xref: /qemu/system/physmem.c (revision 9e6b9f379130c77a08c8ea67a09fc90cb30f8d09)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684 
685     for (;;) {
686         section = address_space_translate_internal(d, addr, &addr, plen, false);
687 
688         iommu_mr = memory_region_get_iommu(section->mr);
689         if (!iommu_mr) {
690             break;
691         }
692 
693         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694 
695         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698          * doesn't short-cut its translation table walk.
699          */
700         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702                 | (addr & iotlb.addr_mask));
703         /* Update the caller's prot bits to remove permissions the IOMMU
704          * is giving us a failure response for. If we get down to no
705          * permissions left at all we can give up now.
706          */
707         if (!(iotlb.perm & IOMMU_RO)) {
708             *prot &= ~(PAGE_READ | PAGE_EXEC);
709         }
710         if (!(iotlb.perm & IOMMU_WO)) {
711             *prot &= ~PAGE_WRITE;
712         }
713 
714         if (!*prot) {
715             goto translate_fail;
716         }
717 
718         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719     }
720 
721     assert(!memory_region_is_iommu(section->mr));
722     *xlat = addr;
723     return section;
724 
725 translate_fail:
726     /*
727      * We should be given a page-aligned address -- certainly
728      * tlb_set_page_with_attrs() does so.  The page offset of xlat
729      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730      * The page portion of xlat will be logged by memory_region_access_valid()
731      * when this memory access is rejected, so use the original untranslated
732      * physical address.
733      */
734     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735     *xlat = orig_addr;
736     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738 
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740                             const char *prefix, MemoryRegion *mr)
741 {
742     CPUAddressSpace *newas;
743     AddressSpace *as = g_new0(AddressSpace, 1);
744     char *as_name;
745 
746     assert(mr);
747     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748     address_space_init(as, mr, as_name);
749     g_free(as_name);
750 
751     /* Target code should have set num_ases before calling us */
752     assert(asidx < cpu->num_ases);
753 
754     if (asidx == 0) {
755         /* address space 0 gets the convenience alias */
756         cpu->as = as;
757     }
758 
759     /* KVM cannot currently support multiple address spaces. */
760     assert(asidx == 0 || !kvm_enabled());
761 
762     if (!cpu->cpu_ases) {
763         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764     }
765 
766     newas = &cpu->cpu_ases[asidx];
767     newas->cpu = cpu;
768     newas->as = as;
769     if (tcg_enabled()) {
770         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771         newas->tcg_as_listener.commit = tcg_commit;
772         newas->tcg_as_listener.name = "tcg";
773         memory_listener_register(&newas->tcg_as_listener, as);
774     }
775 }
776 
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779     /* Return the AddressSpace corresponding to the specified index */
780     return cpu->cpu_ases[asidx].as;
781 }
782 
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786     RAMBlock *block;
787 
788     block = qatomic_rcu_read(&ram_list.mru_block);
789     if (block && addr - block->offset < block->max_length) {
790         return block;
791     }
792     RAMBLOCK_FOREACH(block) {
793         if (addr - block->offset < block->max_length) {
794             goto found;
795         }
796     }
797 
798     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799     abort();
800 
801 found:
802     /* It is safe to write mru_block outside the iothread lock.  This
803      * is what happens:
804      *
805      *     mru_block = xxx
806      *     rcu_read_unlock()
807      *                                        xxx removed from list
808      *                  rcu_read_lock()
809      *                  read mru_block
810      *                                        mru_block = NULL;
811      *                                        call_rcu(reclaim_ramblock, xxx);
812      *                  rcu_read_unlock()
813      *
814      * qatomic_rcu_set is not needed here.  The block was already published
815      * when it was placed into the list.  Here we're just making an extra
816      * copy of the pointer.
817      */
818     ram_list.mru_block = block;
819     return block;
820 }
821 
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824     CPUState *cpu;
825     ram_addr_t start1;
826     RAMBlock *block;
827     ram_addr_t end;
828 
829     assert(tcg_enabled());
830     end = TARGET_PAGE_ALIGN(start + length);
831     start &= TARGET_PAGE_MASK;
832 
833     RCU_READ_LOCK_GUARD();
834     block = qemu_get_ram_block(start);
835     assert(block == qemu_get_ram_block(end - 1));
836     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837     CPU_FOREACH(cpu) {
838         tlb_reset_dirty(cpu, start1, length);
839     }
840 }
841 
842 /* Note: start and end must be within the same ram block.  */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844                                               ram_addr_t length,
845                                               unsigned client)
846 {
847     DirtyMemoryBlocks *blocks;
848     unsigned long end, page, start_page;
849     bool dirty = false;
850     RAMBlock *ramblock;
851     uint64_t mr_offset, mr_size;
852 
853     if (length == 0) {
854         return false;
855     }
856 
857     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858     start_page = start >> TARGET_PAGE_BITS;
859     page = start_page;
860 
861     WITH_RCU_READ_LOCK_GUARD() {
862         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863         ramblock = qemu_get_ram_block(start);
864         /* Range sanity check on the ramblock */
865         assert(start >= ramblock->offset &&
866                start + length <= ramblock->offset + ramblock->used_length);
867 
868         while (page < end) {
869             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871             unsigned long num = MIN(end - page,
872                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
873 
874             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875                                                   offset, num);
876             page += num;
877         }
878 
879         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880         mr_size = (end - start_page) << TARGET_PAGE_BITS;
881         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882     }
883 
884     if (dirty && tcg_enabled()) {
885         tlb_reset_dirty_range_all(start, length);
886     }
887 
888     return dirty;
889 }
890 
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894     DirtyMemoryBlocks *blocks;
895     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
899     DirtyBitmapSnapshot *snap;
900     unsigned long page, end, dest;
901 
902     snap = g_malloc0(sizeof(*snap) +
903                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
904     snap->start = first;
905     snap->end   = last;
906 
907     page = first >> TARGET_PAGE_BITS;
908     end  = last  >> TARGET_PAGE_BITS;
909     dest = 0;
910 
911     WITH_RCU_READ_LOCK_GUARD() {
912         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913 
914         while (page < end) {
915             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
917             unsigned long num = MIN(end - page,
918                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
919 
920             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
921             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
922             offset >>= BITS_PER_LEVEL;
923 
924             bitmap_copy_and_clear_atomic(snap->dirty + dest,
925                                          blocks->blocks[idx] + offset,
926                                          num);
927             page += num;
928             dest += num >> BITS_PER_LEVEL;
929         }
930     }
931 
932     if (tcg_enabled()) {
933         tlb_reset_dirty_range_all(start, length);
934     }
935 
936     memory_region_clear_dirty_bitmap(mr, offset, length);
937 
938     return snap;
939 }
940 
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942                                             ram_addr_t start,
943                                             ram_addr_t length)
944 {
945     unsigned long page, end;
946 
947     assert(start >= snap->start);
948     assert(start + length <= snap->end);
949 
950     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951     page = (start - snap->start) >> TARGET_PAGE_BITS;
952 
953     while (page < end) {
954         if (test_bit(page, snap->dirty)) {
955             return true;
956         }
957         page++;
958     }
959     return false;
960 }
961 
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964                                        MemoryRegionSection *section)
965 {
966     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967     return section - d->map.sections;
968 }
969 
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971                             uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973 
974 static uint16_t phys_section_add(PhysPageMap *map,
975                                  MemoryRegionSection *section)
976 {
977     /* The physical section number is ORed with a page-aligned
978      * pointer to produce the iotlb entries.  Thus it should
979      * never overflow into the page-aligned value.
980      */
981     assert(map->sections_nb < TARGET_PAGE_SIZE);
982 
983     if (map->sections_nb == map->sections_nb_alloc) {
984         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985         map->sections = g_renew(MemoryRegionSection, map->sections,
986                                 map->sections_nb_alloc);
987     }
988     map->sections[map->sections_nb] = *section;
989     memory_region_ref(section->mr);
990     return map->sections_nb++;
991 }
992 
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995     bool have_sub_page = mr->subpage;
996 
997     memory_region_unref(mr);
998 
999     if (have_sub_page) {
1000         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001         object_unref(OBJECT(&subpage->iomem));
1002         g_free(subpage);
1003     }
1004 }
1005 
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008     while (map->sections_nb > 0) {
1009         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010         phys_section_destroy(section->mr);
1011     }
1012     g_free(map->sections);
1013     g_free(map->nodes);
1014 }
1015 
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019     subpage_t *subpage;
1020     hwaddr base = section->offset_within_address_space
1021         & TARGET_PAGE_MASK;
1022     MemoryRegionSection *existing = phys_page_find(d, base);
1023     MemoryRegionSection subsection = {
1024         .offset_within_address_space = base,
1025         .size = int128_make64(TARGET_PAGE_SIZE),
1026     };
1027     hwaddr start, end;
1028 
1029     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030 
1031     if (!(existing->mr->subpage)) {
1032         subpage = subpage_init(fv, base);
1033         subsection.fv = fv;
1034         subsection.mr = &subpage->iomem;
1035         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036                       phys_section_add(&d->map, &subsection));
1037     } else {
1038         subpage = container_of(existing->mr, subpage_t, iomem);
1039     }
1040     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041     end = start + int128_get64(section->size) - 1;
1042     subpage_register(subpage, start, end,
1043                      phys_section_add(&d->map, section));
1044 }
1045 
1046 
1047 static void register_multipage(FlatView *fv,
1048                                MemoryRegionSection *section)
1049 {
1050     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051     hwaddr start_addr = section->offset_within_address_space;
1052     uint16_t section_index = phys_section_add(&d->map, section);
1053     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054                                                     TARGET_PAGE_BITS));
1055 
1056     assert(num_pages);
1057     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059 
1060 /*
1061  * The range in *section* may look like this:
1062  *
1063  *      |s|PPPPPPP|s|
1064  *
1065  * where s stands for subpage and P for page.
