xref: /qemu/system/physmem.c (revision 8e3b0cbb7212a1e5707ed2d4c26b4e3d2483768d)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/madvise.h"
27 
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
31 
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/qtest.h"
41 #include "qemu/timer.h"
42 #include "qemu/config-file.h"
43 #include "qemu/error-report.h"
44 #include "qemu/qemu-print.h"
45 #include "qemu/log.h"
46 #include "qemu/memalign.h"
47 #include "exec/memory.h"
48 #include "exec/ioport.h"
49 #include "sysemu/dma.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/hw_accel.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
54 
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58 
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
63 
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 
67 #include "qemu/pmem.h"
68 
69 #include "migration/vmstate.h"
70 
71 #include "qemu/range.h"
72 #ifndef _WIN32
73 #include "qemu/mmap-alloc.h"
74 #endif
75 
76 #include "monitor/monitor.h"
77 
78 #ifdef CONFIG_LIBDAXCTL
79 #include <daxctl/libdaxctl.h>
80 #endif
81 
82 //#define DEBUG_SUBPAGE
83 
84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
85  * are protected by the ramlist lock.
86  */
87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 
89 static MemoryRegion *system_memory;
90 static MemoryRegion *system_io;
91 
92 AddressSpace address_space_io;
93 AddressSpace address_space_memory;
94 
95 static MemoryRegion io_mem_unassigned;
96 
97 typedef struct PhysPageEntry PhysPageEntry;
98 
99 struct PhysPageEntry {
100     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
101     uint32_t skip : 6;
102      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
103     uint32_t ptr : 26;
104 };
105 
106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
107 
108 /* Size of the L2 (and L3, etc) page tables.  */
109 #define ADDR_SPACE_BITS 64
110 
111 #define P_L2_BITS 9
112 #define P_L2_SIZE (1 << P_L2_BITS)
113 
114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
115 
116 typedef PhysPageEntry Node[P_L2_SIZE];
117 
118 typedef struct PhysPageMap {
119     struct rcu_head rcu;
120 
121     unsigned sections_nb;
122     unsigned sections_nb_alloc;
123     unsigned nodes_nb;
124     unsigned nodes_nb_alloc;
125     Node *nodes;
126     MemoryRegionSection *sections;
127 } PhysPageMap;
128 
129 struct AddressSpaceDispatch {
130     MemoryRegionSection *mru_section;
131     /* This is a multi-level map on the physical address space.
132      * The bottom level has pointers to MemoryRegionSections.
133      */
134     PhysPageEntry phys_map;
135     PhysPageMap map;
136 };
137 
138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
139 typedef struct subpage_t {
140     MemoryRegion iomem;
141     FlatView *fv;
142     hwaddr base;
143     uint16_t sub_section[];
144 } subpage_t;
145 
146 #define PHYS_SECTION_UNASSIGNED 0
147 
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_log_global_after_sync(MemoryListener *listener);
151 static void tcg_commit(MemoryListener *listener);
152 
153 /**
154  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
155  * @cpu: the CPU whose AddressSpace this is
156  * @as: the AddressSpace itself
157  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
158  * @tcg_as_listener: listener for tracking changes to the AddressSpace
159  */
160 struct CPUAddressSpace {
161     CPUState *cpu;
162     AddressSpace *as;
163     struct AddressSpaceDispatch *memory_dispatch;
164     MemoryListener tcg_as_listener;
165 };
166 
167 struct DirtyBitmapSnapshot {
168     ram_addr_t start;
169     ram_addr_t end;
170     unsigned long dirty[];
171 };
172 
173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
174 {
175     static unsigned alloc_hint = 16;
176     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
177         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
178         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
179         alloc_hint = map->nodes_nb_alloc;
180     }
181 }
182 
183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
184 {
185     unsigned i;
186     uint32_t ret;
187     PhysPageEntry e;
188     PhysPageEntry *p;
189 
190     ret = map->nodes_nb++;
191     p = map->nodes[ret];
192     assert(ret != PHYS_MAP_NODE_NIL);
193     assert(ret != map->nodes_nb_alloc);
194 
195     e.skip = leaf ? 0 : 1;
196     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
197     for (i = 0; i < P_L2_SIZE; ++i) {
198         memcpy(&p[i], &e, sizeof(e));
199     }
200     return ret;
201 }
202 
203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
204                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
205                                 int level)
206 {
207     PhysPageEntry *p;
208     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
209 
210     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
211         lp->ptr = phys_map_node_alloc(map, level == 0);
212     }
213     p = map->nodes[lp->ptr];
214     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
215 
216     while (*nb && lp < &p[P_L2_SIZE]) {
217         if ((*index & (step - 1)) == 0 && *nb >= step) {
218             lp->skip = 0;
219             lp->ptr = leaf;
220             *index += step;
221             *nb -= step;
222         } else {
223             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
224         }
225         ++lp;
226     }
227 }
228 
229 static void phys_page_set(AddressSpaceDispatch *d,
230                           hwaddr index, uint64_t nb,
231                           uint16_t leaf)
232 {
233     /* Wildly overreserve - it doesn't matter much. */
234     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
235 
236     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 }
238 
239 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
240  * and update our entry so we can skip it and go directly to the destination.
241  */
242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
243 {
244     unsigned valid_ptr = P_L2_SIZE;
245     int valid = 0;
246     PhysPageEntry *p;
247     int i;
248 
249     if (lp->ptr == PHYS_MAP_NODE_NIL) {
250         return;
251     }
252 
253     p = nodes[lp->ptr];
254     for (i = 0; i < P_L2_SIZE; i++) {
255         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
256             continue;
257         }
258 
259         valid_ptr = i;
260         valid++;
261         if (p[i].skip) {
262             phys_page_compact(&p[i], nodes);
263         }
264     }
265 
266     /* We can only compress if there's only one child. */
267     if (valid != 1) {
268         return;
269     }
270 
271     assert(valid_ptr < P_L2_SIZE);
272 
273     /* Don't compress if it won't fit in the # of bits we have. */
274     if (P_L2_LEVELS >= (1 << 6) &&
275         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
276         return;
277     }
278 
279     lp->ptr = p[valid_ptr].ptr;
280     if (!p[valid_ptr].skip) {
281         /* If our only child is a leaf, make this a leaf. */
282         /* By design, we should have made this node a leaf to begin with so we
283          * should never reach here.
284          * But since it's so simple to handle this, let's do it just in case we
285          * change this rule.
286          */
287         lp->skip = 0;
288     } else {
289         lp->skip += p[valid_ptr].skip;
290     }
291 }
292 
293 void address_space_dispatch_compact(AddressSpaceDispatch *d)
294 {
295     if (d->phys_map.skip) {
296         phys_page_compact(&d->phys_map, d->map.nodes);
297     }
298 }
299 
300 static inline bool section_covers_addr(const MemoryRegionSection *section,
301                                        hwaddr addr)
302 {
303     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
304      * the section must cover the entire address space.
305      */
306     return int128_gethi(section->size) ||
307            range_covers_byte(section->offset_within_address_space,
308                              int128_getlo(section->size), addr);
309 }
310 
311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
312 {
313     PhysPageEntry lp = d->phys_map, *p;
314     Node *nodes = d->map.nodes;
315     MemoryRegionSection *sections = d->map.sections;
316     hwaddr index = addr >> TARGET_PAGE_BITS;
317     int i;
318 
319     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
320         if (lp.ptr == PHYS_MAP_NODE_NIL) {
321             return &sections[PHYS_SECTION_UNASSIGNED];
322         }
323         p = nodes[lp.ptr];
324         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325     }
326 
327     if (section_covers_addr(&sections[lp.ptr], addr)) {
328         return &sections[lp.ptr];
329     } else {
330         return &sections[PHYS_SECTION_UNASSIGNED];
331     }
332 }
333 
334 /* Called from RCU critical section */
335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
336                                                         hwaddr addr,
337                                                         bool resolve_subpage)
338 {
339     MemoryRegionSection *section = qatomic_read(&d->mru_section);
340     subpage_t *subpage;
341 
342     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
343         !section_covers_addr(section, addr)) {
344         section = phys_page_find(d, addr);
345         qatomic_set(&d->mru_section, section);
346     }
347     if (resolve_subpage && section->mr->subpage) {
348         subpage = container_of(section->mr, subpage_t, iomem);
349         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
350     }
351     return section;
352 }
353 
354 /* Called from RCU critical section */
355 static MemoryRegionSection *
356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
357                                  hwaddr *plen, bool resolve_subpage)
358 {
359     MemoryRegionSection *section;
360     MemoryRegion *mr;
361     Int128 diff;
362 
363     section = address_space_lookup_region(d, addr, resolve_subpage);
364     /* Compute offset within MemoryRegionSection */
365     addr -= section->offset_within_address_space;
366 
367     /* Compute offset within MemoryRegion */
368     *xlat = addr + section->offset_within_region;
369 
370     mr = section->mr;
371 
372     /* MMIO registers can be expected to perform full-width accesses based only
373      * on their address, without considering adjacent registers that could
374      * decode to completely different MemoryRegions.  When such registers
375      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
376      * regions overlap wildly.  For this reason we cannot clamp the accesses
377      * here.
378      *
379      * If the length is small (as is the case for address_space_ldl/stl),
380      * everything works fine.  If the incoming length is large, however,
381      * the caller really has to do the clamping through memory_access_size.
382      */
383     if (memory_region_is_ram(mr)) {
384         diff = int128_sub(section->size, int128_make64(addr));
385         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
386     }
387     return section;
388 }
389 
390 /**
391  * address_space_translate_iommu - translate an address through an IOMMU
392  * memory region and then through the target address space.
393  *
394  * @iommu_mr: the IOMMU memory region that we start the translation from
395  * @addr: the address to be translated through the MMU
396  * @xlat: the translated address offset within the destination memory region.
397  *        It cannot be %NULL.
398  * @plen_out: valid read/write length of the translated address. It
399  *            cannot be %NULL.
400  * @page_mask_out: page mask for the translated address. This
401  *            should only be meaningful for IOMMU translated
402  *            addresses, since there may be huge pages that this bit
403  *            would tell. It can be %NULL if we don't care about it.
404  * @is_write: whether the translation operation is for write
405  * @is_mmio: whether this can be MMIO, set true if it can
406  * @target_as: the address space targeted by the IOMMU
407  * @attrs: transaction attributes
408  *
409  * This function is called from RCU critical section.  It is the common
410  * part of flatview_do_translate and address_space_translate_cached.
411  */
412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
413                                                          hwaddr *xlat,
414                                                          hwaddr *plen_out,
415                                                          hwaddr *page_mask_out,
416                                                          bool is_write,
417                                                          bool is_mmio,
418                                                          AddressSpace **target_as,
419                                                          MemTxAttrs attrs)
420 {
421     MemoryRegionSection *section;
422     hwaddr page_mask = (hwaddr)-1;
423 
424     do {
425         hwaddr addr = *xlat;
426         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
427         int iommu_idx = 0;
428         IOMMUTLBEntry iotlb;
429 
430         if (imrc->attrs_to_index) {
431             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432         }
433 
434         iotlb = imrc->translate(iommu_mr, addr, is_write ?
435                                 IOMMU_WO : IOMMU_RO, iommu_idx);
436 
437         if (!(iotlb.perm & (1 << is_write))) {
438             goto unassigned;
439         }
440 
441         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
442                 | (addr & iotlb.addr_mask));
443         page_mask &= iotlb.addr_mask;
444         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
445         *target_as = iotlb.target_as;
446 
447         section = address_space_translate_internal(
448                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
449                 plen_out, is_mmio);
450 
451         iommu_mr = memory_region_get_iommu(section->mr);
452     } while (unlikely(iommu_mr));
453 
454     if (page_mask_out) {
455         *page_mask_out = page_mask;
456     }
457     return *section;
458 
459 unassigned:
460     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
461 }
462 
463 /**
464  * flatview_do_translate - translate an address in FlatView
465  *
466  * @fv: the flat view that we want to translate on
467  * @addr: the address to be translated in above address space
468  * @xlat: the translated address offset within memory region. It
469  *        cannot be @NULL.
470  * @plen_out: valid read/write length of the translated address. It
471  *            can be @NULL when we don't care about it.
472  * @page_mask_out: page mask for the translated address. This
473  *            should only be meaningful for IOMMU translated
474  *            addresses, since there may be huge pages that this bit
475  *            would tell. It can be @NULL if we don't care about it.
476  * @is_write: whether the translation operation is for write
477  * @is_mmio: whether this can be MMIO, set true if it can
478  * @target_as: the address space targeted by the IOMMU
479  * @attrs: memory transaction attributes
480  *
481  * This function is called from RCU critical section
482  */
483 static MemoryRegionSection flatview_do_translate(FlatView *fv,
484                                                  hwaddr addr,
485                                                  hwaddr *xlat,
486                                                  hwaddr *plen_out,
487                                                  hwaddr *page_mask_out,
488                                                  bool is_write,
489                                                  bool is_mmio,
490                                                  AddressSpace **target_as,
491                                                  MemTxAttrs attrs)
492 {
493     MemoryRegionSection *section;
494     IOMMUMemoryRegion *iommu_mr;
495     hwaddr plen = (hwaddr)(-1);
496 
497     if (!plen_out) {
498         plen_out = &plen;
499     }
500 
501     section = address_space_translate_internal(
502             flatview_to_dispatch(fv), addr, xlat,
503             plen_out, is_mmio);
504 
505     iommu_mr = memory_region_get_iommu(section->mr);
506     if (unlikely(iommu_mr)) {
507         return address_space_translate_iommu(iommu_mr, xlat,
508                                              plen_out, page_mask_out,
509                                              is_write, is_mmio,
510                                              target_as, attrs);
511     }
512     if (page_mask_out) {
513         /* Not behind an IOMMU, use default page size. */
514         *page_mask_out = ~TARGET_PAGE_MASK;
515     }
516 
517     return *section;
518 }
519 
520 /* Called from RCU critical section */
521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
522                                             bool is_write, MemTxAttrs attrs)
523 {
524     MemoryRegionSection section;
525     hwaddr xlat, page_mask;
526 
527     /*
528      * This can never be MMIO, and we don't really care about plen,
529      * but page mask.
