xref: /qemu/system/physmem.c (revision fcb7e040f5c69ca1f0678f991ab5354488a9e192)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d =
684         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 
686     for (;;) {
687         section = address_space_translate_internal(d, addr, &addr, plen, false);
688 
689         iommu_mr = memory_region_get_iommu(section->mr);
690         if (!iommu_mr) {
691             break;
692         }
693 
694         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 
696         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699          * doesn't short-cut its translation table walk.
700          */
701         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703                 | (addr & iotlb.addr_mask));
704         /* Update the caller's prot bits to remove permissions the IOMMU
705          * is giving us a failure response for. If we get down to no
706          * permissions left at all we can give up now.
707          */
708         if (!(iotlb.perm & IOMMU_RO)) {
709             *prot &= ~(PAGE_READ | PAGE_EXEC);
710         }
711         if (!(iotlb.perm & IOMMU_WO)) {
712             *prot &= ~PAGE_WRITE;
713         }
714 
715         if (!*prot) {
716             goto translate_fail;
717         }
718 
719         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720     }
721 
722     assert(!memory_region_is_iommu(section->mr));
723     *xlat = addr;
724     return section;
725 
726 translate_fail:
727     /*
728      * We should be given a page-aligned address -- certainly
729      * tlb_set_page_with_attrs() does so.  The page offset of xlat
730      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731      * The page portion of xlat will be logged by memory_region_access_valid()
732      * when this memory access is rejected, so use the original untranslated
733      * physical address.
734      */
735     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736     *xlat = orig_addr;
737     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739 
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741                             const char *prefix, MemoryRegion *mr)
742 {
743     CPUAddressSpace *newas;
744     AddressSpace *as = g_new0(AddressSpace, 1);
745     char *as_name;
746 
747     assert(mr);
748     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749     address_space_init(as, mr, as_name);
750     g_free(as_name);
751 
752     /* Target code should have set num_ases before calling us */
753     assert(asidx < cpu->num_ases);
754 
755     if (asidx == 0) {
756         /* address space 0 gets the convenience alias */
757         cpu->as = as;
758     }
759 
760     /* KVM cannot currently support multiple address spaces. */
761     assert(asidx == 0 || !kvm_enabled());
762 
763     if (!cpu->cpu_ases) {
764         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765     }
766 
767     newas = &cpu->cpu_ases[asidx];
768     newas->cpu = cpu;
769     newas->as = as;
770     if (tcg_enabled()) {
771         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772         newas->tcg_as_listener.commit = tcg_commit;
773         newas->tcg_as_listener.name = "tcg";
774         memory_listener_register(&newas->tcg_as_listener, as);
775     }
776 }
777 
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780     /* Return the AddressSpace corresponding to the specified index */
781     return cpu->cpu_ases[asidx].as;
782 }
783 
784 /* Add a watchpoint.  */
785 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
786                           int flags, CPUWatchpoint **watchpoint)
787 {
788     CPUWatchpoint *wp;
789     vaddr in_page;
790 
791     /* forbid ranges which are empty or run off the end of the address space */
792     if (len == 0 || (addr + len - 1) < addr) {
793         error_report("tried to set invalid watchpoint at %"
794                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
795         return -EINVAL;
796     }
797     wp = g_malloc(sizeof(*wp));
798 
799     wp->vaddr = addr;
800     wp->len = len;
801     wp->flags = flags;
802 
803     /* keep all GDB-injected watchpoints in front */
804     if (flags & BP_GDB) {
805         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
806     } else {
807         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
808     }
809 
810     in_page = -(addr | TARGET_PAGE_MASK);
811     if (len <= in_page) {
812         tlb_flush_page(cpu, addr);
813     } else {
814         tlb_flush(cpu);
815     }
816 
817     if (watchpoint)
818         *watchpoint = wp;
819     return 0;
820 }
821 
822 /* Remove a specific watchpoint.  */
823 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
824                           int flags)
825 {
826     CPUWatchpoint *wp;
827 
828     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
829         if (addr == wp->vaddr && len == wp->len
830                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
831             cpu_watchpoint_remove_by_ref(cpu, wp);
832             return 0;
833         }
834     }
835     return -ENOENT;
836 }
837 
838 /* Remove a specific watchpoint by reference.  */
839 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
840 {
841     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
842 
843     tlb_flush_page(cpu, watchpoint->vaddr);
844 
845     g_free(watchpoint);
846 }
847 
848 /* Remove all matching watchpoints.  */
849 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
850 {
851     CPUWatchpoint *wp, *next;
852 
853     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
854         if (wp->flags & mask) {
855             cpu_watchpoint_remove_by_ref(cpu, wp);
856         }
857     }
858 }
859 
860 #ifdef CONFIG_TCG
861 /* Return true if this watchpoint address matches the specified
862  * access (ie the address range covered by the watchpoint overlaps
863  * partially or completely with the address range covered by the
864  * access).
865  */
866 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
867                                               vaddr addr, vaddr len)
868 {
869     /* We know the lengths are non-zero, but a little caution is
870      * required to avoid errors in the case where the range ends
871      * exactly at the top of the address space and so addr + len
872      * wraps round to zero.
873      */
874     vaddr wpend = wp->vaddr + wp->len - 1;
875     vaddr addrend = addr + len - 1;
876 
877     return !(addr > wpend || wp->vaddr > addrend);
878 }
879 
880 /* Return flags for watchpoints that match addr + prot.  */
881 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
882 {
883     CPUWatchpoint *wp;
884     int ret = 0;
885 
886     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
887         if (watchpoint_address_matches(wp, addr, len)) {
888             ret |= wp->flags;
889         }
890     }
891     return ret;
892 }
893 
894 /* Generate a debug exception if a watchpoint has been hit.  */
895 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
896                           MemTxAttrs attrs, int flags, uintptr_t ra)
897 {
898     CPUClass *cc = CPU_GET_CLASS(cpu);
899     CPUWatchpoint *wp;
900 
901     assert(tcg_enabled());
902     if (cpu->watchpoint_hit) {
903         /*
904          * We re-entered the check after replacing the TB.
905          * Now raise the debug interrupt so that it will
906          * trigger after the current instruction.
907          */
908         qemu_mutex_lock_iothread();
909         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
910         qemu_mutex_unlock_iothread();
911         return;
912     }
913 
914     if (cc->tcg_ops->adjust_watchpoint_address) {
915         /* this is currently used only by ARM BE32 */
916         addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
917     }
918     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
919         if (watchpoint_address_matches(wp, addr, len)
920             && (wp->flags & flags)) {
921             if (replay_running_debug()) {
922                 /*
923                  * replay_breakpoint reads icount.
924                  * Force recompile to succeed, because icount may
925                  * be read only at the end of the block.
926                  */
927                 if (!cpu->can_do_io) {
928                     /* Force execution of one insn next time.  */
929                     cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
930                     cpu_loop_exit_restore(cpu, ra);
931                 }
932                 /*
933                  * Don't process the watchpoints when we are
934                  * in a reverse debugging operation.
935                  */
936                 replay_breakpoint();
937                 return;
938             }
939             if (flags == BP_MEM_READ) {
940                 wp->flags |= BP_WATCHPOINT_HIT_READ;
941             } else {
942                 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
943             }
944             wp->hitaddr = MAX(addr, wp->vaddr);
945             wp->hitattrs = attrs;
946 
947             if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
948                 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
949                 wp->flags &= ~BP_WATCHPOINT_HIT;
950                 continue;
951             }
952             cpu->watchpoint_hit = wp;
953 
954             mmap_lock();
955             /* This call also restores vCPU state */
956             tb_check_watchpoint(cpu, ra);
957             if (wp->flags & BP_STOP_BEFORE_ACCESS) {
958                 cpu->exception_index = EXCP_DEBUG;
959                 mmap_unlock();
960                 cpu_loop_exit(cpu);
961             } else {
962                 /* Force execution of one insn next time.  */
963                 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
964                 mmap_unlock();
965                 cpu_loop_exit_noexc(cpu);
966             }
967         } else {
968             wp->flags &= ~BP_WATCHPOINT_HIT;
969         }
970     }
971 }
972 
973 #endif /* CONFIG_TCG */
974 
975 /* Called from RCU critical section */
976 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
977 {
978     RAMBlock *block;
979 
980     block = qatomic_rcu_read(&ram_list.mru_block);
981     if (block && addr - block->offset < block->max_length) {
982         return block;
983     }
984     RAMBLOCK_FOREACH(block) {
985         if (addr - block->offset < block->max_length) {
986             goto found;
987         }
988     }
989 
990     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
991     abort();
992 
993 found:
994     /* It is safe to write mru_block outside the iothread lock.  This
995      * is what happens:
996      *
997      *     mru_block = xxx
998      *     rcu_read_unlock()
999      *                                        xxx removed from list
1000      *                  rcu_read_lock()
1001      *                  read mru_block
1002      *                                        mru_block = NULL;
1003      *                                        call_rcu(reclaim_ramblock, xxx);
1004      *                  rcu_read_unlock()
1005      *
1006      * qatomic_rcu_set is not needed here.  The block was already published
1007      * when it was placed into the list.  Here we're just making an extra
1008      * copy of the pointer.
1009      */
1010     ram_list.mru_block = block;
1011     return block;
1012 }
1013 
1014 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1015 {
1016     CPUState *cpu;
1017     ram_addr_t start1;
1018     RAMBlock *block;
1019     ram_addr_t end;
1020 
1021     assert(tcg_enabled());
1022     end = TARGET_PAGE_ALIGN(start + length);
1023     start &= TARGET_PAGE_MASK;
1024 
1025     RCU_READ_LOCK_GUARD();
1026     block = qemu_get_ram_block(start);
1027     assert(block == qemu_get_ram_block(end - 1));
1028     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1029     CPU_FOREACH(cpu) {
1030         tlb_reset_dirty(cpu, start1, length);
1031     }
1032 }
1033 
1034 /* Note: start and end must be within the same ram block.  */
1035 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1036                                               ram_addr_t length,
1037                                               unsigned client)
1038 {
1039     DirtyMemoryBlocks *blocks;
1040     unsigned long end, page, start_page;
1041     bool dirty = false;
1042     RAMBlock *ramblock;
1043     uint64_t mr_offset, mr_size;
1044 
1045     if (length == 0) {
1046         return false;
1047     }
1048 
1049     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1050     start_page = start >> TARGET_PAGE_BITS;
1051     page = start_page;
1052 
1053     WITH_RCU_READ_LOCK_GUARD() {
1054         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1055         ramblock = qemu_get_ram_block(start);
1056         /* Range sanity check on the ramblock */
1057         assert(start >= ramblock->offset &&
1058                start + length <= ramblock->offset + ramblock->used_length);
1059 
1060         while (page < end) {
1061             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1062             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1063             unsigned long num = MIN(end - page,
1064                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1065 
1066             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1067                                                   offset, num);
1068             page += num;
1069         }
1070 
1071         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1072         mr_size = (end - start_page) << TARGET_PAGE_BITS;
1073         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1074     }
1075 
1076     if (dirty && tcg_enabled()) {
1077         tlb_reset_dirty_range_all(start, length);
1078     }
1079 
1080     return dirty;
1081 }
1082 
1083 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1084     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1085 {
1086     DirtyMemoryBlocks *blocks;
1087     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1088     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1089     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1090     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1091     DirtyBitmapSnapshot *snap;
1092     unsigned long page, end, dest;
1093 
1094     snap = g_malloc0(sizeof(*snap) +
1095                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
1096     snap->start = first;
1097     snap->end   = last;
1098 
1099     page = first >> TARGET_PAGE_BITS;
1100     end  = last  >> TARGET_PAGE_BITS;
1101     dest = 0;
1102 
1103     WITH_RCU_READ_LOCK_GUARD() {
1104         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1105 
1106         while (page < end) {
1107             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1108             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1109             unsigned long num = MIN(end - page,
1110                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1111 
1112             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1113             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1114             offset >>= BITS_PER_LEVEL;
1115 
1116             bitmap_copy_and_clear_atomic(snap->dirty + dest,
1117                                          blocks->blocks[idx] + offset,
1118                                          num);
1119             page += num;
1120             dest += num >> BITS_PER_LEVEL;
1121         }
1122     }
1123 
1124     if (tcg_enabled()) {
1125         tlb_reset_dirty_range_all(start, length);
1126     }
1127 
1128     memory_region_clear_dirty_bitmap(mr, offset, length);
1129 
1130     return snap;
1131 }
1132 
1133 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1134                                             ram_addr_t start,
1135                                             ram_addr_t length)
1136 {
1137     unsigned long page, end;
1138 
1139     assert(start >= snap->start);
1140     assert(start + length <= snap->end);
1141 
1142     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1143     page = (start - snap->start) >> TARGET_PAGE_BITS;
1144 
1145     while (page < end) {
1146         if (test_bit(page, snap->dirty)) {
1147             return true;
1148         }
1149         page++;
1150     }
1151     return false;
1152 }
1153 
1154 /* Called from RCU critical section */
1155 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1156                                        MemoryRegionSection *section)
1157 {
1158     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1159     return section - d->map.sections;
1160 }
1161 
1162 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1163                             uint16_t section);
1164 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1165 
1166 static uint16_t phys_section_add(PhysPageMap *map,
1167                                  MemoryRegionSection *section)
1168 {
1169     /* The physical section number is ORed with a page-aligned
1170      * pointer to produce the iotlb entries.  Thus it should
1171      * never overflow into the page-aligned value.
