xref: /qemu/system/physmem.c (revision c7c513389c6cb8c6dd60e55d1c99244de4e93663)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29 
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-ops.h"
32 #include "accel/tcg/iommu.h"
33 #endif /* CONFIG_TCG */
34 
35 #include "exec/cputlb.h"
36 #include "exec/page-protection.h"
37 #include "exec/target_page.h"
38 #include "exec/translation-block.h"
39 #include "hw/qdev-core.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/boards.h"
42 #include "system/xen.h"
43 #include "system/kvm.h"
44 #include "system/tcg.h"
45 #include "system/qtest.h"
46 #include "qemu/timer.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qemu/qemu-print.h"
50 #include "qemu/log.h"
51 #include "qemu/memalign.h"
52 #include "qemu/memfd.h"
53 #include "system/memory.h"
54 #include "system/ioport.h"
55 #include "system/dma.h"
56 #include "system/hostmem.h"
57 #include "system/hw_accel.h"
58 #include "system/xen-mapcache.h"
59 #include "trace.h"
60 
61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
62 #include <linux/falloc.h>
63 #endif
64 
65 #include "qemu/rcu_queue.h"
66 #include "qemu/main-loop.h"
67 #include "system/replay.h"
68 
69 #include "system/ram_addr.h"
70 
71 #include "qemu/pmem.h"
72 
73 #include "qapi/qapi-types-migration.h"
74 #include "migration/blocker.h"
75 #include "migration/cpr.h"
76 #include "migration/options.h"
77 #include "migration/vmstate.h"
78 
79 #include "qemu/range.h"
80 #ifndef _WIN32
81 #include "qemu/mmap-alloc.h"
82 #endif
83 
84 #include "monitor/monitor.h"
85 
86 #ifdef CONFIG_LIBDAXCTL
87 #include <daxctl/libdaxctl.h>
88 #endif
89 
90 #include "memory-internal.h"
91 
92 //#define DEBUG_SUBPAGE
93 
94 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
95  * are protected by the ramlist lock.
96  */
97 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
98 
99 static MemoryRegion *system_memory;
100 static MemoryRegion *system_io;
101 
102 AddressSpace address_space_io;
103 AddressSpace address_space_memory;
104 
105 static MemoryRegion io_mem_unassigned;
106 
107 typedef struct PhysPageEntry PhysPageEntry;
108 
109 struct PhysPageEntry {
110     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111     uint32_t skip : 6;
112      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113     uint32_t ptr : 26;
114 };
115 
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117 
118 /* Size of the L2 (and L3, etc) page tables.  */
119 #define ADDR_SPACE_BITS 64
120 
121 #define P_L2_BITS 9
122 #define P_L2_SIZE (1 << P_L2_BITS)
123 
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125 
126 typedef PhysPageEntry Node[P_L2_SIZE];
127 
128 typedef struct PhysPageMap {
129     struct rcu_head rcu;
130 
131     unsigned sections_nb;
132     unsigned sections_nb_alloc;
133     unsigned nodes_nb;
134     unsigned nodes_nb_alloc;
135     Node *nodes;
136     MemoryRegionSection *sections;
137 } PhysPageMap;
138 
139 struct AddressSpaceDispatch {
140     MemoryRegionSection *mru_section;
141     /* This is a multi-level map on the physical address space.
142      * The bottom level has pointers to MemoryRegionSections.
143      */
144     PhysPageEntry phys_map;
145     PhysPageMap map;
146 };
147 
148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149 typedef struct subpage_t {
150     MemoryRegion iomem;
151     FlatView *fv;
152     hwaddr base;
153     uint16_t sub_section[];
154 } subpage_t;
155 
156 #define PHYS_SECTION_UNASSIGNED 0
157 
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_log_global_after_sync(MemoryListener *listener);
161 static void tcg_commit(MemoryListener *listener);
162 static bool ram_is_cpr_compatible(RAMBlock *rb);
163 
164 /**
165  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
166  * @cpu: the CPU whose AddressSpace this is
167  * @as: the AddressSpace itself
168  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
169  * @tcg_as_listener: listener for tracking changes to the AddressSpace
170  */
171 typedef struct CPUAddressSpace {
172     CPUState *cpu;
173     AddressSpace *as;
174     struct AddressSpaceDispatch *memory_dispatch;
175     MemoryListener tcg_as_listener;
176 } CPUAddressSpace;
177 
178 struct DirtyBitmapSnapshot {
179     ram_addr_t start;
180     ram_addr_t end;
181     unsigned long dirty[];
182 };
183 
184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186     static unsigned alloc_hint = 16;
187     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
188         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
189         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190         alloc_hint = map->nodes_nb_alloc;
191     }
192 }
193 
194 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
195 {
196     unsigned i;
197     uint32_t ret;
198     PhysPageEntry e;
199     PhysPageEntry *p;
200 
201     ret = map->nodes_nb++;
202     p = map->nodes[ret];
203     assert(ret != PHYS_MAP_NODE_NIL);
204     assert(ret != map->nodes_nb_alloc);
205 
206     e.skip = leaf ? 0 : 1;
207     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
208     for (i = 0; i < P_L2_SIZE; ++i) {
209         memcpy(&p[i], &e, sizeof(e));
210     }
211     return ret;
212 }
213 
214 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
215                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
216                                 int level)
217 {
218     PhysPageEntry *p;
219     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
220 
221     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
222         lp->ptr = phys_map_node_alloc(map, level == 0);
223     }
224     p = map->nodes[lp->ptr];
225     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
226 
227     while (*nb && lp < &p[P_L2_SIZE]) {
228         if ((*index & (step - 1)) == 0 && *nb >= step) {
229             lp->skip = 0;
230             lp->ptr = leaf;
231             *index += step;
232             *nb -= step;
233         } else {
234             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
235         }
236         ++lp;
237     }
238 }
239 
240 static void phys_page_set(AddressSpaceDispatch *d,
241                           hwaddr index, uint64_t nb,
242                           uint16_t leaf)
243 {
244     /* Wildly overreserve - it doesn't matter much. */
245     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
246 
247     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 }
249 
250 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
251  * and update our entry so we can skip it and go directly to the destination.
252  */
253 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
254 {
255     unsigned valid_ptr = P_L2_SIZE;
256     int valid = 0;
257     PhysPageEntry *p;
258     int i;
259 
260     if (lp->ptr == PHYS_MAP_NODE_NIL) {
261         return;
262     }
263 
264     p = nodes[lp->ptr];
265     for (i = 0; i < P_L2_SIZE; i++) {
266         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
267             continue;
268         }
269 
270         valid_ptr = i;
271         valid++;
272         if (p[i].skip) {
273             phys_page_compact(&p[i], nodes);
274         }
275     }
276 
277     /* We can only compress if there's only one child. */
278     if (valid != 1) {
279         return;
280     }
281 
282     assert(valid_ptr < P_L2_SIZE);
283 
284     /* Don't compress if it won't fit in the # of bits we have. */
285     if (P_L2_LEVELS >= (1 << 6) &&
286         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
287         return;
288     }
289 
290     lp->ptr = p[valid_ptr].ptr;
291     if (!p[valid_ptr].skip) {
292         /* If our only child is a leaf, make this a leaf. */
293         /* By design, we should have made this node a leaf to begin with so we
294          * should never reach here.
295          * But since it's so simple to handle this, let's do it just in case we
296          * change this rule.
297          */
298         lp->skip = 0;
299     } else {
300         lp->skip += p[valid_ptr].skip;
301     }
302 }
303 
304 void address_space_dispatch_compact(AddressSpaceDispatch *d)
305 {
306     if (d->phys_map.skip) {
307         phys_page_compact(&d->phys_map, d->map.nodes);
308     }
309 }
310 
311 static inline bool section_covers_addr(const MemoryRegionSection *section,
312                                        hwaddr addr)
313 {
314     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315      * the section must cover the entire address space.
316      */
317     return int128_gethi(section->size) ||
318            range_covers_byte(section->offset_within_address_space,
319                              int128_getlo(section->size), addr);
320 }
321 
322 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
323 {
324     PhysPageEntry lp = d->phys_map, *p;
325     Node *nodes = d->map.nodes;
326     MemoryRegionSection *sections = d->map.sections;
327     hwaddr index = addr >> TARGET_PAGE_BITS;
328     int i;
329 
330     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
331         if (lp.ptr == PHYS_MAP_NODE_NIL) {
332             return &sections[PHYS_SECTION_UNASSIGNED];
333         }
334         p = nodes[lp.ptr];
335         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
336     }
337 
338     if (section_covers_addr(&sections[lp.ptr], addr)) {
339         return &sections[lp.ptr];
340     } else {
341         return &sections[PHYS_SECTION_UNASSIGNED];
342     }
343 }
344 
345 /* Called from RCU critical section */
346 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
347                                                         hwaddr addr,
348                                                         bool resolve_subpage)
349 {
350     MemoryRegionSection *section = qatomic_read(&d->mru_section);
351     subpage_t *subpage;
352 
353     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
354         !section_covers_addr(section, addr)) {
355         section = phys_page_find(d, addr);
356         qatomic_set(&d->mru_section, section);
357     }
358     if (resolve_subpage && section->mr->subpage) {
359         subpage = container_of(section->mr, subpage_t, iomem);
360         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
361     }
362     return section;
363 }
364 
365 /* Called from RCU critical section */
366 static MemoryRegionSection *
367 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
368                                  hwaddr *plen, bool resolve_subpage)
369 {
370     MemoryRegionSection *section;
371     MemoryRegion *mr;
372     Int128 diff;
373 
374     section = address_space_lookup_region(d, addr, resolve_subpage);
375     /* Compute offset within MemoryRegionSection */
376     addr -= section->offset_within_address_space;
377 
378     /* Compute offset within MemoryRegion */
379     *xlat = addr + section->offset_within_region;
380 
381     mr = section->mr;
382 
383     /* MMIO registers can be expected to perform full-width accesses based only
384      * on their address, without considering adjacent registers that could
385      * decode to completely different MemoryRegions.  When such registers
386      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
387      * regions overlap wildly.  For this reason we cannot clamp the accesses
388      * here.
389      *
390      * If the length is small (as is the case for address_space_ldl/stl),
391      * everything works fine.  If the incoming length is large, however,
392      * the caller really has to do the clamping through memory_access_size.
393      */
394     if (memory_region_is_ram(mr)) {
395         diff = int128_sub(section->size, int128_make64(addr));
396         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
397     }
398     return section;
399 }
400 
401 /**
402  * address_space_translate_iommu - translate an address through an IOMMU
403  * memory region and then through the target address space.
404  *
405  * @iommu_mr: the IOMMU memory region that we start the translation from
406  * @addr: the address to be translated through the MMU
407  * @xlat: the translated address offset within the destination memory region.
408  *        It cannot be %NULL.
409  * @plen_out: valid read/write length of the translated address. It
410  *            cannot be %NULL.
411  * @page_mask_out: page mask for the translated address. This
412  *            should only be meaningful for IOMMU translated
413  *            addresses, since there may be huge pages that this bit
414  *            would tell. It can be %NULL if we don't care about it.
415  * @is_write: whether the translation operation is for write
416  * @is_mmio: whether this can be MMIO, set true if it can
417  * @target_as: the address space targeted by the IOMMU
418  * @attrs: transaction attributes
419  *
420  * This function is called from RCU critical section.  It is the common
421  * part of flatview_do_translate and address_space_translate_cached.
422  */
423 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
424                                                          hwaddr *xlat,
425                                                          hwaddr *plen_out,
426                                                          hwaddr *page_mask_out,
427                                                          bool is_write,
428                                                          bool is_mmio,
429                                                          AddressSpace **target_as,
430                                                          MemTxAttrs attrs)
431 {
432     MemoryRegionSection *section;
433     hwaddr page_mask = (hwaddr)-1;
434 
435     do {
436         hwaddr addr = *xlat;
437         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
438         int iommu_idx = 0;
439         IOMMUTLBEntry iotlb;
440 
441         if (imrc->attrs_to_index) {
442             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
443         }
444 
445         iotlb = imrc->translate(iommu_mr, addr, is_write ?
446                                 IOMMU_WO : IOMMU_RO, iommu_idx);
447 
448         if (!(iotlb.perm & (1 << is_write))) {
449             goto unassigned;
450         }
451 
452         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
453                 | (addr & iotlb.addr_mask));
454         page_mask &= iotlb.addr_mask;
455         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
456         *target_as = iotlb.target_as;
457 
458         section = address_space_translate_internal(
459                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
460                 plen_out, is_mmio);
461 
462         iommu_mr = memory_region_get_iommu(section->mr);
463     } while (unlikely(iommu_mr));
464 
465     if (page_mask_out) {
466         *page_mask_out = page_mask;
467     }
468     return *section;
469 
470 unassigned:
471     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
472 }
473 
474 /**
475  * flatview_do_translate - translate an address in FlatView
476  *
477  * @fv: the flat view that we want to translate on
478  * @addr: the address to be translated in above address space
479  * @xlat: the translated address offset within memory region. It
480  *        cannot be @NULL.
481  * @plen_out: valid read/write length of the translated address. It
482  *            can be @NULL when we don't care about it.
483  * @page_mask_out: page mask for the translated address. This
484  *            should only be meaningful for IOMMU translated
485  *            addresses, since there may be huge pages that this bit
486  *            would tell. It can be @NULL if we don't care about it.
487  * @is_write: whether the translation operation is for write
488  * @is_mmio: whether this can be MMIO, set true if it can
489  * @target_as: the address space targeted by the IOMMU
490  * @attrs: memory transaction attributes
491  *
492  * This function is called from RCU critical section
493  */
494 static MemoryRegionSection flatview_do_translate(FlatView *fv,
495                                                  hwaddr addr,
496                                                  hwaddr *xlat,
497                                                  hwaddr *plen_out,
498                                                  hwaddr *page_mask_out,
499                                                  bool is_write,
500                                                  bool is_mmio,
501                                                  AddressSpace **target_as,
502                                                  MemTxAttrs attrs)
503 {
504     MemoryRegionSection *section;
505     IOMMUMemoryRegion *iommu_mr;
506     hwaddr plen = (hwaddr)(-1);
507 
508     if (!plen_out) {
509         plen_out = &plen;
510     }
511 
512     section = address_space_translate_internal(
513             flatview_to_dispatch(fv), addr, xlat,
514             plen_out, is_mmio);
515 
516     iommu_mr = memory_region_get_iommu(section->mr);
517     if (unlikely(iommu_mr)) {
518         return address_space_translate_iommu(iommu_mr, xlat,
519                                              plen_out, page_mask_out,
520                                              is_write, is_mmio,
521                                              target_as, attrs);
522     }
523     if (page_mask_out) {
524         /* Not behind an IOMMU, use default page size. */
525         *page_mask_out = ~TARGET_PAGE_MASK;
526     }
527 
528     return *section;
529 }
530 
531 /* Called from RCU critical section */
532 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
533                                             bool is_write, MemTxAttrs attrs)
534 {
535     MemoryRegionSection section;
536     hwaddr xlat, page_mask;
537 
538     /*
539      * This can never be MMIO, and we don't really care about plen,
540      * but page mask.