1066  */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069     MemoryRegionSection remain = *section;
1070     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071 
1072     /* register first subpage */
1073     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075                         - remain.offset_within_address_space;
1076 
1077         MemoryRegionSection now = remain;
1078         now.size = int128_min(int128_make64(left), now.size);
1079         register_subpage(fv, &now);
1080         if (int128_eq(remain.size, now.size)) {
1081             return;
1082         }
1083         remain.size = int128_sub(remain.size, now.size);
1084         remain.offset_within_address_space += int128_get64(now.size);
1085         remain.offset_within_region += int128_get64(now.size);
1086     }
1087 
1088     /* register whole pages */
1089     if (int128_ge(remain.size, page_size)) {
1090         MemoryRegionSection now = remain;
1091         now.size = int128_and(now.size, int128_neg(page_size));
1092         register_multipage(fv, &now);
1093         if (int128_eq(remain.size, now.size)) {
1094             return;
1095         }
1096         remain.size = int128_sub(remain.size, now.size);
1097         remain.offset_within_address_space += int128_get64(now.size);
1098         remain.offset_within_region += int128_get64(now.size);
1099     }
1100 
1101     /* register last subpage */
1102     register_subpage(fv, &remain);
1103 }
1104 
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107     if (kvm_enabled())
1108         kvm_flush_coalesced_mmio_buffer();
1109 }
1110 
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113     qemu_mutex_lock(&ram_list.mutex);
1114 }
1115 
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118     qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120 
1121 GString *ram_block_format(void)
1122 {
1123     RAMBlock *block;
1124     char *psize;
1125     GString *buf = g_string_new("");
1126 
1127     RCU_READ_LOCK_GUARD();
1128     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1129                            "Block Name", "PSize", "Offset", "Used", "Total",
1130                            "HVA", "RO");
1131 
1132     RAMBLOCK_FOREACH(block) {
1133         psize = size_to_str(block->page_size);
1134         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1135                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136                                block->idstr, psize,
1137                                (uint64_t)block->offset,
1138                                (uint64_t)block->used_length,
1139                                (uint64_t)block->max_length,
1140                                (uint64_t)(uintptr_t)block->host,
1141                                block->mr->readonly ? "ro" : "rw");
1142 
1143         g_free(psize);
1144     }
1145 
1146     return buf;
1147 }
1148 
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151     long *hpsize_min = opaque;
1152 
1153     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155         long hpsize = host_memory_backend_pagesize(backend);
1156 
1157         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158             *hpsize_min = hpsize;
1159         }
1160     }
1161 
1162     return 0;
1163 }
1164 
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167     long *hpsize_max = opaque;
1168 
1169     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171         long hpsize = host_memory_backend_pagesize(backend);
1172 
1173         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174             *hpsize_max = hpsize;
1175         }
1176     }
1177 
1178     return 0;
1179 }
1180 
1181 /*
1182  * TODO: We assume right now that all mapped host memory backends are
1183  * used as RAM, however some might be used for different purposes.
1184  */
1185 long qemu_minrampagesize(void)
1186 {
1187     long hpsize = LONG_MAX;
1188     Object *memdev_root = object_resolve_path("/objects", NULL);
1189 
1190     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191     return hpsize;
1192 }
1193 
1194 long qemu_maxrampagesize(void)
1195 {
1196     long pagesize = 0;
1197     Object *memdev_root = object_resolve_path("/objects", NULL);
1198 
1199     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200     return pagesize;
1201 }
1202 
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206     int64_t size;
1207 #if defined(__linux__)
1208     struct stat st;
1209 
1210     if (fstat(fd, &st) < 0) {
1211         return -errno;
1212     }
1213 
1214     /* Special handling for devdax character devices */
1215     if (S_ISCHR(st.st_mode)) {
1216         g_autofree char *subsystem_path = NULL;
1217         g_autofree char *subsystem = NULL;
1218 
1219         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220                                          major(st.st_rdev), minor(st.st_rdev));
1221         subsystem = g_file_read_link(subsystem_path, NULL);
1222 
1223         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224             g_autofree char *size_path = NULL;
1225             g_autofree char *size_str = NULL;
1226 
1227             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228                                     major(st.st_rdev), minor(st.st_rdev));
1229 
1230             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231                 return g_ascii_strtoll(size_str, NULL, 0);
1232             }
1233         }
1234     }
1235 #endif /* defined(__linux__) */
1236 
1237     /* st.st_size may be zero for special files yet lseek(2) works */
1238     size = lseek(fd, 0, SEEK_END);
1239     if (size < 0) {
1240         return -errno;
1241     }
1242     return size;
1243 }
1244 
1245 static int64_t get_file_align(int fd)
1246 {
1247     int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249     struct stat st;
1250 
1251     if (fstat(fd, &st) < 0) {
1252         return -errno;
1253     }
1254 
1255     /* Special handling for devdax character devices */
1256     if (S_ISCHR(st.st_mode)) {
1257         g_autofree char *path = NULL;
1258         g_autofree char *rpath = NULL;
1259         struct daxctl_ctx *ctx;
1260         struct daxctl_region *region;
1261         int rc = 0;
1262 
1263         path = g_strdup_printf("/sys/dev/char/%d:%d",
1264                     major(st.st_rdev), minor(st.st_rdev));
1265         rpath = realpath(path, NULL);
1266         if (!rpath) {
1267             return -errno;
1268         }
1269 
1270         rc = daxctl_new(&ctx);
1271         if (rc) {
1272             return -1;
1273         }
1274 
1275         daxctl_region_foreach(ctx, region) {
1276             if (strstr(rpath, daxctl_region_get_path(region))) {
1277                 align = daxctl_region_get_align(region);
1278                 break;
1279             }
1280         }
1281         daxctl_unref(ctx);
1282     }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284 
1285     return align;
1286 }
1287 
1288 static int file_ram_open(const char *path,
1289                          const char *region_name,
1290                          bool readonly,
1291                          bool *created,
1292                          Error **errp)
1293 {
1294     char *filename;
1295     char *sanitized_name;
1296     char *c;
1297     int fd = -1;
1298 
1299     *created = false;
1300     for (;;) {
1301         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1302         if (fd >= 0) {
1303             /* @path names an existing file, use it */
1304             break;
1305         }
1306         if (errno == ENOENT) {
1307             /* @path names a file that doesn't exist, create it */
1308             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1309             if (fd >= 0) {
1310                 *created = true;
1311                 break;
1312             }
1313         } else if (errno == EISDIR) {
1314             /* @path names a directory, create a file there */
1315             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1316             sanitized_name = g_strdup(region_name);
1317             for (c = sanitized_name; *c != '\0'; c++) {
1318                 if (*c == '/') {
1319                     *c = '_';
1320                 }
1321             }
1322 
1323             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1324                                        sanitized_name);
1325             g_free(sanitized_name);
1326 
1327             fd = mkstemp(filename);
1328             if (fd >= 0) {
1329                 unlink(filename);
1330                 g_free(filename);
1331                 break;
1332             }
1333             g_free(filename);
1334         }
1335         if (errno != EEXIST && errno != EINTR) {
1336             error_setg_errno(errp, errno,
1337                              "can't open backing store %s for guest RAM",
1338                              path);
1339             return -1;
1340         }
1341         /*
1342          * Try again on EINTR and EEXIST.  The latter happens when
1343          * something else creates the file between our two open().
1344          */
1345     }
1346 
1347     return fd;
1348 }
1349 
1350 static void *file_ram_alloc(RAMBlock *block,
1351                             ram_addr_t memory,
1352                             int fd,
1353                             bool truncate,
1354                             off_t offset,
1355                             Error **errp)
1356 {
1357     uint32_t qemu_map_flags;
1358     void *area;
1359 
1360     block->page_size = qemu_fd_getpagesize(fd);
1361     if (block->mr->align % block->page_size) {
1362         error_setg(errp, "alignment 0x%" PRIx64
1363                    " must be multiples of page size 0x%zx",
1364                    block->mr->align, block->page_size);
1365         return NULL;
1366     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1367         error_setg(errp, "alignment 0x%" PRIx64
1368                    " must be a power of two", block->mr->align);
1369         return NULL;
1370     } else if (offset % block->page_size) {
1371         error_setg(errp, "offset 0x%" PRIx64
1372                    " must be multiples of page size 0x%zx",
1373                    offset, block->page_size);
1374         return NULL;
1375     }
1376     block->mr->align = MAX(block->page_size, block->mr->align);
1377 #if defined(__s390x__)
1378     if (kvm_enabled()) {
1379         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1380     }
1381 #endif
1382 
1383     if (memory < block->page_size) {
1384         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1385                    "or larger than page size 0x%zx",
1386                    memory, block->page_size);
1387         return NULL;
1388     }
1389 
1390     memory = ROUND_UP(memory, block->page_size);
1391 
1392     /*
1393      * ftruncate is not supported by hugetlbfs in older
1394      * hosts, so don't bother bailing out on errors.
1395      * If anything goes wrong with it under other filesystems,
1396      * mmap will fail.
1397      *
1398      * Do not truncate the non-empty backend file to avoid corrupting
1399      * the existing data in the file. Disabling shrinking is not
1400      * enough. For example, the current vNVDIMM implementation stores
1401      * the guest NVDIMM labels at the end of the backend file. If the
1402      * backend file is later extended, QEMU will not be able to find
1403      * those labels. Therefore, extending the non-empty backend file
1404      * is disabled as well.
1405      */
1406     if (truncate && ftruncate(fd, offset + memory)) {
1407         perror("ftruncate");
1408     }
1409 
1410     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1411     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1412     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1413     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1414     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1415     if (area == MAP_FAILED) {
1416         error_setg_errno(errp, errno,
1417                          "unable to map backing store for guest RAM");
1418         return NULL;
1419     }
1420 
1421     block->fd = fd;
1422     block->fd_offset = offset;
1423     return area;
1424 }
1425 #endif
1426 
1427 /* Allocate space within the ram_addr_t space that governs the
1428  * dirty bitmaps.
1429  * Called with the ramlist lock held.
1430  */
1431 static ram_addr_t find_ram_offset(ram_addr_t size)
1432 {
1433     RAMBlock *block, *next_block;
1434     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1435 
1436     assert(size != 0); /* it would hand out same offset multiple times */
1437 
1438     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1439         return 0;
1440     }
1441 
1442     RAMBLOCK_FOREACH(block) {
1443         ram_addr_t candidate, next = RAM_ADDR_MAX;
1444 
1445         /* Align blocks to start on a 'long' in the bitmap
1446          * which makes the bitmap sync'ing take the fast path.
1447          */
1448         candidate = block->offset + block->max_length;
1449         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1450 
1451         /* Search for the closest following block
1452          * and find the gap.
1453          */
1454         RAMBLOCK_FOREACH(next_block) {
1455             if (next_block->offset >= candidate) {
1456                 next = MIN(next, next_block->offset);
1457             }
1458         }
1459 
1460         /* If it fits remember our place and remember the size
1461          * of gap, but keep going so that we might find a smaller
1462          * gap to fill so avoiding fragmentation.
