1 /* 2 * QEMU ARM CP Register access and descriptions 3 * 4 * Copyright (c) 2022 Linaro Ltd 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 21 #ifndef TARGET_ARM_CPREGS_H 22 #define TARGET_ARM_CPREGS_H 23 24 #include "hw/registerfields.h" 25 #include "target/arm/kvm-consts.h" 26 27 /* 28 * ARMCPRegInfo type field bits: 29 */ 30 enum { 31 /* 32 * Register must be handled specially during translation. 33 * The method is one of the values below: 34 */ 35 ARM_CP_SPECIAL_MASK = 0x000f, 36 /* Special: no change to PE state: writes ignored, reads ignored. */ 37 ARM_CP_NOP = 0x0001, 38 /* Special: sysreg is WFI, for v5 and v6. */ 39 ARM_CP_WFI = 0x0002, 40 /* Special: sysreg is NZCV. */ 41 ARM_CP_NZCV = 0x0003, 42 /* Special: sysreg is CURRENTEL. */ 43 ARM_CP_CURRENTEL = 0x0004, 44 /* Special: sysreg is DC ZVA or similar. */ 45 ARM_CP_DC_ZVA = 0x0005, 46 ARM_CP_DC_GVA = 0x0006, 47 ARM_CP_DC_GZVA = 0x0007, 48 49 /* Flag: reads produce resetvalue; writes ignored. */ 50 ARM_CP_CONST = 1 << 4, 51 /* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */ 52 ARM_CP_64BIT = 1 << 5, 53 /* 54 * Flag: TB should not be ended after a write to this register 55 * (the default is that the TB ends after cp writes). 56 */ 57 ARM_CP_SUPPRESS_TB_END = 1 << 6, 58 /* 59 * Flag: Permit a register definition to override a previous definition 60 * for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new 61 * or the old must have the ARM_CP_OVERRIDE bit set. 62 */ 63 ARM_CP_OVERRIDE = 1 << 7, 64 /* 65 * Flag: Register is an alias view of some underlying state which is also 66 * visible via another register, and that the other register is handling 67 * migration and reset; registers marked ARM_CP_ALIAS will not be migrated 68 * but may have their state set by syncing of register state from KVM. 69 */ 70 ARM_CP_ALIAS = 1 << 8, 71 /* 72 * Flag: Register does I/O and therefore its accesses need to be marked 73 * with translator_io_start() and also end the TB. In particular, 74 * registers which implement clocks or timers require this. 75 */ 76 ARM_CP_IO = 1 << 9, 77 /* 78 * Flag: Register has no underlying state and does not support raw access 79 * for state saving/loading; it will not be used for either migration or 80 * KVM state synchronization. Typically this is for "registers" which are 81 * actually used as instructions for cache maintenance and so on. 82 */ 83 ARM_CP_NO_RAW = 1 << 10, 84 /* 85 * Flag: The read or write hook might raise an exception; the generated 86 * code will synchronize the CPU state before calling the hook so that it 87 * is safe for the hook to call raise_exception(). 88 */ 89 ARM_CP_RAISES_EXC = 1 << 11, 90 /* 91 * Flag: Writes to the sysreg might change the exception level - typically 92 * on older ARM chips. For those cases we need to re-read the new el when 93 * recomputing the translation flags. 94 */ 95 ARM_CP_NEWEL = 1 << 12, 96 /* 97 * Flag: Access check for this sysreg is identical to accessing FPU state 98 * from an instruction: use translation fp_access_check(). 99 */ 100 ARM_CP_FPU = 1 << 13, 101 /* 102 * Flag: Access check for this sysreg is identical to accessing SVE state 103 * from an instruction: use translation sve_access_check(). 104 */ 105 ARM_CP_SVE = 1 << 14, 106 /* Flag: Do not expose in gdb sysreg xml. */ 107 ARM_CP_NO_GDB = 1 << 15, 108 /* 109 * Flags: If EL3 but not EL2... 110 * - UNDEF: discard the cpreg, 111 * - KEEP: retain the cpreg as is, 112 * - C_NZ: set const on the cpreg, but retain resetvalue, 113 * - else: set const on the cpreg, zero resetvalue, aka RES0. 114 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 115 */ 116 ARM_CP_EL3_NO_EL2_UNDEF = 1 << 16, 117 ARM_CP_EL3_NO_EL2_KEEP = 1 << 17, 118 ARM_CP_EL3_NO_EL2_C_NZ = 1 << 18, 119 /* 120 * Flag: Access check for this sysreg is constrained by the 121 * ARM pseudocode function CheckSMEAccess(). 122 */ 123 ARM_CP_SME = 1 << 19, 124 /* 125 * Flag: one of the four EL2 registers which redirect to the 126 * equivalent EL1 register when FEAT_NV2 is enabled. 127 */ 128 ARM_CP_NV2_REDIRECT = 1 << 20, 129 /* 130 * Flag: this is a TLBI insn which (when FEAT_XS is present) also has 131 * an NXS variant at the same encoding except that crn is 1 greater, 132 * so when registering this cpreg automatically also register one 133 * for the TLBI NXS variant. (For QEMU the NXS variant behaves 134 * identically to the normal one, other than FGT trapping handling.) 135 */ 136 ARM_CP_ADD_TLBI_NXS = 1 << 21, 137 }; 138 139 /* 140 * Interface for defining coprocessor registers. 141 * Registers are defined in tables of arm_cp_reginfo structs 142 * which are passed to define_arm_cp_regs(). 143 */ 144 145 /* 146 * When looking up a coprocessor register we look for it 147 * via an integer which encodes all of: 148 * coprocessor number 149 * Crn, Crm, opc1, opc2 fields 150 * 32 or 64 bit register (ie is it accessed via MRC/MCR 151 * or via MRRC/MCRR?) 152 * non-secure/secure bank (AArch32 only) 153 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field. 154 * (In this case crn and opc2 should be zero.) 155 * For AArch64, there is no 32/64 bit size distinction; 156 * instead all registers have a 2 bit op0, 3 bit op1 and op2, 157 * and 4 bit CRn and CRm. The encoding patterns are chosen 158 * to be easy to convert to and from the KVM encodings, and also 159 * so that the hashtable can contain both AArch32 and AArch64 160 * registers (to allow for interprocessing where we might run 161 * 32 bit code on a 64 bit core). 162 */ 163 /* 164 * This bit is private to our hashtable cpreg; in KVM register 165 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64 166 * in the upper bits of the 64 bit ID. 167 */ 168 #define CP_REG_AA64_SHIFT 28 169 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT) 170 171 /* 172 * To enable banking of coprocessor registers depending on ns-bit we 173 * add a bit to distinguish between secure and non-secure cpregs in the 174 * hashtable. 