1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "accel/tcg/cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/cputlb.h" 36 #include "exec/page-protection.h" 37 #include "exec/target_page.h" 38 #include "exec/translation-block.h" 39 #include "hw/qdev-core.h" 40 #include "hw/qdev-properties.h" 41 #include "hw/boards.h" 42 #include "system/xen.h" 43 #include "system/kvm.h" 44 #include "system/tcg.h" 45 #include "system/qtest.h" 46 #include "qemu/timer.h" 47 #include "qemu/config-file.h" 48 #include "qemu/error-report.h" 49 #include "qemu/qemu-print.h" 50 #include "qemu/log.h" 51 #include "qemu/memalign.h" 52 #include "qemu/memfd.h" 53 #include "exec/memory.h" 54 #include "exec/ioport.h" 55 #include "system/dma.h" 56 #include "system/hostmem.h" 57 #include "system/hw_accel.h" 58 #include "system/xen-mapcache.h" 59 #include "trace.h" 60 61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 62 #include <linux/falloc.h> 63 #endif 64 65 #include "qemu/rcu_queue.h" 66 #include "qemu/main-loop.h" 67 #include "system/replay.h" 68 69 #include "exec/memory-internal.h" 70 #include "exec/ram_addr.h" 71 72 #include "qemu/pmem.h" 73 74 #include "migration/cpr.h" 75 #include "migration/vmstate.h" 76 77 #include "qemu/range.h" 78 #ifndef _WIN32 79 #include "qemu/mmap-alloc.h" 80 #endif 81 82 #include "monitor/monitor.h" 83 84 #ifdef CONFIG_LIBDAXCTL 85 #include <daxctl/libdaxctl.h> 86 #endif 87 88 //#define DEBUG_SUBPAGE 89 90 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 91 * are protected by the ramlist lock. 92 */ 93 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 94 95 static MemoryRegion *system_memory; 96 static MemoryRegion *system_io; 97 98 AddressSpace address_space_io; 99 AddressSpace address_space_memory; 100 101 static MemoryRegion io_mem_unassigned; 102 103 typedef struct PhysPageEntry PhysPageEntry; 104 105 struct PhysPageEntry { 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 107 uint32_t skip : 6; 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 109 uint32_t ptr : 26; 110 }; 111 112 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 113 114 /* Size of the L2 (and L3, etc) page tables. */ 115 #define ADDR_SPACE_BITS 64 116 117 #define P_L2_BITS 9 118 #define P_L2_SIZE (1 << P_L2_BITS) 119 120 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 121 122 typedef PhysPageEntry Node[P_L2_SIZE]; 123 124 typedef struct PhysPageMap { 125 struct rcu_head rcu; 126 127 unsigned sections_nb; 128 unsigned sections_nb_alloc; 129 unsigned nodes_nb; 130 unsigned nodes_nb_alloc; 131 Node *nodes; 132 MemoryRegionSection *sections; 133 } PhysPageMap; 134 135 struct AddressSpaceDispatch { 136 MemoryRegionSection *mru_section; 137 /* This is a multi-level map on the physical address space. 138 * The bottom level has pointers to MemoryRegionSections. 139 */ 140 PhysPageEntry phys_map; 141 PhysPageMap map; 142 }; 143 144 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 145 typedef struct subpage_t { 146 MemoryRegion iomem; 147 FlatView *fv; 148 hwaddr base; 149 uint16_t sub_section[]; 150 } subpage_t; 151 152 #define PHYS_SECTION_UNASSIGNED 0 153 154 static void io_mem_init(void); 155 static void memory_map_init(void); 156 static void tcg_log_global_after_sync(MemoryListener *listener); 157 static void tcg_commit(MemoryListener *listener); 158 159 /** 160 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 161 * @cpu: the CPU whose AddressSpace this is 162 * @as: the AddressSpace itself 163 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 164 * @tcg_as_listener: listener for tracking changes to the AddressSpace 165 */ 166 typedef struct CPUAddressSpace { 167 CPUState *cpu; 168 AddressSpace *as; 169 struct AddressSpaceDispatch *memory_dispatch; 170 MemoryListener tcg_as_listener; 171 } CPUAddressSpace; 172 173 struct DirtyBitmapSnapshot { 174 ram_addr_t start; 175 ram_addr_t end; 176 unsigned long dirty[]; 177 }; 178 179 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 180 { 181 static unsigned alloc_hint = 16; 182 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 183 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 184 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 185 alloc_hint = map->nodes_nb_alloc; 186 } 187 } 188 189 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 190 { 191 unsigned i; 192 uint32_t ret; 193 PhysPageEntry e; 194 PhysPageEntry *p; 195 196 ret = map->nodes_nb++; 197 p = map->nodes[ret]; 198 assert(ret != PHYS_MAP_NODE_NIL); 199 assert(ret != map->nodes_nb_alloc); 200 201 e.skip = leaf ? 0 : 1; 202 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 203 for (i = 0; i < P_L2_SIZE; ++i) { 204 memcpy(&p[i], &e, sizeof(e)); 205 } 206 return ret; 207 } 208 209 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 210 hwaddr *index, uint64_t *nb, uint16_t leaf, 211 int level) 212 { 213 PhysPageEntry *p; 214 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 215 216 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 217 lp->ptr = phys_map_node_alloc(map, level == 0); 218 } 219 p = map->nodes[lp->ptr]; 220 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 221 222 while (*nb && lp < &p[P_L2_SIZE]) { 223 if ((*index & (step - 1)) == 0 && *nb >= step) { 224 lp->skip = 0; 225 lp->ptr = leaf; 226 *index += step; 227 *nb -= step; 228 } else { 229 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 230 } 231 ++lp; 232 } 233 } 234 235 static void phys_page_set(AddressSpaceDispatch *d, 236 hwaddr index, uint64_t nb, 237 uint16_t leaf) 238 { 239 /* Wildly overreserve - it doesn't matter much. */ 240 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 241 242 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 243 } 244 245 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 246 * and update our entry so we can skip it and go directly to the destination. 247 */ 248 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 249 { 250 unsigned valid_ptr = P_L2_SIZE; 251 int valid = 0; 252 PhysPageEntry *p; 253 int i; 254 255 if (lp->ptr == PHYS_MAP_NODE_NIL) { 256 return; 257 } 258 259 p = nodes[lp->ptr]; 260 for (i = 0; i < P_L2_SIZE; i++) { 261 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 262 continue; 263 } 264 265 valid_ptr = i; 266 valid++; 267 if (p[i].skip) { 268 phys_page_compact(&p[i], nodes); 269 } 270 } 271 272 /* We can only compress if there's only one child. */ 273 if (valid != 1) { 274 return; 275 } 276 277 assert(valid_ptr < P_L2_SIZE); 278 279 /* Don't compress if it won't fit in the # of bits we have. */ 280 if (P_L2_LEVELS >= (1 << 6) && 281 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 282 return; 283 } 284 285 lp->ptr = p[valid_ptr].ptr; 286 if (!p[valid_ptr].skip) { 287 /* If our only child is a leaf, make this a leaf. */ 288 /* By design, we should have made this node a leaf to begin with so we 289 * should never reach here. 290 * But since it's so simple to handle this, let's do it just in case we 291 * change this rule. 292 */ 293 lp->skip = 0; 294 } else { 295 lp->skip += p[valid_ptr].skip; 296 } 297 } 298 299 void address_space_dispatch_compact(AddressSpaceDispatch *d) 300 { 301 if (d->phys_map.skip) { 302 phys_page_compact(&d->phys_map, d->map.nodes); 303 } 304 } 305 306 static inline bool section_covers_addr(const MemoryRegionSection *section, 307 hwaddr addr) 308 { 309 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 310 * the section must cover the entire address space. 311 */ 312 return int128_gethi(section->size) || 313 range_covers_byte(section->offset_within_address_space, 314 int128_getlo(section->size), addr); 315 } 316 317 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 318 { 319 PhysPageEntry lp = d->phys_map, *p; 320 Node *nodes = d->map.nodes; 321 MemoryRegionSection *sections = d->map.sections; 322 hwaddr index = addr >> TARGET_PAGE_BITS; 323 int i; 324 325 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 326 if (lp.ptr == PHYS_MAP_NODE_NIL) { 327 return §ions[PHYS_SECTION_UNASSIGNED]; 328 } 329 p = nodes[lp.ptr]; 330 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 331 } 332 333 if (section_covers_addr(§ions[lp.ptr], addr)) { 334 return §ions[lp.ptr]; 335 } else { 336 return §ions[PHYS_SECTION_UNASSIGNED]; 337 } 338 } 339 340 /* Called from RCU critical section */ 341 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 342 hwaddr addr, 343 bool resolve_subpage) 344 { 345 MemoryRegionSection *section = qatomic_read(&d->mru_section); 346 subpage_t *subpage; 347 348 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 349 !section_covers_addr(section, addr)) { 350 section = phys_page_find(d, addr); 351 qatomic_set(&d->mru_section, section); 352 } 353 if (resolve_subpage && section->mr->subpage) { 354 subpage = container_of(section->mr, subpage_t, iomem); 355 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 356 } 357 return section; 358 } 359 360 /* Called from RCU critical section */ 361 static MemoryRegionSection * 362 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 363 hwaddr *plen, bool resolve_subpage) 364 { 365 MemoryRegionSection *section; 366 MemoryRegion *mr; 367 Int128 diff; 368 369 section = address_space_lookup_region(d, addr, resolve_subpage); 370 /* Compute offset within MemoryRegionSection */ 371 addr -= section->offset_within_address_space; 372 373 /* Compute offset within MemoryRegion */ 374 *xlat = addr + section->offset_within_region; 375 376 mr = section->mr; 377 378 /* MMIO registers can be expected to perform full-width accesses based only 379 * on their address, without considering adjacent registers that could 380 * decode to completely different MemoryRegions. When such registers 381 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 382 * regions overlap wildly. For this reason we cannot clamp the accesses 383 * here. 384 * 385 * If the length is small (as is the case for address_space_ldl/stl), 386 * everything works fine. If the incoming length is large, however, 387 * the caller really has to do the clamping through memory_access_size. 388 */ 389 if (memory_region_is_ram(mr)) { 390 diff = int128_sub(section->size, int128_make64(addr)); 391 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 392 } 393 return section; 394 } 395 396 /** 397 * address_space_translate_iommu - translate an address through an IOMMU 398 * memory region and then through the target address space. 399 * 400 * @iommu_mr: the IOMMU memory region that we start the translation from 401 * @addr: the address to be translated through the MMU 402 * @xlat: the translated address offset within the destination memory region. 403 * It cannot be %NULL. 404 * @plen_out: valid read/write length of the translated address. It 405 * cannot be %NULL. 406 * @page_mask_out: page mask for the translated address. This 407 * should only be meaningful for IOMMU translated 408 * addresses, since there may be huge pages that this bit 409 * would tell. It can be %NULL if we don't care about it. 410 * @is_write: whether the translation operation is for write 411 * @is_mmio: whether this can be MMIO, set true if it can 412 * @target_as: the address space targeted by the IOMMU 413 * @attrs: transaction attributes 414 * 415 * This function is called from RCU critical section. It is the common 416 * part of flatview_do_translate and address_space_translate_cached. 417 */ 418 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 419 hwaddr *xlat, 420 hwaddr *plen_out, 421 hwaddr *page_mask_out, 422 bool is_write, 423 bool is_mmio, 424 AddressSpace **target_as, 425 MemTxAttrs attrs) 426 { 427 MemoryRegionSection *section; 428 hwaddr page_mask = (hwaddr)-1; 429 430 do { 431 hwaddr addr = *xlat; 432 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 433 int iommu_idx = 0; 434 IOMMUTLBEntry iotlb; 435 436 if (imrc->attrs_to_index) { 437 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 438 } 439 440 iotlb = imrc->translate(iommu_mr, addr, is_write ? 441 IOMMU_WO : IOMMU_RO, iommu_idx); 442 443 if (!(iotlb.perm & (1 << is_write))) { 444 goto unassigned; 445 } 446 447 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 448 | (addr & iotlb.addr_mask)); 449 page_mask &= iotlb.addr_mask; 450 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 451 *target_as = iotlb.target_as; 452 453 section = address_space_translate_internal( 454 address_space_to_dispatch(iotlb.target_as), addr, xlat, 455 plen_out, is_mmio); 456 457 iommu_mr = memory_region_get_iommu(section->mr); 458 } while (unlikely(iommu_mr)); 459 460 if (page_mask_out) { 461 *page_mask_out = page_mask; 462 } 463 return *section; 464 465 unassigned: 466 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 467 } 468 469 /** 470 * flatview_do_translate - translate an address in FlatView 471 * 472 * @fv: the flat view that we want to translate on 473 * @addr: the address to be translated in above address space 474 * @xlat: the translated address offset within memory region. It 475 * cannot be @NULL. 476 * @plen_out: valid read/write length of the translated address. It 477 * can be @NULL when we don't care about it. 478 * @page_mask_out: page mask for the translated address. This 479 * should only be meaningful for IOMMU translated 480 * addresses, since there may be huge pages that this bit 481 * would tell. It can be @NULL if we don't care about it. 482 * @is_write: whether the translation operation is for write 483 * @is_mmio: whether this can be MMIO, set true if it can 484 * @target_as: the address space targeted by the IOMMU 485 * @attrs: memory transaction attributes 486 * 487 * This function is called from RCU critical section 488 */ 489 static MemoryRegionSection flatview_do_translate(FlatView *fv, 490 hwaddr addr, 491 hwaddr *xlat, 492 hwaddr *plen_out, 493 hwaddr *page_mask_out, 494 bool is_write, 495 bool is_mmio, 496 AddressSpace **target_as, 497 MemTxAttrs attrs) 498 { 499 MemoryRegionSection *section; 500 IOMMUMemoryRegion *iommu_mr; 501 hwaddr plen = (hwaddr)(-1); 502 503 if (!plen_out) { 504 plen_out = &plen; 505 } 506 507 section = address_space_translate_internal( 508 flatview_to_dispatch(fv), addr, xlat, 509 plen_out, is_mmio); 510 511 iommu_mr = memory_region_get_iommu(section->mr); 512 if (unlikely(iommu_mr)) { 513 return address_space_translate_iommu(iommu_mr, xlat, 514 plen_out, page_mask_out, 515 is_write, is_mmio, 516 target_as, attrs); 517 } 518 if (page_mask_out) { 519 /* Not behind an