1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/madvise.h" 27 28 #ifdef CONFIG_TCG 29 #include "hw/core/tcg-cpu-ops.h" 30 #endif /* CONFIG_TCG */ 31 32 #include "exec/exec-all.h" 33 #include "exec/target_page.h" 34 #include "hw/qdev-core.h" 35 #include "hw/qdev-properties.h" 36 #include "hw/boards.h" 37 #include "hw/xen/xen.h" 38 #include "sysemu/kvm.h" 39 #include "sysemu/tcg.h" 40 #include "sysemu/qtest.h" 41 #include "qemu/timer.h" 42 #include "qemu/config-file.h" 43 #include "qemu/error-report.h" 44 #include "qemu/qemu-print.h" 45 #include "qemu/log.h" 46 #include "qemu/memalign.h" 47 #include "exec/memory.h" 48 #include "exec/ioport.h" 49 #include "sysemu/dma.h" 50 #include "sysemu/hostmem.h" 51 #include "sysemu/hw_accel.h" 52 #include "sysemu/xen-mapcache.h" 53 #include "trace/trace-root.h" 54 55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 56 #include <linux/falloc.h> 57 #endif 58 59 #include "qemu/rcu_queue.h" 60 #include "qemu/main-loop.h" 61 #include "exec/translate-all.h" 62 #include "sysemu/replay.h" 63 64 #include "exec/memory-internal.h" 65 #include "exec/ram_addr.h" 66 67 #include "qemu/pmem.h" 68 69 #include "migration/vmstate.h" 70 71 #include "qemu/range.h" 72 #ifndef _WIN32 73 #include "qemu/mmap-alloc.h" 74 #endif 75 76 #include "monitor/monitor.h" 77 78 #ifdef CONFIG_LIBDAXCTL 79 #include <daxctl/libdaxctl.h> 80 #endif 81 82 //#define DEBUG_SUBPAGE 83 84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 85 * are protected by the ramlist lock. 86 */ 87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 88 89 static MemoryRegion *system_memory; 90 static MemoryRegion *system_io; 91 92 AddressSpace address_space_io; 93 AddressSpace address_space_memory; 94 95 static MemoryRegion io_mem_unassigned; 96 97 typedef struct PhysPageEntry PhysPageEntry; 98 99 struct PhysPageEntry { 100 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 101 uint32_t skip : 6; 102 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 103 uint32_t ptr : 26; 104 }; 105 106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 107 108 /* Size of the L2 (and L3, etc) page tables. */ 109 #define ADDR_SPACE_BITS 64 110 111 #define P_L2_BITS 9 112 #define P_L2_SIZE (1 << P_L2_BITS) 113 114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 115 116 typedef PhysPageEntry Node[P_L2_SIZE]; 117 118 typedef struct PhysPageMap { 119 struct rcu_head rcu; 120 121 unsigned sections_nb; 122 unsigned sections_nb_alloc; 123 unsigned nodes_nb; 124 unsigned nodes_nb_alloc; 125 Node *nodes; 126 MemoryRegionSection *sections; 127 } PhysPageMap; 128 129 struct AddressSpaceDispatch { 130 MemoryRegionSection *mru_section; 131 /* This is a multi-level map on the physical address space. 132 * The bottom level has pointers to MemoryRegionSections. 133 */ 134 PhysPageEntry phys_map; 135 PhysPageMap map; 136 }; 137 138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 139 typedef struct subpage_t { 140 MemoryRegion iomem; 141 FlatView *fv; 142 hwaddr base; 143 uint16_t sub_section[]; 144 } subpage_t; 145 146 #define PHYS_SECTION_UNASSIGNED 0 147 148 static void io_mem_init(void); 149 static void memory_map_init(void); 150 static void tcg_log_global_after_sync(MemoryListener *listener); 151 static void tcg_commit(MemoryListener *listener); 152 153 /** 154 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 155 * @cpu: the CPU whose AddressSpace this is 156 * @as: the AddressSpace itself 157 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 158 * @tcg_as_listener: listener for tracking changes to the AddressSpace 159 */ 160 struct CPUAddressSpace { 161 CPUState *cpu; 162 AddressSpace *as; 163 struct AddressSpaceDispatch *memory_dispatch; 164 MemoryListener tcg_as_listener; 165 }; 166 167 struct DirtyBitmapSnapshot { 168 ram_addr_t start; 169 ram_addr_t end; 170 unsigned long dirty[]; 171 }; 172 173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 174 { 175 static unsigned alloc_hint = 16; 176 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 177 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 178 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 179 alloc_hint = map->nodes_nb_alloc; 180 } 181 } 182 183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 184 { 185 unsigned i; 186 uint32_t ret; 187 PhysPageEntry e; 188 PhysPageEntry *p; 189 190 ret = map->nodes_nb++; 191 p = map->nodes[ret]; 192 assert(ret != PHYS_MAP_NODE_NIL); 193 assert(ret != map->nodes_nb_alloc); 194 195 e.skip = leaf ? 0 : 1; 196 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 197 for (i = 0; i < P_L2_SIZE; ++i) { 198 memcpy(&p[i], &e, sizeof(e)); 199 } 200 return ret; 201 } 202 203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 204 hwaddr *index, uint64_t *nb, uint16_t leaf, 205 int level) 206 { 207 PhysPageEntry *p; 208 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 209 210 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 211 lp->ptr = phys_map_node_alloc(map, level == 0); 212 } 213 p = map->nodes[lp->ptr]; 214 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 215 216 while (*nb && lp < &p[P_L2_SIZE]) { 217 if ((*index & (step - 1)) == 0 && *nb >= step) { 218 lp->skip = 0; 219 lp->ptr = leaf; 220 *index += step; 221 *nb -= step; 222 } else { 223 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 224 } 225 ++lp; 226 } 227 } 228 229 static void phys_page_set(AddressSpaceDispatch *d, 230 hwaddr index, uint64_t nb, 231 uint16_t leaf) 232 { 233 /* Wildly overreserve - it doesn't matter much. */ 234 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 235 236 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 237 } 238 239 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 240 * and update our entry so we can skip it and go directly to the destination. 241 */ 242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 243 { 244 unsigned valid_ptr = P_L2_SIZE; 245 int valid = 0; 246 PhysPageEntry *p; 247 int i; 248 249 if (lp->ptr == PHYS_MAP_NODE_NIL) { 250 return; 251 } 252 253 p = nodes[lp->ptr]; 254 for (i = 0; i < P_L2_SIZE; i++) { 255 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 256 continue; 257 } 258 259 valid_ptr = i; 260 valid++; 261 if (p[i].skip) { 262 phys_page_compact(&p[i], nodes); 263 } 264 } 265 266 /* We can only compress if there's only one child. */ 267 if (valid != 1) { 268 return; 269 } 270 271 assert(valid_ptr < P_L2_SIZE); 272 273 /* Don't compress if it won't fit in the # of bits we have. */ 274 if (P_L2_LEVELS >= (1 << 6) && 275 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 276 return; 277 } 278 279 lp->ptr = p[valid_ptr].ptr; 280 if (!p[valid_ptr].skip) { 281 /* If our only child is a leaf, make this a leaf. */ 282 /* By design, we should have made this node a leaf to begin with so we 283 * should never reach here. 284 * But since it's so simple to handle this, let's do it just in case we 285 * change this rule. 286 */ 287 lp->skip = 0; 288 } else { 289 lp->skip += p[valid_ptr].skip; 290 } 291 } 292 293 void address_space_dispatch_compact(AddressSpaceDispatch *d) 294 { 295 if (d->phys_map.skip) { 296 phys_page_compact(&d->phys_map, d->map.nodes); 297 } 298 } 299 300 static inline bool section_covers_addr(const MemoryRegionSection *section, 301 hwaddr addr) 302 { 303 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 304 * the section must cover the entire address space. 305 */ 306 return int128_gethi(section->size) || 307 range_covers_byte(section->offset_within_address_space, 308 int128_getlo(section->size), addr); 309 } 310 311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 312 { 313 PhysPageEntry lp = d->phys_map, *p; 314 Node *nodes = d->map.nodes; 315 MemoryRegionSection *sections = d->map.sections; 316 hwaddr index = addr >> TARGET_PAGE_BITS; 317 int i; 318 319 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 320 if (lp.ptr == PHYS_MAP_NODE_NIL) { 321 return §ions[PHYS_SECTION_UNASSIGNED]; 322 } 323 p = nodes[lp.ptr]; 324 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 325 } 326 327 if (section_covers_addr(§ions[lp.ptr], addr)) { 328 return §ions[lp.ptr]; 329 } else { 330 return §ions[PHYS_SECTION_UNASSIGNED]; 331 } 332 } 333 334 /* Called from RCU critical section */ 335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 336 hwaddr addr, 337 bool resolve_subpage) 338 { 339 MemoryRegionSection *section = qatomic_read(&d->mru_section); 340 subpage_t *subpage; 341 342 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 343 !section_covers_addr(section, addr)) { 344 section = phys_page_find(d, addr); 345 qatomic_set(&d->mru_section, section); 346 } 347 if (resolve_subpage && section->mr->subpage) { 348 subpage = container_of(section->mr, subpage_t, iomem); 349 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 350 } 351 return section; 352 } 353 354 /* Called from RCU critical section */ 355 static MemoryRegionSection * 356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 357 hwaddr *plen, bool resolve_subpage) 358 { 359 MemoryRegionSection *section; 360 MemoryRegion *mr; 361 Int128 diff; 362 363 section = address_space_lookup_region(d, addr, resolve_subpage); 364 /* Compute offset within MemoryRegionSection */ 365 addr -= section->offset_within_address_space; 366 367 /* Compute offset within MemoryRegion */ 368 *xlat = addr + section->offset_within_region; 369 370 mr = section->mr; 371 372 /* MMIO registers can be expected to perform full-width accesses based only 373 * on their address, without considering adjacent registers that could 374 * decode to completely different MemoryRegions. When such registers 375 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 376 * regions overlap wildly. For this reason we cannot clamp the accesses 377 * here. 378 * 379 * If the length is small (as is the case for address_space_ldl/stl), 380 * everything works fine. If the incoming length is large, however, 381 * the caller really has to do the clamping through memory_access_size. 382 */ 383 if (memory_region_is_ram(mr)) { 384 diff = int128_sub(section->size, int128_make64(addr)); 385 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 386 } 387 return section; 388 } 389 390 /** 391 * address_space_translate_iommu - translate an address through an IOMMU 392 * memory region and then through the target address space. 393 * 394 * @iommu_mr: the IOMMU memory region that we start the translation from 395 * @addr: the address to be translated through the MMU 396 * @xlat: the translated address offset within the destination memory region. 397 * It cannot be %NULL. 398 * @plen_out: valid read/write length of the translated address. It 399 * cannot be %NULL. 400 * @page_mask_out: page mask for the translated address. This 401 * should only be meaningful for IOMMU translated 402 * addresses, since there may be huge pages that this bit 403 * would tell. It can be %NULL if we don't care about it. 404 * @is_write: whether the translation operation is for write 405 * @is_mmio: whether this can be MMIO, set true if it can 406 * @target_as: the address space targeted by the IOMMU 407 * @attrs: transaction attributes 408 * 409 * This function is called from RCU critical section. It is the common 410 * part of flatview_do_translate and address_space_translate_cached. 411 */ 412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 413 hwaddr *xlat, 414 hwaddr *plen_out, 415 hwaddr *page_mask_out, 416 bool is_write, 417 bool is_mmio, 418 AddressSpace **target_as, 419 MemTxAttrs attrs) 420 { 421 MemoryRegionSection *section; 422 hwaddr page_mask = (hwaddr)-1; 423 424 do { 425 hwaddr addr = *xlat; 426 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 427 int iommu_idx = 0; 428 IOMMUTLBEntry iotlb; 429 430 if (imrc->attrs_to_index) { 431 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 432 } 433 434 iotlb = imrc->translate(iommu_mr, addr, is_write ? 435 IOMMU_WO : IOMMU_RO, iommu_idx); 436 437 if (!