1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = 684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 685 686 for (;;) { 687 section = address_space_translate_internal(d, addr, &addr, plen, false); 688 689 iommu_mr = memory_region_get_iommu(section->mr); 690 if (!iommu_mr) { 691 break; 692 } 693 694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 695 696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 699 * doesn't short-cut its translation table walk. 700 */ 701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 703 | (addr & iotlb.addr_mask)); 704 /* Update the caller's prot bits to remove permissions the IOMMU 705 * is giving us a failure response for. If we get down to no 706 * permissions left at all we can give up now. 707 */ 708 if (!(iotlb.perm & IOMMU_RO)) { 709 *prot &= ~(PAGE_READ | PAGE_EXEC); 710 } 711 if (!(iotlb.perm & IOMMU_WO)) { 712 *prot &= ~PAGE_WRITE; 713 } 714 715 if (!*prot) { 716 goto translate_fail; 717 } 718 719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 720 } 721 722 assert(!memory_region_is_iommu(section->mr)); 723 *xlat = addr; 724 return section; 725 726 translate_fail: 727 /* 728 * We should be given a page-aligned address -- certainly 729 * tlb_set_page_with_attrs() does so. The page offset of xlat 730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 731 * The page portion of xlat will be logged by memory_region_access_valid() 732 * when this memory access is rejected, so use the original untranslated 733 * physical address. 734 */ 735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 736 *xlat = orig_addr; 737 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 738 } 739 740 void cpu_address_space_init(CPUState *cpu, int asidx, 741 const char *prefix, MemoryRegion *mr) 742 { 743 CPUAddressSpace *newas; 744 AddressSpace *as = g_new0(AddressSpace, 1); 745 char *as_name; 746 747 assert(mr); 748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 749 address_space_init(as, mr, as_name); 750 g_free(as_name); 751 752 /* Target code should have set num_ases before calling us */ 753 assert(asidx < cpu->num_ases); 754 755 if (asidx == 0) { 756 /* address space 0 gets the convenience alias */ 757 cpu->as = as; 758 } 759 760 /* KVM cannot currently support multiple address spaces. */ 761 assert(asidx == 0 || !kvm_enabled()); 762 763 if (!cpu->cpu_ases) { 764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 765 } 766 767 newas = &cpu->cpu_ases[asidx]; 768 newas->cpu = cpu; 769 newas->as = as; 770 if (tcg_enabled()) { 771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 772 newas->tcg_as_listener.commit = tcg_commit; 773 newas->tcg_as_listener.name = "tcg"; 774 memory_listener_register(&newas->tcg_as_listener, as); 775 } 776 } 777 778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 779 { 780 /* Return the AddressSpace corresponding to the specified index */ 781 return cpu->cpu_ases[asidx].as; 782 } 783 784 /* Add a watchpoint. */ 785 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 786 int flags, CPUWatchpoint **watchpoint) 787 { 788 CPUWatchpoint *wp; 789 vaddr in_page; 790 791 /* forbid ranges which are empty or run off the end of the address space */ 792 if (len == 0 || (addr + len - 1) < addr) { 793 error_report("tried to set invalid watchpoint at %" 794 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); 795 return -EINVAL; 796 } 797 wp = g_malloc(sizeof(*wp)); 798 799 wp->vaddr = addr; 800 wp->len = len; 801 wp->flags = flags; 802 803 /* keep all GDB-injected watchpoints in front */ 804 if (flags & BP_GDB) { 805 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); 806 } else { 807 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); 808 } 809 810 in_page = -(addr | TARGET_PAGE_MASK); 811 if (len <= in_page) { 812 tlb_flush_page(cpu, addr); 813 } else { 814 tlb_flush(cpu); 815 } 816 817 if (watchpoint) 818 *watchpoint = wp; 819 return 0; 820 } 821 822 /* Remove a specific watchpoint. */ 823 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, 824 int flags) 825 { 826 CPUWatchpoint *wp; 827 828 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 829 if (addr == wp->vaddr && len == wp->len 830 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { 831 cpu_watchpoint_remove_by_ref(cpu, wp); 832 return 0; 833 } 834 } 835 return -ENOENT; 836 } 837 838 /* Remove a specific watchpoint by reference. */ 839 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) 840 { 841 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); 842 843 tlb_flush_page(cpu, watchpoint->vaddr); 844 845 g_free(watchpoint); 846 } 847 848 /* Remove all matching watchpoints. */ 849 void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 850 { 851 CPUWatchpoint *wp, *next; 852 853 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { 854 if (wp->flags & mask) { 855 cpu_watchpoint_remove_by_ref(cpu, wp); 856 } 857 } 858 } 859 860 #ifdef CONFIG_TCG 861 /* Return true if this watchpoint address matches the specified 862 * access (ie the address range covered by the watchpoint overlaps 863 * partially or completely with the address range covered by the 864 * access). 865 */ 866 static inline bool watchpoint_address_matches(CPUWatchpoint *wp, 867 vaddr addr, vaddr len) 868 { 869 /* We know the lengths are non-zero, but a little caution is 870 * required to avoid errors in the case where the range ends 871 * exactly at the top of the address space and so addr + len 872 * wraps round to zero. 873 */ 874 vaddr wpend = wp->vaddr + wp->len - 1; 875 vaddr addrend = addr + len - 1; 876 877 return !(addr > wpend || wp->vaddr > addrend); 878 } 879 880 /* Return flags for watchpoints that match addr + prot. */ 881 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) 882 { 883 CPUWatchpoint *wp; 884 int ret = 0; 885 886 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 887 if (watchpoint_address_matches(wp, addr, len)) { 888 ret |= wp->flags; 889 } 890 } 891 return ret; 892 } 893 894 /* Generate a debug exception if a watchpoint has been hit. */ 895 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 896 MemTxAttrs attrs, int flags, uintptr_t ra) 897 { 898 CPUClass *cc = CPU_GET_CLASS(cpu); 899 CPUWatchpoint *wp; 900 901 assert(tcg_enabled()); 902 if (cpu->watchpoint_hit) { 903 /* 904 * We re-entered the check after replacing the TB. 905 * Now raise the debug interrupt so that it will 906 * trigger after the current instruction. 907 */ 908 qemu_mutex_lock_iothread(); 909 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); 910 qemu_mutex_unlock_iothread(); 911 return; 912 } 913 914 if (cc->tcg_ops->adjust_watchpoint_address) { 915 /* this is currently used only by ARM BE32 */ 916 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len); 917 } 918 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 919 if (watchpoint_address_matches(wp, addr, len) 920 && (wp->flags & flags)) { 921 if (replay_running_debug()) { 922 /* 923 * replay_breakpoint reads icount. 924 * Force recompile to succeed, because icount may 925 * be read only at the end of the block. 926 */ 927 if (!cpu->can_do_io) { 928 /* Force execution of one insn next time. */ 929 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 930 cpu_loop_exit_restore(cpu, ra); 931 } 932 /* 933 * Don't process the watchpoints when we are 934 * in a reverse debugging operation. 935 */ 936 replay_breakpoint(); 937 return; 938 } 939 if (flags == BP_MEM_READ) { 940 wp->flags |= BP_WATCHPOINT_HIT_READ; 941 } else { 942 wp->flags |= BP_WATCHPOINT_HIT_WRITE; 943 } 944 wp->hitaddr = MAX(addr, wp->vaddr); 945 wp->hitattrs = attrs; 946 947 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint && 948 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) { 949 wp->flags &= ~BP_WATCHPOINT_HIT; 950 continue; 951 } 952 cpu->watchpoint_hit = wp; 953 954 mmap_lock(); 955 /* This call also restores vCPU state */ 956 tb_check_watchpoint(cpu, ra); 957 if (wp->flags & BP_STOP_BEFORE_ACCESS) { 958 cpu->exception_index = EXCP_DEBUG; 959 mmap_unlock(); 960 cpu_loop_exit(cpu); 961 } else { 962 /* Force execution of one insn next time. */ 963 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 964 mmap_unlock(); 965 cpu_loop_exit_noexc(cpu); 966 } 967 } else { 968 wp->flags &= ~BP_WATCHPOINT_HIT; 969 } 970 } 971 } 972 973 #endif /* CONFIG_TCG */ 974 975 /* Called from RCU critical section */ 976 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 977 { 978 RAMBlock *block; 979 980 block = qatomic_rcu_read(&ram_list.mru_block); 981 if (block && addr - block->offset < block->max_length) { 982 return block; 983 } 984 RAMBLOCK_FOREACH(block) { 985 if (addr - block->offset < block->max_length) { 986 goto found; 987 } 988 } 989 990 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 991 abort(); 992 993 found: 994 /* It is safe to write mru_block outside the iothread lock. This 995 * is what happens: 996 * 997 * mru_block = xxx 998 * rcu_read_unlock() 999 * xxx removed from list 1000 * rcu_read_lock() 1001 * read mru_block 1002 * mru_block = NULL; 1003 * call_rcu(reclaim_ramblock, xxx); 1004 * rcu_read_unlock() 1005 * 1006 * qatomic_rcu_set is not needed here. The block was already published 1007 * when it was placed into the list. Here we're just making an extra 1008 * copy of the pointer. 1009 */ 1010 ram_list.mru_block = block; 1011 return block; 1012 } 1013 1014 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 1015 { 1016 CPUState *cpu; 1017 ram_addr_t start1; 1018 RAMBlock *block; 1019 ram_addr_t end; 1020 1021 assert(tcg_enabled()); 1022 end = TARGET_PAGE_ALIGN(start + length); 1023 start &= TARGET_PAGE_MASK; 1024 1025 RCU_READ_LOCK_GUARD(); 1026 block = qemu_get_ram_block(start); 1027 assert(block == qemu_get_ram_block(end - 1)); 1028 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 1029 CPU_FOREACH(cpu) { 1030 tlb_reset_dirty(cpu, start1, length); 1031 } 1032 } 1033 1034 /* Note: start and end must be within the same ram block. */ 1035 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 1036 ram_addr_t length, 1037 unsigned client) 1038 { 1039 DirtyMemoryBlocks *blocks; 1040 unsigned long end, page, start_page; 1041 bool dirty = false; 1042 RAMBlock *ramblock; 1043 uint64_t mr_offset, mr_size; 1044 1045 if (length == 0) { 1046 return false; 1047 } 1048 1049 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 1050 start_page = start >> TARGET_PAGE_BITS; 1051 page = start_page; 1052 1053 WITH_RCU_READ_LOCK_GUARD() { 1054 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1055 ramblock = qemu_get_ram_block(start); 1056 /* Range sanity check on the ramblock */ 1057 assert(start >= ramblock->offset && 1058 start + length <= ramblock->offset + ramblock->used_length); 1059 1060 while (page < end) { 1061 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1062 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1063 unsigned long num = MIN(end - page, 1064 DIRTY_MEMORY_BLOCK_SIZE - offset); 1065 1066 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 1067 offset, num); 1068 page += num; 1069 } 1070 1071 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 1072 mr_size = (end - start_page) << TARGET_PAGE_BITS; 1073 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 1074 } 1075 1076 if (dirty && tcg_enabled()) { 1077 tlb_reset_dirty_range_all(start, length); 1078 } 1079 1080 return dirty; 1081 } 1082 1083 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 1084 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 1085 { 1086 DirtyMemoryBlocks *blocks; 1087 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 1088 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 1089 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 1090 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 1091 DirtyBitmapSnapshot *snap; 1092 unsigned long page, end, dest; 1093 1094 snap = g_malloc0(sizeof(*snap) + 1095 ((last - first) >> (TARGET_PAGE_BITS + 3))); 1096 snap->start = first; 1097 snap->end = last; 1098 1099 page = first >> TARGET_PAGE_BITS; 1100 end = last >> TARGET_PAGE_BITS; 1101 dest = 0; 1102 1103 WITH_RCU_READ_LOCK_GUARD() { 1104 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1105 1106 while (page < end) { 1107 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1108 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1109 unsigned long num = MIN(end - page, 1110 DIRTY_MEMORY_BLOCK_SIZE - offset); 1111 1112 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 1113 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 1114 offset >>= BITS_PER_LEVEL; 1115 1116 bitmap_copy_and_clear_atomic(snap->dirty + dest, 1117 blocks->blocks[idx] + offset, 1118 num); 1119 page += num; 1120 dest += num >> BITS_PER_LEVEL; 1121 } 1122 } 1123 1124 if (tcg_enabled()) { 1125 tlb_reset_dirty_range_all(start, length); 1126 } 1127 1128 memory_region_clear_dirty_bitmap(mr, offset, length); 1129 1130 return snap; 1131 } 1132 1133 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1134 ram_addr_t start, 1135 ram_addr_t length) 1136 { 1137 unsigned long page, end; 1138 1139 assert(start >= snap->start); 1140 assert(start + length <= snap->end); 1141 1142 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1143 page = (start - snap->start) >> TARGET_PAGE_BITS; 1144 1145 while (page < end) { 1146 if (test_bit(page, snap->dirty)) { 1147 return true; 1148 } 1149 page++; 1150 } 1151 return false; 1152 } 1153 1154 /* Called from RCU critical section */ 1155 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1156 MemoryRegionSection *section) 1157 { 1158 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1159 return section - d->map.sections; 1160 } 1161 1162 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1163 uint16_t section); 1164 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1165 1166 static uint16_t phys_section_add(PhysPageMap *map, 1167 MemoryRegionSection *section) 1168 { 1169 /* The physical section number is ORed with a page-aligned 1170 * pointer to produce the iotlb entries. Thus it should 1171 * never overflow into the page-aligned value. 1172 */ 1173 assert(map->sections_nb < TARGET_PAGE_SIZE); 1174 1175 if (map->sections_nb == map->sections_nb_alloc) { 1176 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1177 map->sections = g_renew(MemoryRegionSection, map->sections, 1178 map->sections_nb_alloc); 1179 } 1180 map->sections[map->sections_nb] = *section; 1181 memory_region_ref(section->mr); 1182 return map->sections_nb++; 1183 } 1184 1185 static void phys_section_destroy(MemoryRegion *mr) 1186 { 1187 bool have_sub_page = mr->subpage; 1188 1189 memory_region_unref(mr); 1190 1191 if (have_sub_page) { 1192 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1193 object_unref(OBJECT(&subpage->iomem)); 1194 g_free(subpage); 1195 } 1196 } 1197 1198 static void phys_sections_free(PhysPageMap *map) 1199 { 1200 while (map->sections_nb > 0) { 1201 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1202 phys_section_destroy(section->mr); 1203 } 1204 g_free(map->sections); 1205 g_free(map->nodes); 1206 } 1207 1208 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1209 { 1210 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1211 subpage_t *subpage; 1212 hwaddr base = section->offset_within_address_space 1213 & TARGET_PAGE_MASK; 1214 MemoryRegionSection *existing = phys_page_find(d, base); 1215 MemoryRegionSection subsection = { 1216 .offset_within_address_space = base, 1217 .size = int128_make64(TARGET_PAGE_SIZE), 1218 }; 1219 hwaddr start, end; 1220 1221 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1222 1223 if (!(existing->mr->subpage)) { 1224 subpage = subpage_init(fv, base); 1225 subsection.fv = fv; 1226 subsection.mr = &subpage->iomem; 1227 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1228 phys_section_add(&d->map, &subsection)); 1229 } else { 1230 subpage = container_of(existing->mr, subpage_t, iomem); 1231 } 1232 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1233 end = start + int128_get64(section->size) - 1; 1234 subpage_register(subpage, start, end, 1235 phys_section_add(&d->map, section)); 1236 } 1237 1238 1239 static void register_multipage(FlatView *fv, 1240 MemoryRegionSection *section) 1241 { 1242 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1243 hwaddr start_addr = section->offset_within_address_space; 1244 uint16_t section_index = phys_section_add(&d->map, section); 1245 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1246 TARGET_PAGE_BITS)); 1247 1248 assert(num_pages); 1249 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1250 } 1251 1252 /* 1253 * The range in *section* may look like this: 1254 * 1255 * |s|PPPPPPP|s| 1256 * 1257 * where s stands for subpage and P for page. 1258 */ 1259 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1260 { 1261 MemoryRegionSection remain = *section; 1262 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1263 1264 /* register first subpage */ 1265 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1266 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1267 - remain.offset_within_address_space; 1268 1269 MemoryRegionSection now = remain; 1270 now.size = int128_min(int128_make64(left), now.size); 1271 register_subpage(fv, &now); 1272 if (int128_eq(remain.size, now.size)) { 1273 return; 1274 } 1275 remain.size = int128_sub(remain.size, now.size); 1276 remain.offset_within_address_space += int128_get64(now.size); 1277 remain.offset_within_region += int128_get64(now.size); 1278 } 1279 1280 /* register whole pages */ 1281 if (int128_ge(remain.size, page_size)) { 1282 MemoryRegionSection now = remain; 1283 now.size = int128_and(now.size, int128_neg(page_size)); 1284 register_multipage(fv, &now); 1285 if (int128_eq(remain.size, now.size)) { 1286 return; 1287 } 1288 remain.size = int128_sub(remain.size, now.size); 1289 remain.offset_within_address_space += int128_get64(now.size); 1290 remain.offset_within_region += int128_get64(now.size); 1291 } 1292 1293 /* register last subpage */ 1294 register_subpage(fv, &remain); 1295 } 1296 1297 void qemu_flush_coalesced_mmio_buffer(void) 1298 { 1299 if (kvm_enabled()) 1300 kvm_flush_coalesced_mmio_buffer(); 1301 } 1302 1303 void qemu_mutex_lock_ramlist(void) 1304 { 1305 qemu_mutex_lock(&ram_list.mutex); 1306 } 1307 1308 void qemu_mutex_unlock_ramlist(void) 1309 { 1310 qemu_mutex_unlock(&ram_list.mutex); 1311 } 1312 1313 GString *ram_block_format(void) 1314 { 1315 RAMBlock *block; 1316 char *psize; 1317 GString *buf = g_string_new(""); 1318 1319 RCU_READ_LOCK_GUARD(); 1320 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n", 1321 "Block Name", "PSize", "Offset", "Used", "Total"); 1322 RAMBLOCK_FOREACH(block) { 1323 psize = size_to_str(block->page_size); 1324 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1325 " 0x%016" PRIx64 "\n", block->idstr, psize, 1326 (uint64_t)block->offset, 1327 (uint64_t)block->used_length, 1328 (uint64_t)block->max_length); 1329 g_free(psize); 1330 } 1331 1332 return buf; 1333 } 1334 1335 static int find_min_backend_pagesize(Object *obj, void *opaque) 1336 { 1337 long *hpsize_min = opaque; 1338 1339 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1340 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1341 long hpsize = host_memory_backend_pagesize(backend); 1342 1343 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1344 *hpsize_min = hpsize; 1345 } 1346 } 1347 1348 return 0; 1349 } 1350 1351 static int find_max_backend_pagesize(Object *obj, void *opaque) 1352 { 1353 long *hpsize_max = opaque; 1354 1355 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1356 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1357 long hpsize = host_memory_backend_pagesize(backend); 1358 1359 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1360 *hpsize_max = hpsize; 1361 } 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * TODO: We assume right now that all mapped host memory backends are 1369 * used as RAM, however some might be used for different purposes. 1370 */ 1371 long qemu_minrampagesize(void) 1372 { 1373 long hpsize = LONG_MAX; 1374 Object *memdev_root = object_resolve_path("/objects", NULL); 1375 1376 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1377 return hpsize; 1378 } 1379 1380 long qemu_maxrampagesize(void) 1381 { 1382 long pagesize = 0; 1383 Object *memdev_root = object_resolve_path("/objects", NULL); 1384 1385 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1386 return pagesize; 1387 } 1388 1389 #ifdef CONFIG_POSIX 1390 static int64_t get_file_size(int fd) 1391 { 1392 int64_t size; 1393 #if defined(__linux__) 1394 struct stat st; 1395 1396 if (fstat(fd, &st) < 0) { 1397 return -errno; 1398 } 1399 1400 /* Special handling for devdax character devices */ 1401 if (S_ISCHR(st.st_mode)) { 1402 g_autofree char *subsystem_path = NULL; 1403 g_autofree char *subsystem = NULL; 1404 1405 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1406 major(st.st_rdev), minor(st.st_rdev)); 1407 subsystem = g_file_read_link(subsystem_path, NULL); 1408 1409 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1410 g_autofree char *size_path = NULL; 1411 g_autofree char *size_str = NULL; 1412 1413 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1414 major(st.st_rdev), minor(st.st_rdev)); 1415 1416 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1417 return g_ascii_strtoll(size_str, NULL, 0); 1418 } 1419 } 1420 } 1421 #endif /* defined(__linux__) */ 1422 1423 /* st.st_size may be zero for special files yet lseek(2) works */ 1424 size = lseek(fd, 0, SEEK_END); 1425 if (size < 0) { 1426 return -errno; 1427 } 1428 return size; 1429 } 1430 1431 static int64_t get_file_align(int fd) 1432 { 1433 int64_t align = -1; 1434 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1435 struct stat st; 1436 1437 if (fstat(fd, &st) < 0) { 1438 return -errno; 1439 } 1440 1441 /* Special handling for devdax character devices */ 1442 if (S_ISCHR(st.st_mode)) { 1443 g_autofree char *path = NULL; 1444 g_autofree char *rpath = NULL; 1445 struct daxctl_ctx *ctx; 1446 struct daxctl_region *region; 1447 int rc = 0; 1448 1449 path = g_strdup_printf("/sys/dev/char/%d:%d", 1450 major(st.st_rdev), minor(st.st_rdev)); 1451 rpath = realpath(path, NULL); 1452 if (!rpath) { 1453 return -errno; 1454 } 1455 