1172      */
1173     assert(map->sections_nb < TARGET_PAGE_SIZE);
1174 
1175     if (map->sections_nb == map->sections_nb_alloc) {
1176         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1177         map->sections = g_renew(MemoryRegionSection, map->sections,
1178                                 map->sections_nb_alloc);
1179     }
1180     map->sections[map->sections_nb] = *section;
1181     memory_region_ref(section->mr);
1182     return map->sections_nb++;
1183 }
1184 
1185 static void phys_section_destroy(MemoryRegion *mr)
1186 {
1187     bool have_sub_page = mr->subpage;
1188 
1189     memory_region_unref(mr);
1190 
1191     if (have_sub_page) {
1192         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1193         object_unref(OBJECT(&subpage->iomem));
1194         g_free(subpage);
1195     }
1196 }
1197 
1198 static void phys_sections_free(PhysPageMap *map)
1199 {
1200     while (map->sections_nb > 0) {
1201         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1202         phys_section_destroy(section->mr);
1203     }
1204     g_free(map->sections);
1205     g_free(map->nodes);
1206 }
1207 
1208 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1209 {
1210     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1211     subpage_t *subpage;
1212     hwaddr base = section->offset_within_address_space
1213         & TARGET_PAGE_MASK;
1214     MemoryRegionSection *existing = phys_page_find(d, base);
1215     MemoryRegionSection subsection = {
1216         .offset_within_address_space = base,
1217         .size = int128_make64(TARGET_PAGE_SIZE),
1218     };
1219     hwaddr start, end;
1220 
1221     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1222 
1223     if (!(existing->mr->subpage)) {
1224         subpage = subpage_init(fv, base);
1225         subsection.fv = fv;
1226         subsection.mr = &subpage->iomem;
1227         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1228                       phys_section_add(&d->map, &subsection));
1229     } else {
1230         subpage = container_of(existing->mr, subpage_t, iomem);
1231     }
1232     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1233     end = start + int128_get64(section->size) - 1;
1234     subpage_register(subpage, start, end,
1235                      phys_section_add(&d->map, section));
1236 }
1237 
1238 
1239 static void register_multipage(FlatView *fv,
1240                                MemoryRegionSection *section)
1241 {
1242     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1243     hwaddr start_addr = section->offset_within_address_space;
1244     uint16_t section_index = phys_section_add(&d->map, section);
1245     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1246                                                     TARGET_PAGE_BITS));
1247 
1248     assert(num_pages);
1249     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1250 }
1251 
1252 /*
1253  * The range in *section* may look like this:
1254  *
1255  *      |s|PPPPPPP|s|
1256  *
1257  * where s stands for subpage and P for page.
1258  */
1259 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1260 {
1261     MemoryRegionSection remain = *section;
1262     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1263 
1264     /* register first subpage */
1265     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1266         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1267                         - remain.offset_within_address_space;
1268 
1269         MemoryRegionSection now = remain;
1270         now.size = int128_min(int128_make64(left), now.size);
1271         register_subpage(fv, &now);
1272         if (int128_eq(remain.size, now.size)) {
1273             return;
1274         }
1275         remain.size = int128_sub(remain.size, now.size);
1276         remain.offset_within_address_space += int128_get64(now.size);
1277         remain.offset_within_region += int128_get64(now.size);
1278     }
1279 
1280     /* register whole pages */
1281     if (int128_ge(remain.size, page_size)) {
1282         MemoryRegionSection now = remain;
1283         now.size = int128_and(now.size, int128_neg(page_size));
1284         register_multipage(fv, &now);
1285         if (int128_eq(remain.size, now.size)) {
1286             return;
1287         }
1288         remain.size = int128_sub(remain.size, now.size);
1289         remain.offset_within_address_space += int128_get64(now.size);
1290         remain.offset_within_region += int128_get64(now.size);
1291     }
1292 
1293     /* register last subpage */
1294     register_subpage(fv, &remain);
1295 }
1296 
1297 void qemu_flush_coalesced_mmio_buffer(void)
1298 {
1299     if (kvm_enabled())
1300         kvm_flush_coalesced_mmio_buffer();
1301 }
1302 
1303 void qemu_mutex_lock_ramlist(void)
1304 {
1305     qemu_mutex_lock(&ram_list.mutex);
1306 }
1307 
1308 void qemu_mutex_unlock_ramlist(void)
1309 {
1310     qemu_mutex_unlock(&ram_list.mutex);
1311 }
1312 
1313 GString *ram_block_format(void)
1314 {
1315     RAMBlock *block;
1316     char *psize;
1317     GString *buf = g_string_new("");
1318 
1319     RCU_READ_LOCK_GUARD();
1320     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1321                            "Block Name", "PSize", "Offset", "Used", "Total");
1322     RAMBLOCK_FOREACH(block) {
1323         psize = size_to_str(block->page_size);
1324         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1325                                " 0x%016" PRIx64 "\n", block->idstr, psize,
1326                                (uint64_t)block->offset,
1327                                (uint64_t)block->used_length,
1328                                (uint64_t)block->max_length);
1329         g_free(psize);
1330     }
1331 
1332     return buf;
1333 }
1334 
1335 static int find_min_backend_pagesize(Object *obj, void *opaque)
1336 {
1337     long *hpsize_min = opaque;
1338 
1339     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1340         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1341         long hpsize = host_memory_backend_pagesize(backend);
1342 
1343         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1344             *hpsize_min = hpsize;
1345         }
1346     }
1347 
1348     return 0;
1349 }
1350 
1351 static int find_max_backend_pagesize(Object *obj, void *opaque)
1352 {
1353     long *hpsize_max = opaque;
1354 
1355     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1356         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1357         long hpsize = host_memory_backend_pagesize(backend);
1358 
1359         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1360             *hpsize_max = hpsize;
1361         }
1362     }
1363 
1364     return 0;
1365 }
1366 
1367 /*
1368  * TODO: We assume right now that all mapped host memory backends are
1369  * used as RAM, however some might be used for different purposes.
1370  */
1371 long qemu_minrampagesize(void)
1372 {
1373     long hpsize = LONG_MAX;
1374     Object *memdev_root = object_resolve_path("/objects", NULL);
1375 
1376     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1377     return hpsize;
1378 }
1379 
1380 long qemu_maxrampagesize(void)
1381 {
1382     long pagesize = 0;
1383     Object *memdev_root = object_resolve_path("/objects", NULL);
1384 
1385     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1386     return pagesize;
1387 }
1388 
1389 #ifdef CONFIG_POSIX
1390 static int64_t get_file_size(int fd)
1391 {
1392     int64_t size;
1393 #if defined(__linux__)
1394     struct stat st;
1395 
1396     if (fstat(fd, &st) < 0) {
1397         return -errno;
1398     }
1399 
1400     /* Special handling for devdax character devices */
1401     if (S_ISCHR(st.st_mode)) {
1402         g_autofree char *subsystem_path = NULL;
1403         g_autofree char *subsystem = NULL;
1404 
1405         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1406                                          major(st.st_rdev), minor(st.st_rdev));
1407         subsystem = g_file_read_link(subsystem_path, NULL);
1408 
1409         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1410             g_autofree char *size_path = NULL;
1411             g_autofree char *size_str = NULL;
1412 
1413             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1414                                     major(st.st_rdev), minor(st.st_rdev));
1415 
1416             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1417                 return g_ascii_strtoll(size_str, NULL, 0);
1418             }
1419         }
1420     }
1421 #endif /* defined(__linux__) */
1422 
1423     /* st.st_size may be zero for special files yet lseek(2) works */
1424     size = lseek(fd, 0, SEEK_END);
1425     if (size < 0) {
1426         return -errno;
1427     }
1428     return size;
1429 }
1430 
1431 static int64_t get_file_align(int fd)
1432 {
1433     int64_t align = -1;
1434 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1435     struct stat st;
1436 
1437     if (fstat(fd, &st) < 0) {
1438         return -errno;
1439     }
1440 
1441     /* Special handling for devdax character devices */
1442     if (S_ISCHR(st.st_mode)) {
1443         g_autofree char *path = NULL;
1444         g_autofree char *rpath = NULL;
1445         struct daxctl_ctx *ctx;
1446         struct daxctl_region *region;
1447         int rc = 0;
1448 
1449         path = g_strdup_printf("/sys/dev/char/%d:%d",
1450                     major(st.st_rdev), minor(st.st_rdev));
1451         rpath = realpath(path, NULL);
1452         if (!rpath) {
1453             return -errno;
1454         }
1455 
1456         rc = daxctl_new(&ctx);
1457         if (rc) {
1458             return -1;
1459         }
1460 
1461         daxctl_region_foreach(ctx, region) {
1462             if (strstr(rpath, daxctl_region_get_path(region))) {
1463                 align = daxctl_region_get_align(region);
1464                 break;
1465             }
1466         }
1467         daxctl_unref(ctx);
1468     }
1469 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1470 
1471     return align;
1472 }
1473 
1474 static int file_ram_open(const char *path,
1475                          const char *region_name,
1476                          bool readonly,
1477                          bool *created,
1478                          Error **errp)
1479 {
1480     char *filename;
1481     char *sanitized_name;
1482     char *c;
1483     int fd = -1;
1484 
1485     *created = false;
1486     for (;;) {
1487         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1488         if (fd >= 0) {
1489             /* @path names an existing file, use it */
1490             break;
1491         }
1492         if (errno == ENOENT) {
1493             /* @path names a file that doesn't exist, create it */
1494             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1495             if (fd >= 0) {
1496                 *created = true;
1497                 break;
1498             }
1499         } else if (errno == EISDIR) {
1500             /* @path names a directory, create a file there */
1501             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1502             sanitized_name = g_strdup(region_name);
1503             for (c = sanitized_name; *c != '\0'; c++) {
1504                 if (*c == '/') {
1505                     *c = '_';
1506                 }
1507             }
1508 
1509             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1510                                        sanitized_name);
1511             g_free(sanitized_name);
1512 
1513             fd = mkstemp(filename);
1514             if (fd >= 0) {
1515                 unlink(filename);
1516                 g_free(filename);
1517                 break;
1518             }
1519             g_free(filename);
1520         }
1521         if (errno != EEXIST && errno != EINTR) {
1522             error_setg_errno(errp, errno,
1523                              "can't open backing store %s for guest RAM",
1524                              path);
1525             return -1;
1526         }
1527         /*
1528          * Try again on EINTR and EEXIST.  The latter happens when
1529          * something else creates the file between our two open().
