1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = 684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 685 686 for (;;) { 687 section = address_space_translate_internal(d, addr, &addr, plen, false); 688 689 iommu_mr = memory_region_get_iommu(section->mr); 690 if (!iommu_mr) { 691 break; 692 } 693 694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 695 696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 699 * doesn't short-cut its translation table walk. 700 */ 701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 703 | (addr & iotlb.addr_mask)); 704 /* Update the caller's prot bits to remove permissions the IOMMU 705 * is giving us a failure response for. If we get down to no 706 * permissions left at all we can give up now. 707 */ 708 if (!(iotlb.perm & IOMMU_RO)) { 709 *prot &= ~(PAGE_READ | PAGE_EXEC); 710 } 711 if (!(iotlb.perm & IOMMU_WO)) { 712 *prot &= ~PAGE_WRITE; 713 } 714 715 if (!*prot) { 716 goto translate_fail; 717 } 718 719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 720 } 721 722 assert(!memory_region_is_iommu(section->mr)); 723 *xlat = addr; 724 return section; 725 726 translate_fail: 727 /* 728 * We should be given a page-aligned address -- certainly 729 * tlb_set_page_with_attrs() does so. The page offset of xlat 730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 731 * The page portion of xlat will be logged by memory_region_access_valid() 732 * when this memory access is rejected, so use the original untranslated 733 * physical address. 734 */ 735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 736 *xlat = orig_addr; 737 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 738 } 739 740 void cpu_address_space_init(CPUState *cpu, int asidx, 741 const char *prefix, MemoryRegion *mr) 742 { 743 CPUAddressSpace *newas; 744 AddressSpace *as = g_new0(AddressSpace, 1); 745 char *as_name; 746 747 assert(mr); 748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 749 address_space_init(as, mr, as_name); 750 g_free(as_name); 751 752 /* Target code should have set num_ases before calling us */ 753 assert(asidx < cpu->num_ases); 754 755 if (asidx == 0) { 756 /* address space 0 gets the convenience alias */ 757 cpu->as = as; 758 } 759 760 /* KVM cannot currently support multiple address spaces. */ 761 assert(asidx == 0 || !kvm_enabled()); 762 763 if (!cpu->cpu_ases) { 764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 765 } 766 767 newas = &cpu->cpu_ases[asidx]; 768 newas->cpu = cpu; 769 newas->as = as; 770 if (tcg_enabled()) { 771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 772 newas->tcg_as_listener.commit = tcg_commit; 773 newas->tcg_as_listener.name = "tcg"; 774 memory_listener_register(&newas->tcg_as_listener, as); 775 } 776 } 777 778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 779 { 780 /* Return the AddressSpace corresponding to the specified index */ 781 return cpu->cpu_ases[asidx].as; 782 } 783 784 /* Called from RCU critical section */ 785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 786 { 787 RAMBlock *block; 788 789 block = qatomic_rcu_read(&ram_list.mru_block); 790 if (block && addr - block->offset < block->max_length) { 791 return block; 792 } 793 RAMBLOCK_FOREACH(block) { 794 if (addr - block->offset < block->max_length) { 795 goto found; 796 } 797 } 798 799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 800 abort(); 801 802 found: 803 /* It is safe to write mru_block outside the iothread lock. This 804 * is what happens: 805 * 806 * mru_block = xxx 807 * rcu_read_unlock() 808 * xxx removed from list 809 * rcu_read_lock() 810 * read mru_block 811 * mru_block = NULL; 812 * call_rcu(reclaim_ramblock, xxx); 813 * rcu_read_unlock() 814 * 815 * qatomic_rcu_set is not needed here. The block was already published 816 * when it was placed into the list. Here we're just making an extra 817 * copy of the pointer. 818 */ 819 ram_list.mru_block = block; 820 return block; 821 } 822 823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 824 { 825 CPUState *cpu; 826 ram_addr_t start1; 827 RAMBlock *block; 828 ram_addr_t end; 829 830 assert(tcg_enabled()); 831 end = TARGET_PAGE_ALIGN(start + length); 832 start &= TARGET_PAGE_MASK; 833 834 RCU_READ_LOCK_GUARD(); 835 block = qemu_get_ram_block(start); 836 assert(block == qemu_get_ram_block(end - 1)); 837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 838 CPU_FOREACH(cpu) { 839 tlb_reset_dirty(cpu, start1, length); 840 } 841 } 842 843 /* Note: start and end must be within the same ram block. */ 844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 845 ram_addr_t length, 846 unsigned client) 847 { 848 DirtyMemoryBlocks *blocks; 849 unsigned long end, page, start_page; 850 bool dirty = false; 851 RAMBlock *ramblock; 852 uint64_t mr_offset, mr_size; 853 854 if (length == 0) { 855 return false; 856 } 857 858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 859 start_page = start >> TARGET_PAGE_BITS; 860 page = start_page; 861 862 WITH_RCU_READ_LOCK_GUARD() { 863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 864 ramblock = qemu_get_ram_block(start); 865 /* Range sanity check on the ramblock */ 866 assert(start >= ramblock->offset && 867 start + length <= ramblock->offset + ramblock->used_length); 868 869 while (page < end) { 870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 872 unsigned long num = MIN(end - page, 873 DIRTY_MEMORY_BLOCK_SIZE - offset); 874 875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 876 offset, num); 877 page += num; 878 } 879 880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 881 mr_size = (end - start_page) << TARGET_PAGE_BITS; 882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 883 } 884 885 if (dirty && tcg_enabled()) { 886 tlb_reset_dirty_range_all(start, length); 887 } 888 889 return dirty; 890 } 891 892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 894 { 895 DirtyMemoryBlocks *blocks; 896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 900 DirtyBitmapSnapshot *snap; 901 unsigned long page, end, dest; 902 903 snap = g_malloc0(sizeof(*snap) + 904 ((last - first) >> (TARGET_PAGE_BITS + 3))); 905 snap->start = first; 906 snap->end = last; 907 908 page = first >> TARGET_PAGE_BITS; 909 end = last >> TARGET_PAGE_BITS; 910 dest = 0; 911 912 WITH_RCU_READ_LOCK_GUARD() { 913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 914 915 while (page < end) { 916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 918 unsigned long num = MIN(end - page, 919 DIRTY_MEMORY_BLOCK_SIZE - offset); 920 921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 923 offset >>= BITS_PER_LEVEL; 924 925 bitmap_copy_and_clear_atomic(snap->dirty + dest, 926 blocks->blocks[idx] + offset, 927 num); 928 page += num; 929 dest += num >> BITS_PER_LEVEL; 930 } 931 } 932 933 if (tcg_enabled()) { 934 tlb_reset_dirty_range_all(start, length); 935 } 936 937 memory_region_clear_dirty_bitmap(mr, offset, length); 938 939 return snap; 940 } 941 942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 943 ram_addr_t start, 944 ram_addr_t length) 945 { 946 unsigned long page, end; 947 948 assert(start >= snap->start); 949 assert(start + length <= snap->end); 950 951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 952 page = (start - snap->start) >> TARGET_PAGE_BITS; 953 954 while (page < end) { 955 if (test_bit(page, snap->dirty)) { 956 return true; 957 } 958 page++; 959 } 960 return false; 961 } 962 963 /* Called from RCU critical section */ 964 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 965 MemoryRegionSection *section) 966 { 967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 968 return section - d->map.sections; 969 } 970 971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 972 uint16_t section); 973 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 974 975 static uint16_t phys_section_add(PhysPageMap *map, 976 MemoryRegionSection *section) 977 { 978 /* The physical section number is ORed with a page-aligned 979 * pointer to produce the iotlb entries. Thus it should 980 * never overflow into the page-aligned value. 981 */ 982 assert(map->sections_nb < TARGET_PAGE_SIZE); 983 984 if (map->sections_nb == map->sections_nb_alloc) { 985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 986 map->sections = g_renew(MemoryRegionSection, map->sections, 987 map->sections_nb_alloc); 988 } 989 map->sections[map->sections_nb] = *section; 990 memory_region_ref(section->mr); 991 return map->sections_nb++; 992 } 993 994 static void phys_section_destroy(MemoryRegion *mr) 995 { 996 bool have_sub_page = mr->subpage; 997 998 memory_region_unref(mr); 999 1000 if (have_sub_page) { 1001 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1002 object_unref(OBJECT(&subpage->iomem)); 1003 g_free(subpage); 1004 } 1005 } 1006 1007 static void phys_sections_free(PhysPageMap *map) 1008 { 1009 while (map->sections_nb > 0) { 1010 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1011 phys_section_destroy(section->mr); 1012 } 1013 g_free(map->sections); 1014 g_free(map->nodes); 1015 } 1016 1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1018 { 1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1020 subpage_t *subpage; 1021 hwaddr base = section->offset_within_address_space 1022 & TARGET_PAGE_MASK; 1023 MemoryRegionSection *existing = phys_page_find(d, base); 1024 MemoryRegionSection subsection = { 1025 .offset_within_address_space = base, 1026 .size = int128_make64(TARGET_PAGE_SIZE), 1027 }; 1028 hwaddr start, end; 1029 1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1031 1032 if (!