541      */
542     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
543                                     NULL, &page_mask, is_write, false, &as,
544                                     attrs);
545 
546     /* Illegal translation */
547     if (section.mr == &io_mem_unassigned) {
548         goto iotlb_fail;
549     }
550 
551     /* Convert memory region offset into address space offset */
552     xlat += section.offset_within_address_space -
553         section.offset_within_region;
554 
555     return (IOMMUTLBEntry) {
556         .target_as = as,
557         .iova = addr & ~page_mask,
558         .translated_addr = xlat & ~page_mask,
559         .addr_mask = page_mask,
560         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
561         .perm = IOMMU_RW,
562     };
563 
564 iotlb_fail:
565     return (IOMMUTLBEntry) {0};
566 }
567 
568 /* Called from RCU critical section */
569 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
570                                  hwaddr *plen, bool is_write,
571                                  MemTxAttrs attrs)
572 {
573     MemoryRegion *mr;
574     MemoryRegionSection section;
575     AddressSpace *as = NULL;
576 
577     /* This can be MMIO, so setup MMIO bit. */
578     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
579                                     is_write, true, &as, attrs);
580     mr = section.mr;
581 
582     if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) {
583         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
584         *plen = MIN(page, *plen);
585     }
586 
587     return mr;
588 }
589 
590 #ifdef CONFIG_TCG
591 
592 typedef struct TCGIOMMUNotifier {
593     IOMMUNotifier n;
594     MemoryRegion *mr;
595     CPUState *cpu;
596     int iommu_idx;
597     bool active;
598 } TCGIOMMUNotifier;
599 
600 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
601 {
602     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
603 
604     if (!notifier->active) {
605         return;
606     }
607     tlb_flush(notifier->cpu);
608     notifier->active = false;
609     /* We leave the notifier struct on the list to avoid reallocating it later.
610      * Generally the number of IOMMUs a CPU deals with will be small.
611      * In any case we can't unregister the iommu notifier from a notify
612      * callback.
613      */
614 }
615 
616 static void tcg_register_iommu_notifier(CPUState *cpu,
617                                         IOMMUMemoryRegion *iommu_mr,
618                                         int iommu_idx)
619 {
620     /* Make sure this CPU has an IOMMU notifier registered for this
621      * IOMMU/IOMMU index combination, so that we can flush its TLB
622      * when the IOMMU tells us the mappings we've cached have changed.
623      */
624     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
625     TCGIOMMUNotifier *notifier = NULL;
626     int i;
627 
628     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
629         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
630         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
631             break;
632         }
633     }
634     if (i == cpu->iommu_notifiers->len) {
635         /* Not found, add a new entry at the end of the array */
636         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
637         notifier = g_new0(TCGIOMMUNotifier, 1);
638         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
639 
640         notifier->mr = mr;
641         notifier->iommu_idx = iommu_idx;
642         notifier->cpu = cpu;
643         /* Rather than trying to register interest in the specific part
644          * of the iommu's address space that we've accessed and then
645          * expand it later as subsequent accesses touch more of it, we
646          * just register interest in the whole thing, on the assumption
647          * that iommu reconfiguration will be rare.
648          */
649         iommu_notifier_init(&notifier->n,
650                             tcg_iommu_unmap_notify,
651                             IOMMU_NOTIFIER_UNMAP,
652                             0,
653                             HWADDR_MAX,
654                             iommu_idx);
655         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
656                                               &error_fatal);
657     }
658 
659     if (!notifier->active) {
660         notifier->active = true;
661     }
662 }
663 
664 void tcg_iommu_free_notifier_list(CPUState *cpu)
665 {
666     /* Destroy the CPU's notifier list */
667     int i;
668     TCGIOMMUNotifier *notifier;
669 
670     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
673         g_free(notifier);
674     }
675     g_array_free(cpu->iommu_notifiers, true);
676 }
677 
678 void tcg_iommu_init_notifier_list(CPUState *cpu)
679 {
680     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
681 }
682 
683 /* Called from RCU critical section */
684 MemoryRegionSection *
685 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
686                                   hwaddr *xlat, hwaddr *plen,
687                                   MemTxAttrs attrs, int *prot)
688 {
689     MemoryRegionSection *section;
690     IOMMUMemoryRegion *iommu_mr;
691     IOMMUMemoryRegionClass *imrc;
692     IOMMUTLBEntry iotlb;
693     int iommu_idx;
694     hwaddr addr = orig_addr;
695     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
696 
697     for (;;) {
698         section = address_space_translate_internal(d, addr, &addr, plen, false);
699 
700         iommu_mr = memory_region_get_iommu(section->mr);
701         if (!iommu_mr) {
702             break;
703         }
704 
705         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
706 
707         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
708         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
709         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
710          * doesn't short-cut its translation table walk.
711          */
712         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
713         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
714                 | (addr & iotlb.addr_mask));
715         /* Update the caller's prot bits to remove permissions the IOMMU
716          * is giving us a failure response for. If we get down to no
717          * permissions left at all we can give up now.
718          */
719         if (!(iotlb.perm & IOMMU_RO)) {
720             *prot &= ~(PAGE_READ | PAGE_EXEC);
721         }
722         if (!(iotlb.perm & IOMMU_WO)) {
723             *prot &= ~PAGE_WRITE;
724         }
725 
726         if (!*prot) {
727             goto translate_fail;
728         }
729 
730         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
731     }
732 
733     assert(!memory_region_is_iommu(section->mr));
734     *xlat = addr;
735     return section;
736 
737 translate_fail:
738     /*
739      * We should be given a page-aligned address -- certainly
740      * tlb_set_page_with_attrs() does so.  The page offset of xlat
741      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
742      * The page portion of xlat will be logged by memory_region_access_valid()
743      * when this memory access is rejected, so use the original untranslated
744      * physical address.
745      */
746     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
747     *xlat = orig_addr;
748     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
749 }
750 
751 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
752                                       hwaddr index, MemTxAttrs attrs)
753 {
754     int asidx = cpu_asidx_from_attrs(cpu, attrs);
755     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
756     AddressSpaceDispatch *d = cpuas->memory_dispatch;
757     int section_index = index & ~TARGET_PAGE_MASK;
758     MemoryRegionSection *ret;
759 
760     assert(section_index < d->map.sections_nb);
761     ret = d->map.sections + section_index;
762     assert(ret->mr);
763     assert(ret->mr->ops);
764 
765     return ret;
766 }
767 
768 /* Called from RCU critical section */
769 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
770                                        MemoryRegionSection *section)
771 {
772     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
773     return section - d->map.sections;
774 }
775 
776 #endif /* CONFIG_TCG */
777 
778 void cpu_address_space_init(CPUState *cpu, int asidx,
779                             const char *prefix, MemoryRegion *mr)
780 {
781     CPUAddressSpace *newas;
782     AddressSpace *as = g_new0(AddressSpace, 1);
783     char *as_name;
784 
785     assert(mr);
786     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
787     address_space_init(as, mr, as_name);
788     g_free(as_name);
789 
790     /* Target code should have set num_ases before calling us */
791     assert(asidx < cpu->num_ases);
792 
793     if (asidx == 0) {
794         /* address space 0 gets the convenience alias */
795         cpu->as = as;
796     }
797 
798     /* KVM cannot currently support multiple address spaces. */
799     assert(asidx == 0 || !kvm_enabled());
800 
801     if (!cpu->cpu_ases) {
802         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
803         cpu->cpu_ases_count = cpu->num_ases;
804     }
805 
806     newas = &cpu->cpu_ases[asidx];
807     newas->cpu = cpu;
808     newas->as = as;
809     if (tcg_enabled()) {
810         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
811         newas->tcg_as_listener.commit = tcg_commit;
812         newas->tcg_as_listener.name = "tcg";
813         memory_listener_register(&newas->tcg_as_listener, as);
814     }
815 }
816 
817 void cpu_address_space_destroy(CPUState *cpu, int asidx)
818 {
819     CPUAddressSpace *cpuas;
820 
821     assert(cpu->cpu_ases);
822     assert(asidx >= 0 && asidx < cpu->num_ases);
823     /* KVM cannot currently support multiple address spaces. */
824     assert(asidx == 0 || !kvm_enabled());
825 
826     cpuas = &cpu->cpu_ases[asidx];
827     if (tcg_enabled()) {
828         memory_listener_unregister(&cpuas->tcg_as_listener);
829     }
830 
831     address_space_destroy(cpuas->as);
832     g_free_rcu(cpuas->as, rcu);
833 
834     if (asidx == 0) {
835         /* reset the convenience alias for address space 0 */
836         cpu->as = NULL;
837     }
838 
839     if (--cpu->cpu_ases_count == 0) {
840         g_free(cpu->cpu_ases);
841         cpu->cpu_ases = NULL;
842     }
843 }
844 
845 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
846 {
847     /* Return the AddressSpace corresponding to the specified index */
848     return cpu->cpu_ases[asidx].as;
849 }
850 
851 /* Called from RCU critical section */
852 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
853 {
854     RAMBlock *block;
855 
856     block = qatomic_rcu_read(&ram_list.mru_block);
857     if (block && addr - block->offset < block->max_length) {
858         return block;
859     }
860     RAMBLOCK_FOREACH(block) {
861         if (addr - block->offset < block->max_length) {
862             goto found;
863         }
864     }
865 
866     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
867     abort();
868 
869 found:
870     /* It is safe to write mru_block outside the BQL.  This
871      * is what happens:
872      *
873      *     mru_block = xxx
874      *     rcu_read_unlock()
875      *                                        xxx removed from list
876      *                  rcu_read_lock()
877      *                  read mru_block
878      *                                        mru_block = NULL;
879      *                                        call_rcu(reclaim_ramblock, xxx);
880      *                  rcu_read_unlock()
881      *
882      * qatomic_rcu_set is not needed here.  The block was already published
883      * when it was placed into the list.  Here we're just making an extra
884      * copy of the pointer.
885      */
886     ram_list.mru_block = block;
887     return block;
888 }
889 
890 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
891 {
892     CPUState *cpu;
893     ram_addr_t start1;
894     RAMBlock *block;
895     ram_addr_t end;
896 
897     assert(tcg_enabled());
898     end = TARGET_PAGE_ALIGN(start + length);
899     start &= TARGET_PAGE_MASK;
900 
901     RCU_READ_LOCK_GUARD();
902     block = qemu_get_ram_block(start);
903     assert(block == qemu_get_ram_block(end - 1));
904     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
905     CPU_FOREACH(cpu) {
906         tlb_reset_dirty(cpu, start1, length);
907     }
908 }
909 
910 /* Note: start and end must be within the same ram block.  */
911 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
912                                               ram_addr_t length,
913                                               unsigned client)
914 {
915     DirtyMemoryBlocks *blocks;
916     unsigned long end, page, start_page;
917     bool dirty = false;
918     RAMBlock *ramblock;
919     uint64_t mr_offset, mr_size;
920 
921     if (length == 0) {
922         return false;
923     }
924 
925     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926     start_page = start >> TARGET_PAGE_BITS;
927     page = start_page;
928 
929     WITH_RCU_READ_LOCK_GUARD() {
930         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
931         ramblock = qemu_get_ram_block(start);
932         /* Range sanity check on the ramblock */
933         assert(start >= ramblock->offset &&
934                start + length <= ramblock->offset + ramblock->used_length);
935 
936         while (page < end) {
937             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
938             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
939             unsigned long num = MIN(end - page,
940                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
941 
942             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
943                                                   offset, num);
944             page += num;
945         }
946 
947         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
948         mr_size = (end - start_page) << TARGET_PAGE_BITS;
949         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
950     }
951 
952     if (dirty) {
953         cpu_physical_memory_dirty_bits_cleared(start, length);
954     }
955 
956     return dirty;
957 }
958 
959 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
960     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
961 {
962     DirtyMemoryBlocks *blocks;
963     ram_addr_t start, first, last;
964     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
965     DirtyBitmapSnapshot *snap;
966     unsigned long page, end, dest;
967 
968     start = memory_region_get_ram_addr(mr);
969     /* We know we're only called for RAM MemoryRegions */
970     assert(start != RAM_ADDR_INVALID);
971     start += offset;
972 
973     first = QEMU_ALIGN_DOWN(start, align);
974     last  = QEMU_ALIGN_UP(start + length, align);
975 
976     snap = g_malloc0(sizeof(*snap) +
977                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
978     snap->start = first;
979     snap->end   = last;
980 
981     page = first >> TARGET_PAGE_BITS;
982     end  = last  >> TARGET_PAGE_BITS;
983     dest = 0;
984 
985     WITH_RCU_READ_LOCK_GUARD() {
986         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
987 
988         while (page < end) {
989             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
990             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
991             unsigned long num = MIN(end - page,
992                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
993 
994             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
995             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
996             ofs >>= BITS_PER_LEVEL;
997 
998             bitmap_copy_and_clear_atomic(snap->dirty + dest,
999                                          blocks->blocks[idx] + ofs,
1000                                          num);
1001             page += num;
1002             dest += num >> BITS_PER_LEVEL;
1003         }
1004     }
1005 
1006     cpu_physical_memory_dirty_bits_cleared(start, length);
1007 
1008     memory_region_clear_dirty_bitmap(mr, offset, length);
1009 
1010     return snap;
1011 }
1012 
1013 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1014                                             ram_addr_t start,
1015                                             ram_addr_t length)
1016 {
1017     unsigned long page, end;
1018 
1019     assert(start >= snap->start);
1020     assert(start + length <= snap->end);
1021 
1022     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1023     page = (start - snap->start) >> TARGET_PAGE_BITS;
1024 
1025     while (page < end) {
1026         if (test_bit(page, snap->dirty)) {
1027             return true;
1028         }
1029         page++;
1030     }
1031     return false;
1032 }
1033 
1034 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1035                             uint16_t section);
1036 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1037 
1038 static uint16_t phys_section_add(PhysPageMap *map,
1039                                  MemoryRegionSection *section)
1040 {
1041     /* The physical section number is ORed with a page-aligned
1042      * pointer to produce the iotlb entries.  Thus it should
1043      * never overflow into the page-aligned value.
1044      */
1045     assert(map->sections_nb < TARGET_PAGE_SIZE);
1046 
1047     if (map->sections_nb == map->sections_nb_alloc) {
1048         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1049         map->sections = g_renew(MemoryRegionSection, map->sections,
1050                                 map->sections_nb_alloc);
1051     }
1052     map->sections[map->sections_nb] = *section;
1053     memory_region_ref(section->mr);
1054     return map->sections_nb++;
1055 }
1056 
1057 static void phys_section_destroy(MemoryRegion *mr)
1058 {
1059     bool have_sub_page = mr->subpage;
1060 
1061     memory_region_unref(mr);
1062 
1063     if (have_sub_page) {
1064         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1065         object_unref(OBJECT(&subpage->iomem));
1066         g_free(subpage);
1067     }
1068 }
1069 
1070 static void phys_sections_free(PhysPageMap *map)
1071 {
1072     while (map->sections_nb > 0) {
1073         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1074         phys_section_destroy(section->mr);
1075     }
1076     g_free(map->sections);
1077     g_free(map->nodes);
1078 }
1079 
1080 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1081 {
1082     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1083     subpage_t *subpage;
1084     hwaddr base = section->offset_within_address_space
1085         & TARGET_PAGE_MASK;
1086     MemoryRegionSection *existing = phys_page_find(d, base);
1087     MemoryRegionSection subsection = {
1088         .offset_within_address_space = base,
1089         .size = int128_make64(TARGET_PAGE_SIZE),
1090     };
1091     hwaddr start, end;
1092 
1093     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1094 
1095     if (!(existing->mr->subpage)) {
1096         subpage = subpage_init(fv, base);
1097         subsection.fv = fv;
1098         subsection.mr = &subpage->iomem;
1099         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1100                       phys_section_add(&d->map, &subsection));
1101     } else {
1102         subpage = container_of(existing->mr, subpage_t, iomem);
1103     }
1104     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1105     end = start + int128_get64(section->size) - 1;
1106     subpage_register(subpage, start, end,
1107                      phys_section_add(&d->map, section));
1108 }
1109 
1110 
1111 static void register_multipage(FlatView *fv,
1112                                MemoryRegionSection *section)
1113 {
1114     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1115     hwaddr start_addr = section->offset_within_address_space;
1116     uint16_t section_index = phys_section_add(&d->map, section);
1117     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1118                                                     TARGET_PAGE_BITS));
1119 
1120     assert(num_pages);
1121     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1122 }
1123 
1124 /*
1125  * The range in *section* may look like this:
1126  *
1127  *      |s|PPPPPPP|s|
1128  *
1129  * where s stands for subpage and P for page.
