xref: /qemu/system/physmem.c (revision 66997c42e02c84481fc162a5b7bd6ad6c643bae2)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/madvise.h"
27 
28 #ifdef CONFIG_TCG
29 #include "hw/core/tcg-cpu-ops.h"
30 #endif /* CONFIG_TCG */
31 
32 #include "exec/exec-all.h"
33 #include "exec/target_page.h"
34 #include "hw/qdev-core.h"
35 #include "hw/qdev-properties.h"
36 #include "hw/boards.h"
37 #include "hw/xen/xen.h"
38 #include "sysemu/kvm.h"
39 #include "sysemu/tcg.h"
40 #include "sysemu/qtest.h"
41 #include "qemu/timer.h"
42 #include "qemu/config-file.h"
43 #include "qemu/error-report.h"
44 #include "qemu/qemu-print.h"
45 #include "qemu/log.h"
46 #include "qemu/memalign.h"
47 #include "exec/memory.h"
48 #include "exec/ioport.h"
49 #include "sysemu/dma.h"
50 #include "sysemu/hostmem.h"
51 #include "sysemu/hw_accel.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace/trace-root.h"
54 
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
58 
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "exec/translate-all.h"
62 #include "sysemu/replay.h"
63 
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 
67 #include "qemu/pmem.h"
68 
69 #include "migration/vmstate.h"
70 
71 #include "qemu/range.h"
72 #ifndef _WIN32
73 #include "qemu/mmap-alloc.h"
74 #endif
75 
76 #include "monitor/monitor.h"
77 
78 #ifdef CONFIG_LIBDAXCTL
79 #include <daxctl/libdaxctl.h>
80 #endif
81 
82 //#define DEBUG_SUBPAGE
83 
84 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
85  * are protected by the ramlist lock.
86  */
87 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 
89 static MemoryRegion *system_memory;
90 static MemoryRegion *system_io;
91 
92 AddressSpace address_space_io;
93 AddressSpace address_space_memory;
94 
95 static MemoryRegion io_mem_unassigned;
96 
97 typedef struct PhysPageEntry PhysPageEntry;
98 
99 struct PhysPageEntry {
100     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
101     uint32_t skip : 6;
102      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
103     uint32_t ptr : 26;
104 };
105 
106 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
107 
108 /* Size of the L2 (and L3, etc) page tables.  */
109 #define ADDR_SPACE_BITS 64
110 
111 #define P_L2_BITS 9
112 #define P_L2_SIZE (1 << P_L2_BITS)
113 
114 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
115 
116 typedef PhysPageEntry Node[P_L2_SIZE];
117 
118 typedef struct PhysPageMap {
119     struct rcu_head rcu;
120 
121     unsigned sections_nb;
122     unsigned sections_nb_alloc;
123     unsigned nodes_nb;
124     unsigned nodes_nb_alloc;
125     Node *nodes;
126     MemoryRegionSection *sections;
127 } PhysPageMap;
128 
129 struct AddressSpaceDispatch {
130     MemoryRegionSection *mru_section;
131     /* This is a multi-level map on the physical address space.
132      * The bottom level has pointers to MemoryRegionSections.
133      */
134     PhysPageEntry phys_map;
135     PhysPageMap map;
136 };
137 
138 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
139 typedef struct subpage_t {
140     MemoryRegion iomem;
141     FlatView *fv;
142     hwaddr base;
143     uint16_t sub_section[];
144 } subpage_t;
145 
146 #define PHYS_SECTION_UNASSIGNED 0
147 
148 static void io_mem_init(void);
149 static void memory_map_init(void);
150 static void tcg_log_global_after_sync(MemoryListener *listener);
151 static void tcg_commit(MemoryListener *listener);
152 
153 /**
154  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
155  * @cpu: the CPU whose AddressSpace this is
156  * @as: the AddressSpace itself
157  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
158  * @tcg_as_listener: listener for tracking changes to the AddressSpace
159  */
160 struct CPUAddressSpace {
161     CPUState *cpu;
162     AddressSpace *as;
163     struct AddressSpaceDispatch *memory_dispatch;
164     MemoryListener tcg_as_listener;
165 };
166 
167 struct DirtyBitmapSnapshot {
168     ram_addr_t start;
169     ram_addr_t end;
170     unsigned long dirty[];
171 };
172 
173 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
174 {
175     static unsigned alloc_hint = 16;
176     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
177         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
178         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
179         alloc_hint = map->nodes_nb_alloc;
180     }
181 }
182 
183 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
184 {
185     unsigned i;
186     uint32_t ret;
187     PhysPageEntry e;
188     PhysPageEntry *p;
189 
190     ret = map->nodes_nb++;
191     p = map->nodes[ret];
192     assert(ret != PHYS_MAP_NODE_NIL);
193     assert(ret != map->nodes_nb_alloc);
194 
195     e.skip = leaf ? 0 : 1;
196     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
197     for (i = 0; i < P_L2_SIZE; ++i) {
198         memcpy(&p[i], &e, sizeof(e));
199     }
200     return ret;
201 }
202 
203 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
204                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
205                                 int level)
206 {
207     PhysPageEntry *p;
208     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
209 
210     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
211         lp->ptr = phys_map_node_alloc(map, level == 0);
212     }
213     p = map->nodes[lp->ptr];
214     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
215 
216     while (*nb && lp < &p[P_L2_SIZE]) {
217         if ((*index & (step - 1)) == 0 && *nb >= step) {
218             lp->skip = 0;
219             lp->ptr = leaf;
220             *index += step;
221             *nb -= step;
222         } else {
223             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
224         }
225         ++lp;
226     }
227 }
228 
229 static void phys_page_set(AddressSpaceDispatch *d,
230                           hwaddr index, uint64_t nb,
231                           uint16_t leaf)
232 {
233     /* Wildly overreserve - it doesn't matter much. */
234     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
235 
236     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
237 }
238 
239 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
240  * and update our entry so we can skip it and go directly to the destination.