(existing->mr->subpage)) { 1033 subpage = subpage_init(fv, base); 1034 subsection.fv = fv; 1035 subsection.mr = &subpage->iomem; 1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1037 phys_section_add(&d->map, &subsection)); 1038 } else { 1039 subpage = container_of(existing->mr, subpage_t, iomem); 1040 } 1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1042 end = start + int128_get64(section->size) - 1; 1043 subpage_register(subpage, start, end, 1044 phys_section_add(&d->map, section)); 1045 } 1046 1047 1048 static void register_multipage(FlatView *fv, 1049 MemoryRegionSection *section) 1050 { 1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1052 hwaddr start_addr = section->offset_within_address_space; 1053 uint16_t section_index = phys_section_add(&d->map, section); 1054 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1055 TARGET_PAGE_BITS)); 1056 1057 assert(num_pages); 1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1059 } 1060 1061 /* 1062 * The range in *section* may look like this: 1063 * 1064 * |s|PPPPPPP|s| 1065 * 1066 * where s stands for subpage and P for page. 1067 */ 1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1069 { 1070 MemoryRegionSection remain = *section; 1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1072 1073 /* register first subpage */ 1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1076 - remain.offset_within_address_space; 1077 1078 MemoryRegionSection now = remain; 1079 now.size = int128_min(int128_make64(left), now.size); 1080 register_subpage(fv, &now); 1081 if (int128_eq(remain.size, now.size)) { 1082 return; 1083 } 1084 remain.size = int128_sub(remain.size, now.size); 1085 remain.offset_within_address_space += int128_get64(now.size); 1086 remain.offset_within_region += int128_get64(now.size); 1087 } 1088 1089 /* register whole pages */ 1090 if (int128_ge(remain.size, page_size)) { 1091 MemoryRegionSection now = remain; 1092 now.size = int128_and(now.size, int128_neg(page_size)); 1093 register_multipage(fv, &now); 1094 if (int128_eq(remain.size, now.size)) { 1095 return; 1096 } 1097 remain.size = int128_sub(remain.size, now.size); 1098 remain.offset_within_address_space += int128_get64(now.size); 1099 remain.offset_within_region += int128_get64(now.size); 1100 } 1101 1102 /* register last subpage */ 1103 register_subpage(fv, &remain); 1104 } 1105 1106 void qemu_flush_coalesced_mmio_buffer(void) 1107 { 1108 if (kvm_enabled()) 1109 kvm_flush_coalesced_mmio_buffer(); 1110 } 1111 1112 void qemu_mutex_lock_ramlist(void) 1113 { 1114 qemu_mutex_lock(&ram_list.mutex); 1115 } 1116 1117 void qemu_mutex_unlock_ramlist(void) 1118 { 1119 qemu_mutex_unlock(&ram_list.mutex); 1120 } 1121 1122 GString *ram_block_format(void) 1123 { 1124 RAMBlock *block; 1125 char *psize; 1126 GString *buf = g_string_new(""); 1127 1128 RCU_READ_LOCK_GUARD(); 1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1130 "Block Name", "PSize", "Offset", "Used", "Total", 1131 "HVA", "RO"); 1132 1133 RAMBLOCK_FOREACH(block) { 1134 psize = size_to_str(block->page_size); 1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1137 block->idstr, psize, 1138 (uint64_t)block->offset, 1139 (uint64_t)block->used_length, 1140 (uint64_t)block->max_length, 1141 (uint64_t)(uintptr_t)block->host, 1142 block->mr->readonly ? "ro" : "rw"); 1143 1144 g_free(psize); 1145 } 1146 1147 return buf; 1148 } 1149 1150 static int find_min_backend_pagesize(Object *obj, void *opaque) 1151 { 1152 long *hpsize_min = opaque; 1153 1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1156 long hpsize = host_memory_backend_pagesize(backend); 1157 1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1159 *hpsize_min = hpsize; 1160 } 1161 } 1162 1163 return 0; 1164 } 1165 1166 static int find_max_backend_pagesize(Object *obj, void *opaque) 1167 { 1168 long *hpsize_max = opaque; 1169 1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1172 long hpsize = host_memory_backend_pagesize(backend); 1173 1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1175 *hpsize_max = hpsize; 1176 } 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * TODO: We assume right now that all mapped host memory backends are 1184 * used as RAM, however some might be used for different purposes. 1185 */ 1186 long qemu_minrampagesize(void) 1187 { 1188 long hpsize = LONG_MAX; 1189 Object *memdev_root = object_resolve_path("/objects", NULL); 1190 1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1192 return hpsize; 1193 } 1194 1195 long qemu_maxrampagesize(void) 1196 { 1197 long pagesize = 0; 1198 Object *memdev_root = object_resolve_path("/objects", NULL); 1199 1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1201 return pagesize; 1202 } 1203 1204 #ifdef CONFIG_POSIX 1205 static int64_t get_file_size(int fd) 1206 { 1207 int64_t size; 1208 #if defined(__linux__) 1209 struct stat st; 1210 1211 if (fstat(fd, &st) < 0) { 1212 return -errno; 1213 } 1214 1215 /* Special handling for devdax character devices */ 1216 if (S_ISCHR(st.st_mode)) { 1217 g_autofree char *subsystem_path = NULL; 1218 g_autofree char *subsystem = NULL; 1219 1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1221 major(st.st_rdev), minor(st.st_rdev)); 1222 subsystem = g_file_read_link(subsystem_path, NULL); 1223 1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1225 g_autofree char *size_path = NULL; 1226 g_autofree char *size_str = NULL; 1227 1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1229 major(st.st_rdev), minor(st.st_rdev)); 1230 1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1232 return g_ascii_strtoll(size_str, NULL, 0); 1233 } 1234 } 1235 } 1236 #endif /* defined(__linux__) */ 1237 1238 /* st.st_size may be zero for special files yet lseek(2) works */ 1239 size = lseek(fd, 0, SEEK_END); 1240 if (size < 0) { 1241 return -errno; 1242 } 1243 return size; 1244 } 1245 1246 static int64_t get_file_align(int fd) 1247 { 1248 int64_t align = -1; 1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1250 struct stat st; 1251 1252 if (fstat(fd, &st) < 0) { 1253 return -errno; 1254 } 1255 1256 /* Special handling for devdax character devices */ 1257 if (S_ISCHR(st.st_mode)) { 1258 g_autofree char *path = NULL; 1259 g_autofree char *rpath = NULL; 1260 struct daxctl_ctx *ctx; 1261 struct daxctl_region *region; 1262 int rc = 0; 1263 1264 path = g_strdup_printf("/sys/dev/char/%d:%d", 1265 major(st.st_rdev), minor(st.st_rdev)); 1266 rpath = realpath(path, NULL); 1267 if (!rpath) { 1268 return -errno; 1269 } 1270 1271 rc = daxctl_new(&ctx); 1272 if (rc) { 1273 return -1; 1274 } 1275 1276 daxctl_region_foreach(ctx, region) { 1277 if (strstr(rpath, daxctl_region_get_path(region))) { 1278 align = daxctl_region_get_align(region); 1279 break; 1280 } 1281 } 1282 daxctl_unref(ctx); 1283 } 1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1285 1286 return align; 1287 } 1288 1289 static int file_ram_open(const char *path, 1290 const char *region_name, 1291 bool readonly, 1292 bool *created, 1293 Error **errp) 1294 { 1295 char *filename; 1296 char *sanitized_name; 1297 char *c; 1298 int fd = -1; 1299 1300 *created = false; 1301 for (;;) { 1302 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1303 if (fd >= 0) { 1304 /* @path names an existing file, use it */ 1305 break; 1306 } 1307 if (errno == ENOENT) { 1308 /* @path names a file that doesn't exist, create it */ 1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1310 if (fd >= 0) { 1311 *created = true; 1312 break; 1313 } 1314 } else if (errno == EISDIR) { 1315 /* @path names a directory, create a file there */ 1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1317 sanitized_name = g_strdup(region_name); 1318 for (c = sanitized_name; *c != '\0'; c++) { 1319 if (*c == '/') { 1320 *c = '_'; 1321 } 1322 } 1323 1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1325 sanitized_name); 1326 g_free(sanitized_name); 1327 1328 fd = mkstemp(filename); 1329 if (fd >= 0) { 1330 unlink(filename); 1331 g_free(filename); 1332 break; 1333 } 1334 g_free(filename); 1335 } 1336 if (errno != EEXIST && errno != EINTR) { 1337 error_setg_errno(errp, errno, 1338 "can't open backing store %s for guest RAM", 1339 path); 1340 return -1; 1341 } 1342 /* 1343 * Try again on EINTR and EEXIST. The latter happens when 1344 * something else creates the file between our two open(). 1345 */ 1346 } 1347 1348 return fd; 1349 } 1350 1351 static void *file_ram_alloc(RAMBlock *block, 1352 ram_addr_t memory, 1353 int fd, 1354 bool readonly, 1355 bool truncate, 1356 off_t offset, 1357 Error **errp) 1358 { 1359 uint32_t qemu_map_flags; 1360 void *area; 1361 1362 block->page_size = qemu_fd_getpagesize(fd); 1363 if (block->mr->align % block->page_size) { 1364 error_setg(errp, "alignment 0x%" PRIx64 1365 " must be multiples of page size 0x%zx", 1366 block->mr->align, block->page_size); 1367 return NULL; 1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1369 error_setg(errp, "alignment 0x%" PRIx64 1370 " must be a power of two", block->mr->align); 1371 return NULL; 1372 } 1373 block->mr->align = MAX(block->page_size, block->mr->align); 1374 #if defined(__s390x__) 1375 if (kvm_enabled()) { 1376 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1377 } 1378 #endif 1379 1380 if (memory < block->page_size) { 1381 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1382 "or larger than page size 0x%zx", 1383 memory, block->page_size); 1384 return NULL; 1385 } 1386 1387 memory = ROUND_UP(memory, block->page_size); 1388 1389 /* 1390 * ftruncate is not supported by hugetlbfs in older 1391 * hosts, so don't bother bailing out on errors. 1392 * If anything goes wrong with it under other filesystems, 1393 * mmap will fail. 1394 * 1395 * Do not truncate the non-empty backend file to avoid corrupting 1396 * the existing data in the file. Disabling shrinking is not 1397 * enough. For example, the current vNVDIMM implementation stores 1398 * the guest NVDIMM labels at the end of the backend file. If the 1399 * backend file is later extended, QEMU will not be able to find 1400 * those labels. Therefore, extending the non-empty backend file 1401 * is disabled as well. 1402 */ 1403 if (truncate && ftruncate(fd, memory)) { 1404 perror("ftruncate"); 1405 } 1406 1407 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1408 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1409 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1410 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1411 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1412 if (area == MAP_FAILED) { 1413 error_setg_errno(errp, errno, 1414 "unable to map backing store for guest RAM"); 1415 return NULL; 1416 } 1417 1418 block->fd = fd; 1419 return area; 1420 } 1421 #endif 1422 1423 /* Allocate space within the ram_addr_t space that governs the 1424 * dirty bitmaps. 