175 */ 176 #define CP_REG_NS_SHIFT 29 177 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT) 178 179 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \ 180 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \ 181 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2)) 182 183 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \ 184 (CP_REG_AA64_MASK | \ 185 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \ 186 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \ 187 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \ 188 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \ 189 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \ 190 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT)) 191 192 /* 193 * Convert a full 64 bit KVM register ID to the truncated 32 bit 194 * version used as a key for the coprocessor register hashtable 195 */ 196 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid) 197 { 198 uint32_t cpregid = kvmid; 199 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) { 200 cpregid |= CP_REG_AA64_MASK; 201 } else { 202 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) { 203 cpregid |= (1 << 15); 204 } 205 206 /* 207 * KVM is always non-secure so add the NS flag on AArch32 register 208 * entries. 209 */ 210 cpregid |= 1 << CP_REG_NS_SHIFT; 211 } 212 return cpregid; 213 } 214 215 /* 216 * Convert a truncated 32 bit hashtable key into the full 217 * 64 bit KVM register ID. 218 */ 219 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) 220 { 221 uint64_t kvmid; 222 223 if (cpregid & CP_REG_AA64_MASK) { 224 kvmid = cpregid & ~CP_REG_AA64_MASK; 225 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64; 226 } else { 227 kvmid = cpregid & ~(1 << 15); 228 if (cpregid & (1 << 15)) { 229 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM; 230 } else { 231 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM; 232 } 233 } 234 return kvmid; 235 } 236 237 /* 238 * Valid values for ARMCPRegInfo state field, indicating which of 239 * the AArch32 and AArch64 execution states this register is visible in. 240 * If the reginfo doesn't explicitly specify then it is AArch32 only. 241 * If the reginfo is declared to be visible in both states then a second 242 * reginfo is synthesised for the AArch32 view of the AArch64 register, 243 * such that the AArch32 view is the lower 32 bits of the AArch64 one. 244 * Note that we rely on the values of these enums as we iterate through 245 * the various states in some places. 246 */ 247 typedef enum { 248 ARM_CP_STATE_AA32 = 0, 249 ARM_CP_STATE_AA64 = 1, 250 ARM_CP_STATE_BOTH = 2, 251 } CPState; 252 253 /* 254 * ARM CP register secure state flags. These flags identify security state 255 * attributes for a given CP register entry. 256 * The existence of both or neither secure and non-secure flags indicates that 257 * the register has both a secure and non-secure hash entry. A single one of 258 * these flags causes the register to only be hashed for the specified 259 * security state. 260 * Although definitions may have any combination of the S/NS bits, each 261 * registered entry will only have one to identify whether the entry is secure 262 * or non-secure. 263 */ 264 typedef enum { 265 ARM_CP_SECSTATE_BOTH = 0, /* define one cpreg for each secstate */ 266 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */ 267 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */ 268 } CPSecureState; 269 270 /* 271 * Access rights: 272 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM 273 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and 274 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1 275 * (ie any of the privileged modes in Secure state, or Monitor mode). 276 * If a register is accessible in one privilege level it's always accessible 277 * in higher privilege levels too. Since "Secure PL1" also follows this rule 278 * (ie anything visible in PL2 is visible in S-PL1, some things are only 279 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the 280 * terminology a little and call this PL3. 281 * In AArch64 things are somewhat simpler as the PLx bits line up exactly 282 * with the ELx exception levels. 283 * 284 * If access permissions for a register are more complex than can be 285 * described with these bits, then use a laxer set of restrictions, and 286 * do the more restrictive/complex check inside a helper function. 287 */ 288 typedef enum { 289 PL3_R = 0x80, 290 PL3_W = 0x40, 291 PL2_R = 0x20 | PL3_R, 292 PL2_W = 0x10 | PL3_W, 293 PL1_R = 0x08 | PL2_R, 294 PL1_W = 0x04 | PL2_W, 295 PL0_R = 0x02 | PL1_R, 296 PL0_W = 0x01 | PL1_W, 297 298 /* 299 * For user-mode some registers are accessible to EL0 via a kernel 300 * trap-and-emulate ABI. In this case we define the read permissions 301 * as actually being PL0_R. However some bits of any given register 302 * may still be masked. 303 */ 304 #ifdef CONFIG_USER_ONLY 305 PL0U_R = PL0_R, 306 #else 307 PL0U_R = PL1_R, 308 #endif 309 310 PL3_RW = PL3_R | PL3_W, 311 PL2_RW = PL2_R | PL2_W, 312 PL1_RW = PL1_R | PL1_W, 313 PL0_RW = PL0_R | PL0_W, 314 } CPAccessRights; 315 316 typedef enum CPAccessResult { 317 /* Access is permitted */ 318 CP_ACCESS_OK = 0, 319 320 /* 321 * Combined with one of the following, the low 2 bits indicate the 322 * target exception level. If 0, the exception is taken to the usual 323 * target EL (EL1 or PL1 if in EL0, otherwise to the current EL). 324 */ 325 CP_ACCESS_EL_MASK = 3, 326 327 /* 328 * Access fails due to a configurable trap or enable which would 329 * result in a categorized exception syndrome giving information about 330 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6, 331 * 0xc or 0x18). These traps are always to a specified target EL, 332 * never to the usual target EL. 333 */ 334 CP_ACCESS_TRAP_BIT = (1 << 2), 335 CP_ACCESS_TRAP_EL1 = CP_ACCESS_TRAP_BIT | 1, 336 CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP_BIT | 2, 337 CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP_BIT | 3, 338 339 /* 340 * Access fails with UNDEFINED, i.e. an exception syndrome 0x0 341 * ("uncategorized"), which is what an undefined insn produces. 