1130  */
1131 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1132 {
1133     MemoryRegionSection remain = *section;
1134     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1135 
1136     /* register first subpage */
1137     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1138         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1139                         - remain.offset_within_address_space;
1140 
1141         MemoryRegionSection now = remain;
1142         now.size = int128_min(int128_make64(left), now.size);
1143         register_subpage(fv, &now);
1144         if (int128_eq(remain.size, now.size)) {
1145             return;
1146         }
1147         remain.size = int128_sub(remain.size, now.size);
1148         remain.offset_within_address_space += int128_get64(now.size);
1149         remain.offset_within_region += int128_get64(now.size);
1150     }
1151 
1152     /* register whole pages */
1153     if (int128_ge(remain.size, page_size)) {
1154         MemoryRegionSection now = remain;
1155         now.size = int128_and(now.size, int128_neg(page_size));
1156         register_multipage(fv, &now);
1157         if (int128_eq(remain.size, now.size)) {
1158             return;
1159         }
1160         remain.size = int128_sub(remain.size, now.size);
1161         remain.offset_within_address_space += int128_get64(now.size);
1162         remain.offset_within_region += int128_get64(now.size);
1163     }
1164 
1165     /* register last subpage */
1166     register_subpage(fv, &remain);
1167 }
1168 
1169 void qemu_flush_coalesced_mmio_buffer(void)
1170 {
1171     if (kvm_enabled())
1172         kvm_flush_coalesced_mmio_buffer();
1173 }
1174 
1175 void qemu_mutex_lock_ramlist(void)
1176 {
1177     qemu_mutex_lock(&ram_list.mutex);
1178 }
1179 
1180 void qemu_mutex_unlock_ramlist(void)
1181 {
1182     qemu_mutex_unlock(&ram_list.mutex);
1183 }
1184 
1185 GString *ram_block_format(void)
1186 {
1187     RAMBlock *block;
1188     char *psize;
1189     GString *buf = g_string_new("");
1190 
1191     RCU_READ_LOCK_GUARD();
1192     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1193                            "Block Name", "PSize", "Offset", "Used", "Total",
1194                            "HVA", "RO");
1195 
1196     RAMBLOCK_FOREACH(block) {
1197         psize = size_to_str(block->page_size);
1198         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1199                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1200                                block->idstr, psize,
1201                                (uint64_t)block->offset,
1202                                (uint64_t)block->used_length,
1203                                (uint64_t)block->max_length,
1204                                (uint64_t)(uintptr_t)block->host,
1205                                block->mr->readonly ? "ro" : "rw");
1206 
1207         g_free(psize);
1208     }
1209 
1210     return buf;
1211 }
1212 
1213 static int find_min_backend_pagesize(Object *obj, void *opaque)
1214 {
1215     long *hpsize_min = opaque;
1216 
1217     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1218         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1219         long hpsize = host_memory_backend_pagesize(backend);
1220 
1221         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1222             *hpsize_min = hpsize;
1223         }
1224     }
1225 
1226     return 0;
1227 }
1228 
1229 static int find_max_backend_pagesize(Object *obj, void *opaque)
1230 {
1231     long *hpsize_max = opaque;
1232 
1233     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1234         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1235         long hpsize = host_memory_backend_pagesize(backend);
1236 
1237         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1238             *hpsize_max = hpsize;
1239         }
1240     }
1241 
1242     return 0;
1243 }
1244 
1245 /*
1246  * TODO: We assume right now that all mapped host memory backends are
1247  * used as RAM, however some might be used for different purposes.
1248  */
1249 long qemu_minrampagesize(void)
1250 {
1251     long hpsize = LONG_MAX;
1252     Object *memdev_root = object_resolve_path("/objects", NULL);
1253 
1254     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1255     return hpsize;
1256 }
1257 
1258 long qemu_maxrampagesize(void)
1259 {
1260     long pagesize = 0;
1261     Object *memdev_root = object_resolve_path("/objects", NULL);
1262 
1263     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1264     return pagesize;
1265 }
1266 
1267 #ifdef CONFIG_POSIX
1268 static int64_t get_file_size(int fd)
1269 {
1270     int64_t size;
1271 #if defined(__linux__)
1272     struct stat st;
1273 
1274     if (fstat(fd, &st) < 0) {
1275         return -errno;
1276     }
1277 
1278     /* Special handling for devdax character devices */
1279     if (S_ISCHR(st.st_mode)) {
1280         g_autofree char *subsystem_path = NULL;
1281         g_autofree char *subsystem = NULL;
1282 
1283         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1284                                          major(st.st_rdev), minor(st.st_rdev));
1285         subsystem = g_file_read_link(subsystem_path, NULL);
1286 
1287         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1288             g_autofree char *size_path = NULL;
1289             g_autofree char *size_str = NULL;
1290 
1291             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1292                                     major(st.st_rdev), minor(st.st_rdev));
1293 
1294             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1295                 return g_ascii_strtoll(size_str, NULL, 0);
1296             }
1297         }
1298     }
1299 #endif /* defined(__linux__) */
1300 
1301     /* st.st_size may be zero for special files yet lseek(2) works */
1302     size = lseek(fd, 0, SEEK_END);
1303     if (size < 0) {
1304         return -errno;
1305     }
1306     return size;
1307 }
1308 
1309 static int64_t get_file_align(int fd)
1310 {
1311     int64_t align = -1;
1312 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1313     struct stat st;
1314 
1315     if (fstat(fd, &st) < 0) {
1316         return -errno;
1317     }
1318 
1319     /* Special handling for devdax character devices */
1320     if (S_ISCHR(st.st_mode)) {
1321         g_autofree char *path = NULL;
1322         g_autofree char *rpath = NULL;
1323         struct daxctl_ctx *ctx;
1324         struct daxctl_region *region;
1325         int rc = 0;
1326 
1327         path = g_strdup_printf("/sys/dev/char/%d:%d",
1328                     major(st.st_rdev), minor(st.st_rdev));
1329         rpath = realpath(path, NULL);
1330         if (!rpath) {
1331             return -errno;
1332         }
1333 
1334         rc = daxctl_new(&ctx);
1335         if (rc) {
1336             return -1;
1337         }
1338 
1339         daxctl_region_foreach(ctx, region) {
1340             if (strstr(rpath, daxctl_region_get_path(region))) {
1341                 align = daxctl_region_get_align(region);
1342                 break;
1343             }
1344         }
1345         daxctl_unref(ctx);
1346     }
1347 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1348 
1349     return align;
1350 }
1351 
1352 static int file_ram_open(const char *path,
1353                          const char *region_name,
1354                          bool readonly,
1355                          bool *created)
1356 {
1357     char *filename;
1358     char *sanitized_name;
1359     char *c;
1360     int fd = -1;
1361 
1362     *created = false;
1363     for (;;) {
1364         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1365         if (fd >= 0) {
1366             /*
1367              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1368              * opened a directory and fail similarly to how we fail ENOENT
1369              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1370              */
1371             if (readonly) {
1372                 struct stat file_stat;
1373 
1374                 if (fstat(fd, &file_stat)) {
1375                     close(fd);
1376                     if (errno == EINTR) {
1377                         continue;
1378                     }
1379                     return -errno;
1380                 } else if (S_ISDIR(file_stat.st_mode)) {
1381                     close(fd);
1382                     return -EISDIR;
1383                 }
1384             }
1385             /* @path names an existing file, use it */
1386             break;
1387         }
1388         if (errno == ENOENT) {
1389             if (readonly) {
1390                 /* Refuse to create new, readonly files. */
1391                 return -ENOENT;
1392             }
1393             /* @path names a file that doesn't exist, create it */
1394             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1395             if (fd >= 0) {
1396                 *created = true;
1397                 break;
1398             }
1399         } else if (errno == EISDIR) {
1400             /* @path names a directory, create a file there */
1401             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1402             sanitized_name = g_strdup(region_name);
1403             for (c = sanitized_name; *c != '\0'; c++) {
1404                 if (*c == '/') {
1405                     *c = '_';
1406                 }
1407             }
1408 
1409             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1410                                        sanitized_name);
1411             g_free(sanitized_name);
1412 
1413             fd = mkstemp(filename);
1414             if (fd >= 0) {
1415                 unlink(filename);
1416                 g_free(filename);
1417                 break;
1418             }
1419             g_free(filename);
1420         }
1421         if (errno != EEXIST && errno != EINTR) {
1422             return -errno;
1423         }
1424         /*
1425          * Try again on EINTR and EEXIST.  The latter happens when
1426          * something else creates the file between our two open().
1427          */
1428     }
1429 
1430     return fd;
1431 }
1432 
1433 static void *file_ram_alloc(RAMBlock *block,
1434                             ram_addr_t memory,
1435                             int fd,
1436                             bool truncate,
1437                             off_t offset,
1438                             Error **errp)
1439 {
1440     uint32_t qemu_map_flags;
1441     void *area;
1442 
1443     block->page_size = qemu_fd_getpagesize(fd);
1444     if (block->mr->align % block->page_size) {
1445         error_setg(errp, "alignment 0x%" PRIx64
1446                    " must be multiples of page size 0x%zx",
1447                    block->mr->align, block->page_size);
1448         return NULL;
1449     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1450         error_setg(errp, "alignment 0x%" PRIx64
1451                    " must be a power of two", block->mr->align);
1452         return NULL;
1453     } else if (offset % block->page_size) {
1454         error_setg(errp, "offset 0x%" PRIx64
1455                    " must be multiples of page size 0x%zx",
1456                    offset, block->page_size);
1457         return NULL;
1458     }
1459     block->mr->align = MAX(block->page_size, block->mr->align);
1460 #if defined(__s390x__)
1461     if (kvm_enabled()) {
1462         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1463     }
1464 #endif
1465 
1466     if (memory < block->page_size) {
1467         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1468                    "or larger than page size 0x%zx",
1469                    memory, block->page_size);
1470         return NULL;
1471     }
1472 
1473     memory = ROUND_UP(memory, block->page_size);
1474 
1475     /*
1476      * ftruncate is not supported by hugetlbfs in older
1477      * hosts, so don't bother bailing out on errors.
1478      * If anything goes wrong with it under other filesystems,
1479      * mmap will fail.
1480      *
1481      * Do not truncate the non-empty backend file to avoid corrupting
1482      * the existing data in the file. Disabling shrinking is not
1483      * enough. For example, the current vNVDIMM implementation stores
1484      * the guest NVDIMM labels at the end of the backend file. If the
1485      * backend file is later extended, QEMU will not be able to find
1486      * those labels. Therefore, extending the non-empty backend file
1487      * is disabled as well.
1488      */
1489     if (truncate && ftruncate(fd, offset + memory)) {
1490         perror("ftruncate");
1491     }
1492 
1493     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1494     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1495     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1496     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1497     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1498     if (area == MAP_FAILED) {
1499         error_setg_errno(errp, errno,
1500                          "unable to map backing store for guest RAM");
1501         return NULL;
1502     }
1503 
1504     block->fd = fd;
1505     block->fd_offset = offset;
1506     return area;
1507 }
1508 #endif
1509 
1510 /* Allocate space within the ram_addr_t space that governs the
1511  * dirty bitmaps.
1512  * Called with the ramlist lock held.
1513  */
1514 static ram_addr_t find_ram_offset(ram_addr_t size)
1515 {
1516     RAMBlock *block, *next_block;
1517     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1518 
1519     assert(size != 0); /* it would hand out same offset multiple times */
1520 
1521     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1522         return 0;
1523     }
1524 
1525     RAMBLOCK_FOREACH(block) {
1526         ram_addr_t candidate, next = RAM_ADDR_MAX;
1527 
1528         /* Align blocks to start on a 'long' in the bitmap
1529          * which makes the bitmap sync'ing take the fast path.
1530          */
1531         candidate = block->offset + block->max_length;
1532         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1533 
1534         /* Search for the closest following block
1535          * and find the gap.
1536          */
1537         RAMBLOCK_FOREACH(next_block) {
1538             if (next_block->offset >= candidate) {
1539                 next = MIN(next, next_block->offset);
1540             }
1541         }
1542 
1543         /* If it fits remember our place and remember the size
1544          * of gap, but keep going so that we might find a smaller
1545          * gap to fill so avoiding fragmentation.
1546          */
1547         if (next - candidate >= size && next - candidate < mingap) {
1548             offset = candidate;
1549             mingap = next - candidate;
1550         }
1551 
1552         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1553     }
1554 
1555     if (offset == RAM_ADDR_MAX) {
1556         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1557                 (uint64_t)size);
1558         abort();
1559     }
1560 
1561     trace_find_ram_offset(size, offset);
1562 
1563     return offset;
1564 }
1565 
1566 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1567 {
1568     int ret;
1569 
1570     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1571     if (!machine_dump_guest_core(current_machine)) {
1572         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1573         if (ret) {
1574             perror("qemu_madvise");
1575             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1576                             "but dump-guest-core=off specified\n");
1577         }
1578     }
1579 }
1580 
1581 const char *qemu_ram_get_idstr(RAMBlock *rb)
1582 {
1583     return rb->idstr;
1584 }
1585 
1586 void *qemu_ram_get_host_addr(RAMBlock *rb)
1587 {
1588     return rb->host;
1589 }
1590 
1591 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1592 {
1593     return rb->offset;
1594 }
1595 
1596 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1597 {
1598     return rb->used_length;
1599 }
1600 
1601 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1602 {
1603     return rb->max_length;
1604 }
1605 
1606 bool qemu_ram_is_shared(RAMBlock *rb)
1607 {
1608     return rb->flags & RAM_SHARED;
1609 }
1610 
1611 bool qemu_ram_is_noreserve(RAMBlock *rb)
1612 {
1613     return rb->flags & RAM_NORESERVE;
1614 }
1615 
1616 /* Note: Only set at the start of postcopy */
1617 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1618 {
1619     return rb->flags & RAM_UF_ZEROPAGE;
1620 }
1621 
1622 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1623 {
1624     rb->flags |= RAM_UF_ZEROPAGE;
1625 }
1626 
1627 bool qemu_ram_is_migratable(RAMBlock *rb)
1628 {
1629     return rb->flags & RAM_MIGRATABLE;
1630 }
1631 
1632 void qemu_ram_set_migratable(RAMBlock *rb)
1633 {
1634     rb->flags |= RAM_MIGRATABLE;
1635 }
1636 
1637 void qemu_ram_unset_migratable(RAMBlock *rb)
1638 {
1639     rb->flags &= ~RAM_MIGRATABLE;
1640 }
1641 
1642 bool qemu_ram_is_named_file(RAMBlock *rb)
1643 {
1644     return rb->flags & RAM_NAMED_FILE;
1645 }
1646 
1647 int qemu_ram_get_fd(RAMBlock *rb)
1648 {
1649     return rb->fd;
1650 }
1651 
1652 /* Called with the BQL held.  */
1653 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1654 {
1655     RAMBlock *block;
1656 
1657     assert(new_block);
1658     assert(!new_block->idstr[0]);
1659 
1660     if (dev) {
1661         char *id = qdev_get_dev_path(dev);
1662         if (id) {
1663             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1664             g_free(id);
1665         }
1666     }
1667     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1668 
1669     RCU_READ_LOCK_GUARD();
1670     RAMBLOCK_FOREACH(block) {
1671         if (block != new_block &&
1672             !strcmp(block->idstr, new_block->idstr)) {
1673             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1674                     new_block->idstr);
1675             abort();
1676         }
1677     }
1678 }
1679 
1680 /* Called with the BQL held.  */
1681 void qemu_ram_unset_idstr(RAMBlock *block)
1682 {
1683     /* FIXME: arch_init.c assumes that this is not called throughout
1684      * migration.  Ignore the problem since hot-unplug during migration
1685      * does not work anyway.