1530          */
1531     }
1532 
1533     return fd;
1534 }
1535 
1536 static void *file_ram_alloc(RAMBlock *block,
1537                             ram_addr_t memory,
1538                             int fd,
1539                             bool readonly,
1540                             bool truncate,
1541                             off_t offset,
1542                             Error **errp)
1543 {
1544     uint32_t qemu_map_flags;
1545     void *area;
1546 
1547     block->page_size = qemu_fd_getpagesize(fd);
1548     if (block->mr->align % block->page_size) {
1549         error_setg(errp, "alignment 0x%" PRIx64
1550                    " must be multiples of page size 0x%zx",
1551                    block->mr->align, block->page_size);
1552         return NULL;
1553     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1554         error_setg(errp, "alignment 0x%" PRIx64
1555                    " must be a power of two", block->mr->align);
1556         return NULL;
1557     }
1558     block->mr->align = MAX(block->page_size, block->mr->align);
1559 #if defined(__s390x__)
1560     if (kvm_enabled()) {
1561         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1562     }
1563 #endif
1564 
1565     if (memory < block->page_size) {
1566         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1567                    "or larger than page size 0x%zx",
1568                    memory, block->page_size);
1569         return NULL;
1570     }
1571 
1572     memory = ROUND_UP(memory, block->page_size);
1573 
1574     /*
1575      * ftruncate is not supported by hugetlbfs in older
1576      * hosts, so don't bother bailing out on errors.
1577      * If anything goes wrong with it under other filesystems,
1578      * mmap will fail.
1579      *
1580      * Do not truncate the non-empty backend file to avoid corrupting
1581      * the existing data in the file. Disabling shrinking is not
1582      * enough. For example, the current vNVDIMM implementation stores
1583      * the guest NVDIMM labels at the end of the backend file. If the
1584      * backend file is later extended, QEMU will not be able to find
1585      * those labels. Therefore, extending the non-empty backend file
1586      * is disabled as well.
1587      */
1588     if (truncate && ftruncate(fd, memory)) {
1589         perror("ftruncate");
1590     }
1591 
1592     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1593     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1594     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1595     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1596     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1597     if (area == MAP_FAILED) {
1598         error_setg_errno(errp, errno,
1599                          "unable to map backing store for guest RAM");
1600         return NULL;
1601     }
1602 
1603     block->fd = fd;
1604     return area;
1605 }
1606 #endif
1607 
1608 /* Allocate space within the ram_addr_t space that governs the
1609  * dirty bitmaps.
1610  * Called with the ramlist lock held.
1611  */
1612 static ram_addr_t find_ram_offset(ram_addr_t size)
1613 {
1614     RAMBlock *block, *next_block;
1615     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1616 
1617     assert(size != 0); /* it would hand out same offset multiple times */
1618 
1619     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1620         return 0;
1621     }
1622 
1623     RAMBLOCK_FOREACH(block) {
1624         ram_addr_t candidate, next = RAM_ADDR_MAX;
1625 
1626         /* Align blocks to start on a 'long' in the bitmap
1627          * which makes the bitmap sync'ing take the fast path.
1628          */
1629         candidate = block->offset + block->max_length;
1630         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1631 
1632         /* Search for the closest following block
1633          * and find the gap.
1634          */
1635         RAMBLOCK_FOREACH(next_block) {
1636             if (next_block->offset >= candidate) {
1637                 next = MIN(next, next_block->offset);
1638             }
1639         }
1640 
1641         /* If it fits remember our place and remember the size
1642          * of gap, but keep going so that we might find a smaller
1643          * gap to fill so avoiding fragmentation.
1644          */
1645         if (next - candidate >= size && next - candidate < mingap) {
1646             offset = candidate;
1647             mingap = next - candidate;
1648         }
1649 
1650         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1651     }
1652 
1653     if (offset == RAM_ADDR_MAX) {
1654         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1655                 (uint64_t)size);
1656         abort();
1657     }
1658 
1659     trace_find_ram_offset(size, offset);
1660 
1661     return offset;
1662 }
1663 
1664 static unsigned long last_ram_page(void)
1665 {
1666     RAMBlock *block;
1667     ram_addr_t last = 0;
1668 
1669     RCU_READ_LOCK_GUARD();
1670     RAMBLOCK_FOREACH(block) {
1671         last = MAX(last, block->offset + block->max_length);
1672     }
1673     return last >> TARGET_PAGE_BITS;
1674 }
1675 
1676 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1677 {
1678     int ret;
1679 
1680     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1681     if (!machine_dump_guest_core(current_machine)) {
1682         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1683         if (ret) {
1684             perror("qemu_madvise");
1685             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1686                             "but dump_guest_core=off specified\n");
1687         }
1688     }
1689 }
1690 
1691 const char *qemu_ram_get_idstr(RAMBlock *rb)
1692 {
1693     return rb->idstr;
1694 }
1695 
1696 void *qemu_ram_get_host_addr(RAMBlock *rb)
1697 {
1698     return rb->host;
1699 }
1700 
1701 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1702 {
1703     return rb->offset;
1704 }
1705 
1706 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1707 {
1708     return rb->used_length;
1709 }
1710 
1711 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1712 {
1713     return rb->max_length;
1714 }
1715 
1716 bool qemu_ram_is_shared(RAMBlock *rb)
1717 {
1718     return rb->flags & RAM_SHARED;
1719 }
1720 
1721 bool qemu_ram_is_noreserve(RAMBlock *rb)
1722 {
1723     return rb->flags & RAM_NORESERVE;
1724 }
1725 
1726 /* Note: Only set at the start of postcopy */
1727 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1728 {
1729     return rb->flags & RAM_UF_ZEROPAGE;
1730 }
1731 
1732 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1733 {
1734     rb->flags |= RAM_UF_ZEROPAGE;
1735 }
1736 
1737 bool qemu_ram_is_migratable(RAMBlock *rb)
1738 {
1739     return rb->flags & RAM_MIGRATABLE;
1740 }
1741 
1742 void qemu_ram_set_migratable(RAMBlock *rb)
1743 {
1744     rb->flags |= RAM_MIGRATABLE;
1745 }
1746 
1747 void qemu_ram_unset_migratable(RAMBlock *rb)
1748 {
1749     rb->flags &= ~RAM_MIGRATABLE;
1750 }
1751 
1752 int qemu_ram_get_fd(RAMBlock *rb)
1753 {
1754     return rb->fd;
1755 }
1756 
1757 /* Called with iothread lock held.  */
1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1759 {
1760     RAMBlock *block;
1761 
1762     assert(new_block);
1763     assert(!new_block->idstr[0]);
1764 
1765     if (dev) {
1766         char *id = qdev_get_dev_path(dev);
1767         if (id) {
1768             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1769             g_free(id);
1770         }
1771     }
1772     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1773 
1774     RCU_READ_LOCK_GUARD();
1775     RAMBLOCK_FOREACH(block) {
1776         if (block != new_block &&
1777             !strcmp(block->idstr, new_block->idstr)) {
1778             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779                     new_block->idstr);
1780             abort();
1781         }
1782     }
1783 }
1784 
1785 /* Called with iothread lock held.  */
1786 void qemu_ram_unset_idstr(RAMBlock *block)
1787 {
1788     /* FIXME: arch_init.c assumes that this is not called throughout
1789      * migration.  Ignore the problem since hot-unplug during migration
1790      * does not work anyway.
1791      */
1792     if (block) {
1793         memset(block->idstr, 0, sizeof(block->idstr));
1794     }
1795 }
1796 
1797 size_t qemu_ram_pagesize(RAMBlock *rb)
1798 {
1799     return rb->page_size;
1800 }
1801 
1802 /* Returns the largest size of page in use */
1803 size_t qemu_ram_pagesize_largest(void)
1804 {
1805     RAMBlock *block;
1806     size_t largest = 0;
1807 
1808     RAMBLOCK_FOREACH(block) {
1809         largest = MAX(largest, qemu_ram_pagesize(block));
1810     }
1811 
1812     return largest;
1813 }
1814 
1815 static int memory_try_enable_merging(void *addr, size_t len)
1816 {
1817     if (!machine_mem_merge(current_machine)) {
1818         /* disabled by the user */
1819         return 0;
1820     }
1821 
1822     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1823 }
1824 
1825 /*
1826  * Resizing RAM while migrating can result in the migration being canceled.
1827  * Care has to be taken if the guest might have already detected the memory.
1828  *
1829  * As memory core doesn't know how is memory accessed, it is up to
1830  * resize callback to update device state and/or add assertions to detect
1831  * misuse, if necessary.
1832  */
1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1834 {
1835     const ram_addr_t oldsize = block->used_length;
1836     const ram_addr_t unaligned_size = newsize;
1837 
1838     assert(block);
1839 
1840     newsize = HOST_PAGE_ALIGN(newsize);
1841 
1842     if (block->used_length == newsize) {
1843         /*
1844          * We don't have to resize the ram block (which only knows aligned
1845          * sizes), however, we have to notify if the unaligned size changed.
1846          */
1847         if (unaligned_size != memory_region_size(block->mr)) {
1848             memory_region_set_size(block->mr, unaligned_size);
1849             if (block->resized) {
1850                 block->resized(block->idstr, unaligned_size, block->host);
1851             }
1852         }
1853         return 0;
1854     }
1855 
1856     if (!(block->flags & RAM_RESIZEABLE)) {
1857         error_setg_errno(errp, EINVAL,
1858                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1859                          " != 0x" RAM_ADDR_FMT, block->idstr,
1860                          newsize, block->used_length);
1861         return -EINVAL;
1862     }
1863 
1864     if (block->max_length < newsize) {
1865         error_setg_errno(errp, EINVAL,
1866                          "Size too large: %s: 0x" RAM_ADDR_FMT
1867                          " > 0x" RAM_ADDR_FMT, block->idstr,
1868                          newsize, block->max_length);
1869         return -EINVAL;
1870     }
1871 
1872     /* Notify before modifying the ram block and touching the bitmaps. */
1873     if (block->host) {
1874         ram_block_notify_resize(block->host, oldsize, newsize);
1875     }
1876 
1877     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1878     block->used_length = newsize;
1879     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1880                                         DIRTY_CLIENTS_ALL);
1881     memory_region_set_size(block->mr, unaligned_size);
1882     if (block->resized) {
1883         block->resized(block->idstr, unaligned_size, block->host);
1884     }
1885     return 0;
1886 }
1887 
1888 /*
1889  * Trigger sync on the given ram block for range [start, start + length]
1890  * with the backing store if one is available.
1891  * Otherwise no-op.
1892  * @Note: this is supposed to be a synchronous op.
1893  */
1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1895 {
1896     /* The requested range should fit in within the block range */
1897     g_assert((start + length) <= block->used_length);
1898 
1899 #ifdef CONFIG_LIBPMEM
1900     /* The lack of support for pmem should not block the sync */
1901     if (ramblock_is_pmem(block)) {
1902         void *addr = ramblock_ptr(block, start);
1903         pmem_persist(addr, length);
1904         return;
1905     }
1906 #endif
1907     if (block->fd >= 0) {
1908         /**
1909          * Case there is no support for PMEM or the memory has not been
1910          * specified as persistent (or is not one) - use the msync.
