xref: /qemu/target/arm/arch_dump.c (revision d64db833d6e3cbe9ea5f36342480f920f3675cea)
1 /* Support for writing ELF notes for ARM architectures
2  *
3  * Copyright (C) 2015 Red Hat Inc.
4  *
5  * Author: Andrew Jones <drjones@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "elf.h"
24 #include "system/dump.h"
25 #include "cpu-features.h"
26 #include "internals.h"
27 
28 /* struct user_pt_regs from arch/arm64/include/uapi/asm/ptrace.h */
29 struct aarch64_user_regs {
30     uint64_t regs[31];
31     uint64_t sp;
32     uint64_t pc;
33     uint64_t pstate;
34 } QEMU_PACKED;
35 
36 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_regs) != 272);
37 
38 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
39 struct aarch64_elf_prstatus {
40     char pad1[32]; /* 32 == offsetof(struct elf_prstatus, pr_pid) */
41     uint32_t pr_pid;
42     char pad2[76]; /* 76 == offsetof(struct elf_prstatus, pr_reg) -
43                             offsetof(struct elf_prstatus, pr_ppid) */
44     struct aarch64_user_regs pr_reg;
45     uint32_t pr_fpvalid;
46     char pad3[4];
47 } QEMU_PACKED;
48 
49 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_elf_prstatus) != 392);
50 
51 /* struct user_fpsimd_state from arch/arm64/include/uapi/asm/ptrace.h
52  *
53  * While the vregs member of user_fpsimd_state is of type __uint128_t,
54  * QEMU uses an array of uint64_t, where the high half of the 128-bit
55  * value is always in the 2n+1'th index. Thus we also break the 128-
56  * bit values into two halves in this reproduction of user_fpsimd_state.
57  */
58 struct aarch64_user_vfp_state {
59     uint64_t vregs[64];
60     uint32_t fpsr;
61     uint32_t fpcr;
62     char pad[8];
63 } QEMU_PACKED;
64 
65 QEMU_BUILD_BUG_ON(sizeof(struct aarch64_user_vfp_state) != 528);
66 
67 /* struct user_sve_header from arch/arm64/include/uapi/asm/ptrace.h */
68 struct aarch64_user_sve_header {
69     uint32_t size;
70     uint32_t max_size;
71     uint16_t vl;
72     uint16_t max_vl;
73     uint16_t flags;
74     uint16_t reserved;
75 } QEMU_PACKED;
76 
77 struct aarch64_note {
78     Elf64_Nhdr hdr;
79     char name[8]; /* align_up(sizeof("CORE"), 4) */
80     union {
81         struct aarch64_elf_prstatus prstatus;
82         struct aarch64_user_vfp_state vfp;
83         struct aarch64_user_sve_header sve;
84     };
85 } QEMU_PACKED;
86 
87 #define AARCH64_NOTE_HEADER_SIZE offsetof(struct aarch64_note, prstatus)
88 #define AARCH64_PRSTATUS_NOTE_SIZE \
89             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_elf_prstatus))
90 #define AARCH64_PRFPREG_NOTE_SIZE \
91             (AARCH64_NOTE_HEADER_SIZE + sizeof(struct aarch64_user_vfp_state))
92 #define AARCH64_SVE_NOTE_SIZE(env) \
93             (AARCH64_NOTE_HEADER_SIZE + sve_size(env))
94 
95 static void aarch64_note_init(struct aarch64_note *note, DumpState *s,
96                               const char *name, Elf64_Word namesz,
97                               Elf64_Word type, Elf64_Word descsz)
98 {
99     memset(note, 0, sizeof(*note));
100 
101     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
102     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
103     note->hdr.n_type = cpu_to_dump32(s, type);
104 
105     memcpy(note->name, name, namesz);
106 }
107 
108 static int aarch64_write_elf64_prfpreg(WriteCoreDumpFunction f,
109                                        CPUARMState *env, int cpuid,
110                                        DumpState *s)
111 {
112     struct aarch64_note note;
113     int ret, i;
114 
115     aarch64_note_init(&note, s, "CORE", 5, NT_PRFPREG, sizeof(note.vfp));
116 
117     for (i = 0; i < 32; ++i) {
118         uint64_t *q = aa64_vfp_qreg(env, i);
119         note.vfp.vregs[2 * i + 0] = cpu_to_dump64(s, q[0]);
120         note.vfp.vregs[2 * i + 1] = cpu_to_dump64(s, q[1]);
121     }
122 
123     if (s->dump_info.d_endian == ELFDATA2MSB) {
124         /* For AArch64 we must always swap the vfp.regs's 2n and 2n+1
125          * entries when generating BE notes, because even big endian
126          * hosts use 2n+1 for the high half.