530      */
531     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
532                                     NULL, &page_mask, is_write, false, &as,
533                                     attrs);
534 
535     /* Illegal translation */
536     if (section.mr == &io_mem_unassigned) {
537         goto iotlb_fail;
538     }
539 
540     /* Convert memory region offset into address space offset */
541     xlat += section.offset_within_address_space -
542         section.offset_within_region;
543 
544     return (IOMMUTLBEntry) {
545         .target_as = as,
546         .iova = addr & ~page_mask,
547         .translated_addr = xlat & ~page_mask,
548         .addr_mask = page_mask,
549         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
550         .perm = IOMMU_RW,
551     };
552 
553 iotlb_fail:
554     return (IOMMUTLBEntry) {0};
555 }
556 
557 /* Called from RCU critical section */
558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
559                                  hwaddr *plen, bool is_write,
560                                  MemTxAttrs attrs)
561 {
562     MemoryRegion *mr;
563     MemoryRegionSection section;
564     AddressSpace *as = NULL;
565 
566     /* This can be MMIO, so setup MMIO bit. */
567     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
568                                     is_write, true, &as, attrs);
569     mr = section.mr;
570 
571     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
572         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
573         *plen = MIN(page, *plen);
574     }
575 
576     return mr;
577 }
578 
579 typedef struct TCGIOMMUNotifier {
580     IOMMUNotifier n;
581     MemoryRegion *mr;
582     CPUState *cpu;
583     int iommu_idx;
584     bool active;
585 } TCGIOMMUNotifier;
586 
587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
588 {
589     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
590 
591     if (!notifier->active) {
592         return;
593     }
594     tlb_flush(notifier->cpu);
595     notifier->active = false;
596     /* We leave the notifier struct on the list to avoid reallocating it later.
597      * Generally the number of IOMMUs a CPU deals with will be small.
598      * In any case we can't unregister the iommu notifier from a notify
599      * callback.
600      */
601 }
602 
603 static void tcg_register_iommu_notifier(CPUState *cpu,
604                                         IOMMUMemoryRegion *iommu_mr,
605                                         int iommu_idx)
606 {
607     /* Make sure this CPU has an IOMMU notifier registered for this
608      * IOMMU/IOMMU index combination, so that we can flush its TLB
609      * when the IOMMU tells us the mappings we've cached have changed.
610      */
611     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
612     TCGIOMMUNotifier *notifier = NULL;
613     int i;
614 
615     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
616         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
617         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
618             break;
619         }
620     }
621     if (i == cpu->iommu_notifiers->len) {
622         /* Not found, add a new entry at the end of the array */
623         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
624         notifier = g_new0(TCGIOMMUNotifier, 1);
625         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
626 
627         notifier->mr = mr;
628         notifier->iommu_idx = iommu_idx;
629         notifier->cpu = cpu;
630         /* Rather than trying to register interest in the specific part
631          * of the iommu's address space that we've accessed and then
632          * expand it later as subsequent accesses touch more of it, we
633          * just register interest in the whole thing, on the assumption
634          * that iommu reconfiguration will be rare.
635          */
636         iommu_notifier_init(&notifier->n,
637                             tcg_iommu_unmap_notify,
638                             IOMMU_NOTIFIER_UNMAP,
639                             0,
640                             HWADDR_MAX,
641                             iommu_idx);
642         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
643                                               &error_fatal);
644     }
645 
646     if (!notifier->active) {
647         notifier->active = true;
648     }
649 }
650 
651 void tcg_iommu_free_notifier_list(CPUState *cpu)
652 {
653     /* Destroy the CPU's notifier list */
654     int i;
655     TCGIOMMUNotifier *notifier;
656 
657     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
658         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
659         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
660         g_free(notifier);
661     }
662     g_array_free(cpu->iommu_notifiers, true);
663 }
664 
665 void tcg_iommu_init_notifier_list(CPUState *cpu)
666 {
667     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 }
669 
670 /* Called from RCU critical section */
671 MemoryRegionSection *
672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
673                                   hwaddr *xlat, hwaddr *plen,
674                                   MemTxAttrs attrs, int *prot)
675 {
676     MemoryRegionSection *section;
677     IOMMUMemoryRegion *iommu_mr;
678     IOMMUMemoryRegionClass *imrc;
679     IOMMUTLBEntry iotlb;
680     int iommu_idx;
681     AddressSpaceDispatch *d =
682         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
683 
684     for (;;) {
685         section = address_space_translate_internal(d, addr, &addr, plen, false);
686 
687         iommu_mr = memory_region_get_iommu(section->mr);
688         if (!iommu_mr) {
689             break;
690         }
691 
692         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
693 
694         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
695         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
696         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
697          * doesn't short-cut its translation table walk.
698          */
699         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
700         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
701                 | (addr & iotlb.addr_mask));
702         /* Update the caller's prot bits to remove permissions the IOMMU
703          * is giving us a failure response for. If we get down to no
704          * permissions left at all we can give up now.
705          */
706         if (!(iotlb.perm & IOMMU_RO)) {
707             *prot &= ~(PAGE_READ | PAGE_EXEC);
708         }
709         if (!(iotlb.perm & IOMMU_WO)) {
710             *prot &= ~PAGE_WRITE;
711         }
712 
713         if (!*prot) {
714             goto translate_fail;
715         }
716 
717         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
718     }
719 
720     assert(!memory_region_is_iommu(section->mr));
721     *xlat = addr;
722     return section;
723 
724 translate_fail:
725     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
726 }
727 
728 void cpu_address_space_init(CPUState *cpu, int asidx,
729                             const char *prefix, MemoryRegion *mr)
730 {
731     CPUAddressSpace *newas;
732     AddressSpace *as = g_new0(AddressSpace, 1);
733     char *as_name;
734 
735     assert(mr);
736     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
737     address_space_init(as, mr, as_name);
738     g_free(as_name);
739 
740     /* Target code should have set num_ases before calling us */
741     assert(asidx < cpu->num_ases);
742 
743     if (asidx == 0) {
744         /* address space 0 gets the convenience alias */
745         cpu->as = as;
746     }
747 
748     /* KVM cannot currently support multiple address spaces. */
749     assert(asidx == 0 || !kvm_enabled());
750 
751     if (!cpu->cpu_ases) {
752         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
753     }
754 
755     newas = &cpu->cpu_ases[asidx];
756     newas->cpu = cpu;
757     newas->as = as;
758     if (tcg_enabled()) {
759         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
760         newas->tcg_as_listener.commit = tcg_commit;
761         newas->tcg_as_listener.name = "tcg";
762         memory_listener_register(&newas->tcg_as_listener, as);
763     }
764 }
765 
766 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
767 {
768     /* Return the AddressSpace corresponding to the specified index */
769     return cpu->cpu_ases[asidx].as;
770 }
771 
772 /* Add a watchpoint.  */
773 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
774                           int flags, CPUWatchpoint **watchpoint)
775 {
776     CPUWatchpoint *wp;
777     vaddr in_page;
778 
779     /* forbid ranges which are empty or run off the end of the address space */
780     if (len == 0 || (addr + len - 1) < addr) {
781         error_report("tried to set invalid watchpoint at %"
782                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
783         return -EINVAL;
784     }
785     wp = g_malloc(sizeof(*wp));
786 
787     wp->vaddr = addr;
788     wp->len = len;
789     wp->flags = flags;
790 
791     /* keep all GDB-injected watchpoints in front */
792     if (flags & BP_GDB) {
793         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
794     } else {
795         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
796     }
797 
798     in_page = -(addr | TARGET_PAGE_MASK);
799     if (len <= in_page) {
800         tlb_flush_page(cpu, addr);
801     } else {
802         tlb_flush(cpu);
803     }
804 
805     if (watchpoint)
806         *watchpoint = wp;
807     return 0;
808 }
809 
810 /* Remove a specific watchpoint.  */
811 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
812                           int flags)
813 {
814     CPUWatchpoint *wp;
815 
816     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
817         if (addr == wp->vaddr && len == wp->len
818                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
819             cpu_watchpoint_remove_by_ref(cpu, wp);
820             return 0;
821         }
822     }
823     return -ENOENT;
824 }
825 
826 /* Remove a specific watchpoint by reference.  */
827 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
828 {
829     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
830 
831     tlb_flush_page(cpu, watchpoint->vaddr);
832 
833     g_free(watchpoint);
834 }
835 
836 /* Remove all matching watchpoints.  */
837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
838 {
839     CPUWatchpoint *wp, *next;
840 
841     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
842         if (wp->flags & mask) {
843             cpu_watchpoint_remove_by_ref(cpu, wp);
844         }
845     }
846 }
847 
848 #ifdef CONFIG_TCG
849 /* Return true if this watchpoint address matches the specified
850  * access (ie the address range covered by the watchpoint overlaps
851  * partially or completely with the address range covered by the
852  * access).
853  */
854 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
855                                               vaddr addr, vaddr len)
856 {
857     /* We know the lengths are non-zero, but a little caution is
858      * required to avoid errors in the case where the range ends
859      * exactly at the top of the address space and so addr + len
860      * wraps round to zero.
861      */
862     vaddr wpend = wp->vaddr + wp->len - 1;
863     vaddr addrend = addr + len - 1;
864 
865     return !(addr > wpend || wp->vaddr > addrend);
866 }
867 
868 /* Return flags for watchpoints that match addr + prot.  */
869 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
870 {
871     CPUWatchpoint *wp;
872     int ret = 0;
873 
874     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
875         if (watchpoint_address_matches(wp, addr, len)) {
876             ret |= wp->flags;
877         }
878     }
879     return ret;
880 }
881 
882 /* Generate a debug exception if a watchpoint has been hit.  */
883 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
884                           MemTxAttrs attrs, int flags, uintptr_t ra)
885 {
886     CPUClass *cc = CPU_GET_CLASS(cpu);
887     CPUWatchpoint *wp;
888 
889     assert(tcg_enabled());
890     if (cpu->watchpoint_hit) {
891         /*
892          * We re-entered the check after replacing the TB.
893          * Now raise the debug interrupt so that it will
894          * trigger after the current instruction.
895          */
896         qemu_mutex_lock_iothread();
897         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
898         qemu_mutex_unlock_iothread();
899         return;
900     }
901 
902     if (cc->tcg_ops->adjust_watchpoint_address) {
903         /* this is currently used only by ARM BE32 */
904         addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
905     }
906     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
907         if (watchpoint_address_matches(wp, addr, len)
908             && (wp->flags & flags)) {
909             if (replay_running_debug()) {
910                 /*
911                  * replay_breakpoint reads icount.
912                  * Force recompile to succeed, because icount may
913                  * be read only at the end of the block.
914                  */
915                 if (!cpu->can_do_io) {
916                     /* Force execution of one insn next time.  */
917                     cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
918                     cpu_loop_exit_restore(cpu, ra);
919                 }
920                 /*
921                  * Don't process the watchpoints when we are
922                  * in a reverse debugging operation.
923                  */
924                 replay_breakpoint();
925                 return;
926             }
927             if (flags == BP_MEM_READ) {
928                 wp->flags |= BP_WATCHPOINT_HIT_READ;
929             } else {
930                 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
931             }
932             wp->hitaddr = MAX(addr, wp->vaddr);
933             wp->hitattrs = attrs;
934 
935             if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
936                 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
937                 wp->flags &= ~BP_WATCHPOINT_HIT;
938                 continue;
939             }
940             cpu->watchpoint_hit = wp;
941 
942             mmap_lock();
943             /* This call also restores vCPU state */
944             tb_check_watchpoint(cpu, ra);
945             if (wp->flags & BP_STOP_BEFORE_ACCESS) {
946                 cpu->exception_index = EXCP_DEBUG;
947                 mmap_unlock();
948                 cpu_loop_exit(cpu);
949             } else {
950                 /* Force execution of one insn next time.  */
951                 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
952                 mmap_unlock();
953                 cpu_loop_exit_noexc(cpu);
954             }
955         } else {
956             wp->flags &= ~BP_WATCHPOINT_HIT;
957         }
958     }
959 }
960 
961 #endif /* CONFIG_TCG */
962 
963 /* Called from RCU critical section */
964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
965 {
966     RAMBlock *block;
967 
968     block = qatomic_rcu_read(&ram_list.mru_block);
969     if (block && addr - block->offset < block->max_length) {
970         return block;
971     }
972     RAMBLOCK_FOREACH(block) {
973         if (addr - block->offset < block->max_length) {
974             goto found;
975         }
976     }
977 
978     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
979     abort();
980 
981 found:
982     /* It is safe to write mru_block outside the iothread lock.  This
983      * is what happens:
984      *
985      *     mru_block = xxx
986      *     rcu_read_unlock()
987      *                                        xxx removed from list
988      *                  rcu_read_lock()
989      *                  read mru_block
990      *                                        mru_block = NULL;
991      *                                        call_rcu(reclaim_ramblock, xxx);
992      *                  rcu_read_unlock()
993      *
994      * qatomic_rcu_set is not needed here.  The block was already published
995      * when it was placed into the list.  Here we're just making an extra
996      * copy of the pointer.