1911          * Less optimal but still achieves the same goal
1912          */
1913         void *addr = ramblock_ptr(block, start);
1914         if (qemu_msync(addr, length, block->fd)) {
1915             warn_report("%s: failed to sync memory range: start: "
1916                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1917                     __func__, start, length);
1918         }
1919     }
1920 }
1921 
1922 /* Called with ram_list.mutex held */
1923 static void dirty_memory_extend(ram_addr_t old_ram_size,
1924                                 ram_addr_t new_ram_size)
1925 {
1926     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1927                                              DIRTY_MEMORY_BLOCK_SIZE);
1928     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1929                                              DIRTY_MEMORY_BLOCK_SIZE);
1930     int i;
1931 
1932     /* Only need to extend if block count increased */
1933     if (new_num_blocks <= old_num_blocks) {
1934         return;
1935     }
1936 
1937     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1938         DirtyMemoryBlocks *old_blocks;
1939         DirtyMemoryBlocks *new_blocks;
1940         int j;
1941 
1942         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1943         new_blocks = g_malloc(sizeof(*new_blocks) +
1944                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1945 
1946         if (old_num_blocks) {
1947             memcpy(new_blocks->blocks, old_blocks->blocks,
1948                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1949         }
1950 
1951         for (j = old_num_blocks; j < new_num_blocks; j++) {
1952             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1953         }
1954 
1955         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1956 
1957         if (old_blocks) {
1958             g_free_rcu(old_blocks, rcu);
1959         }
1960     }
1961 }
1962 
1963 static void ram_block_add(RAMBlock *new_block, Error **errp)
1964 {
1965     const bool noreserve = qemu_ram_is_noreserve(new_block);
1966     const bool shared = qemu_ram_is_shared(new_block);
1967     RAMBlock *block;
1968     RAMBlock *last_block = NULL;
1969     ram_addr_t old_ram_size, new_ram_size;
1970     Error *err = NULL;
1971 
1972     old_ram_size = last_ram_page();
1973 
1974     qemu_mutex_lock_ramlist();
1975     new_block->offset = find_ram_offset(new_block->max_length);
1976 
1977     if (!new_block->host) {
1978         if (xen_enabled()) {
1979             xen_ram_alloc(new_block->offset, new_block->max_length,
1980                           new_block->mr, &err);
1981             if (err) {
1982                 error_propagate(errp, err);
1983                 qemu_mutex_unlock_ramlist();
1984                 return;
1985             }
1986         } else {
1987             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1988                                                   &new_block->mr->align,
1989                                                   shared, noreserve);
1990             if (!new_block->host) {
1991                 error_setg_errno(errp, errno,
1992                                  "cannot set up guest memory '%s'",
1993                                  memory_region_name(new_block->mr));
1994                 qemu_mutex_unlock_ramlist();
1995                 return;
1996             }
1997             memory_try_enable_merging(new_block->host, new_block->max_length);
1998         }
1999     }
2000 
2001     new_ram_size = MAX(old_ram_size,
2002               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2003     if (new_ram_size > old_ram_size) {
2004         dirty_memory_extend(old_ram_size, new_ram_size);
2005     }
2006     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2007      * QLIST (which has an RCU-friendly variant) does not have insertion at
2008      * tail, so save the last element in last_block.
2009      */
2010     RAMBLOCK_FOREACH(block) {
2011         last_block = block;
2012         if (block->max_length < new_block->max_length) {
2013             break;
2014         }
2015     }
2016     if (block) {
2017         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2018     } else if (last_block) {
2019         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2020     } else { /* list is empty */
2021         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2022     }
2023     ram_list.mru_block = NULL;
2024 
2025     /* Write list before version */
2026     smp_wmb();
2027     ram_list.version++;
2028     qemu_mutex_unlock_ramlist();
2029 
2030     cpu_physical_memory_set_dirty_range(new_block->offset,
2031                                         new_block->used_length,
2032                                         DIRTY_CLIENTS_ALL);
2033 
2034     if (new_block->host) {
2035         qemu_ram_setup_dump(new_block->host, new_block->max_length);
2036         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2037         /*
2038          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2039          * Configure it unless the machine is a qtest server, in which case
2040          * KVM is not used and it may be forked (eg for fuzzing purposes).
2041          */
2042         if (!qtest_enabled()) {
2043             qemu_madvise(new_block->host, new_block->max_length,
2044                          QEMU_MADV_DONTFORK);
2045         }
2046         ram_block_notify_add(new_block->host, new_block->used_length,
2047                              new_block->max_length);
2048     }
2049 }
2050 
2051 #ifdef CONFIG_POSIX
2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2053                                  uint32_t ram_flags, int fd, off_t offset,
2054                                  bool readonly, Error **errp)
2055 {
2056     RAMBlock *new_block;
2057     Error *local_err = NULL;
2058     int64_t file_size, file_align;
2059 
2060     /* Just support these ram flags by now. */
2061     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2062                           RAM_PROTECTED)) == 0);
2063 
2064     if (xen_enabled()) {
2065         error_setg(errp, "-mem-path not supported with Xen");
2066         return NULL;
2067     }
2068 
2069     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2070         error_setg(errp,
2071                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2072         return NULL;
2073     }
2074 
2075     size = HOST_PAGE_ALIGN(size);
2076     file_size = get_file_size(fd);
2077     if (file_size > 0 && file_size < size) {
2078         error_setg(errp, "backing store size 0x%" PRIx64
2079                    " does not match 'size' option 0x" RAM_ADDR_FMT,
2080                    file_size, size);
2081         return NULL;
2082     }
2083 
2084     file_align = get_file_align(fd);
2085     if (file_align > 0 && file_align > mr->align) {
2086         error_setg(errp, "backing store align 0x%" PRIx64
2087                    " is larger than 'align' option 0x%" PRIx64,
2088                    file_align, mr->align);
2089         return NULL;
2090     }
2091 
2092     new_block = g_malloc0(sizeof(*new_block));
2093     new_block->mr = mr;
2094     new_block->used_length = size;
2095     new_block->max_length = size;
2096     new_block->flags = ram_flags;
2097     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2098                                      !file_size, offset, errp);
2099     if (!new_block->host) {
2100         g_free(new_block);
2101         return NULL;
2102     }
2103 
2104     ram_block_add(new_block, &local_err);
2105     if (local_err) {
2106         g_free(new_block);
2107         error_propagate(errp, local_err);
2108         return NULL;
2109     }
2110     return new_block;
2111 
2112 }
2113 
2114 
2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2116                                    uint32_t ram_flags, const char *mem_path,
2117                                    bool readonly, Error **errp)
2118 {
2119     int fd;
2120     bool created;
2121     RAMBlock *block;
2122 
2123     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2124                        errp);
2125     if (fd < 0) {
2126         return NULL;
2127     }
2128 
2129     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2130     if (!block) {
2131         if (created) {
2132             unlink(mem_path);
2133         }
2134         close(fd);
2135         return NULL;
2136     }
2137 
2138     return block;
2139 }
2140 #endif
2141 
2142 static
2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2144                                   void (*resized)(const char*,
2145                                                   uint64_t length,
2146                                                   void *host),
2147                                   void *host, uint32_t ram_flags,
2148                                   MemoryRegion *mr, Error **errp)
2149 {
2150     RAMBlock *new_block;
2151     Error *local_err = NULL;
2152 
2153     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2154                           RAM_NORESERVE)) == 0);
2155     assert(!host ^ (ram_flags & RAM_PREALLOC));
2156 
2157     size = HOST_PAGE_ALIGN(size);
2158     max_size = HOST_PAGE_ALIGN(max_size);
2159     new_block = g_malloc0(sizeof(*new_block));
2160     new_block->mr = mr;
2161     new_block->resized = resized;
2162     new_block->used_length = size;
2163     new_block->max_length = max_size;
2164     assert(max_size >= size);
2165     new_block->fd = -1;
2166     new_block->page_size = qemu_real_host_page_size();
2167     new_block->host = host;
2168     new_block->flags = ram_flags;
2169     ram_block_add(new_block, &local_err);
2170     if (local_err) {
2171         g_free(new_block);
2172         error_propagate(errp, local_err);
2173         return NULL;
2174     }
2175     return new_block;
2176 }
2177 
2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2179                                    MemoryRegion *mr, Error **errp)
2180 {
2181     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2182                                    errp);
2183 }
2184 
2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2186                          MemoryRegion *mr, Error **errp)
2187 {
2188     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2189     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2190 }
2191 
2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2193                                      void (*resized)(const char*,
2194                                                      uint64_t length,
2195                                                      void *host),
2196                                      MemoryRegion *mr, Error **errp)
2197 {
2198     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2199                                    RAM_RESIZEABLE, mr, errp);
2200 }
2201 
2202 static void reclaim_ramblock(RAMBlock *block)
2203 {
2204     if (block->flags & RAM_PREALLOC) {
2205         ;
2206     } else if (xen_enabled()) {
2207         xen_invalidate_map_cache_entry(block->host);
2208 #ifndef _WIN32
2209     } else if (block->fd >= 0) {
2210         qemu_ram_munmap(block->fd, block->host, block->max_length);
2211         close(block->fd);
2212 #endif
2213     } else {
2214         qemu_anon_ram_free(block->host, block->max_length);
2215     }
2216     g_free(block);
2217 }
2218 
2219 void qemu_ram_free(RAMBlock *block)
2220 {
2221     if (!block) {
2222         return;
2223     }
2224 
2225     if (block->host) {
2226         ram_block_notify_remove(block->host, block->used_length,
2227                                 block->max_length);
2228     }
2229 
2230     qemu_mutex_lock_ramlist();
2231     QLIST_REMOVE_RCU(block, next);
2232     ram_list.mru_block = NULL;
2233     /* Write list before version */
2234     smp_wmb();
2235     ram_list.version++;
2236     call_rcu(block, reclaim_ramblock, rcu);
2237     qemu_mutex_unlock_ramlist();
2238 }
2239 
2240 #ifndef _WIN32
2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2242 {
2243     RAMBlock *block;
2244     ram_addr_t offset;
2245     int flags;
2246     void *area, *vaddr;
2247 
2248     RAMBLOCK_FOREACH(block) {
2249         offset = addr - block->offset;
2250         if (offset < block->max_length) {
2251             vaddr = ramblock_ptr(block, offset);
2252             if (block->flags & RAM_PREALLOC) {
2253                 ;
2254             } else if (xen_enabled()) {
2255                 abort();
2256             } else {
2257                 flags = MAP_FIXED;
2258                 flags |= block->flags & RAM_SHARED ?
2259                          MAP_SHARED : MAP_PRIVATE;
2260                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2261                 if (block->fd >= 0) {
2262                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2263                                 flags, block->fd, offset);
2264                 } else {
2265                     flags |= MAP_ANONYMOUS;
2266                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2267                                 flags, -1, 0);
2268                 }
2269                 if (area != vaddr) {
2270                     error_report("Could not remap addr: "
2271                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2272                                  length, addr);
2273                     exit(1);
2274                 }
2275                 memory_try_enable_merging(vaddr, length);
2276                 qemu_ram_setup_dump(vaddr, length);
2277             }
2278         }
2279     }
2280 }
2281 #endif /* !_WIN32 */
2282 
2283 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2284  * This should not be used for general purpose DMA.  Use address_space_map
2285  * or address_space_rw instead. For local memory (e.g. video ram) that the
2286  * device owns, use memory_region_get_ram_ptr.
2287  *
2288  * Called within RCU critical section.