1425 * Called with the ramlist lock held. 1426 */ 1427 static ram_addr_t find_ram_offset(ram_addr_t size) 1428 { 1429 RAMBlock *block, *next_block; 1430 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1431 1432 assert(size != 0); /* it would hand out same offset multiple times */ 1433 1434 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1435 return 0; 1436 } 1437 1438 RAMBLOCK_FOREACH(block) { 1439 ram_addr_t candidate, next = RAM_ADDR_MAX; 1440 1441 /* Align blocks to start on a 'long' in the bitmap 1442 * which makes the bitmap sync'ing take the fast path. 1443 */ 1444 candidate = block->offset + block->max_length; 1445 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1446 1447 /* Search for the closest following block 1448 * and find the gap. 1449 */ 1450 RAMBLOCK_FOREACH(next_block) { 1451 if (next_block->offset >= candidate) { 1452 next = MIN(next, next_block->offset); 1453 } 1454 } 1455 1456 /* If it fits remember our place and remember the size 1457 * of gap, but keep going so that we might find a smaller 1458 * gap to fill so avoiding fragmentation. 1459 */ 1460 if (next - candidate >= size && next - candidate < mingap) { 1461 offset = candidate; 1462 mingap = next - candidate; 1463 } 1464 1465 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1466 } 1467 1468 if (offset == RAM_ADDR_MAX) { 1469 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1470 (uint64_t)size); 1471 abort(); 1472 } 1473 1474 trace_find_ram_offset(size, offset); 1475 1476 return offset; 1477 } 1478 1479 static unsigned long last_ram_page(void) 1480 { 1481 RAMBlock *block; 1482 ram_addr_t last = 0; 1483 1484 RCU_READ_LOCK_GUARD(); 1485 RAMBLOCK_FOREACH(block) { 1486 last = MAX(last, block->offset + block->max_length); 1487 } 1488 return last >> TARGET_PAGE_BITS; 1489 } 1490 1491 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1492 { 1493 int ret; 1494 1495 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1496 if (!machine_dump_guest_core(current_machine)) { 1497 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1498 if (ret) { 1499 perror("qemu_madvise"); 1500 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1501 "but dump_guest_core=off specified\n"); 1502 } 1503 } 1504 } 1505 1506 const char *qemu_ram_get_idstr(RAMBlock *rb) 1507 { 1508 return rb->idstr; 1509 } 1510 1511 void *qemu_ram_get_host_addr(RAMBlock *rb) 1512 { 1513 return rb->host; 1514 } 1515 1516 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1517 { 1518 return rb->offset; 1519 } 1520 1521 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1522 { 1523 return rb->used_length; 1524 } 1525 1526 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1527 { 1528 return rb->max_length; 1529 } 1530 1531 bool qemu_ram_is_shared(RAMBlock *rb) 1532 { 1533 return rb->flags & RAM_SHARED; 1534 } 1535 1536 bool qemu_ram_is_noreserve(RAMBlock *rb) 1537 { 1538 return rb->flags & RAM_NORESERVE; 1539 } 1540 1541 /* Note: Only set at the start of postcopy */ 1542 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1543 { 1544 return rb->flags & RAM_UF_ZEROPAGE; 1545 } 1546 1547 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1548 { 1549 rb->flags |= RAM_UF_ZEROPAGE; 1550 } 1551 1552 bool qemu_ram_is_migratable(RAMBlock *rb) 1553 { 1554 return rb->flags & RAM_MIGRATABLE; 1555 } 1556 1557 void qemu_ram_set_migratable(RAMBlock *rb) 1558 { 1559 rb->flags |= RAM_MIGRATABLE; 1560 } 1561 1562 void qemu_ram_unset_migratable(RAMBlock *rb) 1563 { 1564 rb->flags &= ~RAM_MIGRATABLE; 1565 } 1566 1567 int qemu_ram_get_fd(RAMBlock *rb) 1568 { 1569 return rb->fd; 1570 } 1571 1572 /* Called with iothread lock held. */ 1573 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1574 { 1575 RAMBlock *block; 1576 1577 assert(new_block); 1578 assert(!new_block->idstr[0]); 1579 1580 if (dev) { 1581 char *id = qdev_get_dev_path(dev); 1582 if (id) { 1583 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1584 g_free(id); 1585 } 1586 } 1587 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1588 1589 RCU_READ_LOCK_GUARD(); 1590 RAMBLOCK_FOREACH(block) { 1591 if (block != new_block && 1592 !strcmp(block->idstr, new_block->idstr)) { 1593 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1594 new_block->idstr); 1595 abort(); 1596 } 1597 } 1598 } 1599 1600 /* Called with iothread lock held. */ 1601 void qemu_ram_unset_idstr(RAMBlock *block) 1602 { 1603 /* FIXME: arch_init.c assumes that this is not called throughout 1604 * migration. Ignore the problem since hot-unplug during migration 1605 * does not work anyway. 1606 */ 1607 if (block) { 1608 memset(block->idstr, 0, sizeof(block->idstr)); 1609 } 1610 } 1611 1612 size_t qemu_ram_pagesize(RAMBlock *rb) 1613 { 1614 return rb->page_size; 1615 } 1616 1617 /* Returns the largest size of page in use */ 1618 size_t qemu_ram_pagesize_largest(void) 1619 { 1620 RAMBlock *block; 1621 size_t largest = 0; 1622 1623 RAMBLOCK_FOREACH(block) { 1624 largest = MAX(largest, qemu_ram_pagesize(block)); 1625 } 1626 1627 return largest; 1628 } 1629 1630 static int memory_try_enable_merging(void *addr, size_t len) 1631 { 1632 if (!machine_mem_merge(current_machine)) { 1633 /* disabled by the user */ 1634 return 0; 1635 } 1636 1637 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1638 } 1639 1640 /* 1641 * Resizing RAM while migrating can result in the migration being canceled. 1642 * Care has to be taken if the guest might have already detected the memory. 1643 * 1644 * As memory core doesn't know how is memory accessed, it is up to 1645 * resize callback to update device state and/or add assertions to detect 1646 * misuse, if necessary. 1647 */ 1648 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1649 { 1650 const ram_addr_t oldsize = block->used_length; 1651 const ram_addr_t unaligned_size = newsize; 1652 1653 assert(block); 1654 1655 newsize = HOST_PAGE_ALIGN(newsize); 1656 1657 if (block->used_length == newsize) { 1658 /* 1659 * We don't have to resize the ram block (which only knows aligned 1660 * sizes), however, we have to notify if the unaligned size changed. 1661 */ 1662 if (unaligned_size != memory_region_size(block->mr)) { 1663 memory_region_set_size(block->mr, unaligned_size); 1664 if (block->resized) { 1665 block->resized(block->idstr, unaligned_size, block->host); 1666 } 1667 } 1668 return 0; 1669 } 1670 1671 if (!(block->flags & RAM_RESIZEABLE)) { 1672 error_setg_errno(errp, EINVAL, 1673 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1674 " != 0x" RAM_ADDR_FMT, block->idstr, 1675 newsize, block->used_length); 1676 return -EINVAL; 1677 } 1678 1679 if (block->max_length < newsize) { 1680 error_setg_errno(errp, EINVAL, 1681 "Size too large: %s: 0x" RAM_ADDR_FMT 1682 " > 0x" RAM_ADDR_FMT, block->idstr, 1683 newsize, block->max_length); 1684 return -EINVAL; 1685 } 1686 1687 /* Notify before modifying the ram block and touching the bitmaps. */ 1688 if (block->host) { 1689 ram_block_notify_resize(block->host, oldsize, newsize); 1690 } 1691 1692 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1693 block->used_length = newsize; 1694 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1695 DIRTY_CLIENTS_ALL); 1696 memory_region_set_size(block->mr, unaligned_size); 1697 if (block->resized) { 1698 block->resized(block->idstr, unaligned_size, block->host); 1699 } 1700 return 0; 1701 } 1702 1703 /* 1704 * Trigger sync on the given ram block for range [start, start + length] 1705 * with the backing store if one is available. 1706 * Otherwise no-op. 1707 * @Note: this is supposed to be a synchronous op. 1708 */ 1709 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1710 { 1711 /* The requested range should fit in within the block range */ 1712 g_assert((start + length) <= block->used_length); 1713 1714 #ifdef CONFIG_LIBPMEM 1715 /* The lack of support for pmem should not block the sync */ 1716 if (ramblock_is_pmem(block)) { 1717 void *addr = ramblock_ptr(block, start); 1718 pmem_persist(addr, length); 1719 return; 1720 } 1721 #endif 1722 if (block->fd >= 0) { 1723 /** 1724 * Case there is no support for PMEM or the memory has not been 1725 * specified as persistent (or is not one) - use the msync. 1726 * Less optimal but still achieves the same goal 1727 */ 1728 void *addr = ramblock_ptr(block, start); 1729 if (qemu_msync(addr, length, block->fd)) { 1730 warn_report("%s: failed to sync memory range: start: " 1731 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1732 __func__, start, length); 1733 } 1734 } 1735 } 1736 1737 /* Called with ram_list.mutex held */ 1738 static void dirty_memory_extend(ram_addr_t old_ram_size, 1739 ram_addr_t new_ram_size) 1740 { 1741 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1742 DIRTY_MEMORY_BLOCK_SIZE); 1743 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1744 DIRTY_MEMORY_BLOCK_SIZE); 1745 int i; 1746 1747 /* Only need to extend if block count increased */ 1748 if (new_num_blocks <= old_num_blocks) { 1749 return; 1750 } 1751 1752 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1753 DirtyMemoryBlocks *old_blocks; 1754 DirtyMemoryBlocks *new_blocks; 1755 int j; 1756 1757 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1758 new_blocks = g_malloc(sizeof(*new_blocks) + 1759 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1760 1761 if (old_num_blocks) { 1762 memcpy(new_blocks->blocks, old_blocks->blocks, 1763 old_num_blocks * sizeof(old_blocks->blocks[0])); 1764 } 1765 1766 for (j = old_num_blocks; j < new_num_blocks; j++) { 1767 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1768 } 1769 1770 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1771 1772 if (old_blocks) { 1773 g_free_rcu(old_blocks, rcu); 1774 } 1775 } 1776 } 1777 1778 static void ram_block_add(RAMBlock *new_block, Error **errp) 1779 { 1780 const bool noreserve = qemu_ram_is_noreserve(new_block); 1781 const bool shared = qemu_ram_is_shared(new_block); 1782 RAMBlock *block; 1783 RAMBlock *last_block = NULL; 1784 ram_addr_t old_ram_size, new_ram_size; 1785 Error *err = NULL; 1786 1787 old_ram_size = last_ram_page(); 1788 1789 qemu_mutex_lock_ramlist(); 1790 new_block->offset = find_ram_offset(new_block->max_length); 1791 1792 if (!new_block->host) { 1793 if (xen_enabled()) { 1794 xen_ram_alloc(new_block->offset, new_block->max_length, 1795 new_block->mr, &err); 1796 if (err) { 1797 error_propagate(errp, err); 1798 qemu_mutex_unlock_ramlist(); 1799 return; 1800 } 1801 } else { 1802 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1803 &new_block->mr->align, 1804 shared, noreserve); 1805 if (!new_block->host) { 1806 error_setg_errno(errp, errno, 1807 "cannot set up guest memory '%s'", 1808 memory_region_name(new_block->mr)); 1809 qemu_mutex_unlock_ramlist(); 1810 return; 1811 } 1812 memory_try_enable_merging(new_block->host, new_block->max_length); 1813 } 1814 } 1815 1816 new_ram_size = MAX(old_ram_size, 1817 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1818 if (new_ram_size > old_ram_size) { 1819 dirty_memory_extend(old_ram_size, new_ram_size); 1820 } 1821 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1822 * QLIST (which has an RCU-friendly variant) does not have insertion at 1823 * tail, so save the last element in last_block. 