1456 rc = daxctl_new(&ctx); 1457 if (rc) { 1458 return -1; 1459 } 1460 1461 daxctl_region_foreach(ctx, region) { 1462 if (strstr(rpath, daxctl_region_get_path(region))) { 1463 align = daxctl_region_get_align(region); 1464 break; 1465 } 1466 } 1467 daxctl_unref(ctx); 1468 } 1469 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1470 1471 return align; 1472 } 1473 1474 static int file_ram_open(const char *path, 1475 const char *region_name, 1476 bool readonly, 1477 bool *created, 1478 Error **errp) 1479 { 1480 char *filename; 1481 char *sanitized_name; 1482 char *c; 1483 int fd = -1; 1484 1485 *created = false; 1486 for (;;) { 1487 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1488 if (fd >= 0) { 1489 /* @path names an existing file, use it */ 1490 break; 1491 } 1492 if (errno == ENOENT) { 1493 /* @path names a file that doesn't exist, create it */ 1494 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1495 if (fd >= 0) { 1496 *created = true; 1497 break; 1498 } 1499 } else if (errno == EISDIR) { 1500 /* @path names a directory, create a file there */ 1501 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1502 sanitized_name = g_strdup(region_name); 1503 for (c = sanitized_name; *c != '\0'; c++) { 1504 if (*c == '/') { 1505 *c = '_'; 1506 } 1507 } 1508 1509 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1510 sanitized_name); 1511 g_free(sanitized_name); 1512 1513 fd = mkstemp(filename); 1514 if (fd >= 0) { 1515 unlink(filename); 1516 g_free(filename); 1517 break; 1518 } 1519 g_free(filename); 1520 } 1521 if (errno != EEXIST && errno != EINTR) { 1522 error_setg_errno(errp, errno, 1523 "can't open backing store %s for guest RAM", 1524 path); 1525 return -1; 1526 } 1527 /* 1528 * Try again on EINTR and EEXIST. The latter happens when 1529 * something else creates the file between our two open(). 1530 */ 1531 } 1532 1533 return fd; 1534 } 1535 1536 static void *file_ram_alloc(RAMBlock *block, 1537 ram_addr_t memory, 1538 int fd, 1539 bool readonly, 1540 bool truncate, 1541 off_t offset, 1542 Error **errp) 1543 { 1544 uint32_t qemu_map_flags; 1545 void *area; 1546 1547 block->page_size = qemu_fd_getpagesize(fd); 1548 if (block->mr->align % block->page_size) { 1549 error_setg(errp, "alignment 0x%" PRIx64 1550 " must be multiples of page size 0x%zx", 1551 block->mr->align, block->page_size); 1552 return NULL; 1553 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1554 error_setg(errp, "alignment 0x%" PRIx64 1555 " must be a power of two", block->mr->align); 1556 return NULL; 1557 } 1558 block->mr->align = MAX(block->page_size, block->mr->align); 1559 #if defined(__s390x__) 1560 if (kvm_enabled()) { 1561 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1562 } 1563 #endif 1564 1565 if (memory < block->page_size) { 1566 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1567 "or larger than page size 0x%zx", 1568 memory, block->page_size); 1569 return NULL; 1570 } 1571 1572 memory = ROUND_UP(memory, block->page_size); 1573 1574 /* 1575 * ftruncate is not supported by hugetlbfs in older 1576 * hosts, so don't bother bailing out on errors. 1577 * If anything goes wrong with it under other filesystems, 1578 * mmap will fail. 1579 * 1580 * Do not truncate the non-empty backend file to avoid corrupting 1581 * the existing data in the file. Disabling shrinking is not 1582 * enough. For example, the current vNVDIMM implementation stores 1583 * the guest NVDIMM labels at the end of the backend file. If the 1584 * backend file is later extended, QEMU will not be able to find 1585 * those labels. Therefore, extending the non-empty backend file 1586 * is disabled as well. 1587 */ 1588 if (truncate && ftruncate(fd, memory)) { 1589 perror("ftruncate"); 1590 } 1591 1592 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1593 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1594 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1595 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1596 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1597 if (area == MAP_FAILED) { 1598 error_setg_errno(errp, errno, 1599 "unable to map backing store for guest RAM"); 1600 return NULL; 1601 } 1602 1603 block->fd = fd; 1604 return area; 1605 } 1606 #endif 1607 1608 /* Allocate space within the ram_addr_t space that governs the 1609 * dirty bitmaps. 1610 * Called with the ramlist lock held. 1611 */ 1612 static ram_addr_t find_ram_offset(ram_addr_t size) 1613 { 1614 RAMBlock *block, *next_block; 1615 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1616 1617 assert(size != 0); /* it would hand out same offset multiple times */ 1618 1619 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1620 return 0; 1621 } 1622 1623 RAMBLOCK_FOREACH(block) { 1624 ram_addr_t candidate, next = RAM_ADDR_MAX; 1625 1626 /* Align blocks to start on a 'long' in the bitmap 1627 * which makes the bitmap sync'ing take the fast path. 1628 */ 1629 candidate = block->offset + block->max_length; 1630 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1631 1632 /* Search for the closest following block 1633 * and find the gap. 1634 */ 1635 RAMBLOCK_FOREACH(next_block) { 1636 if (next_block->offset >= candidate) { 1637 next = MIN(next, next_block->offset); 1638 } 1639 } 1640 1641 /* If it fits remember our place and remember the size 1642 * of gap, but keep going so that we might find a smaller 1643 * gap to fill so avoiding fragmentation. 1644 */ 1645 if (next - candidate >= size && next - candidate < mingap) { 1646 offset = candidate; 1647 mingap = next - candidate; 1648 } 1649 1650 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1651 } 1652 1653 if (offset == RAM_ADDR_MAX) { 1654 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1655 (uint64_t)size); 1656 abort(); 1657 } 1658 1659 trace_find_ram_offset(size, offset); 1660 1661 return offset; 1662 } 1663 1664 static unsigned long last_ram_page(void) 1665 { 1666 RAMBlock *block; 1667 ram_addr_t last = 0; 1668 1669 RCU_READ_LOCK_GUARD(); 1670 RAMBLOCK_FOREACH(block) { 1671 last = MAX(last, block->offset + block->max_length); 1672 } 1673 return last >> TARGET_PAGE_BITS; 1674 } 1675 1676 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1677 { 1678 int ret; 1679 1680 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1681 if (!machine_dump_guest_core(current_machine)) { 1682 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1683 if (ret) { 1684 perror("qemu_madvise"); 1685 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1686 "but dump_guest_core=off specified\n"); 1687 } 1688 } 1689 } 1690 1691 const char *qemu_ram_get_idstr(RAMBlock *rb) 1692 { 1693 return rb->idstr; 1694 } 1695 1696 void *qemu_ram_get_host_addr(RAMBlock *rb) 1697 { 1698 return rb->host; 1699 } 1700 1701 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1702 { 1703 return rb->offset; 1704 } 1705 1706 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1707 { 1708 return rb->used_length; 1709 } 1710 1711 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1712 { 1713 return rb->max_length; 1714 } 1715 1716 bool qemu_ram_is_shared(RAMBlock *rb) 1717 { 1718 return rb->flags & RAM_SHARED; 1719 } 1720 1721 bool qemu_ram_is_noreserve(RAMBlock *rb) 1722 { 1723 return rb->flags & RAM_NORESERVE; 1724 } 1725 1726 /* Note: Only set at the start of postcopy */ 1727 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1728 { 1729 return rb->flags & RAM_UF_ZEROPAGE; 1730 } 1731 1732 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1733 { 1734 rb->flags |= RAM_UF_ZEROPAGE; 1735 } 1736 1737 bool qemu_ram_is_migratable(RAMBlock *rb) 1738 { 1739 return rb->flags & RAM_MIGRATABLE; 1740 } 1741 1742 void qemu_ram_set_migratable(RAMBlock *rb) 1743 { 1744 rb->flags |= RAM_MIGRATABLE; 1745 } 1746 1747 void qemu_ram_unset_migratable(RAMBlock *rb) 1748 { 1749 rb->flags &= ~RAM_MIGRATABLE; 1750 } 1751 1752 int qemu_ram_get_fd(RAMBlock *rb) 1753 { 1754 return rb->fd; 1755 } 1756 1757 /* Called with iothread lock held. */ 1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1759 { 1760 RAMBlock *block; 1761 1762 assert(new_block); 1763 assert(!new_block->idstr[0]); 1764 1765 if (dev) { 1766 char *id = qdev_get_dev_path(dev); 1767 if (id) { 1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1769 g_free(id); 1770 } 1771 } 1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1773 1774 RCU_READ_LOCK_GUARD(); 1775 RAMBLOCK_FOREACH(block) { 1776 if (block != new_block && 1777 !strcmp(block->idstr, new_block->idstr)) { 1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1779 new_block->idstr); 1780 abort(); 1781 } 1782 } 1783 } 1784 1785 /* Called with iothread lock held. */ 1786 void qemu_ram_unset_idstr(RAMBlock *block) 1787 { 1788 /* FIXME: arch_init.c assumes that this is not called throughout 1789 * migration. Ignore the problem since hot-unplug during migration 1790 * does not work anyway. 1791 */ 1792 if (block) { 1793 memset(block->idstr, 0, sizeof(block->idstr)); 1794 } 1795 } 1796 1797 size_t qemu_ram_pagesize(RAMBlock *rb) 1798 { 1799 return rb->page_size; 1800 } 1801 1802 /* Returns the largest size of page in use */ 1803 size_t qemu_ram_pagesize_largest(void) 1804 { 1805 RAMBlock *block; 1806 size_t largest = 0; 1807 1808 RAMBLOCK_FOREACH(block) { 1809 largest = MAX(largest, qemu_ram_pagesize(block)); 1810 } 1811 1812 return largest; 1813 } 1814 1815 static int memory_try_enable_merging(void *addr, size_t len) 1816 { 1817 if (!machine_mem_merge(current_machine)) { 1818 /* disabled by the user */ 1819 return 0; 1820 } 1821 1822 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1823 } 1824 1825 /* 1826 * Resizing RAM while migrating can result in the migration being canceled. 1827 * Care has to be taken if the guest might have already detected the memory. 1828 * 1829 * As memory core doesn't know how is memory accessed, it is up to 1830 * resize callback to update device state and/or add assertions to detect 1831 * misuse, if necessary. 1832 */ 1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1834 { 1835 const ram_addr_t oldsize = block->used_length; 1836 const ram_addr_t unaligned_size = newsize; 1837 1838 assert(block); 1839 1840 newsize = HOST_PAGE_ALIGN(newsize); 1841 1842 if (block->used_length == newsize) { 1843 /* 1844 * We don't have to resize the ram block (which only knows aligned 1845 * sizes), however, we have to notify if the unaligned size changed. 1846 */ 1847 if (unaligned_size != memory_region_size(block->mr)) { 1848 memory_region_set_size(block->mr, unaligned_size); 1849 if (block->resized) { 1850 block->resized(block->idstr, unaligned_size, block->host); 1851 } 1852 } 1853 return 0; 1854 } 1855 1856 if (!