1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the iothread lock. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty && tcg_enabled()) { 885 tlb_reset_dirty_range_all(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - offset); 919 920 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 offset >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + offset, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 if (tcg_enabled()) { 933 tlb_reset_dirty_range_all(start, length); 934 } 935 936 memory_region_clear_dirty_bitmap(mr, offset, length); 937 938 return snap; 939 } 940 941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 942 ram_addr_t start, 943 ram_addr_t length) 944 { 945 unsigned long page, end; 946 947 assert(start >= snap->start); 948 assert(start + length <= snap->end); 949 950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 951 page = (start - snap->start) >> TARGET_PAGE_BITS; 952 953 while (page < end) { 954 if (test_bit(page, snap->dirty)) { 955 return true; 956 } 957 page++; 958 } 959 return false; 960 } 961 962 /* Called from RCU critical section */ 963 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 964 MemoryRegionSection *section) 965 { 966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 967 return section - d->map.sections; 968 } 969 970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 971 uint16_t section); 972 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 973 974 static uint16_t phys_section_add(PhysPageMap *map, 975 MemoryRegionSection *section) 976 { 977 /* The physical section number is ORed with a page-aligned 978 * pointer to produce the iotlb entries. Thus it should 979 * never overflow into the page-aligned value. 980 */ 981 assert(map->sections_nb < TARGET_PAGE_SIZE); 982 983 if (map->sections_nb == map->sections_nb_alloc) { 984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 985 map->sections = g_renew(MemoryRegionSection, map->sections, 986 map->sections_nb_alloc); 987 } 988 map->sections[map->sections_nb] = *section; 989 memory_region_ref(section->mr); 990 return map->sections_nb++; 991 } 992 993 static void phys_section_destroy(MemoryRegion *mr) 994 { 995 bool have_sub_page = mr->subpage; 996 997 memory_region_unref(mr); 998 999 if (have_sub_page) { 1000 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1001 object_unref(OBJECT(&subpage->iomem)); 1002 g_free(subpage); 1003 } 1004 } 1005 1006 static void phys_sections_free(PhysPageMap *map) 1007 { 1008 while (map->sections_nb > 0) { 1009 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1010 phys_section_destroy(section->mr); 1011 } 1012 g_free(map->sections); 1013 g_free(map->nodes); 1014 } 1015 1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1017 { 1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1019 subpage_t *subpage; 1020 hwaddr base = section->offset_within_address_space 1021 & TARGET_PAGE_MASK; 1022 MemoryRegionSection *existing = phys_page_find(d, base); 1023 MemoryRegionSection subsection = { 1024 .offset_within_address_space = base, 1025 .size = int128_make64(TARGET_PAGE_SIZE), 1026 }; 1027 hwaddr start, end; 1028 1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1030 1031 if (!(existing->mr->subpage)) { 1032 subpage = subpage_init(fv, base); 1033 subsection.fv = fv; 1034 subsection.mr = &subpage->iomem; 1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1036 phys_section_add(&d->map, &subsection)); 1037 } else { 1038 subpage = container_of(existing->mr, subpage_t, iomem); 1039 } 1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1041 end = start + int128_get64(section->size) - 1; 1042 subpage_register(subpage, start, end, 1043 phys_section_add(&d->map, section)); 1044 } 1045 1046 1047 static void register_multipage(FlatView *fv, 1048 MemoryRegionSection *section) 1049 { 1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1051 hwaddr start_addr = section->offset_within_address_space; 1052 uint16_t section_index = phys_section_add(&d->map, section); 1053 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1054 TARGET_PAGE_BITS)); 1055 1056 assert(num_pages); 1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1058 } 1059 1060 /* 1061 * The range in *section* may look like this: 1062 * 1063 * |s|PPPPPPP|s| 1064 * 1065 * where s stands for subpage and P for page. 1066 */ 1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1068 { 1069 MemoryRegionSection remain = *section; 1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1071 1072 /* register first subpage */ 1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1075 - remain.offset_within_address_space; 1076 1077 MemoryRegionSection now = remain; 1078 now.size = int128_min(int128_make64(left), now.size); 1079 register_subpage(fv, &now); 1080 if (int128_eq(remain.size, now.size)) { 1081 return; 1082 } 1083 remain.size = int128_sub(remain.size, now.size); 1084 remain.offset_within_address_space += int128_get64(now.size); 1085 remain.offset_within_region += int128_get64(now.size); 1086 } 1087 1088 /* register whole pages */ 1089 if (int128_ge(remain.size, page_size)) { 1090 MemoryRegionSection now = remain; 1091 now.size = int128_and(now.size, int128_neg(page_size)); 1092 register_multipage(fv, &now); 1093 if (int128_eq(remain.size, now.size)) { 1094 return; 1095 } 1096 remain.size = int128_sub(remain.size, now.size); 1097 remain.offset_within_address_space += int128_get64(now.size); 1098 remain.offset_within_region += int128_get64(now.size); 1099 } 1100 1101 /* register last subpage */ 1102 register_subpage(fv, &remain); 1103 } 1104 1105 void qemu_flush_coalesced_mmio_buffer(void) 1106 { 1107 if (kvm_enabled()) 1108 kvm_flush_coalesced_mmio_buffer(); 1109 } 1110 1111 void qemu_mutex_lock_ramlist(void) 1112 { 1113 qemu_mutex_lock(&ram_list.mutex); 1114 } 1115 1116 void qemu_mutex_unlock_ramlist(void) 1117 { 1118 qemu_mutex_unlock(&ram_list.mutex); 1119 } 1120 1121 GString *ram_block_format(void) 1122 { 1123 RAMBlock *block; 1124 char *psize; 1125 GString *buf = g_string_new(""); 1126 1127 RCU_READ_LOCK_GUARD(); 1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1129 "Block Name", "PSize", "Offset", "Used", "Total", 1130 "HVA", "RO"); 1131 1132 RAMBLOCK_FOREACH(block) { 1133 psize = size_to_str(block->page_size); 1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1136 block->idstr, psize, 1137 (uint64_t)block->offset, 1138 (uint64_t)block->used_length, 1139 (uint64_t)block->max_length, 1140 (uint64_t)(uintptr_t)block->host, 1141 block->mr->readonly ? "ro" : "rw"); 1142 1143 g_free(psize); 1144 } 1145 1146 return buf; 1147 } 1148 1149 static int find_min_backend_pagesize(Object *obj, void *opaque) 1150 { 1151 long *hpsize_min = opaque; 1152 1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1155 long hpsize = host_memory_backend_pagesize(backend); 1156 1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1158 *hpsize_min = hpsize; 1159 } 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int find_max_backend_pagesize(Object *obj, void *opaque) 1166 { 1167 long *hpsize_max = opaque; 1168 1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1171 long hpsize = host_memory_backend_pagesize(backend); 1172 1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1174 *hpsize_max = hpsize; 1175 } 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * TODO: We assume right now that all mapped host memory backends are 1183 * used as RAM, however some might be used for different purposes. 1184 */ 1185 long qemu_minrampagesize(void) 1186 { 1187 long hpsize = LONG_MAX; 1188 Object *memdev_root = object_resolve_path("/objects", NULL); 1189 1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1191 return hpsize; 1192 } 1193 1194 long qemu_maxrampagesize(void) 1195 { 1196 long pagesize = 0; 1197 Object *memdev_root = object_resolve_path("/objects", NULL); 1198 1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1200 return pagesize; 1201 } 1202 1203 #ifdef CONFIG_POSIX 1204 static int64_t get_file_size(int fd) 1205 { 1206 int64_t size; 1207 #if defined(__linux__) 1208 struct stat st; 1209 1210 if (fstat(fd, &st) < 0) { 1211 return -errno; 1212 } 1213 1214 /* Special handling for devdax character devices */ 1215 if (S_ISCHR(st.st_mode)) { 1216 g_autofree char *subsystem_path = NULL; 1217 g_autofree char *subsystem = NULL; 1218 1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1220 major(st.st_rdev), minor(st.st_rdev)); 1221 subsystem = g_file_read_link(subsystem_path, NULL); 1222 1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1224 g_autofree char *size_path = NULL; 1225 g_autofree char *size_str = NULL; 1226 1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1228 major(st.st_rdev), minor(st.st_rdev)); 1229 1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1231 return g_ascii_strtoll(size_str, NULL, 0); 1232 } 1233 } 1234 } 1235 #endif /* defined(__linux__) */ 1236 1237 /* st.st_size may be zero for special files yet lseek(2) works */ 1238 size = lseek(fd, 0, SEEK_END); 1239 if (size < 0) { 1240 return -errno; 1241 } 1242 return size; 1243 } 1244 1245 static int64_t get_file_align(int fd) 1246 { 1247 int64_t align = -1; 1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1249 struct stat st; 1250 1251 if (fstat(fd, &st) < 0) { 1252 return -errno; 1253 } 1254 1255 /* Special handling for devdax character devices */ 1256 if (S_ISCHR(st.st_mode)) { 1257 g_autofree char *path = NULL; 1258 g_autofree char *rpath = NULL; 1259 struct daxctl_ctx *ctx; 1260 struct daxctl_region *region; 1261 int rc = 0; 1262 1263 path = g_strdup_printf("/sys/dev/char/%d:%d", 1264 major(st.st_rdev), minor(st.st_rdev)); 1265 rpath = realpath(path, NULL); 1266 if (!rpath) { 1267 return -errno; 1268 } 1269 1270 rc = daxctl_new(&ctx); 1271 if (rc) { 1272 return -1; 1273 } 1274 1275 daxctl_region_foreach(ctx, region) { 1276 if (strstr(rpath, daxctl_region_get_path(region))) { 1277 align = daxctl_region_get_align(region); 1278 break; 1279 } 1280 } 1281 daxctl_unref(ctx); 1282 } 1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1284 1285 return align; 1286 } 1287 1288 static int file_ram_open(const char *path, 1289 const char *region_name, 1290 bool readonly, 1291 bool *created, 1292 Error **errp) 1293 { 1294 char *filename; 1295 char *sanitized_name; 1296 char *c; 1297 int fd = -1; 1298 1299 *created = false; 1300 for (;;) { 1301 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1302 if (fd >= 0) { 1303 /* @path names an existing file, use it */ 1304 break; 1305 } 1306 if (errno == ENOENT) { 1307 /* @path names a file that doesn't exist, create it */ 1308 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1309 if (fd >= 0) { 1310 *created = true; 1311 break; 1312 } 1313 } else if (errno == EISDIR) { 1314 /* @path names a directory, create a file there */ 1315 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1316 sanitized_name = g_strdup(region_name); 1317 for (c = sanitized_name; *c != '\0'; c++) { 1318 if (*c == '/') { 1319 *c = '_'; 1320 } 1321 } 1322 1323 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1324 sanitized_name); 1325 g_free(sanitized_name); 1326 1327 fd = mkstemp(filename); 1328 if (fd >= 0) { 1329 unlink(filename); 1330 g_free(filename); 1331 break; 1332 } 1333 g_free(filename); 1334 } 1335 if (errno != EEXIST && errno != EINTR) { 1336 error_setg_errno(errp, errno, 1337 "can't open backing store %s for guest RAM", 1338 path); 1339 return -1; 1340 } 1341 /* 1342 * Try again on EINTR and EEXIST. The latter happens when 1343 * something else creates the file between our two open(). 1344 */ 1345 } 1346 1347 return fd; 1348 } 1349 1350 static void *file_ram_alloc(RAMBlock *block, 1351 ram_addr_t memory, 1352 int fd, 1353 bool truncate, 1354 off_t offset, 1355 Error **errp) 1356 { 1357 uint32_t qemu_map_flags; 1358 void *area; 1359 1360 block->page_size = qemu_fd_getpagesize(fd); 1361 if (block->mr->align % block->page_size) { 1362 error_setg(errp, "alignment 0x%" PRIx64 1363 " must be multiples of page size 0x%zx", 1364 block->mr->align, block->page_size); 1365 return NULL; 1366 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1367 error_setg(errp, "alignment 0x%" PRIx64 1368 " must be a power of two", block->mr->align); 1369 return NULL; 1370 } else if (offset % block->page_size) { 1371 error_setg(errp, "offset 0x%" PRIx64 1372 " must be multiples of page size 0x%zx", 1373 offset, block->page_size); 1374 return NULL; 1375 } 1376 block->mr->align = MAX(block->page_size, block->mr->align); 1377 #if defined(__s390x__) 1378 if (kvm_enabled()) { 1379 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1380 } 1381 #endif 1382 1383 if (memory < block->page_size) { 1384 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1385 "or larger than page size 0x%zx", 1386 memory, block->page_size); 1387 return NULL; 1388 } 1389 1390 memory = ROUND_UP(memory, block->page_size); 1391 1392 /* 1393 * ftruncate is not supported by hugetlbfs in older 1394 * hosts, so don't bother bailing out on errors. 1395 * If anything goes wrong with it under other filesystems, 1396 * mmap will fail. 1397 * 1398 * Do not truncate the non-empty backend file to avoid corrupting 1399 * the existing data in the file. Disabling shrinking is not 1400 * enough. For example, the current vNVDIMM implementation stores 1401 * the guest NVDIMM labels at the end of the backend file. If the 1402 * backend file is later extended, QEMU will not be able to find 1403 * those labels. Therefore, extending the non-empty backend file 1404 * is disabled as well. 1405 */ 1406 if (truncate && ftruncate(fd, offset + memory)) { 1407 perror("ftruncate"); 1408 } 1409 1410 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1411 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1412 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1413 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1414 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1415 if (area == MAP_FAILED) { 1416 error_setg_errno(errp, errno, 1417 "unable to map backing store for guest RAM"); 1418 return NULL; 1419 } 1420 1421 block->fd = fd; 1422 block->fd_offset = offset; 1423 return area; 1424 } 1425 #endif 1426 1427 /* Allocate space within the ram_addr_t space that governs the 1428 * dirty bitmaps. 1429 * Called with the ramlist lock held. 1430 */ 1431 static ram_addr_t find_ram_offset(ram_addr_t size) 1432 { 1433 RAMBlock *block, *next_block; 1434 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1435 1436 assert(size != 0); /* it would hand out same offset multiple times */ 1437 1438 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1439 return 0; 1440 } 1441 1442 RAMBLOCK_FOREACH(block) { 1443 ram_addr_t candidate, next = RAM_ADDR_MAX; 1444 1445 /* Align blocks to start on a 'long' in the bitmap 1446 * which makes the bitmap sync'ing take the fast path. 1447 */ 1448 candidate = block->offset + block->max_length; 1449 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1450 1451 /* Search for the closest following block 1452 * and find the gap. 1453 */ 1454 RAMBLOCK_FOREACH(next_block) { 1455 if (next_block->offset >= candidate) { 1456 next = MIN(next, next_block->offset); 1457 } 1458 } 1459 1460 /* If it fits remember our place and remember the size 1461 * of gap, but keep going so that we might find a smaller 1462 * gap to fill so avoiding fragmentation. 1463 */ 1464 if (next - candidate >= size && next - candidate < mingap) { 1465 offset = candidate; 1466 mingap = next - candidate; 1467 } 1468 1469 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1470 } 1471 1472 if (offset == RAM_ADDR_MAX) { 1473 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1474 (uint64_t)size); 1475 abort(); 1476 } 1477 1478 trace_find_ram_offset(size, offset); 1479 1480 return offset; 1481 } 1482 1483 static unsigned long last_ram_page(void) 1484 { 1485 RAMBlock *block; 1486 ram_addr_t last = 0; 1487 1488 RCU_READ_LOCK_GUARD(); 1489 RAMBLOCK_FOREACH(block) { 1490 last = MAX(last, block->offset + block->max_length); 1491 } 1492 return last >> TARGET_PAGE_BITS; 1493 } 1494 1495 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1496 { 1497 int ret; 1498 1499 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1500 if (!machine_dump_guest_core(current_machine)) { 1501 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1502 if (ret) { 1503 perror("qemu_madvise"); 1504 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1505 "but dump_guest_core=off specified\n"); 1506 } 1507 } 1508 } 1509 1510 const char *qemu_ram_get_idstr(RAMBlock *rb) 1511 { 1512 return rb->idstr; 1513 } 1514 1515 void *qemu_ram_get_host_addr(RAMBlock *rb) 1516 { 1517 return rb->host; 1518 } 1519 1520 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1521 { 1522 return rb->offset; 1523 } 1524 1525 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1526 { 1527 return rb->used_length; 1528 } 1529 1530 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1531 { 1532 return rb->max_length; 1533 } 1534 1535 bool qemu_ram_is_shared(RAMBlock *rb) 1536 { 1537 return rb->flags & RAM_SHARED; 1538 } 1539 1540 bool qemu_ram_is_noreserve(RAMBlock *rb) 1541 { 1542 return rb->flags & RAM_NORESERVE; 1543 } 1544 1545 /* Note: Only set at the start of postcopy */ 1546 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1547 { 1548 return rb->flags & RAM_UF_ZEROPAGE; 1549 } 1550 1551 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1552 { 1553 rb->flags |= RAM_UF_ZEROPAGE; 1554 } 1555 1556 bool qemu_ram_is_migratable(RAMBlock *rb) 1557 { 1558 return rb->flags & RAM_MIGRATABLE; 1559 } 1560 1561 void qemu_ram_set_migratable(RAMBlock *rb) 1562 { 1563 rb->flags |= RAM_MIGRATABLE; 1564 } 1565 1566 void qemu_ram_unset_migratable(RAMBlock *rb) 1567 { 1568 rb->flags &= ~RAM_MIGRATABLE; 1569 } 1570 1571 bool qemu_ram_is_named_file(RAMBlock *rb) 1572 { 1573 return rb->flags & RAM_NAMED_FILE; 1574 } 1575 1576 int qemu_ram_get_fd(RAMBlock *rb) 1577 { 1578 return rb->fd; 1579 } 1580 1581 /* Called with iothread lock held. */ 1582 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1583 { 1584 RAMBlock *block; 1585 1586 assert(new_block); 1587 assert(!new_block->idstr[0]); 1588 1589 if (dev) { 1590 char *id = qdev_get_dev_path(dev); 1591 if (id) { 1592 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1593 g_free(id); 1594 } 1595 } 1596 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1597 1598 RCU_READ_LOCK_GUARD(); 1599 RAMBLOCK_FOREACH(block) { 1600 if (block != new_block && 1601 !strcmp(block->idstr, new_block->idstr)) { 1602 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1603 new_block->idstr); 1604 abort(); 1605 } 1606 } 1607 } 1608 1609 /* Called with iothread lock held. */ 1610 void qemu_ram_unset_idstr(RAMBlock *block) 1611 { 1612 /* FIXME: arch_init.c assumes that this is not called throughout 1613 * migration. Ignore the problem since hot-unplug during migration 1614 * does not work anyway. 1615 */ 1616 if (block) { 1617 memset(block->idstr, 0, sizeof(block->idstr)); 1618 } 1619 } 1620 1621 size_t qemu_ram_pagesize(RAMBlock *rb) 1622 { 1623 return rb->page_size; 1624 } 1625 1626 /* Returns the largest size of page in use */ 1627 size_t qemu_ram_pagesize_largest(void) 1628 { 1629 RAMBlock *block; 1630 size_t largest = 0; 1631 1632 RAMBLOCK_FOREACH(block) { 1633 largest = MAX(largest, qemu_ram_pagesize(block)); 1634 } 1635 1636 return largest; 1637 } 1638 1639 static int memory_try_enable_merging(void *addr, size_t len) 1640 { 1641 if (!machine_mem_merge(current_machine)) { 1642 /* disabled by the user */ 1643 return 0; 1644 } 1645 1646 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1647 } 1648 1649 /* 1650 * Resizing RAM while migrating can result in the migration being canceled. 1651 * Care has to be taken if the guest might have already detected the memory. 