(iotlb.perm & (1 << is_write))) { 438 goto unassigned; 439 } 440 441 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 442 | (addr & iotlb.addr_mask)); 443 page_mask &= iotlb.addr_mask; 444 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 445 *target_as = iotlb.target_as; 446 447 section = address_space_translate_internal( 448 address_space_to_dispatch(iotlb.target_as), addr, xlat, 449 plen_out, is_mmio); 450 451 iommu_mr = memory_region_get_iommu(section->mr); 452 } while (unlikely(iommu_mr)); 453 454 if (page_mask_out) { 455 *page_mask_out = page_mask; 456 } 457 return *section; 458 459 unassigned: 460 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 461 } 462 463 /** 464 * flatview_do_translate - translate an address in FlatView 465 * 466 * @fv: the flat view that we want to translate on 467 * @addr: the address to be translated in above address space 468 * @xlat: the translated address offset within memory region. It 469 * cannot be @NULL. 470 * @plen_out: valid read/write length of the translated address. It 471 * can be @NULL when we don't care about it. 472 * @page_mask_out: page mask for the translated address. This 473 * should only be meaningful for IOMMU translated 474 * addresses, since there may be huge pages that this bit 475 * would tell. It can be @NULL if we don't care about it. 476 * @is_write: whether the translation operation is for write 477 * @is_mmio: whether this can be MMIO, set true if it can 478 * @target_as: the address space targeted by the IOMMU 479 * @attrs: memory transaction attributes 480 * 481 * This function is called from RCU critical section 482 */ 483 static MemoryRegionSection flatview_do_translate(FlatView *fv, 484 hwaddr addr, 485 hwaddr *xlat, 486 hwaddr *plen_out, 487 hwaddr *page_mask_out, 488 bool is_write, 489 bool is_mmio, 490 AddressSpace **target_as, 491 MemTxAttrs attrs) 492 { 493 MemoryRegionSection *section; 494 IOMMUMemoryRegion *iommu_mr; 495 hwaddr plen = (hwaddr)(-1); 496 497 if (!plen_out) { 498 plen_out = &plen; 499 } 500 501 section = address_space_translate_internal( 502 flatview_to_dispatch(fv), addr, xlat, 503 plen_out, is_mmio); 504 505 iommu_mr = memory_region_get_iommu(section->mr); 506 if (unlikely(iommu_mr)) { 507 return address_space_translate_iommu(iommu_mr, xlat, 508 plen_out, page_mask_out, 509 is_write, is_mmio, 510 target_as, attrs); 511 } 512 if (page_mask_out) { 513 /* Not behind an IOMMU, use default page size. */ 514 *page_mask_out = ~TARGET_PAGE_MASK; 515 } 516 517 return *section; 518 } 519 520 /* Called from RCU critical section */ 521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 522 bool is_write, MemTxAttrs attrs) 523 { 524 MemoryRegionSection section; 525 hwaddr xlat, page_mask; 526 527 /* 528 * This can never be MMIO, and we don't really care about plen, 529 * but page mask. 530 */ 531 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 532 NULL, &page_mask, is_write, false, &as, 533 attrs); 534 535 /* Illegal translation */ 536 if (section.mr == &io_mem_unassigned) { 537 goto iotlb_fail; 538 } 539 540 /* Convert memory region offset into address space offset */ 541 xlat += section.offset_within_address_space - 542 section.offset_within_region; 543 544 return (IOMMUTLBEntry) { 545 .target_as = as, 546 .iova = addr & ~page_mask, 547 .translated_addr = xlat & ~page_mask, 548 .addr_mask = page_mask, 549 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 550 .perm = IOMMU_RW, 551 }; 552 553 iotlb_fail: 554 return (IOMMUTLBEntry) {0}; 555 } 556 557 /* Called from RCU critical section */ 558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 559 hwaddr *plen, bool is_write, 560 MemTxAttrs attrs) 561 { 562 MemoryRegion *mr; 563 MemoryRegionSection section; 564 AddressSpace *as = NULL; 565 566 /* This can be MMIO, so setup MMIO bit. */ 567 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 568 is_write, true, &as, attrs); 569 mr = section.mr; 570 571 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 572 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 573 *plen = MIN(page, *plen); 574 } 575 576 return mr; 577 } 578 579 typedef struct TCGIOMMUNotifier { 580 IOMMUNotifier n; 581 MemoryRegion *mr; 582 CPUState *cpu; 583 int iommu_idx; 584 bool active; 585 } TCGIOMMUNotifier; 586 587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 588 { 589 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 590 591 if (!notifier->active) { 592 return; 593 } 594 tlb_flush(notifier->cpu); 595 notifier->active = false; 596 /* We leave the notifier struct on the list to avoid reallocating it later. 597 * Generally the number of IOMMUs a CPU deals with will be small. 598 * In any case we can't unregister the iommu notifier from a notify 599 * callback. 600 */ 601 } 602 603 static void tcg_register_iommu_notifier(CPUState *cpu, 604 IOMMUMemoryRegion *iommu_mr, 605 int iommu_idx) 606 { 607 /* Make sure this CPU has an IOMMU notifier registered for this 608 * IOMMU/IOMMU index combination, so that we can flush its TLB 609 * when the IOMMU tells us the mappings we've cached have changed. 610 */ 611 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 612 TCGIOMMUNotifier *notifier = NULL; 613 int i; 614 615 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 616 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 617 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 618 break; 619 } 620 } 621 if (i == cpu->iommu_notifiers->len) { 622 /* Not found, add a new entry at the end of the array */ 623 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 624 notifier = g_new0(TCGIOMMUNotifier, 1); 625 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 626 627 notifier->mr = mr; 628 notifier->iommu_idx = iommu_idx; 629 notifier->cpu = cpu; 630 /* Rather than trying to register interest in the specific part 631 * of the iommu's address space that we've accessed and then 632 * expand it later as subsequent accesses touch more of it, we 633 * just register interest in the whole thing, on the assumption 634 * that iommu reconfiguration will be rare. 635 */ 636 iommu_notifier_init(¬ifier->n, 637 tcg_iommu_unmap_notify, 638 IOMMU_NOTIFIER_UNMAP, 639 0, 640 HWADDR_MAX, 641 iommu_idx); 642 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 643 &error_fatal); 644 } 645 646 if (!notifier->active) { 647 notifier->active = true; 648 } 649 } 650 651 void tcg_iommu_free_notifier_list(CPUState *cpu) 652 { 653 /* Destroy the CPU's notifier list */ 654 int i; 655 TCGIOMMUNotifier *notifier; 656 657 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 658 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 659 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 660 g_free(notifier); 661 } 662 g_array_free(cpu->iommu_notifiers, true); 663 } 664 665 void tcg_iommu_init_notifier_list(CPUState *cpu) 666 { 667 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 668 } 669 670 /* Called from RCU critical section */ 671 MemoryRegionSection * 672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 673 hwaddr *xlat, hwaddr *plen, 674 MemTxAttrs attrs, int *prot) 675 { 676 MemoryRegionSection *section; 677 IOMMUMemoryRegion *iommu_mr; 678 IOMMUMemoryRegionClass *imrc; 679 IOMMUTLBEntry iotlb; 680 int iommu_idx; 681 hwaddr addr = orig_addr; 682 AddressSpaceDispatch *d = 683 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Add a watchpoint. */ 784 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 785 int flags, CPUWatchpoint **watchpoint) 786 { 787 CPUWatchpoint *wp; 788 vaddr in_page; 789 790 /* forbid ranges which are empty or run off the end of the address space */ 791 if (len == 0 || (addr + len - 1) < addr) { 792 error_report("tried to set invalid watchpoint at %" 793 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); 794 return -EINVAL; 795 } 796 wp = g_malloc(sizeof(*wp)); 797 798 wp->vaddr = addr; 799 wp->len = len; 800 wp->flags = flags; 801 802 /* keep all GDB-injected watchpoints in front */ 803 if (flags & BP_GDB) { 804 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); 805 } else { 806 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); 807 } 808 809 in_page = -(addr | TARGET_PAGE_MASK); 810 if (len <= in_page) { 811 tlb_flush_page(cpu, addr); 812 } else { 813 tlb_flush(cpu); 814 } 815 816 if (watchpoint) 817 *watchpoint = wp; 818 return 0; 819 } 820 821 /* Remove a specific watchpoint. */ 822 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, 823 int flags) 824 { 825 CPUWatchpoint *wp; 826 827 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 828 if (addr == wp->vaddr && len == wp->len 829 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { 830 cpu_watchpoint_remove_by_ref(cpu, wp); 831 return 0; 832 } 833 } 834 return -ENOENT; 835 } 836 837 /* Remove a specific watchpoint by reference. */ 838 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) 839 { 840 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); 841 842 tlb_flush_page(cpu, watchpoint->vaddr); 843 844 g_free(watchpoint); 845 } 846 847 /* Remove all matching watchpoints. */ 848 void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 849 { 850 CPUWatchpoint *wp, *next; 851 852 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { 853 if (wp->flags & mask) { 854 cpu_watchpoint_remove_by_ref(cpu, wp); 855 } 856 } 857 } 858 859 #ifdef CONFIG_TCG 860 /* Return true if this watchpoint address matches the specified 861 * access (ie the address range covered by the watchpoint overlaps 862 * partially or completely with the address range covered by the 863 * access). 864 */ 865 static inline bool watchpoint_address_matches(CPUWatchpoint *wp, 866 vaddr addr, vaddr len) 867 { 868 /* We know the lengths are non-zero, but a little caution is 869 * required to avoid errors in the case where the range ends 870 * exactly at the top of the address space and so addr + len 871 * wraps round to zero. 872 */ 873 vaddr wpend = wp->vaddr + wp->len - 1; 874 vaddr addrend = addr + len - 1; 875 876 return !(addr > wpend || wp->vaddr > addrend); 877 } 878 879 /* Return flags for watchpoints that match addr + prot. */ 880 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) 881 { 882 CPUWatchpoint *wp; 883 int ret = 0; 884 885 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 886 if (watchpoint_address_matches(wp, addr, len)) { 887 ret |= wp->flags; 888 } 889 } 890 return ret; 891 } 892 893 /* Generate a debug exception if a watchpoint has been hit. */ 894 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 895 MemTxAttrs attrs, int flags, uintptr_t ra) 896 { 897 CPUClass *cc = CPU_GET_CLASS(cpu); 898 CPUWatchpoint *wp; 899 900 assert(tcg_enabled()); 901 if (cpu->watchpoint_hit) { 902 /* 903 * We re-entered the check after replacing the TB. 904 * Now raise the debug interrupt so that it will 905 * trigger after the current instruction. 906 */ 907 qemu_mutex_lock_iothread(); 908 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); 909 qemu_mutex_unlock_iothread(); 910 return; 911 } 912 913 if (cc->tcg_ops->adjust_watchpoint_address) { 914 /* this is currently used only by ARM BE32 */ 915 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len); 916 } 917 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 918 if (watchpoint_address_matches(wp, addr, len) 919 && (wp->flags & flags)) { 920 if (replay_running_debug()) { 921 /* 922 * replay_breakpoint reads icount. 923 * Force recompile to succeed, because icount may 924 * be read only at the end of the block. 925 */ 926 if (!cpu->can_do_io) { 927 /* Force execution of one insn next time. */ 928 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 929 cpu_loop_exit_restore(cpu, ra); 930 } 931 /* 932 * Don't process the watchpoints when we are 933 * in a reverse debugging operation. 934 */ 935 replay_breakpoint(); 936 return; 937 } 938 if (flags == BP_MEM_READ) { 939 wp->flags |= BP_WATCHPOINT_HIT_READ; 940 } else { 941 wp->flags |= BP_WATCHPOINT_HIT_WRITE; 942 } 943 wp->hitaddr = MAX(addr, wp->vaddr); 944 wp->hitattrs = attrs; 945 946 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint && 947 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) { 948 wp->flags &= ~BP_WATCHPOINT_HIT; 949 continue; 950 } 951 cpu->watchpoint_hit = wp; 952 953 mmap_lock(); 954 /* This call also restores vCPU state */ 955 tb_check_watchpoint(cpu, ra); 956 if (wp->flags & BP_STOP_BEFORE_ACCESS) { 957 cpu->exception_index = EXCP_DEBUG; 958 mmap_unlock(); 959 cpu_loop_exit(cpu); 960 } else { 961 /* Force execution of one insn next time. */ 962 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu); 963 mmap_unlock(); 964 cpu_loop_exit_noexc(cpu); 965 } 966 } else { 967 wp->flags &= ~BP_WATCHPOINT_HIT; 968 } 969 } 970 } 971 972 #endif /* CONFIG_TCG */ 973 974 /* Called from RCU critical section */ 975 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 976 { 977 RAMBlock *block; 978 979 block = qatomic_rcu_read(&ram_list.mru_block); 980 if (block && addr - block->offset < block->max_length) { 981 return block; 982 } 983 RAMBLOCK_FOREACH(block) { 984 if (addr - block->offset < block->max_length) { 985 goto found; 986 } 987 } 988 989 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 990 abort(); 991 992 found: 993 /* It is safe to write mru_block outside the iothread lock. This 994 * is what happens: 995 * 996 * mru_block = xxx 997 * rcu_read_unlock() 998 * xxx removed from list 999 * rcu_read_lock() 1000 * read mru_block 1001 * mru_block = NULL; 1002 * call_rcu(reclaim_ramblock, xxx); 1003 * rcu_read_unlock() 1004 * 1005 * qatomic_rcu_set is not needed here. The block was already published 1006 * when it was placed into the list. Here we're just making an extra 1007 * copy of the pointer. 