997      */
998     ram_list.mru_block = block;
999     return block;
1000 }
1001 
1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1003 {
1004     CPUState *cpu;
1005     ram_addr_t start1;
1006     RAMBlock *block;
1007     ram_addr_t end;
1008 
1009     assert(tcg_enabled());
1010     end = TARGET_PAGE_ALIGN(start + length);
1011     start &= TARGET_PAGE_MASK;
1012 
1013     RCU_READ_LOCK_GUARD();
1014     block = qemu_get_ram_block(start);
1015     assert(block == qemu_get_ram_block(end - 1));
1016     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1017     CPU_FOREACH(cpu) {
1018         tlb_reset_dirty(cpu, start1, length);
1019     }
1020 }
1021 
1022 /* Note: start and end must be within the same ram block.  */
1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1024                                               ram_addr_t length,
1025                                               unsigned client)
1026 {
1027     DirtyMemoryBlocks *blocks;
1028     unsigned long end, page, start_page;
1029     bool dirty = false;
1030     RAMBlock *ramblock;
1031     uint64_t mr_offset, mr_size;
1032 
1033     if (length == 0) {
1034         return false;
1035     }
1036 
1037     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1038     start_page = start >> TARGET_PAGE_BITS;
1039     page = start_page;
1040 
1041     WITH_RCU_READ_LOCK_GUARD() {
1042         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1043         ramblock = qemu_get_ram_block(start);
1044         /* Range sanity check on the ramblock */
1045         assert(start >= ramblock->offset &&
1046                start + length <= ramblock->offset + ramblock->used_length);
1047 
1048         while (page < end) {
1049             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1050             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1051             unsigned long num = MIN(end - page,
1052                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1053 
1054             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1055                                                   offset, num);
1056             page += num;
1057         }
1058 
1059         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1060         mr_size = (end - start_page) << TARGET_PAGE_BITS;
1061         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1062     }
1063 
1064     if (dirty && tcg_enabled()) {
1065         tlb_reset_dirty_range_all(start, length);
1066     }
1067 
1068     return dirty;
1069 }
1070 
1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1072     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1073 {
1074     DirtyMemoryBlocks *blocks;
1075     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1076     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1077     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1078     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1079     DirtyBitmapSnapshot *snap;
1080     unsigned long page, end, dest;
1081 
1082     snap = g_malloc0(sizeof(*snap) +
1083                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
1084     snap->start = first;
1085     snap->end   = last;
1086 
1087     page = first >> TARGET_PAGE_BITS;
1088     end  = last  >> TARGET_PAGE_BITS;
1089     dest = 0;
1090 
1091     WITH_RCU_READ_LOCK_GUARD() {
1092         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1093 
1094         while (page < end) {
1095             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1096             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1097             unsigned long num = MIN(end - page,
1098                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1099 
1100             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1101             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1102             offset >>= BITS_PER_LEVEL;
1103 
1104             bitmap_copy_and_clear_atomic(snap->dirty + dest,
1105                                          blocks->blocks[idx] + offset,
1106                                          num);
1107             page += num;
1108             dest += num >> BITS_PER_LEVEL;
1109         }
1110     }
1111 
1112     if (tcg_enabled()) {
1113         tlb_reset_dirty_range_all(start, length);
1114     }
1115 
1116     memory_region_clear_dirty_bitmap(mr, offset, length);
1117 
1118     return snap;
1119 }
1120 
1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1122                                             ram_addr_t start,
1123                                             ram_addr_t length)
1124 {
1125     unsigned long page, end;
1126 
1127     assert(start >= snap->start);
1128     assert(start + length <= snap->end);
1129 
1130     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1131     page = (start - snap->start) >> TARGET_PAGE_BITS;
1132 
1133     while (page < end) {
1134         if (test_bit(page, snap->dirty)) {
1135             return true;
1136         }
1137         page++;
1138     }
1139     return false;
1140 }
1141 
1142 /* Called from RCU critical section */
1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1144                                        MemoryRegionSection *section)
1145 {
1146     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1147     return section - d->map.sections;
1148 }
1149 
1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1151                             uint16_t section);
1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1153 
1154 static uint16_t phys_section_add(PhysPageMap *map,
1155                                  MemoryRegionSection *section)
1156 {
1157     /* The physical section number is ORed with a page-aligned
1158      * pointer to produce the iotlb entries.  Thus it should
1159      * never overflow into the page-aligned value.
1160      */
1161     assert(map->sections_nb < TARGET_PAGE_SIZE);
1162 
1163     if (map->sections_nb == map->sections_nb_alloc) {
1164         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1165         map->sections = g_renew(MemoryRegionSection, map->sections,
1166                                 map->sections_nb_alloc);
1167     }
1168     map->sections[map->sections_nb] = *section;
1169     memory_region_ref(section->mr);
1170     return map->sections_nb++;
1171 }
1172 
1173 static void phys_section_destroy(MemoryRegion *mr)
1174 {
1175     bool have_sub_page = mr->subpage;
1176 
1177     memory_region_unref(mr);
1178 
1179     if (have_sub_page) {
1180         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1181         object_unref(OBJECT(&subpage->iomem));
1182         g_free(subpage);
1183     }
1184 }
1185 
1186 static void phys_sections_free(PhysPageMap *map)
1187 {
1188     while (map->sections_nb > 0) {
1189         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1190         phys_section_destroy(section->mr);
1191     }
1192     g_free(map->sections);
1193     g_free(map->nodes);
1194 }
1195 
1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1197 {
1198     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1199     subpage_t *subpage;
1200     hwaddr base = section->offset_within_address_space
1201         & TARGET_PAGE_MASK;
1202     MemoryRegionSection *existing = phys_page_find(d, base);
1203     MemoryRegionSection subsection = {
1204         .offset_within_address_space = base,
1205         .size = int128_make64(TARGET_PAGE_SIZE),
1206     };
1207     hwaddr start, end;
1208 
1209     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1210 
1211     if (!(existing->mr->subpage)) {
1212         subpage = subpage_init(fv, base);
1213         subsection.fv = fv;
1214         subsection.mr = &subpage->iomem;
1215         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1216                       phys_section_add(&d->map, &subsection));
1217     } else {
1218         subpage = container_of(existing->mr, subpage_t, iomem);
1219     }
1220     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1221     end = start + int128_get64(section->size) - 1;
1222     subpage_register(subpage, start, end,
1223                      phys_section_add(&d->map, section));
1224 }
1225 
1226 
1227 static void register_multipage(FlatView *fv,
1228                                MemoryRegionSection *section)
1229 {
1230     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1231     hwaddr start_addr = section->offset_within_address_space;
1232     uint16_t section_index = phys_section_add(&d->map, section);
1233     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1234                                                     TARGET_PAGE_BITS));
1235 
1236     assert(num_pages);
1237     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1238 }
1239 
1240 /*
1241  * The range in *section* may look like this:
1242  *
1243  *      |s|PPPPPPP|s|
1244  *
1245  * where s stands for subpage and P for page.
1246  */
1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1248 {
1249     MemoryRegionSection remain = *section;
1250     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1251 
1252     /* register first subpage */
1253     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1254         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1255                         - remain.offset_within_address_space;
1256 
1257         MemoryRegionSection now = remain;
1258         now.size = int128_min(int128_make64(left), now.size);
1259         register_subpage(fv, &now);
1260         if (int128_eq(remain.size, now.size)) {
1261             return;
1262         }
1263         remain.size = int128_sub(remain.size, now.size);
1264         remain.offset_within_address_space += int128_get64(now.size);
1265         remain.offset_within_region += int128_get64(now.size);
1266     }
1267 
1268     /* register whole pages */
1269     if (int128_ge(remain.size, page_size)) {
1270         MemoryRegionSection now = remain;
1271         now.size = int128_and(now.size, int128_neg(page_size));
1272         register_multipage(fv, &now);
1273         if (int128_eq(remain.size, now.size)) {
1274             return;
1275         }
1276         remain.size = int128_sub(remain.size, now.size);
1277         remain.offset_within_address_space += int128_get64(now.size);
1278         remain.offset_within_region += int128_get64(now.size);
1279     }
1280 
1281     /* register last subpage */
1282     register_subpage(fv, &remain);
1283 }
1284 
1285 void qemu_flush_coalesced_mmio_buffer(void)
1286 {
1287     if (kvm_enabled())
1288         kvm_flush_coalesced_mmio_buffer();
1289 }
1290 
1291 void qemu_mutex_lock_ramlist(void)
1292 {
1293     qemu_mutex_lock(&ram_list.mutex);
1294 }
1295 
1296 void qemu_mutex_unlock_ramlist(void)
1297 {
1298     qemu_mutex_unlock(&ram_list.mutex);
1299 }
1300 
1301 GString *ram_block_format(void)
1302 {
1303     RAMBlock *block;
1304     char *psize;
1305     GString *buf = g_string_new("");
1306 
1307     RCU_READ_LOCK_GUARD();
1308     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1309                            "Block Name", "PSize", "Offset", "Used", "Total");
1310     RAMBLOCK_FOREACH(block) {
1311         psize = size_to_str(block->page_size);
1312         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1313                                " 0x%016" PRIx64 "\n", block->idstr, psize,
1314                                (uint64_t)block->offset,
1315                                (uint64_t)block->used_length,
1316                                (uint64_t)block->max_length);
1317         g_free(psize);
1318     }
1319 
1320     return buf;
1321 }
1322 
1323 #ifdef __linux__
1324 /*
1325  * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1326  * may or may not name the same files / on the same filesystem now as
1327  * when we actually open and map them.  Iterate over the file
1328  * descriptors instead, and use qemu_fd_getpagesize().
1329  */
1330 static int find_min_backend_pagesize(Object *obj, void *opaque)
1331 {
1332     long *hpsize_min = opaque;
1333 
1334     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1335         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1336         long hpsize = host_memory_backend_pagesize(backend);
1337 
1338         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1339             *hpsize_min = hpsize;
1340         }
1341     }
1342 
1343     return 0;
1344 }
1345 
1346 static int find_max_backend_pagesize(Object *obj, void *opaque)
1347 {
1348     long *hpsize_max = opaque;
1349 
1350     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1351         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1352         long hpsize = host_memory_backend_pagesize(backend);
1353 
1354         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1355             *hpsize_max = hpsize;
1356         }
1357     }
1358 
1359     return 0;
1360 }
1361 
1362 /*
1363  * TODO: We assume right now that all mapped host memory backends are
1364  * used as RAM, however some might be used for different purposes.
1365  */
1366 long qemu_minrampagesize(void)
1367 {
1368     long hpsize = LONG_MAX;
1369     Object *memdev_root = object_resolve_path("/objects", NULL);
1370 
1371     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1372     return hpsize;
1373 }
1374 
1375 long qemu_maxrampagesize(void)
1376 {
1377     long pagesize = 0;
1378     Object *memdev_root = object_resolve_path("/objects", NULL);
1379 
1380     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1381     return pagesize;
1382 }
1383 #else
1384 long qemu_minrampagesize(void)
1385 {
1386     return qemu_real_host_page_size();
1387 }
1388 long qemu_maxrampagesize(void)
1389 {
1390     return qemu_real_host_page_size();
1391 }
1392 #endif
1393 
1394 #ifdef CONFIG_POSIX
1395 static int64_t get_file_size(int fd)
1396 {
1397     int64_t size;
1398 #if defined(__linux__)
1399     struct stat st;
1400 
1401     if (fstat(fd, &st) < 0) {
1402         return -errno;
1403     }
1404 
1405     /* Special handling for devdax character devices */
1406     if (S_ISCHR(st.st_mode)) {
1407         g_autofree char *subsystem_path = NULL;
1408         g_autofree char *subsystem = NULL;
1409 
1410         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1411                                          major(st.st_rdev), minor(st.st_rdev));
1412         subsystem = g_file_read_link(subsystem_path, NULL);
1413 
1414         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1415             g_autofree char *size_path = NULL;
1416             g_autofree char *size_str = NULL;
1417 
1418             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1419                                     major(st.st_rdev), minor(st.st_rdev));
1420 
1421             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1422                 return g_ascii_strtoll(size_str, NULL, 0);
1423             }
1424         }
1425     }
1426 #endif /* defined(__linux__) */
1427 
1428     /* st.st_size may be zero for special files yet lseek(2) works */
1429     size = lseek(fd, 0, SEEK_END);
1430     if (size < 0) {
1431         return -errno;
1432     }
1433     return size;
1434 }
1435 
1436 static int64_t get_file_align(int fd)
1437 {
1438     int64_t align = -1;
1439 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1440     struct stat st;
1441 
1442     if (fstat(fd, &st) < 0) {
1443         return -errno;
1444     }
1445 
1446     /* Special handling for devdax character devices */
1447     if (S_ISCHR(st.st_mode)) {
1448         g_autofree char *path = NULL;
1449         g_autofree char *rpath = NULL;
1450         struct daxctl_ctx *ctx;
1451         struct daxctl_region *region;
1452         int rc = 0;
1453 
1454         path = g_strdup_printf("/sys/dev/char/%d:%d",
1455                     major(st.st_rdev), minor(st.st_rdev));
1456         rpath = realpath(path, NULL);
1457         if (!rpath) {
1458             return -errno;
1459         }
1460 
1461         rc = daxctl_new(&ctx);
1462         if (rc) {
1463             return -1;
1464         }
1465 
1466         daxctl_region_foreach(ctx, region) {
1467             if (strstr(rpath, daxctl_region_get_path(region))) {
1468                 align = daxctl_region_get_align(region);
1469                 break;
1470             }
1471         }
1472         daxctl_unref(ctx);
1473     }
1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1475 
1476     return align;
1477 }
1478 
1479 static int file_ram_open(const char *path,
1480                          const char *region_name,
1481                          bool readonly,
1482                          bool *created,
1483                          Error **errp)
1484 {
1485     char *filename;
1486     char *sanitized_name;
1487     char *c;
1488     int fd = -1;
1489 
1490     *created = false;
1491     for (;;) {
1492         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1493         if (fd >= 0) {
1494             /* @path names an existing file, use it */
1495             break;
1496         }
1497         if (errno == ENOENT) {
1498             /* @path names a file that doesn't exist, create it */
1499             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1500             if (fd >= 0) {
1501                 *created = true;
1502                 break;
1503             }
1504         } else if (errno == EISDIR) {
1505             /* @path names a directory, create a file there */
1506             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1507             sanitized_name = g_strdup(region_name);
1508             for (c = sanitized_name; *c != '\0'; c++) {
1509                 if (*c == '/') {
1510                     *c = '_';
1511                 }
1512             }
1513 
1514             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1515                                        sanitized_name);
1516             g_free(sanitized_name);
1517 
1518             fd = mkstemp(filename);
1519             if (fd >= 0) {
1520                 unlink(filename);
1521                 g_free(filename);
1522                 break;
1523             }
1524             g_free(filename);
1525         }
1526         if (errno != EEXIST && errno != EINTR) {
1527             error_setg_errno(errp, errno,
1528                              "can't open backing store %s for guest RAM",
1529                              path);
1530             return -1;
1531         }
1532         /*
1533          * Try again on EINTR and EEXIST.  The latter happens when
1534          * something else creates the file between our two open().