1686      */
1687     if (block) {
1688         memset(block->idstr, 0, sizeof(block->idstr));
1689     }
1690 }
1691 
1692 static char *cpr_name(MemoryRegion *mr)
1693 {
1694     const char *mr_name = memory_region_name(mr);
1695     g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL;
1696 
1697     if (id) {
1698         return g_strdup_printf("%s/%s", id, mr_name);
1699     } else {
1700         return g_strdup(mr_name);
1701     }
1702 }
1703 
1704 size_t qemu_ram_pagesize(RAMBlock *rb)
1705 {
1706     return rb->page_size;
1707 }
1708 
1709 /* Returns the largest size of page in use */
1710 size_t qemu_ram_pagesize_largest(void)
1711 {
1712     RAMBlock *block;
1713     size_t largest = 0;
1714 
1715     RAMBLOCK_FOREACH(block) {
1716         largest = MAX(largest, qemu_ram_pagesize(block));
1717     }
1718 
1719     return largest;
1720 }
1721 
1722 static int memory_try_enable_merging(void *addr, size_t len)
1723 {
1724     if (!machine_mem_merge(current_machine)) {
1725         /* disabled by the user */
1726         return 0;
1727     }
1728 
1729     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1730 }
1731 
1732 /*
1733  * Resizing RAM while migrating can result in the migration being canceled.
1734  * Care has to be taken if the guest might have already detected the memory.
1735  *
1736  * As memory core doesn't know how is memory accessed, it is up to
1737  * resize callback to update device state and/or add assertions to detect
1738  * misuse, if necessary.
1739  */
1740 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1741 {
1742     const ram_addr_t oldsize = block->used_length;
1743     const ram_addr_t unaligned_size = newsize;
1744 
1745     assert(block);
1746 
1747     newsize = TARGET_PAGE_ALIGN(newsize);
1748     newsize = REAL_HOST_PAGE_ALIGN(newsize);
1749 
1750     if (block->used_length == newsize) {
1751         /*
1752          * We don't have to resize the ram block (which only knows aligned
1753          * sizes), however, we have to notify if the unaligned size changed.
1754          */
1755         if (unaligned_size != memory_region_size(block->mr)) {
1756             memory_region_set_size(block->mr, unaligned_size);
1757             if (block->resized) {
1758                 block->resized(block->idstr, unaligned_size, block->host);
1759             }
1760         }
1761         return 0;
1762     }
1763 
1764     if (!(block->flags & RAM_RESIZEABLE)) {
1765         error_setg_errno(errp, EINVAL,
1766                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1767                          " != 0x" RAM_ADDR_FMT, block->idstr,
1768                          newsize, block->used_length);
1769         return -EINVAL;
1770     }
1771 
1772     if (block->max_length < newsize) {
1773         error_setg_errno(errp, EINVAL,
1774                          "Size too large: %s: 0x" RAM_ADDR_FMT
1775                          " > 0x" RAM_ADDR_FMT, block->idstr,
1776                          newsize, block->max_length);
1777         return -EINVAL;
1778     }
1779 
1780     /* Notify before modifying the ram block and touching the bitmaps. */
1781     if (block->host) {
1782         ram_block_notify_resize(block->host, oldsize, newsize);
1783     }
1784 
1785     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1786     block->used_length = newsize;
1787     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1788                                         DIRTY_CLIENTS_ALL);
1789     memory_region_set_size(block->mr, unaligned_size);
1790     if (block->resized) {
1791         block->resized(block->idstr, unaligned_size, block->host);
1792     }
1793     return 0;
1794 }
1795 
1796 /*
1797  * Trigger sync on the given ram block for range [start, start + length]
1798  * with the backing store if one is available.
1799  * Otherwise no-op.
1800  * @Note: this is supposed to be a synchronous op.
1801  */
1802 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1803 {
1804     /* The requested range should fit in within the block range */
1805     g_assert((start + length) <= block->used_length);
1806 
1807 #ifdef CONFIG_LIBPMEM
1808     /* The lack of support for pmem should not block the sync */
1809     if (ramblock_is_pmem(block)) {
1810         void *addr = ramblock_ptr(block, start);
1811         pmem_persist(addr, length);
1812         return;
1813     }
1814 #endif
1815     if (block->fd >= 0) {
1816         /**
1817          * Case there is no support for PMEM or the memory has not been
1818          * specified as persistent (or is not one) - use the msync.
1819          * Less optimal but still achieves the same goal
1820          */
1821         void *addr = ramblock_ptr(block, start);
1822         if (qemu_msync(addr, length, block->fd)) {
1823             warn_report("%s: failed to sync memory range: start: "
1824                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1825                     __func__, start, length);
1826         }
1827     }
1828 }
1829 
1830 /* Called with ram_list.mutex held */
1831 static void dirty_memory_extend(ram_addr_t new_ram_size)
1832 {
1833     unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1834     unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1835                                                DIRTY_MEMORY_BLOCK_SIZE);
1836     int i;
1837 
1838     /* Only need to extend if block count increased */
1839     if (new_num_blocks <= old_num_blocks) {
1840         return;
1841     }
1842 
1843     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1844         DirtyMemoryBlocks *old_blocks;
1845         DirtyMemoryBlocks *new_blocks;
1846         int j;
1847 
1848         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1849         new_blocks = g_malloc(sizeof(*new_blocks) +
1850                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1851 
1852         if (old_num_blocks) {
1853             memcpy(new_blocks->blocks, old_blocks->blocks,
1854                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1855         }
1856 
1857         for (j = old_num_blocks; j < new_num_blocks; j++) {
1858             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1859         }
1860 
1861         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1862 
1863         if (old_blocks) {
1864             g_free_rcu(old_blocks, rcu);
1865         }
1866     }
1867 
1868     ram_list.num_dirty_blocks = new_num_blocks;
1869 }
1870 
1871 static void ram_block_add(RAMBlock *new_block, Error **errp)
1872 {
1873     const bool noreserve = qemu_ram_is_noreserve(new_block);
1874     const bool shared = qemu_ram_is_shared(new_block);
1875     RAMBlock *block;
1876     RAMBlock *last_block = NULL;
1877     bool free_on_error = false;
1878     ram_addr_t ram_size;
1879     Error *err = NULL;
1880 
1881     qemu_mutex_lock_ramlist();
1882     new_block->offset = find_ram_offset(new_block->max_length);
1883 
1884     if (!new_block->host) {
1885         if (xen_enabled()) {
1886             xen_ram_alloc(new_block->offset, new_block->max_length,
1887                           new_block->mr, &err);
1888             if (err) {
1889                 error_propagate(errp, err);
1890                 qemu_mutex_unlock_ramlist();
1891                 return;
1892             }
1893         } else {
1894             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1895                                                   &new_block->mr->align,
1896                                                   shared, noreserve);
1897             if (!new_block->host) {
1898                 error_setg_errno(errp, errno,
1899                                  "cannot set up guest memory '%s'",
1900                                  memory_region_name(new_block->mr));
1901                 qemu_mutex_unlock_ramlist();
1902                 return;
1903             }
1904             memory_try_enable_merging(new_block->host, new_block->max_length);
1905             free_on_error = true;
1906         }
1907     }
1908 
1909     if (new_block->flags & RAM_GUEST_MEMFD) {
1910         int ret;
1911 
1912         if (!kvm_enabled()) {
1913             error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1914                        object_get_typename(OBJECT(current_machine->cgs)));
1915             goto out_free;
1916         }
1917         assert(new_block->guest_memfd < 0);
1918 
1919         ret = ram_block_discard_require(true);
1920         if (ret < 0) {
1921             error_setg_errno(errp, -ret,
1922                              "cannot set up private guest memory: discard currently blocked");
1923             error_append_hint(errp, "Are you using assigned devices?\n");
1924             goto out_free;
1925         }
1926 
1927         new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1928                                                         0, errp);
1929         if (new_block->guest_memfd < 0) {
1930             qemu_mutex_unlock_ramlist();
1931             goto out_free;
1932         }
1933 
1934         /*
1935          * Add a specific guest_memfd blocker if a generic one would not be
1936          * added by ram_block_add_cpr_blocker.
1937          */
1938         if (ram_is_cpr_compatible(new_block)) {
1939             error_setg(&new_block->cpr_blocker,
1940                        "Memory region %s uses guest_memfd, "
1941                        "which is not supported with CPR.",
1942                        memory_region_name(new_block->mr));
1943             migrate_add_blocker_modes(&new_block->cpr_blocker, errp,
1944                                       MIG_MODE_CPR_TRANSFER, -1);
1945         }
1946     }
1947 
1948     ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1949     dirty_memory_extend(ram_size);
1950     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1951      * QLIST (which has an RCU-friendly variant) does not have insertion at
1952      * tail, so save the last element in last_block.
1953      */
1954     RAMBLOCK_FOREACH(block) {
1955         last_block = block;
1956         if (block->max_length < new_block->max_length) {
1957             break;
1958         }
1959     }
1960     if (block) {
1961         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1962     } else if (last_block) {
1963         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1964     } else { /* list is empty */
1965         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1966     }
1967     ram_list.mru_block = NULL;
1968 
1969     /* Write list before version */
1970     smp_wmb();
1971     ram_list.version++;
1972     qemu_mutex_unlock_ramlist();
1973 
1974     cpu_physical_memory_set_dirty_range(new_block->offset,
1975                                         new_block->used_length,
1976                                         DIRTY_CLIENTS_ALL);
1977 
1978     if (new_block->host) {
1979         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1980         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1981         /*
1982          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1983          * Configure it unless the machine is a qtest server, in which case
1984          * KVM is not used and it may be forked (eg for fuzzing purposes).
1985          */
1986         if (!qtest_enabled()) {
1987             qemu_madvise(new_block->host, new_block->max_length,
1988                          QEMU_MADV_DONTFORK);
1989         }
1990         ram_block_notify_add(new_block->host, new_block->used_length,
1991                              new_block->max_length);
1992     }
1993     return;
1994 
1995 out_free:
1996     if (free_on_error) {
1997         qemu_anon_ram_free(new_block->host, new_block->max_length);
1998         new_block->host = NULL;
1999     }
2000 }
2001 
2002 #ifdef CONFIG_POSIX
2003 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
2004                                  qemu_ram_resize_cb resized, MemoryRegion *mr,
2005                                  uint32_t ram_flags, int fd, off_t offset,
2006                                  bool grow,
2007                                  Error **errp)
2008 {
2009     ERRP_GUARD();
2010     RAMBlock *new_block;
2011     Error *local_err = NULL;
2012     int64_t file_size, file_align, share_flags;
2013 
2014     share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2015     assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2016     ram_flags &= ~RAM_PRIVATE;
2017 
2018     /* Just support these ram flags by now. */
2019     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2020                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
2021                           RAM_READONLY_FD | RAM_GUEST_MEMFD |
2022                           RAM_RESIZEABLE)) == 0);
2023     assert(max_size >= size);
2024 
2025     if (xen_enabled()) {
2026         error_setg(errp, "-mem-path not supported with Xen");
2027         return NULL;
2028     }
2029 
2030     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2031         error_setg(errp,
2032                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2033         return NULL;
2034     }
2035 
2036     size = TARGET_PAGE_ALIGN(size);
2037     size = REAL_HOST_PAGE_ALIGN(size);
2038     max_size = TARGET_PAGE_ALIGN(max_size);
2039     max_size = REAL_HOST_PAGE_ALIGN(max_size);
2040 
2041     file_size = get_file_size(fd);
2042     if (file_size && file_size < offset + max_size && !grow) {
2043         error_setg(errp, "%s backing store size 0x%" PRIx64
2044                    " is too small for 'size' option 0x" RAM_ADDR_FMT
2045                    " plus 'offset' option 0x%" PRIx64,
2046                    memory_region_name(mr), file_size, max_size,
2047                    (uint64_t)offset);
2048         return NULL;
2049     }
2050 
2051     file_align = get_file_align(fd);
2052     if (file_align > 0 && file_align > mr->align) {
2053         error_setg(errp, "backing store align 0x%" PRIx64
2054                    " is larger than 'align' option 0x%" PRIx64,
2055                    file_align, mr->align);
2056         return NULL;
2057     }
2058 
2059     new_block = g_malloc0(sizeof(*new_block));
2060     new_block->mr = mr;
2061     new_block->used_length = size;
2062     new_block->max_length = max_size;
2063     new_block->resized = resized;
2064     new_block->flags = ram_flags;
2065     new_block->guest_memfd = -1;
2066     new_block->host = file_ram_alloc(new_block, max_size, fd,
2067                                      file_size < offset + max_size,
2068                                      offset, errp);
2069     if (!new_block->host) {
2070         g_free(new_block);
2071         return NULL;
2072     }
2073 
2074     ram_block_add(new_block, &local_err);
2075     if (local_err) {
2076         g_free(new_block);
2077         error_propagate(errp, local_err);
2078         return NULL;
2079     }
2080     return new_block;
2081 
2082 }
2083 
2084 
2085 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2086                                    uint32_t ram_flags, const char *mem_path,
2087                                    off_t offset, Error **errp)
2088 {
2089     int fd;
2090     bool created;
2091     RAMBlock *block;
2092 
2093     fd = file_ram_open(mem_path, memory_region_name(mr),
2094                        !!(ram_flags & RAM_READONLY_FD), &created);
2095     if (fd < 0) {
2096         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2097                          mem_path);
2098         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2099             fd == -EACCES) {
2100             /*
2101              * If we can open the file R/O (note: will never create a new file)
2102              * and we are dealing with a private mapping, there are still ways
2103              * to consume such files and get RAM instead of ROM.