1463          */
1464         if (next - candidate >= size && next - candidate < mingap) {
1465             offset = candidate;
1466             mingap = next - candidate;
1467         }
1468 
1469         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1470     }
1471 
1472     if (offset == RAM_ADDR_MAX) {
1473         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1474                 (uint64_t)size);
1475         abort();
1476     }
1477 
1478     trace_find_ram_offset(size, offset);
1479 
1480     return offset;
1481 }
1482 
1483 static unsigned long last_ram_page(void)
1484 {
1485     RAMBlock *block;
1486     ram_addr_t last = 0;
1487 
1488     RCU_READ_LOCK_GUARD();
1489     RAMBLOCK_FOREACH(block) {
1490         last = MAX(last, block->offset + block->max_length);
1491     }
1492     return last >> TARGET_PAGE_BITS;
1493 }
1494 
1495 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1496 {
1497     int ret;
1498 
1499     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1500     if (!machine_dump_guest_core(current_machine)) {
1501         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1502         if (ret) {
1503             perror("qemu_madvise");
1504             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1505                             "but dump_guest_core=off specified\n");
1506         }
1507     }
1508 }
1509 
1510 const char *qemu_ram_get_idstr(RAMBlock *rb)
1511 {
1512     return rb->idstr;
1513 }
1514 
1515 void *qemu_ram_get_host_addr(RAMBlock *rb)
1516 {
1517     return rb->host;
1518 }
1519 
1520 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1521 {
1522     return rb->offset;
1523 }
1524 
1525 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1526 {
1527     return rb->used_length;
1528 }
1529 
1530 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1531 {
1532     return rb->max_length;
1533 }
1534 
1535 bool qemu_ram_is_shared(RAMBlock *rb)
1536 {
1537     return rb->flags & RAM_SHARED;
1538 }
1539 
1540 bool qemu_ram_is_noreserve(RAMBlock *rb)
1541 {
1542     return rb->flags & RAM_NORESERVE;
1543 }
1544 
1545 /* Note: Only set at the start of postcopy */
1546 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1547 {
1548     return rb->flags & RAM_UF_ZEROPAGE;
1549 }
1550 
1551 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1552 {
1553     rb->flags |= RAM_UF_ZEROPAGE;
1554 }
1555 
1556 bool qemu_ram_is_migratable(RAMBlock *rb)
1557 {
1558     return rb->flags & RAM_MIGRATABLE;
1559 }
1560 
1561 void qemu_ram_set_migratable(RAMBlock *rb)
1562 {
1563     rb->flags |= RAM_MIGRATABLE;
1564 }
1565 
1566 void qemu_ram_unset_migratable(RAMBlock *rb)
1567 {
1568     rb->flags &= ~RAM_MIGRATABLE;
1569 }
1570 
1571 bool qemu_ram_is_named_file(RAMBlock *rb)
1572 {
1573     return rb->flags & RAM_NAMED_FILE;
1574 }
1575 
1576 int qemu_ram_get_fd(RAMBlock *rb)
1577 {
1578     return rb->fd;
1579 }
1580 
1581 /* Called with iothread lock held.  */
1582 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1583 {
1584     RAMBlock *block;
1585 
1586     assert(new_block);
1587     assert(!new_block->idstr[0]);
1588 
1589     if (dev) {
1590         char *id = qdev_get_dev_path(dev);
1591         if (id) {
1592             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1593             g_free(id);
1594         }
1595     }
1596     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1597 
1598     RCU_READ_LOCK_GUARD();
1599     RAMBLOCK_FOREACH(block) {
1600         if (block != new_block &&
1601             !strcmp(block->idstr, new_block->idstr)) {
1602             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1603                     new_block->idstr);
1604             abort();
1605         }
1606     }
1607 }
1608 
1609 /* Called with iothread lock held.  */
1610 void qemu_ram_unset_idstr(RAMBlock *block)
1611 {
1612     /* FIXME: arch_init.c assumes that this is not called throughout
1613      * migration.  Ignore the problem since hot-unplug during migration
1614      * does not work anyway.
1615      */
1616     if (block) {
1617         memset(block->idstr, 0, sizeof(block->idstr));
1618     }
1619 }
1620 
1621 size_t qemu_ram_pagesize(RAMBlock *rb)
1622 {
1623     return rb->page_size;
1624 }
1625 
1626 /* Returns the largest size of page in use */
1627 size_t qemu_ram_pagesize_largest(void)
1628 {
1629     RAMBlock *block;
1630     size_t largest = 0;
1631 
1632     RAMBLOCK_FOREACH(block) {
1633         largest = MAX(largest, qemu_ram_pagesize(block));
1634     }
1635 
1636     return largest;
1637 }
1638 
1639 static int memory_try_enable_merging(void *addr, size_t len)
1640 {
1641     if (!machine_mem_merge(current_machine)) {
1642         /* disabled by the user */
1643         return 0;
1644     }
1645 
1646     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1647 }
1648 
1649 /*
1650  * Resizing RAM while migrating can result in the migration being canceled.
1651  * Care has to be taken if the guest might have already detected the memory.
1652  *
1653  * As memory core doesn't know how is memory accessed, it is up to
1654  * resize callback to update device state and/or add assertions to detect
1655  * misuse, if necessary.
1656  */
1657 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1658 {
1659     const ram_addr_t oldsize = block->used_length;
1660     const ram_addr_t unaligned_size = newsize;
1661 
1662     assert(block);
1663 
1664     newsize = HOST_PAGE_ALIGN(newsize);
1665 
1666     if (block->used_length == newsize) {
1667         /*
1668          * We don't have to resize the ram block (which only knows aligned
1669          * sizes), however, we have to notify if the unaligned size changed.
1670          */
1671         if (unaligned_size != memory_region_size(block->mr)) {
1672             memory_region_set_size(block->mr, unaligned_size);
1673             if (block->resized) {
1674                 block->resized(block->idstr, unaligned_size, block->host);
1675             }
1676         }
1677         return 0;
1678     }
1679 
1680     if (!(block->flags & RAM_RESIZEABLE)) {
1681         error_setg_errno(errp, EINVAL,
1682                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1683                          " != 0x" RAM_ADDR_FMT, block->idstr,
1684                          newsize, block->used_length);
1685         return -EINVAL;
1686     }
1687 
1688     if (block->max_length < newsize) {
1689         error_setg_errno(errp, EINVAL,
1690                          "Size too large: %s: 0x" RAM_ADDR_FMT
1691                          " > 0x" RAM_ADDR_FMT, block->idstr,
1692                          newsize, block->max_length);
1693         return -EINVAL;
1694     }
1695 
1696     /* Notify before modifying the ram block and touching the bitmaps. */
1697     if (block->host) {
1698         ram_block_notify_resize(block->host, oldsize, newsize);
1699     }
1700 
1701     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1702     block->used_length = newsize;
1703     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1704                                         DIRTY_CLIENTS_ALL);
1705     memory_region_set_size(block->mr, unaligned_size);
1706     if (block->resized) {
1707         block->resized(block->idstr, unaligned_size, block->host);
1708     }
1709     return 0;
1710 }
1711 
1712 /*
1713  * Trigger sync on the given ram block for range [start, start + length]
1714  * with the backing store if one is available.
1715  * Otherwise no-op.
1716  * @Note: this is supposed to be a synchronous op.
1717  */
1718 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1719 {
1720     /* The requested range should fit in within the block range */
1721     g_assert((start + length) <= block->used_length);
1722 
1723 #ifdef CONFIG_LIBPMEM
1724     /* The lack of support for pmem should not block the sync */
1725     if (ramblock_is_pmem(block)) {
1726         void *addr = ramblock_ptr(block, start);
1727         pmem_persist(addr, length);
1728         return;
1729     }
1730 #endif
1731     if (block->fd >= 0) {
1732         /**
1733          * Case there is no support for PMEM or the memory has not been
1734          * specified as persistent (or is not one) - use the msync.
1735          * Less optimal but still achieves the same goal
1736          */
1737         void *addr = ramblock_ptr(block, start);
1738         if (qemu_msync(addr, length, block->fd)) {
1739             warn_report("%s: failed to sync memory range: start: "
1740                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1741                     __func__, start, length);
1742         }
1743     }
1744 }
1745 
1746 /* Called with ram_list.mutex held */
1747 static void dirty_memory_extend(ram_addr_t old_ram_size,
1748                                 ram_addr_t new_ram_size)
1749 {
1750     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1751                                              DIRTY_MEMORY_BLOCK_SIZE);
1752     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1753                                              DIRTY_MEMORY_BLOCK_SIZE);
1754     int i;
1755 
1756     /* Only need to extend if block count increased */
1757     if (new_num_blocks <= old_num_blocks) {
1758         return;
1759     }
1760 
1761     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1762         DirtyMemoryBlocks *old_blocks;
1763         DirtyMemoryBlocks *new_blocks;
1764         int j;
1765 
1766         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1767         new_blocks = g_malloc(sizeof(*new_blocks) +
1768                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1769 
1770         if (old_num_blocks) {
1771             memcpy(new_blocks->blocks, old_blocks->blocks,
1772                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1773         }
1774 
1775         for (j = old_num_blocks; j < new_num_blocks; j++) {
1776             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1777         }
1778 
1779         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1780 
1781         if (old_blocks) {
1782             g_free_rcu(old_blocks, rcu);
1783         }
1784     }
1785 }
1786 
1787 static void ram_block_add(RAMBlock *new_block, Error **errp)
1788 {
1789     const bool noreserve = qemu_ram_is_noreserve(new_block);
1790     const bool shared = qemu_ram_is_shared(new_block);
1791     RAMBlock *block;
1792     RAMBlock *last_block = NULL;
1793     ram_addr_t old_ram_size, new_ram_size;
1794     Error *err = NULL;
1795 
1796     old_ram_size = last_ram_page();
1797 
1798     qemu_mutex_lock_ramlist();
1799     new_block->offset = find_ram_offset(new_block->max_length);
1800 
1801     if (!new_block->host) {
1802         if (xen_enabled()) {
1803             xen_ram_alloc(new_block->offset, new_block->max_length,
1804                           new_block->mr, &err);
1805             if (err) {
1806                 error_propagate(errp, err);
1807                 qemu_mutex_unlock_ramlist();
1808                 return;
1809             }
1810         } else {
1811             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1812                                                   &new_block->mr->align,
1813                                                   shared, noreserve);
1814             if (!new_block->host) {
1815                 error_setg_errno(errp, errno,
1816                                  "cannot set up guest memory '%s'",
1817                                  memory_region_name(new_block->mr));
1818                 qemu_mutex_unlock_ramlist();
1819                 return;
1820             }
1821             memory_try_enable_merging(new_block->host, new_block->max_length);
1822         }
1823     }
1824 
1825     new_ram_size = MAX(old_ram_size,
1826               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1827     if (new_ram_size > old_ram_size) {
1828         dirty_memory_extend(old_ram_size, new_ram_size);
1829     }
1830     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1831      * QLIST (which has an RCU-friendly variant) does not have insertion at
1832      * tail, so save the last element in last_block.
1833      */
1834     RAMBLOCK_FOREACH(block) {
1835         last_block = block;
1836         if (block->max_length < new_block->max_length) {
1837             break;
1838         }
1839     }
1840     if (block) {
1841         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1842     } else if (last_block) {
1843         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1844     } else { /* list is empty */
1845         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1846     }
1847     ram_list.mru_block = NULL;
1848 
1849     /* Write list before version */
1850     smp_wmb();
1851     ram_list.version++;
1852     qemu_mutex_unlock_ramlist();
1853 
1854     cpu_physical_memory_set_dirty_range(new_block->offset,
1855                                         new_block->used_length,
1856                                         DIRTY_CLIENTS_ALL);
1857 
1858     if (new_block->host) {
1859         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1860         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1861         /*
1862          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1863          * Configure it unless the machine is a qtest server, in which case
1864          * KVM is not used and it may be forked (eg for fuzzing purposes).