1008 */ 1009 ram_list.mru_block = block; 1010 return block; 1011 } 1012 1013 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 1014 { 1015 CPUState *cpu; 1016 ram_addr_t start1; 1017 RAMBlock *block; 1018 ram_addr_t end; 1019 1020 assert(tcg_enabled()); 1021 end = TARGET_PAGE_ALIGN(start + length); 1022 start &= TARGET_PAGE_MASK; 1023 1024 RCU_READ_LOCK_GUARD(); 1025 block = qemu_get_ram_block(start); 1026 assert(block == qemu_get_ram_block(end - 1)); 1027 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 1028 CPU_FOREACH(cpu) { 1029 tlb_reset_dirty(cpu, start1, length); 1030 } 1031 } 1032 1033 /* Note: start and end must be within the same ram block. */ 1034 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 1035 ram_addr_t length, 1036 unsigned client) 1037 { 1038 DirtyMemoryBlocks *blocks; 1039 unsigned long end, page, start_page; 1040 bool dirty = false; 1041 RAMBlock *ramblock; 1042 uint64_t mr_offset, mr_size; 1043 1044 if (length == 0) { 1045 return false; 1046 } 1047 1048 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 1049 start_page = start >> TARGET_PAGE_BITS; 1050 page = start_page; 1051 1052 WITH_RCU_READ_LOCK_GUARD() { 1053 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1054 ramblock = qemu_get_ram_block(start); 1055 /* Range sanity check on the ramblock */ 1056 assert(start >= ramblock->offset && 1057 start + length <= ramblock->offset + ramblock->used_length); 1058 1059 while (page < end) { 1060 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1061 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1062 unsigned long num = MIN(end - page, 1063 DIRTY_MEMORY_BLOCK_SIZE - offset); 1064 1065 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 1066 offset, num); 1067 page += num; 1068 } 1069 1070 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 1071 mr_size = (end - start_page) << TARGET_PAGE_BITS; 1072 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 1073 } 1074 1075 if (dirty && tcg_enabled()) { 1076 tlb_reset_dirty_range_all(start, length); 1077 } 1078 1079 return dirty; 1080 } 1081 1082 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 1083 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 1084 { 1085 DirtyMemoryBlocks *blocks; 1086 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 1087 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 1088 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 1089 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 1090 DirtyBitmapSnapshot *snap; 1091 unsigned long page, end, dest; 1092 1093 snap = g_malloc0(sizeof(*snap) + 1094 ((last - first) >> (TARGET_PAGE_BITS + 3))); 1095 snap->start = first; 1096 snap->end = last; 1097 1098 page = first >> TARGET_PAGE_BITS; 1099 end = last >> TARGET_PAGE_BITS; 1100 dest = 0; 1101 1102 WITH_RCU_READ_LOCK_GUARD() { 1103 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1104 1105 while (page < end) { 1106 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1107 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1108 unsigned long num = MIN(end - page, 1109 DIRTY_MEMORY_BLOCK_SIZE - offset); 1110 1111 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 1112 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 1113 offset >>= BITS_PER_LEVEL; 1114 1115 bitmap_copy_and_clear_atomic(snap->dirty + dest, 1116 blocks->blocks[idx] + offset, 1117 num); 1118 page += num; 1119 dest += num >> BITS_PER_LEVEL; 1120 } 1121 } 1122 1123 if (tcg_enabled()) { 1124 tlb_reset_dirty_range_all(start, length); 1125 } 1126 1127 memory_region_clear_dirty_bitmap(mr, offset, length); 1128 1129 return snap; 1130 } 1131 1132 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1133 ram_addr_t start, 1134 ram_addr_t length) 1135 { 1136 unsigned long page, end; 1137 1138 assert(start >= snap->start); 1139 assert(start + length <= snap->end); 1140 1141 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1142 page = (start - snap->start) >> TARGET_PAGE_BITS; 1143 1144 while (page < end) { 1145 if (test_bit(page, snap->dirty)) { 1146 return true; 1147 } 1148 page++; 1149 } 1150 return false; 1151 } 1152 1153 /* Called from RCU critical section */ 1154 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1155 MemoryRegionSection *section) 1156 { 1157 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1158 return section - d->map.sections; 1159 } 1160 1161 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1162 uint16_t section); 1163 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1164 1165 static uint16_t phys_section_add(PhysPageMap *map, 1166 MemoryRegionSection *section) 1167 { 1168 /* The physical section number is ORed with a page-aligned 1169 * pointer to produce the iotlb entries. Thus it should 1170 * never overflow into the page-aligned value. 1171 */ 1172 assert(map->sections_nb < TARGET_PAGE_SIZE); 1173 1174 if (map->sections_nb == map->sections_nb_alloc) { 1175 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1176 map->sections = g_renew(MemoryRegionSection, map->sections, 1177 map->sections_nb_alloc); 1178 } 1179 map->sections[map->sections_nb] = *section; 1180 memory_region_ref(section->mr); 1181 return map->sections_nb++; 1182 } 1183 1184 static void phys_section_destroy(MemoryRegion *mr) 1185 { 1186 bool have_sub_page = mr->subpage; 1187 1188 memory_region_unref(mr); 1189 1190 if (have_sub_page) { 1191 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1192 object_unref(OBJECT(&subpage->iomem)); 1193 g_free(subpage); 1194 } 1195 } 1196 1197 static void phys_sections_free(PhysPageMap *map) 1198 { 1199 while (map->sections_nb > 0) { 1200 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1201 phys_section_destroy(section->mr); 1202 } 1203 g_free(map->sections); 1204 g_free(map->nodes); 1205 } 1206 1207 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1208 { 1209 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1210 subpage_t *subpage; 1211 hwaddr base = section->offset_within_address_space 1212 & TARGET_PAGE_MASK; 1213 MemoryRegionSection *existing = phys_page_find(d, base); 1214 MemoryRegionSection subsection = { 1215 .offset_within_address_space = base, 1216 .size = int128_make64(TARGET_PAGE_SIZE), 1217 }; 1218 hwaddr start, end; 1219 1220 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1221 1222 if (!(existing->mr->subpage)) { 1223 subpage = subpage_init(fv, base); 1224 subsection.fv = fv; 1225 subsection.mr = &subpage->iomem; 1226 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1227 phys_section_add(&d->map, &subsection)); 1228 } else { 1229 subpage = container_of(existing->mr, subpage_t, iomem); 1230 } 1231 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1232 end = start + int128_get64(section->size) - 1; 1233 subpage_register(subpage, start, end, 1234 phys_section_add(&d->map, section)); 1235 } 1236 1237 1238 static void register_multipage(FlatView *fv, 1239 MemoryRegionSection *section) 1240 { 1241 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1242 hwaddr start_addr = section->offset_within_address_space; 1243 uint16_t section_index = phys_section_add(&d->map, section); 1244 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1245 TARGET_PAGE_BITS)); 1246 1247 assert(num_pages); 1248 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1249 } 1250 1251 /* 1252 * The range in *section* may look like this: 1253 * 1254 * |s|PPPPPPP|s| 1255 * 1256 * where s stands for subpage and P for page. 1257 */ 1258 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1259 { 1260 MemoryRegionSection remain = *section; 1261 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1262 1263 /* register first subpage */ 1264 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1265 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1266 - remain.offset_within_address_space; 1267 1268 MemoryRegionSection now = remain; 1269 now.size = int128_min(int128_make64(left), now.size); 1270 register_subpage(fv, &now); 1271 if (int128_eq(remain.size, now.size)) { 1272 return; 1273 } 1274 remain.size = int128_sub(remain.size, now.size); 1275 remain.offset_within_address_space += int128_get64(now.size); 1276 remain.offset_within_region += int128_get64(now.size); 1277 } 1278 1279 /* register whole pages */ 1280 if (int128_ge(remain.size, page_size)) { 1281 MemoryRegionSection now = remain; 1282 now.size = int128_and(now.size, int128_neg(page_size)); 1283 register_multipage(fv, &now); 1284 if (int128_eq(remain.size, now.size)) { 1285 return; 1286 } 1287 remain.size = int128_sub(remain.size, now.size); 1288 remain.offset_within_address_space += int128_get64(now.size); 1289 remain.offset_within_region += int128_get64(now.size); 1290 } 1291 1292 /* register last subpage */ 1293 register_subpage(fv, &remain); 1294 } 1295 1296 void qemu_flush_coalesced_mmio_buffer(void) 1297 { 1298 if (kvm_enabled()) 1299 kvm_flush_coalesced_mmio_buffer(); 1300 } 1301 1302 void qemu_mutex_lock_ramlist(void) 1303 { 1304 qemu_mutex_lock(&ram_list.mutex); 1305 } 1306 1307 void qemu_mutex_unlock_ramlist(void) 1308 { 1309 qemu_mutex_unlock(&ram_list.mutex); 1310 } 1311 1312 GString *ram_block_format(void) 1313 { 1314 RAMBlock *block; 1315 char *psize; 1316 GString *buf = g_string_new(""); 1317 1318 RCU_READ_LOCK_GUARD(); 1319 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n", 1320 "Block Name", "PSize", "Offset", "Used", "Total"); 1321 RAMBLOCK_FOREACH(block) { 1322 psize = size_to_str(block->page_size); 1323 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1324 " 0x%016" PRIx64 "\n", block->idstr, psize, 1325 (uint64_t)block->offset, 1326 (uint64_t)block->used_length, 1327 (uint64_t)block->max_length); 1328 g_free(psize); 1329 } 1330 1331 return buf; 1332 } 1333 1334 static int find_min_backend_pagesize(Object *obj, void *opaque) 1335 { 1336 long *hpsize_min = opaque; 1337 1338 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1339 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1340 long hpsize = host_memory_backend_pagesize(backend); 1341 1342 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1343 *hpsize_min = hpsize; 1344 } 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int find_max_backend_pagesize(Object *obj, void *opaque) 1351 { 1352 long *hpsize_max = opaque; 1353 1354 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1355 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1356 long hpsize = host_memory_backend_pagesize(backend); 1357 1358 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1359 *hpsize_max = hpsize; 1360 } 1361 } 1362 1363 return 0; 1364 } 1365 1366 /* 1367 * TODO: We assume right now that all mapped host memory backends are 1368 * used as RAM, however some might be used for different purposes. 1369 */ 1370 long qemu_minrampagesize(void) 1371 { 1372 long hpsize = LONG_MAX; 1373 Object *memdev_root = object_resolve_path("/objects", NULL); 1374 1375 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1376 return hpsize; 1377 } 1378 1379 long qemu_maxrampagesize(void) 1380 { 1381 long pagesize = 0; 1382 Object *memdev_root = object_resolve_path("/objects", NULL); 1383 1384 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1385 return pagesize; 1386 } 1387 1388 #ifdef CONFIG_POSIX 1389 static int64_t get_file_size(int fd) 1390 { 1391 int64_t size; 1392 #if defined(__linux__) 1393 struct stat st; 1394 1395 if (fstat(fd, &st) < 0) { 1396 return -errno; 1397 } 1398 1399 /* Special handling for devdax character devices */ 1400 if (S_ISCHR(st.st_mode)) { 1401 g_autofree char *subsystem_path = NULL; 1402 g_autofree char *subsystem = NULL; 1403 1404 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1405 major(st.st_rdev), minor(st.st_rdev)); 1406 subsystem = g_file_read_link(subsystem_path, NULL); 1407 1408 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1409 g_autofree char *size_path = NULL; 1410 g_autofree char *size_str = NULL; 1411 1412 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1413 major(st.st_rdev), minor(st.st_rdev)); 1414 1415 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1416 return g_ascii_strtoll(size_str, NULL, 0); 1417 } 1418 } 1419 } 1420 #endif /* defined(__linux__) */ 1421 1422 /* st.st_size may be zero for special files yet lseek(2) works */ 1423 size = lseek(fd, 0, SEEK_END); 1424 if (size < 0) { 1425 return -errno; 1426 } 1427 return size; 1428 } 1429 1430 static int64_t get_file_align(int fd) 1431 { 1432 int64_t align = -1; 1433 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1434 struct stat st; 1435 1436 if (fstat(fd, &st) < 0) { 1437 return -errno; 1438 } 1439 1440 /* Special handling for devdax character devices */ 1441 if (S_ISCHR(st.st_mode)) { 1442 g_autofree char *path = NULL; 1443 g_autofree char *rpath = NULL; 1444 struct daxctl_ctx *ctx; 1445 struct daxctl_region *region; 1446 int rc = 0; 1447 1448 path = g_strdup_printf("/sys/dev/char/%d:%d", 1449 major(st.st_rdev), minor(st.st_rdev)); 1450 rpath = realpath(path, NULL); 1451 if (!rpath) { 1452 return -errno; 1453 } 1454 1455 rc = daxctl_new(&ctx); 1456 if (rc) { 1457 return -1; 1458 } 1459 1460 daxctl_region_foreach(ctx, region) { 1461 if (strstr(rpath, daxctl_region_get_path(region))) { 1462 align = daxctl_region_get_align(region); 1463 break; 1464 } 1465 } 1466 daxctl_unref(ctx); 1467 } 1468 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1469 1470 return align; 1471 } 1472 1473 static int file_ram_open(const char *path, 1474 const char *region_name, 1475 bool readonly, 1476 bool *created, 1477 Error **errp) 1478 { 1479 char *filename; 1480 char *sanitized_name; 1481 char *c; 1482 int fd = -1; 1483 1484 *created = false; 1485 for (;;) { 1486 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1487 if (fd >= 0) { 1488 /* @path names an existing file, use it */ 1489 break; 1490 } 1491 if (errno == ENOENT) { 1492 /* @path names a file that doesn't exist, create it */ 1493 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1494 if (fd >= 0) { 1495 *created = true; 1496 break; 1497 } 1498 } else if (errno == EISDIR) { 1499 /* @path names a directory, create a file there */ 1500 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1501 sanitized_name = g_strdup(region_name); 1502 for (c = sanitized_name; *c != '\0'; c++) { 1503 if (*c == '/') { 1504 *c = '_'; 1505 } 1506 } 1507 1508 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1509 sanitized_name); 1510 g_free(sanitized_name); 1511 1512 fd = mkstemp(filename); 1513 if (fd >= 0) { 1514 unlink(filename); 1515 g_free(filename); 1516 break; 1517 } 1518 g_free(filename); 1519 } 1520 if (errno != EEXIST && errno != EINTR) { 1521 error_setg_errno(errp, errno, 1522 "can't open backing store %s for guest RAM", 1523 path); 1524 return -1; 1525 } 1526 /* 1527 * Try again on EINTR and EEXIST. The latter happens when 1528 * something else creates the file between our two open(). 