333 for (j = zcr_len / 4; j >= 0; j--) { 1334 int digits; 1335 if (j * 4 + 4 <= zcr_len + 1) { 1336 digits = 16; 1337 } else { 1338 digits = (zcr_len % 4 + 1) * 4; 1339 } 1340 qemu_fprintf(f, "%0*" PRIx64 "%s", digits, 1341 env->vfp.pregs[i].p[j], 1342 j ? ":" : eol ? "\n" : " "); 1343 } 1344 } 1345 1346 if (zcr_len == 0) { 1347 /* 1348 * With vl=16, there are only 37 columns per register, 1349 * so output two registers per line. 1350 */ 1351 for (i = 0; i < 32; i++) { 1352 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1353 i, env->vfp.zregs[i].d[1], 1354 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); 1355 } 1356 } else { 1357 for (i = 0; i < 32; i++) { 1358 qemu_fprintf(f, "Z%02d=", i); 1359 for (j = zcr_len; j >= 0; j--) { 1360 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", 1361 env->vfp.zregs[i].d[j * 2 + 1], 1362 env->vfp.zregs[i].d[j * 2 + 0], 1363 j ? ":" : "\n"); 1364 } 1365 } 1366 } 1367 } else { 1368 for (i = 0; i < 32; i++) { 1369 uint64_t *q = aa64_vfp_qreg(env, i); 1370 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", 1371 i, q[1], q[0], (i & 1 ? "\n" : " ")); 1372 } 1373 } 1374 1375 if (cpu_isar_feature(aa64_sme, cpu) && 1376 FIELD_EX64(env->svcr, SVCR, ZA) && 1377 sme_exception_el(env, el) == 0) { 1378 int zcr_len = sve_vqm1_for_el_sm(env, el, true); 1379 int svl = (zcr_len + 1) * 16; 1380 int svl_lg10 = svl < 100 ? 2 : 3; 1381 1382 for (i = 0; i < svl; i++) { 1383 qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i); 1384 for (j = zcr_len; j >= 0; --j) { 1385 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c", 1386 env->zarray[i].d[2 * j + 1], 1387 env->zarray[i].d[2 * j], 1388 j ? ':' : '\n'); 1389 } 1390 } 1391 } 1392 } 1393 1394 #else 1395 1396 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1397 { 1398 g_assert_not_reached(); 1399 } 1400 1401 #endif 1402 1403 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) 1404 { 1405 ARMCPU *cpu = ARM_CPU(cs); 1406 CPUARMState *env = &cpu->env; 1407 int i; 1408 1409 if (is_a64(env)) { 1410 aarch64_cpu_dump_state(cs, f, flags); 1411 return; 1412 } 1413 1414 for (i = 0; i < 16; i++) { 1415 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); 1416 if ((i % 4) == 3) { 1417 qemu_fprintf(f, "\n"); 1418 } else { 1419 qemu_fprintf(f, " "); 1420 } 1421 } 1422 1423 if (arm_feature(env, ARM_FEATURE_M)) { 1424 uint32_t xpsr = xpsr_read(env); 1425 const char *mode; 1426 const char *ns_status = ""; 1427 1428 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 1429 ns_status = env->v7m.secure ? "S " : "NS "; 1430 } 1431 1432 if (xpsr & XPSR_EXCP) { 1433 mode = "handler"; 1434 } else { 1435 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { 1436 mode = "unpriv-thread"; 1437 } else { 1438 mode = "priv-thread"; 1439 } 1440 } 1441 1442 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", 1443 xpsr, 1444 xpsr & XPSR_N ? 'N' : '-', 1445 xpsr & XPSR_Z ? 'Z' : '-', 1446 xpsr & XPSR_C ? 'C' : '-', 1447 xpsr & XPSR_V ? 'V' : '-', 1448 xpsr & XPSR_T ? 'T' : 'A', 1449 ns_status, 1450 mode); 1451 } else { 1452 uint32_t psr = cpsr_read(env); 1453 const char *ns_status = ""; 1454 1455 if (arm_feature(env, ARM_FEATURE_EL3) && 1456 (psr & CPSR_M) != ARM_CPU_MODE_MON) { 1457 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; 1458 } 1459 1460 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", 1461 psr, 1462 psr & CPSR_N ? 'N' : '-', 1463 psr & CPSR_Z ? 'Z' : '-', 1464 psr & CPSR_C ? 'C' : '-', 1465 psr & CPSR_V ? 'V' : '-', 1466 psr & CPSR_T ? 'T' : 'A', 1467 ns_status, 1468 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); 1469 } 1470 1471 if (flags & CPU_DUMP_FPU) { 1472 int numvfpregs = 0; 1473 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1474 numvfpregs = 32; 1475 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1476 numvfpregs = 16; 1477 } 1478 for (i = 0; i < numvfpregs; i++) { 1479 uint64_t v = *aa32_vfp_dreg(env, i); 1480 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", 1481 i * 2, (uint32_t)v, 1482 i * 2 + 1, (uint32_t)(v >> 32), 1483 i, v); 1484 } 1485 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); 1486 if (cpu_isar_feature(aa32_mve, cpu)) { 1487 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); 1488 } 1489 } 1490 } 1491 1492 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz) 1493 { 1494 uint32_t Aff1 = idx / clustersz; 1495 uint32_t Aff0 = idx % clustersz; 1496 return (Aff1 << ARM_AFF1_SHIFT) | Aff0; 1497 } 1498 1499 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu) 1500 { 1501 return cpu->mp_affinity; 1502 } 1503 1504 static void arm_cpu_initfn(Object *obj) 1505 { 1506 ARMCPU *cpu = ARM_CPU(obj); 1507 1508 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, 1509 NULL, g_free); 1510 1511 QLIST_INIT(&cpu->pre_el_change_hooks); 1512 QLIST_INIT(&cpu->el_change_hooks); 1513 1514 #ifdef CONFIG_USER_ONLY 1515 # ifdef TARGET_AARCH64 1516 /* 1517 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. 1518 * These values were chosen to fit within the default signal frame. 1519 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, 1520 * and our corresponding cpu property. 1521 */ 1522 cpu->sve_default_vq = 4; 1523 cpu->sme_default_vq = 2; 1524 # endif 1525 #else 1526 /* Our inbound IRQ and FIQ lines */ 1527 if (kvm_enabled()) { 1528 /* 1529 * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add 1530 * them to maintain the same interface as non-KVM CPUs. 1531 */ 1532 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6); 1533 } else { 1534 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6); 1535 } 1536 1537 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, 1538 ARRAY_SIZE(cpu->gt_timer_outputs)); 1539 1540 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, 1541 "gicv3-maintenance-interrupt", 1); 1542 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, 1543 "pmu-interrupt", 1); 1544 #endif 1545 1546 /* DTB consumers generally don't in fact care what the 'compatible' 1547 * string is, so always provide some string and trust that a hypothetical 1548 * picky DTB consumer will also provide a helpful error message. 