241  */
242 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
243 {
244     unsigned valid_ptr = P_L2_SIZE;
245     int valid = 0;
246     PhysPageEntry *p;
247     int i;
248 
249     if (lp->ptr == PHYS_MAP_NODE_NIL) {
250         return;
251     }
252 
253     p = nodes[lp->ptr];
254     for (i = 0; i < P_L2_SIZE; i++) {
255         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
256             continue;
257         }
258 
259         valid_ptr = i;
260         valid++;
261         if (p[i].skip) {
262             phys_page_compact(&p[i], nodes);
263         }
264     }
265 
266     /* We can only compress if there's only one child. */
267     if (valid != 1) {
268         return;
269     }
270 
271     assert(valid_ptr < P_L2_SIZE);
272 
273     /* Don't compress if it won't fit in the # of bits we have. */
274     if (P_L2_LEVELS >= (1 << 6) &&
275         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
276         return;
277     }
278 
279     lp->ptr = p[valid_ptr].ptr;
280     if (!p[valid_ptr].skip) {
281         /* If our only child is a leaf, make this a leaf. */
282         /* By design, we should have made this node a leaf to begin with so we
283          * should never reach here.
284          * But since it's so simple to handle this, let's do it just in case we
285          * change this rule.
286          */
287         lp->skip = 0;
288     } else {
289         lp->skip += p[valid_ptr].skip;
290     }
291 }
292 
293 void address_space_dispatch_compact(AddressSpaceDispatch *d)
294 {
295     if (d->phys_map.skip) {
296         phys_page_compact(&d->phys_map, d->map.nodes);
297     }
298 }
299 
300 static inline bool section_covers_addr(const MemoryRegionSection *section,
301                                        hwaddr addr)
302 {
303     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
304      * the section must cover the entire address space.
305      */
306     return int128_gethi(section->size) ||
307            range_covers_byte(section->offset_within_address_space,
308                              int128_getlo(section->size), addr);
309 }
310 
311 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
312 {
313     PhysPageEntry lp = d->phys_map, *p;
314     Node *nodes = d->map.nodes;
315     MemoryRegionSection *sections = d->map.sections;
316     hwaddr index = addr >> TARGET_PAGE_BITS;
317     int i;
318 
319     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
320         if (lp.ptr == PHYS_MAP_NODE_NIL) {
321             return &sections[PHYS_SECTION_UNASSIGNED];
322         }
323         p = nodes[lp.ptr];
324         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
325     }
326 
327     if (section_covers_addr(&sections[lp.ptr], addr)) {
328         return &sections[lp.ptr];
329     } else {
330         return &sections[PHYS_SECTION_UNASSIGNED];
331     }
332 }
333 
334 /* Called from RCU critical section */
335 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
336                                                         hwaddr addr,
337                                                         bool resolve_subpage)
338 {
339     MemoryRegionSection *section = qatomic_read(&d->mru_section);
340     subpage_t *subpage;
341 
342     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
343         !section_covers_addr(section, addr)) {
344         section = phys_page_find(d, addr);
345         qatomic_set(&d->mru_section, section);
346     }
347     if (resolve_subpage && section->mr->subpage) {
348         subpage = container_of(section->mr, subpage_t, iomem);
349         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
350     }
351     return section;
352 }
353 
354 /* Called from RCU critical section */
355 static MemoryRegionSection *
356 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
357                                  hwaddr *plen, bool resolve_subpage)
358 {
359     MemoryRegionSection *section;
360     MemoryRegion *mr;
361     Int128 diff;
362 
363     section = address_space_lookup_region(d, addr, resolve_subpage);
364     /* Compute offset within MemoryRegionSection */
365     addr -= section->offset_within_address_space;
366 
367     /* Compute offset within MemoryRegion */
368     *xlat = addr + section->offset_within_region;
369 
370     mr = section->mr;
371 
372     /* MMIO registers can be expected to perform full-width accesses based only
373      * on their address, without considering adjacent registers that could
374      * decode to completely different MemoryRegions.  When such registers
375      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
376      * regions overlap wildly.  For this reason we cannot clamp the accesses
377      * here.
378      *
379      * If the length is small (as is the case for address_space_ldl/stl),
380      * everything works fine.  If the incoming length is large, however,
381      * the caller really has to do the clamping through memory_access_size.
382      */
383     if (memory_region_is_ram(mr)) {
384         diff = int128_sub(section->size, int128_make64(addr));
385         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
386     }
387     return section;
388 }
389 
390 /**
391  * address_space_translate_iommu - translate an address through an IOMMU
392  * memory region and then through the target address space.
393  *
394  * @iommu_mr: the IOMMU memory region that we start the translation from
395  * @addr: the address to be translated through the MMU
396  * @xlat: the translated address offset within the destination memory region.
397  *        It cannot be %NULL.
398  * @plen_out: valid read/write length of the translated address. It
399  *            cannot be %NULL.
400  * @page_mask_out: page mask for the translated address. This
401  *            should only be meaningful for IOMMU translated
402  *            addresses, since there may be huge pages that this bit
403  *            would tell. It can be %NULL if we don't care about it.
404  * @is_write: whether the translation operation is for write
405  * @is_mmio: whether this can be MMIO, set true if it can
406  * @target_as: the address space targeted by the IOMMU
407  * @attrs: transaction attributes
408  *
409  * This function is called from RCU critical section.  It is the common
410  * part of flatview_do_translate and address_space_translate_cached.
411  */
412 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
413                                                          hwaddr *xlat,
414                                                          hwaddr *plen_out,
415                                                          hwaddr *page_mask_out,
416                                                          bool is_write,
417                                                          bool is_mmio,
418                                                          AddressSpace **target_as,
419                                                          MemTxAttrs attrs)
420 {
421     MemoryRegionSection *section;
422     hwaddr page_mask = (hwaddr)-1;
423 
424     do {
425         hwaddr addr = *xlat;
426         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
427         int iommu_idx = 0;
428         IOMMUTLBEntry iotlb;
429 
430         if (imrc->attrs_to_index) {
431             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
432         }
433 
434         iotlb = imrc->translate(iommu_mr, addr, is_write ?