342 * Note that this is not a catch-all case -- the set of cases which may 343 * result in this failure is specifically defined by the architecture. 344 * This trap is always to the usual target EL, never directly to a 345 * specified target EL. 346 */ 347 CP_ACCESS_UNDEFINED = (2 << 2), 348 } CPAccessResult; 349 350 /* Indexes into fgt_read[] */ 351 #define FGTREG_HFGRTR 0 352 #define FGTREG_HDFGRTR 1 353 /* Indexes into fgt_write[] */ 354 #define FGTREG_HFGWTR 0 355 #define FGTREG_HDFGWTR 1 356 /* Indexes into fgt_exec[] */ 357 #define FGTREG_HFGITR 0 358 359 FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1) 360 FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1) 361 FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1) 362 FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1) 363 FIELD(HFGRTR_EL2, APDAKEY, 4, 1) 364 FIELD(HFGRTR_EL2, APDBKEY, 5, 1) 365 FIELD(HFGRTR_EL2, APGAKEY, 6, 1) 366 FIELD(HFGRTR_EL2, APIAKEY, 7, 1) 367 FIELD(HFGRTR_EL2, APIBKEY, 8, 1) 368 FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1) 369 FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1) 370 FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1) 371 FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1) 372 FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1) 373 FIELD(HFGRTR_EL2, CTR_EL0, 14, 1) 374 FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1) 375 FIELD(HFGRTR_EL2, ESR_EL1, 16, 1) 376 FIELD(HFGRTR_EL2, FAR_EL1, 17, 1) 377 FIELD(HFGRTR_EL2, ISR_EL1, 18, 1) 378 FIELD(HFGRTR_EL2, LORC_EL1, 19, 1) 379 FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1) 380 FIELD(HFGRTR_EL2, LORID_EL1, 21, 1) 381 FIELD(HFGRTR_EL2, LORN_EL1, 22, 1) 382 FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1) 383 FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1) 384 FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1) 385 FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1) 386 FIELD(HFGRTR_EL2, PAR_EL1, 27, 1) 387 FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1) 388 FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1) 389 FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1) 390 FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1) 391 FIELD(HFGRTR_EL2, TCR_EL1, 32, 1) 392 FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1) 393 FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1) 394 FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1) 395 FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1) 396 FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1) 397 FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1) 398 FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1) 399 FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1) 400 FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1) 401 FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1) 402 FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1) 403 FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1) 404 FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1) 405 FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1) 406 FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1) 407 FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1) 408 FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1) 409 FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1) 410 /* 51-53: RES0 */ 411 FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1) 412 FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1) 413 /* 56-63: RES0 */ 414 415 /* These match HFGRTR but bits for RO registers are RES0 */ 416 FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1) 417 FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1) 418 FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1) 419 FIELD(HFGWTR_EL2, APDAKEY, 4, 1) 420 FIELD(HFGWTR_EL2, APDBKEY, 5, 1) 421 FIELD(HFGWTR_EL2, APGAKEY, 6, 1) 422 FIELD(HFGWTR_EL2, APIAKEY, 7, 1) 423 FIELD(HFGWTR_EL2, APIBKEY, 8, 1) 424 FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1) 425 FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1) 426 FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1) 427 FIELD(HFGWTR_EL2, ESR_EL1, 16, 1) 428 FIELD(HFGWTR_EL2, FAR_EL1, 17, 1) 429 FIELD(HFGWTR_EL2, LORC_EL1, 19, 1) 430 FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1) 431 FIELD(HFGWTR_EL2, LORN_EL1, 22, 1) 432 FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1) 433 FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1) 434 FIELD(HFGWTR_EL2, PAR_EL1, 27, 1) 435 FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1) 436 FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1) 437 FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1) 438 FIELD(HFGWTR_EL2, TCR_EL1, 32, 1) 439 FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1) 440 FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1) 441 FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1) 442 FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1) 443 FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1) 444 FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1) 445 FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1) 446 FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1) 447 FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1) 448 FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1) 449 FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1) 450 FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1) 451 FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1) 452 FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1) 453 FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1) 454 FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1) 455 FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1) 