1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/madvise.h" 27 28 #ifdef CONFIG_TCG 29 #include "hw/core/tcg-cpu-ops.h" 30 #endif /* CONFIG_TCG */ 31 32 #include "exec/exec-all.h" 33 #include "exec/target_page.h" 34 #include "hw/qdev-core.h" 35 #include "hw/qdev-properties.h" 36 #include "hw/boards.h" 37 #include "hw/xen/xen.h" 38 #include "sysemu/kvm.h" 39 #include "sysemu/tcg.h" 40 #include "sysemu/qtest.h" 41 #include "qemu/timer.h" 42 #include "qemu/config-file.h" 43 #include "qemu/error-report.h" 44 #include "qemu/qemu-print.h" 45 #include "exec/memory.h" 46 #include "exec/ioport.h" 47 #include "sysemu/dma.h" 48 #include "sysemu/hostmem.h" 49 #include "sysemu/hw_accel.h" 50 #include "sysemu/xen-mapcache.h" 51 #include "trace/trace-root.h" 52 53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 54 #include <linux/falloc.h> 55 #endif 56 57 #include "qemu/rcu_queue.h" 58 #include "qemu/main-loop.h" 59 #include "exec/translate-all.h" 60 #include "sysemu/replay.h" 61 62 #include "exec/memory-internal.h" 63 #include "exec/ram_addr.h" 64 #include "exec/log.h" 65 66 #include "qemu/pmem.h" 67 68 #include "migration/vmstate.h" 69 70 #include "qemu/range.h" 71 #ifndef _WIN32 72 #include "qemu/mmap-alloc.h" 73 #endif 74 75 #include "monitor/monitor.h" 76 77 #ifdef CONFIG_LIBDAXCTL 78 #include <daxctl/libdaxctl.h> 79 #endif 80 81 //#define DEBUG_SUBPAGE 82 83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 84 * are protected by the ramlist lock. 85 */ 86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 87 88 static MemoryRegion *system_memory; 89 static MemoryRegion *system_io; 90 91 AddressSpace address_space_io; 92 AddressSpace address_space_memory; 93 94 static MemoryRegion io_mem_unassigned; 95 96 typedef struct PhysPageEntry PhysPageEntry; 97 98 struct PhysPageEntry { 99 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 100 uint32_t skip : 6; 101 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 102 uint32_t ptr : 26; 103 }; 104 105 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 106 107 /* Size of the L2 (and L3, etc) page tables. */ 108 #define ADDR_SPACE_BITS 64 109 110 #define P_L2_BITS 9 111 #define P_L2_SIZE (1 << P_L2_BITS) 112 113 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 114 115 typedef PhysPageEntry Node[P_L2_SIZE]; 116 117 typedef struct PhysPageMap { 118 struct rcu_head rcu; 119 120 unsigned sections_nb; 121 unsigned sections_nb_alloc; 122 unsigned nodes_nb; 123 unsigned nodes_nb_alloc; 124 Node *nodes; 125 MemoryRegionSection *sections; 126 } PhysPageMap; 127 128 struct AddressSpaceDispatch { 129 MemoryRegionSection *mru_section; 130 /* This is a multi-level map on the physical address space. 131 * The bottom level has pointers to MemoryRegionSections. 132 */ 133 PhysPageEntry phys_map; 134 PhysPageMap map; 135 }; 136 137 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 138 typedef struct subpage_t { 139 MemoryRegion iomem; 140 FlatView *fv; 141 hwaddr base; 142 uint16_t sub_section[]; 143 } subpage_t; 144 145 #define PHYS_SECTION_UNASSIGNED 0 146 147 static void io_mem_init(void); 148 static void memory_map_init(void); 149 static void tcg_log_global_after_sync(MemoryListener *listener); 150 static void tcg_commit(MemoryListener *listener); 151 152 /** 153 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 154 * @cpu: the CPU whose AddressSpace this is 155 * @as: the AddressSpace itself 156 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 157 * @tcg_as_listener: listener for tracking changes to the AddressSpace 158 */ 159 struct CPUAddressSpace { 160 CPUState *cpu; 161 AddressSpace *as; 162 struct AddressSpaceDispatch *memory_dispatch; 163 MemoryListener tcg_as_listener; 164 }; 165 166 struct DirtyBitmapSnapshot { 167 ram_addr_t start; 168 ram_addr_t end; 169 unsigned long dirty[]; 170 }; 171 172 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 173 { 174 static unsigned alloc_hint = 16; 175 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 176 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 177 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 178 alloc_hint = map->nodes_nb_alloc; 179 } 180 } 181 182 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 183 { 184 unsigned i; 185 uint32_t ret; 186 PhysPageEntry e; 187 PhysPageEntry *p; 188 189 ret = map->nodes_nb++; 190 p = map->nodes[ret]; 191 assert(ret != PHYS_MAP_NODE_NIL); 192 assert(ret != map->nodes_nb_alloc); 193 194 e.skip = leaf ? 0 : 1; 195 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 196 for (i = 0; i < P_L2_SIZE; ++i) { 197 memcpy(&p[i], &e, sizeof(e)); 198 } 199 return ret; 200 } 201 202 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 203 hwaddr *index, uint64_t *nb, uint16_t leaf, 204 int level) 205 { 206 PhysPageEntry *p; 207 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 208 209 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 210 lp->ptr = phys_map_node_alloc(map, level == 0); 211 } 212 p = map->nodes[lp->ptr]; 213 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 214 215 while (*nb && lp < &p[P_L2_SIZE]) { 216 if ((*index & (step - 1)) == 0 && *nb >= step) { 217 lp->skip = 0; 218 lp->ptr = leaf; 219 *index += step; 220 *nb -= step; 221 } else { 222 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 223 } 224 ++lp; 225 } 226 } 227 228 static void phys_page_set(AddressSpaceDispatch *d, 229 hwaddr index, uint64_t nb, 230 uint16_t leaf) 231 { 232 /* Wildly overreserve - it doesn't matter much. */ 233 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 234 235 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 236 } 237 238 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 239 * and update our entry so we can skip it and go directly to the destination. 240 */ 241 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 242 { 243 unsigned valid_ptr = P_L2_SIZE; 244 int valid = 0; 245 PhysPageEntry *p; 246 int i; 247 248 if (lp->ptr == PHYS_MAP_NODE_NIL) { 249 return; 250 } 251 252 p = nodes[lp->ptr]; 253 for (i = 0; i < P_L2_SIZE; i++) { 254 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 255 continue; 256 } 257 258 valid_ptr = i; 259 valid++; 260 if (p[i].skip) { 261 phys_page_compact(&p[i], nodes); 262 } 263 } 264 265 /* We can only compress if there's only one child. */ 266 if (valid != 1) { 267 return; 268 } 269 270 assert(valid_ptr < P_L2_SIZE); 271 272 /* Don't compress if it won't fit in the # of bits we have. */ 273 if (P_L2_LEVELS >= (1 << 6) && 274 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 275 return; 276 } 277 278 lp->ptr = p[valid_ptr].ptr; 279 if (!p[valid_ptr].skip) { 280 /* If our only child is a leaf, make this a leaf. */ 281 /* By design, we should have made this node a leaf to begin with so we 282 * should never reach here. 283 * But since it's so simple to handle this, let's do it just in case we 284 * change this rule. 285 */ 286 lp->skip = 0; 287 } else { 288 lp->skip += p[valid_ptr].skip; 289 } 290 } 291 292 void address_space_dispatch_compact(AddressSpaceDispatch *d) 293 { 294 if (d->phys_map.skip) { 295 phys_page_compact(&d->phys_map, d->map.nodes); 296 } 297 } 298 299 static inline bool section_covers_addr(const MemoryRegionSection *section, 300 hwaddr addr) 301 { 302 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 303 * the section must cover the entire address space. 304 */ 305 return int128_gethi(section->size) || 306 range_covers_byte(section->offset_within_address_space, 307 int128_getlo(section->size), addr); 308 } 309 310 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 311 { 312 PhysPageEntry lp = d->phys_map, *p; 313 Node *nodes = d->map.nodes; 314 MemoryRegionSection *sections = d->map.sections; 315 hwaddr index = addr >> TARGET_PAGE_BITS; 316 int i; 317 318 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 319 if (lp.ptr == PHYS_MAP_NODE_NIL) { 320 return §ions[PHYS_SECTION_UNASSIGNED]; 321 } 322 p = nodes[lp.ptr]; 323 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 324 } 325 326 if (section_covers_addr(§ions[lp.ptr], addr)) { 327 return §ions[lp.ptr]; 328 } else { 329 return §ions[PHYS_SECTION_UNASSIGNED]; 330 } 331 } 332 333 /* Called from RCU critical section */ 334 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 335 hwaddr addr, 336 bool resolve_subpage) 337 { 338 MemoryRegionSection *section = qatomic_read(&d->mru_section); 339 subpage_t *subpage; 340 341 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 342 !section_covers_addr(section, addr)) { 343 section = phys_page_find(d, addr); 344 qatomic_set(&d->mru_section, section); 345 } 346 if (resolve_subpage && section->mr->subpage) { 347 subpage = container_of(section->mr, subpage_t, iomem); 348 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 349 } 350 return section; 351 } 352 353 /* Called from RCU critical section */ 354 static MemoryRegionSection * 355 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 356 hwaddr *plen, bool resolve_subpage) 357 { 358 MemoryRegionSection *section; 359 MemoryRegion *mr; 360 Int128 diff; 361 362 section = address_space_lookup_region(d, addr, resolve_subpage); 363 /* Compute offset within MemoryRegionSection */ 364 addr -= section->offset_within_address_space; 365 366 /* Compute offset within MemoryRegion */ 367 *xlat = addr + section->offset_within_region; 368 369 mr = section->mr; 370 371 /* MMIO registers can be expected to perform full-width accesses based only 372 * on their address, without considering adjacent registers that could 373 * decode to completely different MemoryRegions. When such registers 374 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 375 * regions overlap wildly. For this reason we cannot clamp the accesses 376 * here. 377 * 378 * If the length is small (as is the case for address_space_ldl/stl), 379 * everything works fine. If the incoming length is large, however, 380 * the caller really has to do the clamping through memory_access_size. 381 */ 382 if (memory_region_is_ram(mr)) { 383 diff = int128_sub(section->size, int128_make64(addr)); 384 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 385 } 386 return section; 387 } 388 389 /** 390 * address_space_translate_iommu - translate an address through an IOMMU 391 * memory region and then through the target address space. 392 * 393 * @iommu_mr: the IOMMU memory region that we start the translation from 394 * @addr: the address to be translated through the MMU 395 * @xlat: the translated address offset within the destination memory region. 396 * It cannot be %NULL. 397 * @plen_out: valid read/write length of the translated address. It 398 * cannot be %NULL. 399 * @page_mask_out: page mask for the translated address. This 400 * should only be meaningful for IOMMU translated 401 * addresses, since there may be huge pages that this bit 402 * would tell. It can be %NULL if we don't care about it. 403 * @is_write: whether the translation operation is for write 404 * @is_mmio: whether this can be MMIO, set true if it can 405 * @target_as: the address space targeted by the IOMMU 406 * @attrs: transaction attributes 407 * 408 * This function is called from RCU critical section. It is the common 409 * part of flatview_do_translate and address_space_translate_cached. 410 */ 411 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 412 hwaddr *xlat, 413 hwaddr *plen_out, 414 hwaddr *page_mask_out, 415 bool is_write, 416 bool is_mmio, 417 AddressSpace **target_as, 418 MemTxAttrs attrs) 419 { 420 MemoryRegionSection *section; 421 hwaddr page_mask = (hwaddr)-1; 422 423 do { 424 hwaddr addr = *xlat; 425 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 426 int iommu_idx = 0; 427 IOMMUTLBEntry iotlb; 428 429 if (imrc->attrs_to_index) { 430 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 431 } 432 433 iotlb = imrc->translate(iommu_mr, addr, is_write ? 434 IOMMU_WO : IOMMU_RO, iommu_idx); 435 436 if (!