IOMMU, use default page size. */ 520 *page_mask_out = ~TARGET_PAGE_MASK; 521 } 522 523 return *section; 524 } 525 526 /* Called from RCU critical section */ 527 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 528 bool is_write, MemTxAttrs attrs) 529 { 530 MemoryRegionSection section; 531 hwaddr xlat, page_mask; 532 533 /* 534 * This can never be MMIO, and we don't really care about plen, 535 * but page mask. 536 */ 537 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 538 NULL, &page_mask, is_write, false, &as, 539 attrs); 540 541 /* Illegal translation */ 542 if (section.mr == &io_mem_unassigned) { 543 goto iotlb_fail; 544 } 545 546 /* Convert memory region offset into address space offset */ 547 xlat += section.offset_within_address_space - 548 section.offset_within_region; 549 550 return (IOMMUTLBEntry) { 551 .target_as = as, 552 .iova = addr & ~page_mask, 553 .translated_addr = xlat & ~page_mask, 554 .addr_mask = page_mask, 555 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 556 .perm = IOMMU_RW, 557 }; 558 559 iotlb_fail: 560 return (IOMMUTLBEntry) {0}; 561 } 562 563 /* Called from RCU critical section */ 564 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 565 hwaddr *plen, bool is_write, 566 MemTxAttrs attrs) 567 { 568 MemoryRegion *mr; 569 MemoryRegionSection section; 570 AddressSpace *as = NULL; 571 572 /* This can be MMIO, so setup MMIO bit. */ 573 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 574 is_write, true, &as, attrs); 575 mr = section.mr; 576 577 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) { 578 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 579 *plen = MIN(page, *plen); 580 } 581 582 return mr; 583 } 584 585 typedef struct TCGIOMMUNotifier { 586 IOMMUNotifier n; 587 MemoryRegion *mr; 588 CPUState *cpu; 589 int iommu_idx; 590 bool active; 591 } TCGIOMMUNotifier; 592 593 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 594 { 595 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 596 597 if (!notifier->active) { 598 return; 599 } 600 tlb_flush(notifier->cpu); 601 notifier->active = false; 602 /* We leave the notifier struct on the list to avoid reallocating it later. 603 * Generally the number of IOMMUs a CPU deals with will be small. 604 * In any case we can't unregister the iommu notifier from a notify 605 * callback. 606 */ 607 } 608 609 static void tcg_register_iommu_notifier(CPUState *cpu, 610 IOMMUMemoryRegion *iommu_mr, 611 int iommu_idx) 612 { 613 /* Make sure this CPU has an IOMMU notifier registered for this 614 * IOMMU/IOMMU index combination, so that we can flush its TLB 615 * when the IOMMU tells us the mappings we've cached have changed. 616 */ 617 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 618 TCGIOMMUNotifier *notifier = NULL; 619 int i; 620 621 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 622 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 623 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 624 break; 625 } 626 } 627 if (i == cpu->iommu_notifiers->len) { 628 /* Not found, add a new entry at the end of the array */ 629 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 630 notifier = g_new0(TCGIOMMUNotifier, 1); 631 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 632 633 notifier->mr = mr; 634 notifier->iommu_idx = iommu_idx; 635 notifier->cpu = cpu; 636 /* Rather than trying to register interest in the specific part 637 * of the iommu's address space that we've accessed and then 638 * expand it later as subsequent accesses touch more of it, we 639 * just register interest in the whole thing, on the assumption 640 * that iommu reconfiguration will be rare. 641 */ 642 iommu_notifier_init(¬ifier->n, 643 tcg_iommu_unmap_notify, 644 IOMMU_NOTIFIER_UNMAP, 645 0, 646 HWADDR_MAX, 647 iommu_idx); 648 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 649 &error_fatal); 650 } 651 652 if (!notifier->active) { 653 notifier->active = true; 654 } 655 } 656 657 void tcg_iommu_free_notifier_list(CPUState *cpu) 658 { 659 /* Destroy the CPU's notifier list */ 660 int i; 661 TCGIOMMUNotifier *notifier; 662 663 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 664 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 665 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 666 g_free(notifier); 667 } 668 g_array_free(cpu->iommu_notifiers, true); 669 } 670 671 void tcg_iommu_init_notifier_list(CPUState *cpu) 672 { 673 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 674 } 675 676 /* Called from RCU critical section */ 677 MemoryRegionSection * 678 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 679 hwaddr *xlat, hwaddr *plen, 680 MemTxAttrs attrs, int *prot) 681 { 682 MemoryRegionSection *section; 683 IOMMUMemoryRegion *iommu_mr; 684 IOMMUMemoryRegionClass *imrc; 685 IOMMUTLBEntry iotlb; 686 int iommu_idx; 687 hwaddr addr = orig_addr; 688 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 689 690 for (;;) { 691 section = address_space_translate_internal(d, addr, &addr, plen, false); 692 693 iommu_mr = memory_region_get_iommu(section->mr); 694 if (!iommu_mr) { 695 break; 696 } 697 698 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 699 700 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 701 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 702 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 703 * doesn't short-cut its translation table walk. 704 */ 705 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 706 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 707 | (addr & iotlb.addr_mask)); 708 /* Update the caller's prot bits to remove permissions the IOMMU 709 * is giving us a failure response for. If we get down to no 710 * permissions left at all we can give up now. 711 */ 712 if (!(iotlb.perm & IOMMU_RO)) { 713 *prot &= ~(PAGE_READ | PAGE_EXEC); 714 } 715 if (!(iotlb.perm & IOMMU_WO)) { 716 *prot &= ~PAGE_WRITE; 717 } 718 719 if (!*prot) { 720 goto translate_fail; 721 } 722 723 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 724 } 725 726 assert(!memory_region_is_iommu(section->mr)); 727 *xlat = addr; 728 return section; 729 730 translate_fail: 731 /* 732 * We should be given a page-aligned address -- certainly 733 * tlb_set_page_with_attrs() does so. The page offset of xlat 734 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 735 * The page portion of xlat will be logged by memory_region_access_valid() 736 * when this memory access is rejected, so use the original untranslated 737 * physical address. 738 */ 739 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 740 *xlat = orig_addr; 741 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 742 } 743 744 void cpu_address_space_init(CPUState *cpu, int asidx, 745 const char *prefix, MemoryRegion *mr) 746 { 747 CPUAddressSpace *newas; 748 AddressSpace *as = g_new0(AddressSpace, 1); 749 char *as_name; 750 751 assert(mr); 752 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 753 address_space_init(as, mr, as_name); 754 g_free(as_name); 755 756 /* Target code should have set num_ases before calling us */ 757 assert(asidx < cpu->num_ases); 758 759 if (asidx == 0) { 760 /* address space 0 gets the convenience alias */ 761 cpu->as = as; 762 } 763 764 /* KVM cannot currently support multiple address spaces. */ 765 assert(asidx == 0 || !kvm_enabled()); 766 767 if (!cpu->cpu_ases) { 768 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 769 cpu->cpu_ases_count = cpu->num_ases; 770 } 771 772 newas = &cpu->cpu_ases[asidx]; 773 newas->cpu = cpu; 774 newas->as = as; 775 if (tcg_enabled()) { 776 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 777 newas->tcg_as_listener.commit = tcg_commit; 778 newas->tcg_as_listener.name = "tcg"; 779 memory_listener_register(&newas->tcg_as_listener, as); 780 } 781 } 782 783 void cpu_address_space_destroy(CPUState *cpu, int asidx) 784 { 785 CPUAddressSpace *cpuas; 786 787 assert(cpu->cpu_ases); 788 assert(asidx >= 0 && asidx < cpu->num_ases); 789 /* KVM cannot currently support multiple address spaces. */ 790 assert(asidx == 0 || !kvm_enabled()); 791 792 cpuas = &cpu->cpu_ases[asidx]; 793 if (tcg_enabled()) { 794 memory_listener_unregister(&cpuas->tcg_as_listener); 795 } 796 797 address_space_destroy(cpuas->as); 798 g_free_rcu(cpuas->as, rcu); 799 800 if (asidx == 0) { 801 /* reset the convenience alias for address space 0 */ 802 cpu->as = NULL; 803 } 804 805 if (--cpu->cpu_ases_count == 0) { 806 g_free(cpu->cpu_ases); 807 cpu->cpu_ases = NULL; 808 } 809 } 810 811 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 812 { 813 /* Return the AddressSpace corresponding to the specified index */ 814 return cpu->cpu_ases[asidx].as; 815 } 816 817 /* Called from RCU critical section */ 818 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 819 { 820 RAMBlock *block; 821 822 block = qatomic_rcu_read(&ram_list.mru_block); 823 if (block && addr - block->offset < block->max_length) { 824 return block; 825 } 826 RAMBLOCK_FOREACH(block) { 827 if (addr - block->offset < block->max_length) { 828 goto found; 829 } 830 } 831 832 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 833 abort(); 834 835 found: 836 /* It is safe to write mru_block outside the BQL. This 837 * is what happens: 838 * 839 * mru_block = xxx 840 * rcu_read_unlock() 841 * xxx removed from list 842 * rcu_read_lock() 843 * read mru_block 844 * mru_block = NULL; 845 * call_rcu(reclaim_ramblock, xxx); 846 * rcu_read_unlock() 847 * 848 * qatomic_rcu_set is not needed here. The block was already published 849 * when it was placed into the list. Here we're just making an extra 850 * copy of the pointer. 851 */ 852 ram_list.mru_block = block; 853 return block; 854 } 855 856 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 857 { 858 CPUState *cpu; 859 ram_addr_t start1; 860 RAMBlock *block; 861 ram_addr_t end; 862 863 assert(tcg_enabled()); 864 end = TARGET_PAGE_ALIGN(start + length); 865 start &= TARGET_PAGE_MASK; 866 867 RCU_READ_LOCK_GUARD(); 868 block = qemu_get_ram_block(start); 869 assert(block == qemu_get_ram_block(end - 1)); 870 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 871 CPU_FOREACH(cpu) { 872 tlb_reset_dirty(cpu, start1, length); 873 } 874 } 875 876 /* Note: start and end must be within the same ram block. */ 877 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 878 ram_addr_t length, 879 unsigned client) 880 { 881 DirtyMemoryBlocks *blocks; 882 unsigned long end, page, start_page; 883 bool dirty = false; 884 RAMBlock *ramblock; 885 uint64_t mr_offset, mr_size; 886 887 if (length == 0) { 888 return false; 889 } 890 891 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 892 start_page = start >> TARGET_PAGE_BITS; 893 page = start_page; 894 895 WITH_RCU_READ_LOCK_GUARD() { 896 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 897 ramblock = qemu_get_ram_block(start); 898 /* Range sanity check on the ramblock */ 899 assert(start >= ramblock->offset && 900 start + length <= ramblock->offset + ramblock->used_length); 901 902 while (page < end) { 903 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 904 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 905 unsigned long num = MIN(end - page, 906 DIRTY_MEMORY_BLOCK_SIZE - offset); 907 908 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 909 offset, num); 910 page += num; 911 } 912 913 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 914 mr_size = (end - start_page) << TARGET_PAGE_BITS; 915 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 916 } 917 918 if (dirty) { 919 cpu_physical_memory_dirty_bits_cleared(start, length); 920 } 921 922 return dirty; 923 } 924 925 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 926 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 927 { 928 DirtyMemoryBlocks *blocks; 929 ram_addr_t start, first, last; 930 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 931 DirtyBitmapSnapshot *snap; 932 unsigned long page, end, dest; 933 934 start = memory_region_get_ram_addr(mr); 935 /* We know we're only called for RAM MemoryRegions */ 936 assert(start != RAM_ADDR_INVALID); 937 start += offset; 938 939 first = QEMU_ALIGN_DOWN(start, align); 940 last = QEMU_ALIGN_UP(start + length, align); 941 942 snap = g_malloc0(sizeof(*snap) + 943 ((last - first) >> (TARGET_PAGE_BITS + 3))); 944 snap->start = first; 945 snap->end = last; 946 947 page = first >> TARGET_PAGE_BITS; 948 end = last >> TARGET_PAGE_BITS; 949 dest = 0; 950 951 WITH_RCU_READ_LOCK_GUARD() { 952 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 953 954 while (page < end) { 955 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 956 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 957 unsigned long num = MIN(end - page, 958 DIRTY_MEMORY_BLOCK_SIZE - ofs); 959 960 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 961 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 962 ofs >>= BITS_PER_LEVEL; 963 964 bitmap_copy_and_clear_atomic(snap->dirty + dest, 965 blocks->blocks[idx] + ofs, 966 num); 967 page += num; 968 dest += num >> BITS_PER_LEVEL; 969 } 970 } 971 972 cpu_physical_memory_dirty_bits_cleared(start, length); 973 974 memory_region_clear_dirty_bitmap(mr, offset, length); 975 976 return snap; 977 } 978 979 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 980 ram_addr_t start, 981 ram_addr_t length) 982 { 983 unsigned long page, end; 984 985 assert(start >= snap->start); 986 assert(start + length <= snap->end); 987 988 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 989 page = (start - snap->start) >> TARGET_PAGE_BITS; 990 991 while (page < end) { 992 if (test_bit(page, snap->dirty)) { 993 return true; 994 } 995 page++; 996 } 997 return false; 998 } 999 1000 /* Called from RCU critical section */ 1001 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1002 MemoryRegionSection *section) 1003 { 1004 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1005 return section - d->map.sections; 1006 } 1007 1008 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1009 uint16_t section); 1010 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1011 1012 static uint16_t phys_section_add(PhysPageMap *map, 1013 MemoryRegionSection *section) 1014 { 1015 /* The physical section number is ORed with a page-aligned 1016 * pointer to produce the iotlb entries. Thus it should 1017 * never overflow into the page-aligned value. 