127          */
128         for (i = 0; i < 32; ++i) {
129             uint64_t tmp = note.vfp.vregs[2*i];
130             note.vfp.vregs[2 * i] = note.vfp.vregs[2 * i + 1];
131             note.vfp.vregs[2 * i + 1] = tmp;
132         }
133     }
134 
135     note.vfp.fpsr = cpu_to_dump32(s, vfp_get_fpsr(env));
136     note.vfp.fpcr = cpu_to_dump32(s, vfp_get_fpcr(env));
137 
138     ret = f(&note, AARCH64_PRFPREG_NOTE_SIZE, s);
139     if (ret < 0) {
140         return -1;
141     }
142 
143     return 0;
144 }
145 
146 #ifdef TARGET_AARCH64
147 static off_t sve_zreg_offset(uint32_t vq, int n)
148 {
149     off_t off = sizeof(struct aarch64_user_sve_header);
150     return ROUND_UP(off, 16) + vq * 16 * n;
151 }
152 
153 static off_t sve_preg_offset(uint32_t vq, int n)
154 {
155     return sve_zreg_offset(vq, 32) + vq * 16 / 8 * n;
156 }
157 
158 static off_t sve_fpsr_offset(uint32_t vq)
159 {
160     off_t off = sve_preg_offset(vq, 17);
161     return ROUND_UP(off, 16);
162 }
163 
164 static off_t sve_fpcr_offset(uint32_t vq)
165 {
166     return sve_fpsr_offset(vq) + sizeof(uint32_t);
167 }
168 
169 static uint32_t sve_current_vq(CPUARMState *env)
170 {
171     return sve_vqm1_for_el(env, arm_current_el(env)) + 1;
172 }
173 
174 static size_t sve_size_vq(uint32_t vq)
175 {
176     off_t off = sve_fpcr_offset(vq) + sizeof(uint32_t);
177     return ROUND_UP(off, 16);
178 }
179 
180 static size_t sve_size(CPUARMState *env)
181 {
182     return sve_size_vq(sve_current_vq(env));
183 }
184 
185 static int aarch64_write_elf64_sve(WriteCoreDumpFunction f,
186                                    CPUARMState *env, int cpuid,
187                                    DumpState *s)
188 {
189     struct aarch64_note *note;
190     ARMCPU *cpu = env_archcpu(env);
191     uint32_t vq = sve_current_vq(env);
192     uint64_t tmp[ARM_MAX_VQ * 2], *r;
193     uint32_t fpr;
194     uint8_t *buf;
195     int ret, i;
196 
197     note = g_malloc0(AARCH64_SVE_NOTE_SIZE(env));
198     buf = (uint8_t *)&note->sve;
199 
200     aarch64_note_init(note, s, "LINUX", 6, NT_ARM_SVE, sve_size_vq(vq));
201 
202     note->sve.size = cpu_to_dump32(s, sve_size_vq(vq));
203     note->sve.max_size = cpu_to_dump32(s, sve_size_vq(cpu->sve_max_vq));
204     note->sve.vl = cpu_to_dump16(s, vq * 16);
205     note->sve.max_vl = cpu_to_dump16(s, cpu->sve_max_vq * 16);
206     note->sve.flags = cpu_to_dump16(s, 1);
207 
208     for (i = 0; i < 32; ++i) {
209         r = sve_bswap64(tmp, &env->vfp.zregs[i].d[0], vq * 2);
210         memcpy(&buf[sve_zreg_offset(vq, i)], r, vq * 16);
211     }
212 
213     for (i = 0; i < 17; ++i) {
214         r = sve_bswap64(tmp, r = &env->vfp.pregs[i].p[0],
215                         DIV_ROUND_UP(vq * 2, 8));
216         memcpy(&buf[sve_preg_offset(vq, i)], r, vq * 16 / 8);
217     }
218 
219     fpr = cpu_to_dump32(s, vfp_get_fpsr(env));
220     memcpy(&buf[sve_fpsr_offset(vq)], &fpr, sizeof(uint32_t));
221 
222     fpr = cpu_to_dump32(s, vfp_get_fpcr(env));
223     memcpy(&buf[sve_fpcr_offset(vq)], &fpr, sizeof(uint32_t));
224 
225     ret = f(note, AARCH64_SVE_NOTE_SIZE(env), s);
226     g_free(note);
227 
228     if (ret < 0) {
229         return -1;
230     }
231 
232     return 0;
233 }
234 #endif
235 
236 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
237                              int cpuid, DumpState *s)
238 {
239     struct aarch64_note note;
240     ARMCPU *cpu = ARM_CPU(cs);
241     CPUARMState *env = &cpu->env;
242     uint64_t pstate, sp;
243     int ret, i;
244 
245     aarch64_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
246 