1824 */ 1825 RAMBLOCK_FOREACH(block) { 1826 last_block = block; 1827 if (block->max_length < new_block->max_length) { 1828 break; 1829 } 1830 } 1831 if (block) { 1832 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1833 } else if (last_block) { 1834 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1835 } else { /* list is empty */ 1836 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1837 } 1838 ram_list.mru_block = NULL; 1839 1840 /* Write list before version */ 1841 smp_wmb(); 1842 ram_list.version++; 1843 qemu_mutex_unlock_ramlist(); 1844 1845 cpu_physical_memory_set_dirty_range(new_block->offset, 1846 new_block->used_length, 1847 DIRTY_CLIENTS_ALL); 1848 1849 if (new_block->host) { 1850 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1851 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1852 /* 1853 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1854 * Configure it unless the machine is a qtest server, in which case 1855 * KVM is not used and it may be forked (eg for fuzzing purposes). 1856 */ 1857 if (!qtest_enabled()) { 1858 qemu_madvise(new_block->host, new_block->max_length, 1859 QEMU_MADV_DONTFORK); 1860 } 1861 ram_block_notify_add(new_block->host, new_block->used_length, 1862 new_block->max_length); 1863 } 1864 } 1865 1866 #ifdef CONFIG_POSIX 1867 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1868 uint32_t ram_flags, int fd, off_t offset, 1869 bool readonly, Error **errp) 1870 { 1871 RAMBlock *new_block; 1872 Error *local_err = NULL; 1873 int64_t file_size, file_align; 1874 1875 /* Just support these ram flags by now. */ 1876 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1877 RAM_PROTECTED)) == 0); 1878 1879 if (xen_enabled()) { 1880 error_setg(errp, "-mem-path not supported with Xen"); 1881 return NULL; 1882 } 1883 1884 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1885 error_setg(errp, 1886 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1887 return NULL; 1888 } 1889 1890 size = HOST_PAGE_ALIGN(size); 1891 file_size = get_file_size(fd); 1892 if (file_size > 0 && file_size < size) { 1893 error_setg(errp, "backing store size 0x%" PRIx64 1894 " does not match 'size' option 0x" RAM_ADDR_FMT, 1895 file_size, size); 1896 return NULL; 1897 } 1898 1899 file_align = get_file_align(fd); 1900 if (file_align > 0 && file_align > mr->align) { 1901 error_setg(errp, "backing store align 0x%" PRIx64 1902 " is larger than 'align' option 0x%" PRIx64, 1903 file_align, mr->align); 1904 return NULL; 1905 } 1906 1907 new_block = g_malloc0(sizeof(*new_block)); 1908 new_block->mr = mr; 1909 new_block->used_length = size; 1910 new_block->max_length = size; 1911 new_block->flags = ram_flags; 1912 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 1913 !file_size, offset, errp); 1914 if (!new_block->host) { 1915 g_free(new_block); 1916 return NULL; 1917 } 1918 1919 ram_block_add(new_block, &local_err); 1920 if (local_err) { 1921 g_free(new_block); 1922 error_propagate(errp, local_err); 1923 return NULL; 1924 } 1925 return new_block; 1926 1927 } 1928 1929 1930 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1931 uint32_t ram_flags, const char *mem_path, 1932 bool readonly, Error **errp) 1933 { 1934 int fd; 1935 bool created; 1936 RAMBlock *block; 1937 1938 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 1939 errp); 1940 if (fd < 0) { 1941 return NULL; 1942 } 1943 1944 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 1945 if (!block) { 1946 if (created) { 1947 unlink(mem_path); 1948 } 1949 close(fd); 1950 return NULL; 1951 } 1952 1953 return block; 1954 } 1955 #endif 1956 1957 static 1958 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 1959 void (*resized)(const char*, 1960 uint64_t length, 1961 void *host), 1962 void *host, uint32_t ram_flags, 1963 MemoryRegion *mr, Error **errp) 1964 { 1965 RAMBlock *new_block; 1966 Error *local_err = NULL; 1967 1968 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 1969 RAM_NORESERVE)) == 0); 1970 assert(!host ^ (ram_flags & RAM_PREALLOC)); 1971 1972 size = HOST_PAGE_ALIGN(size); 1973 max_size = HOST_PAGE_ALIGN(max_size); 1974 new_block = g_malloc0(sizeof(*new_block)); 1975 new_block->mr = mr; 1976 new_block->resized = resized; 1977 new_block->used_length = size; 1978 new_block->max_length = max_size; 1979 assert(max_size >= size); 1980 new_block->fd = -1; 1981 new_block->page_size = qemu_real_host_page_size(); 1982 new_block->host = host; 1983 new_block->flags = ram_flags; 1984 ram_block_add(new_block, &local_err); 1985 if (local_err) { 1986 g_free(new_block); 1987 error_propagate(errp, local_err); 1988 return NULL; 1989 } 1990 return new_block; 1991 } 1992 1993 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 1994 MemoryRegion *mr, Error **errp) 1995 { 1996 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 1997 errp); 1998 } 1999 2000 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2001 MemoryRegion *mr, Error **errp) 2002 { 2003 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2004 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2005 } 2006 2007 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2008 void (*resized)(const char*, 2009 uint64_t length, 2010 void *host), 2011 MemoryRegion *mr, Error **errp) 2012 { 2013 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2014 RAM_RESIZEABLE, mr, errp); 2015 } 2016 2017 static void reclaim_ramblock(RAMBlock *block) 2018 { 2019 if (block->flags & RAM_PREALLOC) { 2020 ; 2021 } else if (xen_enabled()) { 2022 xen_invalidate_map_cache_entry(block->host); 2023 #ifndef _WIN32 2024 } else if (block->fd >= 0) { 2025 qemu_ram_munmap(block->fd, block->host, block->max_length); 2026 close(block->fd); 2027 #endif 2028 } else { 2029 qemu_anon_ram_free(block->host, block->max_length); 2030 } 2031 g_free(block); 2032 } 2033 2034 void qemu_ram_free(RAMBlock *block) 2035 { 2036 if (!block) { 2037 return; 2038 } 2039 2040 if (block->host) { 2041 ram_block_notify_remove(block->host, block->used_length, 2042 block->max_length); 2043 } 2044 2045 qemu_mutex_lock_ramlist(); 2046 QLIST_REMOVE_RCU(block, next); 2047 ram_list.mru_block = NULL; 2048 /* Write list before version */ 2049 smp_wmb(); 2050 ram_list.version++; 2051 call_rcu(block, reclaim_ramblock, rcu); 2052 qemu_mutex_unlock_ramlist(); 2053 } 2054 2055 #ifndef _WIN32 2056 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2057 { 2058 RAMBlock *block; 2059 ram_addr_t offset; 2060 int flags; 2061 void *area, *vaddr; 2062 2063 RAMBLOCK_FOREACH(block) { 2064 offset = addr - block->offset; 2065 if (offset < block->max_length) { 2066 vaddr = ramblock_ptr(block, offset); 2067 if (block->flags & RAM_PREALLOC) { 2068 ; 2069 } else if (xen_enabled()) { 2070 abort(); 2071 } else { 2072 flags = MAP_FIXED; 2073 flags |= block->flags & RAM_SHARED ? 2074 MAP_SHARED : MAP_PRIVATE; 2075 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2076 if (block->fd >= 0) { 2077 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2078 flags, block->fd, offset); 2079 } else { 2080 flags |= MAP_ANONYMOUS; 2081 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2082 flags, -1, 0); 2083 } 2084 if (area != vaddr) { 2085 error_report("Could not remap addr: " 2086 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2087 length, addr); 2088 exit(1); 2089 } 2090 memory_try_enable_merging(vaddr, length); 2091 qemu_ram_setup_dump(vaddr, length); 2092 } 2093 } 2094 } 2095 } 2096 #endif /* !_WIN32 */ 2097 2098 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2099 * This should not be used for general purpose DMA. Use address_space_map 2100 * or address_space_rw instead. For local memory (e.g. video ram) that the 2101 * device owns, use memory_region_get_ram_ptr. 2102 * 2103 * Called within RCU critical section. 2104 */ 2105 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2106 { 2107 RAMBlock *block = ram_block; 2108 2109 if (block == NULL) { 2110 block = qemu_get_ram_block(addr); 2111 addr -= block->offset; 2112 } 2113 2114 if (xen_enabled() && block->host == NULL) { 2115 /* We need to check if the requested address is in the RAM 2116 * because we don't want to map the entire memory in QEMU. 2117 * In that case just map until the end of the page. 2118 */ 2119 if (block->offset == 0) { 2120 return xen_map_cache(addr, 0, 0, false); 2121 } 2122 2123 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2124 } 2125 return ramblock_ptr(block, addr); 2126 } 2127 2128 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2129 * but takes a size argument. 2130 * 2131 * Called within RCU critical section. 2132 */ 2133 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2134 hwaddr *size, bool lock) 2135 { 2136 RAMBlock *block = ram_block; 2137 if (*size == 0) { 2138 return NULL; 2139 } 2140 2141 if (block == NULL) { 2142 block = qemu_get_ram_block(addr); 2143 addr -= block->offset; 2144 } 2145 *size = MIN(*size, block->max_length - addr); 2146 2147 if (xen_enabled() && block->host == NULL) { 2148 /* We need to check if the requested address is in the RAM 2149 * because we don't want to map the entire memory in QEMU. 2150 * In that case just map the requested area. 2151 */ 2152 if (block->offset == 0) { 2153 return xen_map_cache(addr, *size, lock, lock); 2154 } 2155 2156 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2157 } 2158 2159 return ramblock_ptr(block, addr); 2160 } 2161 2162 /* Return the offset of a hostpointer within a ramblock */ 2163 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2164 { 2165 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2166 assert((uintptr_t)host >= (uintptr_t)rb->host); 2167 assert(res < rb->max_length); 2168 2169 return res; 2170 } 2171 2172 /* 2173 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2174 * in that RAMBlock. 