1549 */ 1550 cpu->dtb_compatible = "qemu,unknown"; 1551 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ 1552 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; 1553 1554 if (tcg_enabled() || hvf_enabled()) { 1555 /* TCG and HVF implement PSCI 1.1 */ 1556 cpu->psci_version = QEMU_PSCI_VERSION_1_1; 1557 } 1558 } 1559 1560 /* 1561 * 0 means "unset, use the default value". That default might vary depending 1562 * on the CPU type, and is set in the realize fn. 1563 */ 1564 static const Property arm_cpu_gt_cntfrq_property = 1565 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, 0); 1566 1567 static const Property arm_cpu_reset_cbar_property = 1568 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); 1569 1570 static const Property arm_cpu_reset_hivecs_property = 1571 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); 1572 1573 #ifndef CONFIG_USER_ONLY 1574 static const Property arm_cpu_has_el2_property = 1575 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); 1576 1577 static const Property arm_cpu_has_el3_property = 1578 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); 1579 #endif 1580 1581 static const Property arm_cpu_cfgend_property = 1582 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); 1583 1584 static const Property arm_cpu_has_vfp_property = 1585 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); 1586 1587 static const Property arm_cpu_has_vfp_d32_property = 1588 DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true); 1589 1590 static const Property arm_cpu_has_neon_property = 1591 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); 1592 1593 static const Property arm_cpu_has_dsp_property = 1594 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); 1595 1596 static const Property arm_cpu_has_mpu_property = 1597 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); 1598 1599 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, 1600 * because the CPU initfn will have already set cpu->pmsav7_dregion to 1601 * the right value for that particular CPU type, and we don't want 1602 * to override that with an incorrect constant value. 1603 */ 1604 static const Property arm_cpu_pmsav7_dregion_property = 1605 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, 1606 pmsav7_dregion, 1607 qdev_prop_uint32, uint32_t); 1608 1609 static bool arm_get_pmu(Object *obj, Error **errp) 1610 { 1611 ARMCPU *cpu = ARM_CPU(obj); 1612 1613 return cpu->has_pmu; 1614 } 1615 1616 static void arm_set_pmu(Object *obj, bool value, Error **errp) 1617 { 1618 ARMCPU *cpu = ARM_CPU(obj); 1619 1620 if (value) { 1621 if (kvm_enabled() && !kvm_arm_pmu_supported()) { 1622 error_setg(errp, "'pmu' feature not supported by KVM on this host"); 1623 return; 1624 } 1625 set_feature(&cpu->env, ARM_FEATURE_PMU); 1626 } else { 1627 unset_feature(&cpu->env, ARM_FEATURE_PMU); 1628 } 1629 cpu->has_pmu = value; 1630 } 1631 1632 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) 1633 { 1634 /* 1635 * The exact approach to calculating guest ticks is: 1636 * 1637 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, 1638 * NANOSECONDS_PER_SECOND); 1639 * 1640 * We don't do that. Rather we intentionally use integer division 1641 * truncation below and in the caller for the conversion of host monotonic 1642 * time to guest ticks to provide the exact inverse for the semantics of 1643 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so 1644 * it loses precision when representing frequencies where 1645 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to 1646 * provide an exact inverse leads to scheduling timers with negative 1647 * periods, which in turn leads to sticky behaviour in the guest. 1648 * 1649 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor 1650 * cannot become zero. 1651 */ 1652 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? 1653 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; 1654 } 1655 1656 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu) 1657 { 1658 CPUARMState *env = &cpu->env; 1659 bool no_aa32 = false; 1660 1661 /* 1662 * Some features automatically imply others: set the feature 1663 * bits explicitly for these cases. 1664 */ 1665 1666 if (arm_feature(env, ARM_FEATURE_M)) { 1667 set_feature(env, ARM_FEATURE_PMSA); 1668 } 1669 1670 if (arm_feature(env, ARM_FEATURE_V8)) { 1671 if (arm_feature(env, ARM_FEATURE_M)) { 1672 set_feature(env, ARM_FEATURE_V7); 1673 } else { 1674 set_feature(env, ARM_FEATURE_V7VE); 1675 } 1676 } 1677 1678 /* 1679 * There exist AArch64 cpus without AArch32 support. When KVM 1680 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. 1681 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. 1682 * As a general principle, we also do not make ID register 1683 * consistency checks anywhere unless using TCG, because only 1684 * for TCG would a consistency-check failure be a QEMU bug. 1685 */ 1686 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1687 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); 1688 } 1689 1690 if (arm_feature(env, ARM_FEATURE_V7VE)) { 1691 /* 1692 * v7 Virtualization Extensions. In real hardware this implies 1693 * EL2 and also the presence of the Security Extensions. 1694 * For QEMU, for backwards-compatibility we implement some 1695 * CPUs or CPU configs which have no actual EL2 or EL3 but do 1696 * include the various other features that V7VE implies. 1697 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the 1698 * Security Extensions is ARM_FEATURE_EL3. 