1529 */ 1530 } 1531 1532 return fd; 1533 } 1534 1535 static void *file_ram_alloc(RAMBlock *block, 1536 ram_addr_t memory, 1537 int fd, 1538 bool readonly, 1539 bool truncate, 1540 off_t offset, 1541 Error **errp) 1542 { 1543 uint32_t qemu_map_flags; 1544 void *area; 1545 1546 block->page_size = qemu_fd_getpagesize(fd); 1547 if (block->mr->align % block->page_size) { 1548 error_setg(errp, "alignment 0x%" PRIx64 1549 " must be multiples of page size 0x%zx", 1550 block->mr->align, block->page_size); 1551 return NULL; 1552 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1553 error_setg(errp, "alignment 0x%" PRIx64 1554 " must be a power of two", block->mr->align); 1555 return NULL; 1556 } 1557 block->mr->align = MAX(block->page_size, block->mr->align); 1558 #if defined(__s390x__) 1559 if (kvm_enabled()) { 1560 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1561 } 1562 #endif 1563 1564 if (memory < block->page_size) { 1565 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1566 "or larger than page size 0x%zx", 1567 memory, block->page_size); 1568 return NULL; 1569 } 1570 1571 memory = ROUND_UP(memory, block->page_size); 1572 1573 /* 1574 * ftruncate is not supported by hugetlbfs in older 1575 * hosts, so don't bother bailing out on errors. 1576 * If anything goes wrong with it under other filesystems, 1577 * mmap will fail. 1578 * 1579 * Do not truncate the non-empty backend file to avoid corrupting 1580 * the existing data in the file. Disabling shrinking is not 1581 * enough. For example, the current vNVDIMM implementation stores 1582 * the guest NVDIMM labels at the end of the backend file. If the 1583 * backend file is later extended, QEMU will not be able to find 1584 * those labels. Therefore, extending the non-empty backend file 1585 * is disabled as well. 1586 */ 1587 if (truncate && ftruncate(fd, memory)) { 1588 perror("ftruncate"); 1589 } 1590 1591 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1592 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1593 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1594 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1595 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1596 if (area == MAP_FAILED) { 1597 error_setg_errno(errp, errno, 1598 "unable to map backing store for guest RAM"); 1599 return NULL; 1600 } 1601 1602 block->fd = fd; 1603 return area; 1604 } 1605 #endif 1606 1607 /* Allocate space within the ram_addr_t space that governs the 1608 * dirty bitmaps. 1609 * Called with the ramlist lock held. 1610 */ 1611 static ram_addr_t find_ram_offset(ram_addr_t size) 1612 { 1613 RAMBlock *block, *next_block; 1614 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1615 1616 assert(size != 0); /* it would hand out same offset multiple times */ 1617 1618 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1619 return 0; 1620 } 1621 1622 RAMBLOCK_FOREACH(block) { 1623 ram_addr_t candidate, next = RAM_ADDR_MAX; 1624 1625 /* Align blocks to start on a 'long' in the bitmap 1626 * which makes the bitmap sync'ing take the fast path. 1627 */ 1628 candidate = block->offset + block->max_length; 1629 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1630 1631 /* Search for the closest following block 1632 * and find the gap. 1633 */ 1634 RAMBLOCK_FOREACH(next_block) { 1635 if (next_block->offset >= candidate) { 1636 next = MIN(next, next_block->offset); 1637 } 1638 } 1639 1640 /* If it fits remember our place and remember the size 1641 * of gap, but keep going so that we might find a smaller 1642 * gap to fill so avoiding fragmentation. 1643 */ 1644 if (next - candidate >= size && next - candidate < mingap) { 1645 offset = candidate; 1646 mingap = next - candidate; 1647 } 1648 1649 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1650 } 1651 1652 if (offset == RAM_ADDR_MAX) { 1653 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1654 (uint64_t)size); 1655 abort(); 1656 } 1657 1658 trace_find_ram_offset(size, offset); 1659 1660 return offset; 1661 } 1662 1663 static unsigned long last_ram_page(void) 1664 { 1665 RAMBlock *block; 1666 ram_addr_t last = 0; 1667 1668 RCU_READ_LOCK_GUARD(); 1669 RAMBLOCK_FOREACH(block) { 1670 last = MAX(last, block->offset + block->max_length); 1671 } 1672 return last >> TARGET_PAGE_BITS; 1673 } 1674 1675 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1676 { 1677 int ret; 1678 1679 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1680 if (!machine_dump_guest_core(current_machine)) { 1681 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1682 if (ret) { 1683 perror("qemu_madvise"); 1684 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1685 "but dump_guest_core=off specified\n"); 1686 } 1687 } 1688 } 1689 1690 const char *qemu_ram_get_idstr(RAMBlock *rb) 1691 { 1692 return rb->idstr; 1693 } 1694 1695 void *qemu_ram_get_host_addr(RAMBlock *rb) 1696 { 1697 return rb->host; 1698 } 1699 1700 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1701 { 1702 return rb->offset; 1703 } 1704 1705 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1706 { 1707 return rb->used_length; 1708 } 1709 1710 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1711 { 1712 return rb->max_length; 1713 } 1714 1715 bool qemu_ram_is_shared(RAMBlock *rb) 1716 { 1717 return rb->flags & RAM_SHARED; 1718 } 1719 1720 bool qemu_ram_is_noreserve(RAMBlock *rb) 1721 { 1722 return rb->flags & RAM_NORESERVE; 1723 } 1724 1725 /* Note: Only set at the start of postcopy */ 1726 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1727 { 1728 return rb->flags & RAM_UF_ZEROPAGE; 1729 } 1730 1731 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1732 { 1733 rb->flags |= RAM_UF_ZEROPAGE; 1734 } 1735 1736 bool qemu_ram_is_migratable(RAMBlock *rb) 1737 { 1738 return rb->flags & RAM_MIGRATABLE; 1739 } 1740 1741 void qemu_ram_set_migratable(RAMBlock *rb) 1742 { 1743 rb->flags |= RAM_MIGRATABLE; 1744 } 1745 1746 void qemu_ram_unset_migratable(RAMBlock *rb) 1747 { 1748 rb->flags &= ~RAM_MIGRATABLE; 1749 } 1750 1751 int qemu_ram_get_fd(RAMBlock *rb) 1752 { 1753 return rb->fd; 1754 } 1755 1756 /* Called with iothread lock held. */ 1757 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1758 { 1759 RAMBlock *block; 1760 1761 assert(new_block); 1762 assert(!new_block->idstr[0]); 1763 1764 if (dev) { 1765 char *id = qdev_get_dev_path(dev); 1766 if (id) { 1767 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1768 g_free(id); 1769 } 1770 } 1771 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1772 1773 RCU_READ_LOCK_GUARD(); 1774 RAMBLOCK_FOREACH(block) { 1775 if (block != new_block && 1776 !strcmp(block->idstr, new_block->idstr)) { 1777 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1778 new_block->idstr); 1779 abort(); 1780 } 1781 } 1782 } 1783 1784 /* Called with iothread lock held. */ 1785 void qemu_ram_unset_idstr(RAMBlock *block) 1786 { 1787 /* FIXME: arch_init.c assumes that this is not called throughout 1788 * migration. Ignore the problem since hot-unplug during migration 1789 * does not work anyway. 1790 */ 1791 if (block) { 1792 memset(block->idstr, 0, sizeof(block->idstr)); 1793 } 1794 } 1795 1796 size_t qemu_ram_pagesize(RAMBlock *rb) 1797 { 1798 return rb->page_size; 1799 } 1800 1801 /* Returns the largest size of page in use */ 1802 size_t qemu_ram_pagesize_largest(void) 1803 { 1804 RAMBlock *block; 1805 size_t largest = 0; 1806 1807 RAMBLOCK_FOREACH(block) { 1808 largest = MAX(largest, qemu_ram_pagesize(block)); 1809 } 1810 1811 return largest; 1812 } 1813 1814 static int memory_try_enable_merging(void *addr, size_t len) 1815 { 1816 if (!machine_mem_merge(current_machine)) { 1817 /* disabled by the user */ 1818 return 0; 1819 } 1820 1821 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1822 } 1823 1824 /* 1825 * Resizing RAM while migrating can result in the migration being canceled. 1826 * Care has to be taken if the guest might have already detected the memory. 1827 * 1828 * As memory core doesn't know how is memory accessed, it is up to 1829 * resize callback to update device state and/or add assertions to detect 1830 * misuse, if necessary. 1831 */ 1832 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1833 { 1834 const ram_addr_t oldsize = block->used_length; 1835 const ram_addr_t unaligned_size = newsize; 1836 1837 assert(block); 1838 1839 newsize = HOST_PAGE_ALIGN(newsize); 1840 1841 if (block->used_length == newsize) { 1842 /* 1843 * We don't have to resize the ram block (which only knows aligned 1844 * sizes), however, we have to notify if the unaligned size changed. 1845 */ 1846 if (unaligned_size != memory_region_size(block->mr)) { 1847 memory_region_set_size(block->mr, unaligned_size); 1848 if (block->resized) { 1849 block->resized(block->idstr, unaligned_size, block->host); 1850 } 1851 } 1852 return 0; 1853 } 1854 1855 if (!(block->flags & RAM_RESIZEABLE)) { 1856 error_setg_errno(errp, EINVAL, 1857 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1858 " != 0x" RAM_ADDR_FMT, block->idstr, 1859 newsize, block->used_length); 1860 return -EINVAL; 1861 } 1862 1863 if (block->max_length < newsize) { 1864 error_setg_errno(errp, EINVAL, 1865 "Size too large: %s: 0x" RAM_ADDR_FMT 1866 " > 0x" RAM_ADDR_FMT, block->idstr, 1867 newsize, block->max_length); 1868 return -EINVAL; 1869 } 1870 1871 /* Notify before modifying the ram block and touching the bitmaps. */ 1872 if (block->host) { 1873 ram_block_notify_resize(block->host, oldsize, newsize); 1874 } 1875 1876 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1877 block->used_length = newsize; 1878 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1879 DIRTY_CLIENTS_ALL); 1880 memory_region_set_size(block->mr, unaligned_size); 1881 if (block->resized) { 1882 block->resized(block->idstr, unaligned_size, block->host); 1883 } 1884 return 0; 1885 } 1886 1887 /* 1888 * Trigger sync on the given ram block for range [start, start + length] 1889 * with the backing store if one is available. 1890 * Otherwise no-op. 1891 * @Note: this is supposed to be a synchronous op. 1892 */ 1893 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1894 { 1895 /* The requested range should fit in within the block range */ 1896 g_assert((start + length) <= block->used_length); 1897 1898 #ifdef CONFIG_LIBPMEM 1899 /* The lack of support for pmem should not block the sync */ 1900 if (ramblock_is_pmem(block)) { 1901 void *addr = ramblock_ptr(block, start); 1902 pmem_persist(addr, length); 1903 return; 1904 } 1905 #endif 1906 if (block->fd >= 0) { 1907 /** 1908 * Case there is no support for PMEM or the memory has not been 1909 * specified as persistent (or is not one) - use the msync. 1910 * Less optimal but still achieves the same goal 1911 */ 1912 void *addr = ramblock_ptr(block, start); 1913 if (qemu_msync(addr, length, block->fd)) { 1914 warn_report("%s: failed to sync memory range: start: " 1915 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1916 __func__, start, length); 1917 } 1918 } 1919 } 1920 1921 /* Called with ram_list.mutex held */ 1922 static void dirty_memory_extend(ram_addr_t old_ram_size, 1923 ram_addr_t new_ram_size) 1924 { 1925 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1926 DIRTY_MEMORY_BLOCK_SIZE); 1927 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1928 DIRTY_MEMORY_BLOCK_SIZE); 1929 int i; 1930 1931 /* Only need to extend if block count increased */ 1932 if (new_num_blocks <= old_num_blocks) { 1933 return; 1934 } 1935 1936 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1937 DirtyMemoryBlocks *old_blocks; 1938 DirtyMemoryBlocks *new_blocks; 1939 int j; 1940 1941 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1942 new_blocks = g_malloc(sizeof(*new_blocks) + 1943 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1944 1945 if (old_num_blocks) { 1946 memcpy(new_blocks->blocks, old_blocks->blocks, 1947 old_num_blocks * sizeof(old_blocks->blocks[0])); 1948 } 1949 1950 for (j = old_num_blocks; j < new_num_blocks; j++) { 1951 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1952 } 1953 1954 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1955 1956 if (old_blocks) { 1957 g_free_rcu(old_blocks, rcu); 1958 } 1959 } 1960 } 1961 1962 static void ram_block_add(RAMBlock *new_block, Error **errp) 1963 { 1964 const bool noreserve = qemu_ram_is_noreserve(new_block); 1965 const bool shared = qemu_ram_is_shared(new_block); 1966 RAMBlock *block; 1967 RAMBlock *last_block = NULL; 1968 ram_addr_t old_ram_size, new_ram_size; 1969 Error *err = NULL; 1970 1971 old_ram_size = last_ram_page(); 1972 1973 qemu_mutex_lock_ramlist(); 1974 new_block->offset = find_ram_offset(new_block->max_length); 1975 1976 if (!new_block->host) { 1977 if (xen_enabled()) { 1978 xen_ram_alloc(new_block->offset, new_block->max_length, 1979 new_block->mr, &err); 1980 if (err) { 1981 error_propagate(errp, err); 1982 qemu_mutex_unlock_ramlist(); 1983 return; 1984 } 1985 } else { 1986 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1987 &new_block->mr->align, 1988 shared, noreserve); 1989 if (!new_block->host) { 1990 error_setg_errno(errp, errno, 1991 "cannot set up guest memory '%s'", 1992 memory_region_name(new_block->mr)); 1993 qemu_mutex_unlock_ramlist(); 1994 return; 1995 } 1996 memory_try_enable_merging(new_block->host, new_block->max_length); 1997 } 1998 } 1999 2000 new_ram_size = MAX(old_ram_size, 2001 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 2002 if (new_ram_size > old_ram_size) { 2003 dirty_memory_extend(old_ram_size, new_ram_size); 2004 } 2005 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 2006 * QLIST (which has an RCU-friendly variant) does not have insertion at 2007 * tail, so save the last element in last_block. 