(iotlb.perm & (1 << is_write))) { 437 goto unassigned; 438 } 439 440 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 441 | (addr & iotlb.addr_mask)); 442 page_mask &= iotlb.addr_mask; 443 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 444 *target_as = iotlb.target_as; 445 446 section = address_space_translate_internal( 447 address_space_to_dispatch(iotlb.target_as), addr, xlat, 448 plen_out, is_mmio); 449 450 iommu_mr = memory_region_get_iommu(section->mr); 451 } while (unlikely(iommu_mr)); 452 453 if (page_mask_out) { 454 *page_mask_out = page_mask; 455 } 456 return *section; 457 458 unassigned: 459 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 460 } 461 462 /** 463 * flatview_do_translate - translate an address in FlatView 464 * 465 * @fv: the flat view that we want to translate on 466 * @addr: the address to be translated in above address space 467 * @xlat: the translated address offset within memory region. It 468 * cannot be @NULL. 469 * @plen_out: valid read/write length of the translated address. It 470 * can be @NULL when we don't care about it. 471 * @page_mask_out: page mask for the translated address. This 472 * should only be meaningful for IOMMU translated 473 * addresses, since there may be huge pages that this bit 474 * would tell. It can be @NULL if we don't care about it. 475 * @is_write: whether the translation operation is for write 476 * @is_mmio: whether this can be MMIO, set true if it can 477 * @target_as: the address space targeted by the IOMMU 478 * @attrs: memory transaction attributes 479 * 480 * This function is called from RCU critical section 481 */ 482 static MemoryRegionSection flatview_do_translate(FlatView *fv, 483 hwaddr addr, 484 hwaddr *xlat, 485 hwaddr *plen_out, 486 hwaddr *page_mask_out, 487 bool is_write, 488 bool is_mmio, 489 AddressSpace **target_as, 490 MemTxAttrs attrs) 491 { 492 MemoryRegionSection *section; 493 IOMMUMemoryRegion *iommu_mr; 494 hwaddr plen = (hwaddr)(-1); 495 496 if (!plen_out) { 497 plen_out = &plen; 498 } 499 500 section = address_space_translate_internal( 501 flatview_to_dispatch(fv), addr, xlat, 502 plen_out, is_mmio); 503 504 iommu_mr = memory_region_get_iommu(section->mr); 505 if (unlikely(iommu_mr)) { 506 return address_space_translate_iommu(iommu_mr, xlat, 507 plen_out, page_mask_out, 508 is_write, is_mmio, 509 target_as, attrs); 510 } 511 if (page_mask_out) { 512 /* Not behind an IOMMU, use default page size. */ 513 *page_mask_out = ~TARGET_PAGE_MASK; 514 } 515 516 return *section; 517 } 518 519 /* Called from RCU critical section */ 520 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 521 bool is_write, MemTxAttrs attrs) 522 { 523 MemoryRegionSection section; 524 hwaddr xlat, page_mask; 525 526 /* 527 * This can never be MMIO, and we don't really care about plen, 528 * but page mask. 529 */ 530 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 531 NULL, &page_mask, is_write, false, &as, 532 attrs); 533 534 /* Illegal translation */ 535 if (section.mr == &io_mem_unassigned) { 536 goto iotlb_fail; 537 } 538 539 /* Convert memory region offset into address space offset */ 540 xlat += section.offset_within_address_space - 541 section.offset_within_region; 542 543 return (IOMMUTLBEntry) { 544 .target_as = as, 545 .iova = addr & ~page_mask, 546 .translated_addr = xlat & ~page_mask, 547 .addr_mask = page_mask, 548 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 549 .perm = IOMMU_RW, 550 }; 551 552 iotlb_fail: 553 return (IOMMUTLBEntry) {0}; 554 } 555 556 /* Called from RCU critical section */ 557 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 558 hwaddr *plen, bool is_write, 559 MemTxAttrs attrs) 560 { 561 MemoryRegion *mr; 562 MemoryRegionSection section; 563 AddressSpace *as = NULL; 564 565 /* This can be MMIO, so setup MMIO bit. */ 566 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 567 is_write, true, &as, attrs); 568 mr = section.mr; 569 570 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 571 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 572 *plen = MIN(page, *plen); 573 } 574 575 return mr; 576 } 577 578 typedef struct TCGIOMMUNotifier { 579 IOMMUNotifier n; 580 MemoryRegion *mr; 581 CPUState *cpu; 582 int iommu_idx; 583 bool active; 584 } TCGIOMMUNotifier; 585 586 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 587 { 588 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 589 590 if (!notifier->active) { 591 return; 592 } 593 tlb_flush(notifier->cpu); 594 notifier->active = false; 595 /* We leave the notifier struct on the list to avoid reallocating it later. 596 * Generally the number of IOMMUs a CPU deals with will be small. 597 * In any case we can't unregister the iommu notifier from a notify 598 * callback. 599 */ 600 } 601 602 static void tcg_register_iommu_notifier(CPUState *cpu, 603 IOMMUMemoryRegion *iommu_mr, 604 int iommu_idx) 605 { 606 /* Make sure this CPU has an IOMMU notifier registered for this 607 * IOMMU/IOMMU index combination, so that we can flush its TLB 608 * when the IOMMU tells us the mappings we've cached have changed. 609 */ 610 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 611 TCGIOMMUNotifier *notifier = NULL; 612 int i; 613 614 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 615 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 616 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 617 break; 618 } 619 } 620 if (i == cpu->iommu_notifiers->len) { 621 /* Not found, add a new entry at the end of the array */ 622 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 623 notifier = g_new0(TCGIOMMUNotifier, 1); 624 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 625 626 notifier->mr = mr; 627 notifier->iommu_idx = iommu_idx; 628 notifier->cpu = cpu; 629 /* Rather than trying to register interest in the specific part 630 * of the iommu's address space that we've accessed and then 631 * expand it later as subsequent accesses touch more of it, we 632 * just register interest in the whole thing, on the assumption 633 * that iommu reconfiguration will be rare. 634 */ 635 iommu_notifier_init(¬ifier->n, 636 tcg_iommu_unmap_notify, 637 IOMMU_NOTIFIER_UNMAP, 638 0, 639 HWADDR_MAX, 640 iommu_idx); 641 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 642 &error_fatal); 643 } 644 645 if (!notifier->active) { 646 notifier->active = true; 647 } 648 } 649 650 void tcg_iommu_free_notifier_list(CPUState *cpu) 651 { 652 /* Destroy the CPU's notifier list */ 653 int i; 654 TCGIOMMUNotifier *notifier; 655 656 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 657 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 658 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 659 g_free(notifier); 660 } 661 g_array_free(cpu->iommu_notifiers, true); 662 } 663 664 void tcg_iommu_init_notifier_list(CPUState *cpu) 665 { 666 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 667 } 668 669 /* Called from RCU critical section */ 670 MemoryRegionSection * 671 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 672 hwaddr *xlat, hwaddr *plen, 673 MemTxAttrs attrs, int *prot) 674 { 675 MemoryRegionSection *section; 676 IOMMUMemoryRegion *iommu_mr; 677 IOMMUMemoryRegionClass *imrc; 678 IOMMUTLBEntry iotlb; 679 int iommu_idx; 680 AddressSpaceDispatch *d = 681 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 682 683 for (;;) { 684 section = address_space_translate_internal(d, addr, &addr, plen, false); 685 686 iommu_mr = memory_region_get_iommu(section->mr); 687 if (!iommu_mr) { 688 break; 689 } 690 691 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 692 693 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 694 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 695 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 696 * doesn't short-cut its translation table walk. 697 */ 698 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 699 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 700 | (addr & iotlb.addr_mask)); 701 /* Update the caller's prot bits to remove permissions the IOMMU 702 * is giving us a failure response for. If we get down to no 703 * permissions left at all we can give up now. 704 */ 705 if (!(iotlb.perm & IOMMU_RO)) { 706 *prot &= ~(PAGE_READ | PAGE_EXEC); 707 } 708 if (!(iotlb.perm & IOMMU_WO)) { 709 *prot &= ~PAGE_WRITE; 710 } 711 712 if (!*prot) { 713 goto translate_fail; 714 } 715 716 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 717 } 718 719 assert(!memory_region_is_iommu(section->mr)); 720 *xlat = addr; 721 return section; 722 723 translate_fail: 724 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 725 } 726 727 void cpu_address_space_init(CPUState *cpu, int asidx, 728 const char *prefix, MemoryRegion *mr) 729 { 730 CPUAddressSpace *newas; 731 AddressSpace *as = g_new0(AddressSpace, 1); 732 char *as_name; 733 734 assert(mr); 735 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 736 address_space_init(as, mr, as_name); 737 g_free(as_name); 738 739 /* Target code should have set num_ases before calling us */ 740 assert(asidx < cpu->num_ases); 741 742 if (asidx == 0) { 743 /* address space 0 gets the convenience alias */ 744 cpu->as = as; 745 } 746 747 /* KVM cannot currently support multiple address spaces. */ 748 assert(asidx == 0 || !kvm_enabled()); 749 750 if (!cpu->cpu_ases) { 751 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 752 } 753 754 newas = &cpu->cpu_ases[asidx]; 755 newas->cpu = cpu; 756 newas->as = as; 757 if (tcg_enabled()) { 758 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 759 newas->tcg_as_listener.commit = tcg_commit; 760 newas->tcg_as_listener.name = "tcg"; 761 memory_listener_register(&newas->tcg_as_listener, as); 762 } 763 } 764 765 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 766 { 767 /* Return the AddressSpace corresponding to the specified index */ 768 return cpu->cpu_ases[asidx].as; 769 } 770 771 /* Add a watchpoint. */ 772 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 773 int flags, CPUWatchpoint **watchpoint) 774 { 775 CPUWatchpoint *wp; 776 vaddr in_page; 777 778 /* forbid ranges which are empty or run off the end of the address space */ 779 if (len == 0 || (addr + len - 1) < addr) { 780 error_report("tried to set invalid watchpoint at %" 781 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); 782 return -EINVAL; 783 } 784 wp = g_malloc(sizeof(*wp)); 785 786 wp->vaddr = addr; 787 wp->len = len; 788 wp->flags = flags; 789 790 /* keep all GDB-injected watchpoints in front */ 791 if (flags & BP_GDB) { 792 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); 793 } else { 794 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); 795 } 796 797 in_page = -(addr | TARGET_PAGE_MASK); 798 if (len <= in_page) { 799 tlb_flush_page(cpu, addr); 800 } else { 801 tlb_flush(cpu); 802 } 803 804 if (watchpoint) 805 *watchpoint = wp; 806 return 0; 807 } 808 809 /* Remove a specific watchpoint. */ 810 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, 811 int flags) 812 { 813 CPUWatchpoint *wp; 814 815 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 816 if (addr == wp->vaddr && len == wp->len 817 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { 818 cpu_watchpoint_remove_by_ref(cpu, wp); 819 return 0; 820 } 821 } 822 return -ENOENT; 823 } 824 825 /* Remove a specific watchpoint by reference. */ 826 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) 827 { 828 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); 829 830 tlb_flush_page(cpu, watchpoint->vaddr); 831 832 g_free(watchpoint); 833 } 834 835 /* Remove all matching watchpoints. */ 836 void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 837 { 838 CPUWatchpoint *wp, *next; 839 840 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { 841 if (wp->flags & mask) { 842 cpu_watchpoint_remove_by_ref(cpu, wp); 843 } 844 } 845 } 846 847 #ifdef CONFIG_TCG 848 /* Return true if this watchpoint address matches the specified 849 * access (ie the address range covered by the watchpoint overlaps 850 * partially or completely with the address range covered by the 851 * access). 852 */ 853 static inline bool watchpoint_address_matches(CPUWatchpoint *wp, 854 vaddr addr, vaddr len) 855 { 856 /* We know the lengths are non-zero, but a little caution is 857 * required to avoid errors in the case where the range ends 858 * exactly at the top of the address space and so addr + len 859 * wraps round to zero. 860 */ 861 vaddr wpend = wp->vaddr + wp->len - 1; 862 vaddr addrend = addr + len - 1; 863 864 return !(addr > wpend || wp->vaddr > addrend); 865 } 866 867 /* Return flags for watchpoints that match addr + prot. */ 868 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) 869 { 870 CPUWatchpoint *wp; 871 int ret = 0; 872 873 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 874 if (watchpoint_address_matches(wp, addr, len)) { 875 ret |= wp->flags; 876 } 877 } 878 return ret; 879 } 880 881 /* Generate a debug exception if a watchpoint has been hit. */ 882 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 883 MemTxAttrs attrs, int flags, uintptr_t ra) 884 { 885 CPUClass *cc = CPU_GET_CLASS(cpu); 886 CPUWatchpoint *wp; 887 888 assert(tcg_enabled()); 889 if (cpu->watchpoint_hit) { 890 /* 891 * We re-entered the check after replacing the TB. 892 * Now raise the debug interrupt so that it will 893 * trigger after the current instruction. 894 */ 895 qemu_mutex_lock_iothread(); 896 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); 897 qemu_mutex_unlock_iothread(); 898 return; 899 } 900 901 if (cc->tcg_ops->adjust_watchpoint_address) { 902 /* this is currently used only by ARM BE32 */ 903 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len); 904 } 905 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 906 if (watchpoint_address_matches(wp, addr, len) 907 && (wp->flags & flags)) { 908 if (replay_running_debug()) { 909 /* 910 * replay_breakpoint reads icount. 911 * Force recompile to succeed, because icount may 912 * be read only at the end of the block. 913 */ 914 if (!cpu->can_do_io) { 915 /* Force execution of one insn next time. */ 916 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 917 cpu_loop_exit_restore(cpu, ra); 918 } 919 /* 920 * Don't process the watchpoints when we are 921 * in a reverse debugging operation. 