435                                 IOMMU_WO : IOMMU_RO, iommu_idx);
436 
437         if (!(iotlb.perm & (1 << is_write))) {
438             goto unassigned;
439         }
440 
441         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
442                 | (addr & iotlb.addr_mask));
443         page_mask &= iotlb.addr_mask;
444         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
445         *target_as = iotlb.target_as;
446 
447         section = address_space_translate_internal(
448                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
449                 plen_out, is_mmio);
450 
451         iommu_mr = memory_region_get_iommu(section->mr);
452     } while (unlikely(iommu_mr));
453 
454     if (page_mask_out) {
455         *page_mask_out = page_mask;
456     }
457     return *section;
458 
459 unassigned:
460     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
461 }
462 
463 /**
464  * flatview_do_translate - translate an address in FlatView
465  *
466  * @fv: the flat view that we want to translate on
467  * @addr: the address to be translated in above address space
468  * @xlat: the translated address offset within memory region. It
469  *        cannot be @NULL.
470  * @plen_out: valid read/write length of the translated address. It
471  *            can be @NULL when we don't care about it.
472  * @page_mask_out: page mask for the translated address. This
473  *            should only be meaningful for IOMMU translated
474  *            addresses, since there may be huge pages that this bit
475  *            would tell. It can be @NULL if we don't care about it.
476  * @is_write: whether the translation operation is for write
477  * @is_mmio: whether this can be MMIO, set true if it can
478  * @target_as: the address space targeted by the IOMMU
479  * @attrs: memory transaction attributes
480  *
481  * This function is called from RCU critical section
482  */
483 static MemoryRegionSection flatview_do_translate(FlatView *fv,
484                                                  hwaddr addr,
485                                                  hwaddr *xlat,
486                                                  hwaddr *plen_out,
487                                                  hwaddr *page_mask_out,
488                                                  bool is_write,
489                                                  bool is_mmio,
490                                                  AddressSpace **target_as,
491                                                  MemTxAttrs attrs)
492 {
493     MemoryRegionSection *section;
494     IOMMUMemoryRegion *iommu_mr;
495     hwaddr plen = (hwaddr)(-1);
496 
497     if (!plen_out) {
498         plen_out = &plen;
499     }
500 
501     section = address_space_translate_internal(
502             flatview_to_dispatch(fv), addr, xlat,
503             plen_out, is_mmio);
504 
505     iommu_mr = memory_region_get_iommu(section->mr);
506     if (unlikely(iommu_mr)) {
507         return address_space_translate_iommu(iommu_mr, xlat,
508                                              plen_out, page_mask_out,
509                                              is_write, is_mmio,
510                                              target_as, attrs);
511     }
512     if (page_mask_out) {
513         /* Not behind an IOMMU, use default page size. */
514         *page_mask_out = ~TARGET_PAGE_MASK;
515     }
516 
517     return *section;
518 }
519 
520 /* Called from RCU critical section */
521 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
522                                             bool is_write, MemTxAttrs attrs)
523 {
524     MemoryRegionSection section;
525     hwaddr xlat, page_mask;
526 
527     /*
528      * This can never be MMIO, and we don't really care about plen,
529      * but page mask.
530      */
531     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
532                                     NULL, &page_mask, is_write, false, &as,
533                                     attrs);
534 
535     /* Illegal translation */
536     if (section.mr == &io_mem_unassigned) {
537         goto iotlb_fail;
538     }
539 
540     /* Convert memory region offset into address space offset */
541     xlat += section.offset_within_address_space -
542         section.offset_within_region;
543 
544     return (IOMMUTLBEntry) {
545         .target_as = as,
546         .iova = addr & ~page_mask,
547         .translated_addr = xlat & ~page_mask,
548         .addr_mask = page_mask,
549         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
550         .perm = IOMMU_RW,
551     };
552 
553 iotlb_fail:
554     return (IOMMUTLBEntry) {0};
555 }
556 
557 /* Called from RCU critical section */
558 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
559                                  hwaddr *plen, bool is_write,
560                                  MemTxAttrs attrs)
561 {
562     MemoryRegion *mr;
563     MemoryRegionSection section;
564     AddressSpace *as = NULL;
565 
566     /* This can be MMIO, so setup MMIO bit. */
567     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
568                                     is_write, true, &as, attrs);
569     mr = section.mr;
570 
571     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
572         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
573         *plen = MIN(page, *plen);
574     }
575 
576     return mr;
577 }
578 
579 typedef struct TCGIOMMUNotifier {
580     IOMMUNotifier n;
581     MemoryRegion *mr;
582     CPUState *cpu;
583     int iommu_idx;
584     bool active;
585 } TCGIOMMUNotifier;
586 
587 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
588 {
589     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
590 
591     if (!notifier->active) {
592         return;
593     }
594     tlb_flush(notifier->cpu);
595     notifier->active = false;
596     /* We leave the notifier struct on the list to avoid reallocating it later.
597      * Generally the number of IOMMUs a CPU deals with will be small.
598      * In any case we can't unregister the iommu notifier from a notify
599      * callback.
600      */
601 }
602 
603 static void tcg_register_iommu_notifier(CPUState *cpu,
604                                         IOMMUMemoryRegion *iommu_mr,
605                                         int iommu_idx)
606 {
607     /* Make sure this CPU has an IOMMU notifier registered for this
608      * IOMMU/IOMMU index combination, so that we can flush its TLB
609      * when the IOMMU tells us the mappings we've cached have changed.
610      */
611     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
612     TCGIOMMUNotifier *notifier = NULL;
613     int i;
614 
615     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
616         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
617         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
618             break;
619         }
620     }
621     if (i == cpu->iommu_notifiers->len) {
622         /* Not found, add a new entry at the end of the array */
623         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
624         notifier = g_new0(TCGIOMMUNotifier, 1);
625         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
626 
627         notifier->mr = mr;
628         notifier->iommu_idx = iommu_idx;
629         notifier->cpu = cpu;
630         /* Rather than trying to register interest in the specific part
631          * of the iommu's address space that we've accessed and then
632          * expand it later as subsequent accesses touch more of it, we
633          * just register interest in the whole thing, on the assumption
634          * that iommu reconfiguration will be rare.