1652 * 1653 * As memory core doesn't know how is memory accessed, it is up to 1654 * resize callback to update device state and/or add assertions to detect 1655 * misuse, if necessary. 1656 */ 1657 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1658 { 1659 const ram_addr_t oldsize = block->used_length; 1660 const ram_addr_t unaligned_size = newsize; 1661 1662 assert(block); 1663 1664 newsize = HOST_PAGE_ALIGN(newsize); 1665 1666 if (block->used_length == newsize) { 1667 /* 1668 * We don't have to resize the ram block (which only knows aligned 1669 * sizes), however, we have to notify if the unaligned size changed. 1670 */ 1671 if (unaligned_size != memory_region_size(block->mr)) { 1672 memory_region_set_size(block->mr, unaligned_size); 1673 if (block->resized) { 1674 block->resized(block->idstr, unaligned_size, block->host); 1675 } 1676 } 1677 return 0; 1678 } 1679 1680 if (!(block->flags & RAM_RESIZEABLE)) { 1681 error_setg_errno(errp, EINVAL, 1682 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1683 " != 0x" RAM_ADDR_FMT, block->idstr, 1684 newsize, block->used_length); 1685 return -EINVAL; 1686 } 1687 1688 if (block->max_length < newsize) { 1689 error_setg_errno(errp, EINVAL, 1690 "Size too large: %s: 0x" RAM_ADDR_FMT 1691 " > 0x" RAM_ADDR_FMT, block->idstr, 1692 newsize, block->max_length); 1693 return -EINVAL; 1694 } 1695 1696 /* Notify before modifying the ram block and touching the bitmaps. */ 1697 if (block->host) { 1698 ram_block_notify_resize(block->host, oldsize, newsize); 1699 } 1700 1701 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1702 block->used_length = newsize; 1703 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1704 DIRTY_CLIENTS_ALL); 1705 memory_region_set_size(block->mr, unaligned_size); 1706 if (block->resized) { 1707 block->resized(block->idstr, unaligned_size, block->host); 1708 } 1709 return 0; 1710 } 1711 1712 /* 1713 * Trigger sync on the given ram block for range [start, start + length] 1714 * with the backing store if one is available. 1715 * Otherwise no-op. 1716 * @Note: this is supposed to be a synchronous op. 1717 */ 1718 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1719 { 1720 /* The requested range should fit in within the block range */ 1721 g_assert((start + length) <= block->used_length); 1722 1723 #ifdef CONFIG_LIBPMEM 1724 /* The lack of support for pmem should not block the sync */ 1725 if (ramblock_is_pmem(block)) { 1726 void *addr = ramblock_ptr(block, start); 1727 pmem_persist(addr, length); 1728 return; 1729 } 1730 #endif 1731 if (block->fd >= 0) { 1732 /** 1733 * Case there is no support for PMEM or the memory has not been 1734 * specified as persistent (or is not one) - use the msync. 1735 * Less optimal but still achieves the same goal 1736 */ 1737 void *addr = ramblock_ptr(block, start); 1738 if (qemu_msync(addr, length, block->fd)) { 1739 warn_report("%s: failed to sync memory range: start: " 1740 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1741 __func__, start, length); 1742 } 1743 } 1744 } 1745 1746 /* Called with ram_list.mutex held */ 1747 static void dirty_memory_extend(ram_addr_t old_ram_size, 1748 ram_addr_t new_ram_size) 1749 { 1750 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1751 DIRTY_MEMORY_BLOCK_SIZE); 1752 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1753 DIRTY_MEMORY_BLOCK_SIZE); 1754 int i; 1755 1756 /* Only need to extend if block count increased */ 1757 if (new_num_blocks <= old_num_blocks) { 1758 return; 1759 } 1760 1761 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1762 DirtyMemoryBlocks *old_blocks; 1763 DirtyMemoryBlocks *new_blocks; 1764 int j; 1765 1766 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1767 new_blocks = g_malloc(sizeof(*new_blocks) + 1768 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1769 1770 if (old_num_blocks) { 1771 memcpy(new_blocks->blocks, old_blocks->blocks, 1772 old_num_blocks * sizeof(old_blocks->blocks[0])); 1773 } 1774 1775 for (j = old_num_blocks; j < new_num_blocks; j++) { 1776 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1777 } 1778 1779 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1780 1781 if (old_blocks) { 1782 g_free_rcu(old_blocks, rcu); 1783 } 1784 } 1785 } 1786 1787 static void ram_block_add(RAMBlock *new_block, Error **errp) 1788 { 1789 const bool noreserve = qemu_ram_is_noreserve(new_block); 1790 const bool shared = qemu_ram_is_shared(new_block); 1791 RAMBlock *block; 1792 RAMBlock *last_block = NULL; 1793 ram_addr_t old_ram_size, new_ram_size; 1794 Error *err = NULL; 1795 1796 old_ram_size = last_ram_page(); 1797 1798 qemu_mutex_lock_ramlist(); 1799 new_block->offset = find_ram_offset(new_block->max_length); 1800 1801 if (!new_block->host) { 1802 if (xen_enabled()) { 1803 xen_ram_alloc(new_block->offset, new_block->max_length, 1804 new_block->mr, &err); 1805 if (err) { 1806 error_propagate(errp, err); 1807 qemu_mutex_unlock_ramlist(); 1808 return; 1809 } 1810 } else { 1811 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1812 &new_block->mr->align, 1813 shared, noreserve); 1814 if (!new_block->host) { 1815 error_setg_errno(errp, errno, 1816 "cannot set up guest memory '%s'", 1817 memory_region_name(new_block->mr)); 1818 qemu_mutex_unlock_ramlist(); 1819 return; 1820 } 1821 memory_try_enable_merging(new_block->host, new_block->max_length); 1822 } 1823 } 1824 1825 new_ram_size = MAX(old_ram_size, 1826 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1827 if (new_ram_size > old_ram_size) { 1828 dirty_memory_extend(old_ram_size, new_ram_size); 1829 } 1830 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1831 * QLIST (which has an RCU-friendly variant) does not have insertion at 1832 * tail, so save the last element in last_block. 1833 */ 1834 RAMBLOCK_FOREACH(block) { 1835 last_block = block; 1836 if (block->max_length < new_block->max_length) { 1837 break; 1838 } 1839 } 1840 if (block) { 1841 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1842 } else if (last_block) { 1843 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1844 } else { /* list is empty */ 1845 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1846 } 1847 ram_list.mru_block = NULL; 1848 1849 /* Write list before version */ 1850 smp_wmb(); 1851 ram_list.version++; 1852 qemu_mutex_unlock_ramlist(); 1853 1854 cpu_physical_memory_set_dirty_range(new_block->offset, 1855 new_block->used_length, 1856 DIRTY_CLIENTS_ALL); 1857 1858 if (new_block->host) { 1859 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1860 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1861 /* 1862 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1863 * Configure it unless the machine is a qtest server, in which case 1864 * KVM is not used and it may be forked (eg for fuzzing purposes). 1865 */ 1866 if (!qtest_enabled()) { 1867 qemu_madvise(new_block->host, new_block->max_length, 1868 QEMU_MADV_DONTFORK); 1869 } 1870 ram_block_notify_add(new_block->host, new_block->used_length, 1871 new_block->max_length); 1872 } 1873 } 1874 1875 #ifdef CONFIG_POSIX 1876 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1877 uint32_t ram_flags, int fd, off_t offset, 1878 Error **errp) 1879 { 1880 RAMBlock *new_block; 1881 Error *local_err = NULL; 1882 int64_t file_size, file_align; 1883 1884 /* Just support these ram flags by now. */ 1885 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1886 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1887 RAM_READONLY_FD)) == 0); 1888 1889 if (xen_enabled()) { 1890 error_setg(errp, "-mem-path not supported with Xen"); 1891 return NULL; 1892 } 1893 1894 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1895 error_setg(errp, 1896 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1897 return NULL; 1898 } 1899 1900 size = HOST_PAGE_ALIGN(size); 1901 file_size = get_file_size(fd); 1902 if (file_size > offset && file_size < (offset + size)) { 1903 error_setg(errp, "backing store size 0x%" PRIx64 1904 " does not match 'size' option 0x" RAM_ADDR_FMT, 1905 file_size, size); 1906 return NULL; 1907 } 1908 1909 file_align = get_file_align(fd); 1910 if (file_align > 0 && file_align > mr->align) { 1911 error_setg(errp, "backing store align 0x%" PRIx64 1912 " is larger than 'align' option 0x%" PRIx64, 1913 file_align, mr->align); 1914 return NULL; 1915 } 1916 1917 new_block = g_malloc0(sizeof(*new_block)); 1918 new_block->mr = mr; 1919 new_block->used_length = size; 1920 new_block->max_length = size; 1921 new_block->flags = ram_flags; 1922 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset, 1923 errp); 1924 if (!new_block->host) { 1925 g_free(new_block); 1926 return NULL; 1927 } 1928 1929 ram_block_add(new_block, &local_err); 1930 if (local_err) { 1931 g_free(new_block); 1932 error_propagate(errp, local_err); 1933 return NULL; 1934 } 1935 return new_block; 1936 1937 } 1938 1939 1940 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1941 uint32_t ram_flags, const char *mem_path, 1942 off_t offset, Error **errp) 1943 { 1944 int fd; 1945 bool created; 1946 RAMBlock *block; 1947 1948 fd = file_ram_open(mem_path, memory_region_name(mr), 1949 !!