1865          */
1866         if (!qtest_enabled()) {
1867             qemu_madvise(new_block->host, new_block->max_length,
1868                          QEMU_MADV_DONTFORK);
1869         }
1870         ram_block_notify_add(new_block->host, new_block->used_length,
1871                              new_block->max_length);
1872     }
1873 }
1874 
1875 #ifdef CONFIG_POSIX
1876 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1877                                  uint32_t ram_flags, int fd, off_t offset,
1878                                  Error **errp)
1879 {
1880     RAMBlock *new_block;
1881     Error *local_err = NULL;
1882     int64_t file_size, file_align;
1883 
1884     /* Just support these ram flags by now. */
1885     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1886                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1887                           RAM_READONLY_FD)) == 0);
1888 
1889     if (xen_enabled()) {
1890         error_setg(errp, "-mem-path not supported with Xen");
1891         return NULL;
1892     }
1893 
1894     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1895         error_setg(errp,
1896                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1897         return NULL;
1898     }
1899 
1900     size = HOST_PAGE_ALIGN(size);
1901     file_size = get_file_size(fd);
1902     if (file_size > offset && file_size < (offset + size)) {
1903         error_setg(errp, "backing store size 0x%" PRIx64
1904                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1905                    file_size, size);
1906         return NULL;
1907     }
1908 
1909     file_align = get_file_align(fd);
1910     if (file_align > 0 && file_align > mr->align) {
1911         error_setg(errp, "backing store align 0x%" PRIx64
1912                    " is larger than 'align' option 0x%" PRIx64,
1913                    file_align, mr->align);
1914         return NULL;
1915     }
1916 
1917     new_block = g_malloc0(sizeof(*new_block));
1918     new_block->mr = mr;
1919     new_block->used_length = size;
1920     new_block->max_length = size;
1921     new_block->flags = ram_flags;
1922     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1923                                      errp);
1924     if (!new_block->host) {
1925         g_free(new_block);
1926         return NULL;
1927     }
1928 
1929     ram_block_add(new_block, &local_err);
1930     if (local_err) {
1931         g_free(new_block);
1932         error_propagate(errp, local_err);
1933         return NULL;
1934     }
1935     return new_block;
1936 
1937 }
1938 
1939 
1940 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1941                                    uint32_t ram_flags, const char *mem_path,
1942                                    off_t offset, Error **errp)
1943 {
1944     int fd;
1945     bool created;
1946     RAMBlock *block;
1947 
1948     fd = file_ram_open(mem_path, memory_region_name(mr),
1949                        !!(ram_flags & RAM_READONLY_FD), &created, errp);
1950     if (fd < 0) {
1951         return NULL;
1952     }
1953 
1954     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1955     if (!block) {
1956         if (created) {
1957             unlink(mem_path);
1958         }
1959         close(fd);
1960         return NULL;
1961     }
1962 
1963     return block;
1964 }
1965 #endif
1966 
1967 static
1968 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1969                                   void (*resized)(const char*,
1970                                                   uint64_t length,
1971                                                   void *host),
1972                                   void *host, uint32_t ram_flags,
1973                                   MemoryRegion *mr, Error **errp)
1974 {
1975     RAMBlock *new_block;
1976     Error *local_err = NULL;
1977 
1978     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1979                           RAM_NORESERVE)) == 0);
1980     assert(!host ^ (ram_flags & RAM_PREALLOC));
1981 
1982     size = HOST_PAGE_ALIGN(size);
1983     max_size = HOST_PAGE_ALIGN(max_size);
1984     new_block = g_malloc0(sizeof(*new_block));
1985     new_block->mr = mr;
1986     new_block->resized = resized;
1987     new_block->used_length = size;
1988     new_block->max_length = max_size;
1989     assert(max_size >= size);
1990     new_block->fd = -1;
1991     new_block->page_size = qemu_real_host_page_size();
1992     new_block->host = host;
1993     new_block->flags = ram_flags;
1994     ram_block_add(new_block, &local_err);
1995     if (local_err) {
1996         g_free(new_block);
1997         error_propagate(errp, local_err);
1998         return NULL;
1999     }
2000     return new_block;
2001 }
2002 
2003 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2004                                    MemoryRegion *mr, Error **errp)
2005 {
2006     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2007                                    errp);
2008 }
2009 
2010 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2011                          MemoryRegion *mr, Error **errp)
2012 {
2013     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2014     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2015 }
2016 
2017 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2018                                      void (*resized)(const char*,
2019                                                      uint64_t length,
2020                                                      void *host),
2021                                      MemoryRegion *mr, Error **errp)
2022 {
2023     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2024                                    RAM_RESIZEABLE, mr, errp);
2025 }
2026 
2027 static void reclaim_ramblock(RAMBlock *block)
2028 {
2029     if (block->flags & RAM_PREALLOC) {
2030         ;
2031     } else if (xen_enabled()) {
2032         xen_invalidate_map_cache_entry(block->host);
2033 #ifndef _WIN32
2034     } else if (block->fd >= 0) {
2035         qemu_ram_munmap(block->fd, block->host, block->max_length);
2036         close(block->fd);
2037 #endif
2038     } else {
2039         qemu_anon_ram_free(block->host, block->max_length);
2040     }
2041     g_free(block);
2042 }
2043 
2044 void qemu_ram_free(RAMBlock *block)
2045 {
2046     if (!block) {
2047         return;
2048     }
2049 
2050     if (block->host) {
2051         ram_block_notify_remove(block->host, block->used_length,
2052                                 block->max_length);
2053     }
2054 
2055     qemu_mutex_lock_ramlist();
2056     QLIST_REMOVE_RCU(block, next);
2057     ram_list.mru_block = NULL;
2058     /* Write list before version */
2059     smp_wmb();
2060     ram_list.version++;
2061     call_rcu(block, reclaim_ramblock, rcu);
2062     qemu_mutex_unlock_ramlist();
2063 }
2064 
2065 #ifndef _WIN32
2066 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2067 {
2068     RAMBlock *block;
2069     ram_addr_t offset;
2070     int flags;
2071     void *area, *vaddr;
2072     int prot;
2073 
2074     RAMBLOCK_FOREACH(block) {
2075         offset = addr - block->offset;
2076         if (offset < block->max_length) {
2077             vaddr = ramblock_ptr(block, offset);
2078             if (block->flags & RAM_PREALLOC) {
2079                 ;
2080             } else if (xen_enabled()) {
2081                 abort();
2082             } else {
2083                 flags = MAP_FIXED;
2084                 flags |= block->flags & RAM_SHARED ?
2085                          MAP_SHARED : MAP_PRIVATE;
2086                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2087                 prot = PROT_READ;
2088                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2089                 if (block->fd >= 0) {
2090                     area = mmap(vaddr, length, prot, flags, block->fd,
2091                                 offset + block->fd_offset);
2092                 } else {
2093                     flags |= MAP_ANONYMOUS;
2094                     area = mmap(vaddr, length, prot, flags, -1, 0);
2095                 }
2096                 if (area != vaddr) {
2097                     error_report("Could not remap addr: "
2098                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2099                                  length, addr);
2100                     exit(1);
2101                 }
2102                 memory_try_enable_merging(vaddr, length);
2103                 qemu_ram_setup_dump(vaddr, length);
2104             }
2105         }
2106     }
2107 }
2108 #endif /* !_WIN32 */
2109 
2110 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2111  * This should not be used for general purpose DMA.  Use address_space_map
2112  * or address_space_rw instead. For local memory (e.g. video ram) that the
2113  * device owns, use memory_region_get_ram_ptr.
2114  *
2115  * Called within RCU critical section.
2116  */
2117 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2118 {
2119     RAMBlock *block = ram_block;
2120 
2121     if (block == NULL) {
2122         block = qemu_get_ram_block(addr);
2123         addr -= block->offset;
2124     }
2125 
2126     if (xen_enabled() && block->host == NULL) {
2127         /* We need to check if the requested address is in the RAM
2128          * because we don't want to map the entire memory in QEMU.
2129          * In that case just map until the end of the page.
2130          */
2131         if (block->offset == 0) {
2132             return xen_map_cache(addr, 0, 0, false);
2133         }
2134 
2135         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2136     }
2137     return ramblock_ptr(block, addr);
2138 }
2139 
2140 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2141  * but takes a size argument.
2142  *
2143  * Called within RCU critical section.
2144  */
2145 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2146                                  hwaddr *size, bool lock)
2147 {
2148     RAMBlock *block = ram_block;
2149     if (*size == 0) {
2150         return NULL;
2151     }
2152 
2153     if (block == NULL) {
2154         block = qemu_get_ram_block(addr);
2155         addr -= block->offset;
2156     }
2157     *size = MIN(*size, block->max_length - addr);
2158 
2159     if (xen_enabled() && block->host == NULL) {
2160         /* We need to check if the requested address is in the RAM
2161          * because we don't want to map the entire memory in QEMU.
2162          * In that case just map the requested area.
2163          */
2164         if (block->offset == 0) {
2165             return xen_map_cache(addr, *size, lock, lock);
2166         }
2167 
2168         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2169     }
2170 
2171     return ramblock_ptr(block, addr);
2172 }
2173 
2174 /* Return the offset of a hostpointer within a ramblock */
2175 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2176 {
2177     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2178     assert((uintptr_t)host >= (uintptr_t)rb->host);
2179     assert(res < rb->max_length);
2180 
2181     return res;
2182 }
2183 
2184 /*
2185  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2186  * in that RAMBlock.
2187  *
2188  * ptr: Host pointer to look up
2189  * round_offset: If true round the result offset down to a page boundary
2190  * *ram_addr: set to result ram_addr
2191  * *offset: set to result offset within the RAMBlock
2192  *
2193  * Returns: RAMBlock (or NULL if not found)
2194  *
2195  * By the time this function returns, the returned pointer is not protected
2196  * by RCU anymore.  If the caller is not within an RCU critical section and
2197  * does not hold the iothread lock, it must have other means of protecting the
2198  * pointer, such as a reference to the region that includes the incoming
2199  * ram_addr_t.