1699 */ 1700 assert(!tcg_enabled() || no_aa32 || 1701 cpu_isar_feature(aa32_arm_div, cpu)); 1702 set_feature(env, ARM_FEATURE_LPAE); 1703 set_feature(env, ARM_FEATURE_V7); 1704 } 1705 if (arm_feature(env, ARM_FEATURE_V7)) { 1706 set_feature(env, ARM_FEATURE_VAPA); 1707 set_feature(env, ARM_FEATURE_THUMB2); 1708 set_feature(env, ARM_FEATURE_MPIDR); 1709 if (!arm_feature(env, ARM_FEATURE_M)) { 1710 set_feature(env, ARM_FEATURE_V6K); 1711 } else { 1712 set_feature(env, ARM_FEATURE_V6); 1713 } 1714 1715 /* 1716 * Always define VBAR for V7 CPUs even if it doesn't exist in 1717 * non-EL3 configs. This is needed by some legacy boards. 1718 */ 1719 set_feature(env, ARM_FEATURE_VBAR); 1720 } 1721 if (arm_feature(env, ARM_FEATURE_V6K)) { 1722 set_feature(env, ARM_FEATURE_V6); 1723 set_feature(env, ARM_FEATURE_MVFR); 1724 } 1725 if (arm_feature(env, ARM_FEATURE_V6)) { 1726 set_feature(env, ARM_FEATURE_V5); 1727 if (!arm_feature(env, ARM_FEATURE_M)) { 1728 assert(!tcg_enabled() || no_aa32 || 1729 cpu_isar_feature(aa32_jazelle, cpu)); 1730 set_feature(env, ARM_FEATURE_AUXCR); 1731 } 1732 } 1733 if (arm_feature(env, ARM_FEATURE_V5)) { 1734 set_feature(env, ARM_FEATURE_V4T); 1735 } 1736 if (arm_feature(env, ARM_FEATURE_LPAE)) { 1737 set_feature(env, ARM_FEATURE_V7MP); 1738 } 1739 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 1740 set_feature(env, ARM_FEATURE_CBAR); 1741 } 1742 if (arm_feature(env, ARM_FEATURE_THUMB2) && 1743 !arm_feature(env, ARM_FEATURE_M)) { 1744 set_feature(env, ARM_FEATURE_THUMB_DSP); 1745 } 1746 } 1747 1748 void arm_cpu_post_init(Object *obj) 1749 { 1750 ARMCPU *cpu = ARM_CPU(obj); 1751 1752 /* 1753 * Some features imply others. Figure this out now, because we 1754 * are going to look at the feature bits in deciding which 1755 * properties to add. 1756 */ 1757 arm_cpu_propagate_feature_implications(cpu); 1758 1759 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || 1760 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { 1761 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); 1762 } 1763 1764 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { 1765 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); 1766 } 1767 1768 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1769 object_property_add_uint64_ptr(obj, "rvbar", 1770 &cpu->rvbar_prop, 1771 OBJ_PROP_FLAG_READWRITE); 1772 } 1773 1774 #ifndef CONFIG_USER_ONLY 1775 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1776 /* Add the has_el3 state CPU property only if EL3 is allowed. This will 1777 * prevent "has_el3" from existing on CPUs which cannot support EL3. 1778 */ 1779 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); 1780 1781 object_property_add_link(obj, "secure-memory", 1782 TYPE_MEMORY_REGION, 1783 (Object **)&cpu->secure_memory, 1784 qdev_prop_allow_set_link_before_realize, 1785 OBJ_PROP_LINK_STRONG); 1786 } 1787 1788 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 1789 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); 1790 } 1791 #endif 1792 1793 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { 1794 cpu->has_pmu = true; 1795 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); 1796 } 1797 1798 /* 1799 * Allow user to turn off VFP and Neon support, but only for TCG -- 1800 * KVM does not currently allow us to lie to the guest about its 1801 * ID/feature registers, so the guest always sees what the host has. 1802 */ 1803 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1804 if (cpu_isar_feature(aa64_fp_simd, cpu)) { 1805 cpu->has_vfp = true; 1806 cpu->has_vfp_d32 = true; 1807 if (tcg_enabled() || qtest_enabled()) { 1808 qdev_property_add_static(DEVICE(obj), 1809 &arm_cpu_has_vfp_property); 1810 } 1811 } 1812 } else if (cpu_isar_feature(aa32_vfp, cpu)) { 1813 cpu->has_vfp = true; 1814 if (tcg_enabled() || qtest_enabled()) { 1815 qdev_property_add_static(DEVICE(obj), 1816 &arm_cpu_has_vfp_property); 1817 } 1818 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 1819 cpu->has_vfp_d32 = true; 1820 /* 1821 * The permitted values of the SIMDReg bits [3:0] on 1822 * Armv8-A are either 0b0000 and 0b0010. On such CPUs, 1823 * make sure that has_vfp_d32 can not be set to false. 1824 */ 1825 if ((tcg_enabled() || qtest_enabled()) 1826 && !(arm_feature(&cpu->env, ARM_FEATURE_V8) 1827 && !arm_feature(&cpu->env, ARM_FEATURE_M))) { 1828 qdev_property_add_static(DEVICE(obj), 1829 &arm_cpu_has_vfp_d32_property); 1830 } 1831 } 1832 } 1833 1834 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { 1835 cpu->has_neon = true; 1836 if (!kvm_enabled()) { 1837 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); 1838 } 1839 } 1840 1841 if (arm_feature(&cpu->env, ARM_FEATURE_M) && 1842 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { 1843 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); 1844 } 1845 1846 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { 1847 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); 1848 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1849 qdev_property_add_static(DEVICE(obj), 1850 &arm_cpu_pmsav7_dregion_property); 1851 } 1852 } 1853 1854 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { 1855 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, 1856 qdev_prop_allow_set_link_before_realize, 1857 OBJ_PROP_LINK_STRONG); 1858 /* 1859 * M profile: initial value of the Secure VTOR. We can't just use 1860 * a simple DEFINE_PROP_UINT32 for this because we want to permit 1861 * the property to be set after realize. 