2175 * 2176 * ptr: Host pointer to look up 2177 * round_offset: If true round the result offset down to a page boundary 2178 * *ram_addr: set to result ram_addr 2179 * *offset: set to result offset within the RAMBlock 2180 * 2181 * Returns: RAMBlock (or NULL if not found) 2182 * 2183 * By the time this function returns, the returned pointer is not protected 2184 * by RCU anymore. If the caller is not within an RCU critical section and 2185 * does not hold the iothread lock, it must have other means of protecting the 2186 * pointer, such as a reference to the region that includes the incoming 2187 * ram_addr_t. 2188 */ 2189 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2190 ram_addr_t *offset) 2191 { 2192 RAMBlock *block; 2193 uint8_t *host = ptr; 2194 2195 if (xen_enabled()) { 2196 ram_addr_t ram_addr; 2197 RCU_READ_LOCK_GUARD(); 2198 ram_addr = xen_ram_addr_from_mapcache(ptr); 2199 block = qemu_get_ram_block(ram_addr); 2200 if (block) { 2201 *offset = ram_addr - block->offset; 2202 } 2203 return block; 2204 } 2205 2206 RCU_READ_LOCK_GUARD(); 2207 block = qatomic_rcu_read(&ram_list.mru_block); 2208 if (block && block->host && host - block->host < block->max_length) { 2209 goto found; 2210 } 2211 2212 RAMBLOCK_FOREACH(block) { 2213 /* This case append when the block is not mapped. */ 2214 if (block->host == NULL) { 2215 continue; 2216 } 2217 if (host - block->host < block->max_length) { 2218 goto found; 2219 } 2220 } 2221 2222 return NULL; 2223 2224 found: 2225 *offset = (host - block->host); 2226 if (round_offset) { 2227 *offset &= TARGET_PAGE_MASK; 2228 } 2229 return block; 2230 } 2231 2232 /* 2233 * Finds the named RAMBlock 2234 * 2235 * name: The name of RAMBlock to find 2236 * 2237 * Returns: RAMBlock (or NULL if not found) 2238 */ 2239 RAMBlock *qemu_ram_block_by_name(const char *name) 2240 { 2241 RAMBlock *block; 2242 2243 RAMBLOCK_FOREACH(block) { 2244 if (!strcmp(name, block->idstr)) { 2245 return block; 2246 } 2247 } 2248 2249 return NULL; 2250 } 2251 2252 /* Some of the softmmu routines need to translate from a host pointer 2253 (typically a TLB entry) back to a ram offset. */ 2254 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2255 { 2256 RAMBlock *block; 2257 ram_addr_t offset; 2258 2259 block = qemu_ram_block_from_host(ptr, false, &offset); 2260 if (!block) { 2261 return RAM_ADDR_INVALID; 2262 } 2263 2264 return block->offset + offset; 2265 } 2266 2267 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2268 { 2269 ram_addr_t ram_addr; 2270 2271 ram_addr = qemu_ram_addr_from_host(ptr); 2272 if (ram_addr == RAM_ADDR_INVALID) { 2273 error_report("Bad ram pointer %p", ptr); 2274 abort(); 2275 } 2276 return ram_addr; 2277 } 2278 2279 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2280 MemTxAttrs attrs, void *buf, hwaddr len); 2281 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2282 const void *buf, hwaddr len); 2283 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2284 bool is_write, MemTxAttrs attrs); 2285 2286 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2287 unsigned len, MemTxAttrs attrs) 2288 { 2289 subpage_t *subpage = opaque; 2290 uint8_t buf[8]; 2291 MemTxResult res; 2292 2293 #if defined(DEBUG_SUBPAGE) 2294 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2295 subpage, len, addr); 2296 #endif 2297 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2298 if (res) { 2299 return res; 2300 } 2301 *data = ldn_p(buf, len); 2302 return MEMTX_OK; 2303 } 2304 2305 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2306 uint64_t value, unsigned len, MemTxAttrs attrs) 2307 { 2308 subpage_t *subpage = opaque; 2309 uint8_t buf[8]; 2310 2311 #if defined(DEBUG_SUBPAGE) 2312 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2313 " value %"PRIx64"\n", 2314 __func__, subpage, len, addr, value); 2315 #endif 2316 stn_p(buf, len, value); 2317 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2318 } 2319 2320 static bool subpage_accepts(void *opaque, hwaddr addr, 2321 unsigned len, bool is_write, 2322 MemTxAttrs attrs) 2323 { 2324 subpage_t *subpage = opaque; 2325 #if defined(DEBUG_SUBPAGE) 2326 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2327 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2328 #endif 2329 2330 return flatview_access_valid(subpage->fv, addr + subpage->base, 2331 len, is_write, attrs); 2332 } 2333 2334 static const MemoryRegionOps subpage_ops = { 2335 .read_with_attrs = subpage_read, 2336 .write_with_attrs = subpage_write, 2337 .impl.min_access_size = 1, 2338 .impl.max_access_size = 8, 2339 .valid.min_access_size = 1, 2340 .valid.max_access_size = 8, 2341 .valid.accepts = subpage_accepts, 2342 .endianness = DEVICE_NATIVE_ENDIAN, 2343 }; 2344 2345 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2346 uint16_t section) 2347 { 2348 int idx, eidx; 2349 2350 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2351 return -1; 2352 idx = SUBPAGE_IDX(start); 2353 eidx = SUBPAGE_IDX(end); 2354 #if defined(DEBUG_SUBPAGE) 2355 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2356 __func__, mmio, start, end, idx, eidx, section); 2357 #endif 2358 for (; idx <= eidx; idx++) { 2359 mmio->sub_section[idx] = section; 2360 } 2361 2362 return 0; 2363 } 2364 2365 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2366 { 2367 subpage_t *mmio; 2368 2369 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2370 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2371 mmio->fv = fv; 2372 mmio->base = base; 2373 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2374 NULL, TARGET_PAGE_SIZE); 2375 mmio->iomem.subpage = true; 2376 #if defined(DEBUG_SUBPAGE) 2377 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2378 mmio, base, TARGET_PAGE_SIZE); 2379 #endif 2380 2381 return mmio; 2382 } 2383 2384 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2385 { 2386 assert(fv); 2387 MemoryRegionSection section = { 2388 .fv = fv, 2389 .mr = mr, 2390 .offset_within_address_space = 0, 2391 .offset_within_region = 0, 2392 .size = int128_2_64(), 2393 }; 2394 2395 return phys_section_add(map, §ion); 2396 } 2397 2398 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2399 hwaddr index, MemTxAttrs attrs) 2400 { 2401 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2402 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2403 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2404 MemoryRegionSection *sections = d->map.sections; 2405 2406 return §ions[index & ~TARGET_PAGE_MASK]; 2407 } 2408 2409 static void io_mem_init(void) 2410 { 2411 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2412 NULL, UINT64_MAX); 2413 } 2414 2415 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2416 { 2417 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2418 uint16_t n; 2419 2420 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2421 assert(n == PHYS_SECTION_UNASSIGNED); 2422 2423 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2424 2425 return d; 2426 } 2427 2428 void address_space_dispatch_free(AddressSpaceDispatch *d) 2429 { 2430 phys_sections_free(&d->map); 2431 g_free(d); 2432 } 2433 2434 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2435 { 2436 } 2437 2438 static void tcg_log_global_after_sync(MemoryListener *listener) 2439 { 2440 CPUAddressSpace *cpuas; 2441 2442 /* Wait for the CPU to end the current TB. This avoids the following 2443 * incorrect race: 2444 * 2445 * vCPU migration 2446 * ---------------------- ------------------------- 2447 * TLB check -> slow path 2448 * notdirty_mem_write 2449 * write to RAM 2450 * mark dirty 2451 * clear dirty flag 2452 * TLB check -> fast path 2453 * read memory 2454 * write to RAM 2455 * 2456 * by pushing the migration thread's memory read after the vCPU thread has 2457 * written the memory. 2458 */ 2459 if (replay_mode == REPLAY_MODE_NONE) { 2460 /* 2461 * VGA can make calls to this function while updating the screen. 2462 * In record/replay mode this causes a deadlock, because 2463 * run_on_cpu waits for rr mutex. Therefore no races are possible 2464 * in this case and no need for making run_on_cpu when 2465 * record/replay is enabled. 2466 */ 2467 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2468 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2469 } 2470 } 2471 2472 static void tcg_commit(MemoryListener *listener) 2473 { 2474 CPUAddressSpace *cpuas; 2475 AddressSpaceDispatch *d; 2476 2477 assert(tcg_enabled()); 2478 /* since each CPU stores ram addresses in its TLB cache, we must 2479 reset the modified entries */ 2480 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2481 cpu_reloading_memory_map(); 2482 /* The CPU and TLB are protected by the iothread lock. 2483 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2484 * may have split the RCU critical section. 2485 */ 2486 d = address_space_to_dispatch(cpuas->as); 2487 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2488 tlb_flush(cpuas->cpu); 2489 } 2490 2491 static void memory_map_init(void) 2492 { 2493 system_memory = g_malloc(sizeof(*system_memory)); 2494 2495 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2496 address_space_init(&address_space_memory, system_memory, "memory"); 2497 2498 system_io = g_malloc(sizeof(*system_io)); 2499 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2500 65536); 2501 address_space_init(&address_space_io, system_io, "I/O"); 2502 } 2503 2504 MemoryRegion *get_system_memory(void) 2505 { 2506 return system_memory; 2507 } 2508 2509 MemoryRegion *get_system_io(void) 2510 { 2511 return system_io; 2512 } 2513 2514 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2515 hwaddr length) 2516 { 2517 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2518 addr += memory_region_get_ram_addr(mr); 2519 2520 /* No early return if dirty_log_mask is or becomes 0, because 2521 * cpu_physical_memory_set_dirty_range will still call 2522 * xen_modified_memory. 