1535          */
1536     }
1537 
1538     return fd;
1539 }
1540 
1541 static void *file_ram_alloc(RAMBlock *block,
1542                             ram_addr_t memory,
1543                             int fd,
1544                             bool readonly,
1545                             bool truncate,
1546                             off_t offset,
1547                             Error **errp)
1548 {
1549     uint32_t qemu_map_flags;
1550     void *area;
1551 
1552     block->page_size = qemu_fd_getpagesize(fd);
1553     if (block->mr->align % block->page_size) {
1554         error_setg(errp, "alignment 0x%" PRIx64
1555                    " must be multiples of page size 0x%zx",
1556                    block->mr->align, block->page_size);
1557         return NULL;
1558     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1559         error_setg(errp, "alignment 0x%" PRIx64
1560                    " must be a power of two", block->mr->align);
1561         return NULL;
1562     }
1563     block->mr->align = MAX(block->page_size, block->mr->align);
1564 #if defined(__s390x__)
1565     if (kvm_enabled()) {
1566         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1567     }
1568 #endif
1569 
1570     if (memory < block->page_size) {
1571         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1572                    "or larger than page size 0x%zx",
1573                    memory, block->page_size);
1574         return NULL;
1575     }
1576 
1577     memory = ROUND_UP(memory, block->page_size);
1578 
1579     /*
1580      * ftruncate is not supported by hugetlbfs in older
1581      * hosts, so don't bother bailing out on errors.
1582      * If anything goes wrong with it under other filesystems,
1583      * mmap will fail.
1584      *
1585      * Do not truncate the non-empty backend file to avoid corrupting
1586      * the existing data in the file. Disabling shrinking is not
1587      * enough. For example, the current vNVDIMM implementation stores
1588      * the guest NVDIMM labels at the end of the backend file. If the
1589      * backend file is later extended, QEMU will not be able to find
1590      * those labels. Therefore, extending the non-empty backend file
1591      * is disabled as well.
1592      */
1593     if (truncate && ftruncate(fd, memory)) {
1594         perror("ftruncate");
1595     }
1596 
1597     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1598     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1599     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1600     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1601     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1602     if (area == MAP_FAILED) {
1603         error_setg_errno(errp, errno,
1604                          "unable to map backing store for guest RAM");
1605         return NULL;
1606     }
1607 
1608     block->fd = fd;
1609     return area;
1610 }
1611 #endif
1612 
1613 /* Allocate space within the ram_addr_t space that governs the
1614  * dirty bitmaps.
1615  * Called with the ramlist lock held.
1616  */
1617 static ram_addr_t find_ram_offset(ram_addr_t size)
1618 {
1619     RAMBlock *block, *next_block;
1620     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1621 
1622     assert(size != 0); /* it would hand out same offset multiple times */
1623 
1624     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1625         return 0;
1626     }
1627 
1628     RAMBLOCK_FOREACH(block) {
1629         ram_addr_t candidate, next = RAM_ADDR_MAX;
1630 
1631         /* Align blocks to start on a 'long' in the bitmap
1632          * which makes the bitmap sync'ing take the fast path.
1633          */
1634         candidate = block->offset + block->max_length;
1635         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1636 
1637         /* Search for the closest following block
1638          * and find the gap.
1639          */
1640         RAMBLOCK_FOREACH(next_block) {
1641             if (next_block->offset >= candidate) {
1642                 next = MIN(next, next_block->offset);
1643             }
1644         }
1645 
1646         /* If it fits remember our place and remember the size
1647          * of gap, but keep going so that we might find a smaller
1648          * gap to fill so avoiding fragmentation.
1649          */
1650         if (next - candidate >= size && next - candidate < mingap) {
1651             offset = candidate;
1652             mingap = next - candidate;
1653         }
1654 
1655         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1656     }
1657 
1658     if (offset == RAM_ADDR_MAX) {
1659         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1660                 (uint64_t)size);
1661         abort();
1662     }
1663 
1664     trace_find_ram_offset(size, offset);
1665 
1666     return offset;
1667 }
1668 
1669 static unsigned long last_ram_page(void)
1670 {
1671     RAMBlock *block;
1672     ram_addr_t last = 0;
1673 
1674     RCU_READ_LOCK_GUARD();
1675     RAMBLOCK_FOREACH(block) {
1676         last = MAX(last, block->offset + block->max_length);
1677     }
1678     return last >> TARGET_PAGE_BITS;
1679 }
1680 
1681 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1682 {
1683     int ret;
1684 
1685     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1686     if (!machine_dump_guest_core(current_machine)) {
1687         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1688         if (ret) {
1689             perror("qemu_madvise");
1690             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1691                             "but dump_guest_core=off specified\n");
1692         }
1693     }
1694 }
1695 
1696 const char *qemu_ram_get_idstr(RAMBlock *rb)
1697 {
1698     return rb->idstr;
1699 }
1700 
1701 void *qemu_ram_get_host_addr(RAMBlock *rb)
1702 {
1703     return rb->host;
1704 }
1705 
1706 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1707 {
1708     return rb->offset;
1709 }
1710 
1711 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1712 {
1713     return rb->used_length;
1714 }
1715 
1716 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1717 {
1718     return rb->max_length;
1719 }
1720 
1721 bool qemu_ram_is_shared(RAMBlock *rb)
1722 {
1723     return rb->flags & RAM_SHARED;
1724 }
1725 
1726 bool qemu_ram_is_noreserve(RAMBlock *rb)
1727 {
1728     return rb->flags & RAM_NORESERVE;
1729 }
1730 
1731 /* Note: Only set at the start of postcopy */
1732 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1733 {
1734     return rb->flags & RAM_UF_ZEROPAGE;
1735 }
1736 
1737 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1738 {
1739     rb->flags |= RAM_UF_ZEROPAGE;
1740 }
1741 
1742 bool qemu_ram_is_migratable(RAMBlock *rb)
1743 {
1744     return rb->flags & RAM_MIGRATABLE;
1745 }
1746 
1747 void qemu_ram_set_migratable(RAMBlock *rb)
1748 {
1749     rb->flags |= RAM_MIGRATABLE;
1750 }
1751 
1752 void qemu_ram_unset_migratable(RAMBlock *rb)
1753 {
1754     rb->flags &= ~RAM_MIGRATABLE;
1755 }
1756 
1757 /* Called with iothread lock held.  */
1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1759 {
1760     RAMBlock *block;
1761 
1762     assert(new_block);
1763     assert(!new_block->idstr[0]);
1764 
1765     if (dev) {
1766         char *id = qdev_get_dev_path(dev);
1767         if (id) {
1768             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1769             g_free(id);
1770         }
1771     }
1772     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1773 
1774     RCU_READ_LOCK_GUARD();
1775     RAMBLOCK_FOREACH(block) {
1776         if (block != new_block &&
1777             !strcmp(block->idstr, new_block->idstr)) {
1778             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779                     new_block->idstr);
1780             abort();
1781         }
1782     }
1783 }
1784 
1785 /* Called with iothread lock held.  */
1786 void qemu_ram_unset_idstr(RAMBlock *block)
1787 {
1788     /* FIXME: arch_init.c assumes that this is not called throughout
1789      * migration.  Ignore the problem since hot-unplug during migration
1790      * does not work anyway.
1791      */
1792     if (block) {
1793         memset(block->idstr, 0, sizeof(block->idstr));
1794     }
1795 }
1796 
1797 size_t qemu_ram_pagesize(RAMBlock *rb)
1798 {
1799     return rb->page_size;
1800 }
1801 
1802 /* Returns the largest size of page in use */
1803 size_t qemu_ram_pagesize_largest(void)
1804 {
1805     RAMBlock *block;
1806     size_t largest = 0;
1807 
1808     RAMBLOCK_FOREACH(block) {
1809         largest = MAX(largest, qemu_ram_pagesize(block));
1810     }
1811 
1812     return largest;
1813 }
1814 
1815 static int memory_try_enable_merging(void *addr, size_t len)
1816 {
1817     if (!machine_mem_merge(current_machine)) {
1818         /* disabled by the user */
1819         return 0;
1820     }
1821 
1822     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1823 }
1824 
1825 /*
1826  * Resizing RAM while migrating can result in the migration being canceled.
1827  * Care has to be taken if the guest might have already detected the memory.
1828  *
1829  * As memory core doesn't know how is memory accessed, it is up to
1830  * resize callback to update device state and/or add assertions to detect
1831  * misuse, if necessary.
1832  */
1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1834 {
1835     const ram_addr_t oldsize = block->used_length;
1836     const ram_addr_t unaligned_size = newsize;
1837 
1838     assert(block);
1839 
1840     newsize = HOST_PAGE_ALIGN(newsize);
1841 
1842     if (block->used_length == newsize) {
1843         /*
1844          * We don't have to resize the ram block (which only knows aligned
1845          * sizes), however, we have to notify if the unaligned size changed.
1846          */
1847         if (unaligned_size != memory_region_size(block->mr)) {
1848             memory_region_set_size(block->mr, unaligned_size);
1849             if (block->resized) {
1850                 block->resized(block->idstr, unaligned_size, block->host);
1851             }
1852         }
1853         return 0;
1854     }
1855 
1856     if (!(block->flags & RAM_RESIZEABLE)) {
1857         error_setg_errno(errp, EINVAL,
1858                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1859                          " != 0x" RAM_ADDR_FMT, block->idstr,
1860                          newsize, block->used_length);
1861         return -EINVAL;
1862     }
1863 
1864     if (block->max_length < newsize) {
1865         error_setg_errno(errp, EINVAL,
1866                          "Size too large: %s: 0x" RAM_ADDR_FMT
1867                          " > 0x" RAM_ADDR_FMT, block->idstr,
1868                          newsize, block->max_length);
1869         return -EINVAL;
1870     }
1871 
1872     /* Notify before modifying the ram block and touching the bitmaps. */
1873     if (block->host) {
1874         ram_block_notify_resize(block->host, oldsize, newsize);
1875     }
1876 
1877     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1878     block->used_length = newsize;
1879     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1880                                         DIRTY_CLIENTS_ALL);
1881     memory_region_set_size(block->mr, unaligned_size);
1882     if (block->resized) {
1883         block->resized(block->idstr, unaligned_size, block->host);
1884     }
1885     return 0;
1886 }
1887 
1888 /*
1889  * Trigger sync on the given ram block for range [start, start + length]
1890  * with the backing store if one is available.
1891  * Otherwise no-op.
1892  * @Note: this is supposed to be a synchronous op.
1893  */
1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1895 {
1896     /* The requested range should fit in within the block range */
1897     g_assert((start + length) <= block->used_length);
1898 
1899 #ifdef CONFIG_LIBPMEM
1900     /* The lack of support for pmem should not block the sync */
1901     if (ramblock_is_pmem(block)) {
1902         void *addr = ramblock_ptr(block, start);
1903         pmem_persist(addr, length);
1904         return;
1905     }
1906 #endif
1907     if (block->fd >= 0) {
1908         /**
1909          * Case there is no support for PMEM or the memory has not been
1910          * specified as persistent (or is not one) - use the msync.
1911          * Less optimal but still achieves the same goal
1912          */
1913         void *addr = ramblock_ptr(block, start);
1914         if (qemu_msync(addr, length, block->fd)) {
1915             warn_report("%s: failed to sync memory range: start: "
1916                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1917                     __func__, start, length);
1918         }
1919     }
1920 }
1921 
1922 /* Called with ram_list.mutex held */
1923 static void dirty_memory_extend(ram_addr_t old_ram_size,
1924                                 ram_addr_t new_ram_size)
1925 {
1926     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1927                                              DIRTY_MEMORY_BLOCK_SIZE);
1928     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1929                                              DIRTY_MEMORY_BLOCK_SIZE);
1930     int i;
1931 
1932     /* Only need to extend if block count increased */
1933     if (new_num_blocks <= old_num_blocks) {
1934         return;
1935     }
1936 
1937     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1938         DirtyMemoryBlocks *old_blocks;
1939         DirtyMemoryBlocks *new_blocks;
1940         int j;
1941 
1942         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1943         new_blocks = g_malloc(sizeof(*new_blocks) +
1944                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1945 
1946         if (old_num_blocks) {
1947             memcpy(new_blocks->blocks, old_blocks->blocks,
1948                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1949         }
1950 
1951         for (j = old_num_blocks; j < new_num_blocks; j++) {
1952             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1953         }
1954 
1955         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1956 
1957         if (old_blocks) {
1958             g_free_rcu(old_blocks, rcu);
1959         }
1960     }
1961 }
1962 
1963 static void ram_block_add(RAMBlock *new_block, Error **errp)
1964 {
1965     const bool noreserve = qemu_ram_is_noreserve(new_block);
1966     const bool shared = qemu_ram_is_shared(new_block);
1967     RAMBlock *block;
1968     RAMBlock *last_block = NULL;
1969     ram_addr_t old_ram_size, new_ram_size;
1970     Error *err = NULL;
1971 
1972     old_ram_size = last_ram_page();
1973 
1974     qemu_mutex_lock_ramlist();
1975     new_block->offset = find_ram_offset(new_block->max_length);
1976 
1977     if (!new_block->host) {
1978         if (xen_enabled()) {
1979             xen_ram_alloc(new_block->offset, new_block->max_length,
1980                           new_block->mr, &err);
1981             if (err) {
1982                 error_propagate(errp, err);
1983                 qemu_mutex_unlock_ramlist();
1984                 return;
1985             }
1986         } else {
1987             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1988                                                   &new_block->mr->align,
1989                                                   shared, noreserve);
1990             if (!new_block->host) {
1991                 error_setg_errno(errp, errno,
1992                                  "cannot set up guest memory '%s'",
1993                                  memory_region_name(new_block->mr));
1994                 qemu_mutex_unlock_ramlist();
1995                 return;
1996             }
1997             memory_try_enable_merging(new_block->host, new_block->max_length);
1998         }
1999     }
2000 
2001     new_ram_size = MAX(old_ram_size,
2002               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2003     if (new_ram_size > old_ram_size) {
2004         dirty_memory_extend(old_ram_size, new_ram_size);
2005     }
2006     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2007      * QLIST (which has an RCU-friendly variant) does not have insertion at
2008      * tail, so save the last element in last_block.