2200  */
2201 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2202                                    ram_addr_t *offset)
2203 {
2204     RAMBlock *block;
2205     uint8_t *host = ptr;
2206 
2207     if (xen_enabled()) {
2208         ram_addr_t ram_addr;
2209         RCU_READ_LOCK_GUARD();
2210         ram_addr = xen_ram_addr_from_mapcache(ptr);
2211         block = qemu_get_ram_block(ram_addr);
2212         if (block) {
2213             *offset = ram_addr - block->offset;
2214         }
2215         return block;
2216     }
2217 
2218     RCU_READ_LOCK_GUARD();
2219     block = qatomic_rcu_read(&ram_list.mru_block);
2220     if (block && block->host && host - block->host < block->max_length) {
2221         goto found;
2222     }
2223 
2224     RAMBLOCK_FOREACH(block) {
2225         /* This case append when the block is not mapped. */
2226         if (block->host == NULL) {
2227             continue;
2228         }
2229         if (host - block->host < block->max_length) {
2230             goto found;
2231         }
2232     }
2233 
2234     return NULL;
2235 
2236 found:
2237     *offset = (host - block->host);
2238     if (round_offset) {
2239         *offset &= TARGET_PAGE_MASK;
2240     }
2241     return block;
2242 }
2243 
2244 /*
2245  * Finds the named RAMBlock
2246  *
2247  * name: The name of RAMBlock to find
2248  *
2249  * Returns: RAMBlock (or NULL if not found)
2250  */
2251 RAMBlock *qemu_ram_block_by_name(const char *name)
2252 {
2253     RAMBlock *block;
2254 
2255     RAMBLOCK_FOREACH(block) {
2256         if (!strcmp(name, block->idstr)) {
2257             return block;
2258         }
2259     }
2260 
2261     return NULL;
2262 }
2263 
2264 /* Some of the softmmu routines need to translate from a host pointer
2265    (typically a TLB entry) back to a ram offset.  */
2266 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2267 {
2268     RAMBlock *block;
2269     ram_addr_t offset;
2270 
2271     block = qemu_ram_block_from_host(ptr, false, &offset);
2272     if (!block) {
2273         return RAM_ADDR_INVALID;
2274     }
2275 
2276     return block->offset + offset;
2277 }
2278 
2279 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2280 {
2281     ram_addr_t ram_addr;
2282 
2283     ram_addr = qemu_ram_addr_from_host(ptr);
2284     if (ram_addr == RAM_ADDR_INVALID) {
2285         error_report("Bad ram pointer %p", ptr);
2286         abort();
2287     }
2288     return ram_addr;
2289 }
2290 
2291 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2292                                  MemTxAttrs attrs, void *buf, hwaddr len);
2293 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2294                                   const void *buf, hwaddr len);
2295 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2296                                   bool is_write, MemTxAttrs attrs);
2297 
2298 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2299                                 unsigned len, MemTxAttrs attrs)
2300 {
2301     subpage_t *subpage = opaque;
2302     uint8_t buf[8];
2303     MemTxResult res;
2304 
2305 #if defined(DEBUG_SUBPAGE)
2306     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2307            subpage, len, addr);
2308 #endif
2309     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2310     if (res) {
2311         return res;
2312     }
2313     *data = ldn_p(buf, len);
2314     return MEMTX_OK;
2315 }
2316 
2317 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2318                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2319 {
2320     subpage_t *subpage = opaque;
2321     uint8_t buf[8];
2322 
2323 #if defined(DEBUG_SUBPAGE)
2324     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2325            " value %"PRIx64"\n",
2326            __func__, subpage, len, addr, value);
2327 #endif
2328     stn_p(buf, len, value);
2329     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2330 }
2331 
2332 static bool subpage_accepts(void *opaque, hwaddr addr,
2333                             unsigned len, bool is_write,
2334                             MemTxAttrs attrs)
2335 {
2336     subpage_t *subpage = opaque;
2337 #if defined(DEBUG_SUBPAGE)
2338     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2339            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2340 #endif
2341 
2342     return flatview_access_valid(subpage->fv, addr + subpage->base,
2343                                  len, is_write, attrs);
2344 }
2345 
2346 static const MemoryRegionOps subpage_ops = {
2347     .read_with_attrs = subpage_read,
2348     .write_with_attrs = subpage_write,
2349     .impl.min_access_size = 1,
2350     .impl.max_access_size = 8,
2351     .valid.min_access_size = 1,
2352     .valid.max_access_size = 8,
2353     .valid.accepts = subpage_accepts,
2354     .endianness = DEVICE_NATIVE_ENDIAN,
2355 };
2356 
2357 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2358                             uint16_t section)
2359 {
2360     int idx, eidx;
2361 
2362     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2363         return -1;
2364     idx = SUBPAGE_IDX(start);
2365     eidx = SUBPAGE_IDX(end);
2366 #if defined(DEBUG_SUBPAGE)
2367     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2368            __func__, mmio, start, end, idx, eidx, section);
2369 #endif
2370     for (; idx <= eidx; idx++) {
2371         mmio->sub_section[idx] = section;
2372     }
2373 
2374     return 0;
2375 }
2376 
2377 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2378 {
2379     subpage_t *mmio;
2380 
2381     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2382     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2383     mmio->fv = fv;
2384     mmio->base = base;
2385     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2386                           NULL, TARGET_PAGE_SIZE);
2387     mmio->iomem.subpage = true;
2388 #if defined(DEBUG_SUBPAGE)
2389     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2390            mmio, base, TARGET_PAGE_SIZE);
2391 #endif
2392 
2393     return mmio;
2394 }
2395 
2396 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2397 {
2398     assert(fv);
2399     MemoryRegionSection section = {
2400         .fv = fv,
2401         .mr = mr,
2402         .offset_within_address_space = 0,
2403         .offset_within_region = 0,
2404         .size = int128_2_64(),
2405     };
2406 
2407     return phys_section_add(map, &section);
2408 }
2409 
2410 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2411                                       hwaddr index, MemTxAttrs attrs)
2412 {
2413     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2414     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2415     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2416     int section_index = index & ~TARGET_PAGE_MASK;
2417     MemoryRegionSection *ret;
2418 
2419     assert(section_index < d->map.sections_nb);
2420     ret = d->map.sections + section_index;
2421     assert(ret->mr);
2422     assert(ret->mr->ops);
2423 
2424     return ret;
2425 }
2426 
2427 static void io_mem_init(void)
2428 {
2429     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2430                           NULL, UINT64_MAX);
2431 }
2432 
2433 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2434 {
2435     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2436     uint16_t n;
2437 
2438     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2439     assert(n == PHYS_SECTION_UNASSIGNED);
2440 
2441     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2442 
2443     return d;
2444 }
2445 
2446 void address_space_dispatch_free(AddressSpaceDispatch *d)
2447 {
2448     phys_sections_free(&d->map);
2449     g_free(d);
2450 }
2451 
2452 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2453 {
2454 }
2455 
2456 static void tcg_log_global_after_sync(MemoryListener *listener)
2457 {
2458     CPUAddressSpace *cpuas;
2459 
2460     /* Wait for the CPU to end the current TB.  This avoids the following
2461      * incorrect race:
2462      *
2463      *      vCPU                         migration
2464      *      ----------------------       -------------------------
2465      *      TLB check -> slow path
2466      *        notdirty_mem_write
2467      *          write to RAM
2468      *          mark dirty
2469      *                                   clear dirty flag
2470      *      TLB check -> fast path
2471      *                                   read memory
2472      *        write to RAM
2473      *
2474      * by pushing the migration thread's memory read after the vCPU thread has
2475      * written the memory.
2476      */
2477     if (replay_mode == REPLAY_MODE_NONE) {
2478         /*
2479          * VGA can make calls to this function while updating the screen.
2480          * In record/replay mode this causes a deadlock, because
2481          * run_on_cpu waits for rr mutex. Therefore no races are possible
2482          * in this case and no need for making run_on_cpu when
2483          * record/replay is enabled.
2484          */
2485         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2486         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2487     }
2488 }
2489 
2490 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2491 {
2492     CPUAddressSpace *cpuas = data.host_ptr;
2493 
2494     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2495     tlb_flush(cpu);
2496 }
2497 
2498 static void tcg_commit(MemoryListener *listener)
2499 {
2500     CPUAddressSpace *cpuas;
2501     CPUState *cpu;
2502 
2503     assert(tcg_enabled());
2504     /* since each CPU stores ram addresses in its TLB cache, we must
2505        reset the modified entries */
2506     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2507     cpu = cpuas->cpu;
2508 
2509     /*
2510      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2511      * Otherwise we race between (1) other cpu threads and (2) ongoing
2512      * i/o for the current cpu thread, with data cached by mmu_lookup().
2513      *
2514      * In addition, queueing the work function will kick the cpu back to
2515      * the main loop, which will end the RCU critical section and reclaim
2516      * the memory data structures.
2517      *
2518      * That said, the listener is also called during realize, before
2519      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2520      */
2521     if (cpu->halt_cond) {
2522         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2523     } else {
2524         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2525     }
2526 }
2527 
2528 static void memory_map_init(void)
2529 {
2530     system_memory = g_malloc(sizeof(*system_memory));
2531 
2532     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2533     address_space_init(&address_space_memory, system_memory, "memory");
2534 
2535     system_io = g_malloc(sizeof(*system_io));
2536     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2537                           65536);
2538     address_space_init(&address_space_io, system_io, "I/O");
2539 }
2540 
2541 MemoryRegion *get_system_memory(void)
2542 {
2543     return system_memory;
2544 }
2545 
2546 MemoryRegion *get_system_io(void)
2547 {
2548     return system_io;
2549 }
2550 
2551 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2552                                      hwaddr length)
2553 {
2554     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2555     addr += memory_region_get_ram_addr(mr);
2556 
2557     /* No early return if dirty_log_mask is or becomes 0, because
2558      * cpu_physical_memory_set_dirty_range will still call
2559      * xen_modified_memory.
2560      */
2561     if (dirty_log_mask) {
2562         dirty_log_mask =
2563             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2564     }
2565     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2566         assert(tcg_enabled());
2567         tb_invalidate_phys_range(addr, addr + length - 1);
2568         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2569     }
2570     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2571 }
2572 
2573 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2574 {
2575     /*
2576      * In principle this function would work on other memory region types too,
2577      * but the ROM device use case is the only one where this operation is
2578      * necessary.  Other memory regions should use the
2579      * address_space_read/write() APIs.
2580      */
2581     assert(memory_region_is_romd(mr));
2582 
2583     invalidate_and_set_dirty(mr, addr, size);
2584 }
2585 
2586 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2587 {
2588     unsigned access_size_max = mr->ops->valid.max_access_size;
2589 
2590     /* Regions are assumed to support 1-4 byte accesses unless
2591        otherwise specified.  */
2592     if (access_size_max == 0) {
2593         access_size_max = 4;
2594     }
2595 
2596     /* Bound the maximum access by the alignment of the address.  */
2597     if (!mr->ops->impl.unaligned) {
2598         unsigned align_size_max = addr & -addr;
2599         if (align_size_max != 0 && align_size_max < access_size_max) {
2600             access_size_max = align_size_max;
2601         }
2602     }
2603 
2604     /* Don't attempt accesses larger than the maximum.  */
2605     if (l > access_size_max) {
2606         l = access_size_max;
2607     }
2608     l = pow2floor(l);
2609 
2610     return l;
2611 }
2612 
2613 bool prepare_mmio_access(MemoryRegion *mr)
2614 {
2615     bool release_lock = false;
2616 
2617     if (!qemu_mutex_iothread_locked()) {
2618         qemu_mutex_lock_iothread();
2619         release_lock = true;
2620     }
2621     if (mr->flush_coalesced_mmio) {
2622         qemu_flush_coalesced_mmio_buffer();
2623     }
2624 
2625     return release_lock;
2626 }
2627 
2628 /**
2629  * flatview_access_allowed
2630  * @mr: #MemoryRegion to be accessed
2631  * @attrs: memory transaction attributes
2632  * @addr: address within that memory region
2633  * @len: the number of bytes to access
2634  *
2635  * Check if a memory transaction is allowed.
2636  *
2637  * Returns: true if transaction is allowed, false if denied.