1018 */ 1019 assert(map->sections_nb < TARGET_PAGE_SIZE); 1020 1021 if (map->sections_nb == map->sections_nb_alloc) { 1022 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1023 map->sections = g_renew(MemoryRegionSection, map->sections, 1024 map->sections_nb_alloc); 1025 } 1026 map->sections[map->sections_nb] = *section; 1027 memory_region_ref(section->mr); 1028 return map->sections_nb++; 1029 } 1030 1031 static void phys_section_destroy(MemoryRegion *mr) 1032 { 1033 bool have_sub_page = mr->subpage; 1034 1035 memory_region_unref(mr); 1036 1037 if (have_sub_page) { 1038 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1039 object_unref(OBJECT(&subpage->iomem)); 1040 g_free(subpage); 1041 } 1042 } 1043 1044 static void phys_sections_free(PhysPageMap *map) 1045 { 1046 while (map->sections_nb > 0) { 1047 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1048 phys_section_destroy(section->mr); 1049 } 1050 g_free(map->sections); 1051 g_free(map->nodes); 1052 } 1053 1054 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1055 { 1056 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1057 subpage_t *subpage; 1058 hwaddr base = section->offset_within_address_space 1059 & TARGET_PAGE_MASK; 1060 MemoryRegionSection *existing = phys_page_find(d, base); 1061 MemoryRegionSection subsection = { 1062 .offset_within_address_space = base, 1063 .size = int128_make64(TARGET_PAGE_SIZE), 1064 }; 1065 hwaddr start, end; 1066 1067 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1068 1069 if (!(existing->mr->subpage)) { 1070 subpage = subpage_init(fv, base); 1071 subsection.fv = fv; 1072 subsection.mr = &subpage->iomem; 1073 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1074 phys_section_add(&d->map, &subsection)); 1075 } else { 1076 subpage = container_of(existing->mr, subpage_t, iomem); 1077 } 1078 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1079 end = start + int128_get64(section->size) - 1; 1080 subpage_register(subpage, start, end, 1081 phys_section_add(&d->map, section)); 1082 } 1083 1084 1085 static void register_multipage(FlatView *fv, 1086 MemoryRegionSection *section) 1087 { 1088 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1089 hwaddr start_addr = section->offset_within_address_space; 1090 uint16_t section_index = phys_section_add(&d->map, section); 1091 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1092 TARGET_PAGE_BITS)); 1093 1094 assert(num_pages); 1095 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1096 } 1097 1098 /* 1099 * The range in *section* may look like this: 1100 * 1101 * |s|PPPPPPP|s| 1102 * 1103 * where s stands for subpage and P for page. 1104 */ 1105 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1106 { 1107 MemoryRegionSection remain = *section; 1108 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1109 1110 /* register first subpage */ 1111 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1112 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1113 - remain.offset_within_address_space; 1114 1115 MemoryRegionSection now = remain; 1116 now.size = int128_min(int128_make64(left), now.size); 1117 register_subpage(fv, &now); 1118 if (int128_eq(remain.size, now.size)) { 1119 return; 1120 } 1121 remain.size = int128_sub(remain.size, now.size); 1122 remain.offset_within_address_space += int128_get64(now.size); 1123 remain.offset_within_region += int128_get64(now.size); 1124 } 1125 1126 /* register whole pages */ 1127 if (int128_ge(remain.size, page_size)) { 1128 MemoryRegionSection now = remain; 1129 now.size = int128_and(now.size, int128_neg(page_size)); 1130 register_multipage(fv, &now); 1131 if (int128_eq(remain.size, now.size)) { 1132 return; 1133 } 1134 remain.size = int128_sub(remain.size, now.size); 1135 remain.offset_within_address_space += int128_get64(now.size); 1136 remain.offset_within_region += int128_get64(now.size); 1137 } 1138 1139 /* register last subpage */ 1140 register_subpage(fv, &remain); 1141 } 1142 1143 void qemu_flush_coalesced_mmio_buffer(void) 1144 { 1145 if (kvm_enabled()) 1146 kvm_flush_coalesced_mmio_buffer(); 1147 } 1148 1149 void qemu_mutex_lock_ramlist(void) 1150 { 1151 qemu_mutex_lock(&ram_list.mutex); 1152 } 1153 1154 void qemu_mutex_unlock_ramlist(void) 1155 { 1156 qemu_mutex_unlock(&ram_list.mutex); 1157 } 1158 1159 GString *ram_block_format(void) 1160 { 1161 RAMBlock *block; 1162 char *psize; 1163 GString *buf = g_string_new(""); 1164 1165 RCU_READ_LOCK_GUARD(); 1166 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1167 "Block Name", "PSize", "Offset", "Used", "Total", 1168 "HVA", "RO"); 1169 1170 RAMBLOCK_FOREACH(block) { 1171 psize = size_to_str(block->page_size); 1172 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1173 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1174 block->idstr, psize, 1175 (uint64_t)block->offset, 1176 (uint64_t)block->used_length, 1177 (uint64_t)block->max_length, 1178 (uint64_t)(uintptr_t)block->host, 1179 block->mr->readonly ? "ro" : "rw"); 1180 1181 g_free(psize); 1182 } 1183 1184 return buf; 1185 } 1186 1187 static int find_min_backend_pagesize(Object *obj, void *opaque) 1188 { 1189 long *hpsize_min = opaque; 1190 1191 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1192 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1193 long hpsize = host_memory_backend_pagesize(backend); 1194 1195 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1196 *hpsize_min = hpsize; 1197 } 1198 } 1199 1200 return 0; 1201 } 1202 1203 static int find_max_backend_pagesize(Object *obj, void *opaque) 1204 { 1205 long *hpsize_max = opaque; 1206 1207 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1208 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1209 long hpsize = host_memory_backend_pagesize(backend); 1210 1211 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1212 *hpsize_max = hpsize; 1213 } 1214 } 1215 1216 return 0; 1217 } 1218 1219 /* 1220 * TODO: We assume right now that all mapped host memory backends are 1221 * used as RAM, however some might be used for different purposes. 1222 */ 1223 long qemu_minrampagesize(void) 1224 { 1225 long hpsize = LONG_MAX; 1226 Object *memdev_root = object_resolve_path("/objects", NULL); 1227 1228 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1229 return hpsize; 1230 } 1231 1232 long qemu_maxrampagesize(void) 1233 { 1234 long pagesize = 0; 1235 Object *memdev_root = object_resolve_path("/objects", NULL); 1236 1237 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1238 return pagesize; 1239 } 1240 1241 #ifdef CONFIG_POSIX 1242 static int64_t get_file_size(int fd) 1243 { 1244 int64_t size; 1245 #if defined(__linux__) 1246 struct stat st; 1247 1248 if (fstat(fd, &st) < 0) { 1249 return -errno; 1250 } 1251 1252 /* Special handling for devdax character devices */ 1253 if (S_ISCHR(st.st_mode)) { 1254 g_autofree char *subsystem_path = NULL; 1255 g_autofree char *subsystem = NULL; 1256 1257 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1258 major(st.st_rdev), minor(st.st_rdev)); 1259 subsystem = g_file_read_link(subsystem_path, NULL); 1260 1261 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1262 g_autofree char *size_path = NULL; 1263 g_autofree char *size_str = NULL; 1264 1265 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1266 major(st.st_rdev), minor(st.st_rdev)); 1267 1268 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1269 return g_ascii_strtoll(size_str, NULL, 0); 1270 } 1271 } 1272 } 1273 #endif /* defined(__linux__) */ 1274 1275 /* st.st_size may be zero for special files yet lseek(2) works */ 1276 size = lseek(fd, 0, SEEK_END); 1277 if (size < 0) { 1278 return -errno; 1279 } 1280 return size; 1281 } 1282 1283 static int64_t get_file_align(int fd) 1284 { 1285 int64_t align = -1; 1286 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1287 struct stat st; 1288 1289 if (fstat(fd, &st) < 0) { 1290 return -errno; 1291 } 1292 1293 /* Special handling for devdax character devices */ 1294 if (S_ISCHR(st.st_mode)) { 1295 g_autofree char *path = NULL; 1296 g_autofree char *rpath = NULL; 1297 struct daxctl_ctx *ctx; 1298 struct daxctl_region *region; 1299 int rc = 0; 1300 1301 path = g_strdup_printf("/sys/dev/char/%d:%d", 1302 major(st.st_rdev), minor(st.st_rdev)); 1303 rpath = realpath(path, NULL); 1304 if (!rpath) { 1305 return -errno; 1306 } 1307 1308 rc = daxctl_new(&ctx); 1309 if (rc) { 1310 return -1; 1311 } 1312 1313 daxctl_region_foreach(ctx, region) { 1314 if (strstr(rpath, daxctl_region_get_path(region))) { 1315 align = daxctl_region_get_align(region); 1316 break; 1317 } 1318 } 1319 daxctl_unref(ctx); 1320 } 1321 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1322 1323 return align; 1324 } 1325 1326 static int file_ram_open(const char *path, 1327 const char *region_name, 1328 bool readonly, 1329 bool *created) 1330 { 1331 char *filename; 1332 char *sanitized_name; 1333 char *c; 1334 int fd = -1; 1335 1336 *created = false; 1337 for (;;) { 1338 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1339 if (fd >= 0) { 1340 /* 1341 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1342 * opened a directory and fail similarly to how we fail ENOENT 1343 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1344 */ 1345 if (readonly) { 1346 struct stat file_stat; 1347 1348 if (fstat(fd, &file_stat)) { 1349 close(fd); 1350 if (errno == EINTR) { 1351 continue; 1352 } 1353 return -errno; 1354 } else if (S_ISDIR(file_stat.st_mode)) { 1355 close(fd); 1356 return -EISDIR; 1357 } 1358 } 1359 /* @path names an existing file, use it */ 1360 break; 1361 } 1362 if (errno == ENOENT) { 1363 if (readonly) { 1364 /* Refuse to create new, readonly files. */ 1365 return -ENOENT; 1366 } 1367 /* @path names a file that doesn't exist, create it */ 1368 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1369 if (fd >= 0) { 1370 *created = true; 1371 break; 1372 } 1373 } else if (errno == EISDIR) { 1374 /* @path names a directory, create a file there */ 1375 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1376 sanitized_name = g_strdup(region_name); 1377 for (c = sanitized_name; *c != '\0'; c++) { 1378 if (*c == '/') { 1379 *c = '_'; 1380 } 1381 } 1382 1383 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1384 sanitized_name); 1385 g_free(sanitized_name); 1386 1387 fd = mkstemp(filename); 1388 if (fd >= 0) { 1389 unlink(filename); 1390 g_free(filename); 1391 break; 1392 } 1393 g_free(filename); 1394 } 1395 if (errno != EEXIST && errno != EINTR) { 1396 return -errno; 1397 } 1398 /* 1399 * Try again on EINTR and EEXIST. The latter happens when 1400 * something else creates the file between our two open(). 1401 */ 1402 } 1403 1404 return fd; 1405 } 1406 1407 static void *file_ram_alloc(RAMBlock *block, 1408 ram_addr_t memory, 1409 int fd, 1410 bool truncate, 1411 off_t offset, 1412 Error **errp) 1413 { 1414 uint32_t qemu_map_flags; 1415 void *area; 1416 1417 block->page_size = qemu_fd_getpagesize(fd); 1418 if (block->mr->align % block->page_size) { 1419 error_setg(errp, "alignment 0x%" PRIx64 1420 " must be multiples of page size 0x%zx", 1421 block->mr->align, block->page_size); 1422 return NULL; 1423 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1424 error_setg(errp, "alignment 0x%" PRIx64 1425 " must be a power of two", block->mr->align); 1426 return NULL; 1427 } else if (offset % block->page_size) { 1428 error_setg(errp, "offset 0x%" PRIx64 1429 " must be multiples of page size 0x%zx", 1430 offset, block->page_size); 1431 return NULL; 1432 } 1433 block->mr->align = MAX(block->page_size, block->mr->align); 1434 #if defined(__s390x__) 1435 if (kvm_enabled()) { 1436 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1437 } 1438 #endif 1439 1440 if (memory < block->page_size) { 1441 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1442 "or larger than page size 0x%zx", 1443 memory, block->page_size); 1444 return NULL; 1445 } 1446 1447 memory = ROUND_UP(memory, block->page_size); 1448 1449 /* 1450 * ftruncate is not supported by hugetlbfs in older 1451 * hosts, so don't bother bailing out on errors. 1452 * If anything goes wrong with it under other filesystems, 1453 * mmap will fail. 1454 * 1455 * Do not truncate the non-empty backend file to avoid corrupting 1456 * the existing data in the file. Disabling shrinking is not 1457 * enough. For example, the current vNVDIMM implementation stores 1458 * the guest NVDIMM labels at the end of the backend file. If the 1459 * backend file is later extended, QEMU will not be able to find 1460 * those labels. Therefore, extending the non-empty backend file 1461 * is disabled as well. 1462 */ 1463 if (truncate && ftruncate(fd, offset + memory)) { 1464 perror("ftruncate"); 1465 } 1466 1467 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1468 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1469 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1470 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1471 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1472 if (area == MAP_FAILED) { 1473 error_setg_errno(errp, errno, 1474 "unable to map backing store for guest RAM"); 1475 return NULL; 1476 } 1477 1478 block->fd = fd; 1479 block->fd_offset = offset; 1480 return area; 1481 } 1482 #endif 1483 1484 /* Allocate space within the ram_addr_t space that governs the 1485 * dirty bitmaps. 1486 * Called with the ramlist lock held. 1487 */ 1488 static ram_addr_t find_ram_offset(ram_addr_t size) 1489 { 1490 RAMBlock *block, *next_block; 1491 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1492 1493 assert(size != 0); /* it would hand out same offset multiple times */ 1494 1495 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1496 return 0; 1497 } 1498 1499 RAMBLOCK_FOREACH(block) { 1500 ram_addr_t candidate, next = RAM_ADDR_MAX; 1501 1502 /* Align blocks to start on a 'long' in the bitmap 1503 * which makes the bitmap sync'ing take the fast path. 1504 */ 1505 candidate = block->offset + block->max_length; 1506 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1507 1508 /* Search for the closest following block 1509 * and find the gap. 1510 */ 1511 RAMBLOCK_FOREACH(next_block) { 1512 if (next_block->offset >= candidate) { 1513 next = MIN(next, next_block->offset); 1514 } 1515 } 1516 1517 /* If it fits remember our place and remember the size 1518 * of gap, but keep going so that we might find a smaller 1519 * gap to fill so avoiding fragmentation. 