2104              */
2105             fd = file_ram_open(mem_path, memory_region_name(mr), true,
2106                                &created);
2107             if (fd < 0) {
2108                 return NULL;
2109             }
2110             assert(!created);
2111             close(fd);
2112             error_append_hint(errp, "Consider opening the backing store"
2113                 " read-only but still creating writable RAM using"
2114                 " '-object memory-backend-file,readonly=on,rom=off...'"
2115                 " (see \"VM templating\" documentation)\n");
2116         }
2117         return NULL;
2118     }
2119 
2120     block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset,
2121                                    false, errp);
2122     if (!block) {
2123         if (created) {
2124             unlink(mem_path);
2125         }
2126         close(fd);
2127         return NULL;
2128     }
2129 
2130     return block;
2131 }
2132 #endif
2133 
2134 #ifdef CONFIG_POSIX
2135 /*
2136  * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be
2137  * shared with another process if CPR is being used.  Use memfd if available
2138  * because it has no size limits, else use POSIX shm.
2139  */
2140 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp)
2141 {
2142     int fd = cpr_find_fd(name, 0);
2143 
2144     if (fd >= 0) {
2145         *reused = true;
2146         return fd;
2147     }
2148 
2149     if (qemu_memfd_check(0)) {
2150         fd = qemu_memfd_create(name, 0, 0, 0, 0, errp);
2151     } else {
2152         fd = qemu_shm_alloc(0, errp);
2153     }
2154 
2155     if (fd >= 0) {
2156         cpr_save_fd(name, 0, fd);
2157     }
2158     *reused = false;
2159     return fd;
2160 }
2161 #endif
2162 
2163 static
2164 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2165                                   qemu_ram_resize_cb resized,
2166                                   void *host, uint32_t ram_flags,
2167                                   MemoryRegion *mr, Error **errp)
2168 {
2169     RAMBlock *new_block;
2170     Error *local_err = NULL;
2171     int align, share_flags;
2172 
2173     share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2174     assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2175     ram_flags &= ~RAM_PRIVATE;
2176 
2177     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2178                           RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2179     assert(!host ^ (ram_flags & RAM_PREALLOC));
2180     assert(max_size >= size);
2181 
2182 #ifdef CONFIG_POSIX         /* ignore RAM_SHARED for Windows */
2183     if (!host) {
2184         if (!share_flags && current_machine->aux_ram_share) {
2185             ram_flags |= RAM_SHARED;
2186         }
2187         if (ram_flags & RAM_SHARED) {
2188             bool reused;
2189             g_autofree char *name = cpr_name(mr);
2190             int fd = qemu_ram_get_shared_fd(name, &reused, errp);
2191 
2192             if (fd < 0) {
2193                 return NULL;
2194             }
2195 
2196             /* Use same alignment as qemu_anon_ram_alloc */
2197             mr->align = QEMU_VMALLOC_ALIGN;
2198 
2199             /*
2200              * This can fail if the shm mount size is too small, or alloc from
2201              * fd is not supported, but previous QEMU versions that called
2202              * qemu_anon_ram_alloc for anonymous shared memory could have
2203              * succeeded.  Quietly fail and fall back.
2204              *
2205              * After cpr-transfer, new QEMU could create a memory region
2206              * with a larger max size than old, so pass reused to grow the
2207              * region if necessary.  The extra space will be usable after a
2208              * guest reset.
2209              */
2210             new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr,
2211                                                ram_flags, fd, 0, reused, NULL);
2212             if (new_block) {
2213                 trace_qemu_ram_alloc_shared(name, new_block->used_length,
2214                                             new_block->max_length, fd,
2215                                             new_block->host);
2216                 return new_block;
2217             }
2218 
2219             cpr_delete_fd(name, 0);
2220             close(fd);
2221             /* fall back to anon allocation */
2222         }
2223     }
2224 #endif
2225 
2226     align = qemu_real_host_page_size();
2227     align = MAX(align, TARGET_PAGE_SIZE);
2228     size = ROUND_UP(size, align);
2229     max_size = ROUND_UP(max_size, align);
2230 
2231     new_block = g_malloc0(sizeof(*new_block));
2232     new_block->mr = mr;
2233     new_block->resized = resized;
2234     new_block->used_length = size;
2235     new_block->max_length = max_size;
2236     new_block->fd = -1;
2237     new_block->guest_memfd = -1;
2238     new_block->page_size = qemu_real_host_page_size();
2239     new_block->host = host;
2240     new_block->flags = ram_flags;
2241     ram_block_add(new_block, &local_err);
2242     if (local_err) {
2243         g_free(new_block);
2244         error_propagate(errp, local_err);
2245         return NULL;
2246     }
2247     return new_block;
2248 }
2249 
2250 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2251                                    MemoryRegion *mr, Error **errp)
2252 {
2253     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2254                                    errp);
2255 }
2256 
2257 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2258                          MemoryRegion *mr, Error **errp)
2259 {
2260     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD |
2261                           RAM_PRIVATE)) == 0);
2262     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2263 }
2264 
2265 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2266                                     qemu_ram_resize_cb resized,
2267                                     MemoryRegion *mr, Error **errp)
2268 {
2269     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2270                                    RAM_RESIZEABLE, mr, errp);
2271 }
2272 
2273 static void reclaim_ramblock(RAMBlock *block)
2274 {
2275     if (block->flags & RAM_PREALLOC) {
2276         ;
2277     } else if (xen_enabled()) {
2278         xen_invalidate_map_cache_entry(block->host);
2279 #ifndef _WIN32
2280     } else if (block->fd >= 0) {
2281         qemu_ram_munmap(block->fd, block->host, block->max_length);
2282         close(block->fd);
2283 #endif
2284     } else {
2285         qemu_anon_ram_free(block->host, block->max_length);
2286     }
2287 
2288     if (block->guest_memfd >= 0) {
2289         close(block->guest_memfd);
2290         ram_block_discard_require(false);
2291     }
2292 
2293     g_free(block);
2294 }
2295 
2296 void qemu_ram_free(RAMBlock *block)
2297 {
2298     g_autofree char *name = NULL;
2299 
2300     if (!block) {
2301         return;
2302     }
2303 
2304     if (block->host) {
2305         ram_block_notify_remove(block->host, block->used_length,
2306                                 block->max_length);
2307     }
2308 
2309     qemu_mutex_lock_ramlist();
2310     name = cpr_name(block->mr);
2311     cpr_delete_fd(name, 0);
2312     QLIST_REMOVE_RCU(block, next);
2313     ram_list.mru_block = NULL;
2314     /* Write list before version */
2315     smp_wmb();
2316     ram_list.version++;
2317     call_rcu(block, reclaim_ramblock, rcu);
2318     qemu_mutex_unlock_ramlist();
2319 }
2320 
2321 #ifndef _WIN32
2322 /* Simply remap the given VM memory location from start to start+length */
2323 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length)
2324 {
2325     int flags, prot;
2326     void *area;
2327     void *host_startaddr = block->host + start;
2328 
2329     assert(block->fd < 0);
2330     flags = MAP_FIXED | MAP_ANONYMOUS;
2331     flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE;
2332     flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2333     prot = PROT_READ;
2334     prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2335     area = mmap(host_startaddr, length, prot, flags, -1, 0);
2336     return area != host_startaddr ? -errno : 0;
2337 }
2338 
2339 /*
2340  * qemu_ram_remap - remap a single RAM page
2341  *
2342  * @addr: address in ram_addr_t address space.
2343  *
2344  * This function will try remapping a single page of guest RAM identified by
2345  * @addr, essentially discarding memory to recover from previously poisoned
2346  * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr
2347  * does not have to point at the start of the page.
2348  *
2349  * This function is only to be used during system resets; it will kill the
2350  * VM if remapping failed.
2351  */
2352 void qemu_ram_remap(ram_addr_t addr)
2353 {
2354     RAMBlock *block;
2355     uint64_t offset;
2356     void *vaddr;
2357     size_t page_size;
2358 
2359     RAMBLOCK_FOREACH(block) {
2360         offset = addr - block->offset;
2361         if (offset < block->max_length) {
2362             /* Respect the pagesize of our RAMBlock */
2363             page_size = qemu_ram_pagesize(block);
2364             offset = QEMU_ALIGN_DOWN(offset, page_size);
2365 
2366             vaddr = ramblock_ptr(block, offset);
2367             if (block->flags & RAM_PREALLOC) {
2368                 ;
2369             } else if (xen_enabled()) {
2370                 abort();
2371             } else {
2372                 if (ram_block_discard_range(block, offset, page_size) != 0) {
2373                     /*
2374                      * Fall back to using mmap() only for anonymous mapping,
2375                      * as if a backing file is associated we may not be able
2376                      * to recover the memory in all cases.
2377                      * So don't take the risk of using only mmap and fail now.
2378                      */
2379                     if (block->fd >= 0) {
2380                         error_report("Could not remap RAM %s:%" PRIx64 "+%"
2381                                      PRIx64 " +%zx", block->idstr, offset,
2382                                      block->fd_offset, page_size);
2383                         exit(1);
2384                     }
2385                     if (qemu_ram_remap_mmap(block, offset, page_size) != 0) {
2386                         error_report("Could not remap RAM %s:%" PRIx64 " +%zx",
2387                                      block->idstr, offset, page_size);
2388                         exit(1);
2389                     }
2390                 }
2391                 memory_try_enable_merging(vaddr, page_size);
2392                 qemu_ram_setup_dump(vaddr, page_size);
2393             }
2394 
2395             break;
2396         }
2397     }
2398 }
2399 #endif /* !_WIN32 */
2400 
2401 /*
2402  * Return a host pointer to guest's ram.
2403  * For Xen, foreign mappings get created if they don't already exist.
2404  *
2405  * @block: block for the RAM to lookup (optional and may be NULL).
2406  * @addr: address within the memory region.
2407  * @size: pointer to requested size (optional and may be NULL).
2408  *        size may get modified and return a value smaller than
2409  *        what was requested.
2410  * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2411  * @is_write: hint wether to map RW or RO in the xen-mapcache.
2412  *            (optional and may always be set to true).
2413  *
2414  * Called within RCU critical section.
2415  */
2416 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2417                                  hwaddr *size, bool lock,
2418                                  bool is_write)
2419 {
2420     hwaddr len = 0;
2421 
2422     if (size && *size == 0) {
2423         return NULL;
2424     }
2425 
2426     if (block == NULL) {
2427         block = qemu_get_ram_block(addr);
2428         addr -= block->offset;
2429     }
2430     if (size) {
2431         *size = MIN(*size, block->max_length - addr);
2432         len = *size;
2433     }
2434 
2435     if (xen_enabled() && block->host == NULL) {
2436         /* We need to check if the requested address is in the RAM
2437          * because we don't want to map the entire memory in QEMU.
2438          * In that case just map the requested area.
2439          */
2440         if (xen_mr_is_memory(block->mr)) {
2441             return xen_map_cache(block->mr, block->offset + addr,
2442                                  len, block->offset,
2443                                  lock, lock, is_write);
2444         }
2445 
2446         block->host = xen_map_cache(block->mr, block->offset,
2447                                     block->max_length,
2448                                     block->offset,
2449                                     1, lock, is_write);
2450     }
2451 
2452     return ramblock_ptr(block, addr);
2453 }
2454 
2455 /*
2456  * Return a host pointer to ram allocated with qemu_ram_alloc.
2457  * This should not be used for general purpose DMA.  Use address_space_map
2458  * or address_space_rw instead. For local memory (e.g. video ram) that the
2459  * device owns, use memory_region_get_ram_ptr.
2460  *
2461  * Called within RCU critical section.
2462  */
2463 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2464 {
2465     return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2466 }
2467 
2468 /* Return the offset of a hostpointer within a ramblock */
2469 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2470 {
2471     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2472     assert((uintptr_t)host >= (uintptr_t)rb->host);
2473     assert(res < rb->max_length);
2474 
2475     return res;
2476 }
2477 
2478 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2479                                    ram_addr_t *offset)
2480 {
2481     RAMBlock *block;
2482     uint8_t *host = ptr;
2483 
2484     if (xen_enabled()) {
2485         ram_addr_t ram_addr;
2486         RCU_READ_LOCK_GUARD();
2487         ram_addr = xen_ram_addr_from_mapcache(ptr);
2488         if (ram_addr == RAM_ADDR_INVALID) {
2489             return NULL;
2490         }
2491 
2492         block = qemu_get_ram_block(ram_addr);
2493         if (block) {
2494             *offset = ram_addr - block->offset;
2495         }
2496         return block;
2497     }
2498 
2499     RCU_READ_LOCK_GUARD();
2500     block = qatomic_rcu_read(&ram_list.mru_block);
2501     if (block && block->host && host - block->host < block->max_length) {
2502         goto found;
2503     }
2504 
2505     RAMBLOCK_FOREACH(block) {
2506         /* This case append when the block is not mapped. */
2507         if (block->host == NULL) {
2508             continue;
2509         }
2510         if (host - block->host < block->max_length) {
2511             goto found;
2512         }
2513     }
2514 
2515     return NULL;
2516 
2517 found:
2518     *offset = (host - block->host);
2519     if (round_offset) {
2520         *offset &= TARGET_PAGE_MASK;
2521     }
2522     return block;
2523 }
2524 
2525 /*
2526  * Finds the named RAMBlock
2527  *
2528  * name: The name of RAMBlock to find
2529  *
2530  * Returns: RAMBlock (or NULL if not found)
2531  */
2532 RAMBlock *qemu_ram_block_by_name(const char *name)
2533 {
2534     RAMBlock *block;
2535 
2536     RAMBLOCK_FOREACH(block) {
2537         if (!strcmp(name, block->idstr)) {
2538             return block;
2539         }
2540     }
2541 
2542     return NULL;
2543 }
2544 
2545 /*
2546  * Some of the system routines need to translate from a host pointer
2547  * (typically a TLB entry) back to a ram offset.