922 */ 923 replay_breakpoint(); 924 return; 925 } 926 if (flags == BP_MEM_READ) { 927 wp->flags |= BP_WATCHPOINT_HIT_READ; 928 } else { 929 wp->flags |= BP_WATCHPOINT_HIT_WRITE; 930 } 931 wp->hitaddr = MAX(addr, wp->vaddr); 932 wp->hitattrs = attrs; 933 934 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint && 935 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) { 936 wp->flags &= ~BP_WATCHPOINT_HIT; 937 continue; 938 } 939 cpu->watchpoint_hit = wp; 940 941 mmap_lock(); 942 /* This call also restores vCPU state */ 943 tb_check_watchpoint(cpu, ra); 944 if (wp->flags & BP_STOP_BEFORE_ACCESS) { 945 cpu->exception_index = EXCP_DEBUG; 946 mmap_unlock(); 947 cpu_loop_exit(cpu); 948 } else { 949 /* Force execution of one insn next time. */ 950 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 951 mmap_unlock(); 952 cpu_loop_exit_noexc(cpu); 953 } 954 } else { 955 wp->flags &= ~BP_WATCHPOINT_HIT; 956 } 957 } 958 } 959 960 #endif /* CONFIG_TCG */ 961 962 /* Called from RCU critical section */ 963 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 964 { 965 RAMBlock *block; 966 967 block = qatomic_rcu_read(&ram_list.mru_block); 968 if (block && addr - block->offset < block->max_length) { 969 return block; 970 } 971 RAMBLOCK_FOREACH(block) { 972 if (addr - block->offset < block->max_length) { 973 goto found; 974 } 975 } 976 977 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 978 abort(); 979 980 found: 981 /* It is safe to write mru_block outside the iothread lock. This 982 * is what happens: 983 * 984 * mru_block = xxx 985 * rcu_read_unlock() 986 * xxx removed from list 987 * rcu_read_lock() 988 * read mru_block 989 * mru_block = NULL; 990 * call_rcu(reclaim_ramblock, xxx); 991 * rcu_read_unlock() 992 * 993 * qatomic_rcu_set is not needed here. The block was already published 994 * when it was placed into the list. Here we're just making an extra 995 * copy of the pointer. 996 */ 997 ram_list.mru_block = block; 998 return block; 999 } 1000 1001 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 1002 { 1003 CPUState *cpu; 1004 ram_addr_t start1; 1005 RAMBlock *block; 1006 ram_addr_t end; 1007 1008 assert(tcg_enabled()); 1009 end = TARGET_PAGE_ALIGN(start + length); 1010 start &= TARGET_PAGE_MASK; 1011 1012 RCU_READ_LOCK_GUARD(); 1013 block = qemu_get_ram_block(start); 1014 assert(block == qemu_get_ram_block(end - 1)); 1015 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 1016 CPU_FOREACH(cpu) { 1017 tlb_reset_dirty(cpu, start1, length); 1018 } 1019 } 1020 1021 /* Note: start and end must be within the same ram block. */ 1022 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 1023 ram_addr_t length, 1024 unsigned client) 1025 { 1026 DirtyMemoryBlocks *blocks; 1027 unsigned long end, page, start_page; 1028 bool dirty = false; 1029 RAMBlock *ramblock; 1030 uint64_t mr_offset, mr_size; 1031 1032 if (length == 0) { 1033 return false; 1034 } 1035 1036 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 1037 start_page = start >> TARGET_PAGE_BITS; 1038 page = start_page; 1039 1040 WITH_RCU_READ_LOCK_GUARD() { 1041 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1042 ramblock = qemu_get_ram_block(start); 1043 /* Range sanity check on the ramblock */ 1044 assert(start >= ramblock->offset && 1045 start + length <= ramblock->offset + ramblock->used_length); 1046 1047 while (page < end) { 1048 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1049 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1050 unsigned long num = MIN(end - page, 1051 DIRTY_MEMORY_BLOCK_SIZE - offset); 1052 1053 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 1054 offset, num); 1055 page += num; 1056 } 1057 1058 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 1059 mr_size = (end - start_page) << TARGET_PAGE_BITS; 1060 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 1061 } 1062 1063 if (dirty && tcg_enabled()) { 1064 tlb_reset_dirty_range_all(start, length); 1065 } 1066 1067 return dirty; 1068 } 1069 1070 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 1071 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 1072 { 1073 DirtyMemoryBlocks *blocks; 1074 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 1075 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 1076 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 1077 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 1078 DirtyBitmapSnapshot *snap; 1079 unsigned long page, end, dest; 1080 1081 snap = g_malloc0(sizeof(*snap) + 1082 ((last - first) >> (TARGET_PAGE_BITS + 3))); 1083 snap->start = first; 1084 snap->end = last; 1085 1086 page = first >> TARGET_PAGE_BITS; 1087 end = last >> TARGET_PAGE_BITS; 1088 dest = 0; 1089 1090 WITH_RCU_READ_LOCK_GUARD() { 1091 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1092 1093 while (page < end) { 1094 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1095 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1096 unsigned long num = MIN(end - page, 1097 DIRTY_MEMORY_BLOCK_SIZE - offset); 1098 1099 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 1100 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 1101 offset >>= BITS_PER_LEVEL; 1102 1103 bitmap_copy_and_clear_atomic(snap->dirty + dest, 1104 blocks->blocks[idx] + offset, 1105 num); 1106 page += num; 1107 dest += num >> BITS_PER_LEVEL; 1108 } 1109 } 1110 1111 if (tcg_enabled()) { 1112 tlb_reset_dirty_range_all(start, length); 1113 } 1114 1115 memory_region_clear_dirty_bitmap(mr, offset, length); 1116 1117 return snap; 1118 } 1119 1120 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1121 ram_addr_t start, 1122 ram_addr_t length) 1123 { 1124 unsigned long page, end; 1125 1126 assert(start >= snap->start); 1127 assert(start + length <= snap->end); 1128 1129 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1130 page = (start - snap->start) >> TARGET_PAGE_BITS; 1131 1132 while (page < end) { 1133 if (test_bit(page, snap->dirty)) { 1134 return true; 1135 } 1136 page++; 1137 } 1138 return false; 1139 } 1140 1141 /* Called from RCU critical section */ 1142 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1143 MemoryRegionSection *section) 1144 { 1145 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1146 return section - d->map.sections; 1147 } 1148 1149 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1150 uint16_t section); 1151 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1152 1153 static uint16_t phys_section_add(PhysPageMap *map, 1154 MemoryRegionSection *section) 1155 { 1156 /* The physical section number is ORed with a page-aligned 1157 * pointer to produce the iotlb entries. Thus it should 1158 * never overflow into the page-aligned value. 1159 */ 1160 assert(map->sections_nb < TARGET_PAGE_SIZE); 1161 1162 if (map->sections_nb == map->sections_nb_alloc) { 1163 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1164 map->sections = g_renew(MemoryRegionSection, map->sections, 1165 map->sections_nb_alloc); 1166 } 1167 map->sections[map->sections_nb] = *section; 1168 memory_region_ref(section->mr); 1169 return map->sections_nb++; 1170 } 1171 1172 static void phys_section_destroy(MemoryRegion *mr) 1173 { 1174 bool have_sub_page = mr->subpage; 1175 1176 memory_region_unref(mr); 1177 1178 if (have_sub_page) { 1179 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1180 object_unref(OBJECT(&subpage->iomem)); 1181 g_free(subpage); 1182 } 1183 } 1184 1185 static void phys_sections_free(PhysPageMap *map) 1186 { 1187 while (map->sections_nb > 0) { 1188 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1189 phys_section_destroy(section->mr); 1190 } 1191 g_free(map->sections); 1192 g_free(map->nodes); 1193 } 1194 1195 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1196 { 1197 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1198 subpage_t *subpage; 1199 hwaddr base = section->offset_within_address_space 1200 & TARGET_PAGE_MASK; 1201 MemoryRegionSection *existing = phys_page_find(d, base); 1202 MemoryRegionSection subsection = { 1203 .offset_within_address_space = base, 1204 .size = int128_make64(TARGET_PAGE_SIZE), 1205 }; 1206 hwaddr start, end; 1207 1208 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1209 1210 if (!(existing->mr->subpage)) { 1211 subpage = subpage_init(fv, base); 1212 subsection.fv = fv; 1213 subsection.mr = &subpage->iomem; 1214 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1215 phys_section_add(&d->map, &subsection)); 1216 } else { 1217 subpage = container_of(existing->mr, subpage_t, iomem); 1218 } 1219 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1220 end = start + int128_get64(section->size) - 1; 1221 subpage_register(subpage, start, end, 1222 phys_section_add(&d->map, section)); 1223 } 1224 1225 1226 static void register_multipage(FlatView *fv, 1227 MemoryRegionSection *section) 1228 { 1229 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1230 hwaddr start_addr = section->offset_within_address_space; 1231 uint16_t section_index = phys_section_add(&d->map, section); 1232 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1233 TARGET_PAGE_BITS)); 1234 1235 assert(num_pages); 1236 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1237 } 1238 1239 /* 1240 * The range in *section* may look like this: 1241 * 1242 * |s|PPPPPPP|s| 1243 * 1244 * where s stands for subpage and P for page. 1245 */ 1246 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1247 { 1248 MemoryRegionSection remain = *section; 1249 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1250 1251 /* register first subpage */ 1252 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1253 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1254 - remain.offset_within_address_space; 1255 1256 MemoryRegionSection now = remain; 1257 now.size = int128_min(int128_make64(left), now.size); 1258 register_subpage(fv, &now); 1259 if (int128_eq(remain.size, now.size)) { 1260 return; 1261 } 1262 remain.size = int128_sub(remain.size, now.size); 1263 remain.offset_within_address_space += int128_get64(now.size); 1264 remain.offset_within_region += int128_get64(now.size); 1265 } 1266 1267 /* register whole pages */ 1268 if (int128_ge(remain.size, page_size)) { 1269 MemoryRegionSection now = remain; 1270 now.size = int128_and(now.size, int128_neg(page_size)); 1271 register_multipage(fv, &now); 1272 if (int128_eq(remain.size, now.size)) { 1273 return; 1274 } 1275 remain.size = int128_sub(remain.size, now.size); 1276 remain.offset_within_address_space += int128_get64(now.size); 1277 remain.offset_within_region += int128_get64(now.size); 1278 } 1279 1280 /* register last subpage */ 1281 register_subpage(fv, &remain); 1282 } 1283 1284 void qemu_flush_coalesced_mmio_buffer(void) 1285 { 1286 if (kvm_enabled()) 1287 kvm_flush_coalesced_mmio_buffer(); 1288 } 1289 1290 void qemu_mutex_lock_ramlist(void) 1291 { 1292 qemu_mutex_lock(&ram_list.mutex); 1293 } 1294 1295 void qemu_mutex_unlock_ramlist(void) 1296 { 1297 qemu_mutex_unlock(&ram_list.mutex); 1298 } 1299 1300 GString *ram_block_format(void) 1301 { 1302 RAMBlock *block; 1303 char *psize; 1304 GString *buf = g_string_new(""); 1305 1306 RCU_READ_LOCK_GUARD(); 1307 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n", 1308 "Block Name", "PSize", "Offset", "Used", "Total"); 1309 RAMBLOCK_FOREACH(block) { 1310 psize = size_to_str(block->page_size); 1311 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1312 " 0x%016" PRIx64 "\n", block->idstr, psize, 1313 (uint64_t)block->offset, 1314 (uint64_t)block->used_length, 1315 (uint64_t)block->max_length); 1316 g_free(psize); 1317 } 1318 1319 return buf; 1320 } 1321 1322 #ifdef __linux__ 1323 /* 1324 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which 1325 * may or may not name the same files / on the same filesystem now as 1326 * when we actually open and map them. Iterate over the file 1327 * descriptors instead, and use qemu_fd_getpagesize(). 1328 */ 1329 static int find_min_backend_pagesize(Object *obj, void *opaque) 1330 { 1331 long *hpsize_min = opaque; 1332 1333 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1334 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1335 long hpsize = host_memory_backend_pagesize(backend); 1336 1337 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1338 *hpsize_min = hpsize; 1339 } 1340 } 1341 1342 return 0; 1343 } 1344 1345 static int find_max_backend_pagesize(Object *obj, void *opaque) 1346 { 1347 long *hpsize_max = opaque; 1348 1349 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1350 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1351 long hpsize = host_memory_backend_pagesize(backend); 1352 1353 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1354 *hpsize_max = hpsize; 1355 } 1356 } 1357 1358 return 0; 1359 } 1360 1361 /* 1362 * TODO: We assume right now that all mapped host memory backends are 1363 * used as RAM, however some might be used for different purposes. 