456 457 FIELD(HFGITR_EL2, ICIALLUIS, 0, 1) 458 FIELD(HFGITR_EL2, ICIALLU, 1, 1) 459 FIELD(HFGITR_EL2, ICIVAU, 2, 1) 460 FIELD(HFGITR_EL2, DCIVAC, 3, 1) 461 FIELD(HFGITR_EL2, DCISW, 4, 1) 462 FIELD(HFGITR_EL2, DCCSW, 5, 1) 463 FIELD(HFGITR_EL2, DCCISW, 6, 1) 464 FIELD(HFGITR_EL2, DCCVAU, 7, 1) 465 FIELD(HFGITR_EL2, DCCVAP, 8, 1) 466 FIELD(HFGITR_EL2, DCCVADP, 9, 1) 467 FIELD(HFGITR_EL2, DCCIVAC, 10, 1) 468 FIELD(HFGITR_EL2, DCZVA, 11, 1) 469 FIELD(HFGITR_EL2, ATS1E1R, 12, 1) 470 FIELD(HFGITR_EL2, ATS1E1W, 13, 1) 471 FIELD(HFGITR_EL2, ATS1E0R, 14, 1) 472 FIELD(HFGITR_EL2, ATS1E0W, 15, 1) 473 FIELD(HFGITR_EL2, ATS1E1RP, 16, 1) 474 FIELD(HFGITR_EL2, ATS1E1WP, 17, 1) 475 FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1) 476 FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1) 477 FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1) 478 FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1) 479 FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1) 480 FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1) 481 FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1) 482 FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1) 483 FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1) 484 FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1) 485 FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1) 486 FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1) 487 FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1) 488 FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1) 489 FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1) 490 FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1) 491 FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1) 492 FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1) 493 FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1) 494 FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1) 495 FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1) 496 FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1) 497 FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1) 498 FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1) 499 FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1) 500 FIELD(HFGITR_EL2, TLBIVAE1, 43, 1) 501 FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1) 502 FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1) 503 FIELD(HFGITR_EL2, TLBIVALE1, 46, 1) 504 FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1) 505 FIELD(HFGITR_EL2, CFPRCTX, 48, 1) 506 FIELD(HFGITR_EL2, DVPRCTX, 49, 1) 507 FIELD(HFGITR_EL2, CPPRCTX, 50, 1) 508 FIELD(HFGITR_EL2, ERET, 51, 1) 509 FIELD(HFGITR_EL2, SVC_EL0, 52, 1) 510 FIELD(HFGITR_EL2, SVC_EL1, 53, 1) 511 FIELD(HFGITR_EL2, DCCVAC, 54, 1) 512 FIELD(HFGITR_EL2, NBRBINJ, 55, 1) 513 FIELD(HFGITR_EL2, NBRBIALL, 56, 1) 514 515 FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1) 516 FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1) 517 FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1) 518 FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1) 519 FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1) 520 FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1) 521 FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1) 522 FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1) 523 /* 8: RES0: OSLAR_EL1 is WO */ 524 FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1) 525 FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1) 526 FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1) 527 FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1) 528 FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1) 529 FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1) 530 FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1) 531 FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1) 532 FIELD(HDFGRTR_EL2, PMINTEN, 17, 1) 533 FIELD(HDFGRTR_EL2, PMOVS, 18, 1) 534 FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1) 535 /* 20: RES0: PMSWINC_EL0 is WO */ 536 /* 21: RES0: PMCR_EL0 is WO */ 537 FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1) 538 FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1) 539 FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1) 540 FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1) 541 FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1) 542 FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1) 543 FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1) 544 FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1) 545 FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1) 546 FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1) 547 FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1) 548 FIELD(HDFGRTR_EL2, TRC, 33, 1) 549 FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1) 550 FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1) 551 FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1) 552 FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1) 553 /* 38, 39: RES0 */ 554 FIELD(HDFGRTR_EL2, TRCID, 40, 1) 555 FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1) 556 /* 42: RES0: TRCOSLAR is WO */ 557 FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1) 558 FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1) 559 FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1) 560 FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1) 561 FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1) 562 FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1) 563 /* 49: RES0: TRFCR_EL1 is WO */ 564 FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1) 565 FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1) 566 FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1) 567 FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1) 568 FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1) 569 FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1) 570 FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1) 571 FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1) 572 FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1) 573 FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1) 574 FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1) 575 FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1) 576 FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1) 577 FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1) 578 579 /* 580 * These match HDFGRTR_EL2, but bits for RO registers are RES0. 