2523 */ 2524 if (dirty_log_mask) { 2525 dirty_log_mask = 2526 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2527 } 2528 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2529 assert(tcg_enabled()); 2530 tb_invalidate_phys_range(addr, addr + length - 1); 2531 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2532 } 2533 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2534 } 2535 2536 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2537 { 2538 /* 2539 * In principle this function would work on other memory region types too, 2540 * but the ROM device use case is the only one where this operation is 2541 * necessary. Other memory regions should use the 2542 * address_space_read/write() APIs. 2543 */ 2544 assert(memory_region_is_romd(mr)); 2545 2546 invalidate_and_set_dirty(mr, addr, size); 2547 } 2548 2549 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2550 { 2551 unsigned access_size_max = mr->ops->valid.max_access_size; 2552 2553 /* Regions are assumed to support 1-4 byte accesses unless 2554 otherwise specified. */ 2555 if (access_size_max == 0) { 2556 access_size_max = 4; 2557 } 2558 2559 /* Bound the maximum access by the alignment of the address. */ 2560 if (!mr->ops->impl.unaligned) { 2561 unsigned align_size_max = addr & -addr; 2562 if (align_size_max != 0 && align_size_max < access_size_max) { 2563 access_size_max = align_size_max; 2564 } 2565 } 2566 2567 /* Don't attempt accesses larger than the maximum. */ 2568 if (l > access_size_max) { 2569 l = access_size_max; 2570 } 2571 l = pow2floor(l); 2572 2573 return l; 2574 } 2575 2576 bool prepare_mmio_access(MemoryRegion *mr) 2577 { 2578 bool release_lock = false; 2579 2580 if (!qemu_mutex_iothread_locked()) { 2581 qemu_mutex_lock_iothread(); 2582 release_lock = true; 2583 } 2584 if (mr->flush_coalesced_mmio) { 2585 qemu_flush_coalesced_mmio_buffer(); 2586 } 2587 2588 return release_lock; 2589 } 2590 2591 /** 2592 * flatview_access_allowed 2593 * @mr: #MemoryRegion to be accessed 2594 * @attrs: memory transaction attributes 2595 * @addr: address within that memory region 2596 * @len: the number of bytes to access 2597 * 2598 * Check if a memory transaction is allowed. 2599 * 2600 * Returns: true if transaction is allowed, false if denied. 2601 */ 2602 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2603 hwaddr addr, hwaddr len) 2604 { 2605 if (likely(!attrs.memory)) { 2606 return true; 2607 } 2608 if (memory_region_is_ram(mr)) { 2609 return true; 2610 } 2611 qemu_log_mask(LOG_GUEST_ERROR, 2612 "Invalid access to non-RAM device at " 2613 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2614 "region '%s'\n", addr, len, memory_region_name(mr)); 2615 return false; 2616 } 2617 2618 /* Called within RCU critical section. */ 2619 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2620 MemTxAttrs attrs, 2621 const void *ptr, 2622 hwaddr len, hwaddr addr1, 2623 hwaddr l, MemoryRegion *mr) 2624 { 2625 uint8_t *ram_ptr; 2626 uint64_t val; 2627 MemTxResult result = MEMTX_OK; 2628 bool release_lock = false; 2629 const uint8_t *buf = ptr; 2630 2631 for (;;) { 2632 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2633 result |= MEMTX_ACCESS_ERROR; 2634 /* Keep going. */ 2635 } else if (!memory_access_is_direct(mr, true)) { 2636 release_lock |= prepare_mmio_access(mr); 2637 l = memory_access_size(mr, l, addr1); 2638 /* XXX: could force current_cpu to NULL to avoid 2639 potential bugs */ 2640 val = ldn_he_p(buf, l); 2641 result |= memory_region_dispatch_write(mr, addr1, val, 2642 size_memop(l), attrs); 2643 } else { 2644 /* RAM case */ 2645 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2646 memmove(ram_ptr, buf, l); 2647 invalidate_and_set_dirty(mr, addr1, l); 2648 } 2649 2650 if (release_lock) { 2651 qemu_mutex_unlock_iothread(); 2652 release_lock = false; 2653 } 2654 2655 len -= l; 2656 buf += l; 2657 addr += l; 2658 2659 if (!len) { 2660 break; 2661 } 2662 2663 l = len; 2664 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2665 } 2666 2667 return result; 2668 } 2669 2670 /* Called from RCU critical section. */ 2671 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2672 const void *buf, hwaddr len) 2673 { 2674 hwaddr l; 2675 hwaddr addr1; 2676 MemoryRegion *mr; 2677 2678 l = len; 2679 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2680 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2681 return MEMTX_ACCESS_ERROR; 2682 } 2683 return flatview_write_continue(fv, addr, attrs, buf, len, 2684 addr1, l, mr); 2685 } 2686 2687 /* Called within RCU critical section. */ 2688 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2689 MemTxAttrs attrs, void *ptr, 2690 hwaddr len, hwaddr addr1, hwaddr l, 2691 MemoryRegion *mr) 2692 { 2693 uint8_t *ram_ptr; 2694 uint64_t val; 2695 MemTxResult result = MEMTX_OK; 2696 bool release_lock = false; 2697 uint8_t *buf = ptr; 2698 2699 fuzz_dma_read_cb(addr, len, mr); 2700 for (;;) { 2701 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2702 result |= MEMTX_ACCESS_ERROR; 2703 /* Keep going. */ 2704 } else if (!memory_access_is_direct(mr, false)) { 2705 /* I/O case */ 2706 release_lock |= prepare_mmio_access(mr); 2707 l = memory_access_size(mr, l, addr1); 2708 result |= memory_region_dispatch_read(mr, addr1, &val, 2709 size_memop(l), attrs); 2710 stn_he_p(buf, l, val); 2711 } else { 2712 /* RAM case */ 2713 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2714 memcpy(buf, ram_ptr, l); 2715 } 2716 2717 if (release_lock) { 2718 qemu_mutex_unlock_iothread(); 2719 release_lock = false; 2720 } 2721 2722 len -= l; 2723 buf += l; 2724 addr += l; 2725 2726 if (!len) { 2727 break; 2728 } 2729 2730 l = len; 2731 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2732 } 2733 2734 return result; 2735 } 2736 2737 /* Called from RCU critical section. */ 2738 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2739 MemTxAttrs attrs, void *buf, hwaddr len) 2740 { 2741 hwaddr l; 2742 hwaddr addr1; 2743 MemoryRegion *mr; 2744 2745 l = len; 2746 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2747 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2748 return MEMTX_ACCESS_ERROR; 2749 } 2750 return flatview_read_continue(fv, addr, attrs, buf, len, 2751 addr1, l, mr); 2752 } 2753 2754 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2755 MemTxAttrs attrs, void *buf, hwaddr len) 2756 { 2757 MemTxResult result = MEMTX_OK; 2758 FlatView *fv; 2759 2760 if (len > 0) { 2761 RCU_READ_LOCK_GUARD(); 2762 fv = address_space_to_flatview(as); 2763 result = flatview_read(fv, addr, attrs, buf, len); 2764 } 2765 2766 return result; 2767 } 2768 2769 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2770 MemTxAttrs attrs, 2771 const void *buf, hwaddr len) 2772 { 2773 MemTxResult result = MEMTX_OK; 2774 FlatView *fv; 2775 2776 if (len > 0) { 2777 RCU_READ_LOCK_GUARD(); 2778 fv = address_space_to_flatview(as); 2779 result = flatview_write(fv, addr, attrs, buf, len); 2780 } 2781 2782 return result; 2783 } 2784 2785 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2786 void *buf, hwaddr len, bool is_write) 2787 { 2788 if (is_write) { 2789 return address_space_write(as, addr, attrs, buf, len); 2790 } else { 2791 return address_space_read_full(as, addr, attrs, buf, len); 2792 } 2793 } 2794 2795 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2796 uint8_t c, hwaddr len, MemTxAttrs attrs) 2797 { 2798 #define FILLBUF_SIZE 512 2799 uint8_t fillbuf[FILLBUF_SIZE]; 2800 int l; 2801 MemTxResult error = MEMTX_OK; 2802 2803 memset(fillbuf, c, FILLBUF_SIZE); 2804 while (len > 0) { 2805 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2806 error |= address_space_write(as, addr, attrs, fillbuf, l); 2807 len -= l; 2808 addr += l; 2809 } 2810 2811 return error; 2812 } 2813 2814 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2815 hwaddr len, bool is_write) 2816 { 2817 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2818 buf, len, is_write); 2819 } 2820 2821 enum write_rom_type { 2822 WRITE_DATA, 2823 FLUSH_CACHE, 2824 }; 2825 2826 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2827 hwaddr addr, 2828 MemTxAttrs attrs, 2829 const void *ptr, 2830 hwaddr len, 2831 enum write_rom_type type) 2832 { 2833 hwaddr l; 2834 uint8_t *ram_ptr; 2835 hwaddr addr1; 2836 MemoryRegion *mr; 2837 const uint8_t *buf = ptr; 2838 2839 RCU_READ_LOCK_GUARD(); 2840 while (len > 0) { 2841 l = len; 2842 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2843 2844 if (!(memory_region_is_ram(mr) || 2845 memory_region_is_romd(mr))) { 2846 l = memory_access_size(mr, l, addr1); 2847 } else { 2848 /* ROM/RAM case */ 2849 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2850 switch (type) { 2851 case WRITE_DATA: 2852 memcpy(ram_ptr, buf, l); 2853 invalidate_and_set_dirty(mr, addr1, l); 2854 break; 2855 case FLUSH_CACHE: 2856 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2857 break; 2858 } 2859 } 2860 len -= l; 2861 buf += l; 2862 addr += l; 2863 } 2864 return MEMTX_OK; 2865 } 2866 2867 /* used for ROM loading : can write in RAM and ROM */ 2868 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2869 MemTxAttrs attrs, 2870 const void *buf, hwaddr len) 2871 { 2872 return address_space_write_rom_internal(as, addr, attrs, 2873 buf, len, WRITE_DATA); 2874 } 2875 2876 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2877 { 2878 /* 2879 * This function should do the same thing as an icache flush that was 2880 * triggered from within the guest. For TCG we are always cache coherent, 2881 * so there is no need to flush anything. For KVM / Xen we need to flush 2882 * the host's instruction cache at least. 2883 */ 2884 if (tcg_enabled()) { 2885 return; 2886 } 2887 2888 address_space_write_rom_internal(&address_space_memory, 2889 start, MEMTXATTRS_UNSPECIFIED, 2890 NULL, len, FLUSH_CACHE); 2891 } 2892 2893 typedef struct { 2894 MemoryRegion *mr; 2895 void *buffer; 2896 hwaddr addr; 2897 hwaddr len; 2898 bool in_use; 2899 } BounceBuffer; 2900 2901 static BounceBuffer bounce; 2902 2903 typedef struct MapClient { 2904 QEMUBH *bh; 2905 QLIST_ENTRY(MapClient) link; 2906 } MapClient; 2907 2908 QemuMutex map_client_list_lock; 2909 static QLIST_HEAD(, MapClient) map_client_list 2910 = QLIST_HEAD_INITIALIZER(map_client_list); 2911 2912 static void cpu_unregister_map_client_do(MapClient *client) 2913 { 2914 QLIST_REMOVE(client, link); 2915 g_free(client); 2916 } 2917 2918 static void cpu_notify_map_clients_locked(void) 2919 { 2920 MapClient *client; 2921 2922 while (!QLIST_EMPTY(&map_client_list)) { 2923 client = QLIST_FIRST(&map_client_list); 2924 qemu_bh_schedule(client->bh); 2925 cpu_unregister_map_client_do(client); 2926 } 2927 } 2928 2929 void cpu_register_map_client(QEMUBH *bh) 2930 { 2931 MapClient *client = g_malloc(sizeof(*client)); 2932 2933 qemu_mutex_lock(&map_client_list_lock); 2934 client->bh = bh; 2935 QLIST_INSERT_HEAD(&map_client_list, client, link); 2936 /* Write map_client_list before reading in_use. */ 2937 smp_mb(); 2938 if (!qatomic_read(&bounce.in_use)) { 2939 cpu_notify_map_clients_locked(); 2940 } 2941 qemu_mutex_unlock(&map_client_list_lock); 2942 } 2943 2944 void cpu_exec_init_all(void) 2945 { 2946 qemu_mutex_init(&ram_list.mutex); 2947 /* The data structures we set up here depend on knowing the page size, 2948 * so no more changes can be made after this point. 