2638  */
2639 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2640                                     hwaddr addr, hwaddr len)
2641 {
2642     if (likely(!attrs.memory)) {
2643         return true;
2644     }
2645     if (memory_region_is_ram(mr)) {
2646         return true;
2647     }
2648     qemu_log_mask(LOG_GUEST_ERROR,
2649                   "Invalid access to non-RAM device at "
2650                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2651                   "region '%s'\n", addr, len, memory_region_name(mr));
2652     return false;
2653 }
2654 
2655 /* Called within RCU critical section.  */
2656 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2657                                            MemTxAttrs attrs,
2658                                            const void *ptr,
2659                                            hwaddr len, hwaddr addr1,
2660                                            hwaddr l, MemoryRegion *mr)
2661 {
2662     uint8_t *ram_ptr;
2663     uint64_t val;
2664     MemTxResult result = MEMTX_OK;
2665     bool release_lock = false;
2666     const uint8_t *buf = ptr;
2667 
2668     for (;;) {
2669         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2670             result |= MEMTX_ACCESS_ERROR;
2671             /* Keep going. */
2672         } else if (!memory_access_is_direct(mr, true)) {
2673             release_lock |= prepare_mmio_access(mr);
2674             l = memory_access_size(mr, l, addr1);
2675             /* XXX: could force current_cpu to NULL to avoid
2676                potential bugs */
2677             val = ldn_he_p(buf, l);
2678             result |= memory_region_dispatch_write(mr, addr1, val,
2679                                                    size_memop(l), attrs);
2680         } else {
2681             /* RAM case */
2682             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2683             memmove(ram_ptr, buf, l);
2684             invalidate_and_set_dirty(mr, addr1, l);
2685         }
2686 
2687         if (release_lock) {
2688             qemu_mutex_unlock_iothread();
2689             release_lock = false;
2690         }
2691 
2692         len -= l;
2693         buf += l;
2694         addr += l;
2695 
2696         if (!len) {
2697             break;
2698         }
2699 
2700         l = len;
2701         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2702     }
2703 
2704     return result;
2705 }
2706 
2707 /* Called from RCU critical section.  */
2708 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2709                                   const void *buf, hwaddr len)
2710 {
2711     hwaddr l;
2712     hwaddr addr1;
2713     MemoryRegion *mr;
2714 
2715     l = len;
2716     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2717     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2718         return MEMTX_ACCESS_ERROR;
2719     }
2720     return flatview_write_continue(fv, addr, attrs, buf, len,
2721                                    addr1, l, mr);
2722 }
2723 
2724 /* Called within RCU critical section.  */
2725 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2726                                    MemTxAttrs attrs, void *ptr,
2727                                    hwaddr len, hwaddr addr1, hwaddr l,
2728                                    MemoryRegion *mr)
2729 {
2730     uint8_t *ram_ptr;
2731     uint64_t val;
2732     MemTxResult result = MEMTX_OK;
2733     bool release_lock = false;
2734     uint8_t *buf = ptr;
2735 
2736     fuzz_dma_read_cb(addr, len, mr);
2737     for (;;) {
2738         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2739             result |= MEMTX_ACCESS_ERROR;
2740             /* Keep going. */
2741         } else if (!memory_access_is_direct(mr, false)) {
2742             /* I/O case */
2743             release_lock |= prepare_mmio_access(mr);
2744             l = memory_access_size(mr, l, addr1);
2745             result |= memory_region_dispatch_read(mr, addr1, &val,
2746                                                   size_memop(l), attrs);
2747             stn_he_p(buf, l, val);
2748         } else {
2749             /* RAM case */
2750             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2751             memcpy(buf, ram_ptr, l);
2752         }
2753 
2754         if (release_lock) {
2755             qemu_mutex_unlock_iothread();
2756             release_lock = false;
2757         }
2758 
2759         len -= l;
2760         buf += l;
2761         addr += l;
2762 
2763         if (!len) {
2764             break;
2765         }
2766 
2767         l = len;
2768         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2769     }
2770 
2771     return result;
2772 }
2773 
2774 /* Called from RCU critical section.  */
2775 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2776                                  MemTxAttrs attrs, void *buf, hwaddr len)
2777 {
2778     hwaddr l;
2779     hwaddr addr1;
2780     MemoryRegion *mr;
2781 
2782     l = len;
2783     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2784     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2785         return MEMTX_ACCESS_ERROR;
2786     }
2787     return flatview_read_continue(fv, addr, attrs, buf, len,
2788                                   addr1, l, mr);
2789 }
2790 
2791 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2792                                     MemTxAttrs attrs, void *buf, hwaddr len)
2793 {
2794     MemTxResult result = MEMTX_OK;
2795     FlatView *fv;
2796 
2797     if (len > 0) {
2798         RCU_READ_LOCK_GUARD();
2799         fv = address_space_to_flatview(as);
2800         result = flatview_read(fv, addr, attrs, buf, len);
2801     }
2802 
2803     return result;
2804 }
2805 
2806 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2807                                 MemTxAttrs attrs,
2808                                 const void *buf, hwaddr len)
2809 {
2810     MemTxResult result = MEMTX_OK;
2811     FlatView *fv;
2812 
2813     if (len > 0) {
2814         RCU_READ_LOCK_GUARD();
2815         fv = address_space_to_flatview(as);
2816         result = flatview_write(fv, addr, attrs, buf, len);
2817     }
2818 
2819     return result;
2820 }
2821 
2822 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2823                              void *buf, hwaddr len, bool is_write)
2824 {
2825     if (is_write) {
2826         return address_space_write(as, addr, attrs, buf, len);
2827     } else {
2828         return address_space_read_full(as, addr, attrs, buf, len);
2829     }
2830 }
2831 
2832 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2833                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2834 {
2835 #define FILLBUF_SIZE 512
2836     uint8_t fillbuf[FILLBUF_SIZE];
2837     int l;
2838     MemTxResult error = MEMTX_OK;
2839 
2840     memset(fillbuf, c, FILLBUF_SIZE);
2841     while (len > 0) {
2842         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2843         error |= address_space_write(as, addr, attrs, fillbuf, l);
2844         len -= l;
2845         addr += l;
2846     }
2847 
2848     return error;
2849 }
2850 
2851 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2852                             hwaddr len, bool is_write)
2853 {
2854     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2855                      buf, len, is_write);
2856 }
2857 
2858 enum write_rom_type {
2859     WRITE_DATA,
2860     FLUSH_CACHE,
2861 };
2862 
2863 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2864                                                            hwaddr addr,
2865                                                            MemTxAttrs attrs,
2866                                                            const void *ptr,
2867                                                            hwaddr len,
2868                                                            enum write_rom_type type)
2869 {
2870     hwaddr l;
2871     uint8_t *ram_ptr;
2872     hwaddr addr1;
2873     MemoryRegion *mr;
2874     const uint8_t *buf = ptr;
2875 
2876     RCU_READ_LOCK_GUARD();
2877     while (len > 0) {
2878         l = len;
2879         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2880 
2881         if (!(memory_region_is_ram(mr) ||
2882               memory_region_is_romd(mr))) {
2883             l = memory_access_size(mr, l, addr1);
2884         } else {
2885             /* ROM/RAM case */
2886             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2887             switch (type) {
2888             case WRITE_DATA:
2889                 memcpy(ram_ptr, buf, l);
2890                 invalidate_and_set_dirty(mr, addr1, l);
2891                 break;
2892             case FLUSH_CACHE:
2893                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2894                 break;
2895             }
2896         }
2897         len -= l;
2898         buf += l;
2899         addr += l;
2900     }
2901     return MEMTX_OK;
2902 }
2903 
2904 /* used for ROM loading : can write in RAM and ROM */
2905 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2906                                     MemTxAttrs attrs,
2907                                     const void *buf, hwaddr len)
2908 {
2909     return address_space_write_rom_internal(as, addr, attrs,
2910                                             buf, len, WRITE_DATA);
2911 }
2912 
2913 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2914 {
2915     /*
2916      * This function should do the same thing as an icache flush that was
2917      * triggered from within the guest. For TCG we are always cache coherent,
2918      * so there is no need to flush anything. For KVM / Xen we need to flush
2919      * the host's instruction cache at least.
2920      */
2921     if (tcg_enabled()) {
2922         return;
2923     }
2924 
2925     address_space_write_rom_internal(&address_space_memory,
2926                                      start, MEMTXATTRS_UNSPECIFIED,
2927                                      NULL, len, FLUSH_CACHE);
2928 }
2929 
2930 typedef struct {
2931     MemoryRegion *mr;
2932     void *buffer;
2933     hwaddr addr;
2934     hwaddr len;
2935     bool in_use;
2936 } BounceBuffer;
2937 
2938 static BounceBuffer bounce;
2939 
2940 typedef struct MapClient {
2941     QEMUBH *bh;
2942     QLIST_ENTRY(MapClient) link;
2943 } MapClient;
2944 
2945 QemuMutex map_client_list_lock;
2946 static QLIST_HEAD(, MapClient) map_client_list
2947     = QLIST_HEAD_INITIALIZER(map_client_list);
2948 
2949 static void cpu_unregister_map_client_do(MapClient *client)
2950 {
2951     QLIST_REMOVE(client, link);
2952     g_free(client);
2953 }
2954 
2955 static void cpu_notify_map_clients_locked(void)
2956 {
2957     MapClient *client;
2958 
2959     while (!QLIST_EMPTY(&map_client_list)) {
2960         client = QLIST_FIRST(&map_client_list);
2961         qemu_bh_schedule(client->bh);
2962         cpu_unregister_map_client_do(client);
2963     }
2964 }
2965 
2966 void cpu_register_map_client(QEMUBH *bh)
2967 {
2968     MapClient *client = g_malloc(sizeof(*client));
2969 
2970     qemu_mutex_lock(&map_client_list_lock);
2971     client->bh = bh;
2972     QLIST_INSERT_HEAD(&map_client_list, client, link);
2973     /* Write map_client_list before reading in_use.  */
2974     smp_mb();
2975     if (!qatomic_read(&bounce.in_use)) {
2976         cpu_notify_map_clients_locked();
2977     }
2978     qemu_mutex_unlock(&map_client_list_lock);
2979 }
2980 
2981 void cpu_exec_init_all(void)
2982 {
2983     qemu_mutex_init(&ram_list.mutex);
2984     /* The data structures we set up here depend on knowing the page size,
2985      * so no more changes can be made after this point.
2986      * In an ideal world, nothing we did before we had finished the
2987      * machine setup would care about the target page size, and we could
2988      * do this much later, rather than requiring board models to state
2989      * up front what their requirements are.
