1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/madvise.h" 27 28 #ifdef CONFIG_TCG 29 #include "hw/core/tcg-cpu-ops.h" 30 #endif /* CONFIG_TCG */ 31 32 #include "exec/exec-all.h" 33 #include "exec/target_page.h" 34 #include "hw/qdev-core.h" 35 #include "hw/qdev-properties.h" 36 #include "hw/boards.h" 37 #include "hw/xen/xen.h" 38 #include "sysemu/kvm.h" 39 #include "sysemu/tcg.h" 40 #include "sysemu/qtest.h" 41 #include "qemu/timer.h" 42 #include "qemu/config-file.h" 43 #include "qemu/error-report.h" 44 #include "qemu/qemu-print.h" 45 #include "qemu/log.h" 46 #include "qemu/memalign.h" 47 #include "exec/memory.h" 48 #include "exec/ioport.h" 49 #include "sysemu/dma.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/hw_accel.h" 52 #include "sysemu/xen-mapcache.h" 53 #include "trace/trace-root.h" 54 55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 56 #include <linux/falloc.h> 57 #endif 58 59 #include "qemu/rcu_queue.h" 60 #include "qemu/main-loop.h" 61 #include "exec/translate-all.h" 62 #include "sysemu/replay.h" 63 64 #include "exec/memory-internal.h" 65 #include "exec/ram_addr.h" 66 67 #include "qemu/pmem.h" 68 69 #include "migration/vmstate.h" 70 71 #include "qemu/range.h" 72 #ifndef _WIN32 73 #include "qemu/mmap-alloc.h" 74 #endif 75 76 #include "monitor/monitor.h" 77 78 #ifdef CONFIG_LIBDAXCTL 79 #include <daxctl/libdaxctl.h> 80 #endif 81 82 //#define DEBUG_SUBPAGE 83 84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 85 * are protected by the ramlist lock. 86 */ 87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 88 89 static MemoryRegion *system_memory; 90 static MemoryRegion *system_io; 91 92 AddressSpace address_space_io; 93 AddressSpace address_space_memory; 94 95 static MemoryRegion io_mem_unassigned; 96 97 typedef struct PhysPageEntry PhysPageEntry; 98 99 struct PhysPageEntry { 100 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 101 uint32_t skip : 6; 102 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 103 uint32_t ptr : 26; 104 }; 105 106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 107 108 /* Size of the L2 (and L3, etc) page tables. */ 109 #define ADDR_SPACE_BITS 64 110 111 #define P_L2_BITS 9 112 #define P_L2_SIZE (1 << P_L2_BITS) 113 114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 115 116 typedef PhysPageEntry Node[P_L2_SIZE]; 117 118 typedef struct PhysPageMap { 119 struct rcu_head rcu; 120 121 unsigned sections_nb; 122 unsigned sections_nb_alloc; 123 unsigned nodes_nb; 124 unsigned nodes_nb_alloc; 125 Node *nodes; 126 MemoryRegionSection *sections; 127 } PhysPageMap; 128 129 struct AddressSpaceDispatch { 130 MemoryRegionSection *mru_section; 131 /* This is a multi-level map on the physical address space. 132 * The bottom level has pointers to MemoryRegionSections. 133 */ 134 PhysPageEntry phys_map; 135 PhysPageMap map; 136 }; 137 138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 139 typedef struct subpage_t { 140 MemoryRegion iomem; 141 FlatView *fv; 142 hwaddr base; 143 uint16_t sub_section[]; 144 } subpage_t; 145 146 #define PHYS_SECTION_UNASSIGNED 0 147 148 static void io_mem_init(void); 149 static void memory_map_init(void); 150 static void tcg_log_global_after_sync(MemoryListener *listener); 151 static void tcg_commit(MemoryListener *listener); 152 153 /** 154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 155 * @cpu: the CPU whose AddressSpace this is 156 * @as: the AddressSpace itself 157 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 158 * @tcg_as_listener: listener for tracking changes to the AddressSpace 159 */ 160 struct CPUAddressSpace { 161 CPUState *cpu; 162 AddressSpace *as; 163 struct AddressSpaceDispatch *memory_dispatch; 164 MemoryListener tcg_as_listener; 165 }; 166 167 struct DirtyBitmapSnapshot { 168 ram_addr_t start; 169 ram_addr_t end; 170 unsigned long dirty[]; 171 }; 172 173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 174 { 175 static unsigned alloc_hint = 16; 176 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 177 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 178 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 179 alloc_hint = map->nodes_nb_alloc; 180 } 181 } 182 183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 184 { 185 unsigned i; 186 uint32_t ret; 187 PhysPageEntry e; 188 PhysPageEntry *p; 189 190 ret = map->nodes_nb++; 191 p = map->nodes[ret]; 192 assert(ret != PHYS_MAP_NODE_NIL); 193 assert(ret != map->nodes_nb_alloc); 194 195 e.skip = leaf ? 0 : 1; 196 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 197 for (i = 0; i < P_L2_SIZE; ++i) { 198 memcpy(&p[i], &e, sizeof(e)); 199 } 200 return ret; 201 } 202 203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 204 hwaddr *index, uint64_t *nb, uint16_t leaf, 205 int level) 206 { 207 PhysPageEntry *p; 208 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 209 210 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 211 lp->ptr = phys_map_node_alloc(map, level == 0); 212 } 213 p = map->nodes[lp->ptr]; 214 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 215 216 while (*nb && lp < &p[P_L2_SIZE]) { 217 if ((*index & (step - 1)) == 0 && *nb >= step) { 218 lp->skip = 0; 219 lp->ptr = leaf; 220 *index += step; 221 *nb -= step; 222 } else { 223 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 224 } 225 ++lp; 226 } 227 } 228 229 static void phys_page_set(AddressSpaceDispatch *d, 230 hwaddr index, uint64_t nb, 231 uint16_t leaf) 232 { 233 /* Wildly overreserve - it doesn't matter much. */ 234 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 235 236 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 237 } 238 239 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 240 * and update our entry so we can skip it and go directly to the destination. 241 */ 242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 243 { 244 unsigned valid_ptr = P_L2_SIZE; 245 int valid = 0; 246 PhysPageEntry *p; 247 int i; 248 249 if (lp->ptr == PHYS_MAP_NODE_NIL) { 250 return; 251 } 252 253 p = nodes[lp->ptr]; 254 for (i = 0; i < P_L2_SIZE; i++) { 255 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 256 continue; 257 } 258 259 valid_ptr = i; 260 valid++; 261 if (p[i].skip) { 262 phys_page_compact(&p[i], nodes); 263 } 264 } 265 266 /* We can only compress if there's only one child. */ 267 if (valid != 1) { 268 return; 269 } 270 271 assert(valid_ptr < P_L2_SIZE); 272 273 /* Don't compress if it won't fit in the # of bits we have. */ 274 if (P_L2_LEVELS >= (1 << 6) && 275 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 276 return; 277 } 278 279 lp->ptr = p[valid_ptr].ptr; 280 if (!p[valid_ptr].skip) { 281 /* If our only child is a leaf, make this a leaf. */ 282 /* By design, we should have made this node a leaf to begin with so we 283 * should never reach here. 284 * But since it's so simple to handle this, let's do it just in case we 285 * change this rule. 286 */ 287 lp->skip = 0; 288 } else { 289 lp->skip += p[valid_ptr].skip; 290 } 291 } 292 293 void address_space_dispatch_compact(AddressSpaceDispatch *d) 294 { 295 if (d->phys_map.skip) { 296 phys_page_compact(&d->phys_map, d->map.nodes); 297 } 298 } 299 300 static inline bool section_covers_addr(const MemoryRegionSection *section, 301 hwaddr addr) 302 { 303 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 304 * the section must cover the entire address space. 305 */ 306 return int128_gethi(section->size) || 307 range_covers_byte(section->offset_within_address_space, 308 int128_getlo(section->size), addr); 309 } 310 311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 312 { 313 PhysPageEntry lp = d->phys_map, *p; 314 Node *nodes = d->map.nodes; 315 MemoryRegionSection *sections = d->map.sections; 316 hwaddr index = addr >> TARGET_PAGE_BITS; 317 int i; 318 319 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 320 if (lp.ptr == PHYS_MAP_NODE_NIL) { 321 return §ions[PHYS_SECTION_UNASSIGNED]; 322 } 323 p = nodes[lp.ptr]; 324 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 325 } 326 327 if (section_covers_addr(§ions[lp.ptr], addr)) { 328 return §ions[lp.ptr]; 329 } else { 330 return §ions[PHYS_SECTION_UNASSIGNED]; 331 } 332 } 333 334 /* Called from RCU critical section */ 335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 336 hwaddr addr, 337 bool resolve_subpage) 338 { 339 MemoryRegionSection *section = qatomic_read(&d->mru_section); 340 subpage_t *subpage; 341 342 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 343 !section_covers_addr(section, addr)) { 344 section = phys_page_find(d, addr); 345 qatomic_set(&d->mru_section, section); 346 } 347 if (resolve_subpage && section->mr->subpage) { 348 subpage = container_of(section->mr, subpage_t, iomem); 349 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 350 } 351 return section; 352 } 353 354 /* Called from RCU critical section */ 355 static MemoryRegionSection * 356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 357 hwaddr *plen, bool resolve_subpage) 358 { 359 MemoryRegionSection *section; 360 MemoryRegion *mr; 361 Int128 diff; 362 363 section = address_space_lookup_region(d, addr, resolve_subpage); 364 /* Compute offset within MemoryRegionSection */ 365 addr -= section->offset_within_address_space; 366 367 /* Compute offset within MemoryRegion */ 368 *xlat = addr + section->offset_within_region; 369 370 mr = section->mr; 371 372 /* MMIO registers can be expected to perform full-width accesses based only 373 * on their address, without considering adjacent registers that could 374 * decode to completely different MemoryRegions. When such registers 375 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 376 * regions overlap wildly. For this reason we cannot clamp the accesses 377 * here. 378 * 379 * If the length is small (as is the case for address_space_ldl/stl), 380 * everything works fine. If the incoming length is large, however, 381 * the caller really has to do the clamping through memory_access_size. 382 */ 383 if (memory_region_is_ram(mr)) { 384 diff = int128_sub(section->size, int128_make64(addr)); 385 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 386 } 387 return section; 388 } 389 390 /** 391 * address_space_translate_iommu - translate an address through an IOMMU 392 * memory region and then through the target address space. 393 * 394 * @iommu_mr: the IOMMU memory region that we start the translation from 395 * @addr: the address to be translated through the MMU 396 * @xlat: the translated address offset within the destination memory region. 397 * It cannot be %NULL. 398 * @plen_out: valid read/write length of the translated address. It 399 * cannot be %NULL. 400 * @page_mask_out: page mask for the translated address. This 401 * should only be meaningful for IOMMU translated 402 * addresses, since there may be huge pages that this bit 403 * would tell. It can be %NULL if we don't care about it. 404 * @is_write: whether the translation operation is for write 405 * @is_mmio: whether this can be MMIO, set true if it can 406 * @target_as: the address space targeted by the IOMMU 407 * @attrs: transaction attributes 408 * 409 * This function is called from RCU critical section. It is the common 410 * part of flatview_do_translate and address_space_translate_cached. 411 */ 412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 413 hwaddr *xlat, 414 hwaddr *plen_out, 415 hwaddr *page_mask_out, 416 bool is_write, 417 bool is_mmio, 418 AddressSpace **target_as, 419 MemTxAttrs attrs) 420 { 421 MemoryRegionSection *section; 422 hwaddr page_mask = (hwaddr)-1; 423 424 do { 425 hwaddr addr = *xlat; 426 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 427 int iommu_idx = 0; 428 IOMMUTLBEntry iotlb; 429 430 if (imrc->attrs_to_index) { 431 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 432 } 433 434 iotlb = imrc->translate(iommu_mr, addr, is_write ? 435 IOMMU_WO : IOMMU_RO, iommu_idx); 436 437 if (!