635          */
636         iommu_notifier_init(&notifier->n,
637                             tcg_iommu_unmap_notify,
638                             IOMMU_NOTIFIER_UNMAP,
639                             0,
640                             HWADDR_MAX,
641                             iommu_idx);
642         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
643                                               &error_fatal);
644     }
645 
646     if (!notifier->active) {
647         notifier->active = true;
648     }
649 }
650 
651 void tcg_iommu_free_notifier_list(CPUState *cpu)
652 {
653     /* Destroy the CPU's notifier list */
654     int i;
655     TCGIOMMUNotifier *notifier;
656 
657     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
658         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
659         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
660         g_free(notifier);
661     }
662     g_array_free(cpu->iommu_notifiers, true);
663 }
664 
665 void tcg_iommu_init_notifier_list(CPUState *cpu)
666 {
667     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
668 }
669 
670 /* Called from RCU critical section */
671 MemoryRegionSection *
672 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
673                                   hwaddr *xlat, hwaddr *plen,
674                                   MemTxAttrs attrs, int *prot)
675 {
676     MemoryRegionSection *section;
677     IOMMUMemoryRegion *iommu_mr;
678     IOMMUMemoryRegionClass *imrc;
679     IOMMUTLBEntry iotlb;
680     int iommu_idx;
681     hwaddr addr = orig_addr;
682     AddressSpaceDispatch *d =
683         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
684 
685     for (;;) {
686         section = address_space_translate_internal(d, addr, &addr, plen, false);
687 
688         iommu_mr = memory_region_get_iommu(section->mr);
689         if (!iommu_mr) {
690             break;
691         }
692 
693         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694 
695         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698          * doesn't short-cut its translation table walk.
699          */
700         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702                 | (addr & iotlb.addr_mask));
703         /* Update the caller's prot bits to remove permissions the IOMMU
704          * is giving us a failure response for. If we get down to no
705          * permissions left at all we can give up now.
706          */
707         if (!(iotlb.perm & IOMMU_RO)) {
708             *prot &= ~(PAGE_READ | PAGE_EXEC);
709         }
710         if (!(iotlb.perm & IOMMU_WO)) {
711             *prot &= ~PAGE_WRITE;
712         }
713 
714         if (!*prot) {
715             goto translate_fail;
716         }
717 
718         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719     }
720 
721     assert(!memory_region_is_iommu(section->mr));
722     *xlat = addr;
723     return section;
724 
725 translate_fail:
726     /*
727      * We should be given a page-aligned address -- certainly
728      * tlb_set_page_with_attrs() does so.  The page offset of xlat
729      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730      * The page portion of xlat will be logged by memory_region_access_valid()
731      * when this memory access is rejected, so use the original untranslated
732      * physical address.
733      */
734     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735     *xlat = orig_addr;
736     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738 
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740                             const char *prefix, MemoryRegion *mr)
741 {
742     CPUAddressSpace *newas;
743     AddressSpace *as = g_new0(AddressSpace, 1);
744     char *as_name;
745 
746     assert(mr);
747     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748     address_space_init(as, mr, as_name);
749     g_free(as_name);
750 
751     /* Target code should have set num_ases before calling us */
752     assert(asidx < cpu->num_ases);
753 
754     if (asidx == 0) {
755         /* address space 0 gets the convenience alias */
756         cpu->as = as;
757     }
758 
759     /* KVM cannot currently support multiple address spaces. */
760     assert(asidx == 0 || !kvm_enabled());
761 
762     if (!cpu->cpu_ases) {
763         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764     }
765 
766     newas = &cpu->cpu_ases[asidx];
767     newas->cpu = cpu;
768     newas->as = as;
769     if (tcg_enabled()) {
770         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771         newas->tcg_as_listener.commit = tcg_commit;
772         newas->tcg_as_listener.name = "tcg";
773         memory_listener_register(&newas->tcg_as_listener, as);
774     }
775 }
776 
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779     /* Return the AddressSpace corresponding to the specified index */
780     return cpu->cpu_ases[asidx].as;
781 }
782 
783 /* Add a watchpoint.  */
784 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
785                           int flags, CPUWatchpoint **watchpoint)
786 {
787     CPUWatchpoint *wp;
788     vaddr in_page;
789 
790     /* forbid ranges which are empty or run off the end of the address space */
791     if (len == 0 || (addr + len - 1) < addr) {
792         error_report("tried to set invalid watchpoint at %"
793                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
794         return -EINVAL;
795     }
796     wp = g_malloc(sizeof(*wp));
797 
798     wp->vaddr = addr;
799     wp->len = len;
800     wp->flags = flags;
801 
802     /* keep all GDB-injected watchpoints in front */
803     if (flags & BP_GDB) {
804         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
805     } else {
806         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
807     }
808 
809     in_page = -(addr | TARGET_PAGE_MASK);
810     if (len <= in_page) {
811         tlb_flush_page(cpu, addr);
812     } else {
813         tlb_flush(cpu);
814     }
815 
816     if (watchpoint)
817         *watchpoint = wp;
818     return 0;
819 }
820 
821 /* Remove a specific watchpoint.  */
822 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
823                           int flags)
824 {
825     CPUWatchpoint *wp;
826 
827     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
828         if (addr == wp->vaddr && len == wp->len
829                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
830             cpu_watchpoint_remove_by_ref(cpu, wp);
831             return 0;
832         }
833     }
834     return -ENOENT;
835 }
836 
837 /* Remove a specific watchpoint by reference.  */
838 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
839 {
840     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
841 
842     tlb_flush_page(cpu, watchpoint->vaddr);
843 
844     g_free(watchpoint);
845 }
846 
847 /* Remove all matching watchpoints.  */
848 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
849 {
850     CPUWatchpoint *wp, *next;
851 
852     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
853         if (wp->flags & mask) {
854             cpu_watchpoint_remove_by_ref(cpu, wp);
855         }
856     }
857 }
858 
859 #ifdef CONFIG_TCG
860 /* Return true if this watchpoint address matches the specified
861  * access (ie the address range covered by the watchpoint overlaps
862  * partially or completely with the address range covered by the
863  * access).
864  */
865 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
866                                               vaddr addr, vaddr len)
867 {
868     /* We know the lengths are non-zero, but a little caution is
869      * required to avoid errors in the case where the range ends
870      * exactly at the top of the address space and so addr + len
871      * wraps round to zero.