2008 */ 2009 RAMBLOCK_FOREACH(block) { 2010 last_block = block; 2011 if (block->max_length < new_block->max_length) { 2012 break; 2013 } 2014 } 2015 if (block) { 2016 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 2017 } else if (last_block) { 2018 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 2019 } else { /* list is empty */ 2020 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 2021 } 2022 ram_list.mru_block = NULL; 2023 2024 /* Write list before version */ 2025 smp_wmb(); 2026 ram_list.version++; 2027 qemu_mutex_unlock_ramlist(); 2028 2029 cpu_physical_memory_set_dirty_range(new_block->offset, 2030 new_block->used_length, 2031 DIRTY_CLIENTS_ALL); 2032 2033 if (new_block->host) { 2034 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2035 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2036 /* 2037 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2038 * Configure it unless the machine is a qtest server, in which case 2039 * KVM is not used and it may be forked (eg for fuzzing purposes). 2040 */ 2041 if (!qtest_enabled()) { 2042 qemu_madvise(new_block->host, new_block->max_length, 2043 QEMU_MADV_DONTFORK); 2044 } 2045 ram_block_notify_add(new_block->host, new_block->used_length, 2046 new_block->max_length); 2047 } 2048 } 2049 2050 #ifdef CONFIG_POSIX 2051 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 2052 uint32_t ram_flags, int fd, off_t offset, 2053 bool readonly, Error **errp) 2054 { 2055 RAMBlock *new_block; 2056 Error *local_err = NULL; 2057 int64_t file_size, file_align; 2058 2059 /* Just support these ram flags by now. */ 2060 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2061 RAM_PROTECTED)) == 0); 2062 2063 if (xen_enabled()) { 2064 error_setg(errp, "-mem-path not supported with Xen"); 2065 return NULL; 2066 } 2067 2068 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2069 error_setg(errp, 2070 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2071 return NULL; 2072 } 2073 2074 size = HOST_PAGE_ALIGN(size); 2075 file_size = get_file_size(fd); 2076 if (file_size > 0 && file_size < size) { 2077 error_setg(errp, "backing store size 0x%" PRIx64 2078 " does not match 'size' option 0x" RAM_ADDR_FMT, 2079 file_size, size); 2080 return NULL; 2081 } 2082 2083 file_align = get_file_align(fd); 2084 if (file_align > 0 && file_align > mr->align) { 2085 error_setg(errp, "backing store align 0x%" PRIx64 2086 " is larger than 'align' option 0x%" PRIx64, 2087 file_align, mr->align); 2088 return NULL; 2089 } 2090 2091 new_block = g_malloc0(sizeof(*new_block)); 2092 new_block->mr = mr; 2093 new_block->used_length = size; 2094 new_block->max_length = size; 2095 new_block->flags = ram_flags; 2096 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 2097 !file_size, offset, errp); 2098 if (!new_block->host) { 2099 g_free(new_block); 2100 return NULL; 2101 } 2102 2103 ram_block_add(new_block, &local_err); 2104 if (local_err) { 2105 g_free(new_block); 2106 error_propagate(errp, local_err); 2107 return NULL; 2108 } 2109 return new_block; 2110 2111 } 2112 2113 2114 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2115 uint32_t ram_flags, const char *mem_path, 2116 bool readonly, Error **errp) 2117 { 2118 int fd; 2119 bool created; 2120 RAMBlock *block; 2121 2122 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 2123 errp); 2124 if (fd < 0) { 2125 return NULL; 2126 } 2127 2128 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 2129 if (!block) { 2130 if (created) { 2131 unlink(mem_path); 2132 } 2133 close(fd); 2134 return NULL; 2135 } 2136 2137 return block; 2138 } 2139 #endif 2140 2141 static 2142 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2143 void (*resized)(const char*, 2144 uint64_t length, 2145 void *host), 2146 void *host, uint32_t ram_flags, 2147 MemoryRegion *mr, Error **errp) 2148 { 2149 RAMBlock *new_block; 2150 Error *local_err = NULL; 2151 2152 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2153 RAM_NORESERVE)) == 0); 2154 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2155 2156 size = HOST_PAGE_ALIGN(size); 2157 max_size = HOST_PAGE_ALIGN(max_size); 2158 new_block = g_malloc0(sizeof(*new_block)); 2159 new_block->mr = mr; 2160 new_block->resized = resized; 2161 new_block->used_length = size; 2162 new_block->max_length = max_size; 2163 assert(max_size >= size); 2164 new_block->fd = -1; 2165 new_block->page_size = qemu_real_host_page_size(); 2166 new_block->host = host; 2167 new_block->flags = ram_flags; 2168 ram_block_add(new_block, &local_err); 2169 if (local_err) { 2170 g_free(new_block); 2171 error_propagate(errp, local_err); 2172 return NULL; 2173 } 2174 return new_block; 2175 } 2176 2177 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2178 MemoryRegion *mr, Error **errp) 2179 { 2180 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2181 errp); 2182 } 2183 2184 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2185 MemoryRegion *mr, Error **errp) 2186 { 2187 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2188 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2189 } 2190 2191 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2192 void (*resized)(const char*, 2193 uint64_t length, 2194 void *host), 2195 MemoryRegion *mr, Error **errp) 2196 { 2197 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2198 RAM_RESIZEABLE, mr, errp); 2199 } 2200 2201 static void reclaim_ramblock(RAMBlock *block) 2202 { 2203 if (block->flags & RAM_PREALLOC) { 2204 ; 2205 } else if (xen_enabled()) { 2206 xen_invalidate_map_cache_entry(block->host); 2207 #ifndef _WIN32 2208 } else if (block->fd >= 0) { 2209 qemu_ram_munmap(block->fd, block->host, block->max_length); 2210 close(block->fd); 2211 #endif 2212 } else { 2213 qemu_anon_ram_free(block->host, block->max_length); 2214 } 2215 g_free(block); 2216 } 2217 2218 void qemu_ram_free(RAMBlock *block) 2219 { 2220 if (!block) { 2221 return; 2222 } 2223 2224 if (block->host) { 2225 ram_block_notify_remove(block->host, block->used_length, 2226 block->max_length); 2227 } 2228 2229 qemu_mutex_lock_ramlist(); 2230 QLIST_REMOVE_RCU(block, next); 2231 ram_list.mru_block = NULL; 2232 /* Write list before version */ 2233 smp_wmb(); 2234 ram_list.version++; 2235 call_rcu(block, reclaim_ramblock, rcu); 2236 qemu_mutex_unlock_ramlist(); 2237 } 2238 2239 #ifndef _WIN32 2240 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2241 { 2242 RAMBlock *block; 2243 ram_addr_t offset; 2244 int flags; 2245 void *area, *vaddr; 2246 2247 RAMBLOCK_FOREACH(block) { 2248 offset = addr - block->offset; 2249 if (offset < block->max_length) { 2250 vaddr = ramblock_ptr(block, offset); 2251 if (block->flags & RAM_PREALLOC) { 2252 ; 2253 } else if (xen_enabled()) { 2254 abort(); 2255 } else { 2256 flags = MAP_FIXED; 2257 flags |= block->flags & RAM_SHARED ? 2258 MAP_SHARED : MAP_PRIVATE; 2259 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2260 if (block->fd >= 0) { 2261 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2262 flags, block->fd, offset); 2263 } else { 2264 flags |= MAP_ANONYMOUS; 2265 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2266 flags, -1, 0); 2267 } 2268 if (area != vaddr) { 2269 error_report("Could not remap addr: " 2270 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2271 length, addr); 2272 exit(1); 2273 } 2274 memory_try_enable_merging(vaddr, length); 2275 qemu_ram_setup_dump(vaddr, length); 2276 } 2277 } 2278 } 2279 } 2280 #endif /* !_WIN32 */ 2281 2282 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2283 * This should not be used for general purpose DMA. Use address_space_map 2284 * or address_space_rw instead. For local memory (e.g. video ram) that the 2285 * device owns, use memory_region_get_ram_ptr. 2286 * 2287 * Called within RCU critical section. 2288 */ 2289 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2290 { 2291 RAMBlock *block = ram_block; 2292 2293 if (block == NULL) { 2294 block = qemu_get_ram_block(addr); 2295 addr -= block->offset; 2296 } 2297 2298 if (xen_enabled() && block->host == NULL) { 2299 /* We need to check if the requested address is in the RAM 2300 * because we don't want to map the entire memory in QEMU. 2301 * In that case just map until the end of the page. 2302 */ 2303 if (block->offset == 0) { 2304 return xen_map_cache(addr, 0, 0, false); 2305 } 2306 2307 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2308 } 2309 return ramblock_ptr(block, addr); 2310 } 2311 2312 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2313 * but takes a size argument. 2314 * 2315 * Called within RCU critical section. 2316 */ 2317 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2318 hwaddr *size, bool lock) 2319 { 2320 RAMBlock *block = ram_block; 2321 if (*size == 0) { 2322 return NULL; 2323 } 2324 2325 if (block == NULL) { 2326 block = qemu_get_ram_block(addr); 2327 addr -= block->offset; 2328 } 2329 *size = MIN(*size, block->max_length - addr); 2330 2331 if (xen_enabled() && block->host == NULL) { 2332 /* We need to check if the requested address is in the RAM 2333 * because we don't want to map the entire memory in QEMU. 2334 * In that case just map the requested area. 2335 */ 2336 if (block->offset == 0) { 2337 return xen_map_cache(addr, *size, lock, lock); 2338 } 2339 2340 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2341 } 2342 2343 return ramblock_ptr(block, addr); 2344 } 2345 2346 /* Return the offset of a hostpointer within a ramblock */ 2347 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2348 { 2349 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2350 assert((uintptr_t)host >= (uintptr_t)rb->host); 2351 assert(res < rb->max_length); 2352 2353 return res; 2354 } 2355 2356 /* 2357 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2358 * in that RAMBlock. 2359 * 2360 * ptr: Host pointer to look up 2361 * round_offset: If true round the result offset down to a page boundary 2362 * *ram_addr: set to result ram_addr 2363 * *offset: set to result offset within the RAMBlock 2364 * 2365 * Returns: RAMBlock (or NULL if not found) 2366 * 2367 * By the time this function returns, the returned pointer is not protected 2368 * by RCU anymore. If the caller is not within an RCU critical section and 2369 * does not hold the iothread lock, it must have other means of protecting the 2370 * pointer, such as a reference to the region that includes the incoming 2371 * ram_addr_t. 2372 */ 2373 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2374 ram_addr_t *offset) 2375 { 2376 RAMBlock *block; 2377 uint8_t *host = ptr; 2378 2379 if (xen_enabled()) { 2380 ram_addr_t ram_addr; 2381 RCU_READ_LOCK_GUARD(); 2382 ram_addr = xen_ram_addr_from_mapcache(ptr); 2383 block = qemu_get_ram_block(ram_addr); 2384 if (block) { 2385 *offset = ram_addr - block->offset; 2386 } 2387 return block; 2388 } 2389 2390 RCU_READ_LOCK_GUARD(); 2391 block = qatomic_rcu_read(&ram_list.mru_block); 2392 if (block && block->host && host - block->host < block->max_length) { 2393 goto found; 2394 } 2395 2396 RAMBLOCK_FOREACH(block) { 2397 /* This case append when the block is not mapped. */ 2398 if (block->host == NULL) { 2399 continue; 2400 } 2401 if (host - block->host < block->max_length) { 2402 goto found; 2403 } 2404 } 2405 2406 return NULL; 2407 2408 found: 2409 *offset = (host - block->host); 2410 if (round_offset) { 2411 *offset &= TARGET_PAGE_MASK; 2412 } 2413 return block; 2414 } 2415 2416 /* 2417 * Finds the named RAMBlock 2418 * 2419 * name: The name of RAMBlock to find 2420 * 2421 * Returns: RAMBlock (or NULL if not found) 2422 */ 2423 RAMBlock *qemu_ram_block_by_name(const char *name) 2424 { 2425 RAMBlock *block; 2426 2427 RAMBLOCK_FOREACH(block) { 2428 if (!strcmp(name, block->idstr)) { 2429 return block; 2430 } 2431 } 2432 2433 return NULL; 2434 } 2435 2436 /* Some of the