(iotlb.perm & (1 << is_write))) { 438 goto unassigned; 439 } 440 441 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 442 | (addr & iotlb.addr_mask)); 443 page_mask &= iotlb.addr_mask; 444 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 445 *target_as = iotlb.target_as; 446 447 section = address_space_translate_internal( 448 address_space_to_dispatch(iotlb.target_as), addr, xlat, 449 plen_out, is_mmio); 450 451 iommu_mr = memory_region_get_iommu(section->mr); 452 } while (unlikely(iommu_mr)); 453 454 if (page_mask_out) { 455 *page_mask_out = page_mask; 456 } 457 return *section; 458 459 unassigned: 460 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 461 } 462 463 /** 464 * flatview_do_translate - translate an address in FlatView 465 * 466 * @fv: the flat view that we want to translate on 467 * @addr: the address to be translated in above address space 468 * @xlat: the translated address offset within memory region. It 469 * cannot be @NULL. 470 * @plen_out: valid read/write length of the translated address. It 471 * can be @NULL when we don't care about it. 472 * @page_mask_out: page mask for the translated address. This 473 * should only be meaningful for IOMMU translated 474 * addresses, since there may be huge pages that this bit 475 * would tell. It can be @NULL if we don't care about it. 476 * @is_write: whether the translation operation is for write 477 * @is_mmio: whether this can be MMIO, set true if it can 478 * @target_as: the address space targeted by the IOMMU 479 * @attrs: memory transaction attributes 480 * 481 * This function is called from RCU critical section 482 */ 483 static MemoryRegionSection flatview_do_translate(FlatView *fv, 484 hwaddr addr, 485 hwaddr *xlat, 486 hwaddr *plen_out, 487 hwaddr *page_mask_out, 488 bool is_write, 489 bool is_mmio, 490 AddressSpace **target_as, 491 MemTxAttrs attrs) 492 { 493 MemoryRegionSection *section; 494 IOMMUMemoryRegion *iommu_mr; 495 hwaddr plen = (hwaddr)(-1); 496 497 if (!plen_out) { 498 plen_out = &plen; 499 } 500 501 section = address_space_translate_internal( 502 flatview_to_dispatch(fv), addr, xlat, 503 plen_out, is_mmio); 504 505 iommu_mr = memory_region_get_iommu(section->mr); 506 if (unlikely(iommu_mr)) { 507 return address_space_translate_iommu(iommu_mr, xlat, 508 plen_out, page_mask_out, 509 is_write, is_mmio, 510 target_as, attrs); 511 } 512 if (page_mask_out) { 513 /* Not behind an IOMMU, use default page size. */ 514 *page_mask_out = ~TARGET_PAGE_MASK; 515 } 516 517 return *section; 518 } 519 520 /* Called from RCU critical section */ 521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 522 bool is_write, MemTxAttrs attrs) 523 { 524 MemoryRegionSection section; 525 hwaddr xlat, page_mask; 526 527 /* 528 * This can never be MMIO, and we don't really care about plen, 529 * but page mask. 530 */ 531 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 532 NULL, &page_mask, is_write, false, &as, 533 attrs); 534 535 /* Illegal translation */ 536 if (section.mr == &io_mem_unassigned) { 537 goto iotlb_fail; 538 } 539 540 /* Convert memory region offset into address space offset */ 541 xlat += section.offset_within_address_space - 542 section.offset_within_region; 543 544 return (IOMMUTLBEntry) { 545 .target_as = as, 546 .iova = addr & ~page_mask, 547 .translated_addr = xlat & ~page_mask, 548 .addr_mask = page_mask, 549 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 550 .perm = IOMMU_RW, 551 }; 552 553 iotlb_fail: 554 return (IOMMUTLBEntry) {0}; 555 } 556 557 /* Called from RCU critical section */ 558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 559 hwaddr *plen, bool is_write, 560 MemTxAttrs attrs) 561 { 562 MemoryRegion *mr; 563 MemoryRegionSection section; 564 AddressSpace *as = NULL; 565 566 /* This can be MMIO, so setup MMIO bit. */ 567 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 568 is_write, true, &as, attrs); 569 mr = section.mr; 570 571 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 572 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 573 *plen = MIN(page, *plen); 574 } 575 576 return mr; 577 } 578 579 typedef struct TCGIOMMUNotifier { 580 IOMMUNotifier n; 581 MemoryRegion *mr; 582 CPUState *cpu; 583 int iommu_idx; 584 bool active; 585 } TCGIOMMUNotifier; 586 587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 588 { 589 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 590 591 if (!notifier->active) { 592 return; 593 } 594 tlb_flush(notifier->cpu); 595 notifier->active = false; 596 /* We leave the notifier struct on the list to avoid reallocating it later. 597 * Generally the number of IOMMUs a CPU deals with will be small. 598 * In any case we can't unregister the iommu notifier from a notify 599 * callback. 600 */ 601 } 602 603 static void tcg_register_iommu_notifier(CPUState *cpu, 604 IOMMUMemoryRegion *iommu_mr, 605 int iommu_idx) 606 { 607 /* Make sure this CPU has an IOMMU notifier registered for this 608 * IOMMU/IOMMU index combination, so that we can flush its TLB 609 * when the IOMMU tells us the mappings we've cached have changed. 610 */ 611 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 612 TCGIOMMUNotifier *notifier = NULL; 613 int i; 614 615 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 616 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 617 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 618 break; 619 } 620 } 621 if (i == cpu->iommu_notifiers->len) { 622 /* Not found, add a new entry at the end of the array */ 623 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 624 notifier = g_new0(TCGIOMMUNotifier, 1); 625 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 626 627 notifier->mr = mr; 628 notifier->iommu_idx = iommu_idx; 629 notifier->cpu = cpu; 630 /* Rather than trying to register interest in the specific part 631 * of the iommu's address space that we've accessed and then 632 * expand it later as subsequent accesses touch more of it, we 633 * just register interest in the whole thing, on the assumption 634 * that iommu reconfiguration will be rare. 635 */ 636 iommu_notifier_init(¬ifier->n, 637 tcg_iommu_unmap_notify, 638 IOMMU_NOTIFIER_UNMAP, 639 0, 640 HWADDR_MAX, 641 iommu_idx); 642 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 643 &error_fatal); 644 } 645 646 if (!notifier->active) { 647 notifier->active = true; 648 } 649 } 650 651 void tcg_iommu_free_notifier_list(CPUState *cpu) 652 { 653 /* Destroy the CPU's notifier list */ 654 int i; 655 TCGIOMMUNotifier *notifier; 656 657 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 658 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 659 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 660 g_free(notifier); 661 } 662 g_array_free(cpu->iommu_notifiers, true); 663 } 664 665 void tcg_iommu_init_notifier_list(CPUState *cpu) 666 { 667 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 668 } 669 670 /* Called from RCU critical section */ 671 MemoryRegionSection * 672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 673 hwaddr *xlat, hwaddr *plen, 674 MemTxAttrs attrs, int *prot) 675 { 676 MemoryRegionSection *section; 677 IOMMUMemoryRegion *iommu_mr; 678 IOMMUMemoryRegionClass *imrc; 679 IOMMUTLBEntry iotlb; 680 int iommu_idx; 681 AddressSpaceDispatch *d = 682 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 683 684 for (;;) { 685 section = address_space_translate_internal(d, addr, &addr, plen, false); 686 687 iommu_mr = memory_region_get_iommu(section->mr); 688 if (!iommu_mr) { 689 break; 690 } 691 692 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 693 694 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 695 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 696 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 697 * doesn't short-cut its translation table walk. 698 */ 699 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 700 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 701 | (addr & iotlb.addr_mask)); 702 /* Update the caller's prot bits to remove permissions the IOMMU 703 * is giving us a failure response for. If we get down to no 704 * permissions left at all we can give up now. 705 */ 706 if (!(iotlb.perm & IOMMU_RO)) { 707 *prot &= ~(PAGE_READ | PAGE_EXEC); 708 } 709 if (!(iotlb.perm & IOMMU_WO)) { 710 *prot &= ~PAGE_WRITE; 711 } 712 713 if (!*prot) { 714 goto translate_fail; 715 } 716 717 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 718 } 719 720 assert(!memory_region_is_iommu(section->mr)); 721 *xlat = addr; 722 return section; 723 724 translate_fail: 725 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 726 } 727 728 void cpu_address_space_init(CPUState *cpu, int asidx, 729 const char *prefix, MemoryRegion *mr) 730 { 731 CPUAddressSpace *newas; 732 AddressSpace *as = g_new0(AddressSpace, 1); 733 char *as_name; 734 735 assert(mr); 736 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 737 address_space_init(as, mr, as_name); 738 g_free(as_name); 739 740 /* Target code should have set num_ases before calling us */ 741 assert(asidx < cpu->num_ases); 742 743 if (asidx == 0) { 744 /* address space 0 gets the convenience alias */ 745 cpu->as = as; 746 } 747 748 /* KVM cannot currently support multiple address spaces. */ 749 assert(asidx == 0 || !kvm_enabled()); 750 751 if (!cpu->cpu_ases) { 752 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 753 } 754 755 newas = &cpu->cpu_ases[asidx]; 756 newas->cpu = cpu; 757 newas->as = as; 758 if (tcg_enabled()) { 759 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 760 newas->tcg_as_listener.commit = tcg_commit; 761 newas->tcg_as_listener.name = "tcg"; 762 memory_listener_register(&newas->tcg_as_listener, as); 763 } 764 } 765 766 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 767 { 768 /* Return the AddressSpace corresponding to the specified index */ 769 return cpu->cpu_ases[asidx].as; 770 } 771 772 /* Add a watchpoint. */ 773 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 774 int flags, CPUWatchpoint **watchpoint) 775 { 776 CPUWatchpoint *wp; 777 vaddr in_page; 778 779 /* forbid ranges which are empty or run off the end of the address space */ 780 if (len == 0 || (addr + len - 1) < addr) { 781 error_report("tried to set invalid watchpoint at %" 782 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); 783 return -EINVAL; 784 } 785 wp = g_malloc(sizeof(*wp)); 786 787 wp->vaddr = addr; 788 wp->len = len; 789 wp->flags = flags; 790 791 /* keep all GDB-injected watchpoints in front */ 792 if (flags & BP_GDB) { 793 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); 794 } else { 795 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); 796 } 797 798 in_page = -(addr | TARGET_PAGE_MASK); 799 if (len <= in_page) { 800 tlb_flush_page(cpu, addr); 801 } else { 802 tlb_flush(cpu); 803 } 804 805 if (watchpoint) 806 *watchpoint = wp; 807 return 0; 808 } 809 810 /* Remove a specific watchpoint. */ 811 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, 812 int flags) 813 { 814 CPUWatchpoint *wp; 815 816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 817 if (addr == wp->vaddr && len == wp->len 818 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { 819 cpu_watchpoint_remove_by_ref(cpu, wp); 820 return 0; 821 } 822 } 823 return -ENOENT; 824 } 825 826 /* Remove a specific watchpoint by reference. */ 827 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) 828 { 829 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); 830 831 tlb_flush_page(cpu, watchpoint->vaddr); 832 833 g_free(watchpoint); 834 } 835 836 /* Remove all matching watchpoints. */ 837 void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 838 { 839 CPUWatchpoint *wp, *next; 840 841 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { 842 if (wp->flags & mask) { 843 cpu_watchpoint_remove_by_ref(cpu, wp); 844 } 845 } 846 } 847 848 #ifdef CONFIG_TCG 849 /* Return true if this watchpoint address matches the specified 850 * access (ie the address range covered by the watchpoint overlaps 851 * partially or completely with the address range covered by the 852 * access). 853 */ 854 static inline bool watchpoint_address_matches(CPUWatchpoint *wp, 855 vaddr addr, vaddr len) 856 { 857 /* We know the lengths are non-zero, but a little caution is 858 * required to avoid errors in the case where the range ends 859 * exactly at the top of the address space and so addr + len 860 * wraps round to zero. 861 */ 862 vaddr wpend = wp->vaddr + wp->len - 1; 863 vaddr addrend = addr + len - 1; 864 865 return !(addr > wpend || wp->vaddr > addrend); 866 } 867 868 /* Return flags for watchpoints that match addr + prot. */ 869 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) 870 { 871 CPUWatchpoint *wp; 872 int ret = 0; 873 874 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 875 if (watchpoint_address_matches(wp, addr, len)) { 876 ret |= wp->flags; 877 } 878 } 879 return ret; 880 } 881 882 /* Generate a debug exception if a watchpoint has been hit. */ 883 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 884 MemTxAttrs attrs, int flags, uintptr_t ra) 885 { 886 CPUClass *cc = CPU_GET_CLASS(cpu); 887 CPUWatchpoint *wp; 888 889 assert(tcg_enabled()); 890 if (cpu->watchpoint_hit) { 891 /* 892 * We re-entered the check after replacing the TB. 893 * Now raise the debug interrupt so that it will 894 * trigger after the current instruction. 895 */ 896 qemu_mutex_lock_iothread(); 897 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); 898 qemu_mutex_unlock_iothread(); 899 return; 900 } 901 902 if (cc->tcg_ops->adjust_watchpoint_address) { 903 /* this is currently used only by ARM BE32 */ 904 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len); 905 } 906 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 907 if (watchpoint_address_matches(wp, addr, len) 908 && (wp->flags & flags)) { 909 if (replay_running_debug()) { 910 /* 911 * replay_breakpoint reads icount. 912 * Force recompile to succeed, because icount may 913 * be read only at the end of the block. 914 */ 915 if (!cpu->can_do_io) { 916 /* Force execution of one insn next time. */ 917 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 918 cpu_loop_exit_restore(cpu, ra); 919 } 920 /* 921 * Don't process the watchpoints when we are 922 * in a reverse debugging operation. 