1520 */ 1521 if (next - candidate >= size && next - candidate < mingap) { 1522 offset = candidate; 1523 mingap = next - candidate; 1524 } 1525 1526 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1527 } 1528 1529 if (offset == RAM_ADDR_MAX) { 1530 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1531 (uint64_t)size); 1532 abort(); 1533 } 1534 1535 trace_find_ram_offset(size, offset); 1536 1537 return offset; 1538 } 1539 1540 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1541 { 1542 int ret; 1543 1544 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1545 if (!machine_dump_guest_core(current_machine)) { 1546 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1547 if (ret) { 1548 perror("qemu_madvise"); 1549 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1550 "but dump-guest-core=off specified\n"); 1551 } 1552 } 1553 } 1554 1555 const char *qemu_ram_get_idstr(RAMBlock *rb) 1556 { 1557 return rb->idstr; 1558 } 1559 1560 void *qemu_ram_get_host_addr(RAMBlock *rb) 1561 { 1562 return rb->host; 1563 } 1564 1565 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1566 { 1567 return rb->offset; 1568 } 1569 1570 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1571 { 1572 return rb->used_length; 1573 } 1574 1575 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1576 { 1577 return rb->max_length; 1578 } 1579 1580 bool qemu_ram_is_shared(RAMBlock *rb) 1581 { 1582 return rb->flags & RAM_SHARED; 1583 } 1584 1585 bool qemu_ram_is_noreserve(RAMBlock *rb) 1586 { 1587 return rb->flags & RAM_NORESERVE; 1588 } 1589 1590 /* Note: Only set at the start of postcopy */ 1591 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1592 { 1593 return rb->flags & RAM_UF_ZEROPAGE; 1594 } 1595 1596 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1597 { 1598 rb->flags |= RAM_UF_ZEROPAGE; 1599 } 1600 1601 bool qemu_ram_is_migratable(RAMBlock *rb) 1602 { 1603 return rb->flags & RAM_MIGRATABLE; 1604 } 1605 1606 void qemu_ram_set_migratable(RAMBlock *rb) 1607 { 1608 rb->flags |= RAM_MIGRATABLE; 1609 } 1610 1611 void qemu_ram_unset_migratable(RAMBlock *rb) 1612 { 1613 rb->flags &= ~RAM_MIGRATABLE; 1614 } 1615 1616 bool qemu_ram_is_named_file(RAMBlock *rb) 1617 { 1618 return rb->flags & RAM_NAMED_FILE; 1619 } 1620 1621 int qemu_ram_get_fd(RAMBlock *rb) 1622 { 1623 return rb->fd; 1624 } 1625 1626 /* Called with the BQL held. */ 1627 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1628 { 1629 RAMBlock *block; 1630 1631 assert(new_block); 1632 assert(!new_block->idstr[0]); 1633 1634 if (dev) { 1635 char *id = qdev_get_dev_path(dev); 1636 if (id) { 1637 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1638 g_free(id); 1639 } 1640 } 1641 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1642 1643 RCU_READ_LOCK_GUARD(); 1644 RAMBLOCK_FOREACH(block) { 1645 if (block != new_block && 1646 !strcmp(block->idstr, new_block->idstr)) { 1647 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1648 new_block->idstr); 1649 abort(); 1650 } 1651 } 1652 } 1653 1654 /* Called with the BQL held. */ 1655 void qemu_ram_unset_idstr(RAMBlock *block) 1656 { 1657 /* FIXME: arch_init.c assumes that this is not called throughout 1658 * migration. Ignore the problem since hot-unplug during migration 1659 * does not work anyway. 1660 */ 1661 if (block) { 1662 memset(block->idstr, 0, sizeof(block->idstr)); 1663 } 1664 } 1665 1666 static char *cpr_name(MemoryRegion *mr) 1667 { 1668 const char *mr_name = memory_region_name(mr); 1669 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL; 1670 1671 if (id) { 1672 return g_strdup_printf("%s/%s", id, mr_name); 1673 } else { 1674 return g_strdup(mr_name); 1675 } 1676 } 1677 1678 size_t qemu_ram_pagesize(RAMBlock *rb) 1679 { 1680 return rb->page_size; 1681 } 1682 1683 /* Returns the largest size of page in use */ 1684 size_t qemu_ram_pagesize_largest(void) 1685 { 1686 RAMBlock *block; 1687 size_t largest = 0; 1688 1689 RAMBLOCK_FOREACH(block) { 1690 largest = MAX(largest, qemu_ram_pagesize(block)); 1691 } 1692 1693 return largest; 1694 } 1695 1696 static int memory_try_enable_merging(void *addr, size_t len) 1697 { 1698 if (!machine_mem_merge(current_machine)) { 1699 /* disabled by the user */ 1700 return 0; 1701 } 1702 1703 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1704 } 1705 1706 /* 1707 * Resizing RAM while migrating can result in the migration being canceled. 1708 * Care has to be taken if the guest might have already detected the memory. 1709 * 1710 * As memory core doesn't know how is memory accessed, it is up to 1711 * resize callback to update device state and/or add assertions to detect 1712 * misuse, if necessary. 1713 */ 1714 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1715 { 1716 const ram_addr_t oldsize = block->used_length; 1717 const ram_addr_t unaligned_size = newsize; 1718 1719 assert(block); 1720 1721 newsize = TARGET_PAGE_ALIGN(newsize); 1722 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1723 1724 if (block->used_length == newsize) { 1725 /* 1726 * We don't have to resize the ram block (which only knows aligned 1727 * sizes), however, we have to notify if the unaligned size changed. 1728 */ 1729 if (unaligned_size != memory_region_size(block->mr)) { 1730 memory_region_set_size(block->mr, unaligned_size); 1731 if (block->resized) { 1732 block->resized(block->idstr, unaligned_size, block->host); 1733 } 1734 } 1735 return 0; 1736 } 1737 1738 if (!(block->flags & RAM_RESIZEABLE)) { 1739 error_setg_errno(errp, EINVAL, 1740 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1741 " != 0x" RAM_ADDR_FMT, block->idstr, 1742 newsize, block->used_length); 1743 return -EINVAL; 1744 } 1745 1746 if (block->max_length < newsize) { 1747 error_setg_errno(errp, EINVAL, 1748 "Size too large: %s: 0x" RAM_ADDR_FMT 1749 " > 0x" RAM_ADDR_FMT, block->idstr, 1750 newsize, block->max_length); 1751 return -EINVAL; 1752 } 1753 1754 /* Notify before modifying the ram block and touching the bitmaps. */ 1755 if (block->host) { 1756 ram_block_notify_resize(block->host, oldsize, newsize); 1757 } 1758 1759 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1760 block->used_length = newsize; 1761 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1762 DIRTY_CLIENTS_ALL); 1763 memory_region_set_size(block->mr, unaligned_size); 1764 if (block->resized) { 1765 block->resized(block->idstr, unaligned_size, block->host); 1766 } 1767 return 0; 1768 } 1769 1770 /* 1771 * Trigger sync on the given ram block for range [start, start + length] 1772 * with the backing store if one is available. 1773 * Otherwise no-op. 1774 * @Note: this is supposed to be a synchronous op. 1775 */ 1776 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1777 { 1778 /* The requested range should fit in within the block range */ 1779 g_assert((start + length) <= block->used_length); 1780 1781 #ifdef CONFIG_LIBPMEM 1782 /* The lack of support for pmem should not block the sync */ 1783 if (ramblock_is_pmem(block)) { 1784 void *addr = ramblock_ptr(block, start); 1785 pmem_persist(addr, length); 1786 return; 1787 } 1788 #endif 1789 if (block->fd >= 0) { 1790 /** 1791 * Case there is no support for PMEM or the memory has not been 1792 * specified as persistent (or is not one) - use the msync. 1793 * Less optimal but still achieves the same goal 1794 */ 1795 void *addr = ramblock_ptr(block, start); 1796 if (qemu_msync(addr, length, block->fd)) { 1797 warn_report("%s: failed to sync memory range: start: " 1798 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1799 __func__, start, length); 1800 } 1801 } 1802 } 1803 1804 /* Called with ram_list.mutex held */ 1805 static void dirty_memory_extend(ram_addr_t new_ram_size) 1806 { 1807 unsigned int old_num_blocks = ram_list.num_dirty_blocks; 1808 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, 1809 DIRTY_MEMORY_BLOCK_SIZE); 1810 int i; 1811 1812 /* Only need to extend if block count increased */ 1813 if (new_num_blocks <= old_num_blocks) { 1814 return; 1815 } 1816 1817 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1818 DirtyMemoryBlocks *old_blocks; 1819 DirtyMemoryBlocks *new_blocks; 1820 int j; 1821 1822 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1823 new_blocks = g_malloc(sizeof(*new_blocks) + 1824 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1825 1826 if (old_num_blocks) { 1827 memcpy(new_blocks->blocks, old_blocks->blocks, 1828 old_num_blocks * sizeof(old_blocks->blocks[0])); 1829 } 1830 1831 for (j = old_num_blocks; j < new_num_blocks; j++) { 1832 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1833 } 1834 1835 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1836 1837 if (old_blocks) { 1838 g_free_rcu(old_blocks, rcu); 1839 } 1840 } 1841 1842 ram_list.num_dirty_blocks = new_num_blocks; 1843 } 1844 1845 static void ram_block_add(RAMBlock *new_block, Error **errp) 1846 { 1847 const bool noreserve = qemu_ram_is_noreserve(new_block); 1848 const bool shared = qemu_ram_is_shared(new_block); 1849 RAMBlock *block; 1850 RAMBlock *last_block = NULL; 1851 bool free_on_error = false; 1852 ram_addr_t ram_size; 1853 Error *err = NULL; 1854 1855 qemu_mutex_lock_ramlist(); 1856 new_block->offset = find_ram_offset(new_block->max_length); 1857 1858 if (!new_block->host) { 1859 if (xen_enabled()) { 1860 xen_ram_alloc(new_block->offset, new_block->max_length, 1861 new_block->mr, &err); 1862 if (err) { 1863 error_propagate(errp, err); 1864 qemu_mutex_unlock_ramlist(); 1865 return; 1866 } 1867 } else { 1868 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1869 &new_block->mr->align, 1870 shared, noreserve); 1871 if (!new_block->host) { 1872 error_setg_errno(errp, errno, 1873 "cannot set up guest memory '%s'", 1874 memory_region_name(new_block->mr)); 1875 qemu_mutex_unlock_ramlist(); 1876 return; 1877 } 1878 memory_try_enable_merging(new_block->host, new_block->max_length); 1879 free_on_error = true; 1880 } 1881 } 1882 1883 if (new_block->flags & RAM_GUEST_MEMFD) { 1884 int ret; 1885 1886 if (!kvm_enabled()) { 1887 error_setg(errp, "cannot set up private guest memory for %s: KVM required", 1888 object_get_typename(OBJECT(current_machine->cgs))); 1889 goto out_free; 1890 } 1891 assert(new_block->guest_memfd < 0); 1892 1893 ret = ram_block_discard_require(true); 1894 if (ret < 0) { 1895 error_setg_errno(errp, -ret, 1896 "cannot set up private guest memory: discard currently blocked"); 1897 error_append_hint(errp, "Are you using assigned devices?\n"); 1898 goto out_free; 1899 } 1900 1901 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1902 0, errp); 1903 if (new_block->guest_memfd < 0) { 1904 qemu_mutex_unlock_ramlist(); 1905 goto out_free; 1906 } 1907 } 1908 1909 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; 1910 dirty_memory_extend(ram_size); 1911 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1912 * QLIST (which has an RCU-friendly variant) does not have insertion at 1913 * tail, so save the last element in last_block. 1914 */ 1915 RAMBLOCK_FOREACH(block) { 1916 last_block = block; 1917 if (block->max_length < new_block->max_length) { 1918 break; 1919 } 1920 } 1921 if (block) { 1922 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1923 } else if (last_block) { 1924 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1925 } else { /* list is empty */ 1926 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1927 } 1928 ram_list.mru_block = NULL; 1929 1930 /* Write list before version */ 1931 smp_wmb(); 1932 ram_list.version++; 1933 qemu_mutex_unlock_ramlist(); 1934 1935 cpu_physical_memory_set_dirty_range(new_block->offset, 1936 new_block->used_length, 1937 DIRTY_CLIENTS_ALL); 1938 1939 if (new_block->host) { 1940 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1941 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1942 /* 1943 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1944 * Configure it unless the machine is a qtest server, in which case 1945 * KVM is not used and it may be forked (eg for fuzzing purposes). 1946 */ 1947 if (!qtest_enabled()) { 1948 qemu_madvise(new_block->host, new_block->max_length, 1949 QEMU_MADV_DONTFORK); 1950 } 1951 ram_block_notify_add(new_block->host, new_block->used_length, 1952 new_block->max_length); 1953 } 1954 return; 1955 1956 out_free: 1957 if (free_on_error) { 1958 qemu_anon_ram_free(new_block->host, new_block->max_length); 1959 new_block->host = NULL; 1960 } 1961 } 1962 1963 #ifdef CONFIG_POSIX 1964 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size, 1965 qemu_ram_resize_cb resized, MemoryRegion *mr, 1966 uint32_t ram_flags, int fd, off_t offset, 1967 bool grow, 1968 Error **errp) 1969 { 1970 ERRP_GUARD(); 1971 RAMBlock *new_block; 1972 Error *local_err = NULL; 1973 int64_t file_size, file_align, share_flags; 1974 1975 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 1976 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 1977 ram_flags &= ~RAM_PRIVATE; 1978 1979 /* Just support these ram flags by now. */ 1980 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1981 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1982 RAM_READONLY_FD | RAM_GUEST_MEMFD | 1983 RAM_RESIZEABLE)) == 0); 1984 assert(max_size >= size); 1985 1986 if (xen_enabled()) { 1987 error_setg(errp, "-mem-path not supported with Xen"); 1988 return NULL; 1989 } 1990 1991 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1992 error_setg(errp, 1993 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1994 return NULL; 1995 } 1996 1997 size = TARGET_PAGE_ALIGN(size); 1998 size = REAL_HOST_PAGE_ALIGN(size); 1999 max_size = TARGET_PAGE_ALIGN(max_size); 2000 max_size = REAL_HOST_PAGE_ALIGN(max_size); 2001 2002 file_size = get_file_size(fd); 2003 if (file_size && file_size < offset + max_size && !grow) { 2004 error_setg(errp, "%s backing store size 0x%" PRIx64 2005 " is too small for 'size' option 0x" RAM_ADDR_FMT 2006 " plus 'offset' option 0x%" PRIx64, 2007 memory_region_name(mr), file_size, max_size, 2008 (uint64_t)offset); 2009 return NULL; 2010 } 2011 2012 file_align = get_file_align(fd); 2013 if (file_align > 0 && file_align > mr->align) { 2014 error_setg(errp, "backing store align 0x%" PRIx64 2015 " is larger than 'align' option 0x%" PRIx64, 2016 file_align, mr->align); 2017 return NULL; 2018 } 2019 2020 new_block = g_malloc0(sizeof(*new_block)); 2021 new_block->mr = mr; 2022 new_block->used_length = size; 2023 new_block->max_length = max_size; 2024 new_block->resized = resized; 2025 new_block->flags = ram_flags; 2026 new_block->guest_memfd = -1; 2027 new_block->host = file_ram_alloc(new_block, max_size, fd, 2028 file_size < offset + max_size, 2029 offset, errp); 2030 if (!new_block->host) { 2031 g_free(new_block); 2032 return NULL; 2033 } 2034 2035 ram_block_add(new_block, &local_err); 2036 if (local_err) { 2037 g_free(new_block); 2038 error_propagate(errp, local_err); 2039 return NULL; 2040 } 2041 return new_block; 2042 2043 } 2044 2045 2046 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2047 uint32_t ram_flags, const char *mem_path, 2048 off_t offset, Error **errp) 2049 { 2050 int fd; 2051 bool created; 2052 RAMBlock *block; 2053 2054 fd = file_ram_open(mem_path, memory_region_name(mr), 2055 !!