(ram_flags & RAM_READONLY_FD), &created, errp); 1950 if (fd < 0) { 1951 return NULL; 1952 } 1953 1954 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp); 1955 if (!block) { 1956 if (created) { 1957 unlink(mem_path); 1958 } 1959 close(fd); 1960 return NULL; 1961 } 1962 1963 return block; 1964 } 1965 #endif 1966 1967 static 1968 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 1969 void (*resized)(const char*, 1970 uint64_t length, 1971 void *host), 1972 void *host, uint32_t ram_flags, 1973 MemoryRegion *mr, Error **errp) 1974 { 1975 RAMBlock *new_block; 1976 Error *local_err = NULL; 1977 1978 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 1979 RAM_NORESERVE)) == 0); 1980 assert(!host ^ (ram_flags & RAM_PREALLOC)); 1981 1982 size = HOST_PAGE_ALIGN(size); 1983 max_size = HOST_PAGE_ALIGN(max_size); 1984 new_block = g_malloc0(sizeof(*new_block)); 1985 new_block->mr = mr; 1986 new_block->resized = resized; 1987 new_block->used_length = size; 1988 new_block->max_length = max_size; 1989 assert(max_size >= size); 1990 new_block->fd = -1; 1991 new_block->page_size = qemu_real_host_page_size(); 1992 new_block->host = host; 1993 new_block->flags = ram_flags; 1994 ram_block_add(new_block, &local_err); 1995 if (local_err) { 1996 g_free(new_block); 1997 error_propagate(errp, local_err); 1998 return NULL; 1999 } 2000 return new_block; 2001 } 2002 2003 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2004 MemoryRegion *mr, Error **errp) 2005 { 2006 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2007 errp); 2008 } 2009 2010 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2011 MemoryRegion *mr, Error **errp) 2012 { 2013 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2014 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2015 } 2016 2017 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2018 void (*resized)(const char*, 2019 uint64_t length, 2020 void *host), 2021 MemoryRegion *mr, Error **errp) 2022 { 2023 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2024 RAM_RESIZEABLE, mr, errp); 2025 } 2026 2027 static void reclaim_ramblock(RAMBlock *block) 2028 { 2029 if (block->flags & RAM_PREALLOC) { 2030 ; 2031 } else if (xen_enabled()) { 2032 xen_invalidate_map_cache_entry(block->host); 2033 #ifndef _WIN32 2034 } else if (block->fd >= 0) { 2035 qemu_ram_munmap(block->fd, block->host, block->max_length); 2036 close(block->fd); 2037 #endif 2038 } else { 2039 qemu_anon_ram_free(block->host, block->max_length); 2040 } 2041 g_free(block); 2042 } 2043 2044 void qemu_ram_free(RAMBlock *block) 2045 { 2046 if (!block) { 2047 return; 2048 } 2049 2050 if (block->host) { 2051 ram_block_notify_remove(block->host, block->used_length, 2052 block->max_length); 2053 } 2054 2055 qemu_mutex_lock_ramlist(); 2056 QLIST_REMOVE_RCU(block, next); 2057 ram_list.mru_block = NULL; 2058 /* Write list before version */ 2059 smp_wmb(); 2060 ram_list.version++; 2061 call_rcu(block, reclaim_ramblock, rcu); 2062 qemu_mutex_unlock_ramlist(); 2063 } 2064 2065 #ifndef _WIN32 2066 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2067 { 2068 RAMBlock *block; 2069 ram_addr_t offset; 2070 int flags; 2071 void *area, *vaddr; 2072 int prot; 2073 2074 RAMBLOCK_FOREACH(block) { 2075 offset = addr - block->offset; 2076 if (offset < block->max_length) { 2077 vaddr = ramblock_ptr(block, offset); 2078 if (block->flags & RAM_PREALLOC) { 2079 ; 2080 } else if (xen_enabled()) { 2081 abort(); 2082 } else { 2083 flags = MAP_FIXED; 2084 flags |= block->flags & RAM_SHARED ? 2085 MAP_SHARED : MAP_PRIVATE; 2086 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2087 prot = PROT_READ; 2088 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2089 if (block->fd >= 0) { 2090 area = mmap(vaddr, length, prot, flags, block->fd, 2091 offset + block->fd_offset); 2092 } else { 2093 flags |= MAP_ANONYMOUS; 2094 area = mmap(vaddr, length, prot, flags, -1, 0); 2095 } 2096 if (area != vaddr) { 2097 error_report("Could not remap addr: " 2098 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2099 length, addr); 2100 exit(1); 2101 } 2102 memory_try_enable_merging(vaddr, length); 2103 qemu_ram_setup_dump(vaddr, length); 2104 } 2105 } 2106 } 2107 } 2108 #endif /* !_WIN32 */ 2109 2110 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2111 * This should not be used for general purpose DMA. Use address_space_map 2112 * or address_space_rw instead. For local memory (e.g. video ram) that the 2113 * device owns, use memory_region_get_ram_ptr. 2114 * 2115 * Called within RCU critical section. 2116 */ 2117 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2118 { 2119 RAMBlock *block = ram_block; 2120 2121 if (block == NULL) { 2122 block = qemu_get_ram_block(addr); 2123 addr -= block->offset; 2124 } 2125 2126 if (xen_enabled() && block->host == NULL) { 2127 /* We need to check if the requested address is in the RAM 2128 * because we don't want to map the entire memory in QEMU. 2129 * In that case just map until the end of the page. 2130 */ 2131 if (block->offset == 0) { 2132 return xen_map_cache(addr, 0, 0, false); 2133 } 2134 2135 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2136 } 2137 return ramblock_ptr(block, addr); 2138 } 2139 2140 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2141 * but takes a size argument. 2142 * 2143 * Called within RCU critical section. 2144 */ 2145 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2146 hwaddr *size, bool lock) 2147 { 2148 RAMBlock *block = ram_block; 2149 if (*size == 0) { 2150 return NULL; 2151 } 2152 2153 if (block == NULL) { 2154 block = qemu_get_ram_block(addr); 2155 addr -= block->offset; 2156 } 2157 *size = MIN(*size, block->max_length - addr); 2158 2159 if (xen_enabled() && block->host == NULL) { 2160 /* We need to check if the requested address is in the RAM 2161 * because we don't want to map the entire memory in QEMU. 2162 * In that case just map the requested area. 2163 */ 2164 if (block->offset == 0) { 2165 return xen_map_cache(addr, *size, lock, lock); 2166 } 2167 2168 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2169 } 2170 2171 return ramblock_ptr(block, addr); 2172 } 2173 2174 /* Return the offset of a hostpointer within a ramblock */ 2175 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2176 { 2177 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2178 assert((uintptr_t)host >= (uintptr_t)rb->host); 2179 assert(res < rb->max_length); 2180 2181 return res; 2182 } 2183 2184 /* 2185 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2186 * in that RAMBlock. 2187 * 2188 * ptr: Host pointer to look up 2189 * round_offset: If true round the result offset down to a page boundary 2190 * *ram_addr: set to result ram_addr 2191 * *offset: set to result offset within the RAMBlock 2192 * 2193 * Returns: RAMBlock (or NULL if not found) 2194 * 2195 * By the time this function returns, the returned pointer is not protected 2196 * by RCU anymore. If the caller is not within an RCU critical section and 2197 * does not hold the iothread lock, it must have other means of protecting the 2198 * pointer, such as a reference to the region that includes the incoming 2199 * ram_addr_t. 2200 */ 2201 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2202 ram_addr_t *offset) 2203 { 2204 RAMBlock *block; 2205 uint8_t *host = ptr; 2206 2207 if (xen_enabled()) { 2208 ram_addr_t ram_addr; 2209 RCU_READ_LOCK_GUARD(); 2210 ram_addr = xen_ram_addr_from_mapcache(ptr); 2211 block = qemu_get_ram_block(ram_addr); 2212 if (block) { 2213 *offset = ram_addr - block->offset; 2214 } 2215 return block; 2216 } 2217 2218 RCU_READ_LOCK_GUARD(); 2219 block = qatomic_rcu_read(&ram_list.mru_block); 2220 if (block && block->host && host - block->host < block->max_length) { 2221 goto found; 2222 } 2223 2224 RAMBLOCK_FOREACH(block) { 2225 /* This case append when the block is not mapped. */ 2226 if (block->host == NULL) { 2227 continue; 2228 } 2229 if (host - block->host < block->max_length) { 2230 goto found; 2231 } 2232 } 2233 2234 return NULL; 2235 2236 found: 2237 *offset = (host - block->host); 2238 if (round_offset) { 2239 *offset &= TARGET_PAGE_MASK; 2240 } 2241 return block; 2242 } 2243 2244 /* 2245 * Finds the named RAMBlock 2246 * 2247 * name: The name of RAMBlock to find 2248 * 2249 * Returns: RAMBlock (or NULL if not found) 2250 */ 2251 RAMBlock *qemu_ram_block_by_name(const char *name) 2252 { 2253 RAMBlock *block; 2254 2255 RAMBLOCK_FOREACH(block) { 2256 if (!strcmp(name, block->idstr)) { 2257 return block; 2258 } 2259 } 2260 2261 return NULL; 2262 } 2263 2264 /* Some of the softmmu routines need to translate from a host pointer 2265 (typically a TLB entry) back to a ram offset. */ 2266 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2267 { 2268 RAMBlock *block; 2269 ram_addr_t offset; 2270 2271 block = qemu_ram_block_from_host(ptr, false, &offset); 2272 if (!block) { 2273 return RAM_ADDR_INVALID; 2274 } 2275 2276 return block->offset + offset; 2277 } 2278 2279 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2280 { 2281 ram_addr_t ram_addr; 2282 2283 ram_addr = qemu_ram_addr_from_host(ptr); 2284 if (ram_addr == RAM_ADDR_INVALID) { 2285 error_report("Bad ram pointer %p", ptr); 2286 abort(); 2287 } 2288 return ram_addr; 2289 } 2290 2291 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2292 MemTxAttrs attrs, void *buf, hwaddr len); 2293 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2294 const void *buf, hwaddr len); 2295 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2296 bool is_write, MemTxAttrs attrs); 2297 2298 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2299 unsigned len, MemTxAttrs attrs) 2300 { 2301 subpage_t *subpage = opaque; 2302 uint8_t buf[8]; 2303 MemTxResult res; 2304 2305 #if defined(DEBUG_SUBPAGE) 2306 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2307 subpage, len, addr); 2308 #endif 2309 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2310 if (res) { 2311 return res; 2312 } 2313 *data = ldn_p(buf, len); 2314 return MEMTX_OK; 2315 } 2316 2317 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2318 uint64_t value, unsigned len, MemTxAttrs attrs) 2319 { 2320 subpage_t *subpage = opaque; 2321 uint8_t buf[8]; 2322 2323 #if defined(DEBUG_SUBPAGE) 2324 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2325 " value %"PRIx64"\n", 2326 __func__, subpage, len, addr, value); 2327 #endif 2328 stn_p(buf, len, value); 2329 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2330 } 2331 2332 static bool subpage_accepts(void *opaque, hwaddr addr, 2333 unsigned len, bool is_write, 2334 MemTxAttrs attrs) 2335 { 2336 subpage_t *subpage = opaque; 2337 #if defined(DEBUG_SUBPAGE) 2338 