1364 */ 1365 long qemu_minrampagesize(void) 1366 { 1367 long hpsize = LONG_MAX; 1368 Object *memdev_root = object_resolve_path("/objects", NULL); 1369 1370 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1371 return hpsize; 1372 } 1373 1374 long qemu_maxrampagesize(void) 1375 { 1376 long pagesize = 0; 1377 Object *memdev_root = object_resolve_path("/objects", NULL); 1378 1379 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1380 return pagesize; 1381 } 1382 #else 1383 long qemu_minrampagesize(void) 1384 { 1385 return qemu_real_host_page_size; 1386 } 1387 long qemu_maxrampagesize(void) 1388 { 1389 return qemu_real_host_page_size; 1390 } 1391 #endif 1392 1393 #ifdef CONFIG_POSIX 1394 static int64_t get_file_size(int fd) 1395 { 1396 int64_t size; 1397 #if defined(__linux__) 1398 struct stat st; 1399 1400 if (fstat(fd, &st) < 0) { 1401 return -errno; 1402 } 1403 1404 /* Special handling for devdax character devices */ 1405 if (S_ISCHR(st.st_mode)) { 1406 g_autofree char *subsystem_path = NULL; 1407 g_autofree char *subsystem = NULL; 1408 1409 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1410 major(st.st_rdev), minor(st.st_rdev)); 1411 subsystem = g_file_read_link(subsystem_path, NULL); 1412 1413 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1414 g_autofree char *size_path = NULL; 1415 g_autofree char *size_str = NULL; 1416 1417 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1418 major(st.st_rdev), minor(st.st_rdev)); 1419 1420 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1421 return g_ascii_strtoll(size_str, NULL, 0); 1422 } 1423 } 1424 } 1425 #endif /* defined(__linux__) */ 1426 1427 /* st.st_size may be zero for special files yet lseek(2) works */ 1428 size = lseek(fd, 0, SEEK_END); 1429 if (size < 0) { 1430 return -errno; 1431 } 1432 return size; 1433 } 1434 1435 static int64_t get_file_align(int fd) 1436 { 1437 int64_t align = -1; 1438 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1439 struct stat st; 1440 1441 if (fstat(fd, &st) < 0) { 1442 return -errno; 1443 } 1444 1445 /* Special handling for devdax character devices */ 1446 if (S_ISCHR(st.st_mode)) { 1447 g_autofree char *path = NULL; 1448 g_autofree char *rpath = NULL; 1449 struct daxctl_ctx *ctx; 1450 struct daxctl_region *region; 1451 int rc = 0; 1452 1453 path = g_strdup_printf("/sys/dev/char/%d:%d", 1454 major(st.st_rdev), minor(st.st_rdev)); 1455 rpath = realpath(path, NULL); 1456 if (!rpath) { 1457 return -errno; 1458 } 1459 1460 rc = daxctl_new(&ctx); 1461 if (rc) { 1462 return -1; 1463 } 1464 1465 daxctl_region_foreach(ctx, region) { 1466 if (strstr(rpath, daxctl_region_get_path(region))) { 1467 align = daxctl_region_get_align(region); 1468 break; 1469 } 1470 } 1471 daxctl_unref(ctx); 1472 } 1473 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1474 1475 return align; 1476 } 1477 1478 static int file_ram_open(const char *path, 1479 const char *region_name, 1480 bool readonly, 1481 bool *created, 1482 Error **errp) 1483 { 1484 char *filename; 1485 char *sanitized_name; 1486 char *c; 1487 int fd = -1; 1488 1489 *created = false; 1490 for (;;) { 1491 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1492 if (fd >= 0) { 1493 /* @path names an existing file, use it */ 1494 break; 1495 } 1496 if (errno == ENOENT) { 1497 /* @path names a file that doesn't exist, create it */ 1498 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1499 if (fd >= 0) { 1500 *created = true; 1501 break; 1502 } 1503 } else if (errno == EISDIR) { 1504 /* @path names a directory, create a file there */ 1505 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1506 sanitized_name = g_strdup(region_name); 1507 for (c = sanitized_name; *c != '\0'; c++) { 1508 if (*c == '/') { 1509 *c = '_'; 1510 } 1511 } 1512 1513 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1514 sanitized_name); 1515 g_free(sanitized_name); 1516 1517 fd = mkstemp(filename); 1518 if (fd >= 0) { 1519 unlink(filename); 1520 g_free(filename); 1521 break; 1522 } 1523 g_free(filename); 1524 } 1525 if (errno != EEXIST && errno != EINTR) { 1526 error_setg_errno(errp, errno, 1527 "can't open backing store %s for guest RAM", 1528 path); 1529 return -1; 1530 } 1531 /* 1532 * Try again on EINTR and EEXIST. The latter happens when 1533 * something else creates the file between our two open(). 1534 */ 1535 } 1536 1537 return fd; 1538 } 1539 1540 static void *file_ram_alloc(RAMBlock *block, 1541 ram_addr_t memory, 1542 int fd, 1543 bool readonly, 1544 bool truncate, 1545 off_t offset, 1546 Error **errp) 1547 { 1548 uint32_t qemu_map_flags; 1549 void *area; 1550 1551 block->page_size = qemu_fd_getpagesize(fd); 1552 if (block->mr->align % block->page_size) { 1553 error_setg(errp, "alignment 0x%" PRIx64 1554 " must be multiples of page size 0x%zx", 1555 block->mr->align, block->page_size); 1556 return NULL; 1557 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1558 error_setg(errp, "alignment 0x%" PRIx64 1559 " must be a power of two", block->mr->align); 1560 return NULL; 1561 } 1562 block->mr->align = MAX(block->page_size, block->mr->align); 1563 #if defined(__s390x__) 1564 if (kvm_enabled()) { 1565 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1566 } 1567 #endif 1568 1569 if (memory < block->page_size) { 1570 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1571 "or larger than page size 0x%zx", 1572 memory, block->page_size); 1573 return NULL; 1574 } 1575 1576 memory = ROUND_UP(memory, block->page_size); 1577 1578 /* 1579 * ftruncate is not supported by hugetlbfs in older 1580 * hosts, so don't bother bailing out on errors. 1581 * If anything goes wrong with it under other filesystems, 1582 * mmap will fail. 1583 * 1584 * Do not truncate the non-empty backend file to avoid corrupting 1585 * the existing data in the file. Disabling shrinking is not 1586 * enough. For example, the current vNVDIMM implementation stores 1587 * the guest NVDIMM labels at the end of the backend file. If the 1588 * backend file is later extended, QEMU will not be able to find 1589 * those labels. Therefore, extending the non-empty backend file 1590 * is disabled as well. 1591 */ 1592 if (truncate && ftruncate(fd, memory)) { 1593 perror("ftruncate"); 1594 } 1595 1596 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1597 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1598 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1599 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1600 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1601 if (area == MAP_FAILED) { 1602 error_setg_errno(errp, errno, 1603 "unable to map backing store for guest RAM"); 1604 return NULL; 1605 } 1606 1607 block->fd = fd; 1608 return area; 1609 } 1610 #endif 1611 1612 /* Allocate space within the ram_addr_t space that governs the 1613 * dirty bitmaps. 1614 * Called with the ramlist lock held. 1615 */ 1616 static ram_addr_t find_ram_offset(ram_addr_t size) 1617 { 1618 RAMBlock *block, *next_block; 1619 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1620 1621 assert(size != 0); /* it would hand out same offset multiple times */ 1622 1623 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1624 return 0; 1625 } 1626 1627 RAMBLOCK_FOREACH(block) { 1628 ram_addr_t candidate, next = RAM_ADDR_MAX; 1629 1630 /* Align blocks to start on a 'long' in the bitmap 1631 * which makes the bitmap sync'ing take the fast path. 1632 */ 1633 candidate = block->offset + block->max_length; 1634 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1635 1636 /* Search for the closest following block 1637 * and find the gap. 1638 */ 1639 RAMBLOCK_FOREACH(next_block) { 1640 if (next_block->offset >= candidate) { 1641 next = MIN(next, next_block->offset); 1642 } 1643 } 1644 1645 /* If it fits remember our place and remember the size 1646 * of gap, but keep going so that we might find a smaller 1647 * gap to fill so avoiding fragmentation. 1648 */ 1649 if (next - candidate >= size && next - candidate < mingap) { 1650 offset = candidate; 1651 mingap = next - candidate; 1652 } 1653 1654 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1655 } 1656 1657 if (offset == RAM_ADDR_MAX) { 1658 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1659 (uint64_t)size); 1660 abort(); 1661 } 1662 1663 trace_find_ram_offset(size, offset); 1664 1665 return offset; 1666 } 1667 1668 static unsigned long last_ram_page(void) 1669 { 1670 RAMBlock *block; 1671 ram_addr_t last = 0; 1672 1673 RCU_READ_LOCK_GUARD(); 1674 RAMBLOCK_FOREACH(block) { 1675 last = MAX(last, block->offset + block->max_length); 1676 } 1677 return last >> TARGET_PAGE_BITS; 1678 } 1679 1680 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1681 { 1682 int ret; 1683 1684 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1685 if (!machine_dump_guest_core(current_machine)) { 1686 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1687 if (ret) { 1688 perror("qemu_madvise"); 1689 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1690 "but dump_guest_core=off specified\n"); 1691 } 1692 } 1693 } 1694 1695 const char *qemu_ram_get_idstr(RAMBlock *rb) 1696 { 1697 return rb->idstr; 1698 } 1699 1700 void *qemu_ram_get_host_addr(RAMBlock *rb) 1701 { 1702 return rb->host; 1703 } 1704 1705 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1706 { 1707 return rb->offset; 1708 } 1709 1710 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1711 { 1712 return rb->used_length; 1713 } 1714 1715 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1716 { 1717 return rb->max_length; 1718 } 1719 1720 bool qemu_ram_is_shared(RAMBlock *rb) 1721 { 1722 return rb->flags & RAM_SHARED; 1723 } 1724 1725 bool qemu_ram_is_noreserve(RAMBlock *rb) 1726 { 1727 return rb->flags & RAM_NORESERVE; 1728 } 1729 1730 /* Note: Only set at the start of postcopy */ 1731 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1732 { 1733 return rb->flags & RAM_UF_ZEROPAGE; 1734 } 1735 1736 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1737 { 1738 rb->flags |= RAM_UF_ZEROPAGE; 1739 } 1740 1741 bool qemu_ram_is_migratable(RAMBlock *rb) 1742 { 1743 return rb->flags & RAM_MIGRATABLE; 1744 } 1745 1746 void qemu_ram_set_migratable(RAMBlock *rb) 1747 { 1748 rb->flags |= RAM_MIGRATABLE; 1749 } 1750 1751 void qemu_ram_unset_migratable(RAMBlock *rb) 1752 { 1753 rb->flags &= ~RAM_MIGRATABLE; 1754 } 1755 1756 /* Called with iothread lock held. */ 1757 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1758 { 1759 RAMBlock *block; 1760 1761 assert(new_block); 1762 assert(!new_block->idstr[0]); 1763 1764 if (dev) { 1765 char *id = qdev_get_dev_path(dev); 1766 if (id) { 1767 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1768 g_free(id); 1769 } 1770 } 1771 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1772 1773 RCU_READ_LOCK_GUARD(); 1774 RAMBLOCK_FOREACH(block) { 1775 if (block != new_block && 1776 !strcmp(block->idstr, new_block->idstr)) { 1777 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1778 new_block->idstr); 1779 abort(); 1780 } 1781 } 1782 } 1783 1784 /* Called with iothread lock held. */ 1785 void qemu_ram_unset_idstr(RAMBlock *block) 1786 { 1787 /* FIXME: arch_init.c assumes that this is not called throughout 1788 * migration. Ignore the problem since hot-unplug during migration 1789 * does not work anyway. 1790 */ 1791 if (block) { 1792 memset(block->idstr, 0, sizeof(block->idstr)); 1793 } 1794 } 1795 1796 size_t qemu_ram_pagesize(RAMBlock *rb) 1797 { 1798 return rb->page_size; 1799 } 1800 1801 /* Returns the largest size of page in use */ 1802 size_t qemu_ram_pagesize_largest(void) 1803 { 1804 RAMBlock *block; 1805 size_t largest = 0; 1806 1807 RAMBLOCK_FOREACH(block) { 1808 largest = MAX(largest, qemu_ram_pagesize(block)); 1809 } 1810 1811 return largest; 1812 } 1813 1814 static int memory_try_enable_merging(void *addr, size_t len) 1815 { 1816 if (!machine_mem_merge(current_machine)) { 1817 /* disabled by the user */ 1818 return 0; 1819 } 1820 1821 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1822 } 1823 1824 /* 1825 * Resizing RAM while migrating can result in the migration being canceled. 1826 * Care has to be taken if the guest might have already detected the memory. 1827 * 1828 * As memory core doesn't know how is memory accessed, it is up to 1829 * resize callback to update device state and/or add assertions to detect 1830 * misuse, if necessary. 1831 */ 1832 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1833 { 1834 const ram_addr_t oldsize = block->used_length; 1835 const ram_addr_t unaligned_size = newsize; 1836 1837 assert(block); 1838 1839 newsize = HOST_PAGE_ALIGN(newsize); 1840 1841 if (block->used_length == newsize) { 1842 /* 1843 * We don't have to resize the ram block (which only knows aligned 1844 * sizes), however, we have to notify if the unaligned size changed. 1845 */ 1846 if (unaligned_size != memory_region_size(block->mr)) { 1847 memory_region_set_size(block->mr, unaligned_size); 1848 if (block->resized) { 1849 block->resized(block->idstr, unaligned_size, block->host); 1850 } 1851 } 1852 return 0; 1853 } 1854 1855 if (!(block->flags & RAM_RESIZEABLE)) { 1856 error_setg_errno(errp, EINVAL, 1857 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1858 " != 0x" RAM_ADDR_FMT, block->idstr, 1859 newsize, block->used_length); 1860 return -EINVAL; 1861 } 1862 1863 if (block->max_length < newsize) { 1864 error_setg_errno(errp, EINVAL, 1865 "Size too large: %s: 0x" RAM_ADDR_FMT 1866 " > 0x" RAM_ADDR_FMT, block->idstr, 1867 newsize, block->max_length); 1868 return -EINVAL; 1869 } 1870 1871 /* Notify before modifying the ram block and touching the bitmaps. */ 1872 if (block->host) { 1873 ram_block_notify_resize(block->host, oldsize, newsize); 1874 } 1875 1876 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1877 block->used_length = newsize; 1878 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1879 DIRTY_CLIENTS_ALL); 1880 memory_region_set_size(block->mr, unaligned_size); 1881 if (block->resized) { 1882 block->resized(block->idstr, unaligned_size, block->host); 1883 } 1884 return 0; 1885 } 1886 1887 /* 1888 * Trigger sync on the given ram block for range [start, start + length] 1889 * with the backing store if one is available. 