2009      */
2010     RAMBLOCK_FOREACH(block) {
2011         last_block = block;
2012         if (block->max_length < new_block->max_length) {
2013             break;
2014         }
2015     }
2016     if (block) {
2017         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2018     } else if (last_block) {
2019         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2020     } else { /* list is empty */
2021         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2022     }
2023     ram_list.mru_block = NULL;
2024 
2025     /* Write list before version */
2026     smp_wmb();
2027     ram_list.version++;
2028     qemu_mutex_unlock_ramlist();
2029 
2030     cpu_physical_memory_set_dirty_range(new_block->offset,
2031                                         new_block->used_length,
2032                                         DIRTY_CLIENTS_ALL);
2033 
2034     if (new_block->host) {
2035         qemu_ram_setup_dump(new_block->host, new_block->max_length);
2036         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2037         /*
2038          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2039          * Configure it unless the machine is a qtest server, in which case
2040          * KVM is not used and it may be forked (eg for fuzzing purposes).
2041          */
2042         if (!qtest_enabled()) {
2043             qemu_madvise(new_block->host, new_block->max_length,
2044                          QEMU_MADV_DONTFORK);
2045         }
2046         ram_block_notify_add(new_block->host, new_block->used_length,
2047                              new_block->max_length);
2048     }
2049 }
2050 
2051 #ifdef CONFIG_POSIX
2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2053                                  uint32_t ram_flags, int fd, off_t offset,
2054                                  bool readonly, Error **errp)
2055 {
2056     RAMBlock *new_block;
2057     Error *local_err = NULL;
2058     int64_t file_size, file_align;
2059 
2060     /* Just support these ram flags by now. */
2061     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2062                           RAM_PROTECTED)) == 0);
2063 
2064     if (xen_enabled()) {
2065         error_setg(errp, "-mem-path not supported with Xen");
2066         return NULL;
2067     }
2068 
2069     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2070         error_setg(errp,
2071                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2072         return NULL;
2073     }
2074 
2075     size = HOST_PAGE_ALIGN(size);
2076     file_size = get_file_size(fd);
2077     if (file_size > 0 && file_size < size) {
2078         error_setg(errp, "backing store size 0x%" PRIx64
2079                    " does not match 'size' option 0x" RAM_ADDR_FMT,
2080                    file_size, size);
2081         return NULL;
2082     }
2083 
2084     file_align = get_file_align(fd);
2085     if (file_align > 0 && file_align > mr->align) {
2086         error_setg(errp, "backing store align 0x%" PRIx64
2087                    " is larger than 'align' option 0x%" PRIx64,
2088                    file_align, mr->align);
2089         return NULL;
2090     }
2091 
2092     new_block = g_malloc0(sizeof(*new_block));
2093     new_block->mr = mr;
2094     new_block->used_length = size;
2095     new_block->max_length = size;
2096     new_block->flags = ram_flags;
2097     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2098                                      !file_size, offset, errp);
2099     if (!new_block->host) {
2100         g_free(new_block);
2101         return NULL;
2102     }
2103 
2104     ram_block_add(new_block, &local_err);
2105     if (local_err) {
2106         g_free(new_block);
2107         error_propagate(errp, local_err);
2108         return NULL;
2109     }
2110     return new_block;
2111 
2112 }
2113 
2114 
2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2116                                    uint32_t ram_flags, const char *mem_path,
2117                                    bool readonly, Error **errp)
2118 {
2119     int fd;
2120     bool created;
2121     RAMBlock *block;
2122 
2123     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2124                        errp);
2125     if (fd < 0) {
2126         return NULL;
2127     }
2128 
2129     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2130     if (!block) {
2131         if (created) {
2132             unlink(mem_path);
2133         }
2134         close(fd);
2135         return NULL;
2136     }
2137 
2138     return block;
2139 }
2140 #endif
2141 
2142 static
2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2144                                   void (*resized)(const char*,
2145                                                   uint64_t length,
2146                                                   void *host),
2147                                   void *host, uint32_t ram_flags,
2148                                   MemoryRegion *mr, Error **errp)
2149 {
2150     RAMBlock *new_block;
2151     Error *local_err = NULL;
2152 
2153     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2154                           RAM_NORESERVE)) == 0);
2155     assert(!host ^ (ram_flags & RAM_PREALLOC));
2156 
2157     size = HOST_PAGE_ALIGN(size);
2158     max_size = HOST_PAGE_ALIGN(max_size);
2159     new_block = g_malloc0(sizeof(*new_block));
2160     new_block->mr = mr;
2161     new_block->resized = resized;
2162     new_block->used_length = size;
2163     new_block->max_length = max_size;
2164     assert(max_size >= size);
2165     new_block->fd = -1;
2166     new_block->page_size = qemu_real_host_page_size();
2167     new_block->host = host;
2168     new_block->flags = ram_flags;
2169     ram_block_add(new_block, &local_err);
2170     if (local_err) {
2171         g_free(new_block);
2172         error_propagate(errp, local_err);
2173         return NULL;
2174     }
2175     return new_block;
2176 }
2177 
2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2179                                    MemoryRegion *mr, Error **errp)
2180 {
2181     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2182                                    errp);
2183 }
2184 
2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2186                          MemoryRegion *mr, Error **errp)
2187 {
2188     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2189     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2190 }
2191 
2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2193                                      void (*resized)(const char*,
2194                                                      uint64_t length,
2195                                                      void *host),
2196                                      MemoryRegion *mr, Error **errp)
2197 {
2198     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2199                                    RAM_RESIZEABLE, mr, errp);
2200 }
2201 
2202 static void reclaim_ramblock(RAMBlock *block)
2203 {
2204     if (block->flags & RAM_PREALLOC) {
2205         ;
2206     } else if (xen_enabled()) {
2207         xen_invalidate_map_cache_entry(block->host);
2208 #ifndef _WIN32
2209     } else if (block->fd >= 0) {
2210         qemu_ram_munmap(block->fd, block->host, block->max_length);
2211         close(block->fd);
2212 #endif
2213     } else {
2214         qemu_anon_ram_free(block->host, block->max_length);
2215     }
2216     g_free(block);
2217 }
2218 
2219 void qemu_ram_free(RAMBlock *block)
2220 {
2221     if (!block) {
2222         return;
2223     }
2224 
2225     if (block->host) {
2226         ram_block_notify_remove(block->host, block->used_length,
2227                                 block->max_length);
2228     }
2229 
2230     qemu_mutex_lock_ramlist();
2231     QLIST_REMOVE_RCU(block, next);
2232     ram_list.mru_block = NULL;
2233     /* Write list before version */
2234     smp_wmb();
2235     ram_list.version++;
2236     call_rcu(block, reclaim_ramblock, rcu);
2237     qemu_mutex_unlock_ramlist();
2238 }
2239 
2240 #ifndef _WIN32
2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2242 {
2243     RAMBlock *block;
2244     ram_addr_t offset;
2245     int flags;
2246     void *area, *vaddr;
2247 
2248     RAMBLOCK_FOREACH(block) {
2249         offset = addr - block->offset;
2250         if (offset < block->max_length) {
2251             vaddr = ramblock_ptr(block, offset);
2252             if (block->flags & RAM_PREALLOC) {
2253                 ;
2254             } else if (xen_enabled()) {
2255                 abort();
2256             } else {
2257                 flags = MAP_FIXED;
2258                 flags |= block->flags & RAM_SHARED ?
2259                          MAP_SHARED : MAP_PRIVATE;
2260                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2261                 if (block->fd >= 0) {
2262                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2263                                 flags, block->fd, offset);
2264                 } else {
2265                     flags |= MAP_ANONYMOUS;
2266                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2267                                 flags, -1, 0);
2268                 }
2269                 if (area != vaddr) {
2270                     error_report("Could not remap addr: "
2271                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2272                                  length, addr);
2273                     exit(1);
2274                 }
2275                 memory_try_enable_merging(vaddr, length);
2276                 qemu_ram_setup_dump(vaddr, length);
2277             }
2278         }
2279     }
2280 }
2281 #endif /* !_WIN32 */
2282 
2283 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2284  * This should not be used for general purpose DMA.  Use address_space_map
2285  * or address_space_rw instead. For local memory (e.g. video ram) that the
2286  * device owns, use memory_region_get_ram_ptr.
2287  *
2288  * Called within RCU critical section.
2289  */
2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2291 {
2292     RAMBlock *block = ram_block;
2293 
2294     if (block == NULL) {
2295         block = qemu_get_ram_block(addr);
2296         addr -= block->offset;
2297     }
2298 
2299     if (xen_enabled() && block->host == NULL) {
2300         /* We need to check if the requested address is in the RAM
2301          * because we don't want to map the entire memory in QEMU.
2302          * In that case just map until the end of the page.
2303          */
2304         if (block->offset == 0) {
2305             return xen_map_cache(addr, 0, 0, false);
2306         }
2307 
2308         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2309     }
2310     return ramblock_ptr(block, addr);
2311 }
2312 
2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2314  * but takes a size argument.
2315  *
2316  * Called within RCU critical section.
2317  */
2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2319                                  hwaddr *size, bool lock)
2320 {
2321     RAMBlock *block = ram_block;
2322     if (*size == 0) {
2323         return NULL;
2324     }
2325 
2326     if (block == NULL) {
2327         block = qemu_get_ram_block(addr);
2328         addr -= block->offset;
2329     }
2330     *size = MIN(*size, block->max_length - addr);
2331 
2332     if (xen_enabled() && block->host == NULL) {
2333         /* We need to check if the requested address is in the RAM
2334          * because we don't want to map the entire memory in QEMU.
2335          * In that case just map the requested area.
2336          */
2337         if (block->offset == 0) {
2338             return xen_map_cache(addr, *size, lock, lock);
2339         }
2340 
2341         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2342     }
2343 
2344     return ramblock_ptr(block, addr);
2345 }
2346 
2347 /* Return the offset of a hostpointer within a ramblock */
2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2349 {
2350     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2351     assert((uintptr_t)host >= (uintptr_t)rb->host);
2352     assert(res < rb->max_length);
2353 
2354     return res;
2355 }
2356 
2357 /*
2358  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2359  * in that RAMBlock.
2360  *
2361  * ptr: Host pointer to look up
2362  * round_offset: If true round the result offset down to a page boundary
2363  * *ram_addr: set to result ram_addr
2364  * *offset: set to result offset within the RAMBlock
2365  *
2366  * Returns: RAMBlock (or NULL if not found)
2367  *
2368  * By the time this function returns, the returned pointer is not protected
2369  * by RCU anymore.  If the caller is not within an RCU critical section and
2370  * does not hold the iothread lock, it must have other means of protecting the
2371  * pointer, such as a reference to the region that includes the incoming
2372  * ram_addr_t.