2949 * In an ideal world, nothing we did before we had finished the 2950 * machine setup would care about the target page size, and we could 2951 * do this much later, rather than requiring board models to state 2952 * up front what their requirements are. 2953 */ 2954 finalize_target_page_bits(); 2955 io_mem_init(); 2956 memory_map_init(); 2957 qemu_mutex_init(&map_client_list_lock); 2958 } 2959 2960 void cpu_unregister_map_client(QEMUBH *bh) 2961 { 2962 MapClient *client; 2963 2964 qemu_mutex_lock(&map_client_list_lock); 2965 QLIST_FOREACH(client, &map_client_list, link) { 2966 if (client->bh == bh) { 2967 cpu_unregister_map_client_do(client); 2968 break; 2969 } 2970 } 2971 qemu_mutex_unlock(&map_client_list_lock); 2972 } 2973 2974 static void cpu_notify_map_clients(void) 2975 { 2976 qemu_mutex_lock(&map_client_list_lock); 2977 cpu_notify_map_clients_locked(); 2978 qemu_mutex_unlock(&map_client_list_lock); 2979 } 2980 2981 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2982 bool is_write, MemTxAttrs attrs) 2983 { 2984 MemoryRegion *mr; 2985 hwaddr l, xlat; 2986 2987 while (len > 0) { 2988 l = len; 2989 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 2990 if (!memory_access_is_direct(mr, is_write)) { 2991 l = memory_access_size(mr, l, addr); 2992 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 2993 return false; 2994 } 2995 } 2996 2997 len -= l; 2998 addr += l; 2999 } 3000 return true; 3001 } 3002 3003 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3004 hwaddr len, bool is_write, 3005 MemTxAttrs attrs) 3006 { 3007 FlatView *fv; 3008 3009 RCU_READ_LOCK_GUARD(); 3010 fv = address_space_to_flatview(as); 3011 return flatview_access_valid(fv, addr, len, is_write, attrs); 3012 } 3013 3014 static hwaddr 3015 flatview_extend_translation(FlatView *fv, hwaddr addr, 3016 hwaddr target_len, 3017 MemoryRegion *mr, hwaddr base, hwaddr len, 3018 bool is_write, MemTxAttrs attrs) 3019 { 3020 hwaddr done = 0; 3021 hwaddr xlat; 3022 MemoryRegion *this_mr; 3023 3024 for (;;) { 3025 target_len -= len; 3026 addr += len; 3027 done += len; 3028 if (target_len == 0) { 3029 return done; 3030 } 3031 3032 len = target_len; 3033 this_mr = flatview_translate(fv, addr, &xlat, 3034 &len, is_write, attrs); 3035 if (this_mr != mr || xlat != base + done) { 3036 return done; 3037 } 3038 } 3039 } 3040 3041 /* Map a physical memory region into a host virtual address. 3042 * May map a subset of the requested range, given by and returned in *plen. 3043 * May return NULL if resources needed to perform the mapping are exhausted. 3044 * Use only for reads OR writes - not for read-modify-write operations. 3045 * Use cpu_register_map_client() to know when retrying the map operation is 3046 * likely to succeed. 3047 */ 3048 void *address_space_map(AddressSpace *as, 3049 hwaddr addr, 3050 hwaddr *plen, 3051 bool is_write, 3052 MemTxAttrs attrs) 3053 { 3054 hwaddr len = *plen; 3055 hwaddr l, xlat; 3056 MemoryRegion *mr; 3057 FlatView *fv; 3058 3059 if (len == 0) { 3060 return NULL; 3061 } 3062 3063 l = len; 3064 RCU_READ_LOCK_GUARD(); 3065 fv = address_space_to_flatview(as); 3066 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3067 3068 if (!memory_access_is_direct(mr, is_write)) { 3069 if (qatomic_xchg(&bounce.in_use, true)) { 3070 *plen = 0; 3071 return NULL; 3072 } 3073 /* Avoid unbounded allocations */ 3074 l = MIN(l, TARGET_PAGE_SIZE); 3075 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3076 bounce.addr = addr; 3077 bounce.len = l; 3078 3079 memory_region_ref(mr); 3080 bounce.mr = mr; 3081 if (!is_write) { 3082 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3083 bounce.buffer, l); 3084 } 3085 3086 *plen = l; 3087 return bounce.buffer; 3088 } 3089 3090 3091 memory_region_ref(mr); 3092 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3093 l, is_write, attrs); 3094 fuzz_dma_read_cb(addr, *plen, mr); 3095 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3096 } 3097 3098 /* Unmaps a memory region previously mapped by address_space_map(). 3099 * Will also mark the memory as dirty if is_write is true. access_len gives 3100 * the amount of memory that was actually read or written by the caller. 3101 */ 3102 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3103 bool is_write, hwaddr access_len) 3104 { 3105 if (buffer != bounce.buffer) { 3106 MemoryRegion *mr; 3107 ram_addr_t addr1; 3108 3109 mr = memory_region_from_host(buffer, &addr1); 3110 assert(mr != NULL); 3111 if (is_write) { 3112 invalidate_and_set_dirty(mr, addr1, access_len); 3113 } 3114 if (xen_enabled()) { 3115 xen_invalidate_map_cache_entry(buffer); 3116 } 3117 memory_region_unref(mr); 3118 return; 3119 } 3120 if (is_write) { 3121 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3122 bounce.buffer, access_len); 3123 } 3124 qemu_vfree(bounce.buffer); 3125 bounce.buffer = NULL; 3126 memory_region_unref(bounce.mr); 3127 /* Clear in_use before reading map_client_list. */ 3128 qatomic_mb_set(&bounce.in_use, false); 3129 cpu_notify_map_clients(); 3130 } 3131 3132 void *cpu_physical_memory_map(hwaddr addr, 3133 hwaddr *plen, 3134 bool is_write) 3135 { 3136 return address_space_map(&address_space_memory, addr, plen, is_write, 3137 MEMTXATTRS_UNSPECIFIED); 3138 } 3139 3140 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3141 bool is_write, hwaddr access_len) 3142 { 3143 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3144 } 3145 3146 #define ARG1_DECL AddressSpace *as 3147 #define ARG1 as 3148 #define SUFFIX 3149 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3150 #define RCU_READ_LOCK(...) rcu_read_lock() 3151 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3152 #include "memory_ldst.c.inc" 3153 3154 int64_t address_space_cache_init(MemoryRegionCache *cache, 3155 AddressSpace *as, 3156 hwaddr addr, 3157 hwaddr len, 3158 bool is_write) 3159 { 3160 AddressSpaceDispatch *d; 3161 hwaddr l; 3162 MemoryRegion *mr; 3163 Int128 diff; 3164 3165 assert(len > 0); 3166 3167 l = len; 3168 cache->fv = address_space_get_flatview(as); 3169 d = flatview_to_dispatch(cache->fv); 3170 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3171 3172 /* 3173 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3174 * Take that into account to compute how many bytes are there between 3175 * cache->xlat and the end of the section. 3176 */ 3177 diff = int128_sub(cache->mrs.size, 3178 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3179 l = int128_get64(int128_min(diff, int128_make64(l))); 3180 3181 mr = cache->mrs.mr; 3182 memory_region_ref(mr); 3183 if (memory_access_is_direct(mr, is_write)) { 3184 /* We don't care about the memory attributes here as we're only 3185 * doing this if we found actual RAM, which behaves the same 3186 * regardless of attributes; so UNSPECIFIED is fine. 3187 */ 3188 l = flatview_extend_translation(cache->fv, addr, len, mr, 3189 cache->xlat, l, is_write, 3190 MEMTXATTRS_UNSPECIFIED); 3191 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3192 } else { 3193 cache->ptr = NULL; 3194 } 3195 3196 cache->len = l; 3197 cache->is_write = is_write; 3198 return l; 3199 } 3200 3201 void address_space_cache_invalidate(MemoryRegionCache *cache, 3202 hwaddr addr, 3203 hwaddr access_len) 3204 { 3205 assert(cache->is_write); 3206 if (likely(cache->ptr)) { 3207 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3208 } 3209 } 3210 3211 void address_space_cache_destroy(MemoryRegionCache *cache) 3212 { 3213 if (!cache->mrs.mr) { 3214 return; 3215 } 3216 3217 if (xen_enabled()) { 3218 xen_invalidate_map_cache_entry(cache->ptr); 3219 } 3220 memory_region_unref(cache->mrs.mr); 3221 flatview_unref(cache->fv); 3222 cache->mrs.mr = NULL; 3223 cache->fv = NULL; 3224 } 3225 3226 /* Called from RCU critical section. This function has the same 3227 * semantics as address_space_translate, but it only works on a 3228 * predefined range of a MemoryRegion that was mapped with 3229 * address_space_cache_init. 3230 */ 3231 static inline MemoryRegion *address_space_translate_cached( 3232 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3233 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3234 { 3235 MemoryRegionSection section; 3236 MemoryRegion *mr; 3237 IOMMUMemoryRegion *iommu_mr; 3238 AddressSpace *target_as; 3239 3240 assert(!cache->ptr); 3241 *xlat = addr + cache->xlat; 3242 3243 mr = cache->mrs.mr; 3244 iommu_mr = memory_region_get_iommu(mr); 3245 if (!iommu_mr) { 3246 /* MMIO region. */ 3247 return mr; 3248 } 3249 3250 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3251 NULL, is_write, true, 3252 &target_as, attrs); 3253 return section.mr; 3254 } 3255 3256 /* Called from RCU critical section. address_space_read_cached uses this 3257 * out of line function when the target is an MMIO or IOMMU region. 3258 */ 3259 MemTxResult 3260 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3261 void *buf, hwaddr len) 3262 { 3263 hwaddr addr1, l; 3264 MemoryRegion *mr; 3265 3266 l = len; 3267 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3268 MEMTXATTRS_UNSPECIFIED); 3269 return flatview_read_continue(cache->fv, 3270 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3271 addr1, l, mr); 3272 } 3273 3274 /* Called from RCU critical section. address_space_write_cached uses this 3275 * out of line function when the target is an MMIO or IOMMU region. 