1890 * Otherwise no-op. 1891 * @Note: this is supposed to be a synchronous op. 1892 */ 1893 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1894 { 1895 /* The requested range should fit in within the block range */ 1896 g_assert((start + length) <= block->used_length); 1897 1898 #ifdef CONFIG_LIBPMEM 1899 /* The lack of support for pmem should not block the sync */ 1900 if (ramblock_is_pmem(block)) { 1901 void *addr = ramblock_ptr(block, start); 1902 pmem_persist(addr, length); 1903 return; 1904 } 1905 #endif 1906 if (block->fd >= 0) { 1907 /** 1908 * Case there is no support for PMEM or the memory has not been 1909 * specified as persistent (or is not one) - use the msync. 1910 * Less optimal but still achieves the same goal 1911 */ 1912 void *addr = ramblock_ptr(block, start); 1913 if (qemu_msync(addr, length, block->fd)) { 1914 warn_report("%s: failed to sync memory range: start: " 1915 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1916 __func__, start, length); 1917 } 1918 } 1919 } 1920 1921 /* Called with ram_list.mutex held */ 1922 static void dirty_memory_extend(ram_addr_t old_ram_size, 1923 ram_addr_t new_ram_size) 1924 { 1925 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1926 DIRTY_MEMORY_BLOCK_SIZE); 1927 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1928 DIRTY_MEMORY_BLOCK_SIZE); 1929 int i; 1930 1931 /* Only need to extend if block count increased */ 1932 if (new_num_blocks <= old_num_blocks) { 1933 return; 1934 } 1935 1936 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1937 DirtyMemoryBlocks *old_blocks; 1938 DirtyMemoryBlocks *new_blocks; 1939 int j; 1940 1941 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1942 new_blocks = g_malloc(sizeof(*new_blocks) + 1943 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1944 1945 if (old_num_blocks) { 1946 memcpy(new_blocks->blocks, old_blocks->blocks, 1947 old_num_blocks * sizeof(old_blocks->blocks[0])); 1948 } 1949 1950 for (j = old_num_blocks; j < new_num_blocks; j++) { 1951 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1952 } 1953 1954 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1955 1956 if (old_blocks) { 1957 g_free_rcu(old_blocks, rcu); 1958 } 1959 } 1960 } 1961 1962 static void ram_block_add(RAMBlock *new_block, Error **errp) 1963 { 1964 const bool noreserve = qemu_ram_is_noreserve(new_block); 1965 const bool shared = qemu_ram_is_shared(new_block); 1966 RAMBlock *block; 1967 RAMBlock *last_block = NULL; 1968 ram_addr_t old_ram_size, new_ram_size; 1969 Error *err = NULL; 1970 1971 old_ram_size = last_ram_page(); 1972 1973 qemu_mutex_lock_ramlist(); 1974 new_block->offset = find_ram_offset(new_block->max_length); 1975 1976 if (!new_block->host) { 1977 if (xen_enabled()) { 1978 xen_ram_alloc(new_block->offset, new_block->max_length, 1979 new_block->mr, &err); 1980 if (err) { 1981 error_propagate(errp, err); 1982 qemu_mutex_unlock_ramlist(); 1983 return; 1984 } 1985 } else { 1986 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1987 &new_block->mr->align, 1988 shared, noreserve); 1989 if (!new_block->host) { 1990 error_setg_errno(errp, errno, 1991 "cannot set up guest memory '%s'", 1992 memory_region_name(new_block->mr)); 1993 qemu_mutex_unlock_ramlist(); 1994 return; 1995 } 1996 memory_try_enable_merging(new_block->host, new_block->max_length); 1997 } 1998 } 1999 2000 new_ram_size = MAX(old_ram_size, 2001 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 2002 if (new_ram_size > old_ram_size) { 2003 dirty_memory_extend(old_ram_size, new_ram_size); 2004 } 2005 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 2006 * QLIST (which has an RCU-friendly variant) does not have insertion at 2007 * tail, so save the last element in last_block. 2008 */ 2009 RAMBLOCK_FOREACH(block) { 2010 last_block = block; 2011 if (block->max_length < new_block->max_length) { 2012 break; 2013 } 2014 } 2015 if (block) { 2016 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 2017 } else if (last_block) { 2018 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 2019 } else { /* list is empty */ 2020 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 2021 } 2022 ram_list.mru_block = NULL; 2023 2024 /* Write list before version */ 2025 smp_wmb(); 2026 ram_list.version++; 2027 qemu_mutex_unlock_ramlist(); 2028 2029 cpu_physical_memory_set_dirty_range(new_block->offset, 2030 new_block->used_length, 2031 DIRTY_CLIENTS_ALL); 2032 2033 if (new_block->host) { 2034 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2035 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2036 /* 2037 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2038 * Configure it unless the machine is a qtest server, in which case 2039 * KVM is not used and it may be forked (eg for fuzzing purposes). 2040 */ 2041 if (!qtest_enabled()) { 2042 qemu_madvise(new_block->host, new_block->max_length, 2043 QEMU_MADV_DONTFORK); 2044 } 2045 ram_block_notify_add(new_block->host, new_block->used_length, 2046 new_block->max_length); 2047 } 2048 } 2049 2050 #ifdef CONFIG_POSIX 2051 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 2052 uint32_t ram_flags, int fd, off_t offset, 2053 bool readonly, Error **errp) 2054 { 2055 RAMBlock *new_block; 2056 Error *local_err = NULL; 2057 int64_t file_size, file_align; 2058 2059 /* Just support these ram flags by now. */ 2060 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2061 RAM_PROTECTED)) == 0); 2062 2063 if (xen_enabled()) { 2064 error_setg(errp, "-mem-path not supported with Xen"); 2065 return NULL; 2066 } 2067 2068 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2069 error_setg(errp, 2070 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2071 return NULL; 2072 } 2073 2074 size = HOST_PAGE_ALIGN(size); 2075 file_size = get_file_size(fd); 2076 if (file_size > 0 && file_size < size) { 2077 error_setg(errp, "backing store size 0x%" PRIx64 2078 " does not match 'size' option 0x" RAM_ADDR_FMT, 2079 file_size, size); 2080 return NULL; 2081 } 2082 2083 file_align = get_file_align(fd); 2084 if (file_align > 0 && file_align > mr->align) { 2085 error_setg(errp, "backing store align 0x%" PRIx64 2086 " is larger than 'align' option 0x%" PRIx64, 2087 file_align, mr->align); 2088 return NULL; 2089 } 2090 2091 new_block = g_malloc0(sizeof(*new_block)); 2092 new_block->mr = mr; 2093 new_block->used_length = size; 2094 new_block->max_length = size; 2095 new_block->flags = ram_flags; 2096 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 2097 !file_size, offset, errp); 2098 if (!new_block->host) { 2099 g_free(new_block); 2100 return NULL; 2101 } 2102 2103 ram_block_add(new_block, &local_err); 2104 if (local_err) { 2105 g_free(new_block); 2106 error_propagate(errp, local_err); 2107 return NULL; 2108 } 2109 return new_block; 2110 2111 } 2112 2113 2114 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2115 uint32_t ram_flags, const char *mem_path, 2116 bool readonly, Error **errp) 2117 { 2118 int fd; 2119 bool created; 2120 RAMBlock *block; 2121 2122 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 2123 errp); 2124 if (fd < 0) { 2125 return NULL; 2126 } 2127 2128 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 2129 if (!block) { 2130 if (created) { 2131 unlink(mem_path); 2132 } 2133 close(fd); 2134 return NULL; 2135 } 2136 2137 return block; 2138 } 2139 #endif 2140 2141 static 2142 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2143 void (*resized)(const char*, 2144 uint64_t length, 2145 void *host), 2146 void *host, uint32_t ram_flags, 2147 MemoryRegion *mr, Error **errp) 2148 { 2149 RAMBlock *new_block; 2150 Error *local_err = NULL; 2151 2152 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2153 RAM_NORESERVE)) == 0); 2154 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2155 2156 size = HOST_PAGE_ALIGN(size); 2157 max_size = HOST_PAGE_ALIGN(max_size); 2158 new_block = g_malloc0(sizeof(*new_block)); 2159 new_block->mr = mr; 2160 new_block->resized = resized; 2161 new_block->used_length = size; 2162 new_block->max_length = max_size; 2163 assert(max_size >= size); 2164 new_block->fd = -1; 2165 new_block->page_size = qemu_real_host_page_size; 2166 new_block->host = host; 2167 new_block->flags = ram_flags; 2168 ram_block_add(new_block, &local_err); 2169 if (local_err) { 2170 g_free(new_block); 2171 error_propagate(errp, local_err); 2172 return NULL; 2173 } 2174 return new_block; 2175 } 2176 2177 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2178 MemoryRegion *mr, Error **errp) 2179 { 2180 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2181 errp); 2182 } 2183 2184 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2185 MemoryRegion *mr, Error **errp) 2186 { 2187 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2188 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2189 } 2190 2191 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2192 void (*resized)(const char*, 2193 uint64_t length, 2194 void *host), 2195 MemoryRegion *mr, Error **errp) 2196 { 2197 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2198 RAM_RESIZEABLE, mr, errp); 2199 } 2200 2201 static void reclaim_ramblock(RAMBlock *block) 2202 { 2203 if (block->flags & RAM_PREALLOC) { 2204 ; 2205 } else if (xen_enabled()) { 2206 xen_invalidate_map_cache_entry(block->host); 2207 #ifndef _WIN32 2208 } else if (block->fd >= 0) { 2209 qemu_ram_munmap(block->fd, block->host, block->max_length); 2210 close(block->fd); 2211 #endif 2212 } else { 2213 qemu_anon_ram_free(block->host, block->max_length); 2214 } 2215 g_free(block); 2216 } 2217 2218 void qemu_ram_free(RAMBlock *block) 2219 { 2220 if (!block) { 2221 return; 2222 } 2223 2224 if (block->host) { 2225 ram_block_notify_remove(block->host, block->used_length, 2226 block->max_length); 2227 } 2228 2229 qemu_mutex_lock_ramlist(); 2230 QLIST_REMOVE_RCU(block, next); 2231 ram_list.mru_block = NULL; 2232 /* Write list before version */ 2233 smp_wmb(); 2234 ram_list.version++; 2235 call_rcu(block, reclaim_ramblock, rcu); 2236 qemu_mutex_unlock_ramlist(); 2237 } 2238 2239 #ifndef _WIN32 2240 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2241 { 2242 RAMBlock *block; 2243 ram_addr_t offset; 2244 int flags; 2245 void *area, *vaddr; 2246 2247 RAMBLOCK_FOREACH(block) { 2248 offset = addr - block->offset; 2249 if (offset < block->max_length) { 2250 vaddr = ramblock_ptr(block, offset); 2251 if (block->flags & RAM_PREALLOC) { 2252 ; 2253 } else if (xen_enabled()) { 2254 abort(); 2255 } else { 2256 flags = MAP_FIXED; 2257 flags |= block->flags & RAM_SHARED ? 2258 MAP_SHARED : MAP_PRIVATE; 2259 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2260 if (block->fd >= 0) { 2261 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2262 flags, block->fd, offset); 2263 } else { 2264 flags |= MAP_ANONYMOUS; 2265 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2266 flags, -1, 0); 2267 } 2268 if (area != vaddr) { 2269 error_report("Could not remap addr: " 2270 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2271 length, addr); 2272 exit(1); 2273 } 2274 memory_try_enable_merging(vaddr, length); 2275 qemu_ram_setup_dump(vaddr, length); 2276 } 2277 } 2278 } 2279 } 2280 #endif /* !_WIN32 */ 2281 2282 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2283 * This should not be used for general purpose DMA. Use address_space_map 2284 * or address_space_rw instead. For local memory (e.g. video ram) that the 2285 * device owns, use memory_region_get_ram_ptr. 2286 * 2287 * Called within RCU critical section. 2288 */ 2289 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2290 { 2291 RAMBlock *block = ram_block; 2292 2293 if (block == NULL) { 2294 block = qemu_get_ram_block(addr); 2295 addr -= block->offset; 2296 } 2297 2298 if (xen_enabled() && block->host == NULL) { 2299 /* We need to check if the requested address is in the RAM 2300 * because we don't want to map the entire memory in QEMU. 2301 * In that case just map until the end of the page. 2302 */ 2303 if (block->offset == 0) { 2304 return xen_map_cache(addr, 0, 0, false); 2305 } 2306 2307 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2308 } 2309 return ramblock_ptr(block, addr); 2310 } 2311 2312 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2313 * but takes a size argument. 2314 * 2315 * Called within RCU critical section. 2316 */ 2317 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2318 hwaddr *size, bool lock) 2319 { 2320 RAMBlock *block = ram_block; 2321 if (*size == 0) { 2322 return NULL; 2323 } 2324 2325 if (block == NULL) { 2326 block = qemu_get_ram_block(addr); 2327 addr -= block->offset; 2328 } 2329 *size = MIN(*size, block->max_length - addr); 2330 2331 if (xen_enabled() && block->host == NULL) { 2332 /* We need to check if the requested address is in the RAM 2333 * because we don't want to map the entire memory in QEMU. 2334 * In that case just map the requested area. 2335 */ 2336 if (block->offset == 0) { 2337 return xen_map_cache(addr, *size, lock, lock); 2338 } 2339 2340 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2341 } 2342 2343 return ramblock_ptr(block, addr); 2344 } 2345 2346 /* Return the offset of a hostpointer within a ramblock */ 2347 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2348 { 2349 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2350 assert((uintptr_t)host >= (uintptr_t)rb->host); 2351 assert(res < rb->max_length); 2352 2353 return res; 2354 } 2355 2356 /* 2357 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2358 * in that RAMBlock. 