2373  */
2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2375                                    ram_addr_t *offset)
2376 {
2377     RAMBlock *block;
2378     uint8_t *host = ptr;
2379 
2380     if (xen_enabled()) {
2381         ram_addr_t ram_addr;
2382         RCU_READ_LOCK_GUARD();
2383         ram_addr = xen_ram_addr_from_mapcache(ptr);
2384         block = qemu_get_ram_block(ram_addr);
2385         if (block) {
2386             *offset = ram_addr - block->offset;
2387         }
2388         return block;
2389     }
2390 
2391     RCU_READ_LOCK_GUARD();
2392     block = qatomic_rcu_read(&ram_list.mru_block);
2393     if (block && block->host && host - block->host < block->max_length) {
2394         goto found;
2395     }
2396 
2397     RAMBLOCK_FOREACH(block) {
2398         /* This case append when the block is not mapped. */
2399         if (block->host == NULL) {
2400             continue;
2401         }
2402         if (host - block->host < block->max_length) {
2403             goto found;
2404         }
2405     }
2406 
2407     return NULL;
2408 
2409 found:
2410     *offset = (host - block->host);
2411     if (round_offset) {
2412         *offset &= TARGET_PAGE_MASK;
2413     }
2414     return block;
2415 }
2416 
2417 /*
2418  * Finds the named RAMBlock
2419  *
2420  * name: The name of RAMBlock to find
2421  *
2422  * Returns: RAMBlock (or NULL if not found)
2423  */
2424 RAMBlock *qemu_ram_block_by_name(const char *name)
2425 {
2426     RAMBlock *block;
2427 
2428     RAMBLOCK_FOREACH(block) {
2429         if (!strcmp(name, block->idstr)) {
2430             return block;
2431         }
2432     }
2433 
2434     return NULL;
2435 }
2436 
2437 /* Some of the softmmu routines need to translate from a host pointer
2438    (typically a TLB entry) back to a ram offset.  */
2439 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2440 {
2441     RAMBlock *block;
2442     ram_addr_t offset;
2443 
2444     block = qemu_ram_block_from_host(ptr, false, &offset);
2445     if (!block) {
2446         return RAM_ADDR_INVALID;
2447     }
2448 
2449     return block->offset + offset;
2450 }
2451 
2452 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2453                                  MemTxAttrs attrs, void *buf, hwaddr len);
2454 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2455                                   const void *buf, hwaddr len);
2456 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2457                                   bool is_write, MemTxAttrs attrs);
2458 
2459 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2460                                 unsigned len, MemTxAttrs attrs)
2461 {
2462     subpage_t *subpage = opaque;
2463     uint8_t buf[8];
2464     MemTxResult res;
2465 
2466 #if defined(DEBUG_SUBPAGE)
2467     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2468            subpage, len, addr);
2469 #endif
2470     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2471     if (res) {
2472         return res;
2473     }
2474     *data = ldn_p(buf, len);
2475     return MEMTX_OK;
2476 }
2477 
2478 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2479                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2480 {
2481     subpage_t *subpage = opaque;
2482     uint8_t buf[8];
2483 
2484 #if defined(DEBUG_SUBPAGE)
2485     printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2486            " value %"PRIx64"\n",
2487            __func__, subpage, len, addr, value);
2488 #endif
2489     stn_p(buf, len, value);
2490     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2491 }
2492 
2493 static bool subpage_accepts(void *opaque, hwaddr addr,
2494                             unsigned len, bool is_write,
2495                             MemTxAttrs attrs)
2496 {
2497     subpage_t *subpage = opaque;
2498 #if defined(DEBUG_SUBPAGE)
2499     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2500            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2501 #endif
2502 
2503     return flatview_access_valid(subpage->fv, addr + subpage->base,
2504                                  len, is_write, attrs);
2505 }
2506 
2507 static const MemoryRegionOps subpage_ops = {
2508     .read_with_attrs = subpage_read,
2509     .write_with_attrs = subpage_write,
2510     .impl.min_access_size = 1,
2511     .impl.max_access_size = 8,
2512     .valid.min_access_size = 1,
2513     .valid.max_access_size = 8,
2514     .valid.accepts = subpage_accepts,
2515     .endianness = DEVICE_NATIVE_ENDIAN,
2516 };
2517 
2518 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2519                             uint16_t section)
2520 {
2521     int idx, eidx;
2522 
2523     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2524         return -1;
2525     idx = SUBPAGE_IDX(start);
2526     eidx = SUBPAGE_IDX(end);
2527 #if defined(DEBUG_SUBPAGE)
2528     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2529            __func__, mmio, start, end, idx, eidx, section);
2530 #endif
2531     for (; idx <= eidx; idx++) {
2532         mmio->sub_section[idx] = section;
2533     }
2534 
2535     return 0;
2536 }
2537 
2538 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2539 {
2540     subpage_t *mmio;
2541 
2542     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2543     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2544     mmio->fv = fv;
2545     mmio->base = base;
2546     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2547                           NULL, TARGET_PAGE_SIZE);
2548     mmio->iomem.subpage = true;
2549 #if defined(DEBUG_SUBPAGE)
2550     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2551            mmio, base, TARGET_PAGE_SIZE);
2552 #endif
2553 
2554     return mmio;
2555 }
2556 
2557 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2558 {
2559     assert(fv);
2560     MemoryRegionSection section = {
2561         .fv = fv,
2562         .mr = mr,
2563         .offset_within_address_space = 0,
2564         .offset_within_region = 0,
2565         .size = int128_2_64(),
2566     };
2567 
2568     return phys_section_add(map, &section);
2569 }
2570 
2571 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2572                                       hwaddr index, MemTxAttrs attrs)
2573 {
2574     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2575     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2576     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2577     MemoryRegionSection *sections = d->map.sections;
2578 
2579     return &sections[index & ~TARGET_PAGE_MASK];
2580 }
2581 
2582 static void io_mem_init(void)
2583 {
2584     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2585                           NULL, UINT64_MAX);
2586 }
2587 
2588 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2589 {
2590     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2591     uint16_t n;
2592 
2593     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2594     assert(n == PHYS_SECTION_UNASSIGNED);
2595 
2596     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2597 
2598     return d;
2599 }
2600 
2601 void address_space_dispatch_free(AddressSpaceDispatch *d)
2602 {
2603     phys_sections_free(&d->map);
2604     g_free(d);
2605 }
2606 
2607 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2608 {
2609 }
2610 
2611 static void tcg_log_global_after_sync(MemoryListener *listener)
2612 {
2613     CPUAddressSpace *cpuas;
2614 
2615     /* Wait for the CPU to end the current TB.  This avoids the following
2616      * incorrect race:
2617      *
2618      *      vCPU                         migration
2619      *      ----------------------       -------------------------
2620      *      TLB check -> slow path
2621      *        notdirty_mem_write
2622      *          write to RAM
2623      *          mark dirty
2624      *                                   clear dirty flag
2625      *      TLB check -> fast path
2626      *                                   read memory
2627      *        write to RAM
2628      *
2629      * by pushing the migration thread's memory read after the vCPU thread has
2630      * written the memory.
2631      */
2632     if (replay_mode == REPLAY_MODE_NONE) {
2633         /*
2634          * VGA can make calls to this function while updating the screen.
2635          * In record/replay mode this causes a deadlock, because
2636          * run_on_cpu waits for rr mutex. Therefore no races are possible
2637          * in this case and no need for making run_on_cpu when
2638          * record/replay is enabled.
2639          */
2640         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2641         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2642     }
2643 }
2644 
2645 static void tcg_commit(MemoryListener *listener)
2646 {
2647     CPUAddressSpace *cpuas;
2648     AddressSpaceDispatch *d;
2649 
2650     assert(tcg_enabled());
2651     /* since each CPU stores ram addresses in its TLB cache, we must
2652        reset the modified entries */
2653     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2654     cpu_reloading_memory_map();
2655     /* The CPU and TLB are protected by the iothread lock.
2656      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2657      * may have split the RCU critical section.
2658      */
2659     d = address_space_to_dispatch(cpuas->as);
2660     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2661     tlb_flush(cpuas->cpu);
2662 }
2663 
2664 static void memory_map_init(void)
2665 {
2666     system_memory = g_malloc(sizeof(*system_memory));
2667 
2668     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2669     address_space_init(&address_space_memory, system_memory, "memory");
2670 
2671     system_io = g_malloc(sizeof(*system_io));
2672     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2673                           65536);
2674     address_space_init(&address_space_io, system_io, "I/O");
2675 }
2676 
2677 MemoryRegion *get_system_memory(void)
2678 {
2679     return system_memory;
2680 }
2681 
2682 MemoryRegion *get_system_io(void)
2683 {
2684     return system_io;
2685 }
2686 
2687 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2688                                      hwaddr length)
2689 {
2690     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2691     addr += memory_region_get_ram_addr(mr);
2692 
2693     /* No early return if dirty_log_mask is or becomes 0, because
2694      * cpu_physical_memory_set_dirty_range will still call
2695      * xen_modified_memory.
2696      */
2697     if (dirty_log_mask) {
2698         dirty_log_mask =
2699             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2700     }
2701     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2702         assert(tcg_enabled());
2703         tb_invalidate_phys_range(addr, addr + length);
2704         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2705     }
2706     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2707 }
2708 
2709 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2710 {
2711     /*
2712      * In principle this function would work on other memory region types too,
2713      * but the ROM device use case is the only one where this operation is
2714      * necessary.  Other memory regions should use the
2715      * address_space_read/write() APIs.
2716      */
2717     assert(memory_region_is_romd(mr));
2718 
2719     invalidate_and_set_dirty(mr, addr, size);
2720 }
2721 
2722 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2723 {
2724     unsigned access_size_max = mr->ops->valid.max_access_size;
2725 
2726     /* Regions are assumed to support 1-4 byte accesses unless
2727        otherwise specified.  */
2728     if (access_size_max == 0) {
2729         access_size_max = 4;
2730     }
2731 
2732     /* Bound the maximum access by the alignment of the address.  */
2733     if (!mr->ops->impl.unaligned) {
2734         unsigned align_size_max = addr & -addr;
2735         if (align_size_max != 0 && align_size_max < access_size_max) {
2736             access_size_max = align_size_max;
2737         }
2738     }
2739 
2740     /* Don't attempt accesses larger than the maximum.  */
2741     if (l > access_size_max) {
2742         l = access_size_max;
2743     }
2744     l = pow2floor(l);
2745 
2746     return l;
2747 }
2748 
2749 static bool prepare_mmio_access(MemoryRegion *mr)
2750 {
2751     bool release_lock = false;
2752 
2753     if (!qemu_mutex_iothread_locked()) {
2754         qemu_mutex_lock_iothread();
2755         release_lock = true;
2756     }
2757     if (mr->flush_coalesced_mmio) {
2758         qemu_flush_coalesced_mmio_buffer();
2759     }
2760 
2761     return release_lock;
2762 }
2763 
2764 /**
2765  * flatview_access_allowed
2766  * @mr: #MemoryRegion to be accessed
2767  * @attrs: memory transaction attributes
2768  * @addr: address within that memory region
2769  * @len: the number of bytes to access
2770  *
2771  * Check if a memory transaction is allowed.
2772  *
2773  * Returns: true if transaction is allowed, false if denied.
2774  */
2775 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2776                                     hwaddr addr, hwaddr len)
2777 {
2778     if (likely(!attrs.memory)) {
2779         return true;
2780     }
2781     if (memory_region_is_ram(mr)) {
2782         return true;
2783     }
2784     qemu_log_mask(LOG_GUEST_ERROR,
2785                   "Invalid access to non-RAM device at "
2786                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2787                   "region '%s'\n", addr, len, memory_region_name(mr));
2788     return false;
2789 }
2790 
2791 /* Called within RCU critical section.  */
2792 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2793                                            MemTxAttrs attrs,
2794                                            const void *ptr,
2795                                            hwaddr len, hwaddr addr1,
2796                                            hwaddr l, MemoryRegion *mr)
2797 {
2798     uint8_t *ram_ptr;
2799     uint64_t val;
2800     MemTxResult result = MEMTX_OK;
2801     bool release_lock = false;
2802     const uint8_t *buf = ptr;
2803 
2804     for (;;) {
2805         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2806             result |= MEMTX_ACCESS_ERROR;
2807             /* Keep going. */
2808         } else if (!memory_access_is_direct(mr, true)) {
2809             release_lock |= prepare_mmio_access(mr);
2810             l = memory_access_size(mr, l, addr1);
2811             /* XXX: could force current_cpu to NULL to avoid
2812                potential bugs */
2813             val = ldn_he_p(buf, l);
2814             result |= memory_region_dispatch_write(mr, addr1, val,
2815                                                    size_memop(l), attrs);
2816         } else {
2817             /* RAM case */
2818             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2819             memcpy(ram_ptr, buf, l);
2820             invalidate_and_set_dirty(mr, addr1, l);
2821         }
2822 
2823         if (release_lock) {
2824             qemu_mutex_unlock_iothread();
2825             release_lock = false;
2826         }
2827 
2828         len -= l;
2829         buf += l;
2830         addr += l;
2831 
2832         if (!len) {
2833             break;
2834         }
2835 
2836         l = len;
2837         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2838     }
2839 
2840     return result;
2841 }
2842 
2843 /* Called from RCU critical section.  */
2844 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2845                                   const void *buf, hwaddr len)
2846 {
2847     hwaddr l;
2848     hwaddr addr1;
2849     MemoryRegion *mr;
2850 
2851     l = len;
2852     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2853     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2854         return MEMTX_ACCESS_ERROR;
2855     }
2856     return flatview_write_continue(fv, addr, attrs, buf, len,
2857                                    addr1, l, mr);
2858 }
2859 
2860 /* Called within RCU critical section.  */
2861 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2862                                    MemTxAttrs attrs, void *ptr,
2863                                    hwaddr len, hwaddr addr1, hwaddr l,
2864                                    MemoryRegion *mr)
2865 {
2866     uint8_t *ram_ptr;
2867     uint64_t val;
2868     MemTxResult result = MEMTX_OK;
2869     bool release_lock = false;
2870     uint8_t *buf = ptr;
2871 
2872     fuzz_dma_read_cb(addr, len, mr);
2873     for (;;) {
2874         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2875             result |= MEMTX_ACCESS_ERROR;
2876             /* Keep going. */
2877         } else if (!memory_access_is_direct(mr, false)) {
2878             /* I/O case */
2879             release_lock |= prepare_mmio_access(mr);
2880             l = memory_access_size(mr, l, addr1);
2881             result |= memory_region_dispatch_read(mr, addr1, &val,
2882                                                   size_memop(l), attrs);
2883             stn_he_p(buf, l, val);
2884         } else {
2885             /* RAM case */
2886             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2887             memcpy(buf, ram_ptr, l);
2888         }
2889 
2890         if (release_lock) {
2891             qemu_mutex_unlock_iothread();
2892             release_lock = false;
2893         }
2894 
2895         len -= l;
2896         buf += l;
2897         addr += l;
2898 
2899         if (!len) {
2900             break;
2901         }
2902 
2903         l = len;
2904         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2905     }
2906 
2907     return result;
2908 }
2909 
2910 /* Called from RCU critical section.  */
2911 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2912                                  MemTxAttrs attrs, void *buf, hwaddr len)
2913 {
2914     hwaddr l;
2915     hwaddr addr1;
2916     MemoryRegion *mr;
2917 
2918     l = len;
2919     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2920     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2921         return MEMTX_ACCESS_ERROR;
2922     }
2923     return flatview_read_continue(fv, addr, attrs, buf, len,
2924                                   addr1, l, mr);
2925 }
2926 
2927 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2928                                     MemTxAttrs attrs, void *buf, hwaddr len)
2929 {
2930     MemTxResult result = MEMTX_OK;
2931     FlatView *fv;
2932 
2933     if (len > 0) {
2934         RCU_READ_LOCK_GUARD();
2935         fv = address_space_to_flatview(as);
2936         result = flatview_read(fv, addr, attrs, buf, len);
2937     }
2938 
2939     return result;
2940 }
2941 
2942 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2943                                 MemTxAttrs attrs,
2944                                 const void *buf, hwaddr len)
2945 {
2946     MemTxResult result = MEMTX_OK;
2947     FlatView *fv;
2948 
2949     if (len > 0) {
2950         RCU_READ_LOCK_GUARD();
2951         fv = address_space_to_flatview(as);
2952         result = flatview_write(fv, addr, attrs, buf, len);
2953     }
2954 
2955     return result;
2956 }
2957 
2958 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2959                              void *buf, hwaddr len, bool is_write)
2960 {
2961     if (is_write) {
2962         return address_space_write(as, addr, attrs, buf, len);
2963     } else {
2964         return address_space_read_full(as, addr, attrs, buf, len);
2965     }
2966 }
2967 
2968 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2969                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2970 {
2971 #define FILLBUF_SIZE 512
2972     uint8_t fillbuf[FILLBUF_SIZE];
2973     int l;
2974     MemTxResult error = MEMTX_OK;
2975 
2976     memset(fillbuf, c, FILLBUF_SIZE);
2977     while (len > 0) {
2978         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2979         error |= address_space_write(as, addr, attrs, fillbuf, l);
2980         len -= l;
2981         addr += l;
2982     }
2983 
2984     return error;
2985 }
2986 
2987 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2988                             hwaddr len, bool is_write)
2989 {
2990     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2991                      buf, len, is_write);
2992 }
2993 
2994 enum write_rom_type {
2995     WRITE_DATA,
2996     FLUSH_CACHE,
2997 };
2998 
2999 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3000                                                            hwaddr addr,
3001                                                            MemTxAttrs attrs,
3002                                                            const void *ptr,
3003                                                            hwaddr len,
3004                                                            enum write_rom_type type)
3005 {
3006     hwaddr l;
3007     uint8_t *ram_ptr;
3008     hwaddr addr1;
3009     MemoryRegion *mr;
3010     const uint8_t *buf = ptr;
3011 
3012     RCU_READ_LOCK_GUARD();
3013     while (len > 0) {
3014         l = len;
3015         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3016 
3017         if (!(memory_region_is_ram(mr) ||
3018               memory_region_is_romd(mr))) {
3019             l = memory_access_size(mr, l, addr1);
3020         } else {
3021             /* ROM/RAM case */
3022             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3023             switch (type) {
3024             case WRITE_DATA:
3025                 memcpy(ram_ptr, buf, l);
3026                 invalidate_and_set_dirty(mr, addr1, l);
3027                 break;
3028             case FLUSH_CACHE:
3029                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3030                 break;
3031             }
3032         }
3033         len -= l;
3034         buf += l;
3035         addr += l;
3036     }
3037     return MEMTX_OK;
3038 }
3039 
3040 /* used for ROM loading : can write in RAM and ROM */
3041 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3042                                     MemTxAttrs attrs,
3043                                     const void *buf, hwaddr len)
3044 {
3045     return address_space_write_rom_internal(as, addr, attrs,
3046                                             buf, len, WRITE_DATA);
3047 }
3048 
3049 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3050 {
3051     /*
3052      * This function should do the same thing as an icache flush that was
3053      * triggered from within the guest. For TCG we are always cache coherent,
3054      * so there is no need to flush anything. For KVM / Xen we need to flush
3055      * the host's instruction cache at least.