1862 */ 1863 object_property_add_uint32_ptr(obj, "init-svtor", 1864 &cpu->init_svtor, 1865 OBJ_PROP_FLAG_READWRITE); 1866 } 1867 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 1868 /* 1869 * Initial value of the NS VTOR (for cores without the Security 1870 * extension, this is the only VTOR) 1871 */ 1872 object_property_add_uint32_ptr(obj, "init-nsvtor", 1873 &cpu->init_nsvtor, 1874 OBJ_PROP_FLAG_READWRITE); 1875 } 1876 1877 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ 1878 object_property_add_uint32_ptr(obj, "psci-conduit", 1879 &cpu->psci_conduit, 1880 OBJ_PROP_FLAG_READWRITE); 1881 1882 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); 1883 1884 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { 1885 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); 1886 } 1887 1888 if (kvm_enabled()) { 1889 kvm_arm_add_vcpu_properties(cpu); 1890 } 1891 1892 #ifndef CONFIG_USER_ONLY 1893 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && 1894 cpu_isar_feature(aa64_mte, cpu)) { 1895 object_property_add_link(obj, "tag-memory", 1896 TYPE_MEMORY_REGION, 1897 (Object **)&cpu->tag_memory, 1898 qdev_prop_allow_set_link_before_realize, 1899 OBJ_PROP_LINK_STRONG); 1900 1901 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { 1902 object_property_add_link(obj, "secure-tag-memory", 1903 TYPE_MEMORY_REGION, 1904 (Object **)&cpu->secure_tag_memory, 1905 qdev_prop_allow_set_link_before_realize, 1906 OBJ_PROP_LINK_STRONG); 1907 } 1908 } 1909 #endif 1910 } 1911 1912 static void arm_cpu_finalizefn(Object *obj) 1913 { 1914 ARMCPU *cpu = ARM_CPU(obj); 1915 ARMELChangeHook *hook, *next; 1916 1917 g_hash_table_destroy(cpu->cp_regs); 1918 1919 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { 1920 QLIST_REMOVE(hook, node); 1921 g_free(hook); 1922 } 1923 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { 1924 QLIST_REMOVE(hook, node); 1925 g_free(hook); 1926 } 1927 #ifndef CONFIG_USER_ONLY 1928 if (cpu->pmu_timer) { 1929 timer_free(cpu->pmu_timer); 1930 } 1931 if (cpu->wfxt_timer) { 1932 timer_free(cpu->wfxt_timer); 1933 } 1934 #endif 1935 } 1936 1937 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) 1938 { 1939 Error *local_err = NULL; 1940 1941 #ifdef TARGET_AARCH64 1942 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 1943 arm_cpu_sve_finalize(cpu, &local_err); 1944 if (local_err != NULL) { 1945 error_propagate(errp, local_err); 1946 return; 1947 } 1948 1949 /* 1950 * FEAT_SME is not architecturally dependent on FEAT_SVE (unless 1951 * FEAT_SME_FA64 is present). However our implementation currently 1952 * assumes it, so if the user asked for sve=off then turn off SME also. 1953 * (KVM doesn't currently support SME at all.) 1954 */ 1955 if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) { 1956 object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort); 1957 } 1958 1959 arm_cpu_sme_finalize(cpu, &local_err); 1960 if (local_err != NULL) { 1961 error_propagate(errp, local_err); 1962 return; 1963 } 1964 1965 arm_cpu_pauth_finalize(cpu, &local_err); 1966 if (local_err != NULL) { 1967 error_propagate(errp, local_err); 1968 return; 1969 } 1970 1971 arm_cpu_lpa2_finalize(cpu, &local_err); 1972 if (local_err != NULL) { 1973 error_propagate(errp, local_err); 1974 return; 1975 } 1976 } 1977 #endif 1978 1979 if (kvm_enabled()) { 1980 kvm_arm_steal_time_finalize(cpu, &local_err); 1981 if (local_err != NULL) { 1982 error_propagate(errp, local_err); 1983 return; 1984 } 1985 } 1986 } 1987 1988 static void arm_cpu_realizefn(DeviceState *dev, Error **errp) 1989 { 1990 CPUState *cs = CPU(dev); 1991 ARMCPU *cpu = ARM_CPU(dev); 1992 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); 1993 CPUARMState *env = &cpu->env; 1994 Error *local_err = NULL; 1995 1996 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) 1997 /* Use pc-relative instructions in system-mode */ 1998 tcg_cflags_set(cs, CF_PCREL); 1999 #endif 2000 2001 /* If we needed to query the host kernel for the CPU features 2002 * then it's possible that might have failed in the initfn, but 2003 * this is the first point where we can report it. 2004 */ 2005 if (cpu->host_cpu_probe_failed) { 2006 if (!kvm_enabled() && !hvf_enabled()) { 2007 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); 2008 } else { 2009 error_setg(errp, "Failed to retrieve host CPU features"); 2010 } 2011 return; 2012 } 2013 2014 if (!cpu->gt_cntfrq_hz) { 2015 /* 2016 * 0 means "the board didn't set a value, use the default". (We also 2017 * get here for the CONFIG_USER_ONLY case.) 2018 * ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before 2019 * that it was an IMPDEF choice, and QEMU initially picked 62.5MHz, 2020 * which gives a 16ns tick period. 2021 * 2022 * We will use the back-compat value: 2023 * - for QEMU CPU types added before we standardized on 1GHz 2024 * - for versioned machine types with a version of 9.0 or earlier 2025 */ 2026 if (arm_feature(env, ARM_FEATURE_BACKCOMPAT_CNTFRQ) || 2027 cpu->backcompat_cntfrq) { 2028 cpu->gt_cntfrq_hz = GTIMER_BACKCOMPAT_HZ; 2029 } else { 2030 cpu->gt_cntfrq_hz = GTIMER_DEFAULT_HZ; 2031 } 2032 } 2033 2034 #ifndef CONFIG_USER_ONLY 2035 /* The NVIC and M-profile CPU are two halves of a single piece of 2036 * hardware; trying to use one without the other is a command line 2037 * error and will result in segfaults if not caught here. 2038 */ 2039 if (arm_feature(env, ARM_FEATURE_M)) { 2040 if (!env->nvic) { 2041 error_setg(errp, "This board cannot be used with Cortex-M CPUs"); 2042 return; 2043 } 2044 } else { 2045 if (env->nvic) { 2046 error_setg(errp, "This board can only be used with Cortex-M CPUs"); 2047 return; 2048 } 2049 } 2050 2051 if (!tcg_enabled() && !qtest_enabled()) { 2052 /* 2053 * We assume that no accelerator except TCG (and the "not really an 2054 * accelerator" qtest) can handle these features, because Arm hardware 2055 * virtualization can't virtualize them. 2056 * 2057 * Catch all the cases which might cause us to create more than one 2058 * address space for the CPU (otherwise we will assert() later in 2059 * cpu_address_space_init()). 