2359 * 2360 * ptr: Host pointer to look up 2361 * round_offset: If true round the result offset down to a page boundary 2362 * *ram_addr: set to result ram_addr 2363 * *offset: set to result offset within the RAMBlock 2364 * 2365 * Returns: RAMBlock (or NULL if not found) 2366 * 2367 * By the time this function returns, the returned pointer is not protected 2368 * by RCU anymore. If the caller is not within an RCU critical section and 2369 * does not hold the iothread lock, it must have other means of protecting the 2370 * pointer, such as a reference to the region that includes the incoming 2371 * ram_addr_t. 2372 */ 2373 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2374 ram_addr_t *offset) 2375 { 2376 RAMBlock *block; 2377 uint8_t *host = ptr; 2378 2379 if (xen_enabled()) { 2380 ram_addr_t ram_addr; 2381 RCU_READ_LOCK_GUARD(); 2382 ram_addr = xen_ram_addr_from_mapcache(ptr); 2383 block = qemu_get_ram_block(ram_addr); 2384 if (block) { 2385 *offset = ram_addr - block->offset; 2386 } 2387 return block; 2388 } 2389 2390 RCU_READ_LOCK_GUARD(); 2391 block = qatomic_rcu_read(&ram_list.mru_block); 2392 if (block && block->host && host - block->host < block->max_length) { 2393 goto found; 2394 } 2395 2396 RAMBLOCK_FOREACH(block) { 2397 /* This case append when the block is not mapped. */ 2398 if (block->host == NULL) { 2399 continue; 2400 } 2401 if (host - block->host < block->max_length) { 2402 goto found; 2403 } 2404 } 2405 2406 return NULL; 2407 2408 found: 2409 *offset = (host - block->host); 2410 if (round_offset) { 2411 *offset &= TARGET_PAGE_MASK; 2412 } 2413 return block; 2414 } 2415 2416 /* 2417 * Finds the named RAMBlock 2418 * 2419 * name: The name of RAMBlock to find 2420 * 2421 * Returns: RAMBlock (or NULL if not found) 2422 */ 2423 RAMBlock *qemu_ram_block_by_name(const char *name) 2424 { 2425 RAMBlock *block; 2426 2427 RAMBLOCK_FOREACH(block) { 2428 if (!strcmp(name, block->idstr)) { 2429 return block; 2430 } 2431 } 2432 2433 return NULL; 2434 } 2435 2436 /* Some of the softmmu routines need to translate from a host pointer 2437 (typically a TLB entry) back to a ram offset. */ 2438 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2439 { 2440 RAMBlock *block; 2441 ram_addr_t offset; 2442 2443 block = qemu_ram_block_from_host(ptr, false, &offset); 2444 if (!block) { 2445 return RAM_ADDR_INVALID; 2446 } 2447 2448 return block->offset + offset; 2449 } 2450 2451 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2452 MemTxAttrs attrs, void *buf, hwaddr len); 2453 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2454 const void *buf, hwaddr len); 2455 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2456 bool is_write, MemTxAttrs attrs); 2457 2458 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2459 unsigned len, MemTxAttrs attrs) 2460 { 2461 subpage_t *subpage = opaque; 2462 uint8_t buf[8]; 2463 MemTxResult res; 2464 2465 #if defined(DEBUG_SUBPAGE) 2466 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, 2467 subpage, len, addr); 2468 #endif 2469 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2470 if (res) { 2471 return res; 2472 } 2473 *data = ldn_p(buf, len); 2474 return MEMTX_OK; 2475 } 2476 2477 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2478 uint64_t value, unsigned len, MemTxAttrs attrs) 2479 { 2480 subpage_t *subpage = opaque; 2481 uint8_t buf[8]; 2482 2483 #if defined(DEBUG_SUBPAGE) 2484 printf("%s: subpage %p len %u addr " TARGET_FMT_plx 2485 " value %"PRIx64"\n", 2486 __func__, subpage, len, addr, value); 2487 #endif 2488 stn_p(buf, len, value); 2489 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2490 } 2491 2492 static bool subpage_accepts(void *opaque, hwaddr addr, 2493 unsigned len, bool is_write, 2494 MemTxAttrs attrs) 2495 { 2496 subpage_t *subpage = opaque; 2497 #if defined(DEBUG_SUBPAGE) 2498 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", 2499 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2500 #endif 2501 2502 return flatview_access_valid(subpage->fv, addr + subpage->base, 2503 len, is_write, attrs); 2504 } 2505 2506 static const MemoryRegionOps subpage_ops = { 2507 .read_with_attrs = subpage_read, 2508 .write_with_attrs = subpage_write, 2509 .impl.min_access_size = 1, 2510 .impl.max_access_size = 8, 2511 .valid.min_access_size = 1, 2512 .valid.max_access_size = 8, 2513 .valid.accepts = subpage_accepts, 2514 .endianness = DEVICE_NATIVE_ENDIAN, 2515 }; 2516 2517 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2518 uint16_t section) 2519 { 2520 int idx, eidx; 2521 2522 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2523 return -1; 2524 idx = SUBPAGE_IDX(start); 2525 eidx = SUBPAGE_IDX(end); 2526 #if defined(DEBUG_SUBPAGE) 2527 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2528 __func__, mmio, start, end, idx, eidx, section); 2529 #endif 2530 for (; idx <= eidx; idx++) { 2531 mmio->sub_section[idx] = section; 2532 } 2533 2534 return 0; 2535 } 2536 2537 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2538 { 2539 subpage_t *mmio; 2540 2541 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2542 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2543 mmio->fv = fv; 2544 mmio->base = base; 2545 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2546 NULL, TARGET_PAGE_SIZE); 2547 mmio->iomem.subpage = true; 2548 #if defined(DEBUG_SUBPAGE) 2549 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, 2550 mmio, base, TARGET_PAGE_SIZE); 2551 #endif 2552 2553 return mmio; 2554 } 2555 2556 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2557 { 2558 assert(fv); 2559 MemoryRegionSection section = { 2560 .fv = fv, 2561 .mr = mr, 2562 .offset_within_address_space = 0, 2563 .offset_within_region = 0, 2564 .size = int128_2_64(), 2565 }; 2566 2567 return phys_section_add(map, §ion); 2568 } 2569 2570 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2571 hwaddr index, MemTxAttrs attrs) 2572 { 2573 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2574 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2575 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2576 MemoryRegionSection *sections = d->map.sections; 2577 2578 return §ions[index & ~TARGET_PAGE_MASK]; 2579 } 2580 2581 static void io_mem_init(void) 2582 { 2583 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2584 NULL, UINT64_MAX); 2585 } 2586 2587 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2588 { 2589 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2590 uint16_t n; 2591 2592 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2593 assert(n == PHYS_SECTION_UNASSIGNED); 2594 2595 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2596 2597 return d; 2598 } 2599 2600 void address_space_dispatch_free(AddressSpaceDispatch *d) 2601 { 2602 phys_sections_free(&d->map); 2603 g_free(d); 2604 } 2605 2606 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2607 { 2608 } 2609 2610 static void tcg_log_global_after_sync(MemoryListener *listener) 2611 { 2612 CPUAddressSpace *cpuas; 2613 2614 /* Wait for the CPU to end the current TB. This avoids the following 2615 * incorrect race: 2616 * 2617 * vCPU migration 2618 * ---------------------- ------------------------- 2619 * TLB check -> slow path 2620 * notdirty_mem_write 2621 * write to RAM 2622 * mark dirty 2623 * clear dirty flag 2624 * TLB check -> fast path 2625 * read memory 2626 * write to RAM 2627 * 2628 * by pushing the migration thread's memory read after the vCPU thread has 2629 * written the memory. 2630 */ 2631 if (replay_mode == REPLAY_MODE_NONE) { 2632 /* 2633 * VGA can make calls to this function while updating the screen. 2634 * In record/replay mode this causes a deadlock, because 2635 * run_on_cpu waits for rr mutex. Therefore no races are possible 2636 * in this case and no need for making run_on_cpu when 2637 * record/replay is enabled. 2638 */ 2639 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2640 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2641 } 2642 } 2643 2644 static void tcg_commit(MemoryListener *listener) 2645 { 2646 CPUAddressSpace *cpuas; 2647 AddressSpaceDispatch *d; 2648 2649 assert(tcg_enabled()); 2650 /* since each CPU stores ram addresses in its TLB cache, we must 2651 reset the modified entries */ 2652 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2653 cpu_reloading_memory_map(); 2654 /* The CPU and TLB are protected by the iothread lock. 2655 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2656 * may have split the RCU critical section. 2657 */ 2658 d = address_space_to_dispatch(cpuas->as); 2659 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2660 tlb_flush(cpuas->cpu); 2661 } 2662 2663 static void memory_map_init(void) 2664 { 2665 system_memory = g_malloc(sizeof(*system_memory)); 2666 2667 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2668 address_space_init(&address_space_memory, system_memory, "memory"); 2669 2670 system_io = g_malloc(sizeof(*system_io)); 2671 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2672 65536); 2673 address_space_init(&address_space_io, system_io, "I/O"); 2674 } 2675 2676 MemoryRegion *get_system_memory(void) 2677 { 2678 return system_memory; 2679 } 2680 2681 MemoryRegion *get_system_io(void) 2682 { 2683 return system_io; 2684 } 2685 2686 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2687 hwaddr length) 2688 { 2689 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2690 addr += memory_region_get_ram_addr(mr); 2691 2692 /* No early return if dirty_log_mask is or becomes 0, because 2693 * cpu_physical_memory_set_dirty_range will still call 2694 * xen_modified_memory. 2695 */ 2696 if (dirty_log_mask) { 2697 dirty_log_mask = 2698 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2699 } 2700 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2701 assert(tcg_enabled()); 2702 tb_invalidate_phys_range(addr, addr + length); 2703 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2704 } 2705 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2706 } 2707 2708 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2709 { 2710 /* 2711 * In principle this function would work on other memory region types too, 2712 * but the ROM device use case is the only one where this operation is 2713 * necessary. Other memory regions should use the 2714 * address_space_read/write() APIs. 2715 */ 2716 assert(memory_region_is_romd(mr)); 2717 2718 invalidate_and_set_dirty(mr, addr, size); 2719 } 2720 2721 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2722 { 2723 unsigned access_size_max = mr->ops->valid.max_access_size; 2724 2725 /* Regions are assumed to support 1-4 byte accesses unless 2726 otherwise specified. */ 2727 if (access_size_max == 0) { 2728 access_size_max = 4; 2729 } 2730 2731 /* Bound the maximum access by the alignment of the address. */ 2732 if (!mr->ops->impl.unaligned) { 2733 unsigned align_size_max = addr & -addr; 2734 if (align_size_max != 0 && align_size_max < access_size_max) { 2735 access_size_max = align_size_max; 2736 } 2737 } 2738 2739 /* Don't attempt accesses larger than the maximum. */ 2740 if (l > access_size_max) { 2741 l = access_size_max; 2742 } 2743 l = pow2floor(l); 2744 2745 return l; 2746 } 2747 2748 static bool prepare_mmio_access(MemoryRegion *mr) 2749 { 2750 bool release_lock = false; 2751 2752 if (!qemu_mutex_iothread_locked()) { 2753 qemu_mutex_lock_iothread(); 2754 release_lock = true; 2755 } 2756 if (mr->flush_coalesced_mmio) { 2757 qemu_flush_coalesced_mmio_buffer(); 2758 } 2759 2760 return release_lock; 2761 } 2762 2763 /* Called within RCU critical section. */ 2764 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2765 MemTxAttrs attrs, 2766 const void *ptr, 2767 hwaddr len, hwaddr addr1, 2768 hwaddr l, MemoryRegion *mr) 2769 { 2770 uint8_t *ram_ptr; 2771 uint64_t val; 2772 MemTxResult result = MEMTX_OK; 2773 bool release_lock = false; 2774 const uint8_t *buf = ptr; 2775 2776 for (;;) { 2777 if (!memory_access_is_direct(mr, true)) { 2778 release_lock |= prepare_mmio_access(mr); 2779 l = memory_access_size(mr, l, addr1); 2780 /* XXX: could force current_cpu to NULL to avoid 2781 potential bugs */ 2782 val = ldn_he_p(buf, l); 2783 result |= memory_region_dispatch_write(mr, addr1, val, 2784 size_memop(l), attrs); 2785 } else { 2786 /* RAM case */ 2787 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2788 memcpy(ram_ptr, buf, l); 2789 invalidate_and_set_dirty(mr, addr1, l); 2790 } 2791 2792 if (release_lock) { 2793 qemu_mutex_unlock_iothread(); 2794 release_lock = false; 2795 } 2796 2797 len -= l; 2798 buf += l; 2799 addr += l; 2800 2801 if (!len) { 2802 break; 2803 } 2804 2805 l = len; 2806 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2807 } 2808 2809 return result; 2810 } 2811 2812 /* Called from RCU critical section. */ 2813 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2814 const void *buf, hwaddr len) 2815 { 2816 hwaddr l; 2817 hwaddr addr1; 2818 MemoryRegion *mr; 2819 MemTxResult result = MEMTX_OK; 2820 2821 l = len; 2822 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2823 result = flatview_write_continue(fv, addr, attrs, buf, len, 2824 addr1, l, mr); 2825 2826 return result; 2827 } 2828 2829 /* Called within RCU critical section. */ 2830 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2831 MemTxAttrs attrs, void *ptr, 2832 hwaddr len, hwaddr addr1, hwaddr l, 2833 MemoryRegion *mr) 2834 { 2835 uint8_t *ram_ptr; 2836 uint64_t val; 2837 MemTxResult result = MEMTX_OK; 2838 bool release_lock = false; 2839 uint8_t *buf = ptr; 2840 2841 fuzz_dma_read_cb(addr, len, mr); 2842 for (;;) { 2843 if (!memory_access_is_direct(mr, false)) { 2844 /* I/O case */ 2845 release_lock |= prepare_mmio_access(mr); 2846 l = memory_access_size(mr, l, addr1); 2847 result |= memory_region_dispatch_read(mr, addr1, &val, 2848 size_memop(l), attrs); 2849 stn_he_p(buf, l, val); 2850 } else { 2851 /* RAM case */ 2852 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2853 memcpy(buf, ram_ptr, l); 2854 } 2855 2856 if (release_lock) { 2857 qemu_mutex_unlock_iothread(); 2858 release_lock = false; 2859 } 2860 2861 len -= l; 2862 buf += l; 2863 addr += l; 2864 2865 if (!len) { 2866 break; 2867 } 2868 2869 l = len; 2870 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2871 } 2872 2873 return result; 2874 } 2875 2876 /* Called from RCU critical section. */ 2877 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2878 MemTxAttrs attrs, void *buf, hwaddr len) 2879 { 2880 hwaddr l; 2881 hwaddr addr1; 2882 MemoryRegion *mr; 2883 2884 l = len; 2885 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2886 return flatview_read_continue(fv, addr, attrs, buf, len, 2887 addr1, l, mr); 2888 } 2889 2890 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2891 MemTxAttrs attrs, void *buf, hwaddr len) 2892 { 2893 MemTxResult result = MEMTX_OK; 2894 FlatView *fv; 2895 2896 if (len > 0) { 2897 RCU_READ_LOCK_GUARD(); 2898 fv = address_space_to_flatview(as); 2899 result = flatview_read(fv, addr, attrs, buf, len); 2900 } 2901 2902 return result; 2903 } 2904 2905 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2906 MemTxAttrs attrs, 2907 const void *buf, hwaddr len) 2908 { 2909 MemTxResult result = MEMTX_OK; 2910 FlatView *fv; 2911 2912 if (len > 0) { 2913 RCU_READ_LOCK_GUARD(); 2914 fv = address_space_to_flatview(as); 2915 result = flatview_write(fv, addr, attrs, buf, len); 2916 } 2917 2918 return result; 2919 } 2920 2921 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2922 void *buf, hwaddr len, bool is_write) 2923 { 2924 if (is_write) { 2925 return address_space_write(as, addr, attrs, buf, len); 2926 } else { 2927 return address_space_read_full(as, addr, attrs, buf, len); 2928 } 2929 } 2930 2931 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2932 uint8_t c, hwaddr len, MemTxAttrs attrs) 2933 { 2934 #define FILLBUF_SIZE 512 2935 uint8_t fillbuf[FILLBUF_SIZE]; 2936 int l; 2937 MemTxResult error = MEMTX_OK; 2938 2939 memset(fillbuf, c, FILLBUF_SIZE); 2940 while (len > 0) { 2941 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2942 error |= address_space_write(as, addr, attrs, fillbuf, l); 2943 len -= l; 2944 addr += l; 2945 } 2946 2947 return error; 2948 } 2949 2950 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2951 hwaddr len, bool is_write) 2952 { 2953 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2954 buf, len, is_write); 2955 } 2956 2957 enum write_rom_type { 2958 WRITE_DATA, 2959 FLUSH_CACHE, 2960 }; 2961 2962 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2963 hwaddr addr, 2964 MemTxAttrs attrs, 2965 const void *ptr, 2966 hwaddr len, 2967 enum write_rom_type type) 2968 { 2969 hwaddr l; 2970 uint8_t *ram_ptr; 2971 hwaddr addr1; 2972 MemoryRegion *mr; 2973 const uint8_t *buf = ptr; 2974 2975 RCU_READ_LOCK_GUARD(); 2976 while (len > 0) { 2977 l = len; 2978 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2979 2980 if (!(memory_region_is_ram(mr) || 2981 memory_region_is_romd(mr))) { 2982 l = memory_access_size(mr, l, addr1); 2983 } else { 2984 /* ROM/RAM case */ 2985 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2986 switch (type) { 2987 case WRITE_DATA: 2988 memcpy(ram_ptr, buf, l); 2989 invalidate_and_set_dirty(mr, addr1, l); 2990 break; 2991 case FLUSH_CACHE: 2992 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2993 break; 2994 } 2995 } 2996 len -= l; 2997 buf += l; 2998 addr += l; 2999 } 3000 return MEMTX_OK; 3001 } 3002 3003 /* used for ROM loading : can write in RAM and ROM */ 3004 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3005 MemTxAttrs attrs, 3006 const void *buf, hwaddr len) 3007 { 3008 return address_space_write_rom_internal(as, addr, attrs, 3009 buf, len, WRITE_DATA); 3010 } 3011 3012 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3013 { 3014 /* 3015 * This function should do the same thing as an icache flush that was 3016 * triggered from within the guest. For TCG we are always cache coherent, 3017 * so there is no need to flush anything. For KVM / Xen we need to flush 3018 * the host's instruction cache at least. 3019 */ 3020 if (tcg_enabled()) { 3021 return; 3022 } 3023 3024 address_space_write_rom_internal(&address_space_memory, 3025 start, MEMTXATTRS_UNSPECIFIED, 3026 NULL, len, FLUSH_CACHE); 3027 } 3028 3029 typedef struct { 3030 MemoryRegion *mr; 3031 void *buffer; 3032 hwaddr addr; 3033 hwaddr len; 3034 bool in_use; 3035 } BounceBuffer; 3036 3037 static BounceBuffer bounce; 3038 3039 typedef struct MapClient { 3040 QEMUBH *bh; 3041 QLIST_ENTRY(MapClient) link; 3042 } MapClient; 3043 3044 QemuMutex map_client_list_lock; 3045 static QLIST_HEAD(, MapClient) map_client_list 3046 = QLIST_HEAD_INITIALIZER(map_client_list); 3047 3048 static void cpu_unregister_map_client_do(MapClient *client) 3049 { 3050 QLIST_REMOVE(client, link); 3051 g_free(client); 3052 } 3053 3054 static void cpu_notify_map_clients_locked(void) 3055 { 3056 MapClient *client; 3057 3058 while (!QLIST_EMPTY(&map_client_list)) { 3059 client = QLIST_FIRST(&map_client_list); 3060 qemu_bh_schedule(client->bh); 3061 cpu_unregister_map_client_do(client); 3062 } 3063 } 3064 3065 void cpu_register_map_client(QEMUBH *bh) 3066 { 3067 MapClient *client = g_malloc(sizeof(*client)); 3068 3069 qemu_mutex_lock(&map_client_list_lock); 3070 client->bh = bh; 3071 QLIST_INSERT_HEAD(&map_client_list, client, link); 3072 if (!qatomic_read(&bounce.in_use)) { 3073 cpu_notify_map_clients_locked(); 3074 } 3075 qemu_mutex_unlock(&map_client_list_lock); 3076 } 3077 3078 void cpu_exec_init_all(void) 3079 { 3080 qemu_mutex_init(&ram_list.mutex); 3081 /* The data structures we set up here depend on knowing the page size, 3082 * so no more changes can be made after this point. 3083 * In an ideal world, nothing we did before we had finished the 3084 * machine setup would care about the target page size, and we could 3085 * do this much later, rather than requiring board models to state 3086 * up front what their requirements are. 3087 */ 3088 finalize_target_page_bits(); 3089 io_mem_init(); 3090 memory_map_init(); 3091 qemu_mutex_init(&map_client_list_lock); 3092 } 3093 3094 void cpu_unregister_map_client(QEMUBH *bh) 3095 { 3096 MapClient *client; 3097 3098 qemu_mutex_lock(&map_client_list_lock); 3099 QLIST_FOREACH(client, &map_client_list, link) { 3100 if (client->bh == bh) { 3101 cpu_unregister_map_client_do(client); 3102 break; 3103 } 3104 } 3105 qemu_mutex_unlock(&map_client_list_lock); 3106 } 3107 3108 static void cpu_notify_map_clients(void) 3109 { 3110 qemu_mutex_lock(&map_client_list_lock); 3111 cpu_notify_map_clients_locked(); 3112 qemu_mutex_unlock(&map_client_list_lock); 3113 } 3114 3115 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3116 bool is_write, MemTxAttrs attrs) 3117 { 3118 MemoryRegion *mr; 3119 hwaddr l, xlat; 3120 3121 while (len > 0) { 3122 l = len; 3123 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3124 if (!memory_access_is_direct(mr, is_write)) { 3125 l = memory_access_size(mr, l, addr); 3126 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3127 return false; 3128 } 3129 } 3130 3131 len -= l; 3132 addr += l; 3133 } 3134 return true; 3135 } 3136 3137 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3138 hwaddr len, bool is_write, 3139 MemTxAttrs attrs) 3140 { 3141 FlatView *fv; 3142 bool result; 3143 3144 RCU_READ_LOCK_GUARD(); 3145 fv = address_space_to_flatview(as); 3146 result = flatview_access_valid(fv, addr, len, is_write, attrs); 3147 return result; 3148 } 3149 3150 static hwaddr 3151 flatview_extend_translation(FlatView *fv, hwaddr addr, 3152 hwaddr target_len, 3153 MemoryRegion *mr, hwaddr base, hwaddr len, 3154 bool is_write, MemTxAttrs attrs) 3155 { 3156 hwaddr done = 0; 3157 hwaddr xlat; 3158 MemoryRegion *this_mr; 3159 3160 for (;;) { 3161 target_len -= len; 3162 addr += len; 3163 done += len; 3164 if (target_len == 0) { 3165 return done; 3166 } 3167 3168 len = target_len; 3169 this_mr = flatview_translate(fv, addr, &xlat, 3170 &len, is_write, attrs); 3171 if (this_mr != mr || xlat != base + done) { 3172 return done; 3173 } 3174 } 3175 } 3176 3177 /* Map a physical memory region into a host virtual address. 3178 * May map a subset of the requested range, given by and returned in *plen. 3179 * May return NULL if resources needed to perform the mapping are exhausted. 3180 * Use only for reads OR writes - not for read-modify-write operations. 3181 * Use cpu_register_map_client() to know when retrying the map operation is 3182 * likely to succeed. 3183 */ 3184 void *address_space_map(AddressSpace *as, 3185 hwaddr addr, 3186 hwaddr *plen, 3187 bool is_write, 3188 MemTxAttrs attrs) 3189 { 3190 hwaddr len = *plen; 3191 hwaddr l, xlat; 3192 MemoryRegion *mr; 3193 void *ptr; 3194 FlatView *fv; 3195 3196 if (len == 0) { 3197 return NULL; 3198 } 3199 3200 l = len; 3201 RCU_READ_LOCK_GUARD(); 3202 fv = address_space_to_flatview(as); 3203 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3204 3205 if (!memory_access_is_direct(mr, is_write)) { 3206 if (qatomic_xchg(&bounce.in_use, true)) { 3207 *plen = 0; 3208 return NULL; 3209 } 3210 /* Avoid unbounded allocations */ 3211 l = MIN(l, TARGET_PAGE_SIZE); 3212 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3213 bounce.addr = addr; 3214 bounce.len = l; 3215 3216 memory_region_ref(mr); 3217 bounce.mr = mr; 3218 if (!is_write) { 3219 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3220 bounce.buffer, l); 3221 } 3222 3223 *plen = l; 3224 return bounce.buffer; 3225 } 3226 3227 3228 memory_region_ref(mr); 3229 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3230 l, is_write, attrs); 3231 fuzz_dma_read_cb(addr, *plen, mr); 3232 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3233 3234 return ptr; 3235 } 3236 3237 /* Unmaps a memory region previously mapped by address_space_map(). 3238 * Will also mark the memory as dirty if is_write is true. access_len gives 3239 * the amount of memory that was actually read or written by the caller. 3240 */ 3241 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3242 bool is_write, hwaddr access_len) 3243 { 3244 if (buffer != bounce.buffer) { 3245 MemoryRegion *mr; 3246 ram_addr_t addr1; 3247 3248 mr = memory_region_from_host(buffer, &addr1); 3249 assert(mr != NULL); 3250 if (is_write) { 3251 invalidate_and_set_dirty(mr, addr1, access_len); 3252 } 3253 if (xen_enabled()) { 3254 xen_invalidate_map_cache_entry(buffer); 3255 } 3256 memory_region_unref(mr); 3257 return; 3258 } 3259 if (is_write) { 3260 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3261 bounce.buffer, access_len); 3262 } 3263 qemu_vfree(bounce.buffer); 3264 bounce.buffer = NULL; 3265 memory_region_unref(bounce.mr); 3266 qatomic_mb_set(&bounce.in_use, false); 3267 cpu_notify_map_clients(); 3268 } 3269 3270 void *cpu_physical_memory_map(hwaddr addr, 3271 hwaddr *plen, 3272 bool is_write) 3273 { 3274 return address_space_map(&address_space_memory, addr, plen, is_write, 3275 MEMTXATTRS_UNSPECIFIED); 3276 } 3277 3278 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3279 bool is_write, hwaddr access_len) 3280 { 3281 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3282 } 3283 3284 #define ARG1_DECL AddressSpace *as 3285 #define ARG1 as 3286 #define SUFFIX 3287 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3288 #define RCU_READ_LOCK(...) rcu_read_lock() 3289 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3290 #include "memory_ldst.c.inc" 3291 3292 int64_t address_space_cache_init(MemoryRegionCache *cache, 3293 AddressSpace *as, 3294 hwaddr addr, 3295 hwaddr len, 3296 bool is_write) 3297 { 3298 AddressSpaceDispatch *d; 3299 hwaddr l; 3300 MemoryRegion *mr; 3301 Int128 diff; 3302 3303 assert(len > 0); 3304 3305 l = len; 3306 cache->fv = address_space_get_flatview(as); 3307 d = flatview_to_dispatch(cache->fv); 3308 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3309 3310 /* 3311 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3312 * Take that into account to compute how many bytes are there between 3313 * cache->xlat and the end of the section. 