923 */ 924 replay_breakpoint(); 925 return; 926 } 927 if (flags == BP_MEM_READ) { 928 wp->flags |= BP_WATCHPOINT_HIT_READ; 929 } else { 930 wp->flags |= BP_WATCHPOINT_HIT_WRITE; 931 } 932 wp->hitaddr = MAX(addr, wp->vaddr); 933 wp->hitattrs = attrs; 934 935 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint && 936 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) { 937 wp->flags &= ~BP_WATCHPOINT_HIT; 938 continue; 939 } 940 cpu->watchpoint_hit = wp; 941 942 mmap_lock(); 943 /* This call also restores vCPU state */ 944 tb_check_watchpoint(cpu, ra); 945 if (wp->flags & BP_STOP_BEFORE_ACCESS) { 946 cpu->exception_index = EXCP_DEBUG; 947 mmap_unlock(); 948 cpu_loop_exit(cpu); 949 } else { 950 /* Force execution of one insn next time. */ 951 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 952 mmap_unlock(); 953 cpu_loop_exit_noexc(cpu); 954 } 955 } else { 956 wp->flags &= ~BP_WATCHPOINT_HIT; 957 } 958 } 959 } 960 961 #endif /* CONFIG_TCG */ 962 963 /* Called from RCU critical section */ 964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 965 { 966 RAMBlock *block; 967 968 block = qatomic_rcu_read(&ram_list.mru_block); 969 if (block && addr - block->offset < block->max_length) { 970 return block; 971 } 972 RAMBLOCK_FOREACH(block) { 973 if (addr - block->offset < block->max_length) { 974 goto found; 975 } 976 } 977 978 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 979 abort(); 980 981 found: 982 /* It is safe to write mru_block outside the iothread lock. This 983 * is what happens: 984 * 985 * mru_block = xxx 986 * rcu_read_unlock() 987 * xxx removed from list 988 * rcu_read_lock() 989 * read mru_block 990 * mru_block = NULL; 991 * call_rcu(reclaim_ramblock, xxx); 992 * rcu_read_unlock() 993 * 994 * qatomic_rcu_set is not needed here. The block was already published 995 * when it was placed into the list. Here we're just making an extra 996 * copy of the pointer. 997 */ 998 ram_list.mru_block = block; 999 return block; 1000 } 1001 1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 1003 { 1004 CPUState *cpu; 1005 ram_addr_t start1; 1006 RAMBlock *block; 1007 ram_addr_t end; 1008 1009 assert(tcg_enabled()); 1010 end = TARGET_PAGE_ALIGN(start + length); 1011 start &= TARGET_PAGE_MASK; 1012 1013 RCU_READ_LOCK_GUARD(); 1014 block = qemu_get_ram_block(start); 1015 assert(block == qemu_get_ram_block(end - 1)); 1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 1017 CPU_FOREACH(cpu) { 1018 tlb_reset_dirty(cpu, start1, length); 1019 } 1020 } 1021 1022 /* Note: start and end must be within the same ram block. */ 1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 1024 ram_addr_t length, 1025 unsigned client) 1026 { 1027 DirtyMemoryBlocks *blocks; 1028 unsigned long end, page, start_page; 1029 bool dirty = false; 1030 RAMBlock *ramblock; 1031 uint64_t mr_offset, mr_size; 1032 1033 if (length == 0) { 1034 return false; 1035 } 1036 1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 1038 start_page = start >> TARGET_PAGE_BITS; 1039 page = start_page; 1040 1041 WITH_RCU_READ_LOCK_GUARD() { 1042 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1043 ramblock = qemu_get_ram_block(start); 1044 /* Range sanity check on the ramblock */ 1045 assert(start >= ramblock->offset && 1046 start + length <= ramblock->offset + ramblock->used_length); 1047 1048 while (page < end) { 1049 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1050 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1051 unsigned long num = MIN(end - page, 1052 DIRTY_MEMORY_BLOCK_SIZE - offset); 1053 1054 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 1055 offset, num); 1056 page += num; 1057 } 1058 1059 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 1060 mr_size = (end - start_page) << TARGET_PAGE_BITS; 1061 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 1062 } 1063 1064 if (dirty && tcg_enabled()) { 1065 tlb_reset_dirty_range_all(start, length); 1066 } 1067 1068 return dirty; 1069 } 1070 1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 1072 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 1073 { 1074 DirtyMemoryBlocks *blocks; 1075 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 1079 DirtyBitmapSnapshot *snap; 1080 unsigned long page, end, dest; 1081 1082 snap = g_malloc0(sizeof(*snap) + 1083 ((last - first) >> (TARGET_PAGE_BITS + 3))); 1084 snap->start = first; 1085 snap->end = last; 1086 1087 page = first >> TARGET_PAGE_BITS; 1088 end = last >> TARGET_PAGE_BITS; 1089 dest = 0; 1090 1091 WITH_RCU_READ_LOCK_GUARD() { 1092 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1093 1094 while (page < end) { 1095 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1096 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1097 unsigned long num = MIN(end - page, 1098 DIRTY_MEMORY_BLOCK_SIZE - offset); 1099 1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 1102 offset >>= BITS_PER_LEVEL; 1103 1104 bitmap_copy_and_clear_atomic(snap->dirty + dest, 1105 blocks->blocks[idx] + offset, 1106 num); 1107 page += num; 1108 dest += num >> BITS_PER_LEVEL; 1109 } 1110 } 1111 1112 if (tcg_enabled()) { 1113 tlb_reset_dirty_range_all(start, length); 1114 } 1115 1116 memory_region_clear_dirty_bitmap(mr, offset, length); 1117 1118 return snap; 1119 } 1120 1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1122 ram_addr_t start, 1123 ram_addr_t length) 1124 { 1125 unsigned long page, end; 1126 1127 assert(start >= snap->start); 1128 assert(start + length <= snap->end); 1129 1130 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1131 page = (start - snap->start) >> TARGET_PAGE_BITS; 1132 1133 while (page < end) { 1134 if (test_bit(page, snap->dirty)) { 1135 return true; 1136 } 1137 page++; 1138 } 1139 return false; 1140 } 1141 1142 /* Called from RCU critical section */ 1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1144 MemoryRegionSection *section) 1145 { 1146 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1147 return section - d->map.sections; 1148 } 1149 1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1151 uint16_t section); 1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1153 1154 static uint16_t phys_section_add(PhysPageMap *map, 1155 MemoryRegionSection *section) 1156 { 1157 /* The physical section number is ORed with a page-aligned 1158 * pointer to produce the iotlb entries. Thus it should 1159 * never overflow into the page-aligned value. 1160 */ 1161 assert(map->sections_nb < TARGET_PAGE_SIZE); 1162 1163 if (map->sections_nb == map->sections_nb_alloc) { 1164 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1165 map->sections = g_renew(MemoryRegionSection, map->sections, 1166 map->sections_nb_alloc); 1167 } 1168 map->sections[map->sections_nb] = *section; 1169 memory_region_ref(section->mr); 1170 return map->sections_nb++; 1171 } 1172 1173 static void phys_section_destroy(MemoryRegion *mr) 1174 { 1175 bool have_sub_page = mr->subpage; 1176 1177 memory_region_unref(mr); 1178 1179 if (have_sub_page) { 1180 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1181 object_unref(OBJECT(&subpage->iomem)); 1182 g_free(subpage); 1183 } 1184 } 1185 1186 static void phys_sections_free(PhysPageMap *map) 1187 { 1188 while (map->sections_nb > 0) { 1189 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1190 phys_section_destroy(section->mr); 1191 } 1192 g_free(map->sections); 1193 g_free(map->nodes); 1194 } 1195 1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1197 { 1198 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1199 subpage_t *subpage; 1200 hwaddr base = section->offset_within_address_space 1201 & TARGET_PAGE_MASK; 1202 MemoryRegionSection *existing = phys_page_find(d, base); 1203 MemoryRegionSection subsection = { 1204 .offset_within_address_space = base, 1205 .size = int128_make64(TARGET_PAGE_SIZE), 1206 }; 1207 hwaddr start, end; 1208 1209 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1210 1211 if (!(existing->mr->subpage)) { 1212 subpage = subpage_init(fv, base); 1213 subsection.fv = fv; 1214 subsection.mr = &subpage->iomem; 1215 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1216 phys_section_add(&d->map, &subsection)); 1217 } else { 1218 subpage = container_of(existing->mr, subpage_t, iomem); 1219 } 1220 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1221 end = start + int128_get64(section->size) - 1; 1222 subpage_register(subpage, start, end, 1223 phys_section_add(&d->map, section)); 1224 } 1225 1226 1227 static void register_multipage(FlatView *fv, 1228 MemoryRegionSection *section) 1229 { 1230 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1231 hwaddr start_addr = section->offset_within_address_space; 1232 uint16_t section_index = phys_section_add(&d->map, section); 1233 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1234 TARGET_PAGE_BITS)); 1235 1236 assert(num_pages); 1237 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1238 } 1239 1240 /* 1241 * The range in *section* may look like this: 1242 * 1243 * |s|PPPPPPP|s| 1244 * 1245 * where s stands for subpage and P for page. 1246 */ 1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1248 { 1249 MemoryRegionSection remain = *section; 1250 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1251 1252 /* register first subpage */ 1253 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1254 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1255 - remain.offset_within_address_space; 1256 1257 MemoryRegionSection now = remain; 1258 now.size = int128_min(int128_make64(left), now.size); 1259 register_subpage(fv, &now); 1260 if (int128_eq(remain.size, now.size)) { 1261 return; 1262 } 1263 remain.size = int128_sub(remain.size, now.size); 1264 remain.offset_within_address_space += int128_get64(now.size); 1265 remain.offset_within_region += int128_get64(now.size); 1266 } 1267 1268 /* register whole pages */ 1269 if (int128_ge(remain.size, page_size)) { 1270 MemoryRegionSection now = remain; 1271 now.size = int128_and(now.size, int128_neg(page_size)); 1272 register_multipage(fv, &now); 1273 if (int128_eq(remain.size, now.size)) { 1274 return; 1275 } 1276 remain.size = int128_sub(remain.size, now.size); 1277 remain.offset_within_address_space += int128_get64(now.size); 1278 remain.offset_within_region += int128_get64(now.size); 1279 } 1280 1281 /* register last subpage */ 1282 register_subpage(fv, &remain); 1283 } 1284 1285 void qemu_flush_coalesced_mmio_buffer(void) 1286 { 1287 if (kvm_enabled()) 1288 kvm_flush_coalesced_mmio_buffer(); 1289 } 1290 1291 void qemu_mutex_lock_ramlist(void) 1292 { 1293 qemu_mutex_lock(&ram_list.mutex); 1294 } 1295 1296 void qemu_mutex_unlock_ramlist(void) 1297 { 1298 qemu_mutex_unlock(&ram_list.mutex); 1299 } 1300 1301 GString *ram_block_format(void) 1302 { 1303 RAMBlock *block; 1304 char *psize; 1305 GString *buf = g_string_new(""); 1306 1307 RCU_READ_LOCK_GUARD(); 1308 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n", 1309 "Block Name", "PSize", "Offset", "Used", "Total"); 1310 RAMBLOCK_FOREACH(block) { 1311 psize = size_to_str(block->page_size); 1312 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1313 " 0x%016" PRIx64 "\n", block->idstr, psize, 1314 (uint64_t)block->offset, 1315 (uint64_t)block->used_length, 1316 (uint64_t)block->max_length); 1317 g_free(psize); 1318 } 1319 1320 return buf; 1321 } 1322 1323 #ifdef __linux__ 1324 /* 1325 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which 1326 * may or may not name the same files / on the same filesystem now as 1327 * when we actually open and map them. Iterate over the file 1328 * descriptors instead, and use qemu_fd_getpagesize(). 1329 */ 1330 static int find_min_backend_pagesize(Object *obj, void *opaque) 1331 { 1332 long *hpsize_min = opaque; 1333 1334 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1335 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1336 long hpsize = host_memory_backend_pagesize(backend); 1337 1338 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1339 *hpsize_min = hpsize; 1340 } 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int find_max_backend_pagesize(Object *obj, void *opaque) 1347 { 1348 long *hpsize_max = opaque; 1349 1350 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1351 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1352 long hpsize = host_memory_backend_pagesize(backend); 1353 1354 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1355 *hpsize_max = hpsize; 1356 } 1357 } 1358 1359 return 0; 1360 } 1361 1362 /* 1363 * TODO: We assume right now that all mapped host memory backends are 1364 * used as RAM, however some might be used for different purposes. 