581 * A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0. 582 */ 583 FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1) 584 FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1) 585 FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1) 586 FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1) 587 FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1) 588 FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1) 589 FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1) 590 FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1) 591 FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1) 592 FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1) 593 FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1) 594 FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1) 595 FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1) 596 FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1) 597 FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1) 598 FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1) 599 FIELD(HDFGWTR_EL2, PMINTEN, 17, 1) 600 FIELD(HDFGWTR_EL2, PMOVS, 18, 1) 601 FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1) 602 FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1) 603 FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1) 604 FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1) 605 FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1) 606 FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1) 607 FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1) 608 FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1) 609 FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1) 610 FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1) 611 FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1) 612 FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1) 613 FIELD(HDFGWTR_EL2, TRC, 33, 1) 614 FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1) 615 FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1) 616 FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1) 617 FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1) 618 FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1) 619 FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1) 620 FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1) 621 FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1) 622 FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1) 623 FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1) 624 FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1) 625 FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1) 626 FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1) 627 FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1) 628 FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1) 629 FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1) 630 FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1) 631 FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1) 632 FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1) 633 FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1) 634 635 FIELD(FGT, NXS, 13, 1) /* Honour HCR_EL2.FGTnXS to suppress FGT */ 636 /* Which fine-grained trap bit register to check, if any */ 637 FIELD(FGT, TYPE, 10, 3) 638 FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */ 639 FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */ 640 FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */ 641 642 /* 643 * Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt 644 * fields. We assume for brevity's sake that there are no duplicated 645 * bit names across the various FGT registers. 646 */ 647 #define DO_BIT(REG, BITNAME) \ 648 FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT 649 650 /* Some bits have reversed sense, so 0 means trap and 1 means not */ 651 #define DO_REV_BIT(REG, BITNAME) \ 652 FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT 653 654 /* 655 * The FGT bits for TLBI maintenance instructions accessible at EL1 always 656 * affect the "normal" TLBI insns; they affect the corresponding TLBI insns 657 * with the nXS qualifier only if HCRX_EL2.FGTnXS is 0. We define e.g. 658 * FGT_TLBIVAE1 to use for the normal insn, and FGT_TLBIVAE1NXS to use 659 * for the nXS qualified insn. 660 */ 661 #define DO_TLBINXS_BIT(REG, BITNAME) \ 662 FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT, \ 663 FGT_##BITNAME##NXS = FGT_##BITNAME | R_FGT_NXS_MASK 664 665 typedef enum FGTBit { 666 /* 667 * These bits tell us which register arrays to use: 668 * if FGT_R is set then reads are checked against fgt_read[]; 669 * if FGT_W is set then writes are checked against fgt_write[]; 670 * if FGT_EXEC is set then all accesses are checked against fgt_exec[]. 671 * 672 * For almost all bits in the R/W register pairs, the bit exists in 673 * both registers for a RW register, in HFGRTR/HDFGRTR for a RO register 674 * with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa 675 * for a WO register. There are unfortunately a couple of exceptions 676 * (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but 677 * the FGT system only allows trapping of writes, not reads. 678 * 679 * Note that we arrange these bits so that a 0 FGTBit means "no trap". 