3314 */ 3315 diff = int128_sub(cache->mrs.size, 3316 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3317 l = int128_get64(int128_min(diff, int128_make64(l))); 3318 3319 mr = cache->mrs.mr; 3320 memory_region_ref(mr); 3321 if (memory_access_is_direct(mr, is_write)) { 3322 /* We don't care about the memory attributes here as we're only 3323 * doing this if we found actual RAM, which behaves the same 3324 * regardless of attributes; so UNSPECIFIED is fine. 3325 */ 3326 l = flatview_extend_translation(cache->fv, addr, len, mr, 3327 cache->xlat, l, is_write, 3328 MEMTXATTRS_UNSPECIFIED); 3329 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3330 } else { 3331 cache->ptr = NULL; 3332 } 3333 3334 cache->len = l; 3335 cache->is_write = is_write; 3336 return l; 3337 } 3338 3339 void address_space_cache_invalidate(MemoryRegionCache *cache, 3340 hwaddr addr, 3341 hwaddr access_len) 3342 { 3343 assert(cache->is_write); 3344 if (likely(cache->ptr)) { 3345 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3346 } 3347 } 3348 3349 void address_space_cache_destroy(MemoryRegionCache *cache) 3350 { 3351 if (!cache->mrs.mr) { 3352 return; 3353 } 3354 3355 if (xen_enabled()) { 3356 xen_invalidate_map_cache_entry(cache->ptr); 3357 } 3358 memory_region_unref(cache->mrs.mr); 3359 flatview_unref(cache->fv); 3360 cache->mrs.mr = NULL; 3361 cache->fv = NULL; 3362 } 3363 3364 /* Called from RCU critical section. This function has the same 3365 * semantics as address_space_translate, but it only works on a 3366 * predefined range of a MemoryRegion that was mapped with 3367 * address_space_cache_init. 3368 */ 3369 static inline MemoryRegion *address_space_translate_cached( 3370 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3371 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3372 { 3373 MemoryRegionSection section; 3374 MemoryRegion *mr; 3375 IOMMUMemoryRegion *iommu_mr; 3376 AddressSpace *target_as; 3377 3378 assert(!cache->ptr); 3379 *xlat = addr + cache->xlat; 3380 3381 mr = cache->mrs.mr; 3382 iommu_mr = memory_region_get_iommu(mr); 3383 if (!iommu_mr) { 3384 /* MMIO region. */ 3385 return mr; 3386 } 3387 3388 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3389 NULL, is_write, true, 3390 &target_as, attrs); 3391 return section.mr; 3392 } 3393 3394 /* Called from RCU critical section. address_space_read_cached uses this 3395 * out of line function when the target is an MMIO or IOMMU region. 3396 */ 3397 MemTxResult 3398 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3399 void *buf, hwaddr len) 3400 { 3401 hwaddr addr1, l; 3402 MemoryRegion *mr; 3403 3404 l = len; 3405 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3406 MEMTXATTRS_UNSPECIFIED); 3407 return flatview_read_continue(cache->fv, 3408 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3409 addr1, l, mr); 3410 } 3411 3412 /* Called from RCU critical section. address_space_write_cached uses this 3413 * out of line function when the target is an MMIO or IOMMU region. 3414 */ 3415 MemTxResult 3416 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3417 const void *buf, hwaddr len) 3418 { 3419 hwaddr addr1, l; 3420 MemoryRegion *mr; 3421 3422 l = len; 3423 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3424 MEMTXATTRS_UNSPECIFIED); 3425 return flatview_write_continue(cache->fv, 3426 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3427 addr1, l, mr); 3428 } 3429 3430 #define ARG1_DECL MemoryRegionCache *cache 3431 #define ARG1 cache 3432 #define SUFFIX _cached_slow 3433 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3434 #define RCU_READ_LOCK() ((void)0) 3435 #define RCU_READ_UNLOCK() ((void)0) 3436 #include "memory_ldst.c.inc" 3437 3438 /* virtual memory access for debug (includes writing to ROM) */ 3439 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3440 void *ptr, size_t len, bool is_write) 3441 { 3442 hwaddr phys_addr; 3443 vaddr l, page; 3444 uint8_t *buf = ptr; 3445 3446 cpu_synchronize_state(cpu); 3447 while (len > 0) { 3448 int asidx; 3449 MemTxAttrs attrs; 3450 MemTxResult res; 3451 3452 page = addr & TARGET_PAGE_MASK; 3453 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3454 asidx = cpu_asidx_from_attrs(cpu, attrs); 3455 /* if no physical page mapped, return an error */ 3456 if (phys_addr == -1) 3457 return -1; 3458 l = (page + TARGET_PAGE_SIZE) - addr; 3459 if (l > len) 3460 l = len; 3461 phys_addr += (addr & ~TARGET_PAGE_MASK); 3462 if (is_write) { 3463 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3464 attrs, buf, l); 3465 } else { 3466 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3467 attrs, buf, l); 3468 } 3469 if (res != MEMTX_OK) { 3470 return -1; 3471 } 3472 len -= l; 3473 buf += l; 3474 addr += l; 3475 } 3476 return 0; 3477 } 3478 3479 /* 3480 * Allows code that needs to deal with migration bitmaps etc to still be built 3481 * target independent. 3482 */ 3483 size_t qemu_target_page_size(void) 3484 { 3485 return TARGET_PAGE_SIZE; 3486 } 3487 3488 int qemu_target_page_bits(void) 3489 { 3490 return TARGET_PAGE_BITS; 3491 } 3492 3493 int qemu_target_page_bits_min(void) 3494 { 3495 return TARGET_PAGE_BITS_MIN; 3496 } 3497 3498 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3499 { 3500 MemoryRegion*mr; 3501 hwaddr l = 1; 3502 bool res; 3503 3504 RCU_READ_LOCK_GUARD(); 3505 mr = address_space_translate(&address_space_memory, 3506 phys_addr, &phys_addr, &l, false, 3507 MEMTXATTRS_UNSPECIFIED); 3508 3509 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3510 return res; 3511 } 3512 3513 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3514 { 3515 RAMBlock *block; 3516 int ret = 0; 3517 3518 RCU_READ_LOCK_GUARD(); 3519 RAMBLOCK_FOREACH(block) { 3520 ret = func(block, opaque); 3521 if (ret) { 3522 break; 3523 } 3524 } 3525 return ret; 3526 } 3527 3528 /* 3529 * Unmap pages of memory from start to start+length such that 3530 * they a) read as 0, b) Trigger whatever fault mechanism 3531 * the OS provides for postcopy. 3532 * The pages must be unmapped by the end of the function. 3533 * Returns: 0 on success, none-0 on failure 3534 * 3535 */ 3536 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3537 { 3538 int ret = -1; 3539 3540 uint8_t *host_startaddr = rb->host + start; 3541 3542 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3543 error_report("ram_block_discard_range: Unaligned start address: %p", 3544 host_startaddr); 3545 goto err; 3546 } 3547 3548 if ((start + length) <= rb->max_length) { 3549 bool need_madvise, need_fallocate; 3550 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3551 error_report("ram_block_discard_range: Unaligned length: %zx", 3552 length); 3553 goto err; 3554 } 3555 3556 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3557 3558 /* The logic here is messy; 3559 * madvise DONTNEED fails for hugepages 3560 * fallocate works on hugepages and shmem 3561 * shared anonymous memory requires madvise REMOVE 3562 */ 3563 need_madvise = (rb->page_size == qemu_host_page_size); 3564 need_fallocate = rb->fd != -1; 3565 if (need_fallocate) { 3566 /* For a file, this causes the area of the file to be zero'd 3567 * if read, and for hugetlbfs also causes it to be unmapped 3568 * so a userfault will trigger. 3569 */ 3570 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3571 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3572 start, length); 3573 if (ret) { 3574 ret = -errno; 3575 error_report("ram_block_discard_range: Failed to fallocate " 3576 "%s:%" PRIx64 " +%zx (%d)", 3577 rb->idstr, start, length, ret); 3578 goto err; 3579 } 3580 #else 3581 ret = -ENOSYS; 3582 error_report("ram_block_discard_range: fallocate not available/file" 3583 "%s:%" PRIx64 " +%zx (%d)", 3584 rb->idstr, start, length, ret); 3585 goto err; 3586 #endif 3587 } 3588 if (need_madvise) { 3589 /* For normal RAM this causes it to be unmapped, 3590 * for shared memory it causes the local mapping to disappear 3591 * and to fall back on the file contents (which we just 3592 * fallocate'd away). 3593 */ 3594 #if defined(CONFIG_MADVISE) 3595 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3596 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3597 } else { 3598 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3599 } 3600 if (ret) { 3601 ret = -errno; 3602 error_report("ram_block_discard_range: Failed to discard range " 3603 "%s:%" PRIx64 " +%zx (%d)", 3604 rb->idstr, start, length, ret); 3605 goto err; 3606 } 3607 #else 3608 ret = -ENOSYS; 3609 error_report("ram_block_discard_range: MADVISE not available" 3610 "%s:%" PRIx64 " +%zx (%d)", 3611 rb->idstr, start, length, ret); 3612 goto err; 3613 #endif 3614 } 3615 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3616 need_madvise, need_fallocate, ret); 3617 } else { 3618 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3619 "/%zx/" RAM_ADDR_FMT")", 3620 rb->idstr, start, length, rb->max_length); 3621 } 3622 3623 err: 3624 return ret; 3625 } 3626 3627 bool ramblock_is_pmem(RAMBlock *rb) 3628 { 3629 return rb->flags & RAM_PMEM; 3630 } 3631 3632 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3633 { 3634 if (start == end - 1) { 3635 qemu_printf("\t%3d ", start); 3636 } else { 3637 qemu_printf("\t%3d..%-3d ", start, end - 1); 3638 } 3639 qemu_printf(" skip=%d ", skip); 3640 if (ptr == PHYS_MAP_NODE_NIL) { 3641 qemu_printf(" ptr=NIL"); 3642 } else if (!skip) { 3643 qemu_printf(" ptr=#%d", ptr); 3644 } else { 3645 qemu_printf(" ptr=[%d]", ptr); 3646 } 3647 qemu_printf("\n"); 3648 } 3649 3650 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3651 int128_sub((size), int128_one())) : 0) 3652 3653 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3654 { 3655 int i; 3656 3657 qemu_printf(" Dispatch\n"); 3658 qemu_printf(" Physical sections\n"); 3659 3660 for (i = 0; i < d->map.sections_nb; ++i) { 3661 MemoryRegionSection *s = d->map.sections + i; 3662 const char *names[] = { " [unassigned]", " [not dirty]", 3663 " [ROM]", " [watch]" }; 3664 3665 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx 3666 " %s%s%s%s%s", 3667 i, 3668 s->offset_within_address_space, 3669 s->offset_within_address_space + MR_SIZE(s->mr->size), 3670 s->mr->name ? s->mr->name : "(noname)", 3671 i < ARRAY_SIZE(names) ? names[i] : "", 3672 s->mr == root ? " [ROOT]" : "", 3673 s == d->mru_section ? " [MRU]" : "", 3674 s->mr->is_iommu ? " [iommu]" : ""); 3675 3676 if (s->mr->alias) { 3677 qemu_printf(" alias=%s", s->mr->alias->name ? 3678 s->mr->alias->name : "noname"); 3679 } 3680 qemu_printf("\n"); 3681 } 3682 3683 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3684 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3685 for (i = 0; i < d->map.nodes_nb; ++i) { 3686 int j, jprev; 3687 PhysPageEntry prev; 3688 Node *n = d->map.nodes + i; 3689 3690 qemu_printf(" [%d]\n", i); 3691 3692 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3693 PhysPageEntry *pe = *n + j; 3694 3695 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3696 continue; 3697 } 3698 3699 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3700 3701 jprev = j; 3702 prev = *pe; 3703 } 3704 3705 if (jprev != ARRAY_SIZE(*n)) { 3706 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3707 } 3708 } 3709 } 3710 3711 /* Require any discards to work. */ 3712 static unsigned int ram_block_discard_required_cnt; 3713 /* Require only coordinated discards to work. */ 3714 static unsigned int ram_block_coordinated_discard_required_cnt; 3715 /* Disable any discards. */ 3716 static unsigned int ram_block_discard_disabled_cnt; 3717 /* Disable only uncoordinated discards. */ 3718 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3719 static QemuMutex ram_block_discard_disable_mutex; 3720 3721 static void ram_block_discard_disable_mutex_lock(void) 3722 { 3723 static gsize initialized; 3724 3725 if (g_once_init_enter(&initialized)) { 3726 qemu_mutex_init(&ram_block_discard_disable_mutex); 3727 g_once_init_leave(&initialized, 1); 3728 } 3729 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3730 } 3731 3732 static void ram_block_discard_disable_mutex_unlock(void) 3733 { 3734 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3735 } 3736 3737 int ram_block_discard_disable(bool state) 3738 { 3739 int ret = 0; 3740 3741 ram_block_discard_disable_mutex_lock(); 3742 if (!state) { 3743 ram_block_discard_disabled_cnt--; 3744 } else if (ram_block_discard_required_cnt || 3745 ram_block_coordinated_discard_required_cnt) { 3746 ret = -EBUSY; 3747 } else { 3748 ram_block_discard_disabled_cnt++; 3749 } 3750 ram_block_discard_disable_mutex_unlock(); 3751 return ret; 3752 } 3753 3754 int ram_block_uncoordinated_discard_disable(bool state) 3755 { 3756 int ret = 0; 3757 3758 ram_block_discard_disable_mutex_lock(); 3759 if (!state) { 3760 ram_block_uncoordinated_discard_disabled_cnt--; 3761 } else if (ram_block_discard_required_cnt) { 3762 ret = -EBUSY; 3763 } else { 3764 ram_block_uncoordinated_discard_disabled_cnt++; 3765 } 3766 ram_block_discard_disable_mutex_unlock(); 3767 return ret; 3768 } 3769 3770 int ram_block_discard_require(bool state) 3771 { 3772 int ret = 0; 3773 3774 ram_block_discard_disable_mutex_lock(); 3775 if (!state) { 3776 ram_block_discard_required_cnt--; 3777 } else if (ram_block_discard_disabled_cnt || 3778 ram_block_uncoordinated_discard_disabled_cnt) { 3779 ret = -EBUSY; 3780 } else { 3781 ram_block_discard_required_cnt++; 3782 } 3783 ram_block_discard_disable_mutex_unlock(); 3784 return ret; 3785 } 3786 3787 int ram_block_coordinated_discard_require(bool state) 3788 { 3789 int ret = 0; 3790 3791 ram_block_discard_disable_mutex_lock(); 3792 if (!state) { 3793 ram_block_coordinated_discard_required_cnt--; 3794 } else if (ram_block_discard_disabled_cnt) { 3795 ret = -EBUSY; 3796 } else { 3797 ram_block_coordinated_discard_required_cnt++; 3798 } 3799 ram_block_discard_disable_mutex_unlock(); 3800 return ret; 3801 } 3802 3803 bool ram_block_discard_is_disabled(void) 3804 { 3805 return qatomic_read(&ram_block_discard_disabled_cnt) || 3806 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3807 } 3808 3809 bool ram_block_discard_is_required(void) 3810 { 3811 return qatomic_read(&ram_block_discard_required_cnt) || 3812 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3813 } 3814