2289  */
2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2291 {
2292     RAMBlock *block = ram_block;
2293 
2294     if (block == NULL) {
2295         block = qemu_get_ram_block(addr);
2296         addr -= block->offset;
2297     }
2298 
2299     if (xen_enabled() && block->host == NULL) {
2300         /* We need to check if the requested address is in the RAM
2301          * because we don't want to map the entire memory in QEMU.
2302          * In that case just map until the end of the page.
2303          */
2304         if (block->offset == 0) {
2305             return xen_map_cache(addr, 0, 0, false);
2306         }
2307 
2308         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2309     }
2310     return ramblock_ptr(block, addr);
2311 }
2312 
2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2314  * but takes a size argument.
2315  *
2316  * Called within RCU critical section.
2317  */
2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2319                                  hwaddr *size, bool lock)
2320 {
2321     RAMBlock *block = ram_block;
2322     if (*size == 0) {
2323         return NULL;
2324     }
2325 
2326     if (block == NULL) {
2327         block = qemu_get_ram_block(addr);
2328         addr -= block->offset;
2329     }
2330     *size = MIN(*size, block->max_length - addr);
2331 
2332     if (xen_enabled() && block->host == NULL) {
2333         /* We need to check if the requested address is in the RAM
2334          * because we don't want to map the entire memory in QEMU.
2335          * In that case just map the requested area.
2336          */
2337         if (block->offset == 0) {
2338             return xen_map_cache(addr, *size, lock, lock);
2339         }
2340 
2341         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2342     }
2343 
2344     return ramblock_ptr(block, addr);
2345 }
2346 
2347 /* Return the offset of a hostpointer within a ramblock */
2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2349 {
2350     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2351     assert((uintptr_t)host >= (uintptr_t)rb->host);
2352     assert(res < rb->max_length);
2353 
2354     return res;
2355 }
2356 
2357 /*
2358  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2359  * in that RAMBlock.
2360  *
2361  * ptr: Host pointer to look up
2362  * round_offset: If true round the result offset down to a page boundary
2363  * *ram_addr: set to result ram_addr
2364  * *offset: set to result offset within the RAMBlock
2365  *
2366  * Returns: RAMBlock (or NULL if not found)
2367  *
2368  * By the time this function returns, the returned pointer is not protected
2369  * by RCU anymore.  If the caller is not within an RCU critical section and
2370  * does not hold the iothread lock, it must have other means of protecting the
2371  * pointer, such as a reference to the region that includes the incoming
2372  * ram_addr_t.
2373  */
2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2375                                    ram_addr_t *offset)
2376 {
2377     RAMBlock *block;
2378     uint8_t *host = ptr;
2379 
2380     if (xen_enabled()) {
2381         ram_addr_t ram_addr;
2382         RCU_READ_LOCK_GUARD();
2383         ram_addr = xen_ram_addr_from_mapcache(ptr);
2384         block = qemu_get_ram_block(ram_addr);
2385         if (block) {
2386             *offset = ram_addr - block->offset;
2387         }
2388         return block;
2389     }
2390 
2391     RCU_READ_LOCK_GUARD();
2392     block = qatomic_rcu_read(&ram_list.mru_block);
2393     if (block && block->host && host - block->host < block->max_length) {
2394         goto found;
2395     }
2396 
2397     RAMBLOCK_FOREACH(block) {
2398         /* This case append when the block is not mapped. */
2399         if (block->host == NULL) {
2400             continue;
2401         }
2402         if (host - block->host < block->max_length) {
2403             goto found;
2404         }
2405     }
2406 
2407     return NULL;
2408 
2409 found:
2410     *offset = (host - block->host);
2411     if (round_offset) {
2412         *offset &= TARGET_PAGE_MASK;
2413     }
2414     return block;
2415 }
2416 
2417 /*
2418  * Finds the named RAMBlock
2419  *
2420  * name: The name of RAMBlock to find
2421  *
2422  * Returns: RAMBlock (or NULL if not found)
2423  */
2424 RAMBlock *qemu_ram_block_by_name(const char *name)
2425 {
2426     RAMBlock *block;
2427 
2428     RAMBLOCK_FOREACH(block) {
2429         if (!strcmp(name, block->idstr)) {
2430             return block;
2431         }
2432     }
2433 
2434     return NULL;
2435 }
2436 
2437 /* Some of the softmmu routines need to translate from a host pointer
2438    (typically a TLB entry) back to a ram offset.  */
2439 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2440 {
2441     RAMBlock *block;
2442     ram_addr_t offset;
2443 
2444     block = qemu_ram_block_from_host(ptr, false, &offset);
2445     if (!block) {
2446         return RAM_ADDR_INVALID;
2447     }
2448 
2449     return block->offset + offset;
2450 }
2451 
2452 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2453 {
2454     ram_addr_t ram_addr;
2455 
2456     ram_addr = qemu_ram_addr_from_host(ptr);
2457     if (ram_addr == RAM_ADDR_INVALID) {
2458         error_report("Bad ram pointer %p", ptr);
2459         abort();
2460     }
2461     return ram_addr;
2462 }
2463 
2464 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2465                                  MemTxAttrs attrs, void *buf, hwaddr len);
2466 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2467                                   const void *buf, hwaddr len);
2468 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2469                                   bool is_write, MemTxAttrs attrs);
2470 
2471 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2472                                 unsigned len, MemTxAttrs attrs)
2473 {
2474     subpage_t *subpage = opaque;
2475     uint8_t buf[8];
2476     MemTxResult res;
2477 
2478 #if defined(DEBUG_SUBPAGE)
2479     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2480            subpage, len, addr);
2481 #endif
2482     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2483     if (res) {
2484         return res;
2485     }
2486     *data = ldn_p(buf, len);
2487     return MEMTX_OK;
2488 }
2489 
2490 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2491                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2492 {
2493     subpage_t *subpage = opaque;
2494     uint8_t buf[8];
2495 
2496 #if defined(DEBUG_SUBPAGE)
2497     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2498            " value %"PRIx64"\n",
2499            __func__, subpage, len, addr, value);
2500 #endif
2501     stn_p(buf, len, value);
2502     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2503 }
2504 
2505 static bool subpage_accepts(void *opaque, hwaddr addr,
2506                             unsigned len, bool is_write,
2507                             MemTxAttrs attrs)
2508 {
2509     subpage_t *subpage = opaque;
2510 #if defined(DEBUG_SUBPAGE)
2511     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2512            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2513 #endif
2514 
2515     return flatview_access_valid(subpage->fv, addr + subpage->base,
2516                                  len, is_write, attrs);
2517 }
2518 
2519 static const MemoryRegionOps subpage_ops = {
2520     .read_with_attrs = subpage_read,
2521     .write_with_attrs = subpage_write,
2522     .impl.min_access_size = 1,
2523     .impl.max_access_size = 8,
2524     .valid.min_access_size = 1,
2525     .valid.max_access_size = 8,
2526     .valid.accepts = subpage_accepts,
2527     .endianness = DEVICE_NATIVE_ENDIAN,
2528 };
2529 
2530 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2531                             uint16_t section)
2532 {
2533     int idx, eidx;
2534 
2535     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2536         return -1;
2537     idx = SUBPAGE_IDX(start);
2538     eidx = SUBPAGE_IDX(end);
2539 #if defined(DEBUG_SUBPAGE)
2540     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2541            __func__, mmio, start, end, idx, eidx, section);
2542 #endif
2543     for (; idx <= eidx; idx++) {
2544         mmio->sub_section[idx] = section;
2545     }
2546 
2547     return 0;
2548 }
2549 
2550 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2551 {
2552     subpage_t *mmio;
2553 
2554     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2555     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2556     mmio->fv = fv;
2557     mmio->base = base;
2558     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2559                           NULL, TARGET_PAGE_SIZE);
2560     mmio->iomem.subpage = true;
2561 #if defined(DEBUG_SUBPAGE)
2562     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2563            mmio, base, TARGET_PAGE_SIZE);
2564 #endif
2565 
2566     return mmio;
2567 }
2568 
2569 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2570 {
2571     assert(fv);
2572     MemoryRegionSection section = {
2573         .fv = fv,
2574         .mr = mr,
2575         .offset_within_address_space = 0,
2576         .offset_within_region = 0,
2577         .size = int128_2_64(),
2578     };
2579 
2580     return phys_section_add(map, &section);
2581 }
2582 
2583 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2584                                       hwaddr index, MemTxAttrs attrs)
2585 {
2586     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2587     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2588     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2589     MemoryRegionSection *sections = d->map.sections;
2590 
2591     return &sections[index & ~TARGET_PAGE_MASK];
2592 }
2593 
2594 static void io_mem_init(void)
2595 {
2596     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2597                           NULL, UINT64_MAX);
2598 }
2599 
2600 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2601 {
2602     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2603     uint16_t n;
2604 
2605     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2606     assert(n == PHYS_SECTION_UNASSIGNED);
2607 
2608     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2609 
2610     return d;
2611 }
2612 
2613 void address_space_dispatch_free(AddressSpaceDispatch *d)
2614 {
2615     phys_sections_free(&d->map);
2616     g_free(d);
2617 }
2618 
2619 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2620 {
2621 }
2622 
2623 static void tcg_log_global_after_sync(MemoryListener *listener)
2624 {
2625     CPUAddressSpace *cpuas;
2626 
2627     /* Wait for the CPU to end the current TB.  This avoids the following
2628      * incorrect race:
2629      *
2630      *      vCPU                         migration
2631      *      ----------------------       -------------------------
2632      *      TLB check -> slow path
2633      *        notdirty_mem_write
2634      *          write to RAM
2635      *          mark dirty
2636      *                                   clear dirty flag
2637      *      TLB check -> fast path
2638      *                                   read memory
2639      *        write to RAM
2640      *
2641      * by pushing the migration thread's memory read after the vCPU thread has
2642      * written the memory.
2643      */
2644     if (replay_mode == REPLAY_MODE_NONE) {
2645         /*
2646          * VGA can make calls to this function while updating the screen.
2647          * In record/replay mode this causes a deadlock, because
2648          * run_on_cpu waits for rr mutex. Therefore no races are possible
2649          * in this case and no need for making run_on_cpu when
2650          * record/replay is enabled.
2651          */
2652         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2653         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2654     }
2655 }
2656 
2657 static void tcg_commit(MemoryListener *listener)
2658 {
2659     CPUAddressSpace *cpuas;
2660     AddressSpaceDispatch *d;
2661 
2662     assert(tcg_enabled());
2663     /* since each CPU stores ram addresses in its TLB cache, we must
2664        reset the modified entries */
2665     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2666     cpu_reloading_memory_map();
2667     /* The CPU and TLB are protected by the iothread lock.
2668      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2669      * may have split the RCU critical section.
2670      */
2671     d = address_space_to_dispatch(cpuas->as);
2672     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2673     tlb_flush(cpuas->cpu);
2674 }
2675 
2676 static void memory_map_init(void)
2677 {
2678     system_memory = g_malloc(sizeof(*system_memory));
2679 
2680     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2681     address_space_init(&address_space_memory, system_memory, "memory");
2682 
2683     system_io = g_malloc(sizeof(*system_io));
2684     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2685                           65536);
2686     address_space_init(&address_space_io, system_io, "I/O");
2687 }
2688 
2689 MemoryRegion *get_system_memory(void)
2690 {
2691     return system_memory;
2692 }
2693 
2694 MemoryRegion *get_system_io(void)
2695 {
2696     return system_io;
2697 }
2698 
2699 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2700                                      hwaddr length)
2701 {
2702     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2703     addr += memory_region_get_ram_addr(mr);
2704 
2705     /* No early return if dirty_log_mask is or becomes 0, because
2706      * cpu_physical_memory_set_dirty_range will still call
2707      * xen_modified_memory.