872      */
873     vaddr wpend = wp->vaddr + wp->len - 1;
874     vaddr addrend = addr + len - 1;
875 
876     return !(addr > wpend || wp->vaddr > addrend);
877 }
878 
879 /* Return flags for watchpoints that match addr + prot.  */
880 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
881 {
882     CPUWatchpoint *wp;
883     int ret = 0;
884 
885     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
886         if (watchpoint_address_matches(wp, addr, len)) {
887             ret |= wp->flags;
888         }
889     }
890     return ret;
891 }
892 
893 /* Generate a debug exception if a watchpoint has been hit.  */
894 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
895                           MemTxAttrs attrs, int flags, uintptr_t ra)
896 {
897     CPUClass *cc = CPU_GET_CLASS(cpu);
898     CPUWatchpoint *wp;
899 
900     assert(tcg_enabled());
901     if (cpu->watchpoint_hit) {
902         /*
903          * We re-entered the check after replacing the TB.
904          * Now raise the debug interrupt so that it will
905          * trigger after the current instruction.
906          */
907         qemu_mutex_lock_iothread();
908         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
909         qemu_mutex_unlock_iothread();
910         return;
911     }
912 
913     if (cc->tcg_ops->adjust_watchpoint_address) {
914         /* this is currently used only by ARM BE32 */
915         addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
916     }
917     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
918         if (watchpoint_address_matches(wp, addr, len)
919             && (wp->flags & flags)) {
920             if (replay_running_debug()) {
921                 /*
922                  * replay_breakpoint reads icount.
923                  * Force recompile to succeed, because icount may
924                  * be read only at the end of the block.
925                  */
926                 if (!cpu->can_do_io) {
927                     /* Force execution of one insn next time.  */
928                     cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
929                     cpu_loop_exit_restore(cpu, ra);
930                 }
931                 /*
932                  * Don't process the watchpoints when we are
933                  * in a reverse debugging operation.
934                  */
935                 replay_breakpoint();
936                 return;
937             }
938             if (flags == BP_MEM_READ) {
939                 wp->flags |= BP_WATCHPOINT_HIT_READ;
940             } else {
941                 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
942             }
943             wp->hitaddr = MAX(addr, wp->vaddr);
944             wp->hitattrs = attrs;
945 
946             if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
947                 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
948                 wp->flags &= ~BP_WATCHPOINT_HIT;
949                 continue;
950             }
951             cpu->watchpoint_hit = wp;
952 
953             mmap_lock();
954             /* This call also restores vCPU state */
955             tb_check_watchpoint(cpu, ra);
956             if (wp->flags & BP_STOP_BEFORE_ACCESS) {
957                 cpu->exception_index = EXCP_DEBUG;
958                 mmap_unlock();
959                 cpu_loop_exit(cpu);
960             } else {
961                 /* Force execution of one insn next time.  */
962                 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
963                 mmap_unlock();
964                 cpu_loop_exit_noexc(cpu);
965             }
966         } else {
967             wp->flags &= ~BP_WATCHPOINT_HIT;
968         }
969     }
970 }
971 
972 #endif /* CONFIG_TCG */
973 
974 /* Called from RCU critical section */
975 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
976 {
977     RAMBlock *block;
978 
979     block = qatomic_rcu_read(&ram_list.mru_block);
980     if (block && addr - block->offset < block->max_length) {
981         return block;
982     }
983     RAMBLOCK_FOREACH(block) {
984         if (addr - block->offset < block->max_length) {
985             goto found;
986         }
987     }
988 
989     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
990     abort();
991 
992 found:
993     /* It is safe to write mru_block outside the iothread lock.  This
994      * is what happens:
995      *
996      *     mru_block = xxx
997      *     rcu_read_unlock()
998      *                                        xxx removed from list
999      *                  rcu_read_lock()
1000      *                  read mru_block
1001      *                                        mru_block = NULL;
1002      *                                        call_rcu(reclaim_ramblock, xxx);
1003      *                  rcu_read_unlock()
1004      *
1005      * qatomic_rcu_set is not needed here.  The block was already published
1006      * when it was placed into the list.  Here we're just making an extra
1007      * copy of the pointer.
1008      */
1009     ram_list.mru_block = block;
1010     return block;
1011 }
1012 
1013 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1014 {
1015     CPUState *cpu;
1016     ram_addr_t start1;
1017     RAMBlock *block;
1018     ram_addr_t end;
1019 
1020     assert(tcg_enabled());
1021     end = TARGET_PAGE_ALIGN(start + length);
1022     start &= TARGET_PAGE_MASK;
1023 
1024     RCU_READ_LOCK_GUARD();
1025     block = qemu_get_ram_block(start);
1026     assert(block == qemu_get_ram_block(end - 1));
1027     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1028     CPU_FOREACH(cpu) {
1029         tlb_reset_dirty(cpu, start1, length);
1030     }
1031 }
1032 
1033 /* Note: start and end must be within the same ram block.  */
1034 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1035                                               ram_addr_t length,
1036                                               unsigned client)
1037 {
1038     DirtyMemoryBlocks *blocks;
1039     unsigned long end, page, start_page;
1040     bool dirty = false;
1041     RAMBlock *ramblock;
1042     uint64_t mr_offset, mr_size;
1043 
1044     if (length == 0) {
1045         return false;
1046     }
1047 
1048     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1049     start_page = start >> TARGET_PAGE_BITS;
1050     page = start_page;
1051 
1052     WITH_RCU_READ_LOCK_GUARD() {
1053         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1054         ramblock = qemu_get_ram_block(start);
1055         /* Range sanity check on the ramblock */
1056         assert(start >= ramblock->offset &&
1057                start + length <= ramblock->offset + ramblock->used_length);
1058 
1059         while (page < end) {
1060             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1061             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1062             unsigned long num = MIN(end - page,