softmmu routines need to translate from a host pointer 2437 (typically a TLB entry) back to a ram offset. */ 2438 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2439 { 2440 RAMBlock *block; 2441 ram_addr_t offset; 2442 2443 block = qemu_ram_block_from_host(ptr, false, &offset); 2444 if (!block) { 2445 return RAM_ADDR_INVALID; 2446 } 2447 2448 return block->offset + offset; 2449 } 2450 2451 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2452 { 2453 ram_addr_t ram_addr; 2454 2455 ram_addr = qemu_ram_addr_from_host(ptr); 2456 if (ram_addr == RAM_ADDR_INVALID) { 2457 error_report("Bad ram pointer %p", ptr); 2458 abort(); 2459 } 2460 return ram_addr; 2461 } 2462 2463 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2464 MemTxAttrs attrs, void *buf, hwaddr len); 2465 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2466 const void *buf, hwaddr len); 2467 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2468 bool is_write, MemTxAttrs attrs); 2469 2470 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2471 unsigned len, MemTxAttrs attrs) 2472 { 2473 subpage_t *subpage = opaque; 2474 uint8_t buf[8]; 2475 MemTxResult res; 2476 2477 #if defined(DEBUG_SUBPAGE) 2478 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, 2479 subpage, len, addr); 2480 #endif 2481 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2482 if (res) { 2483 return res; 2484 } 2485 *data = ldn_p(buf, len); 2486 return MEMTX_OK; 2487 } 2488 2489 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2490 uint64_t value, unsigned len, MemTxAttrs attrs) 2491 { 2492 subpage_t *subpage = opaque; 2493 uint8_t buf[8]; 2494 2495 #if defined(DEBUG_SUBPAGE) 2496 printf("%s: subpage %p len %u addr " TARGET_FMT_plx 2497 " value %"PRIx64"\n", 2498 __func__, subpage, len, addr, value); 2499 #endif 2500 stn_p(buf, len, value); 2501 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2502 } 2503 2504 static bool subpage_accepts(void *opaque, hwaddr addr, 2505 unsigned len, bool is_write, 2506 MemTxAttrs attrs) 2507 { 2508 subpage_t *subpage = opaque; 2509 #if defined(DEBUG_SUBPAGE) 2510 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", 2511 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2512 #endif 2513 2514 return flatview_access_valid(subpage->fv, addr + subpage->base, 2515 len, is_write, attrs); 2516 } 2517 2518 static const MemoryRegionOps subpage_ops = { 2519 .read_with_attrs = subpage_read, 2520 .write_with_attrs = subpage_write, 2521 .impl.min_access_size = 1, 2522 .impl.max_access_size = 8, 2523 .valid.min_access_size = 1, 2524 .valid.max_access_size = 8, 2525 .valid.accepts = subpage_accepts, 2526 .endianness = DEVICE_NATIVE_ENDIAN, 2527 }; 2528 2529 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2530 uint16_t section) 2531 { 2532 int idx, eidx; 2533 2534 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2535 return -1; 2536 idx = SUBPAGE_IDX(start); 2537 eidx = SUBPAGE_IDX(end); 2538 #if defined(DEBUG_SUBPAGE) 2539 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2540 __func__, mmio, start, end, idx, eidx, section); 2541 #endif 2542 for (; idx <= eidx; idx++) { 2543 mmio->sub_section[idx] = section; 2544 } 2545 2546 return 0; 2547 } 2548 2549 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2550 { 2551 subpage_t *mmio; 2552 2553 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2554 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2555 mmio->fv = fv; 2556 mmio->base = base; 2557 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2558 NULL, TARGET_PAGE_SIZE); 2559 mmio->iomem.subpage = true; 2560 #if defined(DEBUG_SUBPAGE) 2561 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, 2562 mmio, base, TARGET_PAGE_SIZE); 2563 #endif 2564 2565 return mmio; 2566 } 2567 2568 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2569 { 2570 assert(fv); 2571 MemoryRegionSection section = { 2572 .fv = fv, 2573 .mr = mr, 2574 .offset_within_address_space = 0, 2575 .offset_within_region = 0, 2576 .size = int128_2_64(), 2577 }; 2578 2579 return phys_section_add(map, §ion); 2580 } 2581 2582 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2583 hwaddr index, MemTxAttrs attrs) 2584 { 2585 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2586 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2587 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2588 MemoryRegionSection *sections = d->map.sections; 2589 2590 return §ions[index & ~TARGET_PAGE_MASK]; 2591 } 2592 2593 static void io_mem_init(void) 2594 { 2595 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2596 NULL, UINT64_MAX); 2597 } 2598 2599 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2600 { 2601 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2602 uint16_t n; 2603 2604 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2605 assert(n == PHYS_SECTION_UNASSIGNED); 2606 2607 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2608 2609 return d; 2610 } 2611 2612 void address_space_dispatch_free(AddressSpaceDispatch *d) 2613 { 2614 phys_sections_free(&d->map); 2615 g_free(d); 2616 } 2617 2618 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2619 { 2620 } 2621 2622 static void tcg_log_global_after_sync(MemoryListener *listener) 2623 { 2624 CPUAddressSpace *cpuas; 2625 2626 /* Wait for the CPU to end the current TB. This avoids the following 2627 * incorrect race: 2628 * 2629 * vCPU migration 2630 * ---------------------- ------------------------- 2631 * TLB check -> slow path 2632 * notdirty_mem_write 2633 * write to RAM 2634 * mark dirty 2635 * clear dirty flag 2636 * TLB check -> fast path 2637 * read memory 2638 * write to RAM 2639 * 2640 * by pushing the migration thread's memory read after the vCPU thread has 2641 * written the memory. 2642 */ 2643 if (replay_mode == REPLAY_MODE_NONE) { 2644 /* 2645 * VGA can make calls to this function while updating the screen. 2646 * In record/replay mode this causes a deadlock, because 2647 * run_on_cpu waits for rr mutex. Therefore no races are possible 2648 * in this case and no need for making run_on_cpu when 2649 * record/replay is enabled. 2650 */ 2651 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2652 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2653 } 2654 } 2655 2656 static void tcg_commit(MemoryListener *listener) 2657 { 2658 CPUAddressSpace *cpuas; 2659 AddressSpaceDispatch *d; 2660 2661 assert(tcg_enabled()); 2662 /* since each CPU stores ram addresses in its TLB cache, we must 2663 reset the modified entries */ 2664 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2665 cpu_reloading_memory_map(); 2666 /* The CPU and TLB are protected by the iothread lock. 2667 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2668 * may have split the RCU critical section. 2669 */ 2670 d = address_space_to_dispatch(cpuas->as); 2671 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2672 tlb_flush(cpuas->cpu); 2673 } 2674 2675 static void memory_map_init(void) 2676 { 2677 system_memory = g_malloc(sizeof(*system_memory)); 2678 2679 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2680 address_space_init(&address_space_memory, system_memory, "memory"); 2681 2682 system_io = g_malloc(sizeof(*system_io)); 2683 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2684 65536); 2685 address_space_init(&address_space_io, system_io, "I/O"); 2686 } 2687 2688 MemoryRegion *get_system_memory(void) 2689 { 2690 return system_memory; 2691 } 2692 2693 MemoryRegion *get_system_io(void) 2694 { 2695 return system_io; 2696 } 2697 2698 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2699 hwaddr length) 2700 { 2701 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2702 addr += memory_region_get_ram_addr(mr); 2703 2704 /* No early return if dirty_log_mask is or becomes 0, because 2705 * cpu_physical_memory_set_dirty_range will still call 2706 * xen_modified_memory. 2707 */ 2708 if (dirty_log_mask) { 2709 dirty_log_mask = 2710 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2711 } 2712 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2713 assert(tcg_enabled()); 2714 tb_invalidate_phys_range(addr, addr + length); 2715 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2716 } 2717 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2718 } 2719 2720 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2721 { 2722 /* 2723 * In principle this function would work on other memory region types too, 2724 * but the ROM device use case is the only one where this operation is 2725 * necessary. Other memory regions should use the 2726 * address_space_read/write() APIs. 2727 */ 2728 assert(memory_region_is_romd(mr)); 2729 2730 invalidate_and_set_dirty(mr, addr, size); 2731 } 2732 2733 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2734 { 2735 unsigned access_size_max = mr->ops->valid.max_access_size; 2736 2737 /* Regions are assumed to support 1-4 byte accesses unless 2738 otherwise specified. */ 2739 if (access_size_max == 0) { 2740 access_size_max = 4; 2741 } 2742 2743 /* Bound the maximum access by the alignment of the address. */ 2744 if (!mr->ops->impl.unaligned) { 2745 unsigned align_size_max = addr & -addr; 2746 if (align_size_max != 0 && align_size_max < access_size_max) { 2747 access_size_max = align_size_max; 2748 } 2749 } 2750 2751 /* Don't attempt accesses larger than the maximum. */ 2752 if (l > access_size_max) { 2753 l = access_size_max; 2754 } 2755 l = pow2floor(l); 2756 2757 return l; 2758 } 2759 2760 bool prepare_mmio_access(MemoryRegion *mr) 2761 { 2762 bool release_lock = false; 2763 2764 if (!qemu_mutex_iothread_locked()) { 2765 qemu_mutex_lock_iothread(); 2766 release_lock = true; 2767 } 2768 if (mr->flush_coalesced_mmio) { 2769 qemu_flush_coalesced_mmio_buffer(); 2770 } 2771 2772 return release_lock; 2773 } 2774 2775 /** 2776 * flatview_access_allowed 2777 * @mr: #MemoryRegion to be accessed 2778 * @attrs: memory transaction attributes 2779 * @addr: address within that memory region 2780 * @len: the number of bytes to access 2781 * 2782 * Check if a memory transaction is allowed. 2783 * 2784 * Returns: true if transaction is allowed, false if denied. 2785 */ 2786 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2787 hwaddr addr, hwaddr len) 2788 { 2789 if (likely(!attrs.memory)) { 2790 return true; 2791 } 2792 if (memory_region_is_ram(mr)) { 2793 return true; 2794 } 2795 qemu_log_mask(LOG_GUEST_ERROR, 2796 "Invalid access to non-RAM device at " 2797 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2798 "region '%s'\n", addr, len, memory_region_name(mr)); 2799 return false; 2800 } 2801 2802 /* Called within RCU critical section. */ 2803 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2804 MemTxAttrs attrs, 2805 const void *ptr, 2806 hwaddr len, hwaddr addr1, 2807 hwaddr l, MemoryRegion *mr) 2808 { 2809 uint8_t *ram_ptr; 2810 uint64_t val; 2811 MemTxResult result = MEMTX_OK; 2812 bool release_lock = false; 2813 const uint8_t *buf = ptr; 2814 2815 for (;;) { 2816 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2817 result |= MEMTX_ACCESS_ERROR; 2818 /* Keep going. */ 2819 } else if (!memory_access_is_direct(mr, true)) { 2820 release_lock |= prepare_mmio_access(mr); 2821 l = memory_access_size(mr, l, addr1); 2822 /* XXX: could force current_cpu to NULL to avoid 2823 potential bugs */ 2824 val = ldn_he_p(buf, l); 2825 result |= memory_region_dispatch_write(mr, addr1, val, 2826 size_memop(l), attrs); 2827 } else { 2828 /* RAM case */ 2829 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2830 memcpy(ram_ptr, buf, l); 2831 invalidate_and_set_dirty(mr, addr1, l); 2832 } 2833 2834 if (release_lock) { 2835 qemu_mutex_unlock_iothread(); 2836 release_lock = false; 2837 } 2838 2839 len -= l; 2840 buf += l; 2841 addr += l; 2842 2843 if (!len) { 2844 break; 2845 } 2846 2847 l = len; 2848 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2849 } 2850 2851 return result; 2852 } 2853 2854 /* Called from RCU critical section. */ 2855 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2856 const void *buf, hwaddr len) 2857 { 2858 hwaddr l; 2859 hwaddr addr1; 2860 MemoryRegion *mr; 2861 2862 l = len; 2863 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2864 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2865 return MEMTX_ACCESS_ERROR; 2866 } 2867 return flatview_write_continue(fv, addr, attrs, buf, len, 2868 addr1, l, mr); 2869 } 2870 2871 /* Called within RCU critical section. */ 2872 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2873 MemTxAttrs attrs, void *ptr, 2874 hwaddr len, hwaddr addr1, hwaddr l, 2875 MemoryRegion *mr) 2876 { 2877 uint8_t *ram_ptr; 2878 uint64_t val; 2879 MemTxResult result = MEMTX_OK; 2880 bool release_lock = false; 2881 uint8_t *buf = ptr; 2882 2883 fuzz_dma_read_cb(addr, len, mr); 2884 for (;;) { 2885 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2886 result |= MEMTX_ACCESS_ERROR; 2887 /* Keep going. */ 2888 } else if (!memory_access_is_direct(mr, false)) { 2889 /* I/O case */ 2890 release_lock |= prepare_mmio_access(mr); 2891 l = memory_access_size(mr, l, addr1); 2892 result |= memory_region_dispatch_read(mr, addr1, &val, 2893 size_memop(l), attrs); 2894 stn_he_p(buf, l, val); 2895 } else { 2896 /* RAM case */ 2897 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2898 memcpy(buf, ram_ptr, l); 2899 } 2900 2901 if (release_lock) { 2902 qemu_mutex_unlock_iothread(); 2903 release_lock = false; 2904 } 2905 2906 len -= l; 2907 buf += l; 2908 addr += l; 2909 2910 if (!len) { 2911 break; 2912 } 2913 2914 l = len; 2915 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2916 } 2917 2918 return result; 2919 } 2920 2921 /* Called from RCU critical section. */ 2922 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2923 MemTxAttrs attrs, void *buf, hwaddr len) 2924 { 2925 hwaddr l; 2926 hwaddr addr1; 2927 MemoryRegion *mr; 2928 2929 l = len; 2930 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2931 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2932 return MEMTX_ACCESS_ERROR; 2933 } 2934 return flatview_read_continue(fv, addr, attrs, buf, len, 2935 addr1, l, mr); 2936 } 2937 2938 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2939 MemTxAttrs attrs, void *buf, hwaddr len) 2940 { 2941 MemTxResult result = MEMTX_OK; 2942 FlatView *fv; 2943 2944 if (len > 0) { 2945 RCU_READ_LOCK_GUARD(); 2946 fv = address_space_to_flatview(as); 2947 result = flatview_read(fv, addr, attrs, buf, len); 2948 } 2949 2950 return result; 2951 } 2952 2953 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2954 MemTxAttrs attrs, 2955 const void *buf, hwaddr len) 2956 { 2957 MemTxResult result = MEMTX_OK; 2958 FlatView *fv; 2959 2960 if (len > 0) { 2961 RCU_READ_LOCK_GUARD(); 2962 fv = address_space_to_flatview(as); 2963 result = flatview_write(fv, addr, attrs, buf, len); 2964 } 2965 2966 return result; 2967 } 2968 2969 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2970 void *buf, hwaddr len, bool is_write) 2971 { 2972 if (is_write) { 2973 return address_space_write(as, addr, attrs, buf, len); 2974 } else { 2975 return address_space_read_full(as, addr, attrs, buf, len); 2976 } 2977 } 2978 2979 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2980 uint8_t c, hwaddr len, MemTxAttrs attrs) 2981 { 2982 #define FILLBUF_SIZE 512 2983 uint8_t fillbuf[FILLBUF_SIZE]; 2984 int l; 2985 MemTxResult error = MEMTX_OK; 2986 2987 memset(fillbuf, c, FILLBUF_SIZE); 2988 while (len > 0) { 2989 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2990 error |= address_space_write(as, addr, attrs, fillbuf, l); 2991 len -= l; 2992 addr += l; 2993 } 2994 2995 return error; 2996 } 2997 2998 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2999 hwaddr len, bool is_write) 3000 { 3001 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3002 buf, len, is_write); 3003 } 3004 3005 enum write_rom_type { 3006 WRITE_DATA, 3007 FLUSH_CACHE, 3008 }; 3009 3010 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3011 hwaddr addr, 3012 MemTxAttrs attrs, 3013 const void *ptr, 3014 hwaddr len, 3015 enum write_rom_type type) 3016 { 3017 hwaddr l; 3018 uint8_t *ram_ptr; 3019 hwaddr addr1; 3020 MemoryRegion *mr; 3021 const uint8_t *buf = ptr; 3022 3023 RCU_READ_LOCK_GUARD(); 3024 while (len > 0) { 3025 l = len; 3026 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3027 3028 if (!(memory_region_is_ram(mr) || 3029 memory_region_is_romd(mr))) { 3030 l = memory_access_size(mr, l, addr1); 3031 } else { 3032 /* ROM/RAM case */ 3033 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3034 switch (type) { 3035 case WRITE_DATA: 3036 memcpy(ram_ptr, buf, l); 3037 invalidate_and_set_dirty(mr, addr1, l); 3038 break; 3039 case FLUSH_CACHE: 3040 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3041 break; 3042 } 3043 } 3044 len -= l; 3045 buf += l; 3046 addr += l; 3047 } 3048 return MEMTX_OK; 3049 } 3050 3051 /* used for ROM loading : can write in RAM and ROM */ 3052 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3053 MemTxAttrs attrs, 3054 const void *buf, hwaddr len) 3055 { 3056 return address_space_write_rom_internal(as, addr, attrs, 3057 buf, len, WRITE_DATA); 3058 } 3059 3060 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3061 { 3062 /* 3063 * This function should do the same thing as an icache flush that was 3064 * triggered from within the guest. For TCG we are always cache coherent, 3065 * so there is no need to flush anything. For KVM / Xen we need to flush 3066 * the host's instruction cache at least. 3067 */ 3068 if (tcg_enabled()) { 3069 return; 3070 } 3071 3072 address_space_write_rom_internal(&address_space_memory, 3073 start, MEMTXATTRS_UNSPECIFIED, 3074 NULL, len, FLUSH_CACHE); 3075 } 3076 3077 typedef struct { 3078 MemoryRegion *mr; 3079 void *buffer; 3080 hwaddr addr; 3081 hwaddr len; 3082 bool in_use; 3083 } BounceBuffer; 3084 3085 static BounceBuffer bounce; 3086 3087 typedef struct MapClient { 3088 QEMUBH *bh; 3089 QLIST_ENTRY(MapClient) link; 3090 } MapClient; 3091 3092 QemuMutex map_client_list_lock; 3093 static QLIST_HEAD(, MapClient) map_client_list 3094 = QLIST_HEAD_INITIALIZER(map_client_list); 3095 3096 static void cpu_unregister_map_client_do(MapClient *client) 3097 { 3098 QLIST_REMOVE(client, link); 3099 g_free(client); 3100 } 3101 3102 static void cpu_notify_map_clients_locked(void) 3103 { 3104 MapClient *client; 3105 3106 while (!QLIST_EMPTY(&map_client_list)) { 3107 client = QLIST_FIRST(&map_client_list); 3108 qemu_bh_schedule(client->bh); 3109 cpu_unregister_map_client_do(client); 3110 } 3111 } 3112 3113 void cpu_register_map_client(QEMUBH *bh) 3114 { 3115 MapClient *client = g_malloc(sizeof(*client)); 3116 3117 qemu_mutex_lock(&map_client_list_lock); 3118 client->bh = bh; 3119 QLIST_INSERT_HEAD(&map_client_list, client, link); 3120 if (!qatomic_read(&bounce.in_use)) { 3121 cpu_notify_map_clients_locked(); 3122 } 3123 qemu_mutex_unlock(&map_client_list_lock); 3124 } 3125 3126 void cpu_exec_init_all(void) 3127 { 3128 qemu_mutex_init(&ram_list.mutex); 3129 /* The data structures we set up here depend on knowing the page size, 3130 * so no more changes can be made after this point. 3131 * In an ideal world, nothing we did before we had finished the 3132 * machine setup would care about the target page size, and we could 3133 * do this much later, rather than requiring board models to state 3134 * up front what their requirements are. 3135 */ 3136 finalize_target_page_bits(); 3137 io_mem_init(); 3138 memory_map_init(); 3139 qemu_mutex_init(&map_client_list_lock); 3140 } 3141 3142 void cpu_unregister_map_client(QEMUBH *bh) 3143 { 3144 MapClient *client; 3145 3146 qemu_mutex_lock(&map_client_list_lock); 3147 QLIST_FOREACH(client, &map_client_list, link) { 3148 if (client->bh == bh) { 3149 cpu_unregister_map_client_do(client); 3150 break; 3151 } 3152 } 3153 qemu_mutex_unlock(&map_client_list_lock); 3154 } 3155 3156 static void cpu_notify_map_clients(void) 3157 { 3158 qemu_mutex_lock(&map_client_list_lock); 3159 cpu_notify_map_clients_locked(); 3160 qemu_mutex_unlock(&map_client_list_lock); 3161 } 3162 3163 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3164 bool is_write, MemTxAttrs attrs) 3165 { 3166 MemoryRegion *mr; 3167 hwaddr l, xlat; 3168 3169 while (len > 0) { 3170 l = len; 3171 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3172 if (!memory_access_is_direct(mr, is_write)) { 3173 l = memory_access_size(mr, l, addr); 3174 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3175 return false; 3176 } 3177 } 3178 3179 len -= l; 3180 addr += l; 3181 } 3182 return true; 3183 } 3184 3185 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3186 hwaddr len, bool is_write, 3187 MemTxAttrs attrs) 3188 { 3189 FlatView *fv; 3190 3191 RCU_READ_LOCK_GUARD(); 3192 fv = address_space_to_flatview(as); 3193 return flatview_access_valid(fv, addr, len, is_write, attrs); 3194 } 3195 3196 static hwaddr 3197 flatview_extend_translation(FlatView *fv, hwaddr addr, 3198 hwaddr target_len, 3199 MemoryRegion *mr, hwaddr base, hwaddr len, 3200 bool is_write, MemTxAttrs attrs) 3201 { 3202 hwaddr done = 0; 3203 hwaddr xlat; 3204 MemoryRegion *this_mr; 3205 3206 for (;;) { 3207 target_len -= len; 3208 addr += len; 3209 done += len; 3210 if (target_len == 0) { 3211 return done; 3212 } 3213 3214 len = target_len; 3215 this_mr = flatview_translate(fv, addr, &xlat, 3216 &len, is_write, attrs); 3217 if (this_mr != mr || xlat != base + done) { 3218 return done; 3219 } 3220 } 3221 } 3222 3223 /* Map a physical memory region into a host virtual address. 3224 * May map a subset of the requested range, given by and returned in *plen. 3225 * May return NULL if resources needed to perform the mapping are exhausted. 3226 * Use only for reads OR writes - not for read-modify-write operations. 3227 * Use cpu_register_map_client() to know when retrying the map operation is 3228 * likely to succeed. 3229 */ 3230 void *address_space_map(AddressSpace *as, 3231 hwaddr addr, 3232 hwaddr *plen, 3233 bool is_write, 3234 MemTxAttrs attrs) 3235 { 3236 hwaddr len = *plen; 3237 hwaddr l, xlat; 3238 MemoryRegion *mr; 3239 FlatView *fv; 3240 3241 if (len == 0) { 3242 return NULL; 3243 } 3244 3245 l = len; 3246 RCU_READ_LOCK_GUARD(); 3247 fv = address_space_to_flatview(as); 3248 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3249 3250 if (!memory_access_is_direct(mr, is_write)) { 3251 if (qatomic_xchg(&bounce.in_use, true)) { 3252 *plen = 0; 3253 return NULL; 3254 } 3255 /* Avoid unbounded allocations */ 3256 l = MIN(l, TARGET_PAGE_SIZE); 3257 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3258 bounce.addr = addr; 3259 bounce.len = l; 3260 3261 memory_region_ref(mr); 3262 bounce.mr = mr; 3263 if (!is_write) { 3264 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3265 bounce.buffer, l); 3266 } 3267 3268 *plen = l; 3269 return bounce.buffer; 3270 } 3271 3272 3273 memory_region_ref(mr); 3274 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3275 l, is_write, attrs); 3276 fuzz_dma_read_cb(addr, *plen, mr); 3277 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3278 } 3279 3280 /* Unmaps a memory region previously mapped by address_space_map(). 3281 * Will also mark the memory as dirty if is_write is true. access_len gives 3282 * the amount of memory that was actually read or written by the caller. 3283 */ 3284 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3285 bool is_write, hwaddr access_len) 3286 { 3287 if (buffer != bounce.buffer) { 3288 MemoryRegion *mr; 3289 ram_addr_t addr1; 3290 3291 mr = memory_region_from_host(buffer, &addr1); 3292 assert(mr != NULL); 3293 if (is_write) { 3294 invalidate_and_set_dirty(mr, addr1, access_len); 3295 } 3296 if (xen_enabled()) { 3297 xen_invalidate_map_cache_entry(buffer); 3298 } 3299 memory_region_unref(mr); 3300 return; 3301 } 3302 if (is_write) { 3303 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3304 bounce.buffer, access_len); 3305 } 3306 qemu_vfree(bounce.buffer); 3307 bounce.buffer = NULL; 3308 memory_region_unref(bounce.mr); 3309 qatomic_mb_set(&bounce.in_use, false); 3310 cpu_notify_map_clients(); 3311 } 3312 3313 void *cpu_physical_memory_map(hwaddr addr, 3314 hwaddr *plen, 3315 bool is_write) 3316 { 3317 return address_space_map(&address_space_memory, addr, plen, is_write, 3318 MEMTXATTRS_UNSPECIFIED); 3319 } 3320 3321 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3322 bool is_write, hwaddr access_len) 3323 { 3324 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3325 } 3326 3327 #define ARG1_DECL AddressSpace *as 3328 #define ARG1 as 3329 #define SUFFIX 3330 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3331 #define RCU_READ_LOCK(...) rcu_read_lock() 3332 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3333 #include "memory_ldst.c.inc" 3334 3335 int64_t address_space_cache_init(MemoryRegionCache *cache, 3336 AddressSpace *as, 3337 hwaddr addr, 3338 hwaddr len, 3339 bool is_write) 3340 { 3341 AddressSpaceDispatch *d; 3342 hwaddr l; 3343 MemoryRegion *mr; 3344 Int128 diff; 3345 3346 assert(len > 0); 3347 3348 l = len; 3349 cache->fv = address_space_get_flatview(as); 3350 d = flatview_to_dispatch(cache->fv); 3351 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3352 3353 /* 3354 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3355 * Take that into account to compute how many bytes are there between 3356 * cache->xlat and the end of the section. 