2708      */
2709     if (dirty_log_mask) {
2710         dirty_log_mask =
2711             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2712     }
2713     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2714         assert(tcg_enabled());
2715         tb_invalidate_phys_range(addr, addr + length);
2716         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2717     }
2718     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2719 }
2720 
2721 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2722 {
2723     /*
2724      * In principle this function would work on other memory region types too,
2725      * but the ROM device use case is the only one where this operation is
2726      * necessary.  Other memory regions should use the
2727      * address_space_read/write() APIs.
2728      */
2729     assert(memory_region_is_romd(mr));
2730 
2731     invalidate_and_set_dirty(mr, addr, size);
2732 }
2733 
2734 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2735 {
2736     unsigned access_size_max = mr->ops->valid.max_access_size;
2737 
2738     /* Regions are assumed to support 1-4 byte accesses unless
2739        otherwise specified.  */
2740     if (access_size_max == 0) {
2741         access_size_max = 4;
2742     }
2743 
2744     /* Bound the maximum access by the alignment of the address.  */
2745     if (!mr->ops->impl.unaligned) {
2746         unsigned align_size_max = addr & -addr;
2747         if (align_size_max != 0 && align_size_max < access_size_max) {
2748             access_size_max = align_size_max;
2749         }
2750     }
2751 
2752     /* Don't attempt accesses larger than the maximum.  */
2753     if (l > access_size_max) {
2754         l = access_size_max;
2755     }
2756     l = pow2floor(l);
2757 
2758     return l;
2759 }
2760 
2761 bool prepare_mmio_access(MemoryRegion *mr)
2762 {
2763     bool release_lock = false;
2764 
2765     if (!qemu_mutex_iothread_locked()) {
2766         qemu_mutex_lock_iothread();
2767         release_lock = true;
2768     }
2769     if (mr->flush_coalesced_mmio) {
2770         qemu_flush_coalesced_mmio_buffer();
2771     }
2772 
2773     return release_lock;
2774 }
2775 
2776 /**
2777  * flatview_access_allowed
2778  * @mr: #MemoryRegion to be accessed
2779  * @attrs: memory transaction attributes
2780  * @addr: address within that memory region
2781  * @len: the number of bytes to access
2782  *
2783  * Check if a memory transaction is allowed.
2784  *
2785  * Returns: true if transaction is allowed, false if denied.
2786  */
2787 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2788                                     hwaddr addr, hwaddr len)
2789 {
2790     if (likely(!attrs.memory)) {
2791         return true;
2792     }
2793     if (memory_region_is_ram(mr)) {
2794         return true;
2795     }
2796     qemu_log_mask(LOG_GUEST_ERROR,
2797                   "Invalid access to non-RAM device at "
2798                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2799                   "region '%s'\n", addr, len, memory_region_name(mr));
2800     return false;
2801 }
2802 
2803 /* Called within RCU critical section.  */
2804 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2805                                            MemTxAttrs attrs,
2806                                            const void *ptr,
2807                                            hwaddr len, hwaddr addr1,
2808                                            hwaddr l, MemoryRegion *mr)
2809 {
2810     uint8_t *ram_ptr;
2811     uint64_t val;
2812     MemTxResult result = MEMTX_OK;
2813     bool release_lock = false;
2814     const uint8_t *buf = ptr;
2815 
2816     for (;;) {
2817         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2818             result |= MEMTX_ACCESS_ERROR;
2819             /* Keep going. */
2820         } else if (!memory_access_is_direct(mr, true)) {
2821             release_lock |= prepare_mmio_access(mr);
2822             l = memory_access_size(mr, l, addr1);
2823             /* XXX: could force current_cpu to NULL to avoid
2824                potential bugs */
2825             val = ldn_he_p(buf, l);
2826             result |= memory_region_dispatch_write(mr, addr1, val,
2827                                                    size_memop(l), attrs);
2828         } else {
2829             /* RAM case */
2830             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2831             memcpy(ram_ptr, buf, l);
2832             invalidate_and_set_dirty(mr, addr1, l);
2833         }
2834 
2835         if (release_lock) {
2836             qemu_mutex_unlock_iothread();
2837             release_lock = false;
2838         }
2839 
2840         len -= l;
2841         buf += l;
2842         addr += l;
2843 
2844         if (!len) {
2845             break;
2846         }
2847 
2848         l = len;
2849         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2850     }
2851 
2852     return result;
2853 }
2854 
2855 /* Called from RCU critical section.  */
2856 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2857                                   const void *buf, hwaddr len)
2858 {
2859     hwaddr l;
2860     hwaddr addr1;
2861     MemoryRegion *mr;
2862 
2863     l = len;
2864     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2865     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2866         return MEMTX_ACCESS_ERROR;
2867     }
2868     return flatview_write_continue(fv, addr, attrs, buf, len,
2869                                    addr1, l, mr);
2870 }
2871 
2872 /* Called within RCU critical section.  */
2873 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2874                                    MemTxAttrs attrs, void *ptr,
2875                                    hwaddr len, hwaddr addr1, hwaddr l,
2876                                    MemoryRegion *mr)
2877 {
2878     uint8_t *ram_ptr;
2879     uint64_t val;
2880     MemTxResult result = MEMTX_OK;
2881     bool release_lock = false;
2882     uint8_t *buf = ptr;
2883 
2884     fuzz_dma_read_cb(addr, len, mr);
2885     for (;;) {
2886         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2887             result |= MEMTX_ACCESS_ERROR;
2888             /* Keep going. */
2889         } else if (!memory_access_is_direct(mr, false)) {
2890             /* I/O case */
2891             release_lock |= prepare_mmio_access(mr);
2892             l = memory_access_size(mr, l, addr1);
2893             result |= memory_region_dispatch_read(mr, addr1, &val,
2894                                                   size_memop(l), attrs);
2895             stn_he_p(buf, l, val);
2896         } else {
2897             /* RAM case */
2898             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2899             memcpy(buf, ram_ptr, l);
2900         }
2901 
2902         if (release_lock) {
2903             qemu_mutex_unlock_iothread();
2904             release_lock = false;
2905         }
2906 
2907         len -= l;
2908         buf += l;
2909         addr += l;
2910 
2911         if (!len) {
2912             break;
2913         }
2914 
2915         l = len;
2916         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2917     }
2918 
2919     return result;
2920 }
2921 
2922 /* Called from RCU critical section.  */
2923 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2924                                  MemTxAttrs attrs, void *buf, hwaddr len)
2925 {
2926     hwaddr l;
2927     hwaddr addr1;
2928     MemoryRegion *mr;
2929 
2930     l = len;
2931     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2932     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2933         return MEMTX_ACCESS_ERROR;
2934     }
2935     return flatview_read_continue(fv, addr, attrs, buf, len,
2936                                   addr1, l, mr);
2937 }
2938 
2939 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2940                                     MemTxAttrs attrs, void *buf, hwaddr len)
2941 {
2942     MemTxResult result = MEMTX_OK;
2943     FlatView *fv;
2944 
2945     if (len > 0) {
2946         RCU_READ_LOCK_GUARD();
2947         fv = address_space_to_flatview(as);
2948         result = flatview_read(fv, addr, attrs, buf, len);
2949     }
2950 
2951     return result;
2952 }
2953 
2954 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2955                                 MemTxAttrs attrs,
2956                                 const void *buf, hwaddr len)
2957 {
2958     MemTxResult result = MEMTX_OK;
2959     FlatView *fv;
2960 
2961     if (len > 0) {
2962         RCU_READ_LOCK_GUARD();
2963         fv = address_space_to_flatview(as);
2964         result = flatview_write(fv, addr, attrs, buf, len);
2965     }
2966 
2967     return result;
2968 }
2969 
2970 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2971                              void *buf, hwaddr len, bool is_write)
2972 {
2973     if (is_write) {
2974         return address_space_write(as, addr, attrs, buf, len);
2975     } else {
2976         return address_space_read_full(as, addr, attrs, buf, len);
2977     }
2978 }
2979 
2980 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2981                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2982 {
2983 #define FILLBUF_SIZE 512
2984     uint8_t fillbuf[FILLBUF_SIZE];
2985     int l;
2986     MemTxResult error = MEMTX_OK;
2987 
2988     memset(fillbuf, c, FILLBUF_SIZE);
2989     while (len > 0) {
2990         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2991         error |= address_space_write(as, addr, attrs, fillbuf, l);
2992         len -= l;
2993         addr += l;
2994     }
2995 
2996     return error;
2997 }
2998 
2999 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3000                             hwaddr len, bool is_write)
3001 {
3002     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3003                      buf, len, is_write);
3004 }
3005 
3006 enum write_rom_type {
3007     WRITE_DATA,
3008     FLUSH_CACHE,
3009 };
3010 
3011 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3012                                                            hwaddr addr,
3013                                                            MemTxAttrs attrs,
3014                                                            const void *ptr,
3015                                                            hwaddr len,
3016                                                            enum write_rom_type type)
3017 {
3018     hwaddr l;
3019     uint8_t *ram_ptr;
3020     hwaddr addr1;
3021     MemoryRegion *mr;
3022     const uint8_t *buf = ptr;
3023 
3024     RCU_READ_LOCK_GUARD();
3025     while (len > 0) {
3026         l = len;
3027         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3028 
3029         if (!(memory_region_is_ram(mr) ||
3030               memory_region_is_romd(mr))) {
3031             l = memory_access_size(mr, l, addr1);
3032         } else {
3033             /* ROM/RAM case */
3034             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3035             switch (type) {
3036             case WRITE_DATA:
3037                 memcpy(ram_ptr, buf, l);
3038                 invalidate_and_set_dirty(mr, addr1, l);
3039                 break;
3040             case FLUSH_CACHE:
3041                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3042                 break;
3043             }
3044         }
3045         len -= l;
3046         buf += l;
3047         addr += l;
3048     }
3049     return MEMTX_OK;
3050 }
3051 
3052 /* used for ROM loading : can write in RAM and ROM */
3053 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3054                                     MemTxAttrs attrs,
3055                                     const void *buf, hwaddr len)
3056 {
3057     return address_space_write_rom_internal(as, addr, attrs,
3058                                             buf, len, WRITE_DATA);
3059 }
3060 
3061 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3062 {
3063     /*
3064      * This function should do the same thing as an icache flush that was
3065      * triggered from within the guest. For TCG we are always cache coherent,
3066      * so there is no need to flush anything. For KVM / Xen we need to flush
3067      * the host's instruction cache at least.
3068      */
3069     if (tcg_enabled()) {
3070         return;
3071     }
3072 
3073     address_space_write_rom_internal(&address_space_memory,
3074                                      start, MEMTXATTRS_UNSPECIFIED,
3075                                      NULL, len, FLUSH_CACHE);
3076 }
3077 
3078 typedef struct {
3079     MemoryRegion *mr;
3080     void *buffer;
3081     hwaddr addr;
3082     hwaddr len;
3083     bool in_use;
3084 } BounceBuffer;
3085 
3086 static BounceBuffer bounce;
3087 
3088 typedef struct MapClient {
3089     QEMUBH *bh;
3090     QLIST_ENTRY(MapClient) link;
3091 } MapClient;
3092 
3093 QemuMutex map_client_list_lock;
3094 static QLIST_HEAD(, MapClient) map_client_list
3095     = QLIST_HEAD_INITIALIZER(map_client_list);
3096 
3097 static void cpu_unregister_map_client_do(MapClient *client)
3098 {
3099     QLIST_REMOVE(client, link);
3100     g_free(client);
3101 }
3102 
3103 static void cpu_notify_map_clients_locked(void)
3104 {
3105     MapClient *client;
3106 
3107     while (!QLIST_EMPTY(&map_client_list)) {
3108         client = QLIST_FIRST(&map_client_list);
3109         qemu_bh_schedule(client->bh);
3110         cpu_unregister_map_client_do(client);
3111     }
3112 }
3113 
3114 void cpu_register_map_client(QEMUBH *bh)
3115 {
3116     MapClient *client = g_malloc(sizeof(*client));
3117 
3118     qemu_mutex_lock(&map_client_list_lock);
3119     client->bh = bh;
3120     QLIST_INSERT_HEAD(&map_client_list, client, link);
3121     if (!qatomic_read(&bounce.in_use)) {
3122         cpu_notify_map_clients_locked();
3123     }
3124     qemu_mutex_unlock(&map_client_list_lock);
3125 }
3126 
3127 void cpu_exec_init_all(void)
3128 {
3129     qemu_mutex_init(&ram_list.mutex);
3130     /* The data structures we set up here depend on knowing the page size,
3131      * so no more changes can be made after this point.