1063                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1064 
1065             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1066                                                   offset, num);
1067             page += num;
1068         }
1069 
1070         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1071         mr_size = (end - start_page) << TARGET_PAGE_BITS;
1072         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1073     }
1074 
1075     if (dirty && tcg_enabled()) {
1076         tlb_reset_dirty_range_all(start, length);
1077     }
1078 
1079     return dirty;
1080 }
1081 
1082 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1083     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1084 {
1085     DirtyMemoryBlocks *blocks;
1086     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1087     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1088     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1089     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1090     DirtyBitmapSnapshot *snap;
1091     unsigned long page, end, dest;
1092 
1093     snap = g_malloc0(sizeof(*snap) +
1094                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
1095     snap->start = first;
1096     snap->end   = last;
1097 
1098     page = first >> TARGET_PAGE_BITS;
1099     end  = last  >> TARGET_PAGE_BITS;
1100     dest = 0;
1101 
1102     WITH_RCU_READ_LOCK_GUARD() {
1103         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1104 
1105         while (page < end) {
1106             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1107             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1108             unsigned long num = MIN(end - page,
1109                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1110 
1111             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1112             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1113             offset >>= BITS_PER_LEVEL;
1114 
1115             bitmap_copy_and_clear_atomic(snap->dirty + dest,
1116                                          blocks->blocks[idx] + offset,
1117                                          num);
1118             page += num;
1119             dest += num >> BITS_PER_LEVEL;
1120         }
1121     }
1122 
1123     if (tcg_enabled()) {
1124         tlb_reset_dirty_range_all(start, length);
1125     }
1126 
1127     memory_region_clear_dirty_bitmap(mr, offset, length);
1128 
1129     return snap;
1130 }
1131 
1132 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1133                                             ram_addr_t start,
1134                                             ram_addr_t length)
1135 {
1136     unsigned long page, end;
1137 
1138     assert(start >= snap->start);
1139     assert(start + length <= snap->end);
1140 
1141     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1142     page = (start - snap->start) >> TARGET_PAGE_BITS;
1143 
1144     while (page < end) {
1145         if (test_bit(page, snap->dirty)) {
1146             return true;
1147         }
1148         page++;
1149     }
1150     return false;
1151 }
1152 
1153 /* Called from RCU critical section */
1154 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1155                                        MemoryRegionSection *section)
1156 {
1157     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1158     return section - d->map.sections;
1159 }
1160 
1161 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1162                             uint16_t section);
1163 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1164 
1165 static uint16_t phys_section_add(PhysPageMap *map,
1166                                  MemoryRegionSection *section)
1167 {
1168     /* The physical section number is ORed with a page-aligned
1169      * pointer to produce the iotlb entries.  Thus it should
1170      * never overflow into the page-aligned value.
1171      */
1172     assert(map->sections_nb < TARGET_PAGE_SIZE);
1173 
1174     if (map->sections_nb == map->sections_nb_alloc) {
1175         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1176         map->sections = g_renew(MemoryRegionSection, map->sections,
1177                                 map->sections_nb_alloc);
1178     }
1179     map->sections[map->sections_nb] = *section;
1180     memory_region_ref(section->mr);
1181     return map->sections_nb++;
1182 }
1183 
1184 static void phys_section_destroy(MemoryRegion *mr)
1185 {
1186     bool have_sub_page = mr->subpage;
1187 
1188     memory_region_unref(mr);
1189 
1190     if (have_sub_page) {
1191         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1192         object_unref(OBJECT(&subpage->iomem));
1193         g_free(subpage);
1194     }
1195 }
1196 
1197 static void phys_sections_free(PhysPageMap *map)
1198 {
1199     while (map->sections_nb > 0) {
1200         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1201         phys_section_destroy(section->mr);
1202     }
1203     g_free(map->sections);
1204     g_free(map->nodes);
1205 }
1206 
1207 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1208 {
1209     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1210     subpage_t *subpage;
1211     hwaddr base = section->offset_within_address_space
1212         & TARGET_PAGE_MASK;
1213     MemoryRegionSection *existing = phys_page_find(d, base);
1214     MemoryRegionSection subsection = {
1215         .offset_within_address_space = base,
1216         .size = int128_make64(TARGET_PAGE_SIZE),
1217     };
1218     hwaddr start, end;
1219 
1220     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1221 
1222     if (!(existing->mr->subpage)) {
1223         subpage = subpage_init(fv, base);
1224         subsection.fv = fv;
1225         subsection.mr = &subpage->iomem;
1226         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1227                       phys_section_add(&d->map, &subsection));
1228     } else {
1229         subpage = container_of(existing->mr, subpage_t, iomem);
1230     }
1231     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1232     end = start + int128_get64(section->size) - 1;
1233     subpage_register(subpage, start, end,
1234                      phys_section_add(&d->map, section));
1235 }
1236 
1237 
1238 static void register_multipage(FlatView *fv,
1239                                MemoryRegionSection *section)
1240 {
1241     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1242     hwaddr start_addr = section->offset_within_address_space;
1243     uint16_t section_index = phys_section_add(&d->map, section);
1244     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1245                                                     TARGET_PAGE_BITS));
1246 
1247     assert(num_pages);
1248     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1249 }
1250 
1251 /*
1252  * The range in *section* may look like this:
1253  *
1254  *      |s|PPPPPPP|s|
1255  *
1256  * where s stands for subpage and P for page.