2060 */ 2061 if (arm_feature(env, ARM_FEATURE_M)) { 2062 error_setg(errp, 2063 "Cannot enable %s when using an M-profile guest CPU", 2064 current_accel_name()); 2065 return; 2066 } 2067 if (cpu->has_el3) { 2068 error_setg(errp, 2069 "Cannot enable %s when guest CPU has EL3 enabled", 2070 current_accel_name()); 2071 return; 2072 } 2073 if (cpu->tag_memory) { 2074 error_setg(errp, 2075 "Cannot enable %s when guest CPUs has MTE enabled", 2076 current_accel_name()); 2077 return; 2078 } 2079 } 2080 2081 { 2082 uint64_t scale = gt_cntfrq_period_ns(cpu); 2083 2084 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 2085 arm_gt_ptimer_cb, cpu); 2086 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 2087 arm_gt_vtimer_cb, cpu); 2088 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 2089 arm_gt_htimer_cb, cpu); 2090 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 2091 arm_gt_stimer_cb, cpu); 2092 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, 2093 arm_gt_hvtimer_cb, cpu); 2094 } 2095 #endif 2096 2097 cpu_exec_realizefn(cs, &local_err); 2098 if (local_err != NULL) { 2099 error_propagate(errp, local_err); 2100 return; 2101 } 2102 2103 arm_cpu_finalize_features(cpu, &local_err); 2104 if (local_err != NULL) { 2105 error_propagate(errp, local_err); 2106 return; 2107 } 2108 2109 #ifdef CONFIG_USER_ONLY 2110 /* 2111 * User mode relies on IC IVAU instructions to catch modification of 2112 * dual-mapped code. 2113 * 2114 * Clear CTR_EL0.DIC to ensure that software that honors these flags uses 2115 * IC IVAU even if the emulated processor does not normally require it. 2116 */ 2117 cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0); 2118 #endif 2119 2120 if (arm_feature(env, ARM_FEATURE_AARCH64) && 2121 cpu->has_vfp != cpu->has_neon) { 2122 /* 2123 * This is an architectural requirement for AArch64; AArch32 is 2124 * more flexible and permits VFP-no-Neon and Neon-no-VFP. 2125 */ 2126 error_setg(errp, 2127 "AArch64 CPUs must have both VFP and Neon or neither"); 2128 return; 2129 } 2130 2131 if (cpu->has_vfp_d32 != cpu->has_neon) { 2132 error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither"); 2133 return; 2134 } 2135 2136 if (!cpu->has_vfp_d32) { 2137 uint32_t u; 2138 2139 u = cpu->isar.mvfr0; 2140 u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */ 2141 cpu->isar.mvfr0 = u; 2142 } 2143 2144 if (!cpu->has_vfp) { 2145 uint64_t t; 2146 uint32_t u; 2147 2148 t = cpu->isar.id_aa64isar1; 2149 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); 2150 cpu->isar.id_aa64isar1 = t; 2151 2152 t = cpu->isar.id_aa64pfr0; 2153 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); 2154 cpu->isar.id_aa64pfr0 = t; 2155 2156 u = cpu->isar.id_isar6; 2157 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); 2158 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 2159 cpu->isar.id_isar6 = u; 2160 2161 u = cpu->isar.mvfr0; 2162 u = FIELD_DP32(u, MVFR0, FPSP, 0); 2163 u = FIELD_DP32(u, MVFR0, FPDP, 0); 2164 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); 2165 u = FIELD_DP32(u, MVFR0, FPSQRT, 0); 2166 u = FIELD_DP32(u, MVFR0, FPROUND, 0); 2167 if (!arm_feature(env, ARM_FEATURE_M)) { 2168 u = FIELD_DP32(u, MVFR0, FPTRAP, 0); 2169 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); 2170 } 2171 cpu->isar.mvfr0 = u; 2172 2173 u = cpu->isar.mvfr1; 2174 u = FIELD_DP32(u, MVFR1, FPFTZ, 0); 2175 u = FIELD_DP32(u, MVFR1, FPDNAN, 0); 2176 u = FIELD_DP32(u, MVFR1, FPHP, 0); 2177 if (arm_feature(env, ARM_FEATURE_M)) { 2178 u = FIELD_DP32(u, MVFR1, FP16, 0); 2179 } 2180 cpu->isar.mvfr1 = u; 2181 2182 u = cpu->isar.mvfr2; 2183 u = FIELD_DP32(u, MVFR2, FPMISC, 0); 2184 cpu->isar.mvfr2 = u; 2185 } 2186 2187 if (!cpu->has_neon) { 2188 uint64_t t; 2189 uint32_t u; 2190 2191 unset_feature(env, ARM_FEATURE_NEON); 2192 2193 t = cpu->isar.id_aa64isar0; 2194 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); 2195 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); 2196 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); 2197 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); 2198 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); 2199 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); 2200 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); 2201 cpu->isar.id_aa64isar0 = t; 2202 2203 t = cpu->isar.id_aa64isar1; 2204 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); 2205 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); 2206 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); 2207 cpu->isar.id_aa64isar1 = t; 2208 2209 t = cpu->isar.id_aa64pfr0; 2210 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); 2211 cpu->isar.id_aa64pfr0 = t; 2212 2213 u = cpu->isar.id_isar5; 2214 u = FIELD_DP32(u, ID_ISAR5, AES, 0); 2215 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); 2216 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); 2217 u = FIELD_DP32(u, ID_ISAR5, RDM, 0); 2218 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); 2219 cpu->isar.id_isar5 = u; 2220 2221 u = cpu->isar.id_isar6; 2222 u = FIELD_DP32(u, ID_ISAR6, DP, 0); 2223 u = FIELD_DP32(u, ID_ISAR6, FHM, 0); 2224 u = FIELD_DP32(u, ID_ISAR6, BF16, 0); 2225 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); 2226 cpu->isar.id_isar6 = u; 2227 2228 if (!arm_feature(env, ARM_FEATURE_M)) { 2229 u = cpu->isar.mvfr1; 2230 u = FIELD_DP32(u, MVFR1, SIMDLS, 0); 2231 u = FIELD_DP32(u, MVFR1, SIMDINT, 0); 2232 u = FIELD_DP32(u, MVFR1, SIMDSP, 0); 2233 u = FIELD_DP32(u, MVFR1, SIMDHP, 0); 2234 cpu->isar.mvfr1 = u; 2235 2236 u = cpu->isar.mvfr2; 2237 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); 2238 cpu->isar.mvfr2 = u; 2239 } 2240 } 2241 2242 if (!cpu->has_neon && !cpu->has_vfp) { 2243 uint64_t t; 2244 uint32_t u; 2245 2246 t = cpu->isar.id_aa64isar0; 2247 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); 