(ram_flags & RAM_READONLY_FD), &created); 2056 if (fd < 0) { 2057 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2058 mem_path); 2059 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2060 fd == -EACCES) { 2061 /* 2062 * If we can open the file R/O (note: will never create a new file) 2063 * and we are dealing with a private mapping, there are still ways 2064 * to consume such files and get RAM instead of ROM. 2065 */ 2066 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2067 &created); 2068 if (fd < 0) { 2069 return NULL; 2070 } 2071 assert(!created); 2072 close(fd); 2073 error_append_hint(errp, "Consider opening the backing store" 2074 " read-only but still creating writable RAM using" 2075 " '-object memory-backend-file,readonly=on,rom=off...'" 2076 " (see \"VM templating\" documentation)\n"); 2077 } 2078 return NULL; 2079 } 2080 2081 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset, 2082 false, errp); 2083 if (!block) { 2084 if (created) { 2085 unlink(mem_path); 2086 } 2087 close(fd); 2088 return NULL; 2089 } 2090 2091 return block; 2092 } 2093 #endif 2094 2095 #ifdef CONFIG_POSIX 2096 /* 2097 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be 2098 * shared with another process if CPR is being used. Use memfd if available 2099 * because it has no size limits, else use POSIX shm. 2100 */ 2101 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp) 2102 { 2103 int fd = cpr_find_fd(name, 0); 2104 2105 if (fd >= 0) { 2106 *reused = true; 2107 return fd; 2108 } 2109 2110 if (qemu_memfd_check(0)) { 2111 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp); 2112 } else { 2113 fd = qemu_shm_alloc(0, errp); 2114 } 2115 2116 if (fd >= 0) { 2117 cpr_save_fd(name, 0, fd); 2118 } 2119 *reused = false; 2120 return fd; 2121 } 2122 #endif 2123 2124 static 2125 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2126 qemu_ram_resize_cb resized, 2127 void *host, uint32_t ram_flags, 2128 MemoryRegion *mr, Error **errp) 2129 { 2130 RAMBlock *new_block; 2131 Error *local_err = NULL; 2132 int align, share_flags; 2133 2134 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 2135 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 2136 ram_flags &= ~RAM_PRIVATE; 2137 2138 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2139 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2140 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2141 assert(max_size >= size); 2142 2143 #ifdef CONFIG_POSIX /* ignore RAM_SHARED for Windows */ 2144 if (!host) { 2145 if (!share_flags && current_machine->aux_ram_share) { 2146 ram_flags |= RAM_SHARED; 2147 } 2148 if (ram_flags & RAM_SHARED) { 2149 bool reused; 2150 g_autofree char *name = cpr_name(mr); 2151 int fd = qemu_ram_get_shared_fd(name, &reused, errp); 2152 2153 if (fd < 0) { 2154 return NULL; 2155 } 2156 2157 /* Use same alignment as qemu_anon_ram_alloc */ 2158 mr->align = QEMU_VMALLOC_ALIGN; 2159 2160 /* 2161 * This can fail if the shm mount size is too small, or alloc from 2162 * fd is not supported, but previous QEMU versions that called 2163 * qemu_anon_ram_alloc for anonymous shared memory could have 2164 * succeeded. Quietly fail and fall back. 2165 * 2166 * After cpr-transfer, new QEMU could create a memory region 2167 * with a larger max size than old, so pass reused to grow the 2168 * region if necessary. The extra space will be usable after a 2169 * guest reset. 2170 */ 2171 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr, 2172 ram_flags, fd, 0, reused, NULL); 2173 if (new_block) { 2174 trace_qemu_ram_alloc_shared(name, new_block->used_length, 2175 new_block->max_length, fd, 2176 new_block->host); 2177 return new_block; 2178 } 2179 2180 cpr_delete_fd(name, 0); 2181 close(fd); 2182 /* fall back to anon allocation */ 2183 } 2184 } 2185 #endif 2186 2187 align = qemu_real_host_page_size(); 2188 align = MAX(align, TARGET_PAGE_SIZE); 2189 size = ROUND_UP(size, align); 2190 max_size = ROUND_UP(max_size, align); 2191 2192 new_block = g_malloc0(sizeof(*new_block)); 2193 new_block->mr = mr; 2194 new_block->resized = resized; 2195 new_block->used_length = size; 2196 new_block->max_length = max_size; 2197 new_block->fd = -1; 2198 new_block->guest_memfd = -1; 2199 new_block->page_size = qemu_real_host_page_size(); 2200 new_block->host = host; 2201 new_block->flags = ram_flags; 2202 ram_block_add(new_block, &local_err); 2203 if (local_err) { 2204 g_free(new_block); 2205 error_propagate(errp, local_err); 2206 return NULL; 2207 } 2208 return new_block; 2209 } 2210 2211 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2212 MemoryRegion *mr, Error **errp) 2213 { 2214 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2215 errp); 2216 } 2217 2218 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2219 MemoryRegion *mr, Error **errp) 2220 { 2221 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD | 2222 RAM_PRIVATE)) == 0); 2223 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2224 } 2225 2226 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2227 qemu_ram_resize_cb resized, 2228 MemoryRegion *mr, Error **errp) 2229 { 2230 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2231 RAM_RESIZEABLE, mr, errp); 2232 } 2233 2234 static void reclaim_ramblock(RAMBlock *block) 2235 { 2236 if (block->flags & RAM_PREALLOC) { 2237 ; 2238 } else if (xen_enabled()) { 2239 xen_invalidate_map_cache_entry(block->host); 2240 #ifndef _WIN32 2241 } else if (block->fd >= 0) { 2242 qemu_ram_munmap(block->fd, block->host, block->max_length); 2243 close(block->fd); 2244 #endif 2245 } else { 2246 qemu_anon_ram_free(block->host, block->max_length); 2247 } 2248 2249 if (block->guest_memfd >= 0) { 2250 close(block->guest_memfd); 2251 ram_block_discard_require(false); 2252 } 2253 2254 g_free(block); 2255 } 2256 2257 void qemu_ram_free(RAMBlock *block) 2258 { 2259 g_autofree char *name = NULL; 2260 2261 if (!block) { 2262 return; 2263 } 2264 2265 if (block->host) { 2266 ram_block_notify_remove(block->host, block->used_length, 2267 block->max_length); 2268 } 2269 2270 qemu_mutex_lock_ramlist(); 2271 name = cpr_name(block->mr); 2272 cpr_delete_fd(name, 0); 2273 QLIST_REMOVE_RCU(block, next); 2274 ram_list.mru_block = NULL; 2275 /* Write list before version */ 2276 smp_wmb(); 2277 ram_list.version++; 2278 call_rcu(block, reclaim_ramblock, rcu); 2279 qemu_mutex_unlock_ramlist(); 2280 } 2281 2282 #ifndef _WIN32 2283 /* Simply remap the given VM memory location from start to start+length */ 2284 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length) 2285 { 2286 int flags, prot; 2287 void *area; 2288 void *host_startaddr = block->host + start; 2289 2290 assert(block->fd < 0); 2291 flags = MAP_FIXED | MAP_ANONYMOUS; 2292 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE; 2293 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2294 prot = PROT_READ; 2295 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2296 area = mmap(host_startaddr, length, prot, flags, -1, 0); 2297 return area != host_startaddr ? -errno : 0; 2298 } 2299 2300 /* 2301 * qemu_ram_remap - remap a single RAM page 2302 * 2303 * @addr: address in ram_addr_t address space. 2304 * 2305 * This function will try remapping a single page of guest RAM identified by 2306 * @addr, essentially discarding memory to recover from previously poisoned 2307 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr 2308 * does not have to point at the start of the page. 2309 * 2310 * This function is only to be used during system resets; it will kill the 2311 * VM if remapping failed. 2312 */ 2313 void qemu_ram_remap(ram_addr_t addr) 2314 { 2315 RAMBlock *block; 2316 uint64_t offset; 2317 void *vaddr; 2318 size_t page_size; 2319 2320 RAMBLOCK_FOREACH(block) { 2321 offset = addr - block->offset; 2322 if (offset < block->max_length) { 2323 /* Respect the pagesize of our RAMBlock */ 2324 page_size = qemu_ram_pagesize(block); 2325 offset = QEMU_ALIGN_DOWN(offset, page_size); 2326 2327 vaddr = ramblock_ptr(block, offset); 2328 if (block->flags & RAM_PREALLOC) { 2329 ; 2330 } else if (xen_enabled()) { 2331 abort(); 2332 } else { 2333 if (ram_block_discard_range(block, offset, page_size) != 0) { 2334 /* 2335 * Fall back to using mmap() only for anonymous mapping, 2336 * as if a backing file is associated we may not be able 2337 * to recover the memory in all cases. 2338 * So don't take the risk of using only mmap and fail now. 2339 */ 2340 if (block->fd >= 0) { 2341 error_report("Could not remap RAM %s:%" PRIx64 "+%" 2342 PRIx64 " +%zx", block->idstr, offset, 2343 block->fd_offset, page_size); 2344 exit(1); 2345 } 2346 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) { 2347 error_report("Could not remap RAM %s:%" PRIx64 " +%zx", 2348 block->idstr, offset, page_size); 2349 exit(1); 2350 } 2351 } 2352 memory_try_enable_merging(vaddr, page_size); 2353 qemu_ram_setup_dump(vaddr, page_size); 2354 } 2355 2356 break; 2357 } 2358 } 2359 } 2360 #endif /* !_WIN32 */ 2361 2362 /* 2363 * Return a host pointer to guest's ram. 2364 * For Xen, foreign mappings get created if they don't already exist. 2365 * 2366 * @block: block for the RAM to lookup (optional and may be NULL). 2367 * @addr: address within the memory region. 2368 * @size: pointer to requested size (optional and may be NULL). 2369 * size may get modified and return a value smaller than 2370 * what was requested. 2371 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2372 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2373 * (optional and may always be set to true). 2374 * 2375 * Called within RCU critical section. 2376 */ 2377 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2378 hwaddr *size, bool lock, 2379 bool is_write) 2380 { 2381 hwaddr len = 0; 2382 2383 if (size && *size == 0) { 2384 return NULL; 2385 } 2386 2387 if (block == NULL) { 2388 block = qemu_get_ram_block(addr); 2389 addr -= block->offset; 2390 } 2391 if (size) { 2392 *size = MIN(*size, block->max_length - addr); 2393 len = *size; 2394 } 2395 2396 if (xen_enabled() && block->host == NULL) { 2397 /* We need to check if the requested address is in the RAM 2398 * because we don't want to map the entire memory in QEMU. 2399 * In that case just map the requested area. 2400 */ 2401 if (xen_mr_is_memory(block->mr)) { 2402 return xen_map_cache(block->mr, block->offset + addr, 2403 len, block->offset, 2404 lock, lock, is_write); 2405 } 2406 2407 block->host = xen_map_cache(block->mr, block->offset, 2408 block->max_length, 2409 block->offset, 2410 1, lock, is_write); 2411 } 2412 2413 return ramblock_ptr(block, addr); 2414 } 2415 2416 /* 2417 * Return a host pointer to ram allocated with qemu_ram_alloc. 2418 * This should not be used for general purpose DMA. Use address_space_map 2419 * or address_space_rw instead. For local memory (e.g. video ram) that the 2420 * device owns, use memory_region_get_ram_ptr. 2421 * 2422 * Called within RCU critical section. 2423 */ 2424 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2425 { 2426 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2427 } 2428 2429 /* Return the offset of a hostpointer within a ramblock */ 2430 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2431 { 2432 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2433 assert((uintptr_t)host >= (uintptr_t)rb->host); 2434 assert(res < rb->max_length); 2435 2436 return res; 2437 } 2438 2439 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2440 ram_addr_t *offset) 2441 { 2442 RAMBlock *block; 2443 uint8_t *host = ptr; 2444 2445 if (xen_enabled()) { 2446 ram_addr_t ram_addr; 2447 RCU_READ_LOCK_GUARD(); 2448 ram_addr = xen_ram_addr_from_mapcache(ptr); 2449 if (ram_addr == RAM_ADDR_INVALID) { 2450 return NULL; 2451 } 2452 2453 block = qemu_get_ram_block(ram_addr); 2454 if (block) { 2455 *offset = ram_addr - block->offset; 2456 } 2457 return block; 2458 } 2459 2460 RCU_READ_LOCK_GUARD(); 2461 block = qatomic_rcu_read(&ram_list.mru_block); 2462 if (block && block->host && host - block->host < block->max_length) { 2463 goto found; 2464 } 2465 2466 RAMBLOCK_FOREACH(block) { 2467 /* This case append when the block is not mapped. */ 2468 if (block->host == NULL) { 2469 continue; 2470 } 2471 if (host - block->host < block->max_length) { 2472 goto found; 2473 } 2474 } 2475 2476 return NULL; 2477 2478 found: 2479 *offset = (host - block->host); 2480 if (round_offset) { 2481 *offset &= TARGET_PAGE_MASK; 2482 } 2483 return block; 2484 } 2485 2486 /* 2487 * Finds the named RAMBlock 2488 * 2489 * name: The name of RAMBlock to find 2490 * 2491 * Returns: RAMBlock (or NULL if not found) 2492 */ 2493 RAMBlock *qemu_ram_block_by_name(const char *name) 2494 { 2495 RAMBlock *block; 2496 2497 RAMBLOCK_FOREACH(block) { 2498 if (!strcmp(name, block->idstr)) { 2499 return block; 2500 } 2501 } 2502 2503 return NULL; 2504 } 2505 2506 /* 2507 * Some of the system routines need to translate from a host pointer 2508 * (typically a TLB entry) back to a ram offset. 