2548  */
2549 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2550 {
2551     RAMBlock *block;
2552     ram_addr_t offset;
2553 
2554     block = qemu_ram_block_from_host(ptr, false, &offset);
2555     if (!block) {
2556         return RAM_ADDR_INVALID;
2557     }
2558 
2559     return block->offset + offset;
2560 }
2561 
2562 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2563 {
2564     ram_addr_t ram_addr;
2565 
2566     ram_addr = qemu_ram_addr_from_host(ptr);
2567     if (ram_addr == RAM_ADDR_INVALID) {
2568         error_report("Bad ram pointer %p", ptr);
2569         abort();
2570     }
2571     return ram_addr;
2572 }
2573 
2574 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2575                                  MemTxAttrs attrs, void *buf, hwaddr len);
2576 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2577                                   const void *buf, hwaddr len);
2578 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2579                                   bool is_write, MemTxAttrs attrs);
2580 
2581 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2582                                 unsigned len, MemTxAttrs attrs)
2583 {
2584     subpage_t *subpage = opaque;
2585     uint8_t buf[8];
2586     MemTxResult res;
2587 
2588 #if defined(DEBUG_SUBPAGE)
2589     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2590            subpage, len, addr);
2591 #endif
2592     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2593     if (res) {
2594         return res;
2595     }
2596     *data = ldn_p(buf, len);
2597     return MEMTX_OK;
2598 }
2599 
2600 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2601                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2602 {
2603     subpage_t *subpage = opaque;
2604     uint8_t buf[8];
2605 
2606 #if defined(DEBUG_SUBPAGE)
2607     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2608            " value %"PRIx64"\n",
2609            __func__, subpage, len, addr, value);
2610 #endif
2611     stn_p(buf, len, value);
2612     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2613 }
2614 
2615 static bool subpage_accepts(void *opaque, hwaddr addr,
2616                             unsigned len, bool is_write,
2617                             MemTxAttrs attrs)
2618 {
2619     subpage_t *subpage = opaque;
2620 #if defined(DEBUG_SUBPAGE)
2621     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2622            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2623 #endif
2624 
2625     return flatview_access_valid(subpage->fv, addr + subpage->base,
2626                                  len, is_write, attrs);
2627 }
2628 
2629 static const MemoryRegionOps subpage_ops = {
2630     .read_with_attrs = subpage_read,
2631     .write_with_attrs = subpage_write,
2632     .impl.min_access_size = 1,
2633     .impl.max_access_size = 8,
2634     .valid.min_access_size = 1,
2635     .valid.max_access_size = 8,
2636     .valid.accepts = subpage_accepts,
2637     .endianness = DEVICE_NATIVE_ENDIAN,
2638 };
2639 
2640 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2641                             uint16_t section)
2642 {
2643     int idx, eidx;
2644 
2645     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2646         return -1;
2647     idx = SUBPAGE_IDX(start);
2648     eidx = SUBPAGE_IDX(end);
2649 #if defined(DEBUG_SUBPAGE)
2650     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2651            __func__, mmio, start, end, idx, eidx, section);
2652 #endif
2653     for (; idx <= eidx; idx++) {
2654         mmio->sub_section[idx] = section;
2655     }
2656 
2657     return 0;
2658 }
2659 
2660 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2661 {
2662     subpage_t *mmio;
2663 
2664     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2665     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2666     mmio->fv = fv;
2667     mmio->base = base;
2668     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2669                           NULL, TARGET_PAGE_SIZE);
2670     mmio->iomem.subpage = true;
2671 #if defined(DEBUG_SUBPAGE)
2672     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2673            mmio, base, TARGET_PAGE_SIZE);
2674 #endif
2675 
2676     return mmio;
2677 }
2678 
2679 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2680 {
2681     assert(fv);
2682     MemoryRegionSection section = {
2683         .fv = fv,
2684         .mr = mr,
2685         .offset_within_address_space = 0,
2686         .offset_within_region = 0,
2687         .size = int128_2_64(),
2688     };
2689 
2690     return phys_section_add(map, &section);
2691 }
2692 
2693 static void io_mem_init(void)
2694 {
2695     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2696                           NULL, UINT64_MAX);
2697 }
2698 
2699 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2700 {
2701     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2702     uint16_t n;
2703 
2704     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2705     assert(n == PHYS_SECTION_UNASSIGNED);
2706 
2707     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2708 
2709     return d;
2710 }
2711 
2712 void address_space_dispatch_free(AddressSpaceDispatch *d)
2713 {
2714     phys_sections_free(&d->map);
2715     g_free(d);
2716 }
2717 
2718 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2719 {
2720 }
2721 
2722 static void tcg_log_global_after_sync(MemoryListener *listener)
2723 {
2724     CPUAddressSpace *cpuas;
2725 
2726     /* Wait for the CPU to end the current TB.  This avoids the following
2727      * incorrect race:
2728      *
2729      *      vCPU                         migration
2730      *      ----------------------       -------------------------
2731      *      TLB check -> slow path
2732      *        notdirty_mem_write
2733      *          write to RAM
2734      *          mark dirty
2735      *                                   clear dirty flag
2736      *      TLB check -> fast path
2737      *                                   read memory
2738      *        write to RAM
2739      *
2740      * by pushing the migration thread's memory read after the vCPU thread has
2741      * written the memory.
2742      */
2743     if (replay_mode == REPLAY_MODE_NONE) {
2744         /*
2745          * VGA can make calls to this function while updating the screen.
2746          * In record/replay mode this causes a deadlock, because
2747          * run_on_cpu waits for rr mutex. Therefore no races are possible
2748          * in this case and no need for making run_on_cpu when
2749          * record/replay is enabled.
2750          */
2751         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2752         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2753     }
2754 }
2755 
2756 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2757 {
2758     CPUAddressSpace *cpuas = data.host_ptr;
2759 
2760     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2761     tlb_flush(cpu);
2762 }
2763 
2764 static void tcg_commit(MemoryListener *listener)
2765 {
2766     CPUAddressSpace *cpuas;
2767     CPUState *cpu;
2768 
2769     assert(tcg_enabled());
2770     /* since each CPU stores ram addresses in its TLB cache, we must
2771        reset the modified entries */
2772     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2773     cpu = cpuas->cpu;
2774 
2775     /*
2776      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2777      * Otherwise we race between (1) other cpu threads and (2) ongoing
2778      * i/o for the current cpu thread, with data cached by mmu_lookup().
2779      *
2780      * In addition, queueing the work function will kick the cpu back to
2781      * the main loop, which will end the RCU critical section and reclaim
2782      * the memory data structures.
2783      *
2784      * That said, the listener is also called during realize, before
2785      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2786      */
2787     if (cpu->halt_cond) {
2788         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2789     } else {
2790         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2791     }
2792 }
2793 
2794 static void memory_map_init(void)
2795 {
2796     system_memory = g_malloc(sizeof(*system_memory));
2797 
2798     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2799     address_space_init(&address_space_memory, system_memory, "memory");
2800 
2801     system_io = g_malloc(sizeof(*system_io));
2802     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2803                           65536);
2804     address_space_init(&address_space_io, system_io, "I/O");
2805 }
2806 
2807 MemoryRegion *get_system_memory(void)
2808 {
2809     return system_memory;
2810 }
2811 
2812 MemoryRegion *get_system_io(void)
2813 {
2814     return system_io;
2815 }
2816 
2817 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2818                                      hwaddr length)
2819 {
2820     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2821     ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2822 
2823     /* We know we're only called for RAM MemoryRegions */
2824     assert(ramaddr != RAM_ADDR_INVALID);
2825     addr += ramaddr;
2826 
2827     /* No early return if dirty_log_mask is or becomes 0, because
2828      * cpu_physical_memory_set_dirty_range will still call
2829      * xen_modified_memory.
2830      */
2831     if (dirty_log_mask) {
2832         dirty_log_mask =
2833             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2834     }
2835     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2836         assert(tcg_enabled());
2837         tb_invalidate_phys_range(NULL, addr, addr + length - 1);
2838         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2839     }
2840     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2841 }
2842 
2843 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2844 {
2845     /*
2846      * In principle this function would work on other memory region types too,
2847      * but the ROM device use case is the only one where this operation is
2848      * necessary.  Other memory regions should use the
2849      * address_space_read/write() APIs.
2850      */
2851     assert(memory_region_is_romd(mr));
2852 
2853     invalidate_and_set_dirty(mr, addr, size);
2854 }
2855 
2856 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2857 {
2858     unsigned access_size_max = mr->ops->valid.max_access_size;
2859 
2860     /* Regions are assumed to support 1-4 byte accesses unless
2861        otherwise specified.  */
2862     if (access_size_max == 0) {
2863         access_size_max = 4;
2864     }
2865 
2866     /* Bound the maximum access by the alignment of the address.  */
2867     if (!mr->ops->impl.unaligned) {
2868         unsigned align_size_max = addr & -addr;
2869         if (align_size_max != 0 && align_size_max < access_size_max) {
2870             access_size_max = align_size_max;
2871         }
2872     }
2873 
2874     /* Don't attempt accesses larger than the maximum.  */
2875     if (l > access_size_max) {
2876         l = access_size_max;
2877     }
2878     l = pow2floor(l);
2879 
2880     return l;
2881 }
2882 
2883 bool prepare_mmio_access(MemoryRegion *mr)
2884 {
2885     bool release_lock = false;
2886 
2887     if (!bql_locked()) {
2888         bql_lock();
2889         release_lock = true;
2890     }
2891     if (mr->flush_coalesced_mmio) {
2892         qemu_flush_coalesced_mmio_buffer();
2893     }
2894 
2895     return release_lock;
2896 }
2897 
2898 /**
2899  * flatview_access_allowed
2900  * @mr: #MemoryRegion to be accessed
2901  * @attrs: memory transaction attributes
2902  * @addr: address within that memory region
2903  * @len: the number of bytes to access
2904  *
2905  * Check if a memory transaction is allowed.
2906  *
2907  * Returns: true if transaction is allowed, false if denied.
2908  */
2909 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2910                                     hwaddr addr, hwaddr len)
2911 {
2912     if (likely(!attrs.memory)) {
2913         return true;
2914     }
2915     if (memory_region_is_ram(mr)) {
2916         return true;
2917     }
2918     qemu_log_mask(LOG_INVALID_MEM,
2919                   "Invalid access to non-RAM device at "
2920                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2921                   "region '%s'\n", addr, len, memory_region_name(mr));
2922     return false;
2923 }
2924 
2925 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2926                                                 const uint8_t *buf,
2927                                                 hwaddr len, hwaddr mr_addr,
2928                                                 hwaddr *l, MemoryRegion *mr)
2929 {
2930     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2931         return MEMTX_ACCESS_ERROR;
2932     }
2933 
2934     if (!memory_access_is_direct(mr, true, attrs)) {
2935         uint64_t val;
2936         MemTxResult result;
2937         bool release_lock = prepare_mmio_access(mr);
2938 
2939         *l = memory_access_size(mr, *l, mr_addr);
2940         /*
2941          * XXX: could force current_cpu to NULL to avoid
2942          * potential bugs
2943          */
2944 
2945         /*
2946          * Assure Coverity (and ourselves) that we are not going to OVERRUN
2947          * the buffer by following ldn_he_p().
2948          */
2949 #ifdef QEMU_STATIC_ANALYSIS
2950         assert((*l == 1 && len >= 1) ||
2951                (*l == 2 && len >= 2) ||
2952                (*l == 4 && len >= 4) ||
2953                (*l == 8 && len >= 8));
2954 #endif
2955         val = ldn_he_p(buf, *l);
2956         result = memory_region_dispatch_write(mr, mr_addr, val,
2957                                               size_memop(*l), attrs);
2958         if (release_lock) {
2959             bql_unlock();
2960         }
2961 
2962         return result;
2963     } else {
2964         /* RAM case */
2965         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2966                                                false, true);
2967 
2968         memmove(ram_ptr, buf, *l);
2969         invalidate_and_set_dirty(mr, mr_addr, *l);
2970 
2971         return MEMTX_OK;
2972     }
2973 }
2974 
2975 /* Called within RCU critical section.  */
2976 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2977                                            MemTxAttrs attrs,
2978                                            const void *ptr,
2979                                            hwaddr len, hwaddr mr_addr,
2980                                            hwaddr l, MemoryRegion *mr)
2981 {
2982     MemTxResult result = MEMTX_OK;
2983     const uint8_t *buf = ptr;
2984 
2985     for (;;) {
2986         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2987                                                mr);
2988 
2989         len -= l;
2990         buf += l;
2991         addr += l;
2992 
2993         if (!len) {
2994             break;
2995         }
2996 
2997         l = len;
2998         mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
2999     }
3000 
3001     return result;
3002 }
3003 
3004 /* Called from RCU critical section.  */
3005 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3006                                   const void *buf, hwaddr len)
3007 {
3008     hwaddr l;
3009     hwaddr mr_addr;
3010     MemoryRegion *mr;
3011 
3012     l = len;
3013     mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3014     if (!flatview_access_allowed(mr, attrs, addr, len)) {
3015         return MEMTX_ACCESS_ERROR;
3016     }
3017     return flatview_write_continue(fv, addr, attrs, buf, len,
3018                                    mr_addr, l, mr);
3019 }
3020 
3021 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
3022                                                hwaddr len, hwaddr mr_addr,
3023                                                hwaddr *l,
3024                                                MemoryRegion *mr)
3025 {
3026     if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
3027         return MEMTX_ACCESS_ERROR;
3028     }
3029 
3030     if (!memory_access_is_direct(mr, false, attrs)) {
3031         /* I/O case */
3032         uint64_t val;
3033         MemTxResult result;
3034         bool release_lock = prepare_mmio_access(mr);
3035 
3036         *l = memory_access_size(mr, *l, mr_addr);
3037         result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
3038                                              attrs);
3039 
3040         /*
3041          * Assure Coverity (and ourselves) that we are not going to OVERRUN
3042          * the buffer by following stn_he_p().
3043          */
3044 #ifdef QEMU_STATIC_ANALYSIS
3045         assert((*l == 1 && len >= 1) ||
3046                (*l == 2 && len >= 2) ||
3047                (*l == 4 && len >= 4) ||
3048                (*l == 8 && len >= 8));
3049 #endif
3050         stn_he_p(buf, *l, val);
3051 
3052         if (release_lock) {
3053             bql_unlock();
3054         }
3055         return result;
3056     } else {
3057         /* RAM case */
3058         uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
3059                                                false, false);
3060 
3061         memcpy(buf, ram_ptr, *l);
3062 
3063         return MEMTX_OK;
3064     }
3065 }
3066 
3067 /* Called within RCU critical section.  */
3068 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3069                                    MemTxAttrs attrs, void *ptr,
3070                                    hwaddr len, hwaddr mr_addr, hwaddr l,
3071                                    MemoryRegion *mr)
3072 {
3073     MemTxResult result = MEMTX_OK;
3074     uint8_t *buf = ptr;
3075 
3076     fuzz_dma_read_cb(addr, len, mr);
3077     for (;;) {
3078         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3079 
3080         len -= l;
3081         buf += l;
3082         addr += l;
3083 
3084         if (!len) {
3085             break;
3086         }
3087 
3088         l = len;
3089         mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3090     }
3091 
3092     return result;
3093 }
3094 
3095 /* Called from RCU critical section.  */
3096 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3097                                  MemTxAttrs attrs, void *buf, hwaddr len)
3098 {
3099     hwaddr l;
3100     hwaddr mr_addr;
3101     MemoryRegion *mr;
3102 
3103     l = len;
3104     mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3105     if (!flatview_access_allowed(mr, attrs, addr, len)) {
3106         return MEMTX_ACCESS_ERROR;
3107     }
3108     return flatview_read_continue(fv, addr, attrs, buf, len,
3109                                   mr_addr, l, mr);
3110 }
3111 
3112 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3113                                     MemTxAttrs attrs, void *buf, hwaddr len)
3114 {
3115     MemTxResult result = MEMTX_OK;
3116     FlatView *fv;
3117 
3118     if (len > 0) {
3119         RCU_READ_LOCK_GUARD();
3120         fv = address_space_to_flatview(as);
3121         result = flatview_read(fv, addr, attrs, buf, len);
3122     }
3123 
3124     return result;
3125 }
3126 
3127 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3128                                 MemTxAttrs attrs,
3129                                 const void *buf, hwaddr len)
3130 {
3131     MemTxResult result = MEMTX_OK;
3132     FlatView *fv;
3133 
3134     if (len > 0) {
3135         RCU_READ_LOCK_GUARD();
3136         fv = address_space_to_flatview(as);
3137         result = flatview_write(fv, addr, attrs, buf, len);
3138     }
3139 
3140     return result;
3141 }
3142 
3143 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3144                              void *buf, hwaddr len, bool is_write)
3145 {
3146     if (is_write) {
3147         return address_space_write(as, addr, attrs, buf, len);
3148     } else {
3149         return address_space_read_full(as, addr, attrs, buf, len);
3150     }
3151 }
3152 
3153 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3154                               uint8_t c, hwaddr len, MemTxAttrs attrs)
3155 {
3156 #define FILLBUF_SIZE 512
3157     uint8_t fillbuf[FILLBUF_SIZE];
3158     int l;
3159     MemTxResult error = MEMTX_OK;
3160 
3161     memset(fillbuf, c, FILLBUF_SIZE);
3162     while (len > 0) {
3163         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3164         error |= address_space_write(as, addr, attrs, fillbuf, l);
3165         len -= l;
3166         addr += l;
3167     }
3168 
3169     return error;
3170 }
3171 
3172 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3173                             hwaddr len, bool is_write)
3174 {
3175     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3176                      buf, len, is_write);
3177 }
3178 
3179 enum write_rom_type {
3180     WRITE_DATA,
3181     FLUSH_CACHE,
3182 };
3183 
3184 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3185                                                            hwaddr addr,
3186                                                            MemTxAttrs attrs,
3187                                                            const void *ptr,
3188                                                            hwaddr len,
3189                                                            enum write_rom_type type)
3190 {
3191     hwaddr l;
3192     uint8_t *ram_ptr;
3193     hwaddr addr1;
3194     MemoryRegion *mr;
3195     const uint8_t *buf = ptr;
3196 
3197     RCU_READ_LOCK_GUARD();
3198     while (len > 0) {
3199         l = len;
3200         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3201 
3202         if (!memory_region_supports_direct_access(mr)) {
3203             l = memory_access_size(mr, l, addr1);
3204         } else {
3205             /* ROM/RAM case */
3206             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3207             switch (type) {
3208             case WRITE_DATA:
3209                 memcpy(ram_ptr, buf, l);
3210                 invalidate_and_set_dirty(mr, addr1, l);
3211                 break;
3212             case FLUSH_CACHE:
3213                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3214                 break;
3215             }
3216         }
3217         len -= l;
3218         buf += l;
3219         addr += l;
3220     }
3221     return MEMTX_OK;
3222 }
3223 
3224 /* used for ROM loading : can write in RAM and ROM */
3225 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3226                                     MemTxAttrs attrs,
3227                                     const void *buf, hwaddr len)
3228 {
3229     return address_space_write_rom_internal(as, addr, attrs,
3230                                             buf, len, WRITE_DATA);
3231 }
3232 
3233 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3234 {
3235     /*
3236      * This function should do the same thing as an icache flush that was
3237      * triggered from within the guest. For TCG we are always cache coherent,
3238      * so there is no need to flush anything. For KVM / Xen we need to flush
3239      * the host's instruction cache at least.