3056      */
3057     if (tcg_enabled()) {
3058         return;
3059     }
3060 
3061     address_space_write_rom_internal(&address_space_memory,
3062                                      start, MEMTXATTRS_UNSPECIFIED,
3063                                      NULL, len, FLUSH_CACHE);
3064 }
3065 
3066 typedef struct {
3067     MemoryRegion *mr;
3068     void *buffer;
3069     hwaddr addr;
3070     hwaddr len;
3071     bool in_use;
3072 } BounceBuffer;
3073 
3074 static BounceBuffer bounce;
3075 
3076 typedef struct MapClient {
3077     QEMUBH *bh;
3078     QLIST_ENTRY(MapClient) link;
3079 } MapClient;
3080 
3081 QemuMutex map_client_list_lock;
3082 static QLIST_HEAD(, MapClient) map_client_list
3083     = QLIST_HEAD_INITIALIZER(map_client_list);
3084 
3085 static void cpu_unregister_map_client_do(MapClient *client)
3086 {
3087     QLIST_REMOVE(client, link);
3088     g_free(client);
3089 }
3090 
3091 static void cpu_notify_map_clients_locked(void)
3092 {
3093     MapClient *client;
3094 
3095     while (!QLIST_EMPTY(&map_client_list)) {
3096         client = QLIST_FIRST(&map_client_list);
3097         qemu_bh_schedule(client->bh);
3098         cpu_unregister_map_client_do(client);
3099     }
3100 }
3101 
3102 void cpu_register_map_client(QEMUBH *bh)
3103 {
3104     MapClient *client = g_malloc(sizeof(*client));
3105 
3106     qemu_mutex_lock(&map_client_list_lock);
3107     client->bh = bh;
3108     QLIST_INSERT_HEAD(&map_client_list, client, link);
3109     if (!qatomic_read(&bounce.in_use)) {
3110         cpu_notify_map_clients_locked();
3111     }
3112     qemu_mutex_unlock(&map_client_list_lock);
3113 }
3114 
3115 void cpu_exec_init_all(void)
3116 {
3117     qemu_mutex_init(&ram_list.mutex);
3118     /* The data structures we set up here depend on knowing the page size,
3119      * so no more changes can be made after this point.
3120      * In an ideal world, nothing we did before we had finished the
3121      * machine setup would care about the target page size, and we could
3122      * do this much later, rather than requiring board models to state
3123      * up front what their requirements are.
3124      */
3125     finalize_target_page_bits();
3126     io_mem_init();
3127     memory_map_init();
3128     qemu_mutex_init(&map_client_list_lock);
3129 }
3130 
3131 void cpu_unregister_map_client(QEMUBH *bh)
3132 {
3133     MapClient *client;
3134 
3135     qemu_mutex_lock(&map_client_list_lock);
3136     QLIST_FOREACH(client, &map_client_list, link) {
3137         if (client->bh == bh) {
3138             cpu_unregister_map_client_do(client);
3139             break;
3140         }
3141     }
3142     qemu_mutex_unlock(&map_client_list_lock);
3143 }
3144 
3145 static void cpu_notify_map_clients(void)
3146 {
3147     qemu_mutex_lock(&map_client_list_lock);
3148     cpu_notify_map_clients_locked();
3149     qemu_mutex_unlock(&map_client_list_lock);
3150 }
3151 
3152 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3153                                   bool is_write, MemTxAttrs attrs)
3154 {
3155     MemoryRegion *mr;
3156     hwaddr l, xlat;
3157 
3158     while (len > 0) {
3159         l = len;
3160         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3161         if (!memory_access_is_direct(mr, is_write)) {
3162             l = memory_access_size(mr, l, addr);
3163             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3164                 return false;
3165             }
3166         }
3167 
3168         len -= l;
3169         addr += l;
3170     }
3171     return true;
3172 }
3173 
3174 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3175                                 hwaddr len, bool is_write,
3176                                 MemTxAttrs attrs)
3177 {
3178     FlatView *fv;
3179 
3180     RCU_READ_LOCK_GUARD();
3181     fv = address_space_to_flatview(as);
3182     return flatview_access_valid(fv, addr, len, is_write, attrs);
3183 }
3184 
3185 static hwaddr
3186 flatview_extend_translation(FlatView *fv, hwaddr addr,
3187                             hwaddr target_len,
3188                             MemoryRegion *mr, hwaddr base, hwaddr len,
3189                             bool is_write, MemTxAttrs attrs)
3190 {
3191     hwaddr done = 0;
3192     hwaddr xlat;
3193     MemoryRegion *this_mr;
3194 
3195     for (;;) {
3196         target_len -= len;
3197         addr += len;
3198         done += len;
3199         if (target_len == 0) {
3200             return done;
3201         }
3202 
3203         len = target_len;
3204         this_mr = flatview_translate(fv, addr, &xlat,
3205                                      &len, is_write, attrs);
3206         if (this_mr != mr || xlat != base + done) {
3207             return done;
3208         }
3209     }
3210 }
3211 
3212 /* Map a physical memory region into a host virtual address.
3213  * May map a subset of the requested range, given by and returned in *plen.
3214  * May return NULL if resources needed to perform the mapping are exhausted.
3215  * Use only for reads OR writes - not for read-modify-write operations.
3216  * Use cpu_register_map_client() to know when retrying the map operation is
3217  * likely to succeed.
3218  */
3219 void *address_space_map(AddressSpace *as,
3220                         hwaddr addr,
3221                         hwaddr *plen,
3222                         bool is_write,
3223                         MemTxAttrs attrs)
3224 {
3225     hwaddr len = *plen;
3226     hwaddr l, xlat;
3227     MemoryRegion *mr;
3228     void *ptr;
3229     FlatView *fv;
3230 
3231     if (len == 0) {
3232         return NULL;
3233     }
3234 
3235     l = len;
3236     RCU_READ_LOCK_GUARD();
3237     fv = address_space_to_flatview(as);
3238     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3239 
3240     if (!memory_access_is_direct(mr, is_write)) {
3241         if (qatomic_xchg(&bounce.in_use, true)) {
3242             *plen = 0;
3243             return NULL;
3244         }
3245         /* Avoid unbounded allocations */
3246         l = MIN(l, TARGET_PAGE_SIZE);
3247         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3248         bounce.addr = addr;
3249         bounce.len = l;
3250 
3251         memory_region_ref(mr);
3252         bounce.mr = mr;
3253         if (!is_write) {
3254             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3255                                bounce.buffer, l);
3256         }
3257 
3258         *plen = l;
3259         return bounce.buffer;
3260     }
3261 
3262 
3263     memory_region_ref(mr);
3264     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3265                                         l, is_write, attrs);
3266     fuzz_dma_read_cb(addr, *plen, mr);
3267     ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3268 
3269     return ptr;
3270 }
3271 
3272 /* Unmaps a memory region previously mapped by address_space_map().
3273  * Will also mark the memory as dirty if is_write is true.  access_len gives
3274  * the amount of memory that was actually read or written by the caller.
3275  */
3276 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3277                          bool is_write, hwaddr access_len)
3278 {
3279     if (buffer != bounce.buffer) {
3280         MemoryRegion *mr;
3281         ram_addr_t addr1;
3282 
3283         mr = memory_region_from_host(buffer, &addr1);
3284         assert(mr != NULL);
3285         if (is_write) {
3286             invalidate_and_set_dirty(mr, addr1, access_len);
3287         }
3288         if (xen_enabled()) {
3289             xen_invalidate_map_cache_entry(buffer);
3290         }
3291         memory_region_unref(mr);
3292         return;
3293     }
3294     if (is_write) {
3295         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3296                             bounce.buffer, access_len);
3297     }
3298     qemu_vfree(bounce.buffer);
3299     bounce.buffer = NULL;
3300     memory_region_unref(bounce.mr);
3301     qatomic_mb_set(&bounce.in_use, false);
3302     cpu_notify_map_clients();
3303 }
3304 
3305 void *cpu_physical_memory_map(hwaddr addr,
3306                               hwaddr *plen,
3307                               bool is_write)
3308 {
3309     return address_space_map(&address_space_memory, addr, plen, is_write,
3310                              MEMTXATTRS_UNSPECIFIED);
3311 }
3312 
3313 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3314                                bool is_write, hwaddr access_len)
3315 {
3316     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3317 }
3318 
3319 #define ARG1_DECL                AddressSpace *as
3320 #define ARG1                     as
3321 #define SUFFIX
3322 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3323 #define RCU_READ_LOCK(...)       rcu_read_lock()
3324 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3325 #include "memory_ldst.c.inc"
3326 
3327 int64_t address_space_cache_init(MemoryRegionCache *cache,
3328                                  AddressSpace *as,
3329                                  hwaddr addr,
3330                                  hwaddr len,
3331                                  bool is_write)
3332 {
3333     AddressSpaceDispatch *d;
3334     hwaddr l;
3335     MemoryRegion *mr;
3336     Int128 diff;
3337 
3338     assert(len > 0);
3339 
3340     l = len;
3341     cache->fv = address_space_get_flatview(as);
3342     d = flatview_to_dispatch(cache->fv);
3343     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3344 
3345     /*
3346      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3347      * Take that into account to compute how many bytes are there between
3348      * cache->xlat and the end of the section.
3349      */
3350     diff = int128_sub(cache->mrs.size,
3351 		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3352     l = int128_get64(int128_min(diff, int128_make64(l)));
3353 
3354     mr = cache->mrs.mr;
3355     memory_region_ref(mr);
3356     if (memory_access_is_direct(mr, is_write)) {
3357         /* We don't care about the memory attributes here as we're only
3358          * doing this if we found actual RAM, which behaves the same
3359          * regardless of attributes; so UNSPECIFIED is fine.
3360          */
3361         l = flatview_extend_translation(cache->fv, addr, len, mr,
3362                                         cache->xlat, l, is_write,
3363                                         MEMTXATTRS_UNSPECIFIED);
3364         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3365     } else {
3366         cache->ptr = NULL;
3367     }
3368 
3369     cache->len = l;
3370     cache->is_write = is_write;
3371     return l;
3372 }
3373 
3374 void address_space_cache_invalidate(MemoryRegionCache *cache,
3375                                     hwaddr addr,
3376                                     hwaddr access_len)
3377 {
3378     assert(cache->is_write);
3379     if (likely(cache->ptr)) {
3380         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3381     }
3382 }
3383 
3384 void address_space_cache_destroy(MemoryRegionCache *cache)
3385 {
3386     if (!cache->mrs.mr) {
3387         return;
3388     }
3389 
3390     if (xen_enabled()) {
3391         xen_invalidate_map_cache_entry(cache->ptr);
3392     }
3393     memory_region_unref(cache->mrs.mr);
3394     flatview_unref(cache->fv);
3395     cache->mrs.mr = NULL;
3396     cache->fv = NULL;
3397 }
3398 
3399 /* Called from RCU critical section.  This function has the same
3400  * semantics as address_space_translate, but it only works on a
3401  * predefined range of a MemoryRegion that was mapped with
3402  * address_space_cache_init.