1257  */
1258 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1259 {
1260     MemoryRegionSection remain = *section;
1261     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1262 
1263     /* register first subpage */
1264     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1265         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1266                         - remain.offset_within_address_space;
1267 
1268         MemoryRegionSection now = remain;
1269         now.size = int128_min(int128_make64(left), now.size);
1270         register_subpage(fv, &now);
1271         if (int128_eq(remain.size, now.size)) {
1272             return;
1273         }
1274         remain.size = int128_sub(remain.size, now.size);
1275         remain.offset_within_address_space += int128_get64(now.size);
1276         remain.offset_within_region += int128_get64(now.size);
1277     }
1278 
1279     /* register whole pages */
1280     if (int128_ge(remain.size, page_size)) {
1281         MemoryRegionSection now = remain;
1282         now.size = int128_and(now.size, int128_neg(page_size));
1283         register_multipage(fv, &now);
1284         if (int128_eq(remain.size, now.size)) {
1285             return;
1286         }
1287         remain.size = int128_sub(remain.size, now.size);
1288         remain.offset_within_address_space += int128_get64(now.size);
1289         remain.offset_within_region += int128_get64(now.size);
1290     }
1291 
1292     /* register last subpage */
1293     register_subpage(fv, &remain);
1294 }
1295 
1296 void qemu_flush_coalesced_mmio_buffer(void)
1297 {
1298     if (kvm_enabled())
1299         kvm_flush_coalesced_mmio_buffer();
1300 }
1301 
1302 void qemu_mutex_lock_ramlist(void)
1303 {
1304     qemu_mutex_lock(&ram_list.mutex);
1305 }
1306 
1307 void qemu_mutex_unlock_ramlist(void)
1308 {
1309     qemu_mutex_unlock(&ram_list.mutex);
1310 }
1311 
1312 GString *ram_block_format(void)
1313 {
1314     RAMBlock *block;
1315     char *psize;
1316     GString *buf = g_string_new("");
1317 
1318     RCU_READ_LOCK_GUARD();
1319     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1320                            "Block Name", "PSize", "Offset", "Used", "Total");
1321     RAMBLOCK_FOREACH(block) {
1322         psize = size_to_str(block->page_size);
1323         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1324                                " 0x%016" PRIx64 "\n", block->idstr, psize,
1325                                (uint64_t)block->offset,
1326                                (uint64_t)block->used_length,
1327                                (uint64_t)block->max_length);
1328         g_free(psize);
1329     }
1330 
1331     return buf;
1332 }
1333 
1334 static int find_min_backend_pagesize(Object *obj, void *opaque)
1335 {
1336     long *hpsize_min = opaque;
1337 
1338     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1339         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1340         long hpsize = host_memory_backend_pagesize(backend);
1341 
1342         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1343             *hpsize_min = hpsize;
1344         }
1345     }
1346 
1347     return 0;
1348 }
1349 
1350 static int find_max_backend_pagesize(Object *obj, void *opaque)
1351 {
1352     long *hpsize_max = opaque;
1353 
1354     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1355         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1356         long hpsize = host_memory_backend_pagesize(backend);
1357 
1358         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1359             *hpsize_max = hpsize;
1360         }
1361     }
1362 
1363     return 0;
1364 }
1365 
1366 /*
1367  * TODO: We assume right now that all mapped host memory backends are
1368  * used as RAM, however some might be used for different purposes.
1369  */
1370 long qemu_minrampagesize(void)
1371 {
1372     long hpsize = LONG_MAX;
1373     Object *memdev_root = object_resolve_path("/objects", NULL);
1374 
1375     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1376     return hpsize;
1377 }
1378 
1379 long qemu_maxrampagesize(void)
1380 {
1381     long pagesize = 0;
1382     Object *memdev_root = object_resolve_path("/objects", NULL);
1383 
1384     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1385     return pagesize;
1386 }
1387 
1388 #ifdef CONFIG_POSIX
1389 static int64_t get_file_size(int fd)
1390 {
1391     int64_t size;
1392 #if defined(__linux__)
1393     struct stat st;
1394 
1395     if (fstat(fd, &st) < 0) {
1396         return -errno;
1397     }
1398 
1399     /* Special handling for devdax character devices */
1400     if (S_ISCHR(st.st_mode)) {
1401         g_autofree char *subsystem_path = NULL;
1402         g_autofree char *subsystem = NULL;
1403 
1404         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1405                                          major(st.st_rdev), minor(st.st_rdev));
1406         subsystem = g_file_read_link(subsystem_path, NULL);
1407 
1408         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1409             g_autofree char *size_path = NULL;
1410             g_autofree char *size_str = NULL;
1411 
1412             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1413                                     major(st.st_rdev), minor(st.st_rdev));
1414 
1415             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1416                 return g_ascii_strtoll(size_str, NULL, 0);
1417             }
1418         }
1419     }
1420 #endif /* defined(__linux__) */
1421 
1422     /* st.st_size may be zero for special files yet lseek(2) works */
1423     size = lseek(fd, 0, SEEK_END);
1424     if (size < 0) {
1425         return -errno;
1426     }
1427     return size;
1428 }
1429 
1430 static int64_t get_file_align(int fd)
1431 {
1432     int64_t align = -1;
1433 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1434     struct stat st;
1435 
1436     if (fstat(fd, &st) < 0) {
1437         return -errno;
1438     }
1439 
1440     /* Special handling for devdax character devices */
1441     if (S_ISCHR(st.st_mode)) {
1442         g_autofree char *path = NULL;
1443         g_autofree char *rpath = NULL;
1444         struct daxctl_ctx *ctx;
1445         struct daxctl_region *region;
1446         int rc = 0;
1447 
1448         path = g_strdup_printf("/sys/dev/char/%d:%d",
1449                     major(st.st_rdev), minor(st.st_rdev));
1450         rpath = realpath(path, NULL);
1451         if (!rpath) {
1452             return -errno;
1453         }
1454 
1455         rc = daxctl_new(&ctx);
1456         if (rc) {
1457             return -1;
1458         }
1459 
1460         daxctl_region_foreach(ctx, region) {
1461             if (strstr(rpath, daxctl_region_get_path(region))) {
1462                 align = daxctl_region_get_align(region);
1463                 break;
1464             }
1465         }
1466         daxctl_unref(ctx);
1467     }
1468 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1469 
1470     return align;
1471 }
1472 
1473 static int file_ram_open(const char *path,
1474                          const char *region_name,
1475                          bool readonly,
1476                          bool *created,
1477                          Error **errp)
1478 {
1479     char *filename;
1480     char *sanitized_name;
1481     char *c;
1482     int fd = -1;
1483 
1484     *created = false;
1485     for (;;) {
1486         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1487         if (fd >= 0) {
1488             /* @path names an existing file, use it */
1489             break;
1490         }
1491         if (errno == ENOENT) {
1492             /* @path names a file that doesn't exist, create it */
1493             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1494             if (fd >= 0) {
1495                 *created = true;
1496                 break;
1497             }
1498         } else if (errno == EISDIR) {
1499             /* @path names a directory, create a file there */
1500             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1501             sanitized_name = g_strdup(region_name);
1502             for (c = sanitized_name; *c != '\0'; c++) {
1503                 if (*c == '/') {
1504                     *c = '_';
1505                 }
1506             }
1507 
1508             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1509                                        sanitized_name);
1510             g_free(sanitized_name);
1511 
1512             fd = mkstemp(filename);
1513             if (fd >= 0) {
1514                 unlink(filename);
1515                 g_free(filename);
1516                 break;
1517             }
1518             g_free(filename);
1519         }
1520         if (errno != EEXIST && errno != EINTR) {
1521             error_setg_errno(errp, errno,
1522                              "can't open backing store %s for guest RAM",
1523                              path);
1524             return -1;
1525         }
1526         /*
1527          * Try again on EINTR and EEXIST.  The latter happens when
1528          * something else creates the file between our two open().