3240      */
3241     if (tcg_enabled()) {
3242         return;
3243     }
3244 
3245     address_space_write_rom_internal(&address_space_memory,
3246                                      start, MEMTXATTRS_UNSPECIFIED,
3247                                      NULL, len, FLUSH_CACHE);
3248 }
3249 
3250 /*
3251  * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3252  * to detect illegal pointers passed to address_space_unmap.
3253  */
3254 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3255 
3256 typedef struct {
3257     uint64_t magic;
3258     MemoryRegion *mr;
3259     hwaddr addr;
3260     size_t len;
3261     uint8_t buffer[];
3262 } BounceBuffer;
3263 
3264 static void
3265 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3266 {
3267     QLIST_REMOVE(client, link);
3268     g_free(client);
3269 }
3270 
3271 static void address_space_notify_map_clients_locked(AddressSpace *as)
3272 {
3273     AddressSpaceMapClient *client;
3274 
3275     while (!QLIST_EMPTY(&as->map_client_list)) {
3276         client = QLIST_FIRST(&as->map_client_list);
3277         qemu_bh_schedule(client->bh);
3278         address_space_unregister_map_client_do(client);
3279     }
3280 }
3281 
3282 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3283 {
3284     AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3285 
3286     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3287     client->bh = bh;
3288     QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3289     /* Write map_client_list before reading bounce_buffer_size. */
3290     smp_mb();
3291     if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3292         address_space_notify_map_clients_locked(as);
3293     }
3294 }
3295 
3296 void cpu_exec_init_all(void)
3297 {
3298     qemu_mutex_init(&ram_list.mutex);
3299     /* The data structures we set up here depend on knowing the page size,
3300      * so no more changes can be made after this point.
3301      * In an ideal world, nothing we did before we had finished the
3302      * machine setup would care about the target page size, and we could
3303      * do this much later, rather than requiring board models to state
3304      * up front what their requirements are.
3305      */
3306     finalize_target_page_bits();
3307     io_mem_init();
3308     memory_map_init();
3309 }
3310 
3311 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3312 {
3313     AddressSpaceMapClient *client;
3314 
3315     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3316     QLIST_FOREACH(client, &as->map_client_list, link) {
3317         if (client->bh == bh) {
3318             address_space_unregister_map_client_do(client);
3319             break;
3320         }
3321     }
3322 }
3323 
3324 static void address_space_notify_map_clients(AddressSpace *as)
3325 {
3326     QEMU_LOCK_GUARD(&as->map_client_list_lock);
3327     address_space_notify_map_clients_locked(as);
3328 }
3329 
3330 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3331                                   bool is_write, MemTxAttrs attrs)
3332 {
3333     MemoryRegion *mr;
3334     hwaddr l, xlat;
3335 
3336     while (len > 0) {
3337         l = len;
3338         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3339         if (!memory_access_is_direct(mr, is_write, attrs)) {
3340             l = memory_access_size(mr, l, addr);
3341             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3342                 return false;
3343             }
3344         }
3345 
3346         len -= l;
3347         addr += l;
3348     }
3349     return true;
3350 }
3351 
3352 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3353                                 hwaddr len, bool is_write,
3354                                 MemTxAttrs attrs)
3355 {
3356     FlatView *fv;
3357 
3358     RCU_READ_LOCK_GUARD();
3359     fv = address_space_to_flatview(as);
3360     return flatview_access_valid(fv, addr, len, is_write, attrs);
3361 }
3362 
3363 static hwaddr
3364 flatview_extend_translation(FlatView *fv, hwaddr addr,
3365                             hwaddr target_len,
3366                             MemoryRegion *mr, hwaddr base, hwaddr len,
3367                             bool is_write, MemTxAttrs attrs)
3368 {
3369     hwaddr done = 0;
3370     hwaddr xlat;
3371     MemoryRegion *this_mr;
3372 
3373     for (;;) {
3374         target_len -= len;
3375         addr += len;
3376         done += len;
3377         if (target_len == 0) {
3378             return done;
3379         }
3380 
3381         len = target_len;
3382         this_mr = flatview_translate(fv, addr, &xlat,
3383                                      &len, is_write, attrs);
3384         if (this_mr != mr || xlat != base + done) {
3385             return done;
3386         }
3387     }
3388 }
3389 
3390 /* Map a physical memory region into a host virtual address.
3391  * May map a subset of the requested range, given by and returned in *plen.
3392  * May return NULL if resources needed to perform the mapping are exhausted.
3393  * Use only for reads OR writes - not for read-modify-write operations.
3394  * Use address_space_register_map_client() to know when retrying the map
3395  * operation is likely to succeed.
3396  */
3397 void *address_space_map(AddressSpace *as,
3398                         hwaddr addr,
3399                         hwaddr *plen,
3400                         bool is_write,
3401                         MemTxAttrs attrs)
3402 {
3403     hwaddr len = *plen;
3404     hwaddr l, xlat;
3405     MemoryRegion *mr;
3406     FlatView *fv;
3407 
3408     trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3409 
3410     if (len == 0) {
3411         return NULL;
3412     }
3413 
3414     l = len;
3415     RCU_READ_LOCK_GUARD();
3416     fv = address_space_to_flatview(as);
3417     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3418 
3419     if (!memory_access_is_direct(mr, is_write, attrs)) {
3420         size_t used = qatomic_read(&as->bounce_buffer_size);
3421         for (;;) {
3422             hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3423             size_t new_size = used + alloc;
3424             size_t actual =
3425                 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3426             if (actual == used) {
3427                 l = alloc;
3428                 break;
3429             }
3430             used = actual;
3431         }
3432 
3433         if (l == 0) {
3434             *plen = 0;
3435             return NULL;
3436         }
3437 
3438         BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3439         bounce->magic = BOUNCE_BUFFER_MAGIC;
3440         memory_region_ref(mr);
3441         bounce->mr = mr;
3442         bounce->addr = addr;
3443         bounce->len = l;
3444 
3445         if (!is_write) {
3446             flatview_read(fv, addr, attrs,
3447                           bounce->buffer, l);
3448         }
3449 
3450         *plen = l;
3451         return bounce->buffer;
3452     }
3453 
3454     memory_region_ref(mr);
3455     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3456                                         l, is_write, attrs);
3457     fuzz_dma_read_cb(addr, *plen, mr);
3458     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3459 }
3460 
3461 /* Unmaps a memory region previously mapped by address_space_map().
3462  * Will also mark the memory as dirty if is_write is true.  access_len gives
3463  * the amount of memory that was actually read or written by the caller.
3464  */
3465 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3466                          bool is_write, hwaddr access_len)
3467 {
3468     MemoryRegion *mr;
3469     ram_addr_t addr1;
3470 
3471     mr = memory_region_from_host(buffer, &addr1);
3472     if (mr != NULL) {
3473         if (is_write) {
3474             invalidate_and_set_dirty(mr, addr1, access_len);
3475         }
3476         if (xen_enabled()) {
3477             xen_invalidate_map_cache_entry(buffer);
3478         }
3479         memory_region_unref(mr);
3480         return;
3481     }
3482 
3483 
3484     BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3485     assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3486 
3487     if (is_write) {
3488         address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3489                             bounce->buffer, access_len);
3490     }
3491 
3492     qatomic_sub(&as->bounce_buffer_size, bounce->len);
3493     bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3494     memory_region_unref(bounce->mr);
3495     g_free(bounce);
3496     /* Write bounce_buffer_size before reading map_client_list. */
3497     smp_mb();
3498     address_space_notify_map_clients(as);
3499 }
3500 
3501 void *cpu_physical_memory_map(hwaddr addr,
3502                               hwaddr *plen,
3503                               bool is_write)
3504 {
3505     return address_space_map(&address_space_memory, addr, plen, is_write,
3506                              MEMTXATTRS_UNSPECIFIED);
3507 }
3508 
3509 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3510                                bool is_write, hwaddr access_len)
3511 {
3512     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3513 }
3514 
3515 #define ARG1_DECL                AddressSpace *as
3516 #define ARG1                     as
3517 #define SUFFIX
3518 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3519 #define RCU_READ_LOCK(...)       rcu_read_lock()
3520 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3521 #include "memory_ldst.c.inc"
3522 
3523 int64_t address_space_cache_init(MemoryRegionCache *cache,
3524                                  AddressSpace *as,
3525                                  hwaddr addr,
3526                                  hwaddr len,
3527                                  bool is_write)
3528 {
3529     AddressSpaceDispatch *d;
3530     hwaddr l;
3531     MemoryRegion *mr;
3532     Int128 diff;
3533 
3534     assert(len > 0);
3535 
3536     l = len;
3537     cache->fv = address_space_get_flatview(as);
3538     d = flatview_to_dispatch(cache->fv);
3539     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3540 
3541     /*
3542      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3543      * Take that into account to compute how many bytes are there between
3544      * cache->xlat and the end of the section.
3545      */
3546     diff = int128_sub(cache->mrs.size,
3547                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3548     l = int128_get64(int128_min(diff, int128_make64(l)));
3549 
3550     mr = cache->mrs.mr;
3551     memory_region_ref(mr);
3552     if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) {
3553         /* We don't care about the memory attributes here as we're only
3554          * doing this if we found actual RAM, which behaves the same
3555          * regardless of attributes; so UNSPECIFIED is fine.
3556          */
3557         l = flatview_extend_translation(cache->fv, addr, len, mr,
3558                                         cache->xlat, l, is_write,
3559                                         MEMTXATTRS_UNSPECIFIED);
3560         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3561                                          is_write);
3562     } else {
3563         cache->ptr = NULL;
3564     }
3565 
3566     cache->len = l;
3567     cache->is_write = is_write;
3568     return l;
3569 }
3570 
3571 void address_space_cache_invalidate(MemoryRegionCache *cache,
3572                                     hwaddr addr,
3573                                     hwaddr access_len)
3574 {
3575     assert(cache->is_write);
3576     if (likely(cache->ptr)) {
3577         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3578     }
3579 }
3580 
3581 void address_space_cache_destroy(MemoryRegionCache *cache)
3582 {
3583     if (!cache->mrs.mr) {
3584         return;
3585     }
3586 
3587     if (xen_enabled()) {
3588         xen_invalidate_map_cache_entry(cache->ptr);
3589     }
3590     memory_region_unref(cache->mrs.mr);
3591     flatview_unref(cache->fv);
3592     cache->mrs.mr = NULL;
3593     cache->fv = NULL;
3594 }
3595 
3596 /* Called from RCU critical section.  This function has the same
3597  * semantics as address_space_translate, but it only works on a
3598  * predefined range of a MemoryRegion that was mapped with
3599  * address_space_cache_init.
3600  */
3601 static inline MemoryRegion *address_space_translate_cached(
3602     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3603     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3604 {
3605     MemoryRegionSection section;
3606     MemoryRegion *mr;
3607     IOMMUMemoryRegion *iommu_mr;
3608     AddressSpace *target_as;
3609 
3610     assert(!cache->ptr);
3611     *xlat = addr + cache->xlat;
3612 
3613     mr = cache->mrs.mr;
3614     iommu_mr = memory_region_get_iommu(mr);
3615     if (!iommu_mr) {
3616         /* MMIO region.  */
3617         return mr;
3618     }
3619 
3620     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3621                                             NULL, is_write, true,
3622                                             &target_as, attrs);
3623     return section.mr;
3624 }
3625 
3626 /* Called within RCU critical section.  */
3627 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3628                                                        const void *ptr,
3629                                                        hwaddr len,
3630                                                        hwaddr mr_addr,
3631                                                        hwaddr l,
3632                                                        MemoryRegion *mr)
3633 {
3634     MemTxResult result = MEMTX_OK;
3635     const uint8_t *buf = ptr;
3636 
3637     for (;;) {
3638         result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3639                                                mr);
3640 
3641         len -= l;
3642         buf += l;
3643         mr_addr += l;
3644 
3645         if (!len) {
3646             break;
3647         }
3648 
3649         l = len;
3650     }
3651 
3652     return result;
3653 }
3654 
3655 /* Called within RCU critical section.  */
3656 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3657                                                       void *ptr, hwaddr len,
3658                                                       hwaddr mr_addr, hwaddr l,
3659                                                       MemoryRegion *mr)
3660 {
3661     MemTxResult result = MEMTX_OK;
3662     uint8_t *buf = ptr;
3663 
3664     for (;;) {
3665         result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3666         len -= l;
3667         buf += l;
3668         mr_addr += l;
3669 
3670         if (!len) {
3671             break;
3672         }
3673         l = len;
3674     }
3675 
3676     return result;
3677 }
3678 
3679 /* Called from RCU critical section. address_space_read_cached uses this
3680  * out of line function when the target is an MMIO or IOMMU region.