2248 cpu->isar.id_aa64isar0 = t; 2249 2250 t = cpu->isar.id_aa64isar1; 2251 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); 2252 cpu->isar.id_aa64isar1 = t; 2253 2254 u = cpu->isar.mvfr0; 2255 u = FIELD_DP32(u, MVFR0, SIMDREG, 0); 2256 cpu->isar.mvfr0 = u; 2257 2258 /* Despite the name, this field covers both VFP and Neon */ 2259 u = cpu->isar.mvfr1; 2260 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); 2261 cpu->isar.mvfr1 = u; 2262 } 2263 2264 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { 2265 uint32_t u; 2266 2267 unset_feature(env, ARM_FEATURE_THUMB_DSP); 2268 2269 u = cpu->isar.id_isar1; 2270 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); 2271 cpu->isar.id_isar1 = u; 2272 2273 u = cpu->isar.id_isar2; 2274 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); 2275 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); 2276 cpu->isar.id_isar2 = u; 2277 2278 u = cpu->isar.id_isar3; 2279 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); 2280 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); 2281 cpu->isar.id_isar3 = u; 2282 } 2283 2284 2285 /* 2286 * We rely on no XScale CPU having VFP so we can use the same bits in the 2287 * TB flags field for VECSTRIDE and XSCALE_CPAR. 2288 */ 2289 assert(arm_feature(env, ARM_FEATURE_AARCH64) || 2290 !cpu_isar_feature(aa32_vfp_simd, cpu) || 2291 !arm_feature(env, ARM_FEATURE_XSCALE)); 2292 2293 #ifndef CONFIG_USER_ONLY 2294 { 2295 int pagebits; 2296 if (arm_feature(env, ARM_FEATURE_V7) && 2297 !arm_feature(env, ARM_FEATURE_M) && 2298 !arm_feature(env, ARM_FEATURE_PMSA)) { 2299 /* 2300 * v7VMSA drops support for the old ARMv5 tiny pages, 2301 * so we can use 4K pages. 2302 */ 2303 pagebits = 12; 2304 } else { 2305 /* 2306 * For CPUs which might have tiny 1K pages, or which have an 2307 * MPU and might have small region sizes, stick with 1K pages. 2308 */ 2309 pagebits = 10; 2310 } 2311 if (!set_preferred_target_page_bits(pagebits)) { 2312 /* 2313 * This can only ever happen for hotplugging a CPU, or if 2314 * the board code incorrectly creates a CPU which it has 2315 * promised via minimum_page_size that it will not. 2316 */ 2317 error_setg(errp, "This CPU requires a smaller page size " 2318 "than the system is using"); 2319 return; 2320 } 2321 } 2322 #endif 2323 2324 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. 2325 * We don't support setting cluster ID ([16..23]) (known as Aff2 2326 * in later ARM ARM versions), or any of the higher affinity level fields, 2327 * so these bits always RAZ. 2328 */ 2329 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { 2330 cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index, 2331 ARM_DEFAULT_CPUS_PER_CLUSTER); 2332 } 2333 2334 if (cpu->reset_hivecs) { 2335 cpu->reset_sctlr |= (1 << 13); 2336 } 2337 2338 if (cpu->cfgend) { 2339 if (arm_feature(env, ARM_FEATURE_V7)) { 2340 cpu->reset_sctlr |= SCTLR_EE; 2341 } else { 2342 cpu->reset_sctlr |= SCTLR_B; 2343 } 2344 } 2345 2346 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { 2347 /* If the has_el3 CPU property is disabled then we need to disable the 2348 * feature. 2349 */ 2350 unset_feature(env, ARM_FEATURE_EL3); 2351 2352 /* 2353 * Disable the security extension feature bits in the processor 2354 * feature registers as well. 2355 */ 2356 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); 2357 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); 2358 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2359 ID_AA64PFR0, EL3, 0); 2360 2361 /* Disable the realm management extension, which requires EL3. */ 2362 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2363 ID_AA64PFR0, RME, 0); 2364 } 2365 2366 if (!cpu->has_el2) { 2367 unset_feature(env, ARM_FEATURE_EL2); 2368 } 2369 2370 if (!cpu->has_pmu) { 2371 unset_feature(env, ARM_FEATURE_PMU); 2372 } 2373 if (arm_feature(env, ARM_FEATURE_PMU)) { 2374 pmu_init(cpu); 2375 2376 if (!kvm_enabled()) { 2377 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); 2378 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); 2379 } 2380 2381 #ifndef CONFIG_USER_ONLY 2382 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, 2383 cpu); 2384 #endif 2385 } else { 2386 cpu->isar.id_aa64dfr0 = 2387 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); 2388 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); 2389 cpu->pmceid0 = 0; 2390 cpu->pmceid1 = 0; 2391 } 2392 2393 if (!arm_feature(env, ARM_FEATURE_EL2)) { 2394 /* 2395 * Disable the hypervisor feature bits in the processor feature 2396 * registers if we don't have EL2. 2397 */ 2398 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, 2399 ID_AA64PFR0, EL2, 0); 2400 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, 2401 ID_PFR1, VIRTUALIZATION, 0); 2402 } 2403 2404 if (cpu_isar_feature(aa64_mte, cpu)) { 2405 /* 2406 * The architectural range of GM blocksize is 2-6, however qemu 2407 * doesn't support blocksize of 2 (see HELPER(ldgm)). 2408 */ 2409 if (tcg_enabled()) { 2410 assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6); 2411 } 2412 2413 #ifndef CONFIG_USER_ONLY 2414 /* 2415 * If we run with TCG and do not have tag-memory provided by 2416 * the machine, then reduce MTE support to instructions enabled at EL0. 