(block->flags & RAM_RESIZEABLE)) { 1857 error_setg_errno(errp, EINVAL, 1858 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1859 " != 0x" RAM_ADDR_FMT, block->idstr, 1860 newsize, block->used_length); 1861 return -EINVAL; 1862 } 1863 1864 if (block->max_length < newsize) { 1865 error_setg_errno(errp, EINVAL, 1866 "Size too large: %s: 0x" RAM_ADDR_FMT 1867 " > 0x" RAM_ADDR_FMT, block->idstr, 1868 newsize, block->max_length); 1869 return -EINVAL; 1870 } 1871 1872 /* Notify before modifying the ram block and touching the bitmaps. */ 1873 if (block->host) { 1874 ram_block_notify_resize(block->host, oldsize, newsize); 1875 } 1876 1877 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1878 block->used_length = newsize; 1879 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1880 DIRTY_CLIENTS_ALL); 1881 memory_region_set_size(block->mr, unaligned_size); 1882 if (block->resized) { 1883 block->resized(block->idstr, unaligned_size, block->host); 1884 } 1885 return 0; 1886 } 1887 1888 /* 1889 * Trigger sync on the given ram block for range [start, start + length] 1890 * with the backing store if one is available. 1891 * Otherwise no-op. 1892 * @Note: this is supposed to be a synchronous op. 1893 */ 1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1895 { 1896 /* The requested range should fit in within the block range */ 1897 g_assert((start + length) <= block->used_length); 1898 1899 #ifdef CONFIG_LIBPMEM 1900 /* The lack of support for pmem should not block the sync */ 1901 if (ramblock_is_pmem(block)) { 1902 void *addr = ramblock_ptr(block, start); 1903 pmem_persist(addr, length); 1904 return; 1905 } 1906 #endif 1907 if (block->fd >= 0) { 1908 /** 1909 * Case there is no support for PMEM or the memory has not been 1910 * specified as persistent (or is not one) - use the msync. 1911 * Less optimal but still achieves the same goal 1912 */ 1913 void *addr = ramblock_ptr(block, start); 1914 if (qemu_msync(addr, length, block->fd)) { 1915 warn_report("%s: failed to sync memory range: start: " 1916 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1917 __func__, start, length); 1918 } 1919 } 1920 } 1921 1922 /* Called with ram_list.mutex held */ 1923 static void dirty_memory_extend(ram_addr_t old_ram_size, 1924 ram_addr_t new_ram_size) 1925 { 1926 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1927 DIRTY_MEMORY_BLOCK_SIZE); 1928 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1929 DIRTY_MEMORY_BLOCK_SIZE); 1930 int i; 1931 1932 /* Only need to extend if block count increased */ 1933 if (new_num_blocks <= old_num_blocks) { 1934 return; 1935 } 1936 1937 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1938 DirtyMemoryBlocks *old_blocks; 1939 DirtyMemoryBlocks *new_blocks; 1940 int j; 1941 1942 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1943 new_blocks = g_malloc(sizeof(*new_blocks) + 1944 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1945 1946 if (old_num_blocks) { 1947 memcpy(new_blocks->blocks, old_blocks->blocks, 1948 old_num_blocks * sizeof(old_blocks->blocks[0])); 1949 } 1950 1951 for (j = old_num_blocks; j < new_num_blocks; j++) { 1952 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1953 } 1954 1955 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1956 1957 if (old_blocks) { 1958 g_free_rcu(old_blocks, rcu); 1959 } 1960 } 1961 } 1962 1963 static void ram_block_add(RAMBlock *new_block, Error **errp) 1964 { 1965 const bool noreserve = qemu_ram_is_noreserve(new_block); 1966 const bool shared = qemu_ram_is_shared(new_block); 1967 RAMBlock *block; 1968 RAMBlock *last_block = NULL; 1969 ram_addr_t old_ram_size, new_ram_size; 1970 Error *err = NULL; 1971 1972 old_ram_size = last_ram_page(); 1973 1974 qemu_mutex_lock_ramlist(); 1975 new_block->offset = find_ram_offset(new_block->max_length); 1976 1977 if (!new_block->host) { 1978 if (xen_enabled()) { 1979 xen_ram_alloc(new_block->offset, new_block->max_length, 1980 new_block->mr, &err); 1981 if (err) { 1982 error_propagate(errp, err); 1983 qemu_mutex_unlock_ramlist(); 1984 return; 1985 } 1986 } else { 1987 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1988 &new_block->mr->align, 1989 shared, noreserve); 1990 if (!new_block->host) { 1991 error_setg_errno(errp, errno, 1992 "cannot set up guest memory '%s'", 1993 memory_region_name(new_block->mr)); 1994 qemu_mutex_unlock_ramlist(); 1995 return; 1996 } 1997 memory_try_enable_merging(new_block->host, new_block->max_length); 1998 } 1999 } 2000 2001 new_ram_size = MAX(old_ram_size, 2002 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 2003 if (new_ram_size > old_ram_size) { 2004 dirty_memory_extend(old_ram_size, new_ram_size); 2005 } 2006 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 2007 * QLIST (which has an RCU-friendly variant) does not have insertion at 2008 * tail, so save the last element in last_block. 2009 */ 2010 RAMBLOCK_FOREACH(block) { 2011 last_block = block; 2012 if (block->max_length < new_block->max_length) { 2013 break; 2014 } 2015 } 2016 if (block) { 2017 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 2018 } else if (last_block) { 2019 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 2020 } else { /* list is empty */ 2021 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 2022 } 2023 ram_list.mru_block = NULL; 2024 2025 /* Write list before version */ 2026 smp_wmb(); 2027 ram_list.version++; 2028 qemu_mutex_unlock_ramlist(); 2029 2030 cpu_physical_memory_set_dirty_range(new_block->offset, 2031 new_block->used_length, 2032 DIRTY_CLIENTS_ALL); 2033 2034 if (new_block->host) { 2035 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2037 /* 2038 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2039 * Configure it unless the machine is a qtest server, in which case 2040 * KVM is not used and it may be forked (eg for fuzzing purposes). 2041 */ 2042 if (!qtest_enabled()) { 2043 qemu_madvise(new_block->host, new_block->max_length, 2044 QEMU_MADV_DONTFORK); 2045 } 2046 ram_block_notify_add(new_block->host, new_block->used_length, 2047 new_block->max_length); 2048 } 2049 } 2050 2051 #ifdef CONFIG_POSIX 2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 2053 uint32_t ram_flags, int fd, off_t offset, 2054 bool readonly, Error **errp) 2055 { 2056 RAMBlock *new_block; 2057 Error *local_err = NULL; 2058 int64_t file_size, file_align; 2059 2060 /* Just support these ram flags by now. */ 2061 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2062 RAM_PROTECTED)) == 0); 2063 2064 if (xen_enabled()) { 2065 error_setg(errp, "-mem-path not supported with Xen"); 2066 return NULL; 2067 } 2068 2069 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2070 error_setg(errp, 2071 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2072 return NULL; 2073 } 2074 2075 size = HOST_PAGE_ALIGN(size); 2076 file_size = get_file_size(fd); 2077 if (file_size > 0 && file_size < size) { 2078 error_setg(errp, "backing store size 0x%" PRIx64 2079 " does not match 'size' option 0x" RAM_ADDR_FMT, 2080 file_size, size); 2081 return NULL; 2082 } 2083 2084 file_align = get_file_align(fd); 2085 if (file_align > 0 && file_align > mr->align) { 2086 error_setg(errp, "backing store align 0x%" PRIx64 2087 " is larger than 'align' option 0x%" PRIx64, 2088 file_align, mr->align); 2089 return NULL; 2090 } 2091 2092 new_block = g_malloc0(sizeof(*new_block)); 2093 new_block->mr = mr; 2094 new_block->used_length = size; 2095 new_block->max_length = size; 2096 new_block->flags = ram_flags; 2097 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 2098 !file_size, offset, errp); 2099 if (!new_block->host) { 2100 g_free(new_block); 2101 return NULL; 2102 } 2103 2104 ram_block_add(new_block, &local_err); 2105 if (local_err) { 2106 g_free(new_block); 2107 error_propagate(errp, local_err); 2108 return NULL; 2109 } 2110 return new_block; 2111 2112 } 2113 2114 2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2116 uint32_t ram_flags, const char *mem_path, 2117 bool readonly, Error **errp) 2118 { 2119 int fd; 2120 bool created; 2121 RAMBlock *block; 2122 2123 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 2124 errp); 2125 if (fd < 0) { 2126 return NULL; 2127 } 2128 2129 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 2130 if (!block) { 2131 if (created) { 2132 unlink(mem_path); 2133 } 2134 close(fd); 2135 return NULL; 2136 } 2137 2138 return block; 2139 } 2140 #endif 2141 2142 static 2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2144 void (*resized)(const char*, 2145 uint64_t length, 2146 void *host), 2147 void *host, uint32_t ram_flags, 2148 MemoryRegion *mr, Error **errp) 2149 { 2150 RAMBlock *new_block; 2151 Error *local_err = NULL; 2152 2153 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2154 RAM_NORESERVE)) == 0); 2155 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2156 2157 size = HOST_PAGE_ALIGN(size); 2158 max_size = HOST_PAGE_ALIGN(max_size); 2159 new_block = g_malloc0(sizeof(*new_block)); 2160 new_block->mr = mr; 2161 new_block->resized = resized; 2162 new_block->used_length = size; 2163 new_block->max_length = max_size; 2164 assert(max_size >= size); 2165 new_block->fd = -1; 2166 new_block->page_size = qemu_real_host_page_size(); 2167 new_block->host = host; 2168 new_block->flags = ram_flags; 2169 ram_block_add(new_block, &local_err); 2170 if (local_err) { 2171 g_free(new_block); 2172 error_propagate(errp, local_err); 2173 return NULL; 2174 } 2175 return new_block; 2176 } 2177 2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2179 MemoryRegion *mr, Error **errp) 2180 { 2181 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2182 errp); 2183 } 2184 2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2186 MemoryRegion *mr, Error **errp) 2187 { 2188 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2189 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2190 } 2191 2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2193 void (*resized)(const char*, 2194 uint64_t length, 2195 void *host), 2196 MemoryRegion *mr, Error **errp) 2197 { 2198 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2199 RAM_RESIZEABLE, mr, errp); 2200 } 2201 2202 static void reclaim_ramblock(RAMBlock *block) 2203 { 2204 if (block->flags & RAM_PREALLOC) { 2205 ; 2206 } else if (xen_enabled()) { 2207 xen_invalidate_map_cache_entry(block->host); 2208 #ifndef _WIN32 2209 } else if (block->fd >= 0) { 2210 qemu_ram_munmap(block->fd, block->host, block->max_length); 2211 close(block->fd); 2212 #endif 2213 } else { 2214 qemu_anon_ram_free(block->host, block->max_length); 2215 } 2216 g_free(block); 2217 } 2218 2219 void qemu_ram_free(RAMBlock *block) 2220 { 2221 if (!block) { 2222 return; 2223 } 2224 2225 if (block->host) { 2226 ram_block_notify_remove(block->host, block->used_length, 2227 block->max_length); 2228 } 2229 2230 qemu_mutex_lock_ramlist(); 2231 QLIST_REMOVE_RCU(block, next); 2232 ram_list.mru_block = NULL; 2233 /* Write list before version */ 2234 smp_wmb(); 2235 ram_list.version++; 2236 call_rcu(block, reclaim_ramblock, rcu); 2237 qemu_mutex_unlock_ramlist(); 2238 } 2239 2240 #ifndef _WIN32 2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2242 { 2243 RAMBlock *block; 2244 ram_addr_t offset; 2245 int flags; 2246 void *area, *vaddr; 2247 2248 RAMBLOCK_FOREACH(block) { 2249 offset = addr - block->offset; 2250 if (offset < block->max_length) { 2251 vaddr = ramblock_ptr(block, offset); 2252 if (block->flags & RAM_PREALLOC) { 2253 ; 2254 } else if (xen_enabled()) { 2255 abort(); 2256 } else { 2257 flags = MAP_FIXED; 2258 flags |= block->flags & RAM_SHARED ? 