3132      * In an ideal world, nothing we did before we had finished the
3133      * machine setup would care about the target page size, and we could
3134      * do this much later, rather than requiring board models to state
3135      * up front what their requirements are.
3136      */
3137     finalize_target_page_bits();
3138     io_mem_init();
3139     memory_map_init();
3140     qemu_mutex_init(&map_client_list_lock);
3141 }
3142 
3143 void cpu_unregister_map_client(QEMUBH *bh)
3144 {
3145     MapClient *client;
3146 
3147     qemu_mutex_lock(&map_client_list_lock);
3148     QLIST_FOREACH(client, &map_client_list, link) {
3149         if (client->bh == bh) {
3150             cpu_unregister_map_client_do(client);
3151             break;
3152         }
3153     }
3154     qemu_mutex_unlock(&map_client_list_lock);
3155 }
3156 
3157 static void cpu_notify_map_clients(void)
3158 {
3159     qemu_mutex_lock(&map_client_list_lock);
3160     cpu_notify_map_clients_locked();
3161     qemu_mutex_unlock(&map_client_list_lock);
3162 }
3163 
3164 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3165                                   bool is_write, MemTxAttrs attrs)
3166 {
3167     MemoryRegion *mr;
3168     hwaddr l, xlat;
3169 
3170     while (len > 0) {
3171         l = len;
3172         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3173         if (!memory_access_is_direct(mr, is_write)) {
3174             l = memory_access_size(mr, l, addr);
3175             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3176                 return false;
3177             }
3178         }
3179 
3180         len -= l;
3181         addr += l;
3182     }
3183     return true;
3184 }
3185 
3186 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3187                                 hwaddr len, bool is_write,
3188                                 MemTxAttrs attrs)
3189 {
3190     FlatView *fv;
3191 
3192     RCU_READ_LOCK_GUARD();
3193     fv = address_space_to_flatview(as);
3194     return flatview_access_valid(fv, addr, len, is_write, attrs);
3195 }
3196 
3197 static hwaddr
3198 flatview_extend_translation(FlatView *fv, hwaddr addr,
3199                             hwaddr target_len,
3200                             MemoryRegion *mr, hwaddr base, hwaddr len,
3201                             bool is_write, MemTxAttrs attrs)
3202 {
3203     hwaddr done = 0;
3204     hwaddr xlat;
3205     MemoryRegion *this_mr;
3206 
3207     for (;;) {
3208         target_len -= len;
3209         addr += len;
3210         done += len;
3211         if (target_len == 0) {
3212             return done;
3213         }
3214 
3215         len = target_len;
3216         this_mr = flatview_translate(fv, addr, &xlat,
3217                                      &len, is_write, attrs);
3218         if (this_mr != mr || xlat != base + done) {
3219             return done;
3220         }
3221     }
3222 }
3223 
3224 /* Map a physical memory region into a host virtual address.
3225  * May map a subset of the requested range, given by and returned in *plen.
3226  * May return NULL if resources needed to perform the mapping are exhausted.
3227  * Use only for reads OR writes - not for read-modify-write operations.
3228  * Use cpu_register_map_client() to know when retrying the map operation is
3229  * likely to succeed.
3230  */
3231 void *address_space_map(AddressSpace *as,
3232                         hwaddr addr,
3233                         hwaddr *plen,
3234                         bool is_write,
3235                         MemTxAttrs attrs)
3236 {
3237     hwaddr len = *plen;
3238     hwaddr l, xlat;
3239     MemoryRegion *mr;
3240     FlatView *fv;
3241 
3242     if (len == 0) {
3243         return NULL;
3244     }
3245 
3246     l = len;
3247     RCU_READ_LOCK_GUARD();
3248     fv = address_space_to_flatview(as);
3249     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3250 
3251     if (!memory_access_is_direct(mr, is_write)) {
3252         if (qatomic_xchg(&bounce.in_use, true)) {
3253             *plen = 0;
3254             return NULL;
3255         }
3256         /* Avoid unbounded allocations */
3257         l = MIN(l, TARGET_PAGE_SIZE);
3258         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3259         bounce.addr = addr;
3260         bounce.len = l;
3261 
3262         memory_region_ref(mr);
3263         bounce.mr = mr;
3264         if (!is_write) {
3265             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3266                                bounce.buffer, l);
3267         }
3268 
3269         *plen = l;
3270         return bounce.buffer;
3271     }
3272 
3273 
3274     memory_region_ref(mr);
3275     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3276                                         l, is_write, attrs);
3277     fuzz_dma_read_cb(addr, *plen, mr);
3278     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3279 }
3280 
3281 /* Unmaps a memory region previously mapped by address_space_map().
3282  * Will also mark the memory as dirty if is_write is true.  access_len gives
3283  * the amount of memory that was actually read or written by the caller.
3284  */
3285 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3286                          bool is_write, hwaddr access_len)
3287 {
3288     if (buffer != bounce.buffer) {
3289         MemoryRegion *mr;
3290         ram_addr_t addr1;
3291 
3292         mr = memory_region_from_host(buffer, &addr1);
3293         assert(mr != NULL);
3294         if (is_write) {
3295             invalidate_and_set_dirty(mr, addr1, access_len);
3296         }
3297         if (xen_enabled()) {
3298             xen_invalidate_map_cache_entry(buffer);
3299         }
3300         memory_region_unref(mr);
3301         return;
3302     }
3303     if (is_write) {
3304         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3305                             bounce.buffer, access_len);
3306     }
3307     qemu_vfree(bounce.buffer);
3308     bounce.buffer = NULL;
3309     memory_region_unref(bounce.mr);
3310     qatomic_mb_set(&bounce.in_use, false);
3311     cpu_notify_map_clients();
3312 }
3313 
3314 void *cpu_physical_memory_map(hwaddr addr,
3315                               hwaddr *plen,
3316                               bool is_write)
3317 {
3318     return address_space_map(&address_space_memory, addr, plen, is_write,
3319                              MEMTXATTRS_UNSPECIFIED);
3320 }
3321 
3322 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3323                                bool is_write, hwaddr access_len)
3324 {
3325     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3326 }
3327 
3328 #define ARG1_DECL                AddressSpace *as
3329 #define ARG1                     as
3330 #define SUFFIX
3331 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3332 #define RCU_READ_LOCK(...)       rcu_read_lock()
3333 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3334 #include "memory_ldst.c.inc"
3335 
3336 int64_t address_space_cache_init(MemoryRegionCache *cache,
3337                                  AddressSpace *as,
3338                                  hwaddr addr,
3339                                  hwaddr len,
3340                                  bool is_write)
3341 {
3342     AddressSpaceDispatch *d;
3343     hwaddr l;
3344     MemoryRegion *mr;
3345     Int128 diff;
3346 
3347     assert(len > 0);
3348 
3349     l = len;
3350     cache->fv = address_space_get_flatview(as);
3351     d = flatview_to_dispatch(cache->fv);
3352     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3353 
3354     /*
3355      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3356      * Take that into account to compute how many bytes are there between
3357      * cache->xlat and the end of the section.
3358      */
3359     diff = int128_sub(cache->mrs.size,
3360 		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3361     l = int128_get64(int128_min(diff, int128_make64(l)));
3362 
3363     mr = cache->mrs.mr;
3364     memory_region_ref(mr);
3365     if (memory_access_is_direct(mr, is_write)) {
3366         /* We don't care about the memory attributes here as we're only
3367          * doing this if we found actual RAM, which behaves the same
3368          * regardless of attributes; so UNSPECIFIED is fine.
3369          */
3370         l = flatview_extend_translation(cache->fv, addr, len, mr,
3371                                         cache->xlat, l, is_write,
3372                                         MEMTXATTRS_UNSPECIFIED);
3373         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3374     } else {
3375         cache->ptr = NULL;
3376     }
3377 
3378     cache->len = l;
3379     cache->is_write = is_write;
3380     return l;
3381 }
3382 
3383 void address_space_cache_invalidate(MemoryRegionCache *cache,
3384                                     hwaddr addr,
3385                                     hwaddr access_len)
3386 {
3387     assert(cache->is_write);
3388     if (likely(cache->ptr)) {
3389         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3390     }
3391 }
3392 
3393 void address_space_cache_destroy(MemoryRegionCache *cache)
3394 {
3395     if (!cache->mrs.mr) {
3396         return;
3397     }
3398 
3399     if (xen_enabled()) {
3400         xen_invalidate_map_cache_entry(cache->ptr);
3401     }
3402     memory_region_unref(cache->mrs.mr);
3403     flatview_unref(cache->fv);
3404     cache->mrs.mr = NULL;
3405     cache->fv = NULL;
3406 }
3407 
3408 /* Called from RCU critical section.  This function has the same
3409  * semantics as address_space_translate, but it only works on a
3410  * predefined range of a MemoryRegion that was mapped with
3411  * address_space_cache_init.
3412  */
3413 static inline MemoryRegion *address_space_translate_cached(
3414     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3415     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3416 {
3417     MemoryRegionSection section;
3418     MemoryRegion *mr;
3419     IOMMUMemoryRegion *iommu_mr;
3420     AddressSpace *target_as;
3421 
3422     assert(!cache->ptr);
3423     *xlat = addr + cache->xlat;
3424 
3425     mr = cache->mrs.mr;
3426     iommu_mr = memory_region_get_iommu(mr);
3427     if (!iommu_mr) {
3428         /* MMIO region.  */
3429         return mr;
3430     }
3431 
3432     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3433                                             NULL, is_write, true,
3434                                             &target_as, attrs);
3435     return section.mr;
3436 }
3437 
3438 /* Called from RCU critical section. address_space_read_cached uses this
3439  * out of line function when the target is an MMIO or IOMMU region.
3440  */
3441 MemTxResult
3442 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3443                                    void *buf, hwaddr len)
3444 {
3445     hwaddr addr1, l;
3446     MemoryRegion *mr;
3447 
3448     l = len;
3449     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3450                                         MEMTXATTRS_UNSPECIFIED);
3451     return flatview_read_continue(cache->fv,
3452                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3453                                   addr1, l, mr);
3454 }
3455 
3456 /* Called from RCU critical section. address_space_write_cached uses this
3457  * out of line function when the target is an MMIO or IOMMU region.