247     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
248     note.prstatus.pr_fpvalid = cpu_to_dump32(s, 1);
249 
250     if (!is_a64(env)) {
251         aarch64_sync_32_to_64(env);
252         pstate = cpsr_read(env);
253         sp = 0;
254     } else {
255         pstate = pstate_read(env);
256         sp = env->xregs[31];
257     }
258 
259     for (i = 0; i < 31; ++i) {
260         note.prstatus.pr_reg.regs[i] = cpu_to_dump64(s, env->xregs[i]);
261     }
262     note.prstatus.pr_reg.sp = cpu_to_dump64(s, sp);
263     note.prstatus.pr_reg.pc = cpu_to_dump64(s, env->pc);
264     note.prstatus.pr_reg.pstate = cpu_to_dump64(s, pstate);
265 
266     ret = f(&note, AARCH64_PRSTATUS_NOTE_SIZE, s);
267     if (ret < 0) {
268         return -1;
269     }
270 
271     ret = aarch64_write_elf64_prfpreg(f, env, cpuid, s);
272     if (ret) {
273         return ret;
274     }
275 
276 #ifdef TARGET_AARCH64
277     if (cpu_isar_feature(aa64_sve, cpu)) {
278         ret = aarch64_write_elf64_sve(f, env, cpuid, s);
279     }
280 #endif
281 
282     return ret;
283 }
284 
285 /* struct pt_regs from arch/arm/include/asm/ptrace.h */
286 struct arm_user_regs {
287     uint32_t regs[17];
288     char pad[4];
289 } QEMU_PACKED;
290 
291 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_regs) != 72);
292 
293 /* struct elf_prstatus from include/uapi/linux/elfcore.h */
294 struct arm_elf_prstatus {
295     char pad1[24]; /* 24 == offsetof(struct elf_prstatus, pr_pid) */
296     uint32_t pr_pid;
297     char pad2[44]; /* 44 == offsetof(struct elf_prstatus, pr_reg) -
298                             offsetof(struct elf_prstatus, pr_ppid) */
299     struct arm_user_regs pr_reg;
300     uint32_t pr_fpvalid;
301 } QEMU_PACKED arm_elf_prstatus;
302 
303 QEMU_BUILD_BUG_ON(sizeof(struct arm_elf_prstatus) != 148);
304 
305 /* struct user_vfp from arch/arm/include/asm/user.h */
306 struct arm_user_vfp_state {
307     uint64_t vregs[32];
308     uint32_t fpscr;
309 } QEMU_PACKED;
310 
311 QEMU_BUILD_BUG_ON(sizeof(struct arm_user_vfp_state) != 260);
312 
313 struct arm_note {
314     Elf32_Nhdr hdr;
315     char name[8]; /* align_up(sizeof("LINUX"), 4) */
316     union {
317         struct arm_elf_prstatus prstatus;
318         struct arm_user_vfp_state vfp;
319     };
320 } QEMU_PACKED;
321 
322 #define ARM_NOTE_HEADER_SIZE offsetof(struct arm_note, prstatus)
323 #define ARM_PRSTATUS_NOTE_SIZE \
324             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_elf_prstatus))
325 #define ARM_VFP_NOTE_SIZE \
326             (ARM_NOTE_HEADER_SIZE + sizeof(struct arm_user_vfp_state))
327 
328 static void arm_note_init(struct arm_note *note, DumpState *s,
329                           const char *name, Elf32_Word namesz,
330                           Elf32_Word type, Elf32_Word descsz)
331 {
332     memset(note, 0, sizeof(*note));
333 
334     note->hdr.n_namesz = cpu_to_dump32(s, namesz);
335     note->hdr.n_descsz = cpu_to_dump32(s, descsz);
336     note->hdr.n_type = cpu_to_dump32(s, type);
337 
338     memcpy(note->name, name, namesz);
339 }
340 
341 static int arm_write_elf32_vfp(WriteCoreDumpFunction f, CPUARMState *env,
342                                int cpuid, DumpState *s)
343 {
344     struct arm_note note;
345     int ret, i;
346 
347     arm_note_init(&note, s, "LINUX", 6, NT_ARM_VFP, sizeof(note.vfp));
348 
349     for (i = 0; i < 32; ++i) {
350         note.vfp.vregs[i] = cpu_to_dump64(s, *aa32_vfp_dreg(env, i));
351     }
352 
353     note.vfp.fpscr = cpu_to_dump32(s, vfp_get_fpscr(env));
354 
355     ret = f(&note, ARM_VFP_NOTE_SIZE, s);
356     if (ret < 0) {
357         return -1;
358     }