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2339 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2340 #endif 2341 2342 return flatview_access_valid(subpage->fv, addr + subpage->base, 2343 len, is_write, attrs); 2344 } 2345 2346 static const MemoryRegionOps subpage_ops = { 2347 .read_with_attrs = subpage_read, 2348 .write_with_attrs = subpage_write, 2349 .impl.min_access_size = 1, 2350 .impl.max_access_size = 8, 2351 .valid.min_access_size = 1, 2352 .valid.max_access_size = 8, 2353 .valid.accepts = subpage_accepts, 2354 .endianness = DEVICE_NATIVE_ENDIAN, 2355 }; 2356 2357 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2358 uint16_t section) 2359 { 2360 int idx, eidx; 2361 2362 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2363 return -1; 2364 idx = SUBPAGE_IDX(start); 2365 eidx = SUBPAGE_IDX(end); 2366 #if defined(DEBUG_SUBPAGE) 2367 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2368 __func__, mmio, start, end, idx, eidx, section); 2369 #endif 2370 for (; idx <= eidx; idx++) { 2371 mmio->sub_section[idx] = section; 2372 } 2373 2374 return 0; 2375 } 2376 2377 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2378 { 2379 subpage_t *mmio; 2380 2381 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2382 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2383 mmio->fv = fv; 2384 mmio->base = base; 2385 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2386 NULL, TARGET_PAGE_SIZE); 2387 mmio->iomem.subpage = true; 2388 #if defined(DEBUG_SUBPAGE) 2389 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2390 mmio, base, TARGET_PAGE_SIZE); 2391 #endif 2392 2393 return mmio; 2394 } 2395 2396 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2397 { 2398 assert(fv); 2399 MemoryRegionSection section = { 2400 .fv = fv, 2401 .mr = mr, 2402 .offset_within_address_space = 0, 2403 .offset_within_region = 0, 2404 .size = int128_2_64(), 2405 }; 2406 2407 return phys_section_add(map, §ion); 2408 } 2409 2410 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2411 hwaddr index, MemTxAttrs attrs) 2412 { 2413 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2414 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2415 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2416 int section_index = index & ~TARGET_PAGE_MASK; 2417 MemoryRegionSection *ret; 2418 2419 assert(section_index < d->map.sections_nb); 2420 ret = d->map.sections + section_index; 2421 assert(ret->mr); 2422 assert(ret->mr->ops); 2423 2424 return ret; 2425 } 2426 2427 static void io_mem_init(void) 2428 { 2429 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2430 NULL, UINT64_MAX); 2431 } 2432 2433 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2434 { 2435 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2436 uint16_t n; 2437 2438 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2439 assert(n == PHYS_SECTION_UNASSIGNED); 2440 2441 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2442 2443 return d; 2444 } 2445 2446 void address_space_dispatch_free(AddressSpaceDispatch *d) 2447 { 2448 phys_sections_free(&d->map); 2449 g_free(d); 2450 } 2451 2452 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2453 { 2454 } 2455 2456 static void tcg_log_global_after_sync(MemoryListener *listener) 2457 { 2458 CPUAddressSpace *cpuas; 2459 2460 /* Wait for the CPU to end the current TB. This avoids the following 2461 * incorrect race: 2462 * 2463 * vCPU migration 2464 * ---------------------- ------------------------- 2465 * TLB check -> slow path 2466 * notdirty_mem_write 2467 * write to RAM 2468 * mark dirty 2469 * clear dirty flag 2470 * TLB check -> fast path 2471 * read memory 2472 * write to RAM 2473 * 2474 * by pushing the migration thread's memory read after the vCPU thread has 2475 * written the memory. 2476 */ 2477 if (replay_mode == REPLAY_MODE_NONE) { 2478 /* 2479 * VGA can make calls to this function while updating the screen. 2480 * In record/replay mode this causes a deadlock, because 2481 * run_on_cpu waits for rr mutex. Therefore no races are possible 2482 * in this case and no need for making run_on_cpu when 2483 * record/replay is enabled. 2484 */ 2485 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2486 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2487 } 2488 } 2489 2490 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2491 { 2492 CPUAddressSpace *cpuas = data.host_ptr; 2493 2494 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2495 tlb_flush(cpu); 2496 } 2497 2498 static void tcg_commit(MemoryListener *listener) 2499 { 2500 CPUAddressSpace *cpuas; 2501 CPUState *cpu; 2502 2503 assert(tcg_enabled()); 2504 /* since each CPU stores ram addresses in its TLB cache, we must 2505 reset the modified entries */ 2506 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2507 cpu = cpuas->cpu; 2508 2509 /* 2510 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2511 * Otherwise we race between (1) other cpu threads and (2) ongoing 2512 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2513 * 2514 * In addition, queueing the work function will kick the cpu back to 2515 * the main loop, which will end the RCU critical section and reclaim 2516 * the memory data structures. 2517 * 2518 * That said, the listener is also called during realize, before 2519 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2520 */ 2521 if (cpu->halt_cond) { 2522 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2523 } else { 2524 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2525 } 2526 } 2527 2528 static void memory_map_init(void) 2529 { 2530 system_memory = g_malloc(sizeof(*system_memory)); 2531 2532 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2533 address_space_init(&address_space_memory, system_memory, "memory"); 2534 2535 system_io = g_malloc(sizeof(*system_io)); 2536 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2537 65536); 2538 address_space_init(&address_space_io, system_io, "I/O"); 2539 } 2540 2541 MemoryRegion *get_system_memory(void) 2542 { 2543 return system_memory; 2544 } 2545 2546 MemoryRegion *get_system_io(void) 2547 { 2548 return system_io; 2549 } 2550 2551 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2552 hwaddr length) 2553 { 2554 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2555 addr += memory_region_get_ram_addr(mr); 2556 2557 /* No early return if dirty_log_mask is or becomes 0, because 2558 * cpu_physical_memory_set_dirty_range will still call 2559 * xen_modified_memory. 2560 */ 2561 if (dirty_log_mask) { 2562 dirty_log_mask = 2563 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2564 } 2565 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2566 assert(tcg_enabled()); 2567 tb_invalidate_phys_range(addr, addr + length - 1); 2568 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2569 } 2570 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2571 } 2572 2573 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2574 { 2575 /* 2576 * In principle this function would work on other memory region types too, 2577 * but the ROM device use case is the only one where this operation is 2578 * necessary. Other memory regions should use the 2579 * address_space_read/write() APIs. 2580 */ 2581 assert(memory_region_is_romd(mr)); 2582 2583 invalidate_and_set_dirty(mr, addr, size); 2584 } 2585 2586 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2587 { 2588 unsigned access_size_max = mr->ops->valid.max_access_size; 2589 2590 /* Regions are assumed to support 1-4 byte accesses unless 2591 otherwise specified. */ 2592 if (access_size_max == 0) { 2593 access_size_max = 4; 2594 } 2595 2596 /* Bound the maximum access by the alignment of the address. */ 2597 if (!mr->ops->impl.unaligned) { 2598 unsigned align_size_max = addr & -addr; 2599 if (align_size_max != 0 && align_size_max < access_size_max) { 2600 access_size_max = align_size_max; 2601 } 2602 } 2603 2604 /* Don't attempt accesses larger than the maximum. */ 2605 if (l > access_size_max) { 2606 l = access_size_max; 2607 } 2608 l = pow2floor(l); 2609 2610 return l; 2611 } 2612 2613 bool prepare_mmio_access(MemoryRegion *mr) 2614 { 2615 bool release_lock = false; 2616 2617 if (!qemu_mutex_iothread_locked()) { 2618 qemu_mutex_lock_iothread(); 2619 release_lock = true; 2620 } 2621 if (mr->flush_coalesced_mmio) { 2622 qemu_flush_coalesced_mmio_buffer(); 2623 } 2624 2625 return release_lock; 2626 } 2627 2628 /** 2629 * flatview_access_allowed 2630 * @mr: #MemoryRegion to be accessed 2631 * @attrs: memory transaction attributes 2632 * @addr: address within that memory region 2633 * @len: the number of bytes to access 2634 * 2635 * Check if a memory transaction is allowed. 2636 * 2637 * Returns: true if transaction is allowed, false if denied. 