2990      */
2991     finalize_target_page_bits();
2992     io_mem_init();
2993     memory_map_init();
2994     qemu_mutex_init(&map_client_list_lock);
2995 }
2996 
2997 void cpu_unregister_map_client(QEMUBH *bh)
2998 {
2999     MapClient *client;
3000 
3001     qemu_mutex_lock(&map_client_list_lock);
3002     QLIST_FOREACH(client, &map_client_list, link) {
3003         if (client->bh == bh) {
3004             cpu_unregister_map_client_do(client);
3005             break;
3006         }
3007     }
3008     qemu_mutex_unlock(&map_client_list_lock);
3009 }
3010 
3011 static void cpu_notify_map_clients(void)
3012 {
3013     qemu_mutex_lock(&map_client_list_lock);
3014     cpu_notify_map_clients_locked();
3015     qemu_mutex_unlock(&map_client_list_lock);
3016 }
3017 
3018 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3019                                   bool is_write, MemTxAttrs attrs)
3020 {
3021     MemoryRegion *mr;
3022     hwaddr l, xlat;
3023 
3024     while (len > 0) {
3025         l = len;
3026         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3027         if (!memory_access_is_direct(mr, is_write)) {
3028             l = memory_access_size(mr, l, addr);
3029             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3030                 return false;
3031             }
3032         }
3033 
3034         len -= l;
3035         addr += l;
3036     }
3037     return true;
3038 }
3039 
3040 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3041                                 hwaddr len, bool is_write,
3042                                 MemTxAttrs attrs)
3043 {
3044     FlatView *fv;
3045 
3046     RCU_READ_LOCK_GUARD();
3047     fv = address_space_to_flatview(as);
3048     return flatview_access_valid(fv, addr, len, is_write, attrs);
3049 }
3050 
3051 static hwaddr
3052 flatview_extend_translation(FlatView *fv, hwaddr addr,
3053                             hwaddr target_len,
3054                             MemoryRegion *mr, hwaddr base, hwaddr len,
3055                             bool is_write, MemTxAttrs attrs)
3056 {
3057     hwaddr done = 0;
3058     hwaddr xlat;
3059     MemoryRegion *this_mr;
3060 
3061     for (;;) {
3062         target_len -= len;
3063         addr += len;
3064         done += len;
3065         if (target_len == 0) {
3066             return done;
3067         }
3068 
3069         len = target_len;
3070         this_mr = flatview_translate(fv, addr, &xlat,
3071                                      &len, is_write, attrs);
3072         if (this_mr != mr || xlat != base + done) {
3073             return done;
3074         }
3075     }
3076 }
3077 
3078 /* Map a physical memory region into a host virtual address.
3079  * May map a subset of the requested range, given by and returned in *plen.
3080  * May return NULL if resources needed to perform the mapping are exhausted.
3081  * Use only for reads OR writes - not for read-modify-write operations.
3082  * Use cpu_register_map_client() to know when retrying the map operation is
3083  * likely to succeed.
3084  */
3085 void *address_space_map(AddressSpace *as,
3086                         hwaddr addr,
3087                         hwaddr *plen,
3088                         bool is_write,
3089                         MemTxAttrs attrs)
3090 {
3091     hwaddr len = *plen;
3092     hwaddr l, xlat;
3093     MemoryRegion *mr;
3094     FlatView *fv;
3095 
3096     if (len == 0) {
3097         return NULL;
3098     }
3099 
3100     l = len;
3101     RCU_READ_LOCK_GUARD();
3102     fv = address_space_to_flatview(as);
3103     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3104 
3105     if (!memory_access_is_direct(mr, is_write)) {
3106         if (qatomic_xchg(&bounce.in_use, true)) {
3107             *plen = 0;
3108             return NULL;
3109         }
3110         /* Avoid unbounded allocations */
3111         l = MIN(l, TARGET_PAGE_SIZE);
3112         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3113         bounce.addr = addr;
3114         bounce.len = l;
3115 
3116         memory_region_ref(mr);
3117         bounce.mr = mr;
3118         if (!is_write) {
3119             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3120                                bounce.buffer, l);
3121         }
3122 
3123         *plen = l;
3124         return bounce.buffer;
3125     }
3126 
3127 
3128     memory_region_ref(mr);
3129     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3130                                         l, is_write, attrs);
3131     fuzz_dma_read_cb(addr, *plen, mr);
3132     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3133 }
3134 
3135 /* Unmaps a memory region previously mapped by address_space_map().
3136  * Will also mark the memory as dirty if is_write is true.  access_len gives
3137  * the amount of memory that was actually read or written by the caller.
3138  */
3139 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3140                          bool is_write, hwaddr access_len)
3141 {
3142     if (buffer != bounce.buffer) {
3143         MemoryRegion *mr;
3144         ram_addr_t addr1;
3145 
3146         mr = memory_region_from_host(buffer, &addr1);
3147         assert(mr != NULL);
3148         if (is_write) {
3149             invalidate_and_set_dirty(mr, addr1, access_len);
3150         }
3151         if (xen_enabled()) {
3152             xen_invalidate_map_cache_entry(buffer);
3153         }
3154         memory_region_unref(mr);
3155         return;
3156     }
3157     if (is_write) {
3158         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3159                             bounce.buffer, access_len);
3160     }
3161     qemu_vfree(bounce.buffer);
3162     bounce.buffer = NULL;
3163     memory_region_unref(bounce.mr);
3164     /* Clear in_use before reading map_client_list.  */
3165     qatomic_set_mb(&bounce.in_use, false);
3166     cpu_notify_map_clients();
3167 }
3168 
3169 void *cpu_physical_memory_map(hwaddr addr,
3170                               hwaddr *plen,
3171                               bool is_write)
3172 {
3173     return address_space_map(&address_space_memory, addr, plen, is_write,
3174                              MEMTXATTRS_UNSPECIFIED);
3175 }
3176 
3177 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3178                                bool is_write, hwaddr access_len)
3179 {
3180     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3181 }
3182 
3183 #define ARG1_DECL                AddressSpace *as
3184 #define ARG1                     as
3185 #define SUFFIX
3186 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3187 #define RCU_READ_LOCK(...)       rcu_read_lock()
3188 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3189 #include "memory_ldst.c.inc"
3190 
3191 int64_t address_space_cache_init(MemoryRegionCache *cache,
3192                                  AddressSpace *as,
3193                                  hwaddr addr,
3194                                  hwaddr len,
3195                                  bool is_write)
3196 {
3197     AddressSpaceDispatch *d;
3198     hwaddr l;
3199     MemoryRegion *mr;
3200     Int128 diff;
3201 
3202     assert(len > 0);
3203 
3204     l = len;
3205     cache->fv = address_space_get_flatview(as);
3206     d = flatview_to_dispatch(cache->fv);
3207     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3208 
3209     /*
3210      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3211      * Take that into account to compute how many bytes are there between
3212      * cache->xlat and the end of the section.
3213      */
3214     diff = int128_sub(cache->mrs.size,
3215                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3216     l = int128_get64(int128_min(diff, int128_make64(l)));
3217 
3218     mr = cache->mrs.mr;
3219     memory_region_ref(mr);
3220     if (memory_access_is_direct(mr, is_write)) {
3221         /* We don't care about the memory attributes here as we're only
3222          * doing this if we found actual RAM, which behaves the same
3223          * regardless of attributes; so UNSPECIFIED is fine.
3224          */
3225         l = flatview_extend_translation(cache->fv, addr, len, mr,
3226                                         cache->xlat, l, is_write,
3227                                         MEMTXATTRS_UNSPECIFIED);
3228         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3229     } else {
3230         cache->ptr = NULL;
3231     }
3232 
3233     cache->len = l;
3234     cache->is_write = is_write;
3235     return l;
3236 }
3237 
3238 void address_space_cache_invalidate(MemoryRegionCache *cache,
3239                                     hwaddr addr,
3240                                     hwaddr access_len)
3241 {
3242     assert(cache->is_write);
3243     if (likely(cache->ptr)) {
3244         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3245     }
3246 }
3247 
3248 void address_space_cache_destroy(MemoryRegionCache *cache)
3249 {
3250     if (!cache->mrs.mr) {
3251         return;
3252     }
3253 
3254     if (xen_enabled()) {
3255         xen_invalidate_map_cache_entry(cache->ptr);
3256     }
3257     memory_region_unref(cache->mrs.mr);
3258     flatview_unref(cache->fv);
3259     cache->mrs.mr = NULL;
3260     cache->fv = NULL;
3261 }
3262 
3263 /* Called from RCU critical section.  This function has the same
3264  * semantics as address_space_translate, but it only works on a
3265  * predefined range of a MemoryRegion that was mapped with
3266  * address_space_cache_init.
3267  */
3268 static inline MemoryRegion *address_space_translate_cached(
3269     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3270     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3271 {
3272     MemoryRegionSection section;
3273     MemoryRegion *mr;
3274     IOMMUMemoryRegion *iommu_mr;
3275     AddressSpace *target_as;
3276 
3277     assert(!cache->ptr);
3278     *xlat = addr + cache->xlat;
3279 
3280     mr = cache->mrs.mr;
3281     iommu_mr = memory_region_get_iommu(mr);
3282     if (!iommu_mr) {
3283         /* MMIO region.  */
3284         return mr;
3285     }
3286 
3287     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3288                                             NULL, is_write, true,
3289                                             &target_as, attrs);
3290     return section.mr;
3291 }
3292 
3293 /* Called from RCU critical section. address_space_read_cached uses this
3294  * out of line function when the target is an MMIO or IOMMU region.
3295  */
3296 MemTxResult
3297 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3298                                    void *buf, hwaddr len)
3299 {
3300     hwaddr addr1, l;
3301     MemoryRegion *mr;
3302 
3303     l = len;
3304     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3305                                         MEMTXATTRS_UNSPECIFIED);
3306     return flatview_read_continue(cache->fv,
3307                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3308                                   addr1, l, mr);
3309 }
3310 
3311 /* Called from RCU critical section. address_space_write_cached uses this
3312  * out of line function when the target is an MMIO or IOMMU region.
3313  */
3314 MemTxResult
3315 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3316                                     const void *buf, hwaddr len)
3317 {
3318     hwaddr addr1, l;
3319     MemoryRegion *mr;
3320 
3321     l = len;
3322     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3323                                         MEMTXATTRS_UNSPECIFIED);
3324     return flatview_write_continue(cache->fv,
3325                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3326                                    addr1, l, mr);
3327 }
3328 
3329 #define ARG1_DECL                MemoryRegionCache *cache
3330 #define ARG1                     cache
3331 #define SUFFIX                   _cached_slow
3332 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3333 #define RCU_READ_LOCK()          ((void)0)
3334 #define RCU_READ_UNLOCK()        ((void)0)
3335 #include "memory_ldst.c.inc"
3336 
3337 /* virtual memory access for debug (includes writing to ROM) */
3338 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3339                         void *ptr, size_t len, bool is_write)
3340 {
3341     hwaddr phys_addr;
3342     vaddr l, page;
3343     uint8_t *buf = ptr;
3344 
3345     cpu_synchronize_state(cpu);
3346     while (len > 0) {
3347         int asidx;
3348         MemTxAttrs attrs;
3349         MemTxResult res;
3350 
3351         page = addr & TARGET_PAGE_MASK;
3352         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3353         asidx = cpu_asidx_from_attrs(cpu, attrs);
3354         /* if no physical page mapped, return an error */
3355         if (phys_addr == -1)
3356             return -1;
3357         l = (page + TARGET_PAGE_SIZE) - addr;
3358         if (l > len)
3359             l = len;
3360         phys_addr += (addr & ~TARGET_PAGE_MASK);
3361         if (is_write) {
3362             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3363                                           attrs, buf, l);
3364         } else {
3365             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3366                                      attrs, buf, l);
3367         }
3368         if (res != MEMTX_OK) {
3369             return -1;
3370         }
3371         len -= l;
3372         buf += l;
3373         addr += l;
3374     }
3375     return 0;
3376 }
3377 
3378 /*
3379  * Allows code that needs to deal with migration bitmaps etc to still be built
3380  * target independent.