359 
360     return 0;
361 }
362 
363 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
364                              int cpuid, DumpState *s)
365 {
366     struct arm_note note;
367     ARMCPU *cpu = ARM_CPU(cs);
368     CPUARMState *env = &cpu->env;
369     int ret, i;
370     bool fpvalid = cpu_isar_feature(aa32_vfp_simd, cpu);
371 
372     arm_note_init(&note, s, "CORE", 5, NT_PRSTATUS, sizeof(note.prstatus));
373 
374     note.prstatus.pr_pid = cpu_to_dump32(s, cpuid);
375     note.prstatus.pr_fpvalid = cpu_to_dump32(s, fpvalid);
376 
377     for (i = 0; i < 16; ++i) {
378         note.prstatus.pr_reg.regs[i] = cpu_to_dump32(s, env->regs[i]);
379     }
380     note.prstatus.pr_reg.regs[16] = cpu_to_dump32(s, cpsr_read(env));
381 
382     ret = f(&note, ARM_PRSTATUS_NOTE_SIZE, s);
383     if (ret < 0) {
384         return -1;
385     } else if (fpvalid) {
386         return arm_write_elf32_vfp(f, env, cpuid, s);
387     }
388 
389     return 0;
390 }
391 
392 int cpu_get_dump_info(ArchDumpInfo *info,
393                       const GuestPhysBlockList *guest_phys_blocks)
394 {
395     ARMCPU *cpu;
396     CPUARMState *env;
397     GuestPhysBlock *block;
398     hwaddr lowest_addr = ULLONG_MAX;
399 
400     if (first_cpu == NULL) {
401         return -1;
402     }
403 
404     cpu = ARM_CPU(first_cpu);
405     env = &cpu->env;
406 
407     /* Take a best guess at the phys_base. If we get it wrong then crash
408      * will need '--machdep phys_offset=<phys-offset>' added to its command
409      * line, which isn't any worse than assuming we can use zero, but being
410      * wrong. This is the same algorithm the crash utility uses when
411      * attempting to guess as it loads non-dumpfile formatted files.
412      */
413     QTAILQ_FOREACH(block, &guest_phys_blocks->head, next) {
414         if (block->target_start < lowest_addr) {
415             lowest_addr = block->target_start;
416         }
417     }
418 
419     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
420         info->d_machine = EM_AARCH64;
421         info->d_class = ELFCLASS64;
422         info->page_size = (1 << 16); /* aarch64 max pagesize */
423         if (lowest_addr != ULLONG_MAX) {
424             info->phys_base = lowest_addr;
425         }
426     } else {
427         info->d_machine = EM_ARM;
428         info->d_class = ELFCLASS32;
429         info->page_size = (1 << 12);
430         if (lowest_addr < UINT_MAX) {
431             info->phys_base = lowest_addr;
432         }
433     }
434 
435     /* We assume the relevant endianness is that of EL1; this is right
436      * for kernels, but might give the wrong answer if you're trying to
437      * dump a hypervisor that happens to be running an opposite-endian
438      * kernel.
439      */
440     info->d_endian = (env->cp15.sctlr_el[1] & SCTLR_EE) != 0
441                      ? ELFDATA2MSB : ELFDATA2LSB;
442 
443     return 0;
444 }
445 
446 ssize_t cpu_get_note_size(int class, int machine, int nr_cpus)
447 {
448     ARMCPU *cpu = ARM_CPU(first_cpu);
449     size_t note_size;
450 
451     if (class == ELFCLASS64) {
452         note_size = AARCH64_PRSTATUS_NOTE_SIZE;
453         note_size += AARCH64_PRFPREG_NOTE_SIZE;
454 #ifdef TARGET_AARCH64
455         if (cpu_isar_feature(aa64_sve, cpu)) {
456             note_size += AARCH64_SVE_NOTE_SIZE(&cpu->env);
457         }
458 #endif
459     } else {
460         note_size = ARM_PRSTATUS_NOTE_SIZE;
461         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
462             note_size += ARM_VFP_NOTE_SIZE;
463         }
464     }
465 
466     return note_size * nr_cpus;
467 }
468