2638 */ 2639 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2640 hwaddr addr, hwaddr len) 2641 { 2642 if (likely(!attrs.memory)) { 2643 return true; 2644 } 2645 if (memory_region_is_ram(mr)) { 2646 return true; 2647 } 2648 qemu_log_mask(LOG_GUEST_ERROR, 2649 "Invalid access to non-RAM device at " 2650 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2651 "region '%s'\n", addr, len, memory_region_name(mr)); 2652 return false; 2653 } 2654 2655 /* Called within RCU critical section. */ 2656 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2657 MemTxAttrs attrs, 2658 const void *ptr, 2659 hwaddr len, hwaddr addr1, 2660 hwaddr l, MemoryRegion *mr) 2661 { 2662 uint8_t *ram_ptr; 2663 uint64_t val; 2664 MemTxResult result = MEMTX_OK; 2665 bool release_lock = false; 2666 const uint8_t *buf = ptr; 2667 2668 for (;;) { 2669 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2670 result |= MEMTX_ACCESS_ERROR; 2671 /* Keep going. */ 2672 } else if (!memory_access_is_direct(mr, true)) { 2673 release_lock |= prepare_mmio_access(mr); 2674 l = memory_access_size(mr, l, addr1); 2675 /* XXX: could force current_cpu to NULL to avoid 2676 potential bugs */ 2677 val = ldn_he_p(buf, l); 2678 result |= memory_region_dispatch_write(mr, addr1, val, 2679 size_memop(l), attrs); 2680 } else { 2681 /* RAM case */ 2682 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2683 memmove(ram_ptr, buf, l); 2684 invalidate_and_set_dirty(mr, addr1, l); 2685 } 2686 2687 if (release_lock) { 2688 qemu_mutex_unlock_iothread(); 2689 release_lock = false; 2690 } 2691 2692 len -= l; 2693 buf += l; 2694 addr += l; 2695 2696 if (!len) { 2697 break; 2698 } 2699 2700 l = len; 2701 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2702 } 2703 2704 return result; 2705 } 2706 2707 /* Called from RCU critical section. */ 2708 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2709 const void *buf, hwaddr len) 2710 { 2711 hwaddr l; 2712 hwaddr addr1; 2713 MemoryRegion *mr; 2714 2715 l = len; 2716 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2717 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2718 return MEMTX_ACCESS_ERROR; 2719 } 2720 return flatview_write_continue(fv, addr, attrs, buf, len, 2721 addr1, l, mr); 2722 } 2723 2724 /* Called within RCU critical section. */ 2725 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2726 MemTxAttrs attrs, void *ptr, 2727 hwaddr len, hwaddr addr1, hwaddr l, 2728 MemoryRegion *mr) 2729 { 2730 uint8_t *ram_ptr; 2731 uint64_t val; 2732 MemTxResult result = MEMTX_OK; 2733 bool release_lock = false; 2734 uint8_t *buf = ptr; 2735 2736 fuzz_dma_read_cb(addr, len, mr); 2737 for (;;) { 2738 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2739 result |= MEMTX_ACCESS_ERROR; 2740 /* Keep going. */ 2741 } else if (!memory_access_is_direct(mr, false)) { 2742 /* I/O case */ 2743 release_lock |= prepare_mmio_access(mr); 2744 l = memory_access_size(mr, l, addr1); 2745 result |= memory_region_dispatch_read(mr, addr1, &val, 2746 size_memop(l), attrs); 2747 stn_he_p(buf, l, val); 2748 } else { 2749 /* RAM case */ 2750 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2751 memcpy(buf, ram_ptr, l); 2752 } 2753 2754 if (release_lock) { 2755 qemu_mutex_unlock_iothread(); 2756 release_lock = false; 2757 } 2758 2759 len -= l; 2760 buf += l; 2761 addr += l; 2762 2763 if (!len) { 2764 break; 2765 } 2766 2767 l = len; 2768 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2769 } 2770 2771 return result; 2772 } 2773 2774 /* Called from RCU critical section. */ 2775 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2776 MemTxAttrs attrs, void *buf, hwaddr len) 2777 { 2778 hwaddr l; 2779 hwaddr addr1; 2780 MemoryRegion *mr; 2781 2782 l = len; 2783 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2784 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2785 return MEMTX_ACCESS_ERROR; 2786 } 2787 return flatview_read_continue(fv, addr, attrs, buf, len, 2788 addr1, l, mr); 2789 } 2790 2791 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2792 MemTxAttrs attrs, void *buf, hwaddr len) 2793 { 2794 MemTxResult result = MEMTX_OK; 2795 FlatView *fv; 2796 2797 if (len > 0) { 2798 RCU_READ_LOCK_GUARD(); 2799 fv = address_space_to_flatview(as); 2800 result = flatview_read(fv, addr, attrs, buf, len); 2801 } 2802 2803 return result; 2804 } 2805 2806 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2807 MemTxAttrs attrs, 2808 const void *buf, hwaddr len) 2809 { 2810 MemTxResult result = MEMTX_OK; 2811 FlatView *fv; 2812 2813 if (len > 0) { 2814 RCU_READ_LOCK_GUARD(); 2815 fv = address_space_to_flatview(as); 2816 result = flatview_write(fv, addr, attrs, buf, len); 2817 } 2818 2819 return result; 2820 } 2821 2822 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2823 void *buf, hwaddr len, bool is_write) 2824 { 2825 if (is_write) { 2826 return address_space_write(as, addr, attrs, buf, len); 2827 } else { 2828 return address_space_read_full(as, addr, attrs, buf, len); 2829 } 2830 } 2831 2832 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2833 uint8_t c, hwaddr len, MemTxAttrs attrs) 2834 { 2835 #define FILLBUF_SIZE 512 2836 uint8_t fillbuf[FILLBUF_SIZE]; 2837 int l; 2838 MemTxResult error = MEMTX_OK; 2839 2840 memset(fillbuf, c, FILLBUF_SIZE); 2841 while (len > 0) { 2842 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2843 error |= address_space_write(as, addr, attrs, fillbuf, l); 2844 len -= l; 2845 addr += l; 2846 } 2847 2848 return error; 2849 } 2850 2851 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2852 hwaddr len, bool is_write) 2853 { 2854 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2855 buf, len, is_write); 2856 } 2857 2858 enum write_rom_type { 2859 WRITE_DATA, 2860 FLUSH_CACHE, 2861 }; 2862 2863 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2864 hwaddr addr, 2865 MemTxAttrs attrs, 2866 const void *ptr, 2867 hwaddr len, 2868 enum write_rom_type type) 2869 { 2870 hwaddr l; 2871 uint8_t *ram_ptr; 2872 hwaddr addr1; 2873 MemoryRegion *mr; 2874 const uint8_t *buf = ptr; 2875 2876 RCU_READ_LOCK_GUARD(); 2877 while (len > 0) { 2878 l = len; 2879 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2880 2881 if (!(memory_region_is_ram(mr) || 2882 memory_region_is_romd(mr))) { 2883 l = memory_access_size(mr, l, addr1); 2884 } else { 2885 /* ROM/RAM case */ 2886 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2887 switch (type) { 2888 case WRITE_DATA: 2889 memcpy(ram_ptr, buf, l); 2890 invalidate_and_set_dirty(mr, addr1, l); 2891 break; 2892 case FLUSH_CACHE: 2893 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2894 break; 2895 } 2896 } 2897 len -= l; 2898 buf += l; 2899 addr += l; 2900 } 2901 return MEMTX_OK; 2902 } 2903 2904 /* used for ROM loading : can write in RAM and ROM */ 2905 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2906 MemTxAttrs attrs, 2907 const void *buf, hwaddr len) 2908 { 2909 return address_space_write_rom_internal(as, addr, attrs, 2910 buf, len, WRITE_DATA); 2911 } 2912 2913 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2914 { 2915 /* 2916 * This function should do the same thing as an icache flush that was 2917 * triggered from within the guest. For TCG we are always cache coherent, 2918 * so there is no need to flush anything. For KVM / Xen we need to flush 2919 * the host's instruction cache at least. 2920 */ 2921 if (tcg_enabled()) { 2922 return; 2923 } 2924 2925 address_space_write_rom_internal(&address_space_memory, 2926 start, MEMTXATTRS_UNSPECIFIED, 2927 NULL, len, FLUSH_CACHE); 2928 } 2929 2930 typedef struct { 2931 MemoryRegion *mr; 2932 void *buffer; 2933 hwaddr addr; 2934 hwaddr len; 2935 bool in_use; 2936 } BounceBuffer; 2937 2938 static BounceBuffer bounce; 2939 2940 typedef struct MapClient { 2941 QEMUBH *bh; 2942 QLIST_ENTRY(MapClient) link; 2943 } MapClient; 2944 2945 QemuMutex map_client_list_lock; 2946 static QLIST_HEAD(, MapClient) map_client_list 2947 = QLIST_HEAD_INITIALIZER(map_client_list); 2948 2949 static void cpu_unregister_map_client_do(MapClient *client) 2950 { 2951 QLIST_REMOVE(client, link); 2952 g_free(client); 2953 } 2954 2955 static void cpu_notify_map_clients_locked(void) 2956 { 2957 MapClient *client; 2958 2959 while (!QLIST_EMPTY(&map_client_list)) { 2960 client = QLIST_FIRST(&map_client_list); 2961 qemu_bh_schedule(client->bh); 2962 cpu_unregister_map_client_do(client); 2963 } 2964 } 2965 2966 void cpu_register_map_client(QEMUBH *bh) 2967 { 2968 MapClient *client = g_malloc(sizeof(*client)); 2969 2970 qemu_mutex_lock(&map_client_list_lock); 2971 client->bh = bh; 2972 QLIST_INSERT_HEAD(&map_client_list, client, link); 2973 /* Write map_client_list before reading in_use. */ 2974 smp_mb(); 2975 if (!qatomic_read(&bounce.in_use)) { 2976 cpu_notify_map_clients_locked(); 2977 } 2978 qemu_mutex_unlock(&map_client_list_lock); 2979 } 2980 2981 void cpu_exec_init_all(void) 2982 { 2983 qemu_mutex_init(&ram_list.mutex); 2984 /* The data structures we set up here depend on knowing the page size, 2985 * so no more changes can be made after this point. 2986 * In an ideal world, nothing we did before we had finished the 2987 * machine setup would care about the target page size, and we could 2988 * do this much later, rather than requiring board models to state 2989 * up front what their requirements are. 2990 */ 2991 finalize_target_page_bits(); 2992 io_mem_init(); 2993 memory_map_init(); 2994 qemu_mutex_init(&map_client_list_lock); 2995 } 2996 2997 void cpu_unregister_map_client(QEMUBH *bh) 2998 { 2999 MapClient *client; 3000 3001 qemu_mutex_lock(&map_client_list_lock); 3002 QLIST_FOREACH(client, &map_client_list, link) { 3003 if (client->bh == bh) { 3004 cpu_unregister_map_client_do(client); 3005 break; 3006 } 3007 } 3008 qemu_mutex_unlock(&map_client_list_lock); 3009 } 3010 3011 static void cpu_notify_map_clients(void) 3012 { 3013 qemu_mutex_lock(&map_client_list_lock); 3014 cpu_notify_map_clients_locked(); 3015 qemu_mutex_unlock(&map_client_list_lock); 3016 } 3017 3018 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3019 bool is_write, MemTxAttrs attrs) 3020 { 3021 MemoryRegion *mr; 3022 hwaddr l, xlat; 3023 3024 while (len > 0) { 3025 l = len; 3026 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3027 if (!memory_access_is_direct(mr, is_write)) { 3028 l = memory_access_size(mr, l, addr); 3029 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3030 return false; 3031 } 3032 } 3033 3034 len -= l; 3035 addr += l; 3036 } 3037 return true; 3038 } 3039 3040 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3041 hwaddr len, bool is_write, 3042 MemTxAttrs attrs) 3043 { 3044 FlatView *fv; 3045 3046 RCU_READ_LOCK_GUARD(); 3047 fv = address_space_to_flatview(as); 3048 return flatview_access_valid(fv, addr, len, is_write, attrs); 3049 } 3050 3051 static hwaddr 3052 flatview_extend_translation(FlatView *fv, hwaddr addr, 3053 hwaddr target_len, 3054 MemoryRegion *mr, hwaddr base, hwaddr len, 3055 bool is_write, MemTxAttrs attrs) 3056 { 3057 hwaddr done = 0; 3058 hwaddr xlat; 3059 MemoryRegion *this_mr; 3060 3061 for (;;) { 3062 target_len -= len; 3063 addr += len; 3064 done += len; 3065 if (target_len == 0) { 3066 return done; 3067 } 3068 3069 len = target_len; 3070 this_mr = flatview_translate(fv, addr, &xlat, 3071 &len, is_write, attrs); 3072 if (this_mr != mr || xlat != base + done) { 3073 return done; 3074 } 3075 } 3076 } 3077 3078 /* Map a physical memory region into a host virtual address. 