2259 MAP_SHARED : MAP_PRIVATE; 2260 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2261 if (block->fd >= 0) { 2262 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2263 flags, block->fd, offset); 2264 } else { 2265 flags |= MAP_ANONYMOUS; 2266 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2267 flags, -1, 0); 2268 } 2269 if (area != vaddr) { 2270 error_report("Could not remap addr: " 2271 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2272 length, addr); 2273 exit(1); 2274 } 2275 memory_try_enable_merging(vaddr, length); 2276 qemu_ram_setup_dump(vaddr, length); 2277 } 2278 } 2279 } 2280 } 2281 #endif /* !_WIN32 */ 2282 2283 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2284 * This should not be used for general purpose DMA. Use address_space_map 2285 * or address_space_rw instead. For local memory (e.g. video ram) that the 2286 * device owns, use memory_region_get_ram_ptr. 2287 * 2288 * Called within RCU critical section. 2289 */ 2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2291 { 2292 RAMBlock *block = ram_block; 2293 2294 if (block == NULL) { 2295 block = qemu_get_ram_block(addr); 2296 addr -= block->offset; 2297 } 2298 2299 if (xen_enabled() && block->host == NULL) { 2300 /* We need to check if the requested address is in the RAM 2301 * because we don't want to map the entire memory in QEMU. 2302 * In that case just map until the end of the page. 2303 */ 2304 if (block->offset == 0) { 2305 return xen_map_cache(addr, 0, 0, false); 2306 } 2307 2308 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2309 } 2310 return ramblock_ptr(block, addr); 2311 } 2312 2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2314 * but takes a size argument. 2315 * 2316 * Called within RCU critical section. 2317 */ 2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2319 hwaddr *size, bool lock) 2320 { 2321 RAMBlock *block = ram_block; 2322 if (*size == 0) { 2323 return NULL; 2324 } 2325 2326 if (block == NULL) { 2327 block = qemu_get_ram_block(addr); 2328 addr -= block->offset; 2329 } 2330 *size = MIN(*size, block->max_length - addr); 2331 2332 if (xen_enabled() && block->host == NULL) { 2333 /* We need to check if the requested address is in the RAM 2334 * because we don't want to map the entire memory in QEMU. 2335 * In that case just map the requested area. 2336 */ 2337 if (block->offset == 0) { 2338 return xen_map_cache(addr, *size, lock, lock); 2339 } 2340 2341 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2342 } 2343 2344 return ramblock_ptr(block, addr); 2345 } 2346 2347 /* Return the offset of a hostpointer within a ramblock */ 2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2349 { 2350 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2351 assert((uintptr_t)host >= (uintptr_t)rb->host); 2352 assert(res < rb->max_length); 2353 2354 return res; 2355 } 2356 2357 /* 2358 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2359 * in that RAMBlock. 2360 * 2361 * ptr: Host pointer to look up 2362 * round_offset: If true round the result offset down to a page boundary 2363 * *ram_addr: set to result ram_addr 2364 * *offset: set to result offset within the RAMBlock 2365 * 2366 * Returns: RAMBlock (or NULL if not found) 2367 * 2368 * By the time this function returns, the returned pointer is not protected 2369 * by RCU anymore. If the caller is not within an RCU critical section and 2370 * does not hold the iothread lock, it must have other means of protecting the 2371 * pointer, such as a reference to the region that includes the incoming 2372 * ram_addr_t. 2373 */ 2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2375 ram_addr_t *offset) 2376 { 2377 RAMBlock *block; 2378 uint8_t *host = ptr; 2379 2380 if (xen_enabled()) { 2381 ram_addr_t ram_addr; 2382 RCU_READ_LOCK_GUARD(); 2383 ram_addr = xen_ram_addr_from_mapcache(ptr); 2384 block = qemu_get_ram_block(ram_addr); 2385 if (block) { 2386 *offset = ram_addr - block->offset; 2387 } 2388 return block; 2389 } 2390 2391 RCU_READ_LOCK_GUARD(); 2392 block = qatomic_rcu_read(&ram_list.mru_block); 2393 if (block && block->host && host - block->host < block->max_length) { 2394 goto found; 2395 } 2396 2397 RAMBLOCK_FOREACH(block) { 2398 /* This case append when the block is not mapped. */ 2399 if (block->host == NULL) { 2400 continue; 2401 } 2402 if (host - block->host < block->max_length) { 2403 goto found; 2404 } 2405 } 2406 2407 return NULL; 2408 2409 found: 2410 *offset = (host - block->host); 2411 if (round_offset) { 2412 *offset &= TARGET_PAGE_MASK; 2413 } 2414 return block; 2415 } 2416 2417 /* 2418 * Finds the named RAMBlock 2419 * 2420 * name: The name of RAMBlock to find 2421 * 2422 * Returns: RAMBlock (or NULL if not found) 2423 */ 2424 RAMBlock *qemu_ram_block_by_name(const char *name) 2425 { 2426 RAMBlock *block; 2427 2428 RAMBLOCK_FOREACH(block) { 2429 if (!strcmp(name, block->idstr)) { 2430 return block; 2431 } 2432 } 2433 2434 return NULL; 2435 } 2436 2437 /* Some of the softmmu routines need to translate from a host pointer 2438 (typically a TLB entry) back to a ram offset. */ 2439 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2440 { 2441 RAMBlock *block; 2442 ram_addr_t offset; 2443 2444 block = qemu_ram_block_from_host(ptr, false, &offset); 2445 if (!block) { 2446 return RAM_ADDR_INVALID; 2447 } 2448 2449 return block->offset + offset; 2450 } 2451 2452 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2453 { 2454 ram_addr_t ram_addr; 2455 2456 ram_addr = qemu_ram_addr_from_host(ptr); 2457 if (ram_addr == RAM_ADDR_INVALID) { 2458 error_report("Bad ram pointer %p", ptr); 2459 abort(); 2460 } 2461 return ram_addr; 2462 } 2463 2464 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2465 MemTxAttrs attrs, void *buf, hwaddr len); 2466 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2467 const void *buf, hwaddr len); 2468 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2469 bool is_write, MemTxAttrs attrs); 2470 2471 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2472 unsigned len, MemTxAttrs attrs) 2473 { 2474 subpage_t *subpage = opaque; 2475 uint8_t buf[8]; 2476 MemTxResult res; 2477 2478 #if defined(DEBUG_SUBPAGE) 2479 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2480 subpage, len, addr); 2481 #endif 2482 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2483 if (res) { 2484 return res; 2485 } 2486 *data = ldn_p(buf, len); 2487 return MEMTX_OK; 2488 } 2489 2490 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2491 uint64_t value, unsigned len, MemTxAttrs attrs) 2492 { 2493 subpage_t *subpage = opaque; 2494 uint8_t buf[8]; 2495 2496 #if defined(DEBUG_SUBPAGE) 2497 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2498 " value %"PRIx64"\n", 2499 __func__, subpage, len, addr, value); 2500 #endif 2501 stn_p(buf, len, value); 2502 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2503 } 2504 2505 static bool subpage_accepts(void *opaque, hwaddr addr, 2506 unsigned len, bool is_write, 2507 MemTxAttrs attrs) 2508 { 2509 subpage_t *subpage = opaque; 2510 #if defined(DEBUG_SUBPAGE) 2511 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2512 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2513 #endif 2514 2515 return flatview_access_valid(subpage->fv, addr + subpage->base, 2516 len, is_write, attrs); 2517 } 2518 2519 static const MemoryRegionOps subpage_ops = { 2520 .read_with_attrs = subpage_read, 2521 .write_with_attrs = subpage_write, 2522 .impl.min_access_size = 1, 2523 .impl.max_access_size = 8, 2524 .valid.min_access_size = 1, 2525 .valid.max_access_size = 8, 2526 .valid.accepts = subpage_accepts, 2527 .endianness = DEVICE_NATIVE_ENDIAN, 2528 }; 2529 2530 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2531 uint16_t section) 2532 { 2533 int idx, eidx; 2534 2535 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2536 return -1; 2537 idx = SUBPAGE_IDX(start); 2538 eidx = SUBPAGE_IDX(end); 2539 #if defined(DEBUG_SUBPAGE) 2540 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2541 __func__, mmio, start, end, idx, eidx, section); 2542 #endif 2543 for (; idx <= eidx; idx++) { 2544 mmio->sub_section[idx] = section; 2545 } 2546 2547 return 0; 2548 } 2549 2550 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2551 { 2552 subpage_t *mmio; 2553 2554 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2555 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2556 mmio->fv = fv; 2557 mmio->base = base; 2558 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2559 NULL, TARGET_PAGE_SIZE); 2560 mmio->iomem.subpage = true; 2561 #if defined(DEBUG_SUBPAGE) 2562 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2563 mmio, base, TARGET_PAGE_SIZE); 2564 #endif 2565 2566 return mmio; 2567 } 2568 2569 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2570 { 2571 assert(fv); 2572 MemoryRegionSection section = { 2573 .fv = fv, 2574 .mr = mr, 2575 .offset_within_address_space = 0, 2576 .offset_within_region = 0, 2577 .size = int128_2_64(), 2578 }; 2579 2580 return phys_section_add(map, §ion); 2581 } 2582 2583 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2584 hwaddr index, MemTxAttrs attrs) 2585 { 2586 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2587 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2588 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2589 MemoryRegionSection *sections = d->map.sections; 2590 2591 return §ions[index & ~TARGET_PAGE_MASK]; 2592 } 2593 2594 static void io_mem_init(void) 2595 { 2596 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2597 NULL, UINT64_MAX); 2598 } 2599 2600 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2601 { 2602 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2603 uint16_t n; 2604 2605 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2606 assert(n == PHYS_SECTION_UNASSIGNED); 2607 2608 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2609 2610 return d; 2611 } 2612 2613 void address_space_dispatch_free(AddressSpaceDispatch *d) 2614 { 2615 phys_sections_free(&d->map); 2616 g_free(d); 2617 } 2618 2619 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2620 { 2621 } 2622 2623 static void tcg_log_global_after_sync(MemoryListener *listener) 2624 { 2625 CPUAddressSpace *cpuas; 2626 2627 /* Wait for the CPU to end the current TB. This avoids the following 2628 * incorrect race: 2629 * 2630 * vCPU migration 2631 * ---------------------- ------------------------- 2632 * TLB check -> slow path 2633 * notdirty_mem_write 2634 * write to RAM 2635 * mark dirty 2636 * clear dirty flag 2637 * TLB check -> fast path 2638 * read memory 2639 * write to RAM 2640 * 2641 * by pushing the migration thread's memory read after the vCPU thread has 2642 * written the memory. 2643 */ 2644 if (replay_mode == REPLAY_MODE_NONE) { 2645 /* 2646 * VGA can make calls to this function while updating the screen. 2647 * In record/replay mode this causes a deadlock, because 2648 * run_on_cpu waits for rr mutex. Therefore no races are possible 2649 * in this case and no need for making run_on_cpu when 2650 * record/replay is enabled. 