1365 */ 1366 long qemu_minrampagesize(void) 1367 { 1368 long hpsize = LONG_MAX; 1369 Object *memdev_root = object_resolve_path("/objects", NULL); 1370 1371 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1372 return hpsize; 1373 } 1374 1375 long qemu_maxrampagesize(void) 1376 { 1377 long pagesize = 0; 1378 Object *memdev_root = object_resolve_path("/objects", NULL); 1379 1380 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1381 return pagesize; 1382 } 1383 #else 1384 long qemu_minrampagesize(void) 1385 { 1386 return qemu_real_host_page_size(); 1387 } 1388 long qemu_maxrampagesize(void) 1389 { 1390 return qemu_real_host_page_size(); 1391 } 1392 #endif 1393 1394 #ifdef CONFIG_POSIX 1395 static int64_t get_file_size(int fd) 1396 { 1397 int64_t size; 1398 #if defined(__linux__) 1399 struct stat st; 1400 1401 if (fstat(fd, &st) < 0) { 1402 return -errno; 1403 } 1404 1405 /* Special handling for devdax character devices */ 1406 if (S_ISCHR(st.st_mode)) { 1407 g_autofree char *subsystem_path = NULL; 1408 g_autofree char *subsystem = NULL; 1409 1410 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1411 major(st.st_rdev), minor(st.st_rdev)); 1412 subsystem = g_file_read_link(subsystem_path, NULL); 1413 1414 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1415 g_autofree char *size_path = NULL; 1416 g_autofree char *size_str = NULL; 1417 1418 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1419 major(st.st_rdev), minor(st.st_rdev)); 1420 1421 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1422 return g_ascii_strtoll(size_str, NULL, 0); 1423 } 1424 } 1425 } 1426 #endif /* defined(__linux__) */ 1427 1428 /* st.st_size may be zero for special files yet lseek(2) works */ 1429 size = lseek(fd, 0, SEEK_END); 1430 if (size < 0) { 1431 return -errno; 1432 } 1433 return size; 1434 } 1435 1436 static int64_t get_file_align(int fd) 1437 { 1438 int64_t align = -1; 1439 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1440 struct stat st; 1441 1442 if (fstat(fd, &st) < 0) { 1443 return -errno; 1444 } 1445 1446 /* Special handling for devdax character devices */ 1447 if (S_ISCHR(st.st_mode)) { 1448 g_autofree char *path = NULL; 1449 g_autofree char *rpath = NULL; 1450 struct daxctl_ctx *ctx; 1451 struct daxctl_region *region; 1452 int rc = 0; 1453 1454 path = g_strdup_printf("/sys/dev/char/%d:%d", 1455 major(st.st_rdev), minor(st.st_rdev)); 1456 rpath = realpath(path, NULL); 1457 if (!rpath) { 1458 return -errno; 1459 } 1460 1461 rc = daxctl_new(&ctx); 1462 if (rc) { 1463 return -1; 1464 } 1465 1466 daxctl_region_foreach(ctx, region) { 1467 if (strstr(rpath, daxctl_region_get_path(region))) { 1468 align = daxctl_region_get_align(region); 1469 break; 1470 } 1471 } 1472 daxctl_unref(ctx); 1473 } 1474 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1475 1476 return align; 1477 } 1478 1479 static int file_ram_open(const char *path, 1480 const char *region_name, 1481 bool readonly, 1482 bool *created, 1483 Error **errp) 1484 { 1485 char *filename; 1486 char *sanitized_name; 1487 char *c; 1488 int fd = -1; 1489 1490 *created = false; 1491 for (;;) { 1492 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1493 if (fd >= 0) { 1494 /* @path names an existing file, use it */ 1495 break; 1496 } 1497 if (errno == ENOENT) { 1498 /* @path names a file that doesn't exist, create it */ 1499 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1500 if (fd >= 0) { 1501 *created = true; 1502 break; 1503 } 1504 } else if (errno == EISDIR) { 1505 /* @path names a directory, create a file there */ 1506 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1507 sanitized_name = g_strdup(region_name); 1508 for (c = sanitized_name; *c != '\0'; c++) { 1509 if (*c == '/') { 1510 *c = '_'; 1511 } 1512 } 1513 1514 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1515 sanitized_name); 1516 g_free(sanitized_name); 1517 1518 fd = mkstemp(filename); 1519 if (fd >= 0) { 1520 unlink(filename); 1521 g_free(filename); 1522 break; 1523 } 1524 g_free(filename); 1525 } 1526 if (errno != EEXIST && errno != EINTR) { 1527 error_setg_errno(errp, errno, 1528 "can't open backing store %s for guest RAM", 1529 path); 1530 return -1; 1531 } 1532 /* 1533 * Try again on EINTR and EEXIST. The latter happens when 1534 * something else creates the file between our two open(). 1535 */ 1536 } 1537 1538 return fd; 1539 } 1540 1541 static void *file_ram_alloc(RAMBlock *block, 1542 ram_addr_t memory, 1543 int fd, 1544 bool readonly, 1545 bool truncate, 1546 off_t offset, 1547 Error **errp) 1548 { 1549 uint32_t qemu_map_flags; 1550 void *area; 1551 1552 block->page_size = qemu_fd_getpagesize(fd); 1553 if (block->mr->align % block->page_size) { 1554 error_setg(errp, "alignment 0x%" PRIx64 1555 " must be multiples of page size 0x%zx", 1556 block->mr->align, block->page_size); 1557 return NULL; 1558 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1559 error_setg(errp, "alignment 0x%" PRIx64 1560 " must be a power of two", block->mr->align); 1561 return NULL; 1562 } 1563 block->mr->align = MAX(block->page_size, block->mr->align); 1564 #if defined(__s390x__) 1565 if (kvm_enabled()) { 1566 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1567 } 1568 #endif 1569 1570 if (memory < block->page_size) { 1571 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1572 "or larger than page size 0x%zx", 1573 memory, block->page_size); 1574 return NULL; 1575 } 1576 1577 memory = ROUND_UP(memory, block->page_size); 1578 1579 /* 1580 * ftruncate is not supported by hugetlbfs in older 1581 * hosts, so don't bother bailing out on errors. 1582 * If anything goes wrong with it under other filesystems, 1583 * mmap will fail. 1584 * 1585 * Do not truncate the non-empty backend file to avoid corrupting 1586 * the existing data in the file. Disabling shrinking is not 1587 * enough. For example, the current vNVDIMM implementation stores 1588 * the guest NVDIMM labels at the end of the backend file. If the 1589 * backend file is later extended, QEMU will not be able to find 1590 * those labels. Therefore, extending the non-empty backend file 1591 * is disabled as well. 1592 */ 1593 if (truncate && ftruncate(fd, memory)) { 1594 perror("ftruncate"); 1595 } 1596 1597 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1598 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1599 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1600 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1601 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1602 if (area == MAP_FAILED) { 1603 error_setg_errno(errp, errno, 1604 "unable to map backing store for guest RAM"); 1605 return NULL; 1606 } 1607 1608 block->fd = fd; 1609 return area; 1610 } 1611 #endif 1612 1613 /* Allocate space within the ram_addr_t space that governs the 1614 * dirty bitmaps. 1615 * Called with the ramlist lock held. 1616 */ 1617 static ram_addr_t find_ram_offset(ram_addr_t size) 1618 { 1619 RAMBlock *block, *next_block; 1620 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1621 1622 assert(size != 0); /* it would hand out same offset multiple times */ 1623 1624 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1625 return 0; 1626 } 1627 1628 RAMBLOCK_FOREACH(block) { 1629 ram_addr_t candidate, next = RAM_ADDR_MAX; 1630 1631 /* Align blocks to start on a 'long' in the bitmap 1632 * which makes the bitmap sync'ing take the fast path. 1633 */ 1634 candidate = block->offset + block->max_length; 1635 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1636 1637 /* Search for the closest following block 1638 * and find the gap. 1639 */ 1640 RAMBLOCK_FOREACH(next_block) { 1641 if (next_block->offset >= candidate) { 1642 next = MIN(next, next_block->offset); 1643 } 1644 } 1645 1646 /* If it fits remember our place and remember the size 1647 * of gap, but keep going so that we might find a smaller 1648 * gap to fill so avoiding fragmentation. 1649 */ 1650 if (next - candidate >= size && next - candidate < mingap) { 1651 offset = candidate; 1652 mingap = next - candidate; 1653 } 1654 1655 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1656 } 1657 1658 if (offset == RAM_ADDR_MAX) { 1659 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1660 (uint64_t)size); 1661 abort(); 1662 } 1663 1664 trace_find_ram_offset(size, offset); 1665 1666 return offset; 1667 } 1668 1669 static unsigned long last_ram_page(void) 1670 { 1671 RAMBlock *block; 1672 ram_addr_t last = 0; 1673 1674 RCU_READ_LOCK_GUARD(); 1675 RAMBLOCK_FOREACH(block) { 1676 last = MAX(last, block->offset + block->max_length); 1677 } 1678 return last >> TARGET_PAGE_BITS; 1679 } 1680 1681 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1682 { 1683 int ret; 1684 1685 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1686 if (!machine_dump_guest_core(current_machine)) { 1687 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1688 if (ret) { 1689 perror("qemu_madvise"); 1690 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1691 "but dump_guest_core=off specified\n"); 1692 } 1693 } 1694 } 1695 1696 const char *qemu_ram_get_idstr(RAMBlock *rb) 1697 { 1698 return rb->idstr; 1699 } 1700 1701 void *qemu_ram_get_host_addr(RAMBlock *rb) 1702 { 1703 return rb->host; 1704 } 1705 1706 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1707 { 1708 return rb->offset; 1709 } 1710 1711 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1712 { 1713 return rb->used_length; 1714 } 1715 1716 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1717 { 1718 return rb->max_length; 1719 } 1720 1721 bool qemu_ram_is_shared(RAMBlock *rb) 1722 { 1723 return rb->flags & RAM_SHARED; 1724 } 1725 1726 bool qemu_ram_is_noreserve(RAMBlock *rb) 1727 { 1728 return rb->flags & RAM_NORESERVE; 1729 } 1730 1731 /* Note: Only set at the start of postcopy */ 1732 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1733 { 1734 return rb->flags & RAM_UF_ZEROPAGE; 1735 } 1736 1737 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1738 { 1739 rb->flags |= RAM_UF_ZEROPAGE; 1740 } 1741 1742 bool qemu_ram_is_migratable(RAMBlock *rb) 1743 { 1744 return rb->flags & RAM_MIGRATABLE; 1745 } 1746 1747 void qemu_ram_set_migratable(RAMBlock *rb) 1748 { 1749 rb->flags |= RAM_MIGRATABLE; 1750 } 1751 1752 void qemu_ram_unset_migratable(RAMBlock *rb) 1753 { 1754 rb->flags &= ~RAM_MIGRATABLE; 1755 } 1756 1757 /* Called with iothread lock held. */ 1758 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1759 { 1760 RAMBlock *block; 1761 1762 assert(new_block); 1763 assert(!new_block->idstr[0]); 1764 1765 if (dev) { 1766 char *id = qdev_get_dev_path(dev); 1767 if (id) { 1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1769 g_free(id); 1770 } 1771 } 1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1773 1774 RCU_READ_LOCK_GUARD(); 1775 RAMBLOCK_FOREACH(block) { 1776 if (block != new_block && 1777 !strcmp(block->idstr, new_block->idstr)) { 1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1779 new_block->idstr); 1780 abort(); 1781 } 1782 } 1783 } 1784 1785 /* Called with iothread lock held. */ 1786 void qemu_ram_unset_idstr(RAMBlock *block) 1787 { 1788 /* FIXME: arch_init.c assumes that this is not called throughout 1789 * migration. Ignore the problem since hot-unplug during migration 1790 * does not work anyway. 1791 */ 1792 if (block) { 1793 memset(block->idstr, 0, sizeof(block->idstr)); 1794 } 1795 } 1796 1797 size_t qemu_ram_pagesize(RAMBlock *rb) 1798 { 1799 return rb->page_size; 1800 } 1801 1802 /* Returns the largest size of page in use */ 1803 size_t qemu_ram_pagesize_largest(void) 1804 { 1805 RAMBlock *block; 1806 size_t largest = 0; 1807 1808 RAMBLOCK_FOREACH(block) { 1809 largest = MAX(largest, qemu_ram_pagesize(block)); 1810 } 1811 1812 return largest; 1813 } 1814 1815 static int memory_try_enable_merging(void *addr, size_t len) 1816 { 1817 if (!machine_mem_merge(current_machine)) { 1818 /* disabled by the user */ 1819 return 0; 1820 } 1821 1822 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1823 } 1824 1825 /* 1826 * Resizing RAM while migrating can result in the migration being canceled. 1827 * Care has to be taken if the guest might have already detected the memory. 1828 * 1829 * As memory core doesn't know how is memory accessed, it is up to 1830 * resize callback to update device state and/or add assertions to detect 1831 * misuse, if necessary. 1832 */ 1833 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1834 { 1835 const ram_addr_t oldsize = block->used_length; 1836 const ram_addr_t unaligned_size = newsize; 1837 1838 assert(block); 1839 1840 newsize = HOST_PAGE_ALIGN(newsize); 1841 1842 if (block->used_length == newsize) { 1843 /* 1844 * We don't have to resize the ram block (which only knows aligned 1845 * sizes), however, we have to notify if the unaligned size changed. 1846 */ 1847 if (unaligned_size != memory_region_size(block->mr)) { 1848 memory_region_set_size(block->mr, unaligned_size); 1849 if (block->resized) { 1850 block->resized(block->idstr, unaligned_size, block->host); 1851 } 1852 } 1853 return 0; 1854 } 1855 1856 if (!(block->flags & RAM_RESIZEABLE)) { 1857 error_setg_errno(errp, EINVAL, 1858 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1859 " != 0x" RAM_ADDR_FMT, block->idstr, 1860 newsize, block->used_length); 1861 return -EINVAL; 1862 } 1863 1864 if (block->max_length < newsize) { 1865 error_setg_errno(errp, EINVAL, 1866 "Size too large: %s: 0x" RAM_ADDR_FMT 1867 " > 0x" RAM_ADDR_FMT, block->idstr, 1868 newsize, block->max_length); 1869 return -EINVAL; 1870 } 1871 1872 /* Notify before modifying the ram block and touching the bitmaps. */ 1873 if (block->host) { 1874 ram_block_notify_resize(block->host, oldsize, newsize); 1875 } 1876 1877 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1878 block->used_length = newsize; 1879 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1880 DIRTY_CLIENTS_ALL); 1881 memory_region_set_size(block->mr, unaligned_size); 1882 if (block->resized) { 1883 block->resized(block->idstr, unaligned_size, block->host); 1884 } 1885 return 0; 1886 } 1887 1888 /* 1889 * Trigger sync on the given ram block for range [start, start + length] 1890 * with the backing store if one is available. 1891 * Otherwise no-op. 1892 * @Note: this is supposed to be a synchronous op. 1893 */ 1894 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1895 { 1896 /* The requested range should fit in within the block range */ 1897 g_assert((start + length) <= block->used_length); 1898 1899 #ifdef CONFIG_LIBPMEM 1900 /* The lack of support for pmem should not block the sync */ 1901 if (ramblock_is_pmem(block)) { 1902 void *addr = ramblock_ptr(block, start); 1903 pmem_persist(addr, length); 1904 return; 1905 } 1906 #endif 1907 if (block->fd >= 0) { 1908 /** 1909 * Case there is no support for PMEM or the memory has not been 1910 * specified as persistent (or is not one) - use the msync. 