680 */ 681 FGT_R = 1 << R_FGT_TYPE_SHIFT, 682 FGT_W = 2 << R_FGT_TYPE_SHIFT, 683 FGT_EXEC = 4 << R_FGT_TYPE_SHIFT, 684 FGT_RW = FGT_R | FGT_W, 685 /* Bit to identify whether trap bit is reversed sense */ 686 FGT_REV = R_FGT_REV_MASK, 687 688 /* 689 * If a bit exists in HFGRTR/HDFGRTR then either the register being 690 * trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either 691 * want to trap for both reads and writes or else it's harmless to mark 692 * it as trap-on-writes. 693 * If a bit exists only in HFGWTR/HDFGWTR then either the register being 694 * trapped is WO, or else it is one of the two oddball special cases 695 * which are RW but have only a write trap. We mark these as only 696 * FGT_W so we get the right behaviour for those special cases. 697 * (If a bit was added in future that provided only a read trap for an 698 * RW register we'd need to do something special to get the FGT_R bit 699 * only. But this seems unlikely to happen.) 700 * 701 * So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if 702 * the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR. 703 */ 704 FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT), 705 FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT), 706 FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT), 707 FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT), 708 FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT), 709 710 /* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */ 711 DO_BIT(HFGRTR, AFSR0_EL1), 712 DO_BIT(HFGRTR, AFSR1_EL1), 713 DO_BIT(HFGRTR, AIDR_EL1), 714 DO_BIT(HFGRTR, AMAIR_EL1), 715 DO_BIT(HFGRTR, APDAKEY), 716 DO_BIT(HFGRTR, APDBKEY), 717 DO_BIT(HFGRTR, APGAKEY), 718 DO_BIT(HFGRTR, APIAKEY), 719 DO_BIT(HFGRTR, APIBKEY), 720 DO_BIT(HFGRTR, CCSIDR_EL1), 721 DO_BIT(HFGRTR, CLIDR_EL1), 722 DO_BIT(HFGRTR, CONTEXTIDR_EL1), 723 DO_BIT(HFGRTR, CPACR_EL1), 724 DO_BIT(HFGRTR, CSSELR_EL1), 725 DO_BIT(HFGRTR, CTR_EL0), 726 DO_BIT(HFGRTR, DCZID_EL0), 727 DO_BIT(HFGRTR, ESR_EL1), 728 DO_BIT(HFGRTR, FAR_EL1), 729 DO_BIT(HFGRTR, ISR_EL1), 730 DO_BIT(HFGRTR, LORC_EL1), 731 DO_BIT(HFGRTR, LOREA_EL1), 732 DO_BIT(HFGRTR, LORID_EL1), 733 DO_BIT(HFGRTR, LORN_EL1), 734 DO_BIT(HFGRTR, LORSA_EL1), 735 DO_BIT(HFGRTR, MAIR_EL1), 736 DO_BIT(HFGRTR, MIDR_EL1), 737 DO_BIT(HFGRTR, MPIDR_EL1), 738 DO_BIT(HFGRTR, PAR_EL1), 739 DO_BIT(HFGRTR, REVIDR_EL1), 740 DO_BIT(HFGRTR, SCTLR_EL1), 741 DO_BIT(HFGRTR, SCXTNUM_EL1), 742 DO_BIT(HFGRTR, SCXTNUM_EL0), 743 DO_BIT(HFGRTR, TCR_EL1), 744 DO_BIT(HFGRTR, TPIDR_EL1), 745 DO_BIT(HFGRTR, TPIDRRO_EL0), 746 DO_BIT(HFGRTR, TPIDR_EL0), 747 DO_BIT(HFGRTR, TTBR0_EL1), 748 DO_BIT(HFGRTR, TTBR1_EL1), 749 DO_BIT(HFGRTR, VBAR_EL1), 750 DO_BIT(HFGRTR, ICC_IGRPENN_EL1), 751 DO_BIT(HFGRTR, ERRIDR_EL1), 752 DO_REV_BIT(HFGRTR, NSMPRI_EL1), 753 DO_REV_BIT(HFGRTR, NTPIDR2_EL0), 754 755 /* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */ 756 DO_BIT(HDFGRTR, DBGBCRN_EL1), 757 DO_BIT(HDFGRTR, DBGBVRN_EL1), 758 DO_BIT(HDFGRTR, DBGWCRN_EL1), 759 DO_BIT(HDFGRTR, DBGWVRN_EL1), 760 DO_BIT(HDFGRTR, MDSCR_EL1), 761 DO_BIT(HDFGRTR, DBGCLAIM), 762 DO_BIT(HDFGWTR, OSLAR_EL1), 763 DO_BIT(HDFGRTR, OSLSR_EL1), 764 DO_BIT(HDFGRTR, OSECCR_EL1), 765 DO_BIT(HDFGRTR, OSDLR_EL1), 766 DO_BIT(HDFGRTR, PMEVCNTRN_EL0), 767 DO_BIT(HDFGRTR, PMEVTYPERN_EL0), 768 DO_BIT(HDFGRTR, PMCCFILTR_EL0), 769 DO_BIT(HDFGRTR, PMCCNTR_EL0), 770 DO_BIT(HDFGRTR, PMCNTEN), 771 DO_BIT(HDFGRTR, PMINTEN), 772 DO_BIT(HDFGRTR, PMOVS), 773 DO_BIT(HDFGRTR, PMSELR_EL0), 774 DO_BIT(HDFGWTR, PMSWINC_EL0), 775 DO_BIT(HDFGWTR, PMCR_EL0), 776 DO_BIT(HDFGRTR, PMMIR_EL1), 777 DO_BIT(HDFGRTR, PMCEIDN_EL0), 778 779 /* Trap bits in HFGITR_EL2, starting from bit 0 */ 780 DO_BIT(HFGITR, ICIALLUIS), 781 DO_BIT(HFGITR, ICIALLU), 782 DO_BIT(HFGITR, ICIVAU), 783 DO_BIT(HFGITR, DCIVAC), 784 DO_BIT(HFGITR, DCISW), 785 DO_BIT(HFGITR, DCCSW), 786 DO_BIT(HFGITR, DCCISW), 787 DO_BIT(HFGITR, DCCVAU), 788 DO_BIT(HFGITR, DCCVAP), 789 DO_BIT(HFGITR, DCCVADP), 790 DO_BIT(HFGITR, DCCIVAC), 791 DO_BIT(HFGITR, DCZVA), 792 DO_BIT(HFGITR, ATS1E1R), 793 DO_BIT(HFGITR, ATS1E1W), 794 DO_BIT(HFGITR, ATS1E0R), 795 DO_BIT(HFGITR, ATS1E0W), 796 DO_BIT(HFGITR, ATS1E1RP), 797 DO_BIT(HFGITR, ATS1E1WP), 798 DO_TLBINXS_BIT(HFGITR, TLBIVMALLE1OS), 799 DO_TLBINXS_BIT(HFGITR, TLBIVAE1OS), 800 DO_TLBINXS_BIT(HFGITR, TLBIASIDE1OS), 801 DO_TLBINXS_BIT(HFGITR, TLBIVAAE1OS), 802 DO_TLBINXS_BIT(HFGITR, TLBIVALE1OS), 803 DO_TLBINXS_BIT(HFGITR, TLBIVAALE1OS), 804 DO_TLBINXS_BIT(HFGITR, TLBIRVAE1OS), 805 DO_TLBINXS_BIT(HFGITR, TLBIRVAAE1OS), 806 DO_TLBINXS_BIT(HFGITR, TLBIRVALE1OS), 807 DO_TLBINXS_BIT(HFGITR, TLBIRVAALE1OS), 808 DO_TLBINXS_BIT(HFGITR, TLBIVMALLE1IS), 809 DO_TLBINXS_BIT(HFGITR, TLBIVAE1IS), 810 DO_TLBINXS_BIT(HFGITR, TLBIASIDE1IS), 811 DO_TLBINXS_BIT(HFGITR, TLBIVAAE1IS), 812 DO_TLBINXS_BIT(HFGITR, TLBIVALE1IS), 813 DO_TLBINXS_BIT(HFGITR, TLBIVAALE1IS), 814 DO_TLBINXS_BIT(HFGITR, TLBIRVAE1IS), 815 DO_TLBINXS_BIT(HFGITR, TLBIRVAAE1IS), 816 DO_TLBINXS_BIT(HFGITR, TLBIRVALE1IS), 817 DO_TLBINXS_BIT(HFGITR, TLBIRVAALE1IS), 818 DO_TLBINXS_BIT(HFGITR, TLBIRVAE1), 819 DO_TLBINXS_BIT(HFGITR, TLBIRVAAE1), 820 DO_TLBINXS_BIT(HFGITR, TLBIRVALE1), 821 DO_TLBINXS_BIT(HFGITR, TLBIRVAALE1), 822 DO_TLBINXS_BIT(HFGITR, TLBIVMALLE1), 823 DO_TLBINXS_BIT(HFGITR, TLBIVAE1), 824 DO_TLBINXS_BIT(HFGITR, TLBIASIDE1), 825 DO_TLBINXS_BIT(HFGITR, TLBIVAAE1), 826 DO_TLBINXS_BIT(HFGITR, TLBIVALE1), 827 DO_TLBINXS_BIT(HFGITR, TLBIVAALE1), 828 DO_BIT(HFGITR, CFPRCTX), 829 DO_BIT(HFGITR, DVPRCTX), 830 DO_BIT(HFGITR, CPPRCTX), 831 DO_BIT(HFGITR, DCCVAC), 832 } FGTBit; 833 834 #undef DO_BIT 835 #undef DO_REV_BIT 836 837 typedef struct ARMCPRegInfo ARMCPRegInfo; 838 839 /* 840 * Access functions for coprocessor registers. These cannot fail and 841 * may not raise exceptions. 