3458  */
3459 MemTxResult
3460 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3461                                     const void *buf, hwaddr len)
3462 {
3463     hwaddr addr1, l;
3464     MemoryRegion *mr;
3465 
3466     l = len;
3467     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3468                                         MEMTXATTRS_UNSPECIFIED);
3469     return flatview_write_continue(cache->fv,
3470                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3471                                    addr1, l, mr);
3472 }
3473 
3474 #define ARG1_DECL                MemoryRegionCache *cache
3475 #define ARG1                     cache
3476 #define SUFFIX                   _cached_slow
3477 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3478 #define RCU_READ_LOCK()          ((void)0)
3479 #define RCU_READ_UNLOCK()        ((void)0)
3480 #include "memory_ldst.c.inc"
3481 
3482 /* virtual memory access for debug (includes writing to ROM) */
3483 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3484                         void *ptr, size_t len, bool is_write)
3485 {
3486     hwaddr phys_addr;
3487     vaddr l, page;
3488     uint8_t *buf = ptr;
3489 
3490     cpu_synchronize_state(cpu);
3491     while (len > 0) {
3492         int asidx;
3493         MemTxAttrs attrs;
3494         MemTxResult res;
3495 
3496         page = addr & TARGET_PAGE_MASK;
3497         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3498         asidx = cpu_asidx_from_attrs(cpu, attrs);
3499         /* if no physical page mapped, return an error */
3500         if (phys_addr == -1)
3501             return -1;
3502         l = (page + TARGET_PAGE_SIZE) - addr;
3503         if (l > len)
3504             l = len;
3505         phys_addr += (addr & ~TARGET_PAGE_MASK);
3506         if (is_write) {
3507             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3508                                           attrs, buf, l);
3509         } else {
3510             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3511                                      attrs, buf, l);
3512         }
3513         if (res != MEMTX_OK) {
3514             return -1;
3515         }
3516         len -= l;
3517         buf += l;
3518         addr += l;
3519     }
3520     return 0;
3521 }
3522 
3523 /*
3524  * Allows code that needs to deal with migration bitmaps etc to still be built
3525  * target independent.
3526  */
3527 size_t qemu_target_page_size(void)
3528 {
3529     return TARGET_PAGE_SIZE;
3530 }
3531 
3532 int qemu_target_page_bits(void)
3533 {
3534     return TARGET_PAGE_BITS;
3535 }
3536 
3537 int qemu_target_page_bits_min(void)
3538 {
3539     return TARGET_PAGE_BITS_MIN;
3540 }
3541 
3542 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3543 {
3544     MemoryRegion*mr;
3545     hwaddr l = 1;
3546 
3547     RCU_READ_LOCK_GUARD();
3548     mr = address_space_translate(&address_space_memory,
3549                                  phys_addr, &phys_addr, &l, false,
3550                                  MEMTXATTRS_UNSPECIFIED);
3551 
3552     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3553 }
3554 
3555 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3556 {
3557     RAMBlock *block;
3558     int ret = 0;
3559 
3560     RCU_READ_LOCK_GUARD();
3561     RAMBLOCK_FOREACH(block) {
3562         ret = func(block, opaque);
3563         if (ret) {
3564             break;
3565         }
3566     }
3567     return ret;
3568 }
3569 
3570 /*
3571  * Unmap pages of memory from start to start+length such that
3572  * they a) read as 0, b) Trigger whatever fault mechanism
3573  * the OS provides for postcopy.
3574  * The pages must be unmapped by the end of the function.
3575  * Returns: 0 on success, none-0 on failure
3576  *
3577  */
3578 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3579 {
3580     int ret = -1;
3581 
3582     uint8_t *host_startaddr = rb->host + start;
3583 
3584     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3585         error_report("ram_block_discard_range: Unaligned start address: %p",
3586                      host_startaddr);
3587         goto err;
3588     }
3589 
3590     if ((start + length) <= rb->max_length) {
3591         bool need_madvise, need_fallocate;
3592         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3593             error_report("ram_block_discard_range: Unaligned length: %zx",
3594                          length);
3595             goto err;
3596         }
3597 
3598         errno = ENOTSUP; /* If we are missing MADVISE etc */
3599 
3600         /* The logic here is messy;
3601          *    madvise DONTNEED fails for hugepages
3602          *    fallocate works on hugepages and shmem
3603          *    shared anonymous memory requires madvise REMOVE
3604          */
3605         need_madvise = (rb->page_size == qemu_host_page_size);
3606         need_fallocate = rb->fd != -1;
3607         if (need_fallocate) {
3608             /* For a file, this causes the area of the file to be zero'd
3609              * if read, and for hugetlbfs also causes it to be unmapped
3610              * so a userfault will trigger.
3611              */
3612 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3613             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3614                             start, length);
3615             if (ret) {
3616                 ret = -errno;
3617                 error_report("ram_block_discard_range: Failed to fallocate "
3618                              "%s:%" PRIx64 " +%zx (%d)",
3619                              rb->idstr, start, length, ret);
3620                 goto err;
3621             }
3622 #else
3623             ret = -ENOSYS;
3624             error_report("ram_block_discard_range: fallocate not available/file"
3625                          "%s:%" PRIx64 " +%zx (%d)",
3626                          rb->idstr, start, length, ret);
3627             goto err;
3628 #endif
3629         }
3630         if (need_madvise) {
3631             /* For normal RAM this causes it to be unmapped,
3632              * for shared memory it causes the local mapping to disappear
3633              * and to fall back on the file contents (which we just
3634              * fallocate'd away).
3635              */
3636 #if defined(CONFIG_MADVISE)
3637             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3638                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3639             } else {
3640                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3641             }
3642             if (ret) {
3643                 ret = -errno;
3644                 error_report("ram_block_discard_range: Failed to discard range "
3645                              "%s:%" PRIx64 " +%zx (%d)",
3646                              rb->idstr, start, length, ret);
3647                 goto err;
3648             }
3649 #else
3650             ret = -ENOSYS;
3651             error_report("ram_block_discard_range: MADVISE not available"
3652                          "%s:%" PRIx64 " +%zx (%d)",
3653                          rb->idstr, start, length, ret);
3654             goto err;
3655 #endif
3656         }
3657         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3658                                       need_madvise, need_fallocate, ret);
3659     } else {
3660         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3661                      "/%zx/" RAM_ADDR_FMT")",
3662                      rb->idstr, start, length, rb->max_length);
3663     }
3664 
3665 err:
3666     return ret;
3667 }
3668 
3669 bool ramblock_is_pmem(RAMBlock *rb)
3670 {
3671     return rb->flags & RAM_PMEM;
3672 }
3673 
3674 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3675 {
3676     if (start == end - 1) {
3677         qemu_printf("\t%3d      ", start);
3678     } else {
3679         qemu_printf("\t%3d..%-3d ", start, end - 1);
3680     }
3681     qemu_printf(" skip=%d ", skip);
3682     if (ptr == PHYS_MAP_NODE_NIL) {
3683         qemu_printf(" ptr=NIL");
3684     } else if (!skip) {
3685         qemu_printf(" ptr=#%d", ptr);
3686     } else {
3687         qemu_printf(" ptr=[%d]", ptr);
3688     }
3689     qemu_printf("\n");
3690 }
3691 
3692 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3693                            int128_sub((size), int128_one())) : 0)
3694 
3695 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3696 {
3697     int i;
3698 
3699     qemu_printf("  Dispatch\n");
3700     qemu_printf("    Physical sections\n");
3701 
3702     for (i = 0; i < d->map.sections_nb; ++i) {
3703         MemoryRegionSection *s = d->map.sections + i;
3704         const char *names[] = { " [unassigned]", " [not dirty]",
3705                                 " [ROM]", " [watch]" };
3706 
3707         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3708                     " %s%s%s%s%s",
3709             i,
3710             s->offset_within_address_space,
3711             s->offset_within_address_space + MR_SIZE(s->size),
3712             s->mr->name ? s->mr->name : "(noname)",
3713             i < ARRAY_SIZE(names) ? names[i] : "",
3714             s->mr == root ? " [ROOT]" : "",
3715             s == d->mru_section ? " [MRU]" : "",
3716             s->mr->is_iommu ? " [iommu]" : "");
3717 
3718         if (s->mr->alias) {
3719             qemu_printf(" alias=%s", s->mr->alias->name ?
3720                     s->mr->alias->name : "noname");
3721         }
3722         qemu_printf("\n");
3723     }
3724 
3725     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3726                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3727     for (i = 0; i < d->map.nodes_nb; ++i) {
3728         int j, jprev;
3729         PhysPageEntry prev;
3730         Node *n = d->map.nodes + i;
3731 
3732         qemu_printf("      [%d]\n", i);
3733 
3734         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3735             PhysPageEntry *pe = *n + j;
3736 
3737             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3738                 continue;
3739             }
3740 
3741             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3742 
3743             jprev = j;
3744             prev = *pe;
3745         }
3746 
3747         if (jprev != ARRAY_SIZE(*n)) {
3748             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3749         }
3750     }
3751 }
3752 
3753 /* Require any discards to work. */
3754 static unsigned int ram_block_discard_required_cnt;
3755 /* Require only coordinated discards to work. */
3756 static unsigned int ram_block_coordinated_discard_required_cnt;
3757 /* Disable any discards. */
3758 static unsigned int ram_block_discard_disabled_cnt;
3759 /* Disable only uncoordinated discards. */
3760 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3761 static QemuMutex ram_block_discard_disable_mutex;
3762 
3763 static void ram_block_discard_disable_mutex_lock(void)
3764 {
3765     static gsize initialized;
3766 
3767     if (g_once_init_enter(&initialized)) {
3768         qemu_mutex_init(&ram_block_discard_disable_mutex);
3769         g_once_init_leave(&initialized, 1);
3770     }
3771     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3772 }
3773 
3774 static void ram_block_discard_disable_mutex_unlock(void)
3775 {
3776     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3777 }
3778 
3779 int ram_block_discard_disable(bool state)
3780 {
3781     int ret = 0;
3782 
3783     ram_block_discard_disable_mutex_lock();
3784     if (!state) {
3785         ram_block_discard_disabled_cnt--;
3786     } else if (ram_block_discard_required_cnt ||
3787                ram_block_coordinated_discard_required_cnt) {
3788         ret = -EBUSY;
3789     } else {
3790         ram_block_discard_disabled_cnt++;
3791     }
3792     ram_block_discard_disable_mutex_unlock();
3793     return ret;
3794 }
3795 
3796 int ram_block_uncoordinated_discard_disable(bool state)
3797 {
3798     int ret = 0;
3799 
3800     ram_block_discard_disable_mutex_lock();
3801     if (!state) {
3802         ram_block_uncoordinated_discard_disabled_cnt--;
3803     } else if (ram_block_discard_required_cnt) {
3804         ret = -EBUSY;
3805     } else {
3806         ram_block_uncoordinated_discard_disabled_cnt++;
3807     }
3808     ram_block_discard_disable_mutex_unlock();
3809     return ret;
3810 }
3811 
3812 int ram_block_discard_require(bool state)
3813 {
3814     int ret = 0;
3815 
3816     ram_block_discard_disable_mutex_lock();
3817     if (!state) {
3818         ram_block_discard_required_cnt--;
3819     } else if (ram_block_discard_disabled_cnt ||
3820                ram_block_uncoordinated_discard_disabled_cnt) {
3821         ret = -EBUSY;
3822     } else {
3823         ram_block_discard_required_cnt++;
3824     }
3825     ram_block_discard_disable_mutex_unlock();
3826     return ret;
3827 }
3828 
3829 int ram_block_coordinated_discard_require(bool state)
3830 {
3831     int ret = 0;
3832 
3833     ram_block_discard_disable_mutex_lock();
3834     if (!state) {
3835         ram_block_coordinated_discard_required_cnt--;
3836     } else if (ram_block_discard_disabled_cnt) {
3837         ret = -EBUSY;
3838     } else {
3839         ram_block_coordinated_discard_required_cnt++;
3840     }
3841     ram_block_discard_disable_mutex_unlock();
3842     return ret;
3843 }
3844 
3845 bool ram_block_discard_is_disabled(void)
3846 {
3847     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3848            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3849 }
3850 
3851 bool ram_block_discard_is_required(void)
3852 {
3853     return qatomic_read(&ram_block_discard_required_cnt) ||
3854            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3855 }
3856