3381  */
3382 size_t qemu_target_page_size(void)
3383 {
3384     return TARGET_PAGE_SIZE;
3385 }
3386 
3387 int qemu_target_page_mask(void)
3388 {
3389     return TARGET_PAGE_MASK;
3390 }
3391 
3392 int qemu_target_page_bits(void)
3393 {
3394     return TARGET_PAGE_BITS;
3395 }
3396 
3397 int qemu_target_page_bits_min(void)
3398 {
3399     return TARGET_PAGE_BITS_MIN;
3400 }
3401 
3402 /* Convert target pages to MiB (2**20). */
3403 size_t qemu_target_pages_to_MiB(size_t pages)
3404 {
3405     int page_bits = TARGET_PAGE_BITS;
3406 
3407     /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3408     g_assert(page_bits < 20);
3409 
3410     return pages >> (20 - page_bits);
3411 }
3412 
3413 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3414 {
3415     MemoryRegion*mr;
3416     hwaddr l = 1;
3417 
3418     RCU_READ_LOCK_GUARD();
3419     mr = address_space_translate(&address_space_memory,
3420                                  phys_addr, &phys_addr, &l, false,
3421                                  MEMTXATTRS_UNSPECIFIED);
3422 
3423     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3424 }
3425 
3426 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3427 {
3428     RAMBlock *block;
3429     int ret = 0;
3430 
3431     RCU_READ_LOCK_GUARD();
3432     RAMBLOCK_FOREACH(block) {
3433         ret = func(block, opaque);
3434         if (ret) {
3435             break;
3436         }
3437     }
3438     return ret;
3439 }
3440 
3441 /*
3442  * Unmap pages of memory from start to start+length such that
3443  * they a) read as 0, b) Trigger whatever fault mechanism
3444  * the OS provides for postcopy.
3445  * The pages must be unmapped by the end of the function.
3446  * Returns: 0 on success, none-0 on failure
3447  *
3448  */
3449 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3450 {
3451     int ret = -1;
3452 
3453     uint8_t *host_startaddr = rb->host + start;
3454 
3455     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3456         error_report("ram_block_discard_range: Unaligned start address: %p",
3457                      host_startaddr);
3458         goto err;
3459     }
3460 
3461     if ((start + length) <= rb->max_length) {
3462         bool need_madvise, need_fallocate;
3463         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3464             error_report("ram_block_discard_range: Unaligned length: %zx",
3465                          length);
3466             goto err;
3467         }
3468 
3469         errno = ENOTSUP; /* If we are missing MADVISE etc */
3470 
3471         /* The logic here is messy;
3472          *    madvise DONTNEED fails for hugepages
3473          *    fallocate works on hugepages and shmem
3474          *    shared anonymous memory requires madvise REMOVE
3475          */
3476         need_madvise = (rb->page_size == qemu_host_page_size);
3477         need_fallocate = rb->fd != -1;
3478         if (need_fallocate) {
3479             /* For a file, this causes the area of the file to be zero'd
3480              * if read, and for hugetlbfs also causes it to be unmapped
3481              * so a userfault will trigger.
3482              */
3483 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3484             /*
3485              * We'll discard data from the actual file, even though we only
3486              * have a MAP_PRIVATE mapping, possibly messing with other
3487              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3488              * change that behavior whithout violating the promised
3489              * semantics of ram_block_discard_range().
3490              *
3491              * Only warn, because it works as long as nobody else uses that
3492              * file.
3493              */
3494             if (!qemu_ram_is_shared(rb)) {
3495                 warn_report_once("ram_block_discard_range: Discarding RAM"
3496                                  " in private file mappings is possibly"
3497                                  " dangerous, because it will modify the"
3498                                  " underlying file and will affect other"
3499                                  " users of the file");
3500             }
3501 
3502             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3503                             start, length);
3504             if (ret) {
3505                 ret = -errno;
3506                 error_report("ram_block_discard_range: Failed to fallocate "
3507                              "%s:%" PRIx64 " +%zx (%d)",
3508                              rb->idstr, start, length, ret);
3509                 goto err;
3510             }
3511 #else
3512             ret = -ENOSYS;
3513             error_report("ram_block_discard_range: fallocate not available/file"
3514                          "%s:%" PRIx64 " +%zx (%d)",
3515                          rb->idstr, start, length, ret);
3516             goto err;
3517 #endif
3518         }
3519         if (need_madvise) {
3520             /* For normal RAM this causes it to be unmapped,
3521              * for shared memory it causes the local mapping to disappear
3522              * and to fall back on the file contents (which we just
3523              * fallocate'd away).
3524              */
3525 #if defined(CONFIG_MADVISE)
3526             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3527                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3528             } else {
3529                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3530             }
3531             if (ret) {
3532                 ret = -errno;
3533                 error_report("ram_block_discard_range: Failed to discard range "
3534                              "%s:%" PRIx64 " +%zx (%d)",
3535                              rb->idstr, start, length, ret);
3536                 goto err;
3537             }
3538 #else
3539             ret = -ENOSYS;
3540             error_report("ram_block_discard_range: MADVISE not available"
3541                          "%s:%" PRIx64 " +%zx (%d)",
3542                          rb->idstr, start, length, ret);
3543             goto err;
3544 #endif
3545         }
3546         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3547                                       need_madvise, need_fallocate, ret);
3548     } else {
3549         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3550                      "/%zx/" RAM_ADDR_FMT")",
3551                      rb->idstr, start, length, rb->max_length);
3552     }
3553 
3554 err:
3555     return ret;
3556 }
3557 
3558 bool ramblock_is_pmem(RAMBlock *rb)
3559 {
3560     return rb->flags & RAM_PMEM;
3561 }
3562 
3563 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3564 {
3565     if (start == end - 1) {
3566         qemu_printf("\t%3d      ", start);
3567     } else {
3568         qemu_printf("\t%3d..%-3d ", start, end - 1);
3569     }
3570     qemu_printf(" skip=%d ", skip);
3571     if (ptr == PHYS_MAP_NODE_NIL) {
3572         qemu_printf(" ptr=NIL");
3573     } else if (!skip) {
3574         qemu_printf(" ptr=#%d", ptr);
3575     } else {
3576         qemu_printf(" ptr=[%d]", ptr);
3577     }
3578     qemu_printf("\n");
3579 }
3580 
3581 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3582                            int128_sub((size), int128_one())) : 0)
3583 
3584 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3585 {
3586     int i;
3587 
3588     qemu_printf("  Dispatch\n");
3589     qemu_printf("    Physical sections\n");
3590 
3591     for (i = 0; i < d->map.sections_nb; ++i) {
3592         MemoryRegionSection *s = d->map.sections + i;
3593         const char *names[] = { " [unassigned]", " [not dirty]",
3594                                 " [ROM]", " [watch]" };
3595 
3596         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3597                     " %s%s%s%s%s",
3598             i,
3599             s->offset_within_address_space,
3600             s->offset_within_address_space + MR_SIZE(s->size),
3601             s->mr->name ? s->mr->name : "(noname)",
3602             i < ARRAY_SIZE(names) ? names[i] : "",
3603             s->mr == root ? " [ROOT]" : "",
3604             s == d->mru_section ? " [MRU]" : "",
3605             s->mr->is_iommu ? " [iommu]" : "");
3606 
3607         if (s->mr->alias) {
3608             qemu_printf(" alias=%s", s->mr->alias->name ?
3609                     s->mr->alias->name : "noname");
3610         }
3611         qemu_printf("\n");
3612     }
3613 
3614     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3615                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3616     for (i = 0; i < d->map.nodes_nb; ++i) {
3617         int j, jprev;
3618         PhysPageEntry prev;
3619         Node *n = d->map.nodes + i;
3620 
3621         qemu_printf("      [%d]\n", i);
3622 
3623         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3624             PhysPageEntry *pe = *n + j;
3625 
3626             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3627                 continue;
3628             }
3629 
3630             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3631 
3632             jprev = j;
3633             prev = *pe;
3634         }
3635 
3636         if (jprev != ARRAY_SIZE(*n)) {
3637             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3638         }
3639     }
3640 }
3641 
3642 /* Require any discards to work. */
3643 static unsigned int ram_block_discard_required_cnt;
3644 /* Require only coordinated discards to work. */
3645 static unsigned int ram_block_coordinated_discard_required_cnt;
3646 /* Disable any discards. */
3647 static unsigned int ram_block_discard_disabled_cnt;
3648 /* Disable only uncoordinated discards. */
3649 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3650 static QemuMutex ram_block_discard_disable_mutex;
3651 
3652 static void ram_block_discard_disable_mutex_lock(void)
3653 {
3654     static gsize initialized;
3655 
3656     if (g_once_init_enter(&initialized)) {
3657         qemu_mutex_init(&ram_block_discard_disable_mutex);
3658         g_once_init_leave(&initialized, 1);
3659     }
3660     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3661 }
3662 
3663 static void ram_block_discard_disable_mutex_unlock(void)
3664 {
3665     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3666 }
3667 
3668 int ram_block_discard_disable(bool state)
3669 {
3670     int ret = 0;
3671 
3672     ram_block_discard_disable_mutex_lock();
3673     if (!state) {
3674         ram_block_discard_disabled_cnt--;
3675     } else if (ram_block_discard_required_cnt ||
3676                ram_block_coordinated_discard_required_cnt) {
3677         ret = -EBUSY;
3678     } else {
3679         ram_block_discard_disabled_cnt++;
3680     }
3681     ram_block_discard_disable_mutex_unlock();
3682     return ret;
3683 }
3684 
3685 int ram_block_uncoordinated_discard_disable(bool state)
3686 {
3687     int ret = 0;
3688 
3689     ram_block_discard_disable_mutex_lock();
3690     if (!state) {
3691         ram_block_uncoordinated_discard_disabled_cnt--;
3692     } else if (ram_block_discard_required_cnt) {
3693         ret = -EBUSY;
3694     } else {
3695         ram_block_uncoordinated_discard_disabled_cnt++;
3696     }
3697     ram_block_discard_disable_mutex_unlock();
3698     return ret;
3699 }
3700 
3701 int ram_block_discard_require(bool state)
3702 {
3703     int ret = 0;
3704 
3705     ram_block_discard_disable_mutex_lock();
3706     if (!state) {
3707         ram_block_discard_required_cnt--;
3708     } else if (ram_block_discard_disabled_cnt ||
3709                ram_block_uncoordinated_discard_disabled_cnt) {
3710         ret = -EBUSY;
3711     } else {
3712         ram_block_discard_required_cnt++;
3713     }
3714     ram_block_discard_disable_mutex_unlock();
3715     return ret;
3716 }
3717 
3718 int ram_block_coordinated_discard_require(bool state)
3719 {
3720     int ret = 0;
3721 
3722     ram_block_discard_disable_mutex_lock();
3723     if (!state) {
3724         ram_block_coordinated_discard_required_cnt--;
3725     } else if (ram_block_discard_disabled_cnt) {
3726         ret = -EBUSY;
3727     } else {
3728         ram_block_coordinated_discard_required_cnt++;
3729     }
3730     ram_block_discard_disable_mutex_unlock();
3731     return ret;
3732 }
3733 
3734 bool ram_block_discard_is_disabled(void)
3735 {
3736     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3737            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3738 }
3739 
3740 bool ram_block_discard_is_required(void)
3741 {
3742     return qatomic_read(&ram_block_discard_required_cnt) ||
3743            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3744 }
3745