2509 */ 2510 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2511 { 2512 RAMBlock *block; 2513 ram_addr_t offset; 2514 2515 block = qemu_ram_block_from_host(ptr, false, &offset); 2516 if (!block) { 2517 return RAM_ADDR_INVALID; 2518 } 2519 2520 return block->offset + offset; 2521 } 2522 2523 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2524 { 2525 ram_addr_t ram_addr; 2526 2527 ram_addr = qemu_ram_addr_from_host(ptr); 2528 if (ram_addr == RAM_ADDR_INVALID) { 2529 error_report("Bad ram pointer %p", ptr); 2530 abort(); 2531 } 2532 return ram_addr; 2533 } 2534 2535 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2536 MemTxAttrs attrs, void *buf, hwaddr len); 2537 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2538 const void *buf, hwaddr len); 2539 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2540 bool is_write, MemTxAttrs attrs); 2541 2542 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2543 unsigned len, MemTxAttrs attrs) 2544 { 2545 subpage_t *subpage = opaque; 2546 uint8_t buf[8]; 2547 MemTxResult res; 2548 2549 #if defined(DEBUG_SUBPAGE) 2550 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2551 subpage, len, addr); 2552 #endif 2553 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2554 if (res) { 2555 return res; 2556 } 2557 *data = ldn_p(buf, len); 2558 return MEMTX_OK; 2559 } 2560 2561 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2562 uint64_t value, unsigned len, MemTxAttrs attrs) 2563 { 2564 subpage_t *subpage = opaque; 2565 uint8_t buf[8]; 2566 2567 #if defined(DEBUG_SUBPAGE) 2568 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2569 " value %"PRIx64"\n", 2570 __func__, subpage, len, addr, value); 2571 #endif 2572 stn_p(buf, len, value); 2573 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2574 } 2575 2576 static bool subpage_accepts(void *opaque, hwaddr addr, 2577 unsigned len, bool is_write, 2578 MemTxAttrs attrs) 2579 { 2580 subpage_t *subpage = opaque; 2581 #if defined(DEBUG_SUBPAGE) 2582 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2583 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2584 #endif 2585 2586 return flatview_access_valid(subpage->fv, addr + subpage->base, 2587 len, is_write, attrs); 2588 } 2589 2590 static const MemoryRegionOps subpage_ops = { 2591 .read_with_attrs = subpage_read, 2592 .write_with_attrs = subpage_write, 2593 .impl.min_access_size = 1, 2594 .impl.max_access_size = 8, 2595 .valid.min_access_size = 1, 2596 .valid.max_access_size = 8, 2597 .valid.accepts = subpage_accepts, 2598 .endianness = DEVICE_NATIVE_ENDIAN, 2599 }; 2600 2601 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2602 uint16_t section) 2603 { 2604 int idx, eidx; 2605 2606 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2607 return -1; 2608 idx = SUBPAGE_IDX(start); 2609 eidx = SUBPAGE_IDX(end); 2610 #if defined(DEBUG_SUBPAGE) 2611 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2612 __func__, mmio, start, end, idx, eidx, section); 2613 #endif 2614 for (; idx <= eidx; idx++) { 2615 mmio->sub_section[idx] = section; 2616 } 2617 2618 return 0; 2619 } 2620 2621 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2622 { 2623 subpage_t *mmio; 2624 2625 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2626 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2627 mmio->fv = fv; 2628 mmio->base = base; 2629 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2630 NULL, TARGET_PAGE_SIZE); 2631 mmio->iomem.subpage = true; 2632 #if defined(DEBUG_SUBPAGE) 2633 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2634 mmio, base, TARGET_PAGE_SIZE); 2635 #endif 2636 2637 return mmio; 2638 } 2639 2640 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2641 { 2642 assert(fv); 2643 MemoryRegionSection section = { 2644 .fv = fv, 2645 .mr = mr, 2646 .offset_within_address_space = 0, 2647 .offset_within_region = 0, 2648 .size = int128_2_64(), 2649 }; 2650 2651 return phys_section_add(map, §ion); 2652 } 2653 2654 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2655 hwaddr index, MemTxAttrs attrs) 2656 { 2657 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2658 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2659 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2660 int section_index = index & ~TARGET_PAGE_MASK; 2661 MemoryRegionSection *ret; 2662 2663 assert(section_index < d->map.sections_nb); 2664 ret = d->map.sections + section_index; 2665 assert(ret->mr); 2666 assert(ret->mr->ops); 2667 2668 return ret; 2669 } 2670 2671 static void io_mem_init(void) 2672 { 2673 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2674 NULL, UINT64_MAX); 2675 } 2676 2677 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2678 { 2679 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2680 uint16_t n; 2681 2682 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2683 assert(n == PHYS_SECTION_UNASSIGNED); 2684 2685 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2686 2687 return d; 2688 } 2689 2690 void address_space_dispatch_free(AddressSpaceDispatch *d) 2691 { 2692 phys_sections_free(&d->map); 2693 g_free(d); 2694 } 2695 2696 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2697 { 2698 } 2699 2700 static void tcg_log_global_after_sync(MemoryListener *listener) 2701 { 2702 CPUAddressSpace *cpuas; 2703 2704 /* Wait for the CPU to end the current TB. This avoids the following 2705 * incorrect race: 2706 * 2707 * vCPU migration 2708 * ---------------------- ------------------------- 2709 * TLB check -> slow path 2710 * notdirty_mem_write 2711 * write to RAM 2712 * mark dirty 2713 * clear dirty flag 2714 * TLB check -> fast path 2715 * read memory 2716 * write to RAM 2717 * 2718 * by pushing the migration thread's memory read after the vCPU thread has 2719 * written the memory. 2720 */ 2721 if (replay_mode == REPLAY_MODE_NONE) { 2722 /* 2723 * VGA can make calls to this function while updating the screen. 2724 * In record/replay mode this causes a deadlock, because 2725 * run_on_cpu waits for rr mutex. Therefore no races are possible 2726 * in this case and no need for making run_on_cpu when 2727 * record/replay is enabled. 2728 */ 2729 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2730 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2731 } 2732 } 2733 2734 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2735 { 2736 CPUAddressSpace *cpuas = data.host_ptr; 2737 2738 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2739 tlb_flush(cpu); 2740 } 2741 2742 static void tcg_commit(MemoryListener *listener) 2743 { 2744 CPUAddressSpace *cpuas; 2745 CPUState *cpu; 2746 2747 assert(tcg_enabled()); 2748 /* since each CPU stores ram addresses in its TLB cache, we must 2749 reset the modified entries */ 2750 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2751 cpu = cpuas->cpu; 2752 2753 /* 2754 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2755 * Otherwise we race between (1) other cpu threads and (2) ongoing 2756 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2757 * 2758 * In addition, queueing the work function will kick the cpu back to 2759 * the main loop, which will end the RCU critical section and reclaim 2760 * the memory data structures. 2761 * 2762 * That said, the listener is also called during realize, before 2763 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2764 */ 2765 if (cpu->halt_cond) { 2766 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2767 } else { 2768 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2769 } 2770 } 2771 2772 static void memory_map_init(void) 2773 { 2774 system_memory = g_malloc(sizeof(*system_memory)); 2775 2776 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2777 address_space_init(&address_space_memory, system_memory, "memory"); 2778 2779 system_io = g_malloc(sizeof(*system_io)); 2780 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2781 65536); 2782 address_space_init(&address_space_io, system_io, "I/O"); 2783 } 2784 2785 MemoryRegion *get_system_memory(void) 2786 { 2787 return system_memory; 2788 } 2789 2790 MemoryRegion *get_system_io(void) 2791 { 2792 return system_io; 2793 } 2794 2795 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2796 hwaddr length) 2797 { 2798 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2799 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2800 2801 /* We know we're only called for RAM MemoryRegions */ 2802 assert(ramaddr != RAM_ADDR_INVALID); 2803 addr += ramaddr; 2804 2805 /* No early return if dirty_log_mask is or becomes 0, because 2806 * cpu_physical_memory_set_dirty_range will still call 2807 * xen_modified_memory. 2808 */ 2809 if (dirty_log_mask) { 2810 dirty_log_mask = 2811 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2812 } 2813 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2814 assert(tcg_enabled()); 2815 tb_invalidate_phys_range(addr, addr + length - 1); 2816 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2817 } 2818 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2819 } 2820 2821 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2822 { 2823 /* 2824 * In principle this function would work on other memory region types too, 2825 * but the ROM device use case is the only one where this operation is 2826 * necessary. Other memory regions should use the 2827 * address_space_read/write() APIs. 2828 */ 2829 assert(memory_region_is_romd(mr)); 2830 2831 invalidate_and_set_dirty(mr, addr, size); 2832 } 2833 2834 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2835 { 2836 unsigned access_size_max = mr->ops->valid.max_access_size; 2837 2838 /* Regions are assumed to support 1-4 byte accesses unless 2839 otherwise specified. */ 2840 if (access_size_max == 0) { 2841 access_size_max = 4; 2842 } 2843 2844 /* Bound the maximum access by the alignment of the address. */ 2845 if (!mr->ops->impl.unaligned) { 2846 unsigned align_size_max = addr & -addr; 2847 if (align_size_max != 0 && align_size_max < access_size_max) { 2848 access_size_max = align_size_max; 2849 } 2850 } 2851 2852 /* Don't attempt accesses larger than the maximum. */ 2853 if (l > access_size_max) { 2854 l = access_size_max; 2855 } 2856 l = pow2floor(l); 2857 2858 return l; 2859 } 2860 2861 bool prepare_mmio_access(MemoryRegion *mr) 2862 { 2863 bool release_lock = false; 2864 2865 if (!bql_locked()) { 2866 bql_lock(); 2867 release_lock = true; 2868 } 2869 if (mr->flush_coalesced_mmio) { 2870 qemu_flush_coalesced_mmio_buffer(); 2871 } 2872 2873 return release_lock; 2874 } 2875 2876 /** 2877 * flatview_access_allowed 2878 * @mr: #MemoryRegion to be accessed 2879 * @attrs: memory transaction attributes 2880 * @addr: address within that memory region 2881 * @len: the number of bytes to access 2882 * 2883 * Check if a memory transaction is allowed. 2884 * 2885 * Returns: true if transaction is allowed, false if denied. 2886 */ 2887 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2888 hwaddr addr, hwaddr len) 2889 { 2890 if (likely(!attrs.memory)) { 2891 return true; 2892 } 2893 if (memory_region_is_ram(mr)) { 2894 return true; 2895 } 2896 qemu_log_mask(LOG_INVALID_MEM, 2897 "Invalid access to non-RAM device at " 2898 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2899 "region '%s'\n", addr, len, memory_region_name(mr)); 2900 return false; 2901 } 2902 2903 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2904 const uint8_t *buf, 2905 hwaddr len, hwaddr mr_addr, 2906 hwaddr *l, MemoryRegion *mr) 2907 { 2908 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2909 return MEMTX_ACCESS_ERROR; 2910 } 2911 2912 if (!memory_access_is_direct(mr, true, attrs)) { 2913 uint64_t val; 2914 MemTxResult result; 2915 bool release_lock = prepare_mmio_access(mr); 2916 2917 *l = memory_access_size(mr, *l, mr_addr); 2918 /* 2919 * XXX: could force current_cpu to NULL to avoid 2920 * potential bugs 2921 */ 2922 2923 /* 2924 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2925 * the buffer by following ldn_he_p(). 2926 */ 2927 #ifdef QEMU_STATIC_ANALYSIS 2928 assert((*l == 1 && len >= 1) || 2929 (*l == 2 && len >= 2) || 2930 (*l == 4 && len >= 4) || 2931 (*l == 8 && len >= 8)); 2932 #endif 2933 val = ldn_he_p(buf, *l); 2934 result = memory_region_dispatch_write(mr, mr_addr, val, 2935 size_memop(*l), attrs); 2936 if (release_lock) { 2937 bql_unlock(); 2938 } 2939 2940 return result; 2941 } else { 2942 /* RAM case */ 2943 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2944 false, true); 2945 2946 memmove(ram_ptr, buf, *l); 2947 invalidate_and_set_dirty(mr, mr_addr, *l); 2948 2949 return MEMTX_OK; 2950 } 2951 } 2952 2953 /* Called within RCU critical section. */ 2954 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2955 MemTxAttrs attrs, 2956 const void *ptr, 2957 hwaddr len, hwaddr mr_addr, 2958 hwaddr l, MemoryRegion *mr) 2959 { 2960 MemTxResult result = MEMTX_OK; 2961 const uint8_t *buf = ptr; 2962 2963 for (;;) { 2964 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2965 mr); 2966 2967 len -= l; 2968 buf += l; 2969 addr += l; 2970 2971 if (!len) { 2972 break; 2973 } 2974 2975 l = len; 2976 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2977 } 2978 2979 return result; 2980 } 2981 2982 /* Called from RCU critical section. */ 2983 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2984 const void *buf, hwaddr len) 2985 { 2986 hwaddr l; 2987 hwaddr mr_addr; 2988 MemoryRegion *mr; 2989 2990 l = len; 2991 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2992 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2993 return MEMTX_ACCESS_ERROR; 2994 } 2995 return flatview_write_continue(fv, addr, attrs, buf, len, 2996 mr_addr, l, mr); 2997 } 2998 2999 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 3000 hwaddr len, hwaddr mr_addr, 3001 hwaddr *l, 3002 MemoryRegion *mr) 3003 { 3004 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 3005 return MEMTX_ACCESS_ERROR; 3006 } 3007 3008 if (!memory_access_is_direct(mr, false, attrs)) { 3009 /* I/O case */ 3010 uint64_t val; 3011 MemTxResult result; 3012 bool release_lock = prepare_mmio_access(mr); 3013 3014 *l = memory_access_size(mr, *l, mr_addr); 3015 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 3016 attrs); 3017 3018 /* 3019 * Assure Coverity (and ourselves) that we are not going to OVERRUN 3020 * the buffer by following stn_he_p(). 