842 */ 843 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque); 844 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque, 845 uint64_t value); 846 /* Access permission check functions for coprocessor registers. */ 847 typedef CPAccessResult CPAccessFn(CPUARMState *env, 848 const ARMCPRegInfo *opaque, 849 bool isread); 850 /* Hook function for register reset */ 851 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque); 852 853 #define CP_ANY 0xff 854 855 /* Flags in the high bits of nv2_redirect_offset */ 856 #define NV2_REDIR_NV1 0x4000 /* Only redirect when HCR_EL2.NV1 == 1 */ 857 #define NV2_REDIR_NO_NV1 0x8000 /* Only redirect when HCR_EL2.NV1 == 0 */ 858 #define NV2_REDIR_FLAG_MASK 0xc000 859 860 /* Definition of an ARM coprocessor register */ 861 struct ARMCPRegInfo { 862 /* Name of register (useful mainly for debugging, need not be unique) */ 863 const char *name; 864 /* 865 * Location of register: coprocessor number and (crn,crm,opc1,opc2) 866 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a 867 * 'wildcard' field -- any value of that field in the MRC/MCR insn 868 * will be decoded to this register. The register read and write 869 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2 870 * used by the program, so it is possible to register a wildcard and 871 * then behave differently on read/write if necessary. 872 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2 873 * must both be zero. 874 * For AArch64-visible registers, opc0 is also used. 875 * Since there are no "coprocessors" in AArch64, cp is purely used as a 876 * way to distinguish (for KVM's benefit) guest-visible system registers 877 * from demuxed ones provided to preserve the "no side effects on 878 * KVM register read/write from QEMU" semantics. cp==0x13 is guest 879 * visible (to match KVM's encoding); cp==0 will be converted to 880 * cp==0x13 when the ARMCPRegInfo is registered, for convenience. 881 */ 882 uint8_t cp; 883 uint8_t crn; 884 uint8_t crm; 885 uint8_t opc0; 886 uint8_t opc1; 887 uint8_t opc2; 888 /* Execution state in which this register is visible: ARM_CP_STATE_* */ 889 CPState state; 890 /* Register type: ARM_CP_* bits/values */ 891 int type; 892 /* Access rights: PL*_[RW] */ 893 CPAccessRights access; 894 /* Security state: ARM_CP_SECSTATE_* bits/values */ 895 CPSecureState secure; 896 /* 897 * Which fine-grained trap register bit to check, if any. This 898 * value encodes both the trap register and bit within it. 899 */ 900 FGTBit fgt; 901 902 /* 903 * Offset from VNCR_EL2 when FEAT_NV2 redirects access to memory; 904 * may include an NV2_REDIR_* flag. 905 */ 906 uint32_t nv2_redirect_offset; 907 908 /* 909 * The opaque pointer passed to define_arm_cp_regs_with_opaque() when 910 * this register was defined: can be used to hand data through to the 911 * register read/write functions, since they are passed the ARMCPRegInfo*. 912 */ 913 void *opaque; 914 /* 915 * Value of this register, if it is ARM_CP_CONST. Otherwise, if 916 * fieldoffset is non-zero, the reset value of the register. 917 */ 918 uint64_t resetvalue; 919 /* 920 * Offset of the field in CPUARMState for this register. 921 * This is not needed if either: 922 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs 923 * 2. both readfn and writefn are specified 924 */ 925 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */ 926 927 /* 928 * Offsets of the secure and non-secure fields in CPUARMState for the 929 * register if it is banked. These fields are only used during the static 930 * registration of a register. During hashing the bank associated 931 * with a given security state is copied to fieldoffset which is used from 932 * there on out. 933 * 934 * It is expected that register definitions use either fieldoffset or 935 * bank_fieldoffsets in the definition but not both. It is also expected 936 * that both bank offsets are set when defining a banked register. This 937 * use indicates that a register is banked. 938 */ 939 ptrdiff_t bank_fieldoffsets[2]; 940 941 /* 942 * Function for making any access checks for this register in addition to 943 * those specified by the 'access' permissions bits. If NULL, no extra 944 * checks required. The access check is performed at runtime, not at 945 * translate time. 946 */ 947 CPAccessFn *accessfn; 948 /* 949 * Function for handling reads of this register. If NULL, then reads 950 * will be done by loading from the offset into CPUARMState specified 951 * by fieldoffset. 952 */ 953 CPReadFn *readfn; 954 /* 955 * Function for handling writes of this register. If NULL, then writes 956 * will be done by writing to the offset into CPUARMState specified 957 * by fieldoffset. 958 */ 959 CPWriteFn *writefn; 960 /* 961 * Function for doing a "raw" read; used when we need to copy 962 * coprocessor state to the kernel for KVM or out for 963 * migration. This only needs to be provided if there is also a 964 * readfn and it has side effects (for instance clear-on-read bits). 965 */ 966 CPReadFn *raw_readfn; 967 /* 968 * Function for doing a "raw" write; used when we need to copy KVM 969 * kernel coprocessor state into userspace, or for inbound 970 * migration. This only needs to be provided if there is also a 971 * writefn and it masks out "unwritable" bits or has write-one-to-clear 972 * or similar behaviour. 973 */ 974 CPWriteFn *raw_writefn; 975 /* 976 * Function for resetting the register. If NULL, then reset will be done 977 * by writing resetvalue to the field specified in fieldoffset. If 978 * fieldoffset is 0 then no reset will be done. 979 */ 980 CPResetFn *resetfn; 981 982 /* 983 * "Original" readfn, writefn, accessfn. 984 * For ARMv8.1-VHE register aliases, we overwrite the read/write 985 * accessor functions of various EL1/EL0 to perform the runtime 986 * check for which sysreg should actually be modified, and then 987 * forwards the operation. Before overwriting the accessors, 988 * the original function is copied here, so that accesses that 989 * really do go to the EL1/EL0 version proceed normally. 990 * (The corresponding EL2 register is linked via opaque.) 