1911 * Less optimal but still achieves the same goal 1912 */ 1913 void *addr = ramblock_ptr(block, start); 1914 if (qemu_msync(addr, length, block->fd)) { 1915 warn_report("%s: failed to sync memory range: start: " 1916 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1917 __func__, start, length); 1918 } 1919 } 1920 } 1921 1922 /* Called with ram_list.mutex held */ 1923 static void dirty_memory_extend(ram_addr_t old_ram_size, 1924 ram_addr_t new_ram_size) 1925 { 1926 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1927 DIRTY_MEMORY_BLOCK_SIZE); 1928 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1929 DIRTY_MEMORY_BLOCK_SIZE); 1930 int i; 1931 1932 /* Only need to extend if block count increased */ 1933 if (new_num_blocks <= old_num_blocks) { 1934 return; 1935 } 1936 1937 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1938 DirtyMemoryBlocks *old_blocks; 1939 DirtyMemoryBlocks *new_blocks; 1940 int j; 1941 1942 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1943 new_blocks = g_malloc(sizeof(*new_blocks) + 1944 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1945 1946 if (old_num_blocks) { 1947 memcpy(new_blocks->blocks, old_blocks->blocks, 1948 old_num_blocks * sizeof(old_blocks->blocks[0])); 1949 } 1950 1951 for (j = old_num_blocks; j < new_num_blocks; j++) { 1952 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1953 } 1954 1955 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1956 1957 if (old_blocks) { 1958 g_free_rcu(old_blocks, rcu); 1959 } 1960 } 1961 } 1962 1963 static void ram_block_add(RAMBlock *new_block, Error **errp) 1964 { 1965 const bool noreserve = qemu_ram_is_noreserve(new_block); 1966 const bool shared = qemu_ram_is_shared(new_block); 1967 RAMBlock *block; 1968 RAMBlock *last_block = NULL; 1969 ram_addr_t old_ram_size, new_ram_size; 1970 Error *err = NULL; 1971 1972 old_ram_size = last_ram_page(); 1973 1974 qemu_mutex_lock_ramlist(); 1975 new_block->offset = find_ram_offset(new_block->max_length); 1976 1977 if (!new_block->host) { 1978 if (xen_enabled()) { 1979 xen_ram_alloc(new_block->offset, new_block->max_length, 1980 new_block->mr, &err); 1981 if (err) { 1982 error_propagate(errp, err); 1983 qemu_mutex_unlock_ramlist(); 1984 return; 1985 } 1986 } else { 1987 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1988 &new_block->mr->align, 1989 shared, noreserve); 1990 if (!new_block->host) { 1991 error_setg_errno(errp, errno, 1992 "cannot set up guest memory '%s'", 1993 memory_region_name(new_block->mr)); 1994 qemu_mutex_unlock_ramlist(); 1995 return; 1996 } 1997 memory_try_enable_merging(new_block->host, new_block->max_length); 1998 } 1999 } 2000 2001 new_ram_size = MAX(old_ram_size, 2002 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 2003 if (new_ram_size > old_ram_size) { 2004 dirty_memory_extend(old_ram_size, new_ram_size); 2005 } 2006 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 2007 * QLIST (which has an RCU-friendly variant) does not have insertion at 2008 * tail, so save the last element in last_block. 2009 */ 2010 RAMBLOCK_FOREACH(block) { 2011 last_block = block; 2012 if (block->max_length < new_block->max_length) { 2013 break; 2014 } 2015 } 2016 if (block) { 2017 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 2018 } else if (last_block) { 2019 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 2020 } else { /* list is empty */ 2021 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 2022 } 2023 ram_list.mru_block = NULL; 2024 2025 /* Write list before version */ 2026 smp_wmb(); 2027 ram_list.version++; 2028 qemu_mutex_unlock_ramlist(); 2029 2030 cpu_physical_memory_set_dirty_range(new_block->offset, 2031 new_block->used_length, 2032 DIRTY_CLIENTS_ALL); 2033 2034 if (new_block->host) { 2035 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2036 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2037 /* 2038 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2039 * Configure it unless the machine is a qtest server, in which case 2040 * KVM is not used and it may be forked (eg for fuzzing purposes). 2041 */ 2042 if (!qtest_enabled()) { 2043 qemu_madvise(new_block->host, new_block->max_length, 2044 QEMU_MADV_DONTFORK); 2045 } 2046 ram_block_notify_add(new_block->host, new_block->used_length, 2047 new_block->max_length); 2048 } 2049 } 2050 2051 #ifdef CONFIG_POSIX 2052 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 2053 uint32_t ram_flags, int fd, off_t offset, 2054 bool readonly, Error **errp) 2055 { 2056 RAMBlock *new_block; 2057 Error *local_err = NULL; 2058 int64_t file_size, file_align; 2059 2060 /* Just support these ram flags by now. */ 2061 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2062 RAM_PROTECTED)) == 0); 2063 2064 if (xen_enabled()) { 2065 error_setg(errp, "-mem-path not supported with Xen"); 2066 return NULL; 2067 } 2068 2069 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2070 error_setg(errp, 2071 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2072 return NULL; 2073 } 2074 2075 size = HOST_PAGE_ALIGN(size); 2076 file_size = get_file_size(fd); 2077 if (file_size > 0 && file_size < size) { 2078 error_setg(errp, "backing store size 0x%" PRIx64 2079 " does not match 'size' option 0x" RAM_ADDR_FMT, 2080 file_size, size); 2081 return NULL; 2082 } 2083 2084 file_align = get_file_align(fd); 2085 if (file_align > 0 && file_align > mr->align) { 2086 error_setg(errp, "backing store align 0x%" PRIx64 2087 " is larger than 'align' option 0x%" PRIx64, 2088 file_align, mr->align); 2089 return NULL; 2090 } 2091 2092 new_block = g_malloc0(sizeof(*new_block)); 2093 new_block->mr = mr; 2094 new_block->used_length = size; 2095 new_block->max_length = size; 2096 new_block->flags = ram_flags; 2097 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 2098 !file_size, offset, errp); 2099 if (!new_block->host) { 2100 g_free(new_block); 2101 return NULL; 2102 } 2103 2104 ram_block_add(new_block, &local_err); 2105 if (local_err) { 2106 g_free(new_block); 2107 error_propagate(errp, local_err); 2108 return NULL; 2109 } 2110 return new_block; 2111 2112 } 2113 2114 2115 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2116 uint32_t ram_flags, const char *mem_path, 2117 bool readonly, Error **errp) 2118 { 2119 int fd; 2120 bool created; 2121 RAMBlock *block; 2122 2123 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 2124 errp); 2125 if (fd < 0) { 2126 return NULL; 2127 } 2128 2129 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 2130 if (!block) { 2131 if (created) { 2132 unlink(mem_path); 2133 } 2134 close(fd); 2135 return NULL; 2136 } 2137 2138 return block; 2139 } 2140 #endif 2141 2142 static 2143 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2144 void (*resized)(const char*, 2145 uint64_t length, 2146 void *host), 2147 void *host, uint32_t ram_flags, 2148 MemoryRegion *mr, Error **errp) 2149 { 2150 RAMBlock *new_block; 2151 Error *local_err = NULL; 2152 2153 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2154 RAM_NORESERVE)) == 0); 2155 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2156 2157 size = HOST_PAGE_ALIGN(size); 2158 max_size = HOST_PAGE_ALIGN(max_size); 2159 new_block = g_malloc0(sizeof(*new_block)); 2160 new_block->mr = mr; 2161 new_block->resized = resized; 2162 new_block->used_length = size; 2163 new_block->max_length = max_size; 2164 assert(max_size >= size); 2165 new_block->fd = -1; 2166 new_block->page_size = qemu_real_host_page_size(); 2167 new_block->host = host; 2168 new_block->flags = ram_flags; 2169 ram_block_add(new_block, &local_err); 2170 if (local_err) { 2171 g_free(new_block); 2172 error_propagate(errp, local_err); 2173 return NULL; 2174 } 2175 return new_block; 2176 } 2177 2178 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2179 MemoryRegion *mr, Error **errp) 2180 { 2181 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2182 errp); 2183 } 2184 2185 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2186 MemoryRegion *mr, Error **errp) 2187 { 2188 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2189 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2190 } 2191 2192 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2193 void (*resized)(const char*, 2194 uint64_t length, 2195 void *host), 2196 MemoryRegion *mr, Error **errp) 2197 { 2198 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2199 RAM_RESIZEABLE, mr, errp); 2200 } 2201 2202 static void reclaim_ramblock(RAMBlock *block) 2203 { 2204 if (block->flags & RAM_PREALLOC) { 2205 ; 2206 } else if (xen_enabled()) { 2207 xen_invalidate_map_cache_entry(block->host); 2208 #ifndef _WIN32 2209 } else if (block->fd >= 0) { 2210 qemu_ram_munmap(block->fd, block->host, block->max_length); 2211 close(block->fd); 2212 #endif 2213 } else { 2214 qemu_anon_ram_free(block->host, block->max_length); 2215 } 2216 g_free(block); 2217 } 2218 2219 void qemu_ram_free(RAMBlock *block) 2220 { 2221 if (!block) { 2222 return; 2223 } 2224 2225 if (block->host) { 2226 ram_block_notify_remove(block->host, block->used_length, 2227 block->max_length); 2228 } 2229 2230 qemu_mutex_lock_ramlist(); 2231 QLIST_REMOVE_RCU(block, next); 2232 ram_list.mru_block = NULL; 2233 /* Write list before version */ 2234 smp_wmb(); 2235 ram_list.version++; 2236 call_rcu(block, reclaim_ramblock, rcu); 2237 qemu_mutex_unlock_ramlist(); 2238 } 2239 2240 #ifndef _WIN32 2241 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2242 { 2243 RAMBlock *block; 2244 ram_addr_t offset; 2245 int flags; 2246 void *area, *vaddr; 2247 2248 RAMBLOCK_FOREACH(block) { 2249 offset = addr - block->offset; 2250 if (offset < block->max_length) { 2251 vaddr = ramblock_ptr(block, offset); 2252 if (block->flags & RAM_PREALLOC) { 2253 ; 2254 } else if (xen_enabled()) { 2255 abort(); 2256 } else { 2257 flags = MAP_FIXED; 2258 flags |= block->flags & RAM_SHARED ? 2259 MAP_SHARED : MAP_PRIVATE; 2260 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2261 if (block->fd >= 0) { 2262 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2263 flags, block->fd, offset); 2264 } else { 2265 flags |= MAP_ANONYMOUS; 2266 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2267 flags, -1, 0); 2268 } 2269 if (area != vaddr) { 2270 error_report("Could not remap addr: " 2271 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2272 length, addr); 2273 exit(1); 2274 } 2275 memory_try_enable_merging(vaddr, length); 2276 qemu_ram_setup_dump(vaddr, length); 2277 } 2278 } 2279 } 2280 } 2281 #endif /* !_WIN32 */ 2282 2283 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2284 * This should not be used for general purpose DMA. Use address_space_map 2285 * or address_space_rw instead. For local memory (e.g. video ram) that the 2286 * device owns, use memory_region_get_ram_ptr. 2287 * 2288 * Called within RCU critical section. 2289 */ 2290 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2291 { 2292 RAMBlock *block = ram_block; 2293 2294 if (block == NULL) { 2295 block = qemu_get_ram_block(addr); 2296 addr -= block->offset; 2297 } 2298 2299 if (xen_enabled() && block->host == NULL) { 2300 /* We need to check if the requested address is in the RAM 2301 * because we don't want to map the entire memory in QEMU. 2302 * In that case just map until the end of the page. 2303 */ 2304 if (block->offset == 0) { 2305 return xen_map_cache(addr, 0, 0, false); 2306 } 2307 2308 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2309 } 2310 return ramblock_ptr(block, addr); 2311 } 2312 2313 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2314 * but takes a size argument. 2315 * 2316 * Called within RCU critical section. 2317 */ 2318 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2319 hwaddr *size, bool lock) 2320 { 2321 RAMBlock *block = ram_block; 2322 if (*size == 0) { 2323 return NULL; 2324 } 2325 2326 if (block == NULL) { 2327 block = qemu_get_ram_block(addr); 2328 addr -= block->offset; 2329 } 2330 *size = MIN(*size, block->max_length - addr); 2331 2332 if (xen_enabled() && block->host == NULL) { 2333 /* We need to check if the requested address is in the RAM 2334 * because we don't want to map the entire memory in QEMU. 2335 * In that case just map the requested area. 2336 */ 2337 if (block->offset == 0) { 2338 return xen_map_cache(addr, *size, lock, lock); 2339 } 2340 2341 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2342 } 2343 2344 return ramblock_ptr(block, addr); 2345 } 2346 2347 /* Return the offset of a hostpointer within a ramblock */ 2348 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2349 { 2350 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2351 assert((uintptr_t)host >= (uintptr_t)rb->host); 2352 assert(res < rb->max_length); 2353 2354 return res; 2355 } 2356 2357 /* 2358 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2359 * in that RAMBlock. 