3276 */ 3277 MemTxResult 3278 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3279 const void *buf, hwaddr len) 3280 { 3281 hwaddr addr1, l; 3282 MemoryRegion *mr; 3283 3284 l = len; 3285 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3286 MEMTXATTRS_UNSPECIFIED); 3287 return flatview_write_continue(cache->fv, 3288 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3289 addr1, l, mr); 3290 } 3291 3292 #define ARG1_DECL MemoryRegionCache *cache 3293 #define ARG1 cache 3294 #define SUFFIX _cached_slow 3295 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3296 #define RCU_READ_LOCK() ((void)0) 3297 #define RCU_READ_UNLOCK() ((void)0) 3298 #include "memory_ldst.c.inc" 3299 3300 /* virtual memory access for debug (includes writing to ROM) */ 3301 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3302 void *ptr, size_t len, bool is_write) 3303 { 3304 hwaddr phys_addr; 3305 vaddr l, page; 3306 uint8_t *buf = ptr; 3307 3308 cpu_synchronize_state(cpu); 3309 while (len > 0) { 3310 int asidx; 3311 MemTxAttrs attrs; 3312 MemTxResult res; 3313 3314 page = addr & TARGET_PAGE_MASK; 3315 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3316 asidx = cpu_asidx_from_attrs(cpu, attrs); 3317 /* if no physical page mapped, return an error */ 3318 if (phys_addr == -1) 3319 return -1; 3320 l = (page + TARGET_PAGE_SIZE) - addr; 3321 if (l > len) 3322 l = len; 3323 phys_addr += (addr & ~TARGET_PAGE_MASK); 3324 if (is_write) { 3325 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3326 attrs, buf, l); 3327 } else { 3328 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3329 attrs, buf, l); 3330 } 3331 if (res != MEMTX_OK) { 3332 return -1; 3333 } 3334 len -= l; 3335 buf += l; 3336 addr += l; 3337 } 3338 return 0; 3339 } 3340 3341 /* 3342 * Allows code that needs to deal with migration bitmaps etc to still be built 3343 * target independent. 3344 */ 3345 size_t qemu_target_page_size(void) 3346 { 3347 return TARGET_PAGE_SIZE; 3348 } 3349 3350 int qemu_target_page_bits(void) 3351 { 3352 return TARGET_PAGE_BITS; 3353 } 3354 3355 int qemu_target_page_bits_min(void) 3356 { 3357 return TARGET_PAGE_BITS_MIN; 3358 } 3359 3360 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3361 { 3362 MemoryRegion*mr; 3363 hwaddr l = 1; 3364 3365 RCU_READ_LOCK_GUARD(); 3366 mr = address_space_translate(&address_space_memory, 3367 phys_addr, &phys_addr, &l, false, 3368 MEMTXATTRS_UNSPECIFIED); 3369 3370 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3371 } 3372 3373 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3374 { 3375 RAMBlock *block; 3376 int ret = 0; 3377 3378 RCU_READ_LOCK_GUARD(); 3379 RAMBLOCK_FOREACH(block) { 3380 ret = func(block, opaque); 3381 if (ret) { 3382 break; 3383 } 3384 } 3385 return ret; 3386 } 3387 3388 /* 3389 * Unmap pages of memory from start to start+length such that 3390 * they a) read as 0, b) Trigger whatever fault mechanism 3391 * the OS provides for postcopy. 3392 * The pages must be unmapped by the end of the function. 3393 * Returns: 0 on success, none-0 on failure 3394 * 3395 */ 3396 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3397 { 3398 int ret = -1; 3399 3400 uint8_t *host_startaddr = rb->host + start; 3401 3402 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3403 error_report("ram_block_discard_range: Unaligned start address: %p", 3404 host_startaddr); 3405 goto err; 3406 } 3407 3408 if ((start + length) <= rb->max_length) { 3409 bool need_madvise, need_fallocate; 3410 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3411 error_report("ram_block_discard_range: Unaligned length: %zx", 3412 length); 3413 goto err; 3414 } 3415 3416 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3417 3418 /* The logic here is messy; 3419 * madvise DONTNEED fails for hugepages 3420 * fallocate works on hugepages and shmem 3421 * shared anonymous memory requires madvise REMOVE 3422 */ 3423 need_madvise = (rb->page_size == qemu_host_page_size); 3424 need_fallocate = rb->fd != -1; 3425 if (need_fallocate) { 3426 /* For a file, this causes the area of the file to be zero'd 3427 * if read, and for hugetlbfs also causes it to be unmapped 3428 * so a userfault will trigger. 3429 */ 3430 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3431 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3432 start, length); 3433 if (ret) { 3434 ret = -errno; 3435 error_report("ram_block_discard_range: Failed to fallocate " 3436 "%s:%" PRIx64 " +%zx (%d)", 3437 rb->idstr, start, length, ret); 3438 goto err; 3439 } 3440 #else 3441 ret = -ENOSYS; 3442 error_report("ram_block_discard_range: fallocate not available/file" 3443 "%s:%" PRIx64 " +%zx (%d)", 3444 rb->idstr, start, length, ret); 3445 goto err; 3446 #endif 3447 } 3448 if (need_madvise) { 3449 /* For normal RAM this causes it to be unmapped, 3450 * for shared memory it causes the local mapping to disappear 3451 * and to fall back on the file contents (which we just 3452 * fallocate'd away). 3453 */ 3454 #if defined(CONFIG_MADVISE) 3455 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3456 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3457 } else { 3458 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3459 } 3460 if (ret) { 3461 ret = -errno; 3462 error_report("ram_block_discard_range: Failed to discard range " 3463 "%s:%" PRIx64 " +%zx (%d)", 3464 rb->idstr, start, length, ret); 3465 goto err; 3466 } 3467 #else 3468 ret = -ENOSYS; 3469 error_report("ram_block_discard_range: MADVISE not available" 3470 "%s:%" PRIx64 " +%zx (%d)", 3471 rb->idstr, start, length, ret); 3472 goto err; 3473 #endif 3474 } 3475 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3476 need_madvise, need_fallocate, ret); 3477 } else { 3478 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3479 "/%zx/" RAM_ADDR_FMT")", 3480 rb->idstr, start, length, rb->max_length); 3481 } 3482 3483 err: 3484 return ret; 3485 } 3486 3487 bool ramblock_is_pmem(RAMBlock *rb) 3488 { 3489 return rb->flags & RAM_PMEM; 3490 } 3491 3492 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3493 { 3494 if (start == end - 1) { 3495 qemu_printf("\t%3d ", start); 3496 } else { 3497 qemu_printf("\t%3d..%-3d ", start, end - 1); 3498 } 3499 qemu_printf(" skip=%d ", skip); 3500 if (ptr == PHYS_MAP_NODE_NIL) { 3501 qemu_printf(" ptr=NIL"); 3502 } else if (!skip) { 3503 qemu_printf(" ptr=#%d", ptr); 3504 } else { 3505 qemu_printf(" ptr=[%d]", ptr); 3506 } 3507 qemu_printf("\n"); 3508 } 3509 3510 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3511 int128_sub((size), int128_one())) : 0) 3512 3513 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3514 { 3515 int i; 3516 3517 qemu_printf(" Dispatch\n"); 3518 qemu_printf(" Physical sections\n"); 3519 3520 for (i = 0; i < d->map.sections_nb; ++i) { 3521 MemoryRegionSection *s = d->map.sections + i; 3522 const char *names[] = { " [unassigned]", " [not dirty]", 3523 " [ROM]", " [watch]" }; 3524 3525 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3526 " %s%s%s%s%s", 3527 i, 3528 s->offset_within_address_space, 3529 s->offset_within_address_space + MR_SIZE(s->size), 3530 s->mr->name ? s->mr->name : "(noname)", 3531 i < ARRAY_SIZE(names) ? names[i] : "", 3532 s->mr == root ? " [ROOT]" : "", 3533 s == d->mru_section ? " [MRU]" : "", 3534 s->mr->is_iommu ? " [iommu]" : ""); 3535 3536 if (s->mr->alias) { 3537 qemu_printf(" alias=%s", s->mr->alias->name ? 3538 s->mr->alias->name : "noname"); 3539 } 3540 qemu_printf("\n"); 3541 } 3542 3543 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3544 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3545 for (i = 0; i < d->map.nodes_nb; ++i) { 3546 int j, jprev; 3547 PhysPageEntry prev; 3548 Node *n = d->map.nodes + i; 3549 3550 qemu_printf(" [%d]\n", i); 3551 3552 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3553 PhysPageEntry *pe = *n + j; 3554 3555 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3556 continue; 3557 } 3558 3559 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3560 3561 jprev = j; 3562 prev = *pe; 3563 } 3564 3565 if (jprev != ARRAY_SIZE(*n)) { 3566 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3567 } 3568 } 3569 } 3570 3571 /* Require any discards to work. */ 3572 static unsigned int ram_block_discard_required_cnt; 3573 /* Require only coordinated discards to work. */ 3574 static unsigned int ram_block_coordinated_discard_required_cnt; 3575 /* Disable any discards. */ 3576 static unsigned int ram_block_discard_disabled_cnt; 3577 /* Disable only uncoordinated discards. */ 3578 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3579 static QemuMutex ram_block_discard_disable_mutex; 3580 3581 static void ram_block_discard_disable_mutex_lock(void) 3582 { 3583 static gsize initialized; 3584 3585 if (g_once_init_enter(&initialized)) { 3586 qemu_mutex_init(&ram_block_discard_disable_mutex); 3587 g_once_init_leave(&initialized, 1); 3588 } 3589 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3590 } 3591 3592 static void ram_block_discard_disable_mutex_unlock(void) 3593 { 3594 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3595 } 3596 3597 int ram_block_discard_disable(bool state) 3598 { 3599 int ret = 0; 3600 3601 ram_block_discard_disable_mutex_lock(); 3602 if (!state) { 3603 ram_block_discard_disabled_cnt--; 3604 } else if (ram_block_discard_required_cnt || 3605 ram_block_coordinated_discard_required_cnt) { 3606 ret = -EBUSY; 3607 } else { 3608 ram_block_discard_disabled_cnt++; 3609 } 3610 ram_block_discard_disable_mutex_unlock(); 3611 return ret; 3612 } 3613 3614 int ram_block_uncoordinated_discard_disable(bool state) 3615 { 3616 int ret = 0; 3617 3618 ram_block_discard_disable_mutex_lock(); 3619 if (!state) { 3620 ram_block_uncoordinated_discard_disabled_cnt--; 3621 } else if (ram_block_discard_required_cnt) { 3622 ret = -EBUSY; 3623 } else { 3624 ram_block_uncoordinated_discard_disabled_cnt++; 3625 } 3626 ram_block_discard_disable_mutex_unlock(); 3627 return ret; 3628 } 3629 3630 int ram_block_discard_require(bool state) 3631 { 3632 int ret = 0; 3633 3634 ram_block_discard_disable_mutex_lock(); 3635 if (!state) { 3636 ram_block_discard_required_cnt--; 3637 } else if (ram_block_discard_disabled_cnt || 3638 ram_block_uncoordinated_discard_disabled_cnt) { 3639 ret = -EBUSY; 3640 } else { 3641 ram_block_discard_required_cnt++; 3642 } 3643 ram_block_discard_disable_mutex_unlock(); 3644 return ret; 3645 } 3646 3647 int ram_block_coordinated_discard_require(bool state) 3648 { 3649 int ret = 0; 3650 3651 ram_block_discard_disable_mutex_lock(); 3652 if (!state) { 3653 ram_block_coordinated_discard_required_cnt--; 3654 } else if (ram_block_discard_disabled_cnt) { 3655 ret = -EBUSY; 3656 } else { 3657 ram_block_coordinated_discard_required_cnt++; 3658 } 3659 ram_block_discard_disable_mutex_unlock(); 3660 return ret; 3661 } 3662 3663 bool ram_block_discard_is_disabled(void) 3664 { 3665 return qatomic_read(&ram_block_discard_disabled_cnt) || 3666 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3667 } 3668 3669 bool ram_block_discard_is_required(void) 3670 { 3671 return qatomic_read(&ram_block_discard_required_cnt) || 3672 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3673 } 3674