2417 * This matches Cortex-A710 BROADCASTMTE input being LOW. 2418 */ 2419 if (tcg_enabled() && cpu->tag_memory == NULL) { 2420 cpu->isar.id_aa64pfr1 = 2421 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1); 2422 } 2423 2424 /* 2425 * If MTE is supported by the host, however it should not be 2426 * enabled on the guest (i.e mte=off), clear guest's MTE bits." 2427 */ 2428 if (kvm_enabled() && !cpu->kvm_mte) { 2429 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0); 2430 } 2431 #endif 2432 } 2433 2434 #ifndef CONFIG_USER_ONLY 2435 if (tcg_enabled() && cpu_isar_feature(aa64_wfxt, cpu)) { 2436 cpu->wfxt_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, 2437 arm_wfxt_timer_cb, cpu); 2438 } 2439 #endif 2440 2441 if (tcg_enabled()) { 2442 /* 2443 * Don't report some architectural features in the ID registers 2444 * where TCG does not yet implement it (not even a minimal 2445 * stub version). This avoids guests falling over when they 2446 * try to access the non-existent system registers for them. 2447 */ 2448 /* FEAT_SPE (Statistical Profiling Extension) */ 2449 cpu->isar.id_aa64dfr0 = 2450 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); 2451 /* FEAT_TRBE (Trace Buffer Extension) */ 2452 cpu->isar.id_aa64dfr0 = 2453 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0); 2454 /* FEAT_TRF (Self-hosted Trace Extension) */ 2455 cpu->isar.id_aa64dfr0 = 2456 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0); 2457 cpu->isar.id_dfr0 = 2458 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0); 2459 /* Trace Macrocell system register access */ 2460 cpu->isar.id_aa64dfr0 = 2461 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0); 2462 cpu->isar.id_dfr0 = 2463 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0); 2464 /* Memory mapped trace */ 2465 cpu->isar.id_dfr0 = 2466 FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0); 2467 /* FEAT_AMU (Activity Monitors Extension) */ 2468 cpu->isar.id_aa64pfr0 = 2469 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0); 2470 cpu->isar.id_pfr0 = 2471 FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0); 2472 /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */ 2473 cpu->isar.id_aa64pfr0 = 2474 FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0); 2475 } 2476 2477 /* MPU can be configured out of a PMSA CPU either by setting has-mpu 2478 * to false or by setting pmsav7-dregion to 0. 2479 */ 2480 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) { 2481 cpu->has_mpu = false; 2482 cpu->pmsav7_dregion = 0; 2483 cpu->pmsav8r_hdregion = 0; 2484 } 2485 2486 if (arm_feature(env, ARM_FEATURE_PMSA) && 2487 arm_feature(env, ARM_FEATURE_V7)) { 2488 uint32_t nr = cpu->pmsav7_dregion; 2489 2490 if (nr > 0xff) { 2491 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); 2492 return; 2493 } 2494 2495 if (nr) { 2496 if (arm_feature(env, ARM_FEATURE_V8)) { 2497 /* PMSAv8 */ 2498 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); 2499 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); 2500 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2501 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); 2502 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); 2503 } 2504 } else { 2505 env->pmsav7.drbar = g_new0(uint32_t, nr); 2506 env->pmsav7.drsr = g_new0(uint32_t, nr); 2507 env->pmsav7.dracr = g_new0(uint32_t, nr); 2508 } 2509 } 2510 2511 if (cpu->pmsav8r_hdregion > 0xff) { 2512 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32, 2513 cpu->pmsav8r_hdregion); 2514 return; 2515 } 2516 2517 if (cpu->pmsav8r_hdregion) { 2518 env->pmsav8.hprbar = g_new0(uint32_t, 2519 cpu->pmsav8r_hdregion); 2520 env->pmsav8.hprlar = g_new0(uint32_t, 2521 cpu->pmsav8r_hdregion); 2522 } 2523 } 2524 2525 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 2526 uint32_t nr = cpu->sau_sregion; 2527 2528 if (nr > 0xff) { 2529 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); 2530 return; 2531 } 2532 2533 if (nr) { 2534 env->sau.rbar = g_new0(uint32_t, nr); 2535 env->sau.rlar = g_new0(uint32_t, nr); 2536 } 2537 } 2538 2539 if (arm_feature(env, ARM_FEATURE_EL3)) { 2540 set_feature(env, ARM_FEATURE_VBAR); 2541 } 2542 2543 #ifndef CONFIG_USER_ONLY 2544 if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) { 2545 arm_register_el_change_hook(cpu, >_rme_post_el_change, 0); 2546 } 2547 #endif 2548 2549 register_cp_regs_for_features(cpu); 2550 arm_cpu_register_gdb_regs_for_features(cpu); 2551 arm_cpu_register_gdb_commands(cpu); 2552 2553 init_cpreg_list(cpu); 2554 2555 #ifndef CONFIG_USER_ONLY 2556 MachineState *ms = MACHINE(qdev_get_machine()); 2557 unsigned int smp_cpus = ms->smp.cpus; 2558 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); 2559 2560 /* 2561 * We must set cs->num_ases to the final value before 2562 * the first call to cpu_address_space_init. 2563 */ 2564 if (cpu->tag_memory != NULL) { 2565 cs->num_ases = 3 + has_secure; 2566 } else { 2567 cs->num_ases = 1 + has_secure; 2568 } 2569 2570 if (has_secure) { 2571 if (!cpu->secure_memory) { 2572 cpu->secure_memory = cs->memory; 2573 } 2574 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", 2575 cpu->secure_memory); 2576 } 2577 2578 if (cpu->tag_memory != NULL) { 2579 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", 2580 cpu->tag_memory); 2581 if (has_secure) { 2582 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", 2583 cpu->secure_tag_memory); 2584 } 2585 } 2586 2587 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); 2588 2589 /* No core_count specified, default to smp_cpus. */ 2590 if (cpu->core_count == -1) { 2591 cpu->core_count = smp_cpus; 2592 } 2593 #endif 2594 2595 if (tcg_enabled()) { 2596 int dcz_blocklen = 4 << cpu->dcz_blocksize; 2597 2598 /* 2599 * We only support DCZ blocklen that fits on one page. 2600 * 2601 * Architectually this is always true. However TARGET_PAGE_SIZE 2602 * is variable and, for compatibility with -machine virt-2.7, 2603 * is only 1KiB, as an artifact of legacy ARMv5 subpage support. 2604 * But even then, while the largest architectural DCZ blocklen 2605 * is 2KiB, no cpu actually uses such a large blocklen. 2606 */ 2607 assert(dcz_blocklen <= TARGET_PAGE_SIZE); 2608 2609 /* 2610 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say 2611 * both nibbles of each byte storing tag data may be written at once. 2612 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. 