3021 */ 3022 #ifdef QEMU_STATIC_ANALYSIS 3023 assert((*l == 1 && len >= 1) || 3024 (*l == 2 && len >= 2) || 3025 (*l == 4 && len >= 4) || 3026 (*l == 8 && len >= 8)); 3027 #endif 3028 stn_he_p(buf, *l, val); 3029 3030 if (release_lock) { 3031 bql_unlock(); 3032 } 3033 return result; 3034 } else { 3035 /* RAM case */ 3036 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 3037 false, false); 3038 3039 memcpy(buf, ram_ptr, *l); 3040 3041 return MEMTX_OK; 3042 } 3043 } 3044 3045 /* Called within RCU critical section. */ 3046 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 3047 MemTxAttrs attrs, void *ptr, 3048 hwaddr len, hwaddr mr_addr, hwaddr l, 3049 MemoryRegion *mr) 3050 { 3051 MemTxResult result = MEMTX_OK; 3052 uint8_t *buf = ptr; 3053 3054 fuzz_dma_read_cb(addr, len, mr); 3055 for (;;) { 3056 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3057 3058 len -= l; 3059 buf += l; 3060 addr += l; 3061 3062 if (!len) { 3063 break; 3064 } 3065 3066 l = len; 3067 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3068 } 3069 3070 return result; 3071 } 3072 3073 /* Called from RCU critical section. */ 3074 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 3075 MemTxAttrs attrs, void *buf, hwaddr len) 3076 { 3077 hwaddr l; 3078 hwaddr mr_addr; 3079 MemoryRegion *mr; 3080 3081 l = len; 3082 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3083 if (!flatview_access_allowed(mr, attrs, addr, len)) { 3084 return MEMTX_ACCESS_ERROR; 3085 } 3086 return flatview_read_continue(fv, addr, attrs, buf, len, 3087 mr_addr, l, mr); 3088 } 3089 3090 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3091 MemTxAttrs attrs, void *buf, hwaddr len) 3092 { 3093 MemTxResult result = MEMTX_OK; 3094 FlatView *fv; 3095 3096 if (len > 0) { 3097 RCU_READ_LOCK_GUARD(); 3098 fv = address_space_to_flatview(as); 3099 result = flatview_read(fv, addr, attrs, buf, len); 3100 } 3101 3102 return result; 3103 } 3104 3105 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 3106 MemTxAttrs attrs, 3107 const void *buf, hwaddr len) 3108 { 3109 MemTxResult result = MEMTX_OK; 3110 FlatView *fv; 3111 3112 if (len > 0) { 3113 RCU_READ_LOCK_GUARD(); 3114 fv = address_space_to_flatview(as); 3115 result = flatview_write(fv, addr, attrs, buf, len); 3116 } 3117 3118 return result; 3119 } 3120 3121 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 3122 void *buf, hwaddr len, bool is_write) 3123 { 3124 if (is_write) { 3125 return address_space_write(as, addr, attrs, buf, len); 3126 } else { 3127 return address_space_read_full(as, addr, attrs, buf, len); 3128 } 3129 } 3130 3131 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3132 uint8_t c, hwaddr len, MemTxAttrs attrs) 3133 { 3134 #define FILLBUF_SIZE 512 3135 uint8_t fillbuf[FILLBUF_SIZE]; 3136 int l; 3137 MemTxResult error = MEMTX_OK; 3138 3139 memset(fillbuf, c, FILLBUF_SIZE); 3140 while (len > 0) { 3141 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3142 error |= address_space_write(as, addr, attrs, fillbuf, l); 3143 len -= l; 3144 addr += l; 3145 } 3146 3147 return error; 3148 } 3149 3150 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3151 hwaddr len, bool is_write) 3152 { 3153 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3154 buf, len, is_write); 3155 } 3156 3157 enum write_rom_type { 3158 WRITE_DATA, 3159 FLUSH_CACHE, 3160 }; 3161 3162 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3163 hwaddr addr, 3164 MemTxAttrs attrs, 3165 const void *ptr, 3166 hwaddr len, 3167 enum write_rom_type type) 3168 { 3169 hwaddr l; 3170 uint8_t *ram_ptr; 3171 hwaddr addr1; 3172 MemoryRegion *mr; 3173 const uint8_t *buf = ptr; 3174 3175 RCU_READ_LOCK_GUARD(); 3176 while (len > 0) { 3177 l = len; 3178 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3179 3180 if (!memory_region_supports_direct_access(mr)) { 3181 l = memory_access_size(mr, l, addr1); 3182 } else { 3183 /* ROM/RAM case */ 3184 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3185 switch (type) { 3186 case WRITE_DATA: 3187 memcpy(ram_ptr, buf, l); 3188 invalidate_and_set_dirty(mr, addr1, l); 3189 break; 3190 case FLUSH_CACHE: 3191 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3192 break; 3193 } 3194 } 3195 len -= l; 3196 buf += l; 3197 addr += l; 3198 } 3199 return MEMTX_OK; 3200 } 3201 3202 /* used for ROM loading : can write in RAM and ROM */ 3203 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3204 MemTxAttrs attrs, 3205 const void *buf, hwaddr len) 3206 { 3207 return address_space_write_rom_internal(as, addr, attrs, 3208 buf, len, WRITE_DATA); 3209 } 3210 3211 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3212 { 3213 /* 3214 * This function should do the same thing as an icache flush that was 3215 * triggered from within the guest. For TCG we are always cache coherent, 3216 * so there is no need to flush anything. For KVM / Xen we need to flush 3217 * the host's instruction cache at least. 3218 */ 3219 if (tcg_enabled()) { 3220 return; 3221 } 3222 3223 address_space_write_rom_internal(&address_space_memory, 3224 start, MEMTXATTRS_UNSPECIFIED, 3225 NULL, len, FLUSH_CACHE); 3226 } 3227 3228 /* 3229 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used 3230 * to detect illegal pointers passed to address_space_unmap. 3231 */ 3232 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed 3233 3234 typedef struct { 3235 uint64_t magic; 3236 MemoryRegion *mr; 3237 hwaddr addr; 3238 size_t len; 3239 uint8_t buffer[]; 3240 } BounceBuffer; 3241 3242 static void 3243 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3244 { 3245 QLIST_REMOVE(client, link); 3246 g_free(client); 3247 } 3248 3249 static void address_space_notify_map_clients_locked(AddressSpace *as) 3250 { 3251 AddressSpaceMapClient *client; 3252 3253 while (!QLIST_EMPTY(&as->map_client_list)) { 3254 client = QLIST_FIRST(&as->map_client_list); 3255 qemu_bh_schedule(client->bh); 3256 address_space_unregister_map_client_do(client); 3257 } 3258 } 3259 3260 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3261 { 3262 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3263 3264 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3265 client->bh = bh; 3266 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3267 /* Write map_client_list before reading bounce_buffer_size. */ 3268 smp_mb(); 3269 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { 3270 address_space_notify_map_clients_locked(as); 3271 } 3272 } 3273 3274 void cpu_exec_init_all(void) 3275 { 3276 qemu_mutex_init(&ram_list.mutex); 3277 /* The data structures we set up here depend on knowing the page size, 3278 * so no more changes can be made after this point. 3279 * In an ideal world, nothing we did before we had finished the 3280 * machine setup would care about the target page size, and we could 3281 * do this much later, rather than requiring board models to state 3282 * up front what their requirements are. 3283 */ 3284 finalize_target_page_bits(); 3285 io_mem_init(); 3286 memory_map_init(); 3287 } 3288 3289 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3290 { 3291 AddressSpaceMapClient *client; 3292 3293 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3294 QLIST_FOREACH(client, &as->map_client_list, link) { 3295 if (client->bh == bh) { 3296 address_space_unregister_map_client_do(client); 3297 break; 3298 } 3299 } 3300 } 3301 3302 static void address_space_notify_map_clients(AddressSpace *as) 3303 { 3304 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3305 address_space_notify_map_clients_locked(as); 3306 } 3307 3308 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3309 bool is_write, MemTxAttrs attrs) 3310 { 3311 MemoryRegion *mr; 3312 hwaddr l, xlat; 3313 3314 while (len > 0) { 3315 l = len; 3316 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3317 if (!memory_access_is_direct(mr, is_write, attrs)) { 3318 l = memory_access_size(mr, l, addr); 3319 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3320 return false; 3321 } 3322 } 3323 3324 len -= l; 3325 addr += l; 3326 } 3327 return true; 3328 } 3329 3330 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3331 hwaddr len, bool is_write, 3332 MemTxAttrs attrs) 3333 { 3334 FlatView *fv; 3335 3336 RCU_READ_LOCK_GUARD(); 3337 fv = address_space_to_flatview(as); 3338 return flatview_access_valid(fv, addr, len, is_write, attrs); 3339 } 3340 3341 static hwaddr 3342 flatview_extend_translation(FlatView *fv, hwaddr addr, 3343 hwaddr target_len, 3344 MemoryRegion *mr, hwaddr base, hwaddr len, 3345 bool is_write, MemTxAttrs attrs) 3346 { 3347 hwaddr done = 0; 3348 hwaddr xlat; 3349 MemoryRegion *this_mr; 3350 3351 for (;;) { 3352 target_len -= len; 3353 addr += len; 3354 done += len; 3355 if (target_len == 0) { 3356 return done; 3357 } 3358 3359 len = target_len; 3360 this_mr = flatview_translate(fv, addr, &xlat, 3361 &len, is_write, attrs); 3362 if (this_mr != mr || xlat != base + done) { 3363 return done; 3364 } 3365 } 3366 } 3367 3368 /* Map a physical memory region into a host virtual address. 3369 * May map a subset of the requested range, given by and returned in *plen. 3370 * May return NULL if resources needed to perform the mapping are exhausted. 3371 * Use only for reads OR writes - not for read-modify-write operations. 3372 * Use address_space_register_map_client() to know when retrying the map 3373 * operation is likely to succeed. 3374 */ 3375 void *address_space_map(AddressSpace *as, 3376 hwaddr addr, 3377 hwaddr *plen, 3378 bool is_write, 3379 MemTxAttrs attrs) 3380 { 3381 hwaddr len = *plen; 3382 hwaddr l, xlat; 3383 MemoryRegion *mr; 3384 FlatView *fv; 3385 3386 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3387 3388 if (len == 0) { 3389 return NULL; 3390 } 3391 3392 l = len; 3393 RCU_READ_LOCK_GUARD(); 3394 fv = address_space_to_flatview(as); 3395 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3396 3397 if (!memory_access_is_direct(mr, is_write, attrs)) { 3398 size_t used = qatomic_read(&as->bounce_buffer_size); 3399 for (;;) { 3400 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); 3401 size_t new_size = used + alloc; 3402 size_t actual = 3403 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); 3404 if (actual == used) { 3405 l = alloc; 3406 break; 3407 } 3408 used = actual; 3409 } 3410 3411 if (l == 0) { 3412 *plen = 0; 3413 return NULL; 3414 } 3415 3416 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); 3417 bounce->magic = BOUNCE_BUFFER_MAGIC; 3418 memory_region_ref(mr); 3419 bounce->mr = mr; 3420 bounce->addr = addr; 3421 bounce->len = l; 3422 3423 if (!is_write) { 3424 flatview_read(fv, addr, attrs, 3425 bounce->buffer, l); 3426 } 3427 3428 *plen = l; 3429 return bounce->buffer; 3430 } 3431 3432 memory_region_ref(mr); 3433 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3434 l, is_write, attrs); 3435 fuzz_dma_read_cb(addr, *plen, mr); 3436 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3437 } 3438 3439 /* Unmaps a memory region previously mapped by address_space_map(). 3440 * Will also mark the memory as dirty if is_write is true. access_len gives 3441 * the amount of memory that was actually read or written by the caller. 3442 */ 3443 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3444 bool is_write, hwaddr access_len) 3445 { 3446 MemoryRegion *mr; 3447 ram_addr_t addr1; 3448 3449 mr = memory_region_from_host(buffer, &addr1); 3450 if (mr != NULL) { 3451 if (is_write) { 3452 invalidate_and_set_dirty(mr, addr1, access_len); 3453 } 3454 if (xen_enabled()) { 3455 xen_invalidate_map_cache_entry(buffer); 3456 } 3457 memory_region_unref(mr); 3458 return; 3459 } 3460 3461 3462 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); 3463 assert(bounce->magic == BOUNCE_BUFFER_MAGIC); 3464 3465 if (is_write) { 3466 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, 3467 bounce->buffer, access_len); 3468 } 3469 3470 qatomic_sub(&as->bounce_buffer_size, bounce->len); 3471 bounce->magic = ~BOUNCE_BUFFER_MAGIC; 3472 memory_region_unref(bounce->mr); 3473 g_free(bounce); 3474 /* Write bounce_buffer_size before reading map_client_list. */ 3475 smp_mb(); 3476 address_space_notify_map_clients(as); 3477 } 3478 3479 void *cpu_physical_memory_map(hwaddr addr, 3480 hwaddr *plen, 3481 bool is_write) 3482 { 3483 return address_space_map(&address_space_memory, addr, plen, is_write, 3484 MEMTXATTRS_UNSPECIFIED); 3485 } 3486 3487 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3488 bool is_write, hwaddr access_len) 3489 { 3490 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3491 } 3492 3493 #define ARG1_DECL AddressSpace *as 3494 #define ARG1 as 3495 #define SUFFIX 3496 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3497 #define RCU_READ_LOCK(...) rcu_read_lock() 3498 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3499 #include "memory_ldst.c.inc" 3500 3501 int64_t address_space_cache_init(MemoryRegionCache *cache, 3502 AddressSpace *as, 3503 hwaddr addr, 3504 hwaddr len, 3505 bool is_write) 3506 { 3507 AddressSpaceDispatch *d; 3508 hwaddr l; 3509 MemoryRegion *mr; 3510 Int128 diff; 3511 3512 assert(len > 0); 3513 3514 l = len; 3515 cache->fv = address_space_get_flatview(as); 3516 d = flatview_to_dispatch(cache->fv); 3517 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3518 3519 /* 3520 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3521 * Take that into account to compute how many bytes are there between 3522 * cache->xlat and the end of the section. 3523 */ 3524 diff = int128_sub(cache->mrs.size, 3525 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3526 l = int128_get64(int128_min(diff, int128_make64(l))); 3527 3528 mr = cache->mrs.mr; 3529 memory_region_ref(mr); 3530 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) { 3531 /* We don't care about the memory attributes here as we're only 3532 * doing this if we found actual RAM, which behaves the same 3533 * regardless of attributes; so UNSPECIFIED is fine. 3534 */ 3535 l = flatview_extend_translation(cache->fv, addr, len, mr, 3536 cache->xlat, l, is_write, 3537 MEMTXATTRS_UNSPECIFIED); 3538 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3539 is_write); 3540 } else { 3541 cache->ptr = NULL; 3542 } 3543 3544 cache->len = l; 3545 cache->is_write = is_write; 3546 return l; 3547 } 3548 3549 void address_space_cache_invalidate(MemoryRegionCache *cache, 3550 hwaddr addr, 3551 hwaddr access_len) 3552 { 3553 assert(cache->is_write); 3554 if (likely(cache->ptr)) { 3555 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3556 } 3557 } 3558 3559 void address_space_cache_destroy(MemoryRegionCache *cache) 3560 { 3561 if (!cache->mrs.mr) { 3562 return; 3563 } 3564 3565 if (xen_enabled()) { 3566 xen_invalidate_map_cache_entry(cache->ptr); 3567 } 3568 memory_region_unref(cache->mrs.mr); 3569 flatview_unref(cache->fv); 3570 cache->mrs.mr = NULL; 3571 cache->fv = NULL; 3572 } 3573 3574 /* Called from RCU critical section. This function has the same 3575 * semantics as address_space_translate, but it only works on a 3576 * predefined range of a MemoryRegion that was mapped with 3577 * address_space_cache_init. 3578 */ 3579 static inline MemoryRegion *address_space_translate_cached( 3580 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3581 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3582 { 3583 MemoryRegionSection section; 3584 MemoryRegion *mr; 3585 IOMMUMemoryRegion *iommu_mr; 3586 AddressSpace *target_as; 3587 3588 assert(!cache->ptr); 3589 *xlat = addr + cache->xlat; 3590 3591 mr = cache->mrs.mr; 3592 iommu_mr = memory_region_get_iommu(mr); 3593 if (!iommu_mr) { 3594 /* MMIO region. */ 3595 return mr; 3596 } 3597 3598 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3599 NULL, is_write, true, 3600 &target_as, attrs); 3601 return section.mr; 3602 } 3603 3604 /* Called within RCU critical section. */ 3605 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3606 const void *ptr, 3607 hwaddr len, 3608 hwaddr mr_addr, 3609 hwaddr l, 3610 MemoryRegion *mr) 3611 { 3612 MemTxResult result = MEMTX_OK; 3613 const uint8_t *buf = ptr; 3614 3615 for (;;) { 3616 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3617 mr); 3618 3619 len -= l; 3620 buf += l; 3621 mr_addr += l; 3622 3623 if (!len) { 3624 break; 3625 } 3626 3627 l = len; 3628 } 3629 3630 return result; 3631 } 3632 3633 /* Called within RCU critical section. */ 3634 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3635 void *ptr, hwaddr len, 3636 hwaddr mr_addr, hwaddr l, 3637 MemoryRegion *mr) 3638 { 3639 MemTxResult result = MEMTX_OK; 3640 uint8_t *buf = ptr; 3641 3642 for (;;) { 3643 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3644 len -= l; 3645 buf += l; 3646 mr_addr += l; 3647 3648 if (!len) { 3649 break; 3650 } 3651 l = len; 3652 } 3653 3654 return result; 3655 } 3656 3657 /* Called from RCU critical section. address_space_read_cached uses this 3658 * out of line function when the target is an MMIO or IOMMU region. 