3079 * May map a subset of the requested range, given by and returned in *plen. 3080 * May return NULL if resources needed to perform the mapping are exhausted. 3081 * Use only for reads OR writes - not for read-modify-write operations. 3082 * Use cpu_register_map_client() to know when retrying the map operation is 3083 * likely to succeed. 3084 */ 3085 void *address_space_map(AddressSpace *as, 3086 hwaddr addr, 3087 hwaddr *plen, 3088 bool is_write, 3089 MemTxAttrs attrs) 3090 { 3091 hwaddr len = *plen; 3092 hwaddr l, xlat; 3093 MemoryRegion *mr; 3094 FlatView *fv; 3095 3096 if (len == 0) { 3097 return NULL; 3098 } 3099 3100 l = len; 3101 RCU_READ_LOCK_GUARD(); 3102 fv = address_space_to_flatview(as); 3103 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3104 3105 if (!memory_access_is_direct(mr, is_write)) { 3106 if (qatomic_xchg(&bounce.in_use, true)) { 3107 *plen = 0; 3108 return NULL; 3109 } 3110 /* Avoid unbounded allocations */ 3111 l = MIN(l, TARGET_PAGE_SIZE); 3112 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3113 bounce.addr = addr; 3114 bounce.len = l; 3115 3116 memory_region_ref(mr); 3117 bounce.mr = mr; 3118 if (!is_write) { 3119 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3120 bounce.buffer, l); 3121 } 3122 3123 *plen = l; 3124 return bounce.buffer; 3125 } 3126 3127 3128 memory_region_ref(mr); 3129 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3130 l, is_write, attrs); 3131 fuzz_dma_read_cb(addr, *plen, mr); 3132 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3133 } 3134 3135 /* Unmaps a memory region previously mapped by address_space_map(). 3136 * Will also mark the memory as dirty if is_write is true. access_len gives 3137 * the amount of memory that was actually read or written by the caller. 3138 */ 3139 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3140 bool is_write, hwaddr access_len) 3141 { 3142 if (buffer != bounce.buffer) { 3143 MemoryRegion *mr; 3144 ram_addr_t addr1; 3145 3146 mr = memory_region_from_host(buffer, &addr1); 3147 assert(mr != NULL); 3148 if (is_write) { 3149 invalidate_and_set_dirty(mr, addr1, access_len); 3150 } 3151 if (xen_enabled()) { 3152 xen_invalidate_map_cache_entry(buffer); 3153 } 3154 memory_region_unref(mr); 3155 return; 3156 } 3157 if (is_write) { 3158 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3159 bounce.buffer, access_len); 3160 } 3161 qemu_vfree(bounce.buffer); 3162 bounce.buffer = NULL; 3163 memory_region_unref(bounce.mr); 3164 /* Clear in_use before reading map_client_list. */ 3165 qatomic_set_mb(&bounce.in_use, false); 3166 cpu_notify_map_clients(); 3167 } 3168 3169 void *cpu_physical_memory_map(hwaddr addr, 3170 hwaddr *plen, 3171 bool is_write) 3172 { 3173 return address_space_map(&address_space_memory, addr, plen, is_write, 3174 MEMTXATTRS_UNSPECIFIED); 3175 } 3176 3177 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3178 bool is_write, hwaddr access_len) 3179 { 3180 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3181 } 3182 3183 #define ARG1_DECL AddressSpace *as 3184 #define ARG1 as 3185 #define SUFFIX 3186 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3187 #define RCU_READ_LOCK(...) rcu_read_lock() 3188 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3189 #include "memory_ldst.c.inc" 3190 3191 int64_t address_space_cache_init(MemoryRegionCache *cache, 3192 AddressSpace *as, 3193 hwaddr addr, 3194 hwaddr len, 3195 bool is_write) 3196 { 3197 AddressSpaceDispatch *d; 3198 hwaddr l; 3199 MemoryRegion *mr; 3200 Int128 diff; 3201 3202 assert(len > 0); 3203 3204 l = len; 3205 cache->fv = address_space_get_flatview(as); 3206 d = flatview_to_dispatch(cache->fv); 3207 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3208 3209 /* 3210 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3211 * Take that into account to compute how many bytes are there between 3212 * cache->xlat and the end of the section. 3213 */ 3214 diff = int128_sub(cache->mrs.size, 3215 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3216 l = int128_get64(int128_min(diff, int128_make64(l))); 3217 3218 mr = cache->mrs.mr; 3219 memory_region_ref(mr); 3220 if (memory_access_is_direct(mr, is_write)) { 3221 /* We don't care about the memory attributes here as we're only 3222 * doing this if we found actual RAM, which behaves the same 3223 * regardless of attributes; so UNSPECIFIED is fine. 3224 */ 3225 l = flatview_extend_translation(cache->fv, addr, len, mr, 3226 cache->xlat, l, is_write, 3227 MEMTXATTRS_UNSPECIFIED); 3228 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3229 } else { 3230 cache->ptr = NULL; 3231 } 3232 3233 cache->len = l; 3234 cache->is_write = is_write; 3235 return l; 3236 } 3237 3238 void address_space_cache_invalidate(MemoryRegionCache *cache, 3239 hwaddr addr, 3240 hwaddr access_len) 3241 { 3242 assert(cache->is_write); 3243 if (likely(cache->ptr)) { 3244 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3245 } 3246 } 3247 3248 void address_space_cache_destroy(MemoryRegionCache *cache) 3249 { 3250 if (!cache->mrs.mr) { 3251 return; 3252 } 3253 3254 if (xen_enabled()) { 3255 xen_invalidate_map_cache_entry(cache->ptr); 3256 } 3257 memory_region_unref(cache->mrs.mr); 3258 flatview_unref(cache->fv); 3259 cache->mrs.mr = NULL; 3260 cache->fv = NULL; 3261 } 3262 3263 /* Called from RCU critical section. This function has the same 3264 * semantics as address_space_translate, but it only works on a 3265 * predefined range of a MemoryRegion that was mapped with 3266 * address_space_cache_init. 3267 */ 3268 static inline MemoryRegion *address_space_translate_cached( 3269 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3270 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3271 { 3272 MemoryRegionSection section; 3273 MemoryRegion *mr; 3274 IOMMUMemoryRegion *iommu_mr; 3275 AddressSpace *target_as; 3276 3277 assert(!cache->ptr); 3278 *xlat = addr + cache->xlat; 3279 3280 mr = cache->mrs.mr; 3281 iommu_mr = memory_region_get_iommu(mr); 3282 if (!iommu_mr) { 3283 /* MMIO region. */ 3284 return mr; 3285 } 3286 3287 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3288 NULL, is_write, true, 3289 &target_as, attrs); 3290 return section.mr; 3291 } 3292 3293 /* Called from RCU critical section. address_space_read_cached uses this 3294 * out of line function when the target is an MMIO or IOMMU region. 3295 */ 3296 MemTxResult 3297 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3298 void *buf, hwaddr len) 3299 { 3300 hwaddr addr1, l; 3301 MemoryRegion *mr; 3302 3303 l = len; 3304 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3305 MEMTXATTRS_UNSPECIFIED); 3306 return flatview_read_continue(cache->fv, 3307 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3308 addr1, l, mr); 3309 } 3310 3311 /* Called from RCU critical section. address_space_write_cached uses this 3312 * out of line function when the target is an MMIO or IOMMU region. 3313 */ 3314 MemTxResult 3315 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3316 const void *buf, hwaddr len) 3317 { 3318 hwaddr addr1, l; 3319 MemoryRegion *mr; 3320 3321 l = len; 3322 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3323 MEMTXATTRS_UNSPECIFIED); 3324 return flatview_write_continue(cache->fv, 3325 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3326 addr1, l, mr); 3327 } 3328 3329 #define ARG1_DECL MemoryRegionCache *cache 3330 #define ARG1 cache 3331 #define SUFFIX _cached_slow 3332 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3333 #define RCU_READ_LOCK() ((void)0) 3334 #define RCU_READ_UNLOCK() ((void)0) 3335 #include "memory_ldst.c.inc" 3336 3337 /* virtual memory access for debug (includes writing to ROM) */ 3338 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3339 void *ptr, size_t len, bool is_write) 3340 { 3341 hwaddr phys_addr; 3342 vaddr l, page; 3343 uint8_t *buf = ptr; 3344 3345 cpu_synchronize_state(cpu); 3346 while (len > 0) { 3347 int asidx; 3348 MemTxAttrs attrs; 3349 MemTxResult res; 3350 3351 page = addr & TARGET_PAGE_MASK; 3352 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3353 asidx = cpu_asidx_from_attrs(cpu, attrs); 3354 /* if no physical page mapped, return an error */ 3355 if (phys_addr == -1) 3356 return -1; 3357 l = (page + TARGET_PAGE_SIZE) - addr; 3358 if (l > len) 3359 l = len; 3360 phys_addr += (addr & ~TARGET_PAGE_MASK); 3361 if (is_write) { 3362 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3363 attrs, buf, l); 3364 } else { 3365 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3366 attrs, buf, l); 3367 } 3368 if (res != MEMTX_OK) { 3369 return -1; 3370 } 3371 len -= l; 3372 buf += l; 3373 addr += l; 3374 } 3375 return 0; 3376 } 3377 3378 /* 3379 * Allows code that needs to deal with migration bitmaps etc to still be built 3380 * target independent. 3381 */ 3382 size_t qemu_target_page_size(void) 3383 { 3384 return TARGET_PAGE_SIZE; 3385 } 3386 3387 int qemu_target_page_mask(void) 3388 { 3389 return TARGET_PAGE_MASK; 3390 } 3391 3392 int qemu_target_page_bits(void) 3393 { 3394 return TARGET_PAGE_BITS; 3395 } 3396 3397 int qemu_target_page_bits_min(void) 3398 { 3399 return TARGET_PAGE_BITS_MIN; 3400 } 3401 3402 /* Convert target pages to MiB (2**20). */ 3403 size_t qemu_target_pages_to_MiB(size_t pages) 3404 { 3405 int page_bits = TARGET_PAGE_BITS; 3406 3407 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3408 g_assert(page_bits < 20); 3409 3410 return pages >> (20 - page_bits); 3411 } 3412 3413 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3414 { 3415 MemoryRegion*mr; 3416 hwaddr l = 1; 3417 3418 RCU_READ_LOCK_GUARD(); 3419 mr = address_space_translate(&address_space_memory, 3420 phys_addr, &phys_addr, &l, false, 3421 MEMTXATTRS_UNSPECIFIED); 3422 3423 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3424 } 3425 3426 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3427 { 3428 RAMBlock *block; 3429 int ret = 0; 3430 3431 RCU_READ_LOCK_GUARD(); 3432 RAMBLOCK_FOREACH(block) { 3433 ret = func(block, opaque); 3434 if (ret) { 3435 break; 3436 } 3437 } 3438 return ret; 3439 } 3440 3441 /* 3442 * Unmap pages of memory from start to start+length such that 3443 * they a) read as 0, b) Trigger whatever fault mechanism 3444 * the OS provides for postcopy. 