2360 * 2361 * ptr: Host pointer to look up 2362 * round_offset: If true round the result offset down to a page boundary 2363 * *ram_addr: set to result ram_addr 2364 * *offset: set to result offset within the RAMBlock 2365 * 2366 * Returns: RAMBlock (or NULL if not found) 2367 * 2368 * By the time this function returns, the returned pointer is not protected 2369 * by RCU anymore. If the caller is not within an RCU critical section and 2370 * does not hold the iothread lock, it must have other means of protecting the 2371 * pointer, such as a reference to the region that includes the incoming 2372 * ram_addr_t. 2373 */ 2374 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2375 ram_addr_t *offset) 2376 { 2377 RAMBlock *block; 2378 uint8_t *host = ptr; 2379 2380 if (xen_enabled()) { 2381 ram_addr_t ram_addr; 2382 RCU_READ_LOCK_GUARD(); 2383 ram_addr = xen_ram_addr_from_mapcache(ptr); 2384 block = qemu_get_ram_block(ram_addr); 2385 if (block) { 2386 *offset = ram_addr - block->offset; 2387 } 2388 return block; 2389 } 2390 2391 RCU_READ_LOCK_GUARD(); 2392 block = qatomic_rcu_read(&ram_list.mru_block); 2393 if (block && block->host && host - block->host < block->max_length) { 2394 goto found; 2395 } 2396 2397 RAMBLOCK_FOREACH(block) { 2398 /* This case append when the block is not mapped. */ 2399 if (block->host == NULL) { 2400 continue; 2401 } 2402 if (host - block->host < block->max_length) { 2403 goto found; 2404 } 2405 } 2406 2407 return NULL; 2408 2409 found: 2410 *offset = (host - block->host); 2411 if (round_offset) { 2412 *offset &= TARGET_PAGE_MASK; 2413 } 2414 return block; 2415 } 2416 2417 /* 2418 * Finds the named RAMBlock 2419 * 2420 * name: The name of RAMBlock to find 2421 * 2422 * Returns: RAMBlock (or NULL if not found) 2423 */ 2424 RAMBlock *qemu_ram_block_by_name(const char *name) 2425 { 2426 RAMBlock *block; 2427 2428 RAMBLOCK_FOREACH(block) { 2429 if (!strcmp(name, block->idstr)) { 2430 return block; 2431 } 2432 } 2433 2434 return NULL; 2435 } 2436 2437 /* Some of the softmmu routines need to translate from a host pointer 2438 (typically a TLB entry) back to a ram offset. */ 2439 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2440 { 2441 RAMBlock *block; 2442 ram_addr_t offset; 2443 2444 block = qemu_ram_block_from_host(ptr, false, &offset); 2445 if (!block) { 2446 return RAM_ADDR_INVALID; 2447 } 2448 2449 return block->offset + offset; 2450 } 2451 2452 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2453 MemTxAttrs attrs, void *buf, hwaddr len); 2454 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2455 const void *buf, hwaddr len); 2456 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2457 bool is_write, MemTxAttrs attrs); 2458 2459 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2460 unsigned len, MemTxAttrs attrs) 2461 { 2462 subpage_t *subpage = opaque; 2463 uint8_t buf[8]; 2464 MemTxResult res; 2465 2466 #if defined(DEBUG_SUBPAGE) 2467 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, 2468 subpage, len, addr); 2469 #endif 2470 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2471 if (res) { 2472 return res; 2473 } 2474 *data = ldn_p(buf, len); 2475 return MEMTX_OK; 2476 } 2477 2478 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2479 uint64_t value, unsigned len, MemTxAttrs attrs) 2480 { 2481 subpage_t *subpage = opaque; 2482 uint8_t buf[8]; 2483 2484 #if defined(DEBUG_SUBPAGE) 2485 printf("%s: subpage %p len %u addr " TARGET_FMT_plx 2486 " value %"PRIx64"\n", 2487 __func__, subpage, len, addr, value); 2488 #endif 2489 stn_p(buf, len, value); 2490 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2491 } 2492 2493 static bool subpage_accepts(void *opaque, hwaddr addr, 2494 unsigned len, bool is_write, 2495 MemTxAttrs attrs) 2496 { 2497 subpage_t *subpage = opaque; 2498 #if defined(DEBUG_SUBPAGE) 2499 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", 2500 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2501 #endif 2502 2503 return flatview_access_valid(subpage->fv, addr + subpage->base, 2504 len, is_write, attrs); 2505 } 2506 2507 static const MemoryRegionOps subpage_ops = { 2508 .read_with_attrs = subpage_read, 2509 .write_with_attrs = subpage_write, 2510 .impl.min_access_size = 1, 2511 .impl.max_access_size = 8, 2512 .valid.min_access_size = 1, 2513 .valid.max_access_size = 8, 2514 .valid.accepts = subpage_accepts, 2515 .endianness = DEVICE_NATIVE_ENDIAN, 2516 }; 2517 2518 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2519 uint16_t section) 2520 { 2521 int idx, eidx; 2522 2523 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2524 return -1; 2525 idx = SUBPAGE_IDX(start); 2526 eidx = SUBPAGE_IDX(end); 2527 #if defined(DEBUG_SUBPAGE) 2528 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2529 __func__, mmio, start, end, idx, eidx, section); 2530 #endif 2531 for (; idx <= eidx; idx++) { 2532 mmio->sub_section[idx] = section; 2533 } 2534 2535 return 0; 2536 } 2537 2538 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2539 { 2540 subpage_t *mmio; 2541 2542 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2543 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2544 mmio->fv = fv; 2545 mmio->base = base; 2546 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2547 NULL, TARGET_PAGE_SIZE); 2548 mmio->iomem.subpage = true; 2549 #if defined(DEBUG_SUBPAGE) 2550 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, 2551 mmio, base, TARGET_PAGE_SIZE); 2552 #endif 2553 2554 return mmio; 2555 } 2556 2557 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2558 { 2559 assert(fv); 2560 MemoryRegionSection section = { 2561 .fv = fv, 2562 .mr = mr, 2563 .offset_within_address_space = 0, 2564 .offset_within_region = 0, 2565 .size = int128_2_64(), 2566 }; 2567 2568 return phys_section_add(map, §ion); 2569 } 2570 2571 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2572 hwaddr index, MemTxAttrs attrs) 2573 { 2574 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2575 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2576 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2577 MemoryRegionSection *sections = d->map.sections; 2578 2579 return §ions[index & ~TARGET_PAGE_MASK]; 2580 } 2581 2582 static void io_mem_init(void) 2583 { 2584 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2585 NULL, UINT64_MAX); 2586 } 2587 2588 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2589 { 2590 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2591 uint16_t n; 2592 2593 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2594 assert(n == PHYS_SECTION_UNASSIGNED); 2595 2596 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2597 2598 return d; 2599 } 2600 2601 void address_space_dispatch_free(AddressSpaceDispatch *d) 2602 { 2603 phys_sections_free(&d->map); 2604 g_free(d); 2605 } 2606 2607 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2608 { 2609 } 2610 2611 static void tcg_log_global_after_sync(MemoryListener *listener) 2612 { 2613 CPUAddressSpace *cpuas; 2614 2615 /* Wait for the CPU to end the current TB. This avoids the following 2616 * incorrect race: 2617 * 2618 * vCPU migration 2619 * ---------------------- ------------------------- 2620 * TLB check -> slow path 2621 * notdirty_mem_write 2622 * write to RAM 2623 * mark dirty 2624 * clear dirty flag 2625 * TLB check -> fast path 2626 * read memory 2627 * write to RAM 2628 * 2629 * by pushing the migration thread's memory read after the vCPU thread has 2630 * written the memory. 2631 */ 2632 if (replay_mode == REPLAY_MODE_NONE) { 2633 /* 2634 * VGA can make calls to this function while updating the screen. 2635 * In record/replay mode this causes a deadlock, because 2636 * run_on_cpu waits for rr mutex. Therefore no races are possible 2637 * in this case and no need for making run_on_cpu when 2638 * record/replay is enabled. 2639 */ 2640 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2641 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2642 } 2643 } 2644 2645 static void tcg_commit(MemoryListener *listener) 2646 { 2647 CPUAddressSpace *cpuas; 2648 AddressSpaceDispatch *d; 2649 2650 assert(tcg_enabled()); 2651 /* since each CPU stores ram addresses in its TLB cache, we must 2652 reset the modified entries */ 2653 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2654 cpu_reloading_memory_map(); 2655 /* The CPU and TLB are protected by the iothread lock. 2656 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2657 * may have split the RCU critical section. 2658 */ 2659 d = address_space_to_dispatch(cpuas->as); 2660 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2661 tlb_flush(cpuas->cpu); 2662 } 2663 2664 static void memory_map_init(void) 2665 { 2666 system_memory = g_malloc(sizeof(*system_memory)); 2667 2668 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2669 address_space_init(&address_space_memory, system_memory, "memory"); 2670 2671 system_io = g_malloc(sizeof(*system_io)); 2672 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2673 65536); 2674 address_space_init(&address_space_io, system_io, "I/O"); 2675 } 2676 2677 MemoryRegion *get_system_memory(void) 2678 { 2679 return system_memory; 2680 } 2681 2682 MemoryRegion *get_system_io(void) 2683 { 2684 return system_io; 2685 } 2686 2687 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2688 hwaddr length) 2689 { 2690 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2691 addr += memory_region_get_ram_addr(mr); 2692 2693 /* No early return if dirty_log_mask is or becomes 0, because 2694 * cpu_physical_memory_set_dirty_range will still call 2695 * xen_modified_memory. 2696 */ 2697 if (dirty_log_mask) { 2698 dirty_log_mask = 2699 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2700 } 2701 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2702 assert(tcg_enabled()); 2703 tb_invalidate_phys_range(addr, addr + length); 2704 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2705 } 2706 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2707 } 2708 2709 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2710 { 2711 /* 2712 * In principle this function would work on other memory region types too, 2713 * but the ROM device use case is the only one where this operation is 2714 * necessary. Other memory regions should use the 2715 * address_space_read/write() APIs. 2716 */ 2717 assert(memory_region_is_romd(mr)); 2718 2719 invalidate_and_set_dirty(mr, addr, size); 2720 } 2721 2722 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2723 { 2724 unsigned access_size_max = mr->ops->valid.max_access_size; 2725 2726 /* Regions are assumed to support 1-4 byte accesses unless 2727 otherwise specified. */ 2728 if (access_size_max == 0) { 2729 access_size_max = 4; 2730 } 2731 2732 /* Bound the maximum access by the alignment of the address. */ 2733 if (!mr->ops->impl.unaligned) { 2734 unsigned align_size_max = addr & -addr; 2735 if (align_size_max != 0 && align_size_max < access_size_max) { 2736 access_size_max = align_size_max; 2737 } 2738 } 2739 2740 /* Don't attempt accesses larger than the maximum. */ 2741 if (l > access_size_max) { 2742 l = access_size_max; 2743 } 2744 l = pow2floor(l); 2745 2746 return l; 2747 } 2748 2749 static bool prepare_mmio_access(MemoryRegion *mr) 2750 { 2751 bool release_lock = false; 2752 2753 if (!qemu_mutex_iothread_locked()) { 2754 qemu_mutex_lock_iothread(); 2755 release_lock = true; 2756 } 2757 if (mr->flush_coalesced_mmio) { 2758 qemu_flush_coalesced_mmio_buffer(); 2759 } 2760 2761 return release_lock; 2762 } 2763 2764 /** 2765 * flatview_access_allowed 2766 * @mr: #MemoryRegion to be accessed 2767 * @attrs: memory transaction attributes 2768 * @addr: address within that memory region 2769 * @len: the number of bytes to access 2770 * 2771 * Check if a memory transaction is allowed. 2772 * 2773 * Returns: true if transaction is allowed, false if denied. 2774 */ 2775 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2776 hwaddr addr, hwaddr len) 2777 { 2778 if (likely(!attrs.memory)) { 2779 return true; 2780 } 2781 if (memory_region_is_ram(mr)) { 2782 return true; 2783 } 2784 qemu_log_mask(LOG_GUEST_ERROR, 2785 "Invalid access to non-RAM device at " 2786 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2787 "region '%s'\n", addr, len, memory_region_name(mr)); 2788 return false; 2789 } 2790 2791 /* Called within RCU critical section. */ 2792 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2793 MemTxAttrs attrs, 2794 const void *ptr, 2795 hwaddr len, hwaddr addr1, 2796 hwaddr l, MemoryRegion *mr) 2797 { 2798 uint8_t *ram_ptr; 2799 uint64_t val; 2800 MemTxResult result = MEMTX_OK; 2801 bool release_lock = false; 2802 const uint8_t *buf = ptr; 2803 2804 for (;;) { 2805 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2806 result |= MEMTX_ACCESS_ERROR; 2807 /* Keep going. */ 2808 } else if (!memory_access_is_direct(mr, true)) { 2809 release_lock |= prepare_mmio_access(mr); 2810 l = memory_access_size(mr, l, addr1); 2811 /* XXX: could force current_cpu to NULL to avoid 2812 potential bugs */ 2813 val = ldn_he_p(buf, l); 2814 result |= memory_region_dispatch_write(mr, addr1, val, 2815 size_memop(l), attrs); 2816 } else { 2817 /* RAM case */ 2818 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2819 memcpy(ram_ptr, buf, l); 2820 invalidate_and_set_dirty(mr, addr1, l); 2821 } 2822 2823 if (release_lock) { 2824 qemu_mutex_unlock_iothread(); 2825 release_lock = false; 2826 } 2827 2828 len -= l; 2829 buf += l; 2830 addr += l; 2831 2832 if (!len) { 2833 break; 2834 } 2835 2836 l = len; 2837 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2838 } 2839 2840 return result; 2841 } 2842 2843 /* Called from RCU critical section. */ 2844 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2845 const void *buf, hwaddr len) 2846 { 2847 hwaddr l; 2848 hwaddr addr1; 2849 MemoryRegion *mr; 2850 2851 l = len; 2852 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2853 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2854 return MEMTX_ACCESS_ERROR; 2855 } 2856 return flatview_write_continue(fv, addr, attrs, buf, len, 2857 addr1, l, mr); 2858 } 2859 2860 /* Called within RCU critical section. */ 2861 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2862 MemTxAttrs attrs, void *ptr, 2863 hwaddr len, hwaddr addr1, hwaddr l, 2864 MemoryRegion *mr) 2865 { 2866 uint8_t *ram_ptr; 2867 uint64_t val; 2868 MemTxResult result = MEMTX_OK; 2869 bool release_lock = false; 2870 uint8_t *buf = ptr; 2871 2872 fuzz_dma_read_cb(addr, len, mr); 2873 for (;;) { 2874 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2875 result |= MEMTX_ACCESS_ERROR; 2876 /* Keep going. */ 2877 } else if (!memory_access_is_direct(mr, false)) { 2878 /* I/O case */ 2879 release_lock |= prepare_mmio_access(mr); 2880 l = memory_access_size(mr, l, addr1); 2881 result |= memory_region_dispatch_read(mr, addr1, &val, 2882 size_memop(l), attrs); 2883 stn_he_p(buf, l, val); 2884 } else { 2885 /* RAM case */ 2886 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2887 memcpy(buf, ram_ptr, l); 2888 } 2889 2890 if (release_lock) { 2891 qemu_mutex_unlock_iothread(); 2892 release_lock = false; 2893 } 2894 2895 len -= l; 2896 buf += l; 2897 addr += l; 2898 2899 if (!len) { 2900 break; 2901 } 2902 2903 l = len; 2904 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2905 } 2906 2907 return result; 2908 } 2909 2910 /* Called from RCU critical section. */ 2911 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2912 MemTxAttrs attrs, void *buf, hwaddr len) 2913 { 2914 hwaddr l; 2915 hwaddr addr1; 2916 MemoryRegion *mr; 2917 2918 l = len; 2919 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2920 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2921 return MEMTX_ACCESS_ERROR; 2922 } 2923 return flatview_read_continue(fv, addr, attrs, buf, len, 2924 addr1, l, mr); 2925 } 2926 2927 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2928 MemTxAttrs attrs, void *buf, hwaddr len) 2929 { 2930 MemTxResult result = MEMTX_OK; 2931 FlatView *fv; 2932 2933 if (len > 0) { 2934 RCU_READ_LOCK_GUARD(); 2935 fv = address_space_to_flatview(as); 2936 result = flatview_read(fv, addr, attrs, buf, len); 2937 } 2938 2939 return result; 2940 } 2941 2942 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2943 MemTxAttrs attrs, 2944 const void *buf, hwaddr len) 2945 { 2946 MemTxResult result = MEMTX_OK; 2947 FlatView *fv; 2948 2949 if (len > 0) { 2950 RCU_READ_LOCK_GUARD(); 2951 fv = address_space_to_flatview(as); 2952 result = flatview_write(fv, addr, attrs, buf, len); 2953 } 2954 2955 return result; 2956 } 2957 2958 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2959 void *buf, hwaddr len, bool is_write) 2960 { 2961 if (is_write) { 2962 return address_space_write(as, addr, attrs, buf, len); 2963 } else { 2964 return address_space_read_full(as, addr, attrs, buf, len); 2965 } 2966 } 2967 2968 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2969 uint8_t c, hwaddr len, MemTxAttrs attrs) 2970 { 2971 #define FILLBUF_SIZE 512 2972 uint8_t fillbuf[FILLBUF_SIZE]; 2973 int l; 2974 MemTxResult error = MEMTX_OK; 2975 2976 memset(fillbuf, c, FILLBUF_SIZE); 2977 while (len > 0) { 2978 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2979 error |= address_space_write(as, addr, attrs, fillbuf, l); 2980 len -= l; 2981 addr += l; 2982 } 2983 2984 return error; 2985 } 2986 2987 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2988 hwaddr len, bool is_write) 2989 { 2990 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2991 buf, len, is_write); 2992 } 2993 2994 enum write_rom_type { 2995 WRITE_DATA, 2996 FLUSH_CACHE, 2997 }; 2998 2999 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3000 hwaddr addr, 3001 MemTxAttrs attrs, 3002 const void *ptr, 3003 hwaddr len, 3004 enum write_rom_type type) 3005 { 3006 hwaddr l; 3007 uint8_t *ram_ptr; 3008 hwaddr addr1; 3009 MemoryRegion *mr; 3010 const uint8_t *buf = ptr; 3011 3012 RCU_READ_LOCK_GUARD(); 3013 while (len > 0) { 3014 l = len; 3015 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3016 3017 if (!(memory_region_is_ram(mr) || 3018 memory_region_is_romd(mr))) { 3019 l = memory_access_size(mr, l, addr1); 3020 } else { 3021 /* ROM/RAM case */ 3022 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3023 switch (type) { 3024 case WRITE_DATA: 3025 memcpy(ram_ptr, buf, l); 3026 invalidate_and_set_dirty(mr, addr1, l); 3027 break; 3028 case FLUSH_CACHE: 3029 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3030 break; 3031 } 3032 } 3033 len -= l; 3034 buf += l; 3035 addr += l; 3036 } 3037 return MEMTX_OK; 3038 } 3039 3040 /* used for ROM loading : can write in RAM and ROM */ 3041 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3042 MemTxAttrs attrs, 3043 const void *buf, hwaddr len) 3044 { 3045 return address_space_write_rom_internal(as, addr, attrs, 3046 buf, len, WRITE_DATA); 3047 } 3048 3049 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3050 { 3051 /* 3052 * This function should do the same thing as an icache flush that was 3053 * triggered from within the guest. For TCG we are always cache coherent, 3054 * so there is no need to flush anything. For KVM / Xen we need to flush 3055 * the host's instruction cache at least. 3056 */ 3057 if (tcg_enabled()) { 3058 return; 3059 } 3060 3061 address_space_write_rom_internal(&address_space_memory, 3062 start, MEMTXATTRS_UNSPECIFIED, 3063 NULL, len, FLUSH_CACHE); 3064 } 3065 3066 typedef struct { 3067 MemoryRegion *mr; 3068 void *buffer; 3069 hwaddr addr; 3070 hwaddr len; 3071 bool in_use; 3072 } BounceBuffer; 3073 3074 static BounceBuffer bounce; 3075 3076 typedef struct MapClient { 3077 QEMUBH *bh; 3078 QLIST_ENTRY(MapClient) link; 3079 } MapClient; 3080 3081 QemuMutex map_client_list_lock; 3082 static QLIST_HEAD(, MapClient) map_client_list 3083 = QLIST_HEAD_INITIALIZER(map_client_list); 3084 3085 static void cpu_unregister_map_client_do(MapClient *client) 3086 { 3087 QLIST_REMOVE(client, link); 3088 g_free(client); 3089 } 3090 3091 static void cpu_notify_map_clients_locked(void) 3092 { 3093 MapClient *client; 3094 3095 while (!QLIST_EMPTY(&map_client_list)) { 3096 client = QLIST_FIRST(&map_client_list); 3097 qemu_bh_schedule(client->bh); 3098 cpu_unregister_map_client_do(client); 3099 } 3100 } 3101 3102 void cpu_register_map_client(QEMUBH *bh) 3103 { 3104 MapClient *client = g_malloc(sizeof(*client)); 3105 3106 qemu_mutex_lock(&map_client_list_lock); 3107 client->bh = bh; 3108 QLIST_INSERT_HEAD(&map_client_list, client, link); 3109 if (!qatomic_read(&bounce.in_use)) { 3110 cpu_notify_map_clients_locked(); 3111 } 3112 qemu_mutex_unlock(&map_client_list_lock); 3113 } 3114 3115 void cpu_exec_init_all(void) 3116 { 3117 qemu_mutex_init(&ram_list.mutex); 3118 /* The data structures we set up here depend on knowing the page size, 3119 * so no more changes can be made after this point. 3120 * In an ideal world, nothing we did before we had finished the 3121 * machine setup would care about the target page size, and we could 3122 * do this much later, rather than requiring board models to state 3123 * up front what their requirements are. 3124 */ 3125 finalize_target_page_bits(); 3126 io_mem_init(); 3127 memory_map_init(); 3128 qemu_mutex_init(&map_client_list_lock); 3129 } 3130 3131 void cpu_unregister_map_client(QEMUBH *bh) 3132 { 3133 MapClient *client; 3134 3135 qemu_mutex_lock(&map_client_list_lock); 3136 QLIST_FOREACH(client, &map_client_list, link) { 3137 if (client->bh == bh) { 3138 cpu_unregister_map_client_do(client); 3139 break; 3140 } 3141 } 3142 qemu_mutex_unlock(&map_client_list_lock); 3143 } 3144 3145 static void cpu_notify_map_clients(void) 3146 { 3147 qemu_mutex_lock(&map_client_list_lock); 3148 cpu_notify_map_clients_locked(); 3149 qemu_mutex_unlock(&map_client_list_lock); 3150 } 3151 3152 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3153 bool is_write, MemTxAttrs attrs) 3154 { 3155 MemoryRegion *mr; 3156 hwaddr l, xlat; 3157 3158 while (len > 0) { 3159 l = len; 3160 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3161 if (!memory_access_is_direct(mr, is_write)) { 3162 l = memory_access_size(mr, l, addr); 3163 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3164 return false; 3165 } 3166 } 3167 3168 len -= l; 3169 addr += l; 3170 } 3171 return true; 3172 } 3173 3174 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3175 hwaddr len, bool is_write, 3176 MemTxAttrs attrs) 3177 { 3178 FlatView *fv; 3179 3180 RCU_READ_LOCK_GUARD(); 3181 fv = address_space_to_flatview(as); 3182 return flatview_access_valid(fv, addr, len, is_write, attrs); 3183 } 3184 3185 static hwaddr 3186 flatview_extend_translation(FlatView *fv, hwaddr addr, 3187 hwaddr target_len, 3188 MemoryRegion *mr, hwaddr base, hwaddr len, 3189 bool is_write, MemTxAttrs attrs) 3190 { 3191 hwaddr done = 0; 3192 hwaddr xlat; 3193 MemoryRegion *this_mr; 3194 3195 for (;;) { 3196 target_len -= len; 3197 addr += len; 3198 done += len; 3199 if (target_len == 0) { 3200 return done; 3201 } 3202 3203 len = target_len; 3204 this_mr = flatview_translate(fv, addr, &xlat, 3205 &len, is_write, attrs); 3206 if (this_mr != mr || xlat != base + done) { 3207 return done; 3208 } 3209 } 3210 } 3211 3212 /* Map a physical memory region into a host virtual address. 3213 * May map a subset of the requested range, given by and returned in *plen. 3214 * May return NULL if resources needed to perform the mapping are exhausted. 3215 * Use only for reads OR writes - not for read-modify-write operations. 3216 * Use cpu_register_map_client() to know when retrying the map operation is 3217 * likely to succeed. 3218 */ 3219 void *address_space_map(AddressSpace *as, 3220 hwaddr addr, 3221 hwaddr *plen, 3222 bool is_write, 3223 MemTxAttrs attrs) 3224 { 3225 hwaddr len = *plen; 3226 hwaddr l, xlat; 3227 MemoryRegion *mr; 3228 void *ptr; 3229 FlatView *fv; 3230 3231 if (len == 0) { 3232 return NULL; 3233 } 3234 3235 l = len; 3236 RCU_READ_LOCK_GUARD(); 3237 fv = address_space_to_flatview(as); 3238 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3239 3240 if (!memory_access_is_direct(mr, is_write)) { 3241 if (qatomic_xchg(&bounce.in_use, true)) { 3242 *plen = 0; 3243 return NULL; 3244 } 3245 /* Avoid unbounded allocations */ 3246 l = MIN(l, TARGET_PAGE_SIZE); 3247 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3248 bounce.addr = addr; 3249 bounce.len = l; 3250 3251 memory_region_ref(mr); 3252 bounce.mr = mr; 3253 if (!is_write) { 3254 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3255 bounce.buffer, l); 3256 } 3257 3258 *plen = l; 3259 return bounce.buffer; 3260 } 3261 3262 3263 memory_region_ref(mr); 3264 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3265 l, is_write, attrs); 3266 fuzz_dma_read_cb(addr, *plen, mr); 3267 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3268 3269 return ptr; 3270 } 3271 3272 /* Unmaps a memory region previously mapped by address_space_map(). 3273 * Will also mark the memory as dirty if is_write is true. access_len gives 3274 * the amount of memory that was actually read or written by the caller. 3275 */ 3276 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3277 bool is_write, hwaddr access_len) 3278 { 3279 if (buffer != bounce.buffer) { 3280 MemoryRegion *mr; 3281 ram_addr_t addr1; 3282 3283 mr = memory_region_from_host(buffer, &addr1); 3284 assert(mr != NULL); 3285 if (is_write) { 3286 invalidate_and_set_dirty(mr, addr1, access_len); 3287 } 3288 if (xen_enabled()) { 3289 xen_invalidate_map_cache_entry(buffer); 3290 } 3291 memory_region_unref(mr); 3292 return; 3293 } 3294 if (is_write) { 3295 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3296 bounce.buffer, access_len); 3297 } 3298 qemu_vfree(bounce.buffer); 3299 bounce.buffer = NULL; 3300 memory_region_unref(bounce.mr); 3301 qatomic_mb_set(&bounce.in_use, false); 3302 cpu_notify_map_clients(); 3303 } 3304 3305 void *cpu_physical_memory_map(hwaddr addr, 3306 hwaddr *plen, 3307 bool is_write) 3308 { 3309 return address_space_map(&address_space_memory, addr, plen, is_write, 3310 MEMTXATTRS_UNSPECIFIED); 3311 } 3312 3313 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3314 bool is_write, hwaddr access_len) 3315 { 3316 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3317 } 3318 3319 #define ARG1_DECL AddressSpace *as 3320 #define ARG1 as 3321 #define SUFFIX 3322 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3323 #define RCU_READ_LOCK(...) rcu_read_lock() 3324 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3325 #include "memory_ldst.c.inc" 3326 3327 int64_t address_space_cache_init(MemoryRegionCache *cache, 3328 AddressSpace *as, 3329 hwaddr addr, 3330 hwaddr len, 3331 bool is_write) 3332 { 3333 AddressSpaceDispatch *d; 3334 hwaddr l; 3335 MemoryRegion *mr; 3336 Int128 diff; 3337 3338 assert(len > 0); 3339 3340 l = len; 3341 cache->fv = address_space_get_flatview(as); 3342 d = flatview_to_dispatch(cache->fv); 3343 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3344 3345 /* 3346 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3347 * Take that into account to compute how many bytes are there between 3348 * cache->xlat and the end of the section. 