2651 */ 2652 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2653 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2654 } 2655 } 2656 2657 static void tcg_commit(MemoryListener *listener) 2658 { 2659 CPUAddressSpace *cpuas; 2660 AddressSpaceDispatch *d; 2661 2662 assert(tcg_enabled()); 2663 /* since each CPU stores ram addresses in its TLB cache, we must 2664 reset the modified entries */ 2665 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2666 cpu_reloading_memory_map(); 2667 /* The CPU and TLB are protected by the iothread lock. 2668 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2669 * may have split the RCU critical section. 2670 */ 2671 d = address_space_to_dispatch(cpuas->as); 2672 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2673 tlb_flush(cpuas->cpu); 2674 } 2675 2676 static void memory_map_init(void) 2677 { 2678 system_memory = g_malloc(sizeof(*system_memory)); 2679 2680 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2681 address_space_init(&address_space_memory, system_memory, "memory"); 2682 2683 system_io = g_malloc(sizeof(*system_io)); 2684 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2685 65536); 2686 address_space_init(&address_space_io, system_io, "I/O"); 2687 } 2688 2689 MemoryRegion *get_system_memory(void) 2690 { 2691 return system_memory; 2692 } 2693 2694 MemoryRegion *get_system_io(void) 2695 { 2696 return system_io; 2697 } 2698 2699 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2700 hwaddr length) 2701 { 2702 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2703 addr += memory_region_get_ram_addr(mr); 2704 2705 /* No early return if dirty_log_mask is or becomes 0, because 2706 * cpu_physical_memory_set_dirty_range will still call 2707 * xen_modified_memory. 2708 */ 2709 if (dirty_log_mask) { 2710 dirty_log_mask = 2711 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2712 } 2713 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2714 assert(tcg_enabled()); 2715 tb_invalidate_phys_range(addr, addr + length); 2716 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2717 } 2718 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2719 } 2720 2721 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2722 { 2723 /* 2724 * In principle this function would work on other memory region types too, 2725 * but the ROM device use case is the only one where this operation is 2726 * necessary. Other memory regions should use the 2727 * address_space_read/write() APIs. 2728 */ 2729 assert(memory_region_is_romd(mr)); 2730 2731 invalidate_and_set_dirty(mr, addr, size); 2732 } 2733 2734 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2735 { 2736 unsigned access_size_max = mr->ops->valid.max_access_size; 2737 2738 /* Regions are assumed to support 1-4 byte accesses unless 2739 otherwise specified. */ 2740 if (access_size_max == 0) { 2741 access_size_max = 4; 2742 } 2743 2744 /* Bound the maximum access by the alignment of the address. */ 2745 if (!mr->ops->impl.unaligned) { 2746 unsigned align_size_max = addr & -addr; 2747 if (align_size_max != 0 && align_size_max < access_size_max) { 2748 access_size_max = align_size_max; 2749 } 2750 } 2751 2752 /* Don't attempt accesses larger than the maximum. */ 2753 if (l > access_size_max) { 2754 l = access_size_max; 2755 } 2756 l = pow2floor(l); 2757 2758 return l; 2759 } 2760 2761 bool prepare_mmio_access(MemoryRegion *mr) 2762 { 2763 bool release_lock = false; 2764 2765 if (!qemu_mutex_iothread_locked()) { 2766 qemu_mutex_lock_iothread(); 2767 release_lock = true; 2768 } 2769 if (mr->flush_coalesced_mmio) { 2770 qemu_flush_coalesced_mmio_buffer(); 2771 } 2772 2773 return release_lock; 2774 } 2775 2776 /** 2777 * flatview_access_allowed 2778 * @mr: #MemoryRegion to be accessed 2779 * @attrs: memory transaction attributes 2780 * @addr: address within that memory region 2781 * @len: the number of bytes to access 2782 * 2783 * Check if a memory transaction is allowed. 2784 * 2785 * Returns: true if transaction is allowed, false if denied. 2786 */ 2787 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2788 hwaddr addr, hwaddr len) 2789 { 2790 if (likely(!attrs.memory)) { 2791 return true; 2792 } 2793 if (memory_region_is_ram(mr)) { 2794 return true; 2795 } 2796 qemu_log_mask(LOG_GUEST_ERROR, 2797 "Invalid access to non-RAM device at " 2798 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2799 "region '%s'\n", addr, len, memory_region_name(mr)); 2800 return false; 2801 } 2802 2803 /* Called within RCU critical section. */ 2804 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2805 MemTxAttrs attrs, 2806 const void *ptr, 2807 hwaddr len, hwaddr addr1, 2808 hwaddr l, MemoryRegion *mr) 2809 { 2810 uint8_t *ram_ptr; 2811 uint64_t val; 2812 MemTxResult result = MEMTX_OK; 2813 bool release_lock = false; 2814 const uint8_t *buf = ptr; 2815 2816 for (;;) { 2817 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2818 result |= MEMTX_ACCESS_ERROR; 2819 /* Keep going. */ 2820 } else if (!memory_access_is_direct(mr, true)) { 2821 release_lock |= prepare_mmio_access(mr); 2822 l = memory_access_size(mr, l, addr1); 2823 /* XXX: could force current_cpu to NULL to avoid 2824 potential bugs */ 2825 val = ldn_he_p(buf, l); 2826 result |= memory_region_dispatch_write(mr, addr1, val, 2827 size_memop(l), attrs); 2828 } else { 2829 /* RAM case */ 2830 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2831 memcpy(ram_ptr, buf, l); 2832 invalidate_and_set_dirty(mr, addr1, l); 2833 } 2834 2835 if (release_lock) { 2836 qemu_mutex_unlock_iothread(); 2837 release_lock = false; 2838 } 2839 2840 len -= l; 2841 buf += l; 2842 addr += l; 2843 2844 if (!len) { 2845 break; 2846 } 2847 2848 l = len; 2849 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2850 } 2851 2852 return result; 2853 } 2854 2855 /* Called from RCU critical section. */ 2856 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2857 const void *buf, hwaddr len) 2858 { 2859 hwaddr l; 2860 hwaddr addr1; 2861 MemoryRegion *mr; 2862 2863 l = len; 2864 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2865 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2866 return MEMTX_ACCESS_ERROR; 2867 } 2868 return flatview_write_continue(fv, addr, attrs, buf, len, 2869 addr1, l, mr); 2870 } 2871 2872 /* Called within RCU critical section. */ 2873 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2874 MemTxAttrs attrs, void *ptr, 2875 hwaddr len, hwaddr addr1, hwaddr l, 2876 MemoryRegion *mr) 2877 { 2878 uint8_t *ram_ptr; 2879 uint64_t val; 2880 MemTxResult result = MEMTX_OK; 2881 bool release_lock = false; 2882 uint8_t *buf = ptr; 2883 2884 fuzz_dma_read_cb(addr, len, mr); 2885 for (;;) { 2886 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2887 result |= MEMTX_ACCESS_ERROR; 2888 /* Keep going. */ 2889 } else if (!memory_access_is_direct(mr, false)) { 2890 /* I/O case */ 2891 release_lock |= prepare_mmio_access(mr); 2892 l = memory_access_size(mr, l, addr1); 2893 result |= memory_region_dispatch_read(mr, addr1, &val, 2894 size_memop(l), attrs); 2895 stn_he_p(buf, l, val); 2896 } else { 2897 /* RAM case */ 2898 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2899 memcpy(buf, ram_ptr, l); 2900 } 2901 2902 if (release_lock) { 2903 qemu_mutex_unlock_iothread(); 2904 release_lock = false; 2905 } 2906 2907 len -= l; 2908 buf += l; 2909 addr += l; 2910 2911 if (!len) { 2912 break; 2913 } 2914 2915 l = len; 2916 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2917 } 2918 2919 return result; 2920 } 2921 2922 /* Called from RCU critical section. */ 2923 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2924 MemTxAttrs attrs, void *buf, hwaddr len) 2925 { 2926 hwaddr l; 2927 hwaddr addr1; 2928 MemoryRegion *mr; 2929 2930 l = len; 2931 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2932 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2933 return MEMTX_ACCESS_ERROR; 2934 } 2935 return flatview_read_continue(fv, addr, attrs, buf, len, 2936 addr1, l, mr); 2937 } 2938 2939 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2940 MemTxAttrs attrs, void *buf, hwaddr len) 2941 { 2942 MemTxResult result = MEMTX_OK; 2943 FlatView *fv; 2944 2945 if (len > 0) { 2946 RCU_READ_LOCK_GUARD(); 2947 fv = address_space_to_flatview(as); 2948 result = flatview_read(fv, addr, attrs, buf, len); 2949 } 2950 2951 return result; 2952 } 2953 2954 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2955 MemTxAttrs attrs, 2956 const void *buf, hwaddr len) 2957 { 2958 MemTxResult result = MEMTX_OK; 2959 FlatView *fv; 2960 2961 if (len > 0) { 2962 RCU_READ_LOCK_GUARD(); 2963 fv = address_space_to_flatview(as); 2964 result = flatview_write(fv, addr, attrs, buf, len); 2965 } 2966 2967 return result; 2968 } 2969 2970 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2971 void *buf, hwaddr len, bool is_write) 2972 { 2973 if (is_write) { 2974 return address_space_write(as, addr, attrs, buf, len); 2975 } else { 2976 return address_space_read_full(as, addr, attrs, buf, len); 2977 } 2978 } 2979 2980 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2981 uint8_t c, hwaddr len, MemTxAttrs attrs) 2982 { 2983 #define FILLBUF_SIZE 512 2984 uint8_t fillbuf[FILLBUF_SIZE]; 2985 int l; 2986 MemTxResult error = MEMTX_OK; 2987 2988 memset(fillbuf, c, FILLBUF_SIZE); 2989 while (len > 0) { 2990 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2991 error |= address_space_write(as, addr, attrs, fillbuf, l); 2992 len -= l; 2993 addr += l; 2994 } 2995 2996 return error; 2997 } 2998 2999 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3000 hwaddr len, bool is_write) 3001 { 3002 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3003 buf, len, is_write); 3004 } 3005 3006 enum write_rom_type { 3007 WRITE_DATA, 3008 FLUSH_CACHE, 3009 }; 3010 3011 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3012 hwaddr addr, 3013 MemTxAttrs attrs, 3014 const void *ptr, 3015 hwaddr len, 3016 enum write_rom_type type) 3017 { 3018 hwaddr l; 3019 uint8_t *ram_ptr; 3020 hwaddr addr1; 3021 MemoryRegion *mr; 3022 const uint8_t *buf = ptr; 3023 3024 RCU_READ_LOCK_GUARD(); 3025 while (len > 0) { 3026 l = len; 3027 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3028 3029 if (!(memory_region_is_ram(mr) || 3030 memory_region_is_romd(mr))) { 3031 l = memory_access_size(mr, l, addr1); 3032 } else { 3033 /* ROM/RAM case */ 3034 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3035 switch (type) { 3036 case WRITE_DATA: 3037 memcpy(ram_ptr, buf, l); 3038 invalidate_and_set_dirty(mr, addr1, l); 3039 break; 3040 case FLUSH_CACHE: 3041 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3042 break; 3043 } 3044 } 3045 len -= l; 3046 buf += l; 3047 addr += l; 3048 } 3049 return MEMTX_OK; 3050 } 3051 3052 /* used for ROM loading : can write in RAM and ROM */ 3053 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3054 MemTxAttrs attrs, 3055 const void *buf, hwaddr len) 3056 { 3057 return address_space_write_rom_internal(as, addr, attrs, 3058 buf, len, WRITE_DATA); 3059 } 3060 3061 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3062 { 3063 /* 3064 * This function should do the same thing as an icache flush that was 3065 * triggered from within the guest. For TCG we are always cache coherent, 3066 * so there is no need to flush anything. For KVM / Xen we need to flush 3067 * the host's instruction cache at least. 