3681  */
3682 MemTxResult
3683 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3684                                    void *buf, hwaddr len)
3685 {
3686     hwaddr mr_addr, l;
3687     MemoryRegion *mr;
3688 
3689     l = len;
3690     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3691                                         MEMTXATTRS_UNSPECIFIED);
3692     return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3693                                               buf, len, mr_addr, l, mr);
3694 }
3695 
3696 /* Called from RCU critical section. address_space_write_cached uses this
3697  * out of line function when the target is an MMIO or IOMMU region.
3698  */
3699 MemTxResult
3700 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3701                                     const void *buf, hwaddr len)
3702 {
3703     hwaddr mr_addr, l;
3704     MemoryRegion *mr;
3705 
3706     l = len;
3707     mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3708                                         MEMTXATTRS_UNSPECIFIED);
3709     return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3710                                                buf, len, mr_addr, l, mr);
3711 }
3712 
3713 #define ARG1_DECL                MemoryRegionCache *cache
3714 #define ARG1                     cache
3715 #define SUFFIX                   _cached_slow
3716 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3717 #define RCU_READ_LOCK()          ((void)0)
3718 #define RCU_READ_UNLOCK()        ((void)0)
3719 #include "memory_ldst.c.inc"
3720 
3721 /* virtual memory access for debug (includes writing to ROM) */
3722 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3723                         void *ptr, size_t len, bool is_write)
3724 {
3725     hwaddr phys_addr;
3726     vaddr l, page;
3727     uint8_t *buf = ptr;
3728 
3729     cpu_synchronize_state(cpu);
3730     while (len > 0) {
3731         int asidx;
3732         MemTxAttrs attrs;
3733         MemTxResult res;
3734 
3735         page = addr & TARGET_PAGE_MASK;
3736         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3737         asidx = cpu_asidx_from_attrs(cpu, attrs);
3738         /* if no physical page mapped, return an error */
3739         if (phys_addr == -1)
3740             return -1;
3741         l = (page + TARGET_PAGE_SIZE) - addr;
3742         if (l > len)
3743             l = len;
3744         phys_addr += (addr & ~TARGET_PAGE_MASK);
3745         res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3746                                l, is_write);
3747         if (res != MEMTX_OK) {
3748             return -1;
3749         }
3750         len -= l;
3751         buf += l;
3752         addr += l;
3753     }
3754     return 0;
3755 }
3756 
3757 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3758 {
3759     MemoryRegion*mr;
3760     hwaddr l = 1;
3761 
3762     RCU_READ_LOCK_GUARD();
3763     mr = address_space_translate(&address_space_memory,
3764                                  phys_addr, &phys_addr, &l, false,
3765                                  MEMTXATTRS_UNSPECIFIED);
3766 
3767     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3768 }
3769 
3770 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3771 {
3772     RAMBlock *block;
3773     int ret = 0;
3774 
3775     RCU_READ_LOCK_GUARD();
3776     RAMBLOCK_FOREACH(block) {
3777         ret = func(block, opaque);
3778         if (ret) {
3779             break;
3780         }
3781     }
3782     return ret;
3783 }
3784 
3785 /*
3786  * Unmap pages of memory from start to start+length such that
3787  * they a) read as 0, b) Trigger whatever fault mechanism
3788  * the OS provides for postcopy.
3789  * The pages must be unmapped by the end of the function.
3790  * Returns: 0 on success, none-0 on failure
3791  *
3792  */
3793 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3794 {
3795     int ret = -1;
3796 
3797     uint8_t *host_startaddr = rb->host + start;
3798 
3799     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3800         error_report("%s: Unaligned start address: %p",
3801                      __func__, host_startaddr);
3802         goto err;
3803     }
3804 
3805     if ((start + length) <= rb->max_length) {
3806         bool need_madvise, need_fallocate;
3807         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3808             error_report("%s: Unaligned length: %zx", __func__, length);
3809             goto err;
3810         }
3811 
3812         errno = ENOTSUP; /* If we are missing MADVISE etc */
3813 
3814         /* The logic here is messy;
3815          *    madvise DONTNEED fails for hugepages
3816          *    fallocate works on hugepages and shmem
3817          *    shared anonymous memory requires madvise REMOVE
3818          */
3819         need_madvise = (rb->page_size == qemu_real_host_page_size());
3820         need_fallocate = rb->fd != -1;
3821         if (need_fallocate) {
3822             /* For a file, this causes the area of the file to be zero'd
3823              * if read, and for hugetlbfs also causes it to be unmapped
3824              * so a userfault will trigger.
3825              */
3826 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3827             /*
3828              * fallocate() will fail with readonly files. Let's print a
3829              * proper error message.
3830              */
3831             if (rb->flags & RAM_READONLY_FD) {
3832                 error_report("%s: Discarding RAM with readonly files is not"
3833                              " supported", __func__);
3834                 goto err;
3835 
3836             }
3837             /*
3838              * We'll discard data from the actual file, even though we only
3839              * have a MAP_PRIVATE mapping, possibly messing with other
3840              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3841              * change that behavior whithout violating the promised
3842              * semantics of ram_block_discard_range().
3843              *
3844              * Only warn, because it works as long as nobody else uses that
3845              * file.
3846              */
3847             if (!qemu_ram_is_shared(rb)) {
3848                 warn_report_once("%s: Discarding RAM"
3849                                  " in private file mappings is possibly"
3850                                  " dangerous, because it will modify the"
3851                                  " underlying file and will affect other"
3852                                  " users of the file", __func__);
3853             }
3854 
3855             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3856                             start + rb->fd_offset, length);
3857             if (ret) {
3858                 ret = -errno;
3859                 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64
3860                              " +%zx (%d)", __func__, rb->idstr, start,
3861                              rb->fd_offset, length, ret);
3862                 goto err;
3863             }
3864 #else
3865             ret = -ENOSYS;
3866             error_report("%s: fallocate not available/file"
3867                          "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__,
3868                          rb->idstr, start, rb->fd_offset, length, ret);
3869             goto err;
3870 #endif
3871         }
3872         if (need_madvise) {
3873             /* For normal RAM this causes it to be unmapped,
3874              * for shared memory it causes the local mapping to disappear
3875              * and to fall back on the file contents (which we just
3876              * fallocate'd away).
3877              */
3878 #if defined(CONFIG_MADVISE)
3879             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3880                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3881             } else {
3882                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3883             }
3884             if (ret) {
3885                 ret = -errno;
3886                 error_report("%s: Failed to discard range "
3887                              "%s:%" PRIx64 " +%zx (%d)",
3888                              __func__, rb->idstr, start, length, ret);
3889                 goto err;
3890             }
3891 #else
3892             ret = -ENOSYS;
3893             error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3894                          __func__, rb->idstr, start, length, ret);
3895             goto err;
3896 #endif
3897         }
3898         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3899                                       need_madvise, need_fallocate, ret);
3900     } else {
3901         error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3902                      __func__, rb->idstr, start, length, rb->max_length);
3903     }
3904 
3905 err:
3906     return ret;
3907 }
3908 
3909 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3910                                         size_t length)
3911 {
3912     int ret = -1;
3913 
3914 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3915     /* ignore fd_offset with guest_memfd */
3916     ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3917                     start, length);
3918 
3919     if (ret) {
3920         ret = -errno;
3921         error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3922                      __func__, rb->idstr, start, length, ret);
3923     }
3924 #else
3925     ret = -ENOSYS;
3926     error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3927                  __func__, rb->idstr, start, length, ret);
3928 #endif
3929 
3930     return ret;
3931 }
3932 
3933 bool ramblock_is_pmem(RAMBlock *rb)
3934 {
3935     return rb->flags & RAM_PMEM;
3936 }
3937 
3938 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3939 {
3940     if (start == end - 1) {
3941         qemu_printf("\t%3d      ", start);
3942     } else {
3943         qemu_printf("\t%3d..%-3d ", start, end - 1);
3944     }
3945     qemu_printf(" skip=%d ", skip);
3946     if (ptr == PHYS_MAP_NODE_NIL) {
3947         qemu_printf(" ptr=NIL");
3948     } else if (!skip) {
3949         qemu_printf(" ptr=#%d", ptr);
3950     } else {
3951         qemu_printf(" ptr=[%d]", ptr);
3952     }
3953     qemu_printf("\n");
3954 }
3955 
3956 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3957                            int128_sub((size), int128_one())) : 0)
3958 
3959 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3960 {
3961     int i;
3962 
3963     qemu_printf("  Dispatch\n");
3964     qemu_printf("    Physical sections\n");
3965 
3966     for (i = 0; i < d->map.sections_nb; ++i) {
3967         MemoryRegionSection *s = d->map.sections + i;
3968         const char *names[] = { " [unassigned]", " [not dirty]",
3969                                 " [ROM]", " [watch]" };
3970 
3971         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3972                     " %s%s%s%s%s",
3973             i,
3974             s->offset_within_address_space,
3975             s->offset_within_address_space + MR_SIZE(s->size),
3976             s->mr->name ? s->mr->name : "(noname)",
3977             i < ARRAY_SIZE(names) ? names[i] : "",
3978             s->mr == root ? " [ROOT]" : "",
3979             s == d->mru_section ? " [MRU]" : "",
3980             s->mr->is_iommu ? " [iommu]" : "");
3981 
3982         if (s->mr->alias) {
3983             qemu_printf(" alias=%s", s->mr->alias->name ?
3984                     s->mr->alias->name : "noname");
3985         }
3986         qemu_printf("\n");
3987     }
3988 
3989     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3990                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3991     for (i = 0; i < d->map.nodes_nb; ++i) {
3992         int j, jprev;
3993         PhysPageEntry prev;
3994         Node *n = d->map.nodes + i;
3995 
3996         qemu_printf("      [%d]\n", i);
3997 
3998         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3999             PhysPageEntry *pe = *n + j;
4000 
4001             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4002                 continue;
4003             }
4004 
4005             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4006 
4007             jprev = j;
4008             prev = *pe;
4009         }
4010 
4011         if (jprev != ARRAY_SIZE(*n)) {
4012             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4013         }
4014     }
4015 }
4016 
4017 /* Require any discards to work. */
4018 static unsigned int ram_block_discard_required_cnt;
4019 /* Require only coordinated discards to work. */
4020 static unsigned int ram_block_coordinated_discard_required_cnt;
4021 /* Disable any discards. */
4022 static unsigned int ram_block_discard_disabled_cnt;
4023 /* Disable only uncoordinated discards. */
4024 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
4025 static QemuMutex ram_block_discard_disable_mutex;
4026 
4027 static void ram_block_discard_disable_mutex_lock(void)
4028 {
4029     static gsize initialized;
4030 
4031     if (g_once_init_enter(&initialized)) {
4032         qemu_mutex_init(&ram_block_discard_disable_mutex);
4033         g_once_init_leave(&initialized, 1);
4034     }
4035     qemu_mutex_lock(&ram_block_discard_disable_mutex);
4036 }
4037 
4038 static void ram_block_discard_disable_mutex_unlock(void)
4039 {
4040     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
4041 }
4042 
4043 int ram_block_discard_disable(bool state)
4044 {
4045     int ret = 0;
4046 
4047     ram_block_discard_disable_mutex_lock();
4048     if (!state) {
4049         ram_block_discard_disabled_cnt--;
4050     } else if (ram_block_discard_required_cnt ||
4051                ram_block_coordinated_discard_required_cnt) {
4052         ret = -EBUSY;
4053     } else {
4054         ram_block_discard_disabled_cnt++;
4055     }
4056     ram_block_discard_disable_mutex_unlock();
4057     return ret;
4058 }
4059 
4060 int ram_block_uncoordinated_discard_disable(bool state)
4061 {
4062     int ret = 0;
4063 
4064     ram_block_discard_disable_mutex_lock();
4065     if (!state) {
4066         ram_block_uncoordinated_discard_disabled_cnt--;
4067     } else if (ram_block_discard_required_cnt) {
4068         ret = -EBUSY;
4069     } else {
4070         ram_block_uncoordinated_discard_disabled_cnt++;
4071     }
4072     ram_block_discard_disable_mutex_unlock();
4073     return ret;
4074 }
4075 
4076 int ram_block_discard_require(bool state)
4077 {
4078     int ret = 0;
4079 
4080     ram_block_discard_disable_mutex_lock();
4081     if (!state) {
4082         ram_block_discard_required_cnt--;
4083     } else if (ram_block_discard_disabled_cnt ||
4084                ram_block_uncoordinated_discard_disabled_cnt) {
4085         ret = -EBUSY;
4086     } else {
4087         ram_block_discard_required_cnt++;
4088     }
4089     ram_block_discard_disable_mutex_unlock();
4090     return ret;
4091 }
4092 
4093 int ram_block_coordinated_discard_require(bool state)
4094 {
4095     int ret = 0;
4096 
4097     ram_block_discard_disable_mutex_lock();
4098     if (!state) {
4099         ram_block_coordinated_discard_required_cnt--;
4100     } else if (ram_block_discard_disabled_cnt) {
4101         ret = -EBUSY;
4102     } else {
4103         ram_block_coordinated_discard_required_cnt++;
4104     }
4105     ram_block_discard_disable_mutex_unlock();
4106     return ret;
4107 }
4108 
4109 bool ram_block_discard_is_disabled(void)
4110 {
4111     return qatomic_read(&ram_block_discard_disabled_cnt) ||
4112            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
4113 }
4114 
4115 bool ram_block_discard_is_required(void)
4116 {
4117     return qatomic_read(&ram_block_discard_required_cnt) ||
4118            qatomic_read(&ram_block_coordinated_discard_required_cnt);
4119 }
4120 
4121 /*
4122  * Return true if ram is compatible with CPR.  Do not exclude rom,
4123  * because the rom file could change in new QEMU.
4124  */
4125 static bool ram_is_cpr_compatible(RAMBlock *rb)
4126 {
4127     MemoryRegion *mr = rb->mr;
4128 
4129     if (!mr || !memory_region_is_ram(mr)) {
4130         return true;
4131     }
4132 
4133     /* Ram device is remapped in new QEMU */
4134     if (memory_region_is_ram_device(mr)) {
4135         return true;
4136     }
4137 
4138     /*
4139      * A file descriptor is passed to new QEMU and remapped, or its backing
4140      * file is reopened and mapped.  It must be shared to avoid COW.
4141      */
4142     if (rb->fd >= 0 && qemu_ram_is_shared(rb)) {
4143         return true;
4144     }
4145 
4146     return false;
4147 }
4148 
4149 /*
4150  * Add a blocker for each volatile ram block.  This function should only be
4151  * called after we know that the block is migratable.  Non-migratable blocks
4152  * are either re-created in new QEMU, or are handled specially, or are covered
4153  * by a device-level CPR blocker.
4154  */
4155 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp)
4156 {
4157     assert(qemu_ram_is_migratable(rb));
4158 
4159     if (ram_is_cpr_compatible(rb)) {
4160         return;
4161     }
4162 
4163     error_setg(&rb->cpr_blocker,
4164                "Memory region %s is not compatible with CPR. share=on is "
4165                "required for memory-backend objects, and aux-ram-share=on is "
4166                "required.", memory_region_name(rb->mr));
4167     migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER,
4168                               -1);
4169 }
4170 
4171 void ram_block_del_cpr_blocker(RAMBlock *rb)
4172 {
4173     migrate_del_blocker(&rb->cpr_blocker);
4174 }
4175