2613 */ 2614 if (cpu_isar_feature(aa64_mte, cpu)) { 2615 assert(dcz_blocklen >= 2 * TAG_GRANULE); 2616 } 2617 } 2618 2619 qemu_init_vcpu(cs); 2620 cpu_reset(cs); 2621 2622 acc->parent_realize(dev, errp); 2623 } 2624 2625 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) 2626 { 2627 ObjectClass *oc; 2628 char *typename; 2629 char **cpuname; 2630 const char *cpunamestr; 2631 2632 cpuname = g_strsplit(cpu_model, ",", 1); 2633 cpunamestr = cpuname[0]; 2634 #ifdef CONFIG_USER_ONLY 2635 /* For backwards compatibility usermode emulation allows "-cpu any", 2636 * which has the same semantics as "-cpu max". 2637 */ 2638 if (!strcmp(cpunamestr, "any")) { 2639 cpunamestr = "max"; 2640 } 2641 #endif 2642 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); 2643 oc = object_class_by_name(typename); 2644 g_strfreev(cpuname); 2645 g_free(typename); 2646 2647 return oc; 2648 } 2649 2650 static const Property arm_cpu_properties[] = { 2651 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), 2652 DEFINE_PROP_UINT64("mp-affinity", ARMCPU, 2653 mp_affinity, ARM64_AFFINITY_INVALID), 2654 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), 2655 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), 2656 /* True to default to the backward-compat old CNTFRQ rather than 1Ghz */ 2657 DEFINE_PROP_BOOL("backcompat-cntfrq", ARMCPU, backcompat_cntfrq, false), 2658 DEFINE_PROP_BOOL("backcompat-pauth-default-use-qarma5", ARMCPU, 2659 backcompat_pauth_default_use_qarma5, false), 2660 }; 2661 2662 static const gchar *arm_gdb_arch_name(CPUState *cs) 2663 { 2664 ARMCPU *cpu = ARM_CPU(cs); 2665 CPUARMState *env = &cpu->env; 2666 2667 if (arm_feature(env, ARM_FEATURE_IWMMXT)) { 2668 return "iwmmxt"; 2669 } 2670 return "arm"; 2671 } 2672 2673 #ifndef CONFIG_USER_ONLY 2674 #include "hw/core/sysemu-cpu-ops.h" 2675 2676 static const struct SysemuCPUOps arm_sysemu_ops = { 2677 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, 2678 .asidx_from_attrs = arm_asidx_from_attrs, 2679 .write_elf32_note = arm_cpu_write_elf32_note, 2680 .write_elf64_note = arm_cpu_write_elf64_note, 2681 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, 2682 .legacy_vmsd = &vmstate_arm_cpu, 2683 }; 2684 #endif 2685 2686 #ifdef CONFIG_TCG 2687 static const TCGCPUOps arm_tcg_ops = { 2688 .initialize = arm_translate_init, 2689 .translate_code = arm_translate_code, 2690 .synchronize_from_tb = arm_cpu_synchronize_from_tb, 2691 .debug_excp_handler = arm_debug_excp_handler, 2692 .restore_state_to_opc = arm_restore_state_to_opc, 2693 2694 #ifdef CONFIG_USER_ONLY 2695 .record_sigsegv = arm_cpu_record_sigsegv, 2696 .record_sigbus = arm_cpu_record_sigbus, 2697 #else 2698 .tlb_fill_align = arm_cpu_tlb_fill_align, 2699 .cpu_exec_interrupt = arm_cpu_exec_interrupt, 2700 .cpu_exec_halt = arm_cpu_exec_halt, 2701 .do_interrupt = arm_cpu_do_interrupt, 2702 .do_transaction_failed = arm_cpu_do_transaction_failed, 2703 .do_unaligned_access = arm_cpu_do_unaligned_access, 2704 .adjust_watchpoint_address = arm_adjust_watchpoint_address, 2705 .debug_check_watchpoint = arm_debug_check_watchpoint, 2706 .debug_check_breakpoint = arm_debug_check_breakpoint, 2707 #endif /* !CONFIG_USER_ONLY */ 2708 }; 2709 #endif /* CONFIG_TCG */ 2710 2711 static void arm_cpu_class_init(ObjectClass *oc, void *data) 2712 { 2713 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2714 CPUClass *cc = CPU_CLASS(acc); 2715 DeviceClass *dc = DEVICE_CLASS(oc); 2716 ResettableClass *rc = RESETTABLE_CLASS(oc); 2717 2718 device_class_set_parent_realize(dc, arm_cpu_realizefn, 2719 &acc->parent_realize); 2720 2721 device_class_set_props(dc, arm_cpu_properties); 2722 2723 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL, 2724 &acc->parent_phases); 2725 2726 cc->class_by_name = arm_cpu_class_by_name; 2727 cc->has_work = arm_cpu_has_work; 2728 cc->mmu_index = arm_cpu_mmu_index; 2729 cc->dump_state = arm_cpu_dump_state; 2730 cc->set_pc = arm_cpu_set_pc; 2731 cc->get_pc = arm_cpu_get_pc; 2732 cc->gdb_read_register = arm_cpu_gdb_read_register; 2733 cc->gdb_write_register = arm_cpu_gdb_write_register; 2734 #ifndef CONFIG_USER_ONLY 2735 cc->sysemu_ops = &arm_sysemu_ops; 2736 #endif 2737 cc->gdb_arch_name = arm_gdb_arch_name; 2738 cc->gdb_stop_before_watchpoint = true; 2739 cc->disas_set_info = arm_disas_set_info; 2740 2741 #ifdef CONFIG_TCG 2742 cc->tcg_ops = &arm_tcg_ops; 2743 #endif /* CONFIG_TCG */ 2744 } 2745 2746 static void arm_cpu_instance_init(Object *obj) 2747 { 2748 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); 2749 2750 acc->info->initfn(obj); 2751 arm_cpu_post_init(obj); 2752 } 2753 2754 static void cpu_register_class_init(ObjectClass *oc, void *data) 2755 { 2756 ARMCPUClass *acc = ARM_CPU_CLASS(oc); 2757 CPUClass *cc = CPU_CLASS(acc); 2758 2759 acc->info = data; 2760 cc->gdb_core_xml_file = "arm-core.xml"; 2761 } 2762 2763 void arm_cpu_register(const ARMCPUInfo *info) 2764 { 2765 TypeInfo type_info = { 2766 .parent = TYPE_ARM_CPU, 2767 .instance_init = arm_cpu_instance_init, 2768 .class_init = info->class_init ?: cpu_register_class_init, 2769 .class_data = (void *)info, 2770 }; 2771 2772 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); 2773 type_register_static(&type_info); 2774 g_free((void *)type_info.name); 2775 } 2776 2777 static const TypeInfo arm_cpu_type_info = { 2778 .name = TYPE_ARM_CPU, 2779 .parent = TYPE_CPU, 2780 .instance_size = sizeof(ARMCPU), 2781 .instance_align = __alignof__(ARMCPU), 2782 .instance_init = arm_cpu_initfn, 2783 .instance_finalize = arm_cpu_finalizefn, 2784 .abstract = true, 2785 .class_size = sizeof(ARMCPUClass), 2786 .class_init = arm_cpu_class_init, 2787 }; 2788 2789 static void arm_cpu_register_types(void) 2790 { 2791 type_register_static(&arm_cpu_type_info); 2792 } 2793 2794 type_init(arm_cpu_register_types) 2795