3445 * The pages must be unmapped by the end of the function. 3446 * Returns: 0 on success, none-0 on failure 3447 * 3448 */ 3449 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3450 { 3451 int ret = -1; 3452 3453 uint8_t *host_startaddr = rb->host + start; 3454 3455 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3456 error_report("ram_block_discard_range: Unaligned start address: %p", 3457 host_startaddr); 3458 goto err; 3459 } 3460 3461 if ((start + length) <= rb->max_length) { 3462 bool need_madvise, need_fallocate; 3463 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3464 error_report("ram_block_discard_range: Unaligned length: %zx", 3465 length); 3466 goto err; 3467 } 3468 3469 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3470 3471 /* The logic here is messy; 3472 * madvise DONTNEED fails for hugepages 3473 * fallocate works on hugepages and shmem 3474 * shared anonymous memory requires madvise REMOVE 3475 */ 3476 need_madvise = (rb->page_size == qemu_host_page_size); 3477 need_fallocate = rb->fd != -1; 3478 if (need_fallocate) { 3479 /* For a file, this causes the area of the file to be zero'd 3480 * if read, and for hugetlbfs also causes it to be unmapped 3481 * so a userfault will trigger. 3482 */ 3483 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3484 /* 3485 * fallocate() will fail with readonly files. Let's print a 3486 * proper error message. 3487 */ 3488 if (rb->flags & RAM_READONLY_FD) { 3489 error_report("ram_block_discard_range: Discarding RAM" 3490 " with readonly files is not supported"); 3491 goto err; 3492 3493 } 3494 /* 3495 * We'll discard data from the actual file, even though we only 3496 * have a MAP_PRIVATE mapping, possibly messing with other 3497 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3498 * change that behavior whithout violating the promised 3499 * semantics of ram_block_discard_range(). 3500 * 3501 * Only warn, because it works as long as nobody else uses that 3502 * file. 3503 */ 3504 if (!qemu_ram_is_shared(rb)) { 3505 warn_report_once("ram_block_discard_range: Discarding RAM" 3506 " in private file mappings is possibly" 3507 " dangerous, because it will modify the" 3508 " underlying file and will affect other" 3509 " users of the file"); 3510 } 3511 3512 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3513 start, length); 3514 if (ret) { 3515 ret = -errno; 3516 error_report("ram_block_discard_range: Failed to fallocate " 3517 "%s:%" PRIx64 " +%zx (%d)", 3518 rb->idstr, start, length, ret); 3519 goto err; 3520 } 3521 #else 3522 ret = -ENOSYS; 3523 error_report("ram_block_discard_range: fallocate not available/file" 3524 "%s:%" PRIx64 " +%zx (%d)", 3525 rb->idstr, start, length, ret); 3526 goto err; 3527 #endif 3528 } 3529 if (need_madvise) { 3530 /* For normal RAM this causes it to be unmapped, 3531 * for shared memory it causes the local mapping to disappear 3532 * and to fall back on the file contents (which we just 3533 * fallocate'd away). 3534 */ 3535 #if defined(CONFIG_MADVISE) 3536 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3537 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3538 } else { 3539 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3540 } 3541 if (ret) { 3542 ret = -errno; 3543 error_report("ram_block_discard_range: Failed to discard range " 3544 "%s:%" PRIx64 " +%zx (%d)", 3545 rb->idstr, start, length, ret); 3546 goto err; 3547 } 3548 #else 3549 ret = -ENOSYS; 3550 error_report("ram_block_discard_range: MADVISE not available" 3551 "%s:%" PRIx64 " +%zx (%d)", 3552 rb->idstr, start, length, ret); 3553 goto err; 3554 #endif 3555 } 3556 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3557 need_madvise, need_fallocate, ret); 3558 } else { 3559 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3560 "/%zx/" RAM_ADDR_FMT")", 3561 rb->idstr, start, length, rb->max_length); 3562 } 3563 3564 err: 3565 return ret; 3566 } 3567 3568 bool ramblock_is_pmem(RAMBlock *rb) 3569 { 3570 return rb->flags & RAM_PMEM; 3571 } 3572 3573 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3574 { 3575 if (start == end - 1) { 3576 qemu_printf("\t%3d ", start); 3577 } else { 3578 qemu_printf("\t%3d..%-3d ", start, end - 1); 3579 } 3580 qemu_printf(" skip=%d ", skip); 3581 if (ptr == PHYS_MAP_NODE_NIL) { 3582 qemu_printf(" ptr=NIL"); 3583 } else if (!skip) { 3584 qemu_printf(" ptr=#%d", ptr); 3585 } else { 3586 qemu_printf(" ptr=[%d]", ptr); 3587 } 3588 qemu_printf("\n"); 3589 } 3590 3591 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3592 int128_sub((size), int128_one())) : 0) 3593 3594 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3595 { 3596 int i; 3597 3598 qemu_printf(" Dispatch\n"); 3599 qemu_printf(" Physical sections\n"); 3600 3601 for (i = 0; i < d->map.sections_nb; ++i) { 3602 MemoryRegionSection *s = d->map.sections + i; 3603 const char *names[] = { " [unassigned]", " [not dirty]", 3604 " [ROM]", " [watch]" }; 3605 3606 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3607 " %s%s%s%s%s", 3608 i, 3609 s->offset_within_address_space, 3610 s->offset_within_address_space + MR_SIZE(s->size), 3611 s->mr->name ? s->mr->name : "(noname)", 3612 i < ARRAY_SIZE(names) ? names[i] : "", 3613 s->mr == root ? " [ROOT]" : "", 3614 s == d->mru_section ? " [MRU]" : "", 3615 s->mr->is_iommu ? " [iommu]" : ""); 3616 3617 if (s->mr->alias) { 3618 qemu_printf(" alias=%s", s->mr->alias->name ? 3619 s->mr->alias->name : "noname"); 3620 } 3621 qemu_printf("\n"); 3622 } 3623 3624 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3625 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3626 for (i = 0; i < d->map.nodes_nb; ++i) { 3627 int j, jprev; 3628 PhysPageEntry prev; 3629 Node *n = d->map.nodes + i; 3630 3631 qemu_printf(" [%d]\n", i); 3632 3633 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3634 PhysPageEntry *pe = *n + j; 3635 3636 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3637 continue; 3638 } 3639 3640 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3641 3642 jprev = j; 3643 prev = *pe; 3644 } 3645 3646 if (jprev != ARRAY_SIZE(*n)) { 3647 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3648 } 3649 } 3650 } 3651 3652 /* Require any discards to work. */ 3653 static unsigned int ram_block_discard_required_cnt; 3654 /* Require only coordinated discards to work. */ 3655 static unsigned int ram_block_coordinated_discard_required_cnt; 3656 /* Disable any discards. */ 3657 static unsigned int ram_block_discard_disabled_cnt; 3658 /* Disable only uncoordinated discards. */ 3659 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3660 static QemuMutex ram_block_discard_disable_mutex; 3661 3662 static void ram_block_discard_disable_mutex_lock(void) 3663 { 3664 static gsize initialized; 3665 3666 if (g_once_init_enter(&initialized)) { 3667 qemu_mutex_init(&ram_block_discard_disable_mutex); 3668 g_once_init_leave(&initialized, 1); 3669 } 3670 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3671 } 3672 3673 static void ram_block_discard_disable_mutex_unlock(void) 3674 { 3675 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3676 } 3677 3678 int ram_block_discard_disable(bool state) 3679 { 3680 int ret = 0; 3681 3682 ram_block_discard_disable_mutex_lock(); 3683 if (!state) { 3684 ram_block_discard_disabled_cnt--; 3685 } else if (ram_block_discard_required_cnt || 3686 ram_block_coordinated_discard_required_cnt) { 3687 ret = -EBUSY; 3688 } else { 3689 ram_block_discard_disabled_cnt++; 3690 } 3691 ram_block_discard_disable_mutex_unlock(); 3692 return ret; 3693 } 3694 3695 int ram_block_uncoordinated_discard_disable(bool state) 3696 { 3697 int ret = 0; 3698 3699 ram_block_discard_disable_mutex_lock(); 3700 if (!state) { 3701 ram_block_uncoordinated_discard_disabled_cnt--; 3702 } else if (ram_block_discard_required_cnt) { 3703 ret = -EBUSY; 3704 } else { 3705 ram_block_uncoordinated_discard_disabled_cnt++; 3706 } 3707 ram_block_discard_disable_mutex_unlock(); 3708 return ret; 3709 } 3710 3711 int ram_block_discard_require(bool state) 3712 { 3713 int ret = 0; 3714 3715 ram_block_discard_disable_mutex_lock(); 3716 if (!state) { 3717 ram_block_discard_required_cnt--; 3718 } else if (ram_block_discard_disabled_cnt || 3719 ram_block_uncoordinated_discard_disabled_cnt) { 3720 ret = -EBUSY; 3721 } else { 3722 ram_block_discard_required_cnt++; 3723 } 3724 ram_block_discard_disable_mutex_unlock(); 3725 return ret; 3726 } 3727 3728 int ram_block_coordinated_discard_require(bool state) 3729 { 3730 int ret = 0; 3731 3732 ram_block_discard_disable_mutex_lock(); 3733 if (!state) { 3734 ram_block_coordinated_discard_required_cnt--; 3735 } else if (ram_block_discard_disabled_cnt) { 3736 ret = -EBUSY; 3737 } else { 3738 ram_block_coordinated_discard_required_cnt++; 3739 } 3740 ram_block_discard_disable_mutex_unlock(); 3741 return ret; 3742 } 3743 3744 bool ram_block_discard_is_disabled(void) 3745 { 3746 return qatomic_read(&ram_block_discard_disabled_cnt) || 3747 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3748 } 3749 3750 bool ram_block_discard_is_required(void) 3751 { 3752 return qatomic_read(&ram_block_discard_required_cnt) || 3753 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3754 } 3755