3068 */ 3069 if (tcg_enabled()) { 3070 return; 3071 } 3072 3073 address_space_write_rom_internal(&address_space_memory, 3074 start, MEMTXATTRS_UNSPECIFIED, 3075 NULL, len, FLUSH_CACHE); 3076 } 3077 3078 typedef struct { 3079 MemoryRegion *mr; 3080 void *buffer; 3081 hwaddr addr; 3082 hwaddr len; 3083 bool in_use; 3084 } BounceBuffer; 3085 3086 static BounceBuffer bounce; 3087 3088 typedef struct MapClient { 3089 QEMUBH *bh; 3090 QLIST_ENTRY(MapClient) link; 3091 } MapClient; 3092 3093 QemuMutex map_client_list_lock; 3094 static QLIST_HEAD(, MapClient) map_client_list 3095 = QLIST_HEAD_INITIALIZER(map_client_list); 3096 3097 static void cpu_unregister_map_client_do(MapClient *client) 3098 { 3099 QLIST_REMOVE(client, link); 3100 g_free(client); 3101 } 3102 3103 static void cpu_notify_map_clients_locked(void) 3104 { 3105 MapClient *client; 3106 3107 while (!QLIST_EMPTY(&map_client_list)) { 3108 client = QLIST_FIRST(&map_client_list); 3109 qemu_bh_schedule(client->bh); 3110 cpu_unregister_map_client_do(client); 3111 } 3112 } 3113 3114 void cpu_register_map_client(QEMUBH *bh) 3115 { 3116 MapClient *client = g_malloc(sizeof(*client)); 3117 3118 qemu_mutex_lock(&map_client_list_lock); 3119 client->bh = bh; 3120 QLIST_INSERT_HEAD(&map_client_list, client, link); 3121 if (!qatomic_read(&bounce.in_use)) { 3122 cpu_notify_map_clients_locked(); 3123 } 3124 qemu_mutex_unlock(&map_client_list_lock); 3125 } 3126 3127 void cpu_exec_init_all(void) 3128 { 3129 qemu_mutex_init(&ram_list.mutex); 3130 /* The data structures we set up here depend on knowing the page size, 3131 * so no more changes can be made after this point. 3132 * In an ideal world, nothing we did before we had finished the 3133 * machine setup would care about the target page size, and we could 3134 * do this much later, rather than requiring board models to state 3135 * up front what their requirements are. 3136 */ 3137 finalize_target_page_bits(); 3138 io_mem_init(); 3139 memory_map_init(); 3140 qemu_mutex_init(&map_client_list_lock); 3141 } 3142 3143 void cpu_unregister_map_client(QEMUBH *bh) 3144 { 3145 MapClient *client; 3146 3147 qemu_mutex_lock(&map_client_list_lock); 3148 QLIST_FOREACH(client, &map_client_list, link) { 3149 if (client->bh == bh) { 3150 cpu_unregister_map_client_do(client); 3151 break; 3152 } 3153 } 3154 qemu_mutex_unlock(&map_client_list_lock); 3155 } 3156 3157 static void cpu_notify_map_clients(void) 3158 { 3159 qemu_mutex_lock(&map_client_list_lock); 3160 cpu_notify_map_clients_locked(); 3161 qemu_mutex_unlock(&map_client_list_lock); 3162 } 3163 3164 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3165 bool is_write, MemTxAttrs attrs) 3166 { 3167 MemoryRegion *mr; 3168 hwaddr l, xlat; 3169 3170 while (len > 0) { 3171 l = len; 3172 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3173 if (!memory_access_is_direct(mr, is_write)) { 3174 l = memory_access_size(mr, l, addr); 3175 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3176 return false; 3177 } 3178 } 3179 3180 len -= l; 3181 addr += l; 3182 } 3183 return true; 3184 } 3185 3186 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3187 hwaddr len, bool is_write, 3188 MemTxAttrs attrs) 3189 { 3190 FlatView *fv; 3191 3192 RCU_READ_LOCK_GUARD(); 3193 fv = address_space_to_flatview(as); 3194 return flatview_access_valid(fv, addr, len, is_write, attrs); 3195 } 3196 3197 static hwaddr 3198 flatview_extend_translation(FlatView *fv, hwaddr addr, 3199 hwaddr target_len, 3200 MemoryRegion *mr, hwaddr base, hwaddr len, 3201 bool is_write, MemTxAttrs attrs) 3202 { 3203 hwaddr done = 0; 3204 hwaddr xlat; 3205 MemoryRegion *this_mr; 3206 3207 for (;;) { 3208 target_len -= len; 3209 addr += len; 3210 done += len; 3211 if (target_len == 0) { 3212 return done; 3213 } 3214 3215 len = target_len; 3216 this_mr = flatview_translate(fv, addr, &xlat, 3217 &len, is_write, attrs); 3218 if (this_mr != mr || xlat != base + done) { 3219 return done; 3220 } 3221 } 3222 } 3223 3224 /* Map a physical memory region into a host virtual address. 3225 * May map a subset of the requested range, given by and returned in *plen. 3226 * May return NULL if resources needed to perform the mapping are exhausted. 3227 * Use only for reads OR writes - not for read-modify-write operations. 3228 * Use cpu_register_map_client() to know when retrying the map operation is 3229 * likely to succeed. 3230 */ 3231 void *address_space_map(AddressSpace *as, 3232 hwaddr addr, 3233 hwaddr *plen, 3234 bool is_write, 3235 MemTxAttrs attrs) 3236 { 3237 hwaddr len = *plen; 3238 hwaddr l, xlat; 3239 MemoryRegion *mr; 3240 FlatView *fv; 3241 3242 if (len == 0) { 3243 return NULL; 3244 } 3245 3246 l = len; 3247 RCU_READ_LOCK_GUARD(); 3248 fv = address_space_to_flatview(as); 3249 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3250 3251 if (!memory_access_is_direct(mr, is_write)) { 3252 if (qatomic_xchg(&bounce.in_use, true)) { 3253 *plen = 0; 3254 return NULL; 3255 } 3256 /* Avoid unbounded allocations */ 3257 l = MIN(l, TARGET_PAGE_SIZE); 3258 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3259 bounce.addr = addr; 3260 bounce.len = l; 3261 3262 memory_region_ref(mr); 3263 bounce.mr = mr; 3264 if (!is_write) { 3265 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3266 bounce.buffer, l); 3267 } 3268 3269 *plen = l; 3270 return bounce.buffer; 3271 } 3272 3273 3274 memory_region_ref(mr); 3275 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3276 l, is_write, attrs); 3277 fuzz_dma_read_cb(addr, *plen, mr); 3278 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3279 } 3280 3281 /* Unmaps a memory region previously mapped by address_space_map(). 3282 * Will also mark the memory as dirty if is_write is true. access_len gives 3283 * the amount of memory that was actually read or written by the caller. 3284 */ 3285 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3286 bool is_write, hwaddr access_len) 3287 { 3288 if (buffer != bounce.buffer) { 3289 MemoryRegion *mr; 3290 ram_addr_t addr1; 3291 3292 mr = memory_region_from_host(buffer, &addr1); 3293 assert(mr != NULL); 3294 if (is_write) { 3295 invalidate_and_set_dirty(mr, addr1, access_len); 3296 } 3297 if (xen_enabled()) { 3298 xen_invalidate_map_cache_entry(buffer); 3299 } 3300 memory_region_unref(mr); 3301 return; 3302 } 3303 if (is_write) { 3304 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3305 bounce.buffer, access_len); 3306 } 3307 qemu_vfree(bounce.buffer); 3308 bounce.buffer = NULL; 3309 memory_region_unref(bounce.mr); 3310 qatomic_mb_set(&bounce.in_use, false); 3311 cpu_notify_map_clients(); 3312 } 3313 3314 void *cpu_physical_memory_map(hwaddr addr, 3315 hwaddr *plen, 3316 bool is_write) 3317 { 3318 return address_space_map(&address_space_memory, addr, plen, is_write, 3319 MEMTXATTRS_UNSPECIFIED); 3320 } 3321 3322 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3323 bool is_write, hwaddr access_len) 3324 { 3325 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3326 } 3327 3328 #define ARG1_DECL AddressSpace *as 3329 #define ARG1 as 3330 #define SUFFIX 3331 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3332 #define RCU_READ_LOCK(...) rcu_read_lock() 3333 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3334 #include "memory_ldst.c.inc" 3335 3336 int64_t address_space_cache_init(MemoryRegionCache *cache, 3337 AddressSpace *as, 3338 hwaddr addr, 3339 hwaddr len, 3340 bool is_write) 3341 { 3342 AddressSpaceDispatch *d; 3343 hwaddr l; 3344 MemoryRegion *mr; 3345 Int128 diff; 3346 3347 assert(len > 0); 3348 3349 l = len; 3350 cache->fv = address_space_get_flatview(as); 3351 d = flatview_to_dispatch(cache->fv); 3352 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3353 3354 /* 3355 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3356 * Take that into account to compute how many bytes are there between 3357 * cache->xlat and the end of the section. 3358 */ 3359 diff = int128_sub(cache->mrs.size, 3360 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3361 l = int128_get64(int128_min(diff, int128_make64(l))); 3362 3363 mr = cache->mrs.mr; 3364 memory_region_ref(mr); 3365 if (memory_access_is_direct(mr, is_write)) { 3366 /* We don't care about the memory attributes here as we're only 3367 * doing this if we found actual RAM, which behaves the same 3368 * regardless of attributes; so UNSPECIFIED is fine. 3369 */ 3370 l = flatview_extend_translation(cache->fv, addr, len, mr, 3371 cache->xlat, l, is_write, 3372 MEMTXATTRS_UNSPECIFIED); 3373 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3374 } else { 3375 cache->ptr = NULL; 3376 } 3377 3378 cache->len = l; 3379 cache->is_write = is_write; 3380 return l; 3381 } 3382 3383 void address_space_cache_invalidate(MemoryRegionCache *cache, 3384 hwaddr addr, 3385 hwaddr access_len) 3386 { 3387 assert(cache->is_write); 3388 if (likely(cache->ptr)) { 3389 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3390 } 3391 } 3392 3393 void address_space_cache_destroy(MemoryRegionCache *cache) 3394 { 3395 if (!cache->mrs.mr) { 3396 return; 3397 } 3398 3399 if (xen_enabled()) { 3400 xen_invalidate_map_cache_entry(cache->ptr); 3401 } 3402 memory_region_unref(cache->mrs.mr); 3403 flatview_unref(cache->fv); 3404 cache->mrs.mr = NULL; 3405 cache->fv = NULL; 3406 } 3407 3408 /* Called from RCU critical section. This function has the same 3409 * semantics as address_space_translate, but it only works on a 3410 * predefined range of a MemoryRegion that was mapped with 3411 * address_space_cache_init. 3412 */ 3413 static inline MemoryRegion *address_space_translate_cached( 3414 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3415 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3416 { 3417 MemoryRegionSection section; 3418 MemoryRegion *mr; 3419 IOMMUMemoryRegion *iommu_mr; 3420 AddressSpace *target_as; 3421 3422 assert(!cache->ptr); 3423 *xlat = addr + cache->xlat; 3424 3425 mr = cache->mrs.mr; 3426 iommu_mr = memory_region_get_iommu(mr); 3427 if (!iommu_mr) { 3428 /* MMIO region. */ 3429 return mr; 3430 } 3431 3432 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3433 NULL, is_write, true, 3434 &target_as, attrs); 3435 return section.mr; 3436 } 3437 3438 /* Called from RCU critical section. address_space_read_cached uses this 3439 * out of line function when the target is an MMIO or IOMMU region. 3440 */ 3441 MemTxResult 3442 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3443 void *buf, hwaddr len) 3444 { 3445 hwaddr addr1, l; 3446 MemoryRegion *mr; 3447 3448 l = len; 3449 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3450 MEMTXATTRS_UNSPECIFIED); 3451 return flatview_read_continue(cache->fv, 3452 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3453 addr1, l, mr); 3454 } 3455 3456 /* Called from RCU critical section. address_space_write_cached uses this 3457 * out of line function when the target is an MMIO or IOMMU region. 