3659 */ 3660 MemTxResult 3661 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3662 void *buf, hwaddr len) 3663 { 3664 hwaddr mr_addr, l; 3665 MemoryRegion *mr; 3666 3667 l = len; 3668 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3669 MEMTXATTRS_UNSPECIFIED); 3670 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3671 buf, len, mr_addr, l, mr); 3672 } 3673 3674 /* Called from RCU critical section. address_space_write_cached uses this 3675 * out of line function when the target is an MMIO or IOMMU region. 3676 */ 3677 MemTxResult 3678 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3679 const void *buf, hwaddr len) 3680 { 3681 hwaddr mr_addr, l; 3682 MemoryRegion *mr; 3683 3684 l = len; 3685 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3686 MEMTXATTRS_UNSPECIFIED); 3687 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3688 buf, len, mr_addr, l, mr); 3689 } 3690 3691 #define ARG1_DECL MemoryRegionCache *cache 3692 #define ARG1 cache 3693 #define SUFFIX _cached_slow 3694 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3695 #define RCU_READ_LOCK() ((void)0) 3696 #define RCU_READ_UNLOCK() ((void)0) 3697 #include "memory_ldst.c.inc" 3698 3699 /* virtual memory access for debug (includes writing to ROM) */ 3700 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3701 void *ptr, size_t len, bool is_write) 3702 { 3703 hwaddr phys_addr; 3704 vaddr l, page; 3705 uint8_t *buf = ptr; 3706 3707 cpu_synchronize_state(cpu); 3708 while (len > 0) { 3709 int asidx; 3710 MemTxAttrs attrs; 3711 MemTxResult res; 3712 3713 page = addr & TARGET_PAGE_MASK; 3714 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3715 asidx = cpu_asidx_from_attrs(cpu, attrs); 3716 /* if no physical page mapped, return an error */ 3717 if (phys_addr == -1) 3718 return -1; 3719 l = (page + TARGET_PAGE_SIZE) - addr; 3720 if (l > len) 3721 l = len; 3722 phys_addr += (addr & ~TARGET_PAGE_MASK); 3723 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf, 3724 l, is_write); 3725 if (res != MEMTX_OK) { 3726 return -1; 3727 } 3728 len -= l; 3729 buf += l; 3730 addr += l; 3731 } 3732 return 0; 3733 } 3734 3735 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3736 { 3737 MemoryRegion*mr; 3738 hwaddr l = 1; 3739 3740 RCU_READ_LOCK_GUARD(); 3741 mr = address_space_translate(&address_space_memory, 3742 phys_addr, &phys_addr, &l, false, 3743 MEMTXATTRS_UNSPECIFIED); 3744 3745 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3746 } 3747 3748 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3749 { 3750 RAMBlock *block; 3751 int ret = 0; 3752 3753 RCU_READ_LOCK_GUARD(); 3754 RAMBLOCK_FOREACH(block) { 3755 ret = func(block, opaque); 3756 if (ret) { 3757 break; 3758 } 3759 } 3760 return ret; 3761 } 3762 3763 /* 3764 * Unmap pages of memory from start to start+length such that 3765 * they a) read as 0, b) Trigger whatever fault mechanism 3766 * the OS provides for postcopy. 3767 * The pages must be unmapped by the end of the function. 3768 * Returns: 0 on success, none-0 on failure 3769 * 3770 */ 3771 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3772 { 3773 int ret = -1; 3774 3775 uint8_t *host_startaddr = rb->host + start; 3776 3777 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3778 error_report("%s: Unaligned start address: %p", 3779 __func__, host_startaddr); 3780 goto err; 3781 } 3782 3783 if ((start + length) <= rb->max_length) { 3784 bool need_madvise, need_fallocate; 3785 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3786 error_report("%s: Unaligned length: %zx", __func__, length); 3787 goto err; 3788 } 3789 3790 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3791 3792 /* The logic here is messy; 3793 * madvise DONTNEED fails for hugepages 3794 * fallocate works on hugepages and shmem 3795 * shared anonymous memory requires madvise REMOVE 3796 */ 3797 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3798 need_fallocate = rb->fd != -1; 3799 if (need_fallocate) { 3800 /* For a file, this causes the area of the file to be zero'd 3801 * if read, and for hugetlbfs also causes it to be unmapped 3802 * so a userfault will trigger. 3803 */ 3804 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3805 /* 3806 * fallocate() will fail with readonly files. Let's print a 3807 * proper error message. 3808 */ 3809 if (rb->flags & RAM_READONLY_FD) { 3810 error_report("%s: Discarding RAM with readonly files is not" 3811 " supported", __func__); 3812 goto err; 3813 3814 } 3815 /* 3816 * We'll discard data from the actual file, even though we only 3817 * have a MAP_PRIVATE mapping, possibly messing with other 3818 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3819 * change that behavior whithout violating the promised 3820 * semantics of ram_block_discard_range(). 3821 * 3822 * Only warn, because it works as long as nobody else uses that 3823 * file. 3824 */ 3825 if (!qemu_ram_is_shared(rb)) { 3826 warn_report_once("%s: Discarding RAM" 3827 " in private file mappings is possibly" 3828 " dangerous, because it will modify the" 3829 " underlying file and will affect other" 3830 " users of the file", __func__); 3831 } 3832 3833 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3834 start + rb->fd_offset, length); 3835 if (ret) { 3836 ret = -errno; 3837 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64 3838 " +%zx (%d)", __func__, rb->idstr, start, 3839 rb->fd_offset, length, ret); 3840 goto err; 3841 } 3842 #else 3843 ret = -ENOSYS; 3844 error_report("%s: fallocate not available/file" 3845 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__, 3846 rb->idstr, start, rb->fd_offset, length, ret); 3847 goto err; 3848 #endif 3849 } 3850 if (need_madvise) { 3851 /* For normal RAM this causes it to be unmapped, 3852 * for shared memory it causes the local mapping to disappear 3853 * and to fall back on the file contents (which we just 3854 * fallocate'd away). 3855 */ 3856 #if defined(CONFIG_MADVISE) 3857 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3858 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3859 } else { 3860 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3861 } 3862 if (ret) { 3863 ret = -errno; 3864 error_report("%s: Failed to discard range " 3865 "%s:%" PRIx64 " +%zx (%d)", 3866 __func__, rb->idstr, start, length, ret); 3867 goto err; 3868 } 3869 #else 3870 ret = -ENOSYS; 3871 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3872 __func__, rb->idstr, start, length, ret); 3873 goto err; 3874 #endif 3875 } 3876 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3877 need_madvise, need_fallocate, ret); 3878 } else { 3879 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3880 __func__, rb->idstr, start, length, rb->max_length); 3881 } 3882 3883 err: 3884 return ret; 3885 } 3886 3887 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3888 size_t length) 3889 { 3890 int ret = -1; 3891 3892 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3893 /* ignore fd_offset with guest_memfd */ 3894 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3895 start, length); 3896 3897 if (ret) { 3898 ret = -errno; 3899 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3900 __func__, rb->idstr, start, length, ret); 3901 } 3902 #else 3903 ret = -ENOSYS; 3904 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3905 __func__, rb->idstr, start, length, ret); 3906 #endif 3907 3908 return ret; 3909 } 3910 3911 bool ramblock_is_pmem(RAMBlock *rb) 3912 { 3913 return rb->flags & RAM_PMEM; 3914 } 3915 3916 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3917 { 3918 if (start == end - 1) { 3919 qemu_printf("\t%3d ", start); 3920 } else { 3921 qemu_printf("\t%3d..%-3d ", start, end - 1); 3922 } 3923 qemu_printf(" skip=%d ", skip); 3924 if (ptr == PHYS_MAP_NODE_NIL) { 3925 qemu_printf(" ptr=NIL"); 3926 } else if (!skip) { 3927 qemu_printf(" ptr=#%d", ptr); 3928 } else { 3929 qemu_printf(" ptr=[%d]", ptr); 3930 } 3931 qemu_printf("\n"); 3932 } 3933 3934 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3935 int128_sub((size), int128_one())) : 0) 3936 3937 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3938 { 3939 int i; 3940 3941 qemu_printf(" Dispatch\n"); 3942 qemu_printf(" Physical sections\n"); 3943 3944 for (i = 0; i < d->map.sections_nb; ++i) { 3945 MemoryRegionSection *s = d->map.sections + i; 3946 const char *names[] = { " [unassigned]", " [not dirty]", 3947 " [ROM]", " [watch]" }; 3948 3949 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3950 " %s%s%s%s%s", 3951 i, 3952 s->offset_within_address_space, 3953 s->offset_within_address_space + MR_SIZE(s->size), 3954 s->mr->name ? s->mr->name : "(noname)", 3955 i < ARRAY_SIZE(names) ? names[i] : "", 3956 s->mr == root ? " [ROOT]" : "", 3957 s == d->mru_section ? " [MRU]" : "", 3958 s->mr->is_iommu ? " [iommu]" : ""); 3959 3960 if (s->mr->alias) { 3961 qemu_printf(" alias=%s", s->mr->alias->name ? 3962 s->mr->alias->name : "noname"); 3963 } 3964 qemu_printf("\n"); 3965 } 3966 3967 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3968 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3969 for (i = 0; i < d->map.nodes_nb; ++i) { 3970 int j, jprev; 3971 PhysPageEntry prev; 3972 Node *n = d->map.nodes + i; 3973 3974 qemu_printf(" [%d]\n", i); 3975 3976 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3977 PhysPageEntry *pe = *n + j; 3978 3979 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3980 continue; 3981 } 3982 3983 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3984 3985 jprev = j; 3986 prev = *pe; 3987 } 3988 3989 if (jprev != ARRAY_SIZE(*n)) { 3990 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3991 } 3992 } 3993 } 3994 3995 /* Require any discards to work. */ 3996 static unsigned int ram_block_discard_required_cnt; 3997 /* Require only coordinated discards to work. */ 3998 static unsigned int ram_block_coordinated_discard_required_cnt; 3999 /* Disable any discards. */ 4000 static unsigned int ram_block_discard_disabled_cnt; 4001 /* Disable only uncoordinated discards. */ 4002 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 4003 static QemuMutex ram_block_discard_disable_mutex; 4004 4005 static void ram_block_discard_disable_mutex_lock(void) 4006 { 4007 static gsize initialized; 4008 4009 if (g_once_init_enter(&initialized)) { 4010 qemu_mutex_init(&ram_block_discard_disable_mutex); 4011 g_once_init_leave(&initialized, 1); 4012 } 4013 qemu_mutex_lock(&ram_block_discard_disable_mutex); 4014 } 4015 4016 static void ram_block_discard_disable_mutex_unlock(void) 4017 { 4018 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 4019 } 4020 4021 int ram_block_discard_disable(bool state) 4022 { 4023 int ret = 0; 4024 4025 ram_block_discard_disable_mutex_lock(); 4026 if (!state) { 4027 ram_block_discard_disabled_cnt--; 4028 } else if (ram_block_discard_required_cnt || 4029 ram_block_coordinated_discard_required_cnt) { 4030 ret = -EBUSY; 4031 } else { 4032 ram_block_discard_disabled_cnt++; 4033 } 4034 ram_block_discard_disable_mutex_unlock(); 4035 return ret; 4036 } 4037 4038 int ram_block_uncoordinated_discard_disable(bool state) 4039 { 4040 int ret = 0; 4041 4042 ram_block_discard_disable_mutex_lock(); 4043 if (!state) { 4044 ram_block_uncoordinated_discard_disabled_cnt--; 4045 } else if (ram_block_discard_required_cnt) { 4046 ret = -EBUSY; 4047 } else { 4048 ram_block_uncoordinated_discard_disabled_cnt++; 4049 } 4050 ram_block_discard_disable_mutex_unlock(); 4051 return ret; 4052 } 4053 4054 int ram_block_discard_require(bool state) 4055 { 4056 int ret = 0; 4057 4058 ram_block_discard_disable_mutex_lock(); 4059 if (!state) { 4060 ram_block_discard_required_cnt--; 4061 } else if (ram_block_discard_disabled_cnt || 4062 ram_block_uncoordinated_discard_disabled_cnt) { 4063 ret = -EBUSY; 4064 } else { 4065 ram_block_discard_required_cnt++; 4066 } 4067 ram_block_discard_disable_mutex_unlock(); 4068 return ret; 4069 } 4070 4071 int ram_block_coordinated_discard_require(bool state) 4072 { 4073 int ret = 0; 4074 4075 ram_block_discard_disable_mutex_lock(); 4076 if (!state) { 4077 ram_block_coordinated_discard_required_cnt--; 4078 } else if (ram_block_discard_disabled_cnt) { 4079 ret = -EBUSY; 4080 } else { 4081 ram_block_coordinated_discard_required_cnt++; 4082 } 4083 ram_block_discard_disable_mutex_unlock(); 4084 return ret; 4085 } 4086 4087 bool ram_block_discard_is_disabled(void) 4088 { 4089 return qatomic_read(&ram_block_discard_disabled_cnt) || 4090 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 4091 } 4092 4093 bool ram_block_discard_is_required(void) 4094 { 4095 return qatomic_read(&ram_block_discard_required_cnt) || 4096 qatomic_read(&ram_block_coordinated_discard_required_cnt); 4097 } 4098