3357 */ 3358 diff = int128_sub(cache->mrs.size, 3359 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3360 l = int128_get64(int128_min(diff, int128_make64(l))); 3361 3362 mr = cache->mrs.mr; 3363 memory_region_ref(mr); 3364 if (memory_access_is_direct(mr, is_write)) { 3365 /* We don't care about the memory attributes here as we're only 3366 * doing this if we found actual RAM, which behaves the same 3367 * regardless of attributes; so UNSPECIFIED is fine. 3368 */ 3369 l = flatview_extend_translation(cache->fv, addr, len, mr, 3370 cache->xlat, l, is_write, 3371 MEMTXATTRS_UNSPECIFIED); 3372 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3373 } else { 3374 cache->ptr = NULL; 3375 } 3376 3377 cache->len = l; 3378 cache->is_write = is_write; 3379 return l; 3380 } 3381 3382 void address_space_cache_invalidate(MemoryRegionCache *cache, 3383 hwaddr addr, 3384 hwaddr access_len) 3385 { 3386 assert(cache->is_write); 3387 if (likely(cache->ptr)) { 3388 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3389 } 3390 } 3391 3392 void address_space_cache_destroy(MemoryRegionCache *cache) 3393 { 3394 if (!cache->mrs.mr) { 3395 return; 3396 } 3397 3398 if (xen_enabled()) { 3399 xen_invalidate_map_cache_entry(cache->ptr); 3400 } 3401 memory_region_unref(cache->mrs.mr); 3402 flatview_unref(cache->fv); 3403 cache->mrs.mr = NULL; 3404 cache->fv = NULL; 3405 } 3406 3407 /* Called from RCU critical section. This function has the same 3408 * semantics as address_space_translate, but it only works on a 3409 * predefined range of a MemoryRegion that was mapped with 3410 * address_space_cache_init. 3411 */ 3412 static inline MemoryRegion *address_space_translate_cached( 3413 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3414 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3415 { 3416 MemoryRegionSection section; 3417 MemoryRegion *mr; 3418 IOMMUMemoryRegion *iommu_mr; 3419 AddressSpace *target_as; 3420 3421 assert(!cache->ptr); 3422 *xlat = addr + cache->xlat; 3423 3424 mr = cache->mrs.mr; 3425 iommu_mr = memory_region_get_iommu(mr); 3426 if (!iommu_mr) { 3427 /* MMIO region. */ 3428 return mr; 3429 } 3430 3431 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3432 NULL, is_write, true, 3433 &target_as, attrs); 3434 return section.mr; 3435 } 3436 3437 /* Called from RCU critical section. address_space_read_cached uses this 3438 * out of line function when the target is an MMIO or IOMMU region. 3439 */ 3440 MemTxResult 3441 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3442 void *buf, hwaddr len) 3443 { 3444 hwaddr addr1, l; 3445 MemoryRegion *mr; 3446 3447 l = len; 3448 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3449 MEMTXATTRS_UNSPECIFIED); 3450 return flatview_read_continue(cache->fv, 3451 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3452 addr1, l, mr); 3453 } 3454 3455 /* Called from RCU critical section. address_space_write_cached uses this 3456 * out of line function when the target is an MMIO or IOMMU region. 3457 */ 3458 MemTxResult 3459 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3460 const void *buf, hwaddr len) 3461 { 3462 hwaddr addr1, l; 3463 MemoryRegion *mr; 3464 3465 l = len; 3466 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3467 MEMTXATTRS_UNSPECIFIED); 3468 return flatview_write_continue(cache->fv, 3469 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3470 addr1, l, mr); 3471 } 3472 3473 #define ARG1_DECL MemoryRegionCache *cache 3474 #define ARG1 cache 3475 #define SUFFIX _cached_slow 3476 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3477 #define RCU_READ_LOCK() ((void)0) 3478 #define RCU_READ_UNLOCK() ((void)0) 3479 #include "memory_ldst.c.inc" 3480 3481 /* virtual memory access for debug (includes writing to ROM) */ 3482 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3483 void *ptr, size_t len, bool is_write) 3484 { 3485 hwaddr phys_addr; 3486 vaddr l, page; 3487 uint8_t *buf = ptr; 3488 3489 cpu_synchronize_state(cpu); 3490 while (len > 0) { 3491 int asidx; 3492 MemTxAttrs attrs; 3493 MemTxResult res; 3494 3495 page = addr & TARGET_PAGE_MASK; 3496 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3497 asidx = cpu_asidx_from_attrs(cpu, attrs); 3498 /* if no physical page mapped, return an error */ 3499 if (phys_addr == -1) 3500 return -1; 3501 l = (page + TARGET_PAGE_SIZE) - addr; 3502 if (l > len) 3503 l = len; 3504 phys_addr += (addr & ~TARGET_PAGE_MASK); 3505 if (is_write) { 3506 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3507 attrs, buf, l); 3508 } else { 3509 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3510 attrs, buf, l); 3511 } 3512 if (res != MEMTX_OK) { 3513 return -1; 3514 } 3515 len -= l; 3516 buf += l; 3517 addr += l; 3518 } 3519 return 0; 3520 } 3521 3522 /* 3523 * Allows code that needs to deal with migration bitmaps etc to still be built 3524 * target independent. 3525 */ 3526 size_t qemu_target_page_size(void) 3527 { 3528 return TARGET_PAGE_SIZE; 3529 } 3530 3531 int qemu_target_page_bits(void) 3532 { 3533 return TARGET_PAGE_BITS; 3534 } 3535 3536 int qemu_target_page_bits_min(void) 3537 { 3538 return TARGET_PAGE_BITS_MIN; 3539 } 3540 3541 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3542 { 3543 MemoryRegion*mr; 3544 hwaddr l = 1; 3545 3546 RCU_READ_LOCK_GUARD(); 3547 mr = address_space_translate(&address_space_memory, 3548 phys_addr, &phys_addr, &l, false, 3549 MEMTXATTRS_UNSPECIFIED); 3550 3551 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3552 } 3553 3554 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3555 { 3556 RAMBlock *block; 3557 int ret = 0; 3558 3559 RCU_READ_LOCK_GUARD(); 3560 RAMBLOCK_FOREACH(block) { 3561 ret = func(block, opaque); 3562 if (ret) { 3563 break; 3564 } 3565 } 3566 return ret; 3567 } 3568 3569 /* 3570 * Unmap pages of memory from start to start+length such that 3571 * they a) read as 0, b) Trigger whatever fault mechanism 3572 * the OS provides for postcopy. 3573 * The pages must be unmapped by the end of the function. 3574 * Returns: 0 on success, none-0 on failure 3575 * 3576 */ 3577 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3578 { 3579 int ret = -1; 3580 3581 uint8_t *host_startaddr = rb->host + start; 3582 3583 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3584 error_report("ram_block_discard_range: Unaligned start address: %p", 3585 host_startaddr); 3586 goto err; 3587 } 3588 3589 if ((start + length) <= rb->max_length) { 3590 bool need_madvise, need_fallocate; 3591 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3592 error_report("ram_block_discard_range: Unaligned length: %zx", 3593 length); 3594 goto err; 3595 } 3596 3597 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3598 3599 /* The logic here is messy; 3600 * madvise DONTNEED fails for hugepages 3601 * fallocate works on hugepages and shmem 3602 * shared anonymous memory requires madvise REMOVE 3603 */ 3604 need_madvise = (rb->page_size == qemu_host_page_size); 3605 need_fallocate = rb->fd != -1; 3606 if (need_fallocate) { 3607 /* For a file, this causes the area of the file to be zero'd 3608 * if read, and for hugetlbfs also causes it to be unmapped 3609 * so a userfault will trigger. 3610 */ 3611 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3612 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3613 start, length); 3614 if (ret) { 3615 ret = -errno; 3616 error_report("ram_block_discard_range: Failed to fallocate " 3617 "%s:%" PRIx64 " +%zx (%d)", 3618 rb->idstr, start, length, ret); 3619 goto err; 3620 } 3621 #else 3622 ret = -ENOSYS; 3623 error_report("ram_block_discard_range: fallocate not available/file" 3624 "%s:%" PRIx64 " +%zx (%d)", 3625 rb->idstr, start, length, ret); 3626 goto err; 3627 #endif 3628 } 3629 if (need_madvise) { 3630 /* For normal RAM this causes it to be unmapped, 3631 * for shared memory it causes the local mapping to disappear 3632 * and to fall back on the file contents (which we just 3633 * fallocate'd away). 3634 */ 3635 #if defined(CONFIG_MADVISE) 3636 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3637 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3638 } else { 3639 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3640 } 3641 if (ret) { 3642 ret = -errno; 3643 error_report("ram_block_discard_range: Failed to discard range " 3644 "%s:%" PRIx64 " +%zx (%d)", 3645 rb->idstr, start, length, ret); 3646 goto err; 3647 } 3648 #else 3649 ret = -ENOSYS; 3650 error_report("ram_block_discard_range: MADVISE not available" 3651 "%s:%" PRIx64 " +%zx (%d)", 3652 rb->idstr, start, length, ret); 3653 goto err; 3654 #endif 3655 } 3656 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3657 need_madvise, need_fallocate, ret); 3658 } else { 3659 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3660 "/%zx/" RAM_ADDR_FMT")", 3661 rb->idstr, start, length, rb->max_length); 3662 } 3663 3664 err: 3665 return ret; 3666 } 3667 3668 bool ramblock_is_pmem(RAMBlock *rb) 3669 { 3670 return rb->flags & RAM_PMEM; 3671 } 3672 3673 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3674 { 3675 if (start == end - 1) { 3676 qemu_printf("\t%3d ", start); 3677 } else { 3678 qemu_printf("\t%3d..%-3d ", start, end - 1); 3679 } 3680 qemu_printf(" skip=%d ", skip); 3681 if (ptr == PHYS_MAP_NODE_NIL) { 3682 qemu_printf(" ptr=NIL"); 3683 } else if (!skip) { 3684 qemu_printf(" ptr=#%d", ptr); 3685 } else { 3686 qemu_printf(" ptr=[%d]", ptr); 3687 } 3688 qemu_printf("\n"); 3689 } 3690 3691 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3692 int128_sub((size), int128_one())) : 0) 3693 3694 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3695 { 3696 int i; 3697 3698 qemu_printf(" Dispatch\n"); 3699 qemu_printf(" Physical sections\n"); 3700 3701 for (i = 0; i < d->map.sections_nb; ++i) { 3702 MemoryRegionSection *s = d->map.sections + i; 3703 const char *names[] = { " [unassigned]", " [not dirty]", 3704 " [ROM]", " [watch]" }; 3705 3706 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx 3707 " %s%s%s%s%s", 3708 i, 3709 s->offset_within_address_space, 3710 s->offset_within_address_space + MR_SIZE(s->size), 3711 s->mr->name ? s->mr->name : "(noname)", 3712 i < ARRAY_SIZE(names) ? names[i] : "", 3713 s->mr == root ? " [ROOT]" : "", 3714 s == d->mru_section ? " [MRU]" : "", 3715 s->mr->is_iommu ? " [iommu]" : ""); 3716 3717 if (s->mr->alias) { 3718 qemu_printf(" alias=%s", s->mr->alias->name ? 3719 s->mr->alias->name : "noname"); 3720 } 3721 qemu_printf("\n"); 3722 } 3723 3724 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3725 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3726 for (i = 0; i < d->map.nodes_nb; ++i) { 3727 int j, jprev; 3728 PhysPageEntry prev; 3729 Node *n = d->map.nodes + i; 3730 3731 qemu_printf(" [%d]\n", i); 3732 3733 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3734 PhysPageEntry *pe = *n + j; 3735 3736 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3737 continue; 3738 } 3739 3740 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3741 3742 jprev = j; 3743 prev = *pe; 3744 } 3745 3746 if (jprev != ARRAY_SIZE(*n)) { 3747 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3748 } 3749 } 3750 } 3751 3752 /* Require any discards to work. */ 3753 static unsigned int ram_block_discard_required_cnt; 3754 /* Require only coordinated discards to work. */ 3755 static unsigned int ram_block_coordinated_discard_required_cnt; 3756 /* Disable any discards. */ 3757 static unsigned int ram_block_discard_disabled_cnt; 3758 /* Disable only uncoordinated discards. */ 3759 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3760 static QemuMutex ram_block_discard_disable_mutex; 3761 3762 static void ram_block_discard_disable_mutex_lock(void) 3763 { 3764 static gsize initialized; 3765 3766 if (g_once_init_enter(&initialized)) { 3767 qemu_mutex_init(&ram_block_discard_disable_mutex); 3768 g_once_init_leave(&initialized, 1); 3769 } 3770 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3771 } 3772 3773 static void ram_block_discard_disable_mutex_unlock(void) 3774 { 3775 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3776 } 3777 3778 int ram_block_discard_disable(bool state) 3779 { 3780 int ret = 0; 3781 3782 ram_block_discard_disable_mutex_lock(); 3783 if (!state) { 3784 ram_block_discard_disabled_cnt--; 3785 } else if (ram_block_discard_required_cnt || 3786 ram_block_coordinated_discard_required_cnt) { 3787 ret = -EBUSY; 3788 } else { 3789 ram_block_discard_disabled_cnt++; 3790 } 3791 ram_block_discard_disable_mutex_unlock(); 3792 return ret; 3793 } 3794 3795 int ram_block_uncoordinated_discard_disable(bool state) 3796 { 3797 int ret = 0; 3798 3799 ram_block_discard_disable_mutex_lock(); 3800 if (!state) { 3801 ram_block_uncoordinated_discard_disabled_cnt--; 3802 } else if (ram_block_discard_required_cnt) { 3803 ret = -EBUSY; 3804 } else { 3805 ram_block_uncoordinated_discard_disabled_cnt++; 3806 } 3807 ram_block_discard_disable_mutex_unlock(); 3808 return ret; 3809 } 3810 3811 int ram_block_discard_require(bool state) 3812 { 3813 int ret = 0; 3814 3815 ram_block_discard_disable_mutex_lock(); 3816 if (!state) { 3817 ram_block_discard_required_cnt--; 3818 } else if (ram_block_discard_disabled_cnt || 3819 ram_block_uncoordinated_discard_disabled_cnt) { 3820 ret = -EBUSY; 3821 } else { 3822 ram_block_discard_required_cnt++; 3823 } 3824 ram_block_discard_disable_mutex_unlock(); 3825 return ret; 3826 } 3827 3828 int ram_block_coordinated_discard_require(bool state) 3829 { 3830 int ret = 0; 3831 3832 ram_block_discard_disable_mutex_lock(); 3833 if (!state) { 3834 ram_block_coordinated_discard_required_cnt--; 3835 } else if (ram_block_discard_disabled_cnt) { 3836 ret = -EBUSY; 3837 } else { 3838 ram_block_coordinated_discard_required_cnt++; 3839 } 3840 ram_block_discard_disable_mutex_unlock(); 3841 return ret; 3842 } 3843 3844 bool ram_block_discard_is_disabled(void) 3845 { 3846 return qatomic_read(&ram_block_discard_disabled_cnt) || 3847 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3848 } 3849 3850 bool ram_block_discard_is_required(void) 3851 { 3852 return qatomic_read(&ram_block_discard_required_cnt) || 3853 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3854 } 3855