3458 */ 3459 MemTxResult 3460 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3461 const void *buf, hwaddr len) 3462 { 3463 hwaddr addr1, l; 3464 MemoryRegion *mr; 3465 3466 l = len; 3467 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3468 MEMTXATTRS_UNSPECIFIED); 3469 return flatview_write_continue(cache->fv, 3470 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3471 addr1, l, mr); 3472 } 3473 3474 #define ARG1_DECL MemoryRegionCache *cache 3475 #define ARG1 cache 3476 #define SUFFIX _cached_slow 3477 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3478 #define RCU_READ_LOCK() ((void)0) 3479 #define RCU_READ_UNLOCK() ((void)0) 3480 #include "memory_ldst.c.inc" 3481 3482 /* virtual memory access for debug (includes writing to ROM) */ 3483 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3484 void *ptr, size_t len, bool is_write) 3485 { 3486 hwaddr phys_addr; 3487 vaddr l, page; 3488 uint8_t *buf = ptr; 3489 3490 cpu_synchronize_state(cpu); 3491 while (len > 0) { 3492 int asidx; 3493 MemTxAttrs attrs; 3494 MemTxResult res; 3495 3496 page = addr & TARGET_PAGE_MASK; 3497 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3498 asidx = cpu_asidx_from_attrs(cpu, attrs); 3499 /* if no physical page mapped, return an error */ 3500 if (phys_addr == -1) 3501 return -1; 3502 l = (page + TARGET_PAGE_SIZE) - addr; 3503 if (l > len) 3504 l = len; 3505 phys_addr += (addr & ~TARGET_PAGE_MASK); 3506 if (is_write) { 3507 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3508 attrs, buf, l); 3509 } else { 3510 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3511 attrs, buf, l); 3512 } 3513 if (res != MEMTX_OK) { 3514 return -1; 3515 } 3516 len -= l; 3517 buf += l; 3518 addr += l; 3519 } 3520 return 0; 3521 } 3522 3523 /* 3524 * Allows code that needs to deal with migration bitmaps etc to still be built 3525 * target independent. 3526 */ 3527 size_t qemu_target_page_size(void) 3528 { 3529 return TARGET_PAGE_SIZE; 3530 } 3531 3532 int qemu_target_page_bits(void) 3533 { 3534 return TARGET_PAGE_BITS; 3535 } 3536 3537 int qemu_target_page_bits_min(void) 3538 { 3539 return TARGET_PAGE_BITS_MIN; 3540 } 3541 3542 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3543 { 3544 MemoryRegion*mr; 3545 hwaddr l = 1; 3546 3547 RCU_READ_LOCK_GUARD(); 3548 mr = address_space_translate(&address_space_memory, 3549 phys_addr, &phys_addr, &l, false, 3550 MEMTXATTRS_UNSPECIFIED); 3551 3552 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3553 } 3554 3555 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3556 { 3557 RAMBlock *block; 3558 int ret = 0; 3559 3560 RCU_READ_LOCK_GUARD(); 3561 RAMBLOCK_FOREACH(block) { 3562 ret = func(block, opaque); 3563 if (ret) { 3564 break; 3565 } 3566 } 3567 return ret; 3568 } 3569 3570 /* 3571 * Unmap pages of memory from start to start+length such that 3572 * they a) read as 0, b) Trigger whatever fault mechanism 3573 * the OS provides for postcopy. 3574 * The pages must be unmapped by the end of the function. 3575 * Returns: 0 on success, none-0 on failure 3576 * 3577 */ 3578 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3579 { 3580 int ret = -1; 3581 3582 uint8_t *host_startaddr = rb->host + start; 3583 3584 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3585 error_report("ram_block_discard_range: Unaligned start address: %p", 3586 host_startaddr); 3587 goto err; 3588 } 3589 3590 if ((start + length) <= rb->max_length) { 3591 bool need_madvise, need_fallocate; 3592 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3593 error_report("ram_block_discard_range: Unaligned length: %zx", 3594 length); 3595 goto err; 3596 } 3597 3598 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3599 3600 /* The logic here is messy; 3601 * madvise DONTNEED fails for hugepages 3602 * fallocate works on hugepages and shmem 3603 * shared anonymous memory requires madvise REMOVE 3604 */ 3605 need_madvise = (rb->page_size == qemu_host_page_size); 3606 need_fallocate = rb->fd != -1; 3607 if (need_fallocate) { 3608 /* For a file, this causes the area of the file to be zero'd 3609 * if read, and for hugetlbfs also causes it to be unmapped 3610 * so a userfault will trigger. 3611 */ 3612 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3613 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3614 start, length); 3615 if (ret) { 3616 ret = -errno; 3617 error_report("ram_block_discard_range: Failed to fallocate " 3618 "%s:%" PRIx64 " +%zx (%d)", 3619 rb->idstr, start, length, ret); 3620 goto err; 3621 } 3622 #else 3623 ret = -ENOSYS; 3624 error_report("ram_block_discard_range: fallocate not available/file" 3625 "%s:%" PRIx64 " +%zx (%d)", 3626 rb->idstr, start, length, ret); 3627 goto err; 3628 #endif 3629 } 3630 if (need_madvise) { 3631 /* For normal RAM this causes it to be unmapped, 3632 * for shared memory it causes the local mapping to disappear 3633 * and to fall back on the file contents (which we just 3634 * fallocate'd away). 3635 */ 3636 #if defined(CONFIG_MADVISE) 3637 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3638 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3639 } else { 3640 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3641 } 3642 if (ret) { 3643 ret = -errno; 3644 error_report("ram_block_discard_range: Failed to discard range " 3645 "%s:%" PRIx64 " +%zx (%d)", 3646 rb->idstr, start, length, ret); 3647 goto err; 3648 } 3649 #else 3650 ret = -ENOSYS; 3651 error_report("ram_block_discard_range: MADVISE not available" 3652 "%s:%" PRIx64 " +%zx (%d)", 3653 rb->idstr, start, length, ret); 3654 goto err; 3655 #endif 3656 } 3657 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3658 need_madvise, need_fallocate, ret); 3659 } else { 3660 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3661 "/%zx/" RAM_ADDR_FMT")", 3662 rb->idstr, start, length, rb->max_length); 3663 } 3664 3665 err: 3666 return ret; 3667 } 3668 3669 bool ramblock_is_pmem(RAMBlock *rb) 3670 { 3671 return rb->flags & RAM_PMEM; 3672 } 3673 3674 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3675 { 3676 if (start == end - 1) { 3677 qemu_printf("\t%3d ", start); 3678 } else { 3679 qemu_printf("\t%3d..%-3d ", start, end - 1); 3680 } 3681 qemu_printf(" skip=%d ", skip); 3682 if (ptr == PHYS_MAP_NODE_NIL) { 3683 qemu_printf(" ptr=NIL"); 3684 } else if (!skip) { 3685 qemu_printf(" ptr=#%d", ptr); 3686 } else { 3687 qemu_printf(" ptr=[%d]", ptr); 3688 } 3689 qemu_printf("\n"); 3690 } 3691 3692 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3693 int128_sub((size), int128_one())) : 0) 3694 3695 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3696 { 3697 int i; 3698 3699 qemu_printf(" Dispatch\n"); 3700 qemu_printf(" Physical sections\n"); 3701 3702 for (i = 0; i < d->map.sections_nb; ++i) { 3703 MemoryRegionSection *s = d->map.sections + i; 3704 const char *names[] = { " [unassigned]", " [not dirty]", 3705 " [ROM]", " [watch]" }; 3706 3707 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3708 " %s%s%s%s%s", 3709 i, 3710 s->offset_within_address_space, 3711 s->offset_within_address_space + MR_SIZE(s->size), 3712 s->mr->name ? s->mr->name : "(noname)", 3713 i < ARRAY_SIZE(names) ? names[i] : "", 3714 s->mr == root ? " [ROOT]" : "", 3715 s == d->mru_section ? " [MRU]" : "", 3716 s->mr->is_iommu ? " [iommu]" : ""); 3717 3718 if (s->mr->alias) { 3719 qemu_printf(" alias=%s", s->mr->alias->name ? 3720 s->mr->alias->name : "noname"); 3721 } 3722 qemu_printf("\n"); 3723 } 3724 3725 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3726 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3727 for (i = 0; i < d->map.nodes_nb; ++i) { 3728 int j, jprev; 3729 PhysPageEntry prev; 3730 Node *n = d->map.nodes + i; 3731 3732 qemu_printf(" [%d]\n", i); 3733 3734 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3735 PhysPageEntry *pe = *n + j; 3736 3737 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3738 continue; 3739 } 3740 3741 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3742 3743 jprev = j; 3744 prev = *pe; 3745 } 3746 3747 if (jprev != ARRAY_SIZE(*n)) { 3748 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3749 } 3750 } 3751 } 3752 3753 /* Require any discards to work. */ 3754 static unsigned int ram_block_discard_required_cnt; 3755 /* Require only coordinated discards to work. */ 3756 static unsigned int ram_block_coordinated_discard_required_cnt; 3757 /* Disable any discards. */ 3758 static unsigned int ram_block_discard_disabled_cnt; 3759 /* Disable only uncoordinated discards. */ 3760 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3761 static QemuMutex ram_block_discard_disable_mutex; 3762 3763 static void ram_block_discard_disable_mutex_lock(void) 3764 { 3765 static gsize initialized; 3766 3767 if (g_once_init_enter(&initialized)) { 3768 qemu_mutex_init(&ram_block_discard_disable_mutex); 3769 g_once_init_leave(&initialized, 1); 3770 } 3771 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3772 } 3773 3774 static void ram_block_discard_disable_mutex_unlock(void) 3775 { 3776 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3777 } 3778 3779 int ram_block_discard_disable(bool state) 3780 { 3781 int ret = 0; 3782 3783 ram_block_discard_disable_mutex_lock(); 3784 if (!state) { 3785 ram_block_discard_disabled_cnt--; 3786 } else if (ram_block_discard_required_cnt || 3787 ram_block_coordinated_discard_required_cnt) { 3788 ret = -EBUSY; 3789 } else { 3790 ram_block_discard_disabled_cnt++; 3791 } 3792 ram_block_discard_disable_mutex_unlock(); 3793 return ret; 3794 } 3795 3796 int ram_block_uncoordinated_discard_disable(bool state) 3797 { 3798 int ret = 0; 3799 3800 ram_block_discard_disable_mutex_lock(); 3801 if (!state) { 3802 ram_block_uncoordinated_discard_disabled_cnt--; 3803 } else if (ram_block_discard_required_cnt) { 3804 ret = -EBUSY; 3805 } else { 3806 ram_block_uncoordinated_discard_disabled_cnt++; 3807 } 3808 ram_block_discard_disable_mutex_unlock(); 3809 return ret; 3810 } 3811 3812 int ram_block_discard_require(bool state) 3813 { 3814 int ret = 0; 3815 3816 ram_block_discard_disable_mutex_lock(); 3817 if (!state) { 3818 ram_block_discard_required_cnt--; 3819 } else if (ram_block_discard_disabled_cnt || 3820 ram_block_uncoordinated_discard_disabled_cnt) { 3821 ret = -EBUSY; 3822 } else { 3823 ram_block_discard_required_cnt++; 3824 } 3825 ram_block_discard_disable_mutex_unlock(); 3826 return ret; 3827 } 3828 3829 int ram_block_coordinated_discard_require(bool state) 3830 { 3831 int ret = 0; 3832 3833 ram_block_discard_disable_mutex_lock(); 3834 if (!state) { 3835 ram_block_coordinated_discard_required_cnt--; 3836 } else if (ram_block_discard_disabled_cnt) { 3837 ret = -EBUSY; 3838 } else { 3839 ram_block_coordinated_discard_required_cnt++; 3840 } 3841 ram_block_discard_disable_mutex_unlock(); 3842 return ret; 3843 } 3844 3845 bool ram_block_discard_is_disabled(void) 3846 { 3847 return qatomic_read(&ram_block_discard_disabled_cnt) || 3848 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3849 } 3850 3851 bool ram_block_discard_is_required(void) 3852 { 3853 return qatomic_read(&ram_block_discard_required_cnt) || 3854 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3855 } 3856