3403  */
3404 static inline MemoryRegion *address_space_translate_cached(
3405     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3406     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3407 {
3408     MemoryRegionSection section;
3409     MemoryRegion *mr;
3410     IOMMUMemoryRegion *iommu_mr;
3411     AddressSpace *target_as;
3412 
3413     assert(!cache->ptr);
3414     *xlat = addr + cache->xlat;
3415 
3416     mr = cache->mrs.mr;
3417     iommu_mr = memory_region_get_iommu(mr);
3418     if (!iommu_mr) {
3419         /* MMIO region.  */
3420         return mr;
3421     }
3422 
3423     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3424                                             NULL, is_write, true,
3425                                             &target_as, attrs);
3426     return section.mr;
3427 }
3428 
3429 /* Called from RCU critical section. address_space_read_cached uses this
3430  * out of line function when the target is an MMIO or IOMMU region.
3431  */
3432 MemTxResult
3433 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3434                                    void *buf, hwaddr len)
3435 {
3436     hwaddr addr1, l;
3437     MemoryRegion *mr;
3438 
3439     l = len;
3440     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3441                                         MEMTXATTRS_UNSPECIFIED);
3442     return flatview_read_continue(cache->fv,
3443                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3444                                   addr1, l, mr);
3445 }
3446 
3447 /* Called from RCU critical section. address_space_write_cached uses this
3448  * out of line function when the target is an MMIO or IOMMU region.
3449  */
3450 MemTxResult
3451 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3452                                     const void *buf, hwaddr len)
3453 {
3454     hwaddr addr1, l;
3455     MemoryRegion *mr;
3456 
3457     l = len;
3458     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3459                                         MEMTXATTRS_UNSPECIFIED);
3460     return flatview_write_continue(cache->fv,
3461                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3462                                    addr1, l, mr);
3463 }
3464 
3465 #define ARG1_DECL                MemoryRegionCache *cache
3466 #define ARG1                     cache
3467 #define SUFFIX                   _cached_slow
3468 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3469 #define RCU_READ_LOCK()          ((void)0)
3470 #define RCU_READ_UNLOCK()        ((void)0)
3471 #include "memory_ldst.c.inc"
3472 
3473 /* virtual memory access for debug (includes writing to ROM) */
3474 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3475                         void *ptr, size_t len, bool is_write)
3476 {
3477     hwaddr phys_addr;
3478     vaddr l, page;
3479     uint8_t *buf = ptr;
3480 
3481     cpu_synchronize_state(cpu);
3482     while (len > 0) {
3483         int asidx;
3484         MemTxAttrs attrs;
3485         MemTxResult res;
3486 
3487         page = addr & TARGET_PAGE_MASK;
3488         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3489         asidx = cpu_asidx_from_attrs(cpu, attrs);
3490         /* if no physical page mapped, return an error */
3491         if (phys_addr == -1)
3492             return -1;
3493         l = (page + TARGET_PAGE_SIZE) - addr;
3494         if (l > len)
3495             l = len;
3496         phys_addr += (addr & ~TARGET_PAGE_MASK);
3497         if (is_write) {
3498             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3499                                           attrs, buf, l);
3500         } else {
3501             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3502                                      attrs, buf, l);
3503         }
3504         if (res != MEMTX_OK) {
3505             return -1;
3506         }
3507         len -= l;
3508         buf += l;
3509         addr += l;
3510     }
3511     return 0;
3512 }
3513 
3514 /*
3515  * Allows code that needs to deal with migration bitmaps etc to still be built
3516  * target independent.
3517  */
3518 size_t qemu_target_page_size(void)
3519 {
3520     return TARGET_PAGE_SIZE;
3521 }
3522 
3523 int qemu_target_page_bits(void)
3524 {
3525     return TARGET_PAGE_BITS;
3526 }
3527 
3528 int qemu_target_page_bits_min(void)
3529 {
3530     return TARGET_PAGE_BITS_MIN;
3531 }
3532 
3533 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3534 {
3535     MemoryRegion*mr;
3536     hwaddr l = 1;
3537     bool res;
3538 
3539     RCU_READ_LOCK_GUARD();
3540     mr = address_space_translate(&address_space_memory,
3541                                  phys_addr, &phys_addr, &l, false,
3542                                  MEMTXATTRS_UNSPECIFIED);
3543 
3544     res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3545     return res;
3546 }
3547 
3548 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3549 {
3550     RAMBlock *block;
3551     int ret = 0;
3552 
3553     RCU_READ_LOCK_GUARD();
3554     RAMBLOCK_FOREACH(block) {
3555         ret = func(block, opaque);
3556         if (ret) {
3557             break;
3558         }
3559     }
3560     return ret;
3561 }
3562 
3563 /*
3564  * Unmap pages of memory from start to start+length such that
3565  * they a) read as 0, b) Trigger whatever fault mechanism
3566  * the OS provides for postcopy.
3567  * The pages must be unmapped by the end of the function.
3568  * Returns: 0 on success, none-0 on failure
3569  *
3570  */
3571 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3572 {
3573     int ret = -1;
3574 
3575     uint8_t *host_startaddr = rb->host + start;
3576 
3577     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3578         error_report("ram_block_discard_range: Unaligned start address: %p",
3579                      host_startaddr);
3580         goto err;
3581     }
3582 
3583     if ((start + length) <= rb->max_length) {
3584         bool need_madvise, need_fallocate;
3585         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3586             error_report("ram_block_discard_range: Unaligned length: %zx",
3587                          length);
3588             goto err;
3589         }
3590 
3591         errno = ENOTSUP; /* If we are missing MADVISE etc */
3592 
3593         /* The logic here is messy;
3594          *    madvise DONTNEED fails for hugepages
3595          *    fallocate works on hugepages and shmem
3596          *    shared anonymous memory requires madvise REMOVE
3597          */
3598         need_madvise = (rb->page_size == qemu_host_page_size);
3599         need_fallocate = rb->fd != -1;
3600         if (need_fallocate) {
3601             /* For a file, this causes the area of the file to be zero'd
3602              * if read, and for hugetlbfs also causes it to be unmapped
3603              * so a userfault will trigger.
3604              */
3605 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3606             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3607                             start, length);
3608             if (ret) {
3609                 ret = -errno;
3610                 error_report("ram_block_discard_range: Failed to fallocate "
3611                              "%s:%" PRIx64 " +%zx (%d)",
3612                              rb->idstr, start, length, ret);
3613                 goto err;
3614             }
3615 #else
3616             ret = -ENOSYS;
3617             error_report("ram_block_discard_range: fallocate not available/file"
3618                          "%s:%" PRIx64 " +%zx (%d)",
3619                          rb->idstr, start, length, ret);
3620             goto err;
3621 #endif
3622         }
3623         if (need_madvise) {
3624             /* For normal RAM this causes it to be unmapped,
3625              * for shared memory it causes the local mapping to disappear
3626              * and to fall back on the file contents (which we just
3627              * fallocate'd away).
3628              */
3629 #if defined(CONFIG_MADVISE)
3630             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3631                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3632             } else {
3633                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3634             }
3635             if (ret) {
3636                 ret = -errno;
3637                 error_report("ram_block_discard_range: Failed to discard range "
3638                              "%s:%" PRIx64 " +%zx (%d)",
3639                              rb->idstr, start, length, ret);
3640                 goto err;
3641             }
3642 #else
3643             ret = -ENOSYS;
3644             error_report("ram_block_discard_range: MADVISE not available"
3645                          "%s:%" PRIx64 " +%zx (%d)",
3646                          rb->idstr, start, length, ret);
3647             goto err;
3648 #endif
3649         }
3650         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3651                                       need_madvise, need_fallocate, ret);
3652     } else {
3653         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3654                      "/%zx/" RAM_ADDR_FMT")",
3655                      rb->idstr, start, length, rb->max_length);
3656     }
3657 
3658 err:
3659     return ret;
3660 }
3661 
3662 bool ramblock_is_pmem(RAMBlock *rb)
3663 {
3664     return rb->flags & RAM_PMEM;
3665 }
3666 
3667 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3668 {
3669     if (start == end - 1) {
3670         qemu_printf("\t%3d      ", start);
3671     } else {
3672         qemu_printf("\t%3d..%-3d ", start, end - 1);
3673     }
3674     qemu_printf(" skip=%d ", skip);
3675     if (ptr == PHYS_MAP_NODE_NIL) {
3676         qemu_printf(" ptr=NIL");
3677     } else if (!skip) {
3678         qemu_printf(" ptr=#%d", ptr);
3679     } else {
3680         qemu_printf(" ptr=[%d]", ptr);
3681     }
3682     qemu_printf("\n");
3683 }
3684 
3685 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3686                            int128_sub((size), int128_one())) : 0)
3687 
3688 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3689 {
3690     int i;
3691 
3692     qemu_printf("  Dispatch\n");
3693     qemu_printf("    Physical sections\n");
3694 
3695     for (i = 0; i < d->map.sections_nb; ++i) {
3696         MemoryRegionSection *s = d->map.sections + i;
3697         const char *names[] = { " [unassigned]", " [not dirty]",
3698                                 " [ROM]", " [watch]" };
3699 
3700         qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3701                     " %s%s%s%s%s",
3702             i,
3703             s->offset_within_address_space,
3704             s->offset_within_address_space + MR_SIZE(s->mr->size),
3705             s->mr->name ? s->mr->name : "(noname)",
3706             i < ARRAY_SIZE(names) ? names[i] : "",
3707             s->mr == root ? " [ROOT]" : "",
3708             s == d->mru_section ? " [MRU]" : "",
3709             s->mr->is_iommu ? " [iommu]" : "");
3710 
3711         if (s->mr->alias) {
3712             qemu_printf(" alias=%s", s->mr->alias->name ?
3713                     s->mr->alias->name : "noname");
3714         }
3715         qemu_printf("\n");
3716     }
3717 
3718     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3719                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3720     for (i = 0; i < d->map.nodes_nb; ++i) {
3721         int j, jprev;
3722         PhysPageEntry prev;
3723         Node *n = d->map.nodes + i;
3724 
3725         qemu_printf("      [%d]\n", i);
3726 
3727         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3728             PhysPageEntry *pe = *n + j;
3729 
3730             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3731                 continue;
3732             }
3733 
3734             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3735 
3736             jprev = j;
3737             prev = *pe;
3738         }
3739 
3740         if (jprev != ARRAY_SIZE(*n)) {
3741             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3742         }
3743     }
3744 }
3745 
3746 /* Require any discards to work. */
3747 static unsigned int ram_block_discard_required_cnt;
3748 /* Require only coordinated discards to work. */
3749 static unsigned int ram_block_coordinated_discard_required_cnt;
3750 /* Disable any discards. */
3751 static unsigned int ram_block_discard_disabled_cnt;
3752 /* Disable only uncoordinated discards. */
3753 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3754 static QemuMutex ram_block_discard_disable_mutex;
3755 
3756 static void ram_block_discard_disable_mutex_lock(void)
3757 {
3758     static gsize initialized;
3759 
3760     if (g_once_init_enter(&initialized)) {
3761         qemu_mutex_init(&ram_block_discard_disable_mutex);
3762         g_once_init_leave(&initialized, 1);
3763     }
3764     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3765 }
3766 
3767 static void ram_block_discard_disable_mutex_unlock(void)
3768 {
3769     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3770 }
3771 
3772 int ram_block_discard_disable(bool state)
3773 {
3774     int ret = 0;
3775 
3776     ram_block_discard_disable_mutex_lock();
3777     if (!state) {
3778         ram_block_discard_disabled_cnt--;
3779     } else if (ram_block_discard_required_cnt ||
3780                ram_block_coordinated_discard_required_cnt) {
3781         ret = -EBUSY;
3782     } else {
3783         ram_block_discard_disabled_cnt++;
3784     }
3785     ram_block_discard_disable_mutex_unlock();
3786     return ret;
3787 }
3788 
3789 int ram_block_uncoordinated_discard_disable(bool state)
3790 {
3791     int ret = 0;
3792 
3793     ram_block_discard_disable_mutex_lock();
3794     if (!state) {
3795         ram_block_uncoordinated_discard_disabled_cnt--;
3796     } else if (ram_block_discard_required_cnt) {
3797         ret = -EBUSY;
3798     } else {
3799         ram_block_uncoordinated_discard_disabled_cnt++;
3800     }
3801     ram_block_discard_disable_mutex_unlock();
3802     return ret;
3803 }
3804 
3805 int ram_block_discard_require(bool state)
3806 {
3807     int ret = 0;
3808 
3809     ram_block_discard_disable_mutex_lock();
3810     if (!state) {
3811         ram_block_discard_required_cnt--;
3812     } else if (ram_block_discard_disabled_cnt ||
3813                ram_block_uncoordinated_discard_disabled_cnt) {
3814         ret = -EBUSY;
3815     } else {
3816         ram_block_discard_required_cnt++;
3817     }
3818     ram_block_discard_disable_mutex_unlock();
3819     return ret;
3820 }
3821 
3822 int ram_block_coordinated_discard_require(bool state)
3823 {
3824     int ret = 0;
3825 
3826     ram_block_discard_disable_mutex_lock();
3827     if (!state) {
3828         ram_block_coordinated_discard_required_cnt--;
3829     } else if (ram_block_discard_disabled_cnt) {
3830         ret = -EBUSY;
3831     } else {
3832         ram_block_coordinated_discard_required_cnt++;
3833     }
3834     ram_block_discard_disable_mutex_unlock();
3835     return ret;
3836 }
3837 
3838 bool ram_block_discard_is_disabled(void)
3839 {
3840     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3841            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3842 }
3843 
3844 bool ram_block_discard_is_required(void)
3845 {
3846     return qatomic_read(&ram_block_discard_required_cnt) ||
3847            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3848 }
3849