991 */ 992 CPReadFn *orig_readfn; 993 CPWriteFn *orig_writefn; 994 CPAccessFn *orig_accessfn; 995 }; 996 997 /* 998 * Macros which are lvalues for the field in CPUARMState for the 999 * ARMCPRegInfo *ri. 1000 */ 1001 #define CPREG_FIELD32(env, ri) \ 1002 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset)) 1003 #define CPREG_FIELD64(env, ri) \ 1004 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset)) 1005 1006 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg, 1007 void *opaque); 1008 1009 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs) 1010 { 1011 define_one_arm_cp_reg_with_opaque(cpu, regs, NULL); 1012 } 1013 1014 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 1015 void *opaque, size_t len); 1016 1017 #define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE) \ 1018 do { \ 1019 QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \ 1020 define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE, \ 1021 ARRAY_SIZE(REGS)); \ 1022 } while (0) 1023 1024 #define define_arm_cp_regs(CPU, REGS) \ 1025 define_arm_cp_regs_with_opaque(CPU, REGS, NULL) 1026 1027 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp); 1028 1029 /* 1030 * Definition of an ARM co-processor register as viewed from 1031 * userspace. This is used for presenting sanitised versions of 1032 * registers to userspace when emulating the Linux AArch64 CPU 1033 * ID/feature ABI (advertised as HWCAP_CPUID). 1034 */ 1035 typedef struct ARMCPRegUserSpaceInfo { 1036 /* Name of register */ 1037 const char *name; 1038 1039 /* Is the name actually a glob pattern */ 1040 bool is_glob; 1041 1042 /* Only some bits are exported to user space */ 1043 uint64_t exported_bits; 1044 1045 /* Fixed bits are applied after the mask */ 1046 uint64_t fixed_bits; 1047 } ARMCPRegUserSpaceInfo; 1048 1049 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 1050 const ARMCPRegUserSpaceInfo *mods, 1051 size_t mods_len); 1052 1053 #define modify_arm_cp_regs(REGS, MODS) \ 1054 do { \ 1055 QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \ 1056 QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0); \ 1057 modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS), \ 1058 MODS, ARRAY_SIZE(MODS)); \ 1059 } while (0) 1060 1061 /* CPWriteFn that can be used to implement writes-ignored behaviour */ 1062 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 1063 uint64_t value); 1064 /* CPReadFn that can be used for read-as-zero behaviour */ 1065 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri); 1066 1067 /* CPWriteFn that just writes the value to ri->fieldoffset */ 1068 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value); 1069 1070 /* 1071 * CPResetFn that does nothing, for use if no reset is required even 1072 * if fieldoffset is non zero. 1073 */ 1074 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque); 1075 1076 /* 1077 * Return true if this reginfo struct's field in the cpu state struct 1078 * is 64 bits wide. 1079 */ 1080 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri) 1081 { 1082 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT); 1083 } 1084 1085 static inline bool cp_access_ok(int current_el, 1086 const ARMCPRegInfo *ri, int isread) 1087 { 1088 return (ri->access >> ((current_el * 2) + isread)) & 1; 1089 } 1090 1091 /* Raw read of a coprocessor register (as needed for migration, etc) */ 1092 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri); 1093 1094 /* 1095 * Return true if the cp register encoding is in the "feature ID space" as 1096 * defined by FEAT_IDST (and thus should be reported with ER_ELx.EC 1097 * as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED). 1098 */ 1099 static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1, 1100 uint8_t opc2, 1101 uint8_t crn, uint8_t crm) 1102 { 1103 return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) && 1104 crn == 0 && crm < 8; 1105 } 1106 1107 /* 1108 * As arm_cpreg_encoding_in_idspace(), but take the encoding from an 1109 * ARMCPRegInfo. 1110 */ 1111 static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri) 1112 { 1113 return ri->state == ARM_CP_STATE_AA64 && 1114 arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2, 1115 ri->crn, ri->crm); 1116 } 1117 1118 #ifdef CONFIG_USER_ONLY 1119 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { } 1120 #else 1121 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu); 1122 #endif 1123 1124 CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool); 1125 1126 /** 1127 * arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization 1128 * 1129 * Return true if this cpreg is one which should be trapped to EL2 if 1130 * it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV. 1131 */ 1132 static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri) 1133 { 1134 /* 1135 * The Arm ARM defines the registers to be trapped in terms of 1136 * their names (I_TZTZL). However the underlying principle is "if 1137 * it would UNDEF at EL1 but work at EL2 then it should trap", and 1138 * the way the encoding of sysregs and system instructions is done 1139 * means that the right set of registers is exactly those where 1140 * the opc1 field is 4 or 5. (You can see this also in the assert 1141 * we do that the opc1 field and the permissions mask line up in 1142 * define_one_arm_cp_reg_with_opaque().) 1143 * Checking the opc1 field is easier for us and avoids the problem 1144 * that we do not consistently use the right architectural names 1145 * for all sysregs, since we treat the name field as largely for debug. 1146 * 1147 * However we do this check, it is going to be at least potentially 1148 * fragile to future new sysregs, but this seems the least likely 1149 * to break. 1150 * 1151 * In particular, note that the released sysreg XML defines that 1152 * the FEAT_MEC sysregs and instructions do not follow this FEAT_NV 1153 * trapping rule, so we will need to add an ARM_CP_* flag to indicate 1154 * "register does not trap on NV" to handle those if/when we implement 1155 * FEAT_MEC. 1156 */ 1157 return ri->opc1 == 4 || ri->opc1 == 5; 1158 } 1159 1160 #endif /* TARGET_ARM_CPREGS_H */ 1161