3349 */ 3350 diff = int128_sub(cache->mrs.size, 3351 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3352 l = int128_get64(int128_min(diff, int128_make64(l))); 3353 3354 mr = cache->mrs.mr; 3355 memory_region_ref(mr); 3356 if (memory_access_is_direct(mr, is_write)) { 3357 /* We don't care about the memory attributes here as we're only 3358 * doing this if we found actual RAM, which behaves the same 3359 * regardless of attributes; so UNSPECIFIED is fine. 3360 */ 3361 l = flatview_extend_translation(cache->fv, addr, len, mr, 3362 cache->xlat, l, is_write, 3363 MEMTXATTRS_UNSPECIFIED); 3364 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3365 } else { 3366 cache->ptr = NULL; 3367 } 3368 3369 cache->len = l; 3370 cache->is_write = is_write; 3371 return l; 3372 } 3373 3374 void address_space_cache_invalidate(MemoryRegionCache *cache, 3375 hwaddr addr, 3376 hwaddr access_len) 3377 { 3378 assert(cache->is_write); 3379 if (likely(cache->ptr)) { 3380 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3381 } 3382 } 3383 3384 void address_space_cache_destroy(MemoryRegionCache *cache) 3385 { 3386 if (!cache->mrs.mr) { 3387 return; 3388 } 3389 3390 if (xen_enabled()) { 3391 xen_invalidate_map_cache_entry(cache->ptr); 3392 } 3393 memory_region_unref(cache->mrs.mr); 3394 flatview_unref(cache->fv); 3395 cache->mrs.mr = NULL; 3396 cache->fv = NULL; 3397 } 3398 3399 /* Called from RCU critical section. This function has the same 3400 * semantics as address_space_translate, but it only works on a 3401 * predefined range of a MemoryRegion that was mapped with 3402 * address_space_cache_init. 3403 */ 3404 static inline MemoryRegion *address_space_translate_cached( 3405 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3406 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3407 { 3408 MemoryRegionSection section; 3409 MemoryRegion *mr; 3410 IOMMUMemoryRegion *iommu_mr; 3411 AddressSpace *target_as; 3412 3413 assert(!cache->ptr); 3414 *xlat = addr + cache->xlat; 3415 3416 mr = cache->mrs.mr; 3417 iommu_mr = memory_region_get_iommu(mr); 3418 if (!iommu_mr) { 3419 /* MMIO region. */ 3420 return mr; 3421 } 3422 3423 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3424 NULL, is_write, true, 3425 &target_as, attrs); 3426 return section.mr; 3427 } 3428 3429 /* Called from RCU critical section. address_space_read_cached uses this 3430 * out of line function when the target is an MMIO or IOMMU region. 3431 */ 3432 MemTxResult 3433 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3434 void *buf, hwaddr len) 3435 { 3436 hwaddr addr1, l; 3437 MemoryRegion *mr; 3438 3439 l = len; 3440 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3441 MEMTXATTRS_UNSPECIFIED); 3442 return flatview_read_continue(cache->fv, 3443 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3444 addr1, l, mr); 3445 } 3446 3447 /* Called from RCU critical section. address_space_write_cached uses this 3448 * out of line function when the target is an MMIO or IOMMU region. 3449 */ 3450 MemTxResult 3451 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3452 const void *buf, hwaddr len) 3453 { 3454 hwaddr addr1, l; 3455 MemoryRegion *mr; 3456 3457 l = len; 3458 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3459 MEMTXATTRS_UNSPECIFIED); 3460 return flatview_write_continue(cache->fv, 3461 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3462 addr1, l, mr); 3463 } 3464 3465 #define ARG1_DECL MemoryRegionCache *cache 3466 #define ARG1 cache 3467 #define SUFFIX _cached_slow 3468 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3469 #define RCU_READ_LOCK() ((void)0) 3470 #define RCU_READ_UNLOCK() ((void)0) 3471 #include "memory_ldst.c.inc" 3472 3473 /* virtual memory access for debug (includes writing to ROM) */ 3474 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3475 void *ptr, size_t len, bool is_write) 3476 { 3477 hwaddr phys_addr; 3478 vaddr l, page; 3479 uint8_t *buf = ptr; 3480 3481 cpu_synchronize_state(cpu); 3482 while (len > 0) { 3483 int asidx; 3484 MemTxAttrs attrs; 3485 MemTxResult res; 3486 3487 page = addr & TARGET_PAGE_MASK; 3488 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3489 asidx = cpu_asidx_from_attrs(cpu, attrs); 3490 /* if no physical page mapped, return an error */ 3491 if (phys_addr == -1) 3492 return -1; 3493 l = (page + TARGET_PAGE_SIZE) - addr; 3494 if (l > len) 3495 l = len; 3496 phys_addr += (addr & ~TARGET_PAGE_MASK); 3497 if (is_write) { 3498 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3499 attrs, buf, l); 3500 } else { 3501 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3502 attrs, buf, l); 3503 } 3504 if (res != MEMTX_OK) { 3505 return -1; 3506 } 3507 len -= l; 3508 buf += l; 3509 addr += l; 3510 } 3511 return 0; 3512 } 3513 3514 /* 3515 * Allows code that needs to deal with migration bitmaps etc to still be built 3516 * target independent. 3517 */ 3518 size_t qemu_target_page_size(void) 3519 { 3520 return TARGET_PAGE_SIZE; 3521 } 3522 3523 int qemu_target_page_bits(void) 3524 { 3525 return TARGET_PAGE_BITS; 3526 } 3527 3528 int qemu_target_page_bits_min(void) 3529 { 3530 return TARGET_PAGE_BITS_MIN; 3531 } 3532 3533 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3534 { 3535 MemoryRegion*mr; 3536 hwaddr l = 1; 3537 bool res; 3538 3539 RCU_READ_LOCK_GUARD(); 3540 mr = address_space_translate(&address_space_memory, 3541 phys_addr, &phys_addr, &l, false, 3542 MEMTXATTRS_UNSPECIFIED); 3543 3544 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3545 return res; 3546 } 3547 3548 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3549 { 3550 RAMBlock *block; 3551 int ret = 0; 3552 3553 RCU_READ_LOCK_GUARD(); 3554 RAMBLOCK_FOREACH(block) { 3555 ret = func(block, opaque); 3556 if (ret) { 3557 break; 3558 } 3559 } 3560 return ret; 3561 } 3562 3563 /* 3564 * Unmap pages of memory from start to start+length such that 3565 * they a) read as 0, b) Trigger whatever fault mechanism 3566 * the OS provides for postcopy. 3567 * The pages must be unmapped by the end of the function. 3568 * Returns: 0 on success, none-0 on failure 3569 * 3570 */ 3571 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3572 { 3573 int ret = -1; 3574 3575 uint8_t *host_startaddr = rb->host + start; 3576 3577 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3578 error_report("ram_block_discard_range: Unaligned start address: %p", 3579 host_startaddr); 3580 goto err; 3581 } 3582 3583 if ((start + length) <= rb->max_length) { 3584 bool need_madvise, need_fallocate; 3585 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3586 error_report("ram_block_discard_range: Unaligned length: %zx", 3587 length); 3588 goto err; 3589 } 3590 3591 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3592 3593 /* The logic here is messy; 3594 * madvise DONTNEED fails for hugepages 3595 * fallocate works on hugepages and shmem 3596 * shared anonymous memory requires madvise REMOVE 3597 */ 3598 need_madvise = (rb->page_size == qemu_host_page_size); 3599 need_fallocate = rb->fd != -1; 3600 if (need_fallocate) { 3601 /* For a file, this causes the area of the file to be zero'd 3602 * if read, and for hugetlbfs also causes it to be unmapped 3603 * so a userfault will trigger. 3604 */ 3605 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3606 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3607 start, length); 3608 if (ret) { 3609 ret = -errno; 3610 error_report("ram_block_discard_range: Failed to fallocate " 3611 "%s:%" PRIx64 " +%zx (%d)", 3612 rb->idstr, start, length, ret); 3613 goto err; 3614 } 3615 #else 3616 ret = -ENOSYS; 3617 error_report("ram_block_discard_range: fallocate not available/file" 3618 "%s:%" PRIx64 " +%zx (%d)", 3619 rb->idstr, start, length, ret); 3620 goto err; 3621 #endif 3622 } 3623 if (need_madvise) { 3624 /* For normal RAM this causes it to be unmapped, 3625 * for shared memory it causes the local mapping to disappear 3626 * and to fall back on the file contents (which we just 3627 * fallocate'd away). 3628 */ 3629 #if defined(CONFIG_MADVISE) 3630 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3631 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3632 } else { 3633 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3634 } 3635 if (ret) { 3636 ret = -errno; 3637 error_report("ram_block_discard_range: Failed to discard range " 3638 "%s:%" PRIx64 " +%zx (%d)", 3639 rb->idstr, start, length, ret); 3640 goto err; 3641 } 3642 #else 3643 ret = -ENOSYS; 3644 error_report("ram_block_discard_range: MADVISE not available" 3645 "%s:%" PRIx64 " +%zx (%d)", 3646 rb->idstr, start, length, ret); 3647 goto err; 3648 #endif 3649 } 3650 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3651 need_madvise, need_fallocate, ret); 3652 } else { 3653 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3654 "/%zx/" RAM_ADDR_FMT")", 3655 rb->idstr, start, length, rb->max_length); 3656 } 3657 3658 err: 3659 return ret; 3660 } 3661 3662 bool ramblock_is_pmem(RAMBlock *rb) 3663 { 3664 return rb->flags & RAM_PMEM; 3665 } 3666 3667 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3668 { 3669 if (start == end - 1) { 3670 qemu_printf("\t%3d ", start); 3671 } else { 3672 qemu_printf("\t%3d..%-3d ", start, end - 1); 3673 } 3674 qemu_printf(" skip=%d ", skip); 3675 if (ptr == PHYS_MAP_NODE_NIL) { 3676 qemu_printf(" ptr=NIL"); 3677 } else if (!skip) { 3678 qemu_printf(" ptr=#%d", ptr); 3679 } else { 3680 qemu_printf(" ptr=[%d]", ptr); 3681 } 3682 qemu_printf("\n"); 3683 } 3684 3685 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3686 int128_sub((size), int128_one())) : 0) 3687 3688 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3689 { 3690 int i; 3691 3692 qemu_printf(" Dispatch\n"); 3693 qemu_printf(" Physical sections\n"); 3694 3695 for (i = 0; i < d->map.sections_nb; ++i) { 3696 MemoryRegionSection *s = d->map.sections + i; 3697 const char *names[] = { " [unassigned]", " [not dirty]", 3698 " [ROM]", " [watch]" }; 3699 3700 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx 3701 " %s%s%s%s%s", 3702 i, 3703 s->offset_within_address_space, 3704 s->offset_within_address_space + MR_SIZE(s->mr->size), 3705 s->mr->name ? s->mr->name : "(noname)", 3706 i < ARRAY_SIZE(names) ? names[i] : "", 3707 s->mr == root ? " [ROOT]" : "", 3708 s == d->mru_section ? " [MRU]" : "", 3709 s->mr->is_iommu ? " [iommu]" : ""); 3710 3711 if (s->mr->alias) { 3712 qemu_printf(" alias=%s", s->mr->alias->name ? 3713 s->mr->alias->name : "noname"); 3714 } 3715 qemu_printf("\n"); 3716 } 3717 3718 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3719 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3720 for (i = 0; i < d->map.nodes_nb; ++i) { 3721 int j, jprev; 3722 PhysPageEntry prev; 3723 Node *n = d->map.nodes + i; 3724 3725 qemu_printf(" [%d]\n", i); 3726 3727 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3728 PhysPageEntry *pe = *n + j; 3729 3730 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3731 continue; 3732 } 3733 3734 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3735 3736 jprev = j; 3737 prev = *pe; 3738 } 3739 3740 if (jprev != ARRAY_SIZE(*n)) { 3741 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3742 } 3743 } 3744 } 3745 3746 /* Require any discards to work. */ 3747 static unsigned int ram_block_discard_required_cnt; 3748 /* Require only coordinated discards to work. */ 3749 static unsigned int ram_block_coordinated_discard_required_cnt; 3750 /* Disable any discards. */ 3751 static unsigned int ram_block_discard_disabled_cnt; 3752 /* Disable only uncoordinated discards. */ 3753 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3754 static QemuMutex ram_block_discard_disable_mutex; 3755 3756 static void ram_block_discard_disable_mutex_lock(void) 3757 { 3758 static gsize initialized; 3759 3760 if (g_once_init_enter(&initialized)) { 3761 qemu_mutex_init(&ram_block_discard_disable_mutex); 3762 g_once_init_leave(&initialized, 1); 3763 } 3764 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3765 } 3766 3767 static void ram_block_discard_disable_mutex_unlock(void) 3768 { 3769 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3770 } 3771 3772 int ram_block_discard_disable(bool state) 3773 { 3774 int ret = 0; 3775 3776 ram_block_discard_disable_mutex_lock(); 3777 if (!state) { 3778 ram_block_discard_disabled_cnt--; 3779 } else if (ram_block_discard_required_cnt || 3780 ram_block_coordinated_discard_required_cnt) { 3781 ret = -EBUSY; 3782 } else { 3783 ram_block_discard_disabled_cnt++; 3784 } 3785 ram_block_discard_disable_mutex_unlock(); 3786 return ret; 3787 } 3788 3789 int ram_block_uncoordinated_discard_disable(bool state) 3790 { 3791 int ret = 0; 3792 3793 ram_block_discard_disable_mutex_lock(); 3794 if (!state) { 3795 ram_block_uncoordinated_discard_disabled_cnt--; 3796 } else if (ram_block_discard_required_cnt) { 3797 ret = -EBUSY; 3798 } else { 3799 ram_block_uncoordinated_discard_disabled_cnt++; 3800 } 3801 ram_block_discard_disable_mutex_unlock(); 3802 return ret; 3803 } 3804 3805 int ram_block_discard_require(bool state) 3806 { 3807 int ret = 0; 3808 3809 ram_block_discard_disable_mutex_lock(); 3810 if (!state) { 3811 ram_block_discard_required_cnt--; 3812 } else if (ram_block_discard_disabled_cnt || 3813 ram_block_uncoordinated_discard_disabled_cnt) { 3814 ret = -EBUSY; 3815 } else { 3816 ram_block_discard_required_cnt++; 3817 } 3818 ram_block_discard_disable_mutex_unlock(); 3819 return ret; 3820 } 3821 3822 int ram_block_coordinated_discard_require(bool state) 3823 { 3824 int ret = 0; 3825 3826 ram_block_discard_disable_mutex_lock(); 3827 if (!state) { 3828 ram_block_coordinated_discard_required_cnt--; 3829 } else if (ram_block_discard_disabled_cnt) { 3830 ret = -EBUSY; 3831 } else { 3832 ram_block_coordinated_discard_required_cnt++; 3833 } 3834 ram_block_discard_disable_mutex_unlock(); 3835 return ret; 3836 } 3837 3838 bool ram_block_discard_is_disabled(void) 3839 { 3840 return qatomic_read(&ram_block_discard_disabled_cnt) || 3841 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3842 } 3843 3844 bool ram_block_discard_is_required(void) 3845 { 3846 return qatomic_read(&ram_block_discard_required_cnt) || 3847 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3848 } 3849