1529          */
1530     }
1531 
1532     return fd;
1533 }
1534 
1535 static void *file_ram_alloc(RAMBlock *block,
1536                             ram_addr_t memory,
1537                             int fd,
1538                             bool readonly,
1539                             bool truncate,
1540                             off_t offset,
1541                             Error **errp)
1542 {
1543     uint32_t qemu_map_flags;
1544     void *area;
1545 
1546     block->page_size = qemu_fd_getpagesize(fd);
1547     if (block->mr->align % block->page_size) {
1548         error_setg(errp, "alignment 0x%" PRIx64
1549                    " must be multiples of page size 0x%zx",
1550                    block->mr->align, block->page_size);
1551         return NULL;
1552     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1553         error_setg(errp, "alignment 0x%" PRIx64
1554                    " must be a power of two", block->mr->align);
1555         return NULL;
1556     }
1557     block->mr->align = MAX(block->page_size, block->mr->align);
1558 #if defined(__s390x__)
1559     if (kvm_enabled()) {
1560         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1561     }
1562 #endif
1563 
1564     if (memory < block->page_size) {
1565         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1566                    "or larger than page size 0x%zx",
1567                    memory, block->page_size);
1568         return NULL;
1569     }
1570 
1571     memory = ROUND_UP(memory, block->page_size);
1572 
1573     /*
1574      * ftruncate is not supported by hugetlbfs in older
1575      * hosts, so don't bother bailing out on errors.
1576      * If anything goes wrong with it under other filesystems,
1577      * mmap will fail.
1578      *
1579      * Do not truncate the non-empty backend file to avoid corrupting
1580      * the existing data in the file. Disabling shrinking is not
1581      * enough. For example, the current vNVDIMM implementation stores
1582      * the guest NVDIMM labels at the end of the backend file. If the
1583      * backend file is later extended, QEMU will not be able to find
1584      * those labels. Therefore, extending the non-empty backend file
1585      * is disabled as well.
1586      */
1587     if (truncate && ftruncate(fd, memory)) {
1588         perror("ftruncate");
1589     }
1590 
1591     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1592     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1593     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1594     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1595     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1596     if (area == MAP_FAILED) {
1597         error_setg_errno(errp, errno,
1598                          "unable to map backing store for guest RAM");
1599         return NULL;
1600     }
1601 
1602     block->fd = fd;
1603     return area;
1604 }
1605 #endif
1606 
1607 /* Allocate space within the ram_addr_t space that governs the
1608  * dirty bitmaps.
1609  * Called with the ramlist lock held.
1610  */
1611 static ram_addr_t find_ram_offset(ram_addr_t size)
1612 {
1613     RAMBlock *block, *next_block;
1614     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1615 
1616     assert(size != 0); /* it would hand out same offset multiple times */
1617 
1618     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1619         return 0;
1620     }
1621 
1622     RAMBLOCK_FOREACH(block) {
1623         ram_addr_t candidate, next = RAM_ADDR_MAX;
1624 
1625         /* Align blocks to start on a 'long' in the bitmap
1626          * which makes the bitmap sync'ing take the fast path.
1627          */
1628         candidate = block->offset + block->max_length;
1629         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1630 
1631         /* Search for the closest following block
1632          * and find the gap.
1633          */
1634         RAMBLOCK_FOREACH(next_block) {
1635             if (next_block->offset >= candidate) {
1636                 next = MIN(next, next_block->offset);
1637             }
1638         }
1639 
1640         /* If it fits remember our place and remember the size
1641          * of gap, but keep going so that we might find a smaller
1642          * gap to fill so avoiding fragmentation.
1643          */
1644         if (next - candidate >= size && next - candidate < mingap) {
1645             offset = candidate;
1646             mingap = next - candidate;
1647         }
1648 
1649         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1650     }
1651 
1652     if (offset == RAM_ADDR_MAX) {
1653         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1654                 (uint64_t)size);
1655         abort();
1656     }
1657 
1658     trace_find_ram_offset(size, offset);
1659 
1660     return offset;
1661 }
1662 
1663 static unsigned long last_ram_page(void)
1664 {
1665     RAMBlock *block;
1666     ram_addr_t last = 0;
1667 
1668     RCU_READ_LOCK_GUARD();
1669     RAMBLOCK_FOREACH(block) {
1670         last = MAX(last, block->offset + block->max_length);
1671     }
1672     return last >> TARGET_PAGE_BITS;
1673 }
1674 
1675 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1676 {
1677     int ret;
1678 
1679     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1680     if (!machine_dump_guest_core(current_machine)) {
1681         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1682         if (ret) {
1683             perror("qemu_madvise");
1684             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1685                             "but dump_guest_core=off specified\n");
1686         }
1687     }
1688 }
1689 
1690 const char *qemu_ram_get_idstr(RAMBlock *rb)
1691 {
1692     return rb->idstr;
1693 }
1694 
1695 void *qemu_ram_get_host_addr(RAMBlock *rb)
1696 {
1697     return rb->host;
1698 }
1699 
1700 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1701 {
1702     return rb->offset;
1703 }
1704 
1705 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1706 {
1707     return rb->used_length;
1708 }
1709 
1710 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1711 {
1712     return rb->max_length;
1713 }
1714 
1715 bool qemu_ram_is_shared(RAMBlock *rb)
1716 {
1717     return rb->flags & RAM_SHARED;
1718 }
1719 
1720 bool qemu_ram_is_noreserve(RAMBlock *rb)
1721 {
1722     return rb->flags & RAM_NORESERVE;
1723 }
1724 
1725 /* Note: Only set at the start of postcopy */
1726 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1727 {
1728     return rb->flags & RAM_UF_ZEROPAGE;
1729 }
1730 
1731 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1732 {
1733     rb->flags |= RAM_UF_ZEROPAGE;
1734 }
1735 
1736 bool qemu_ram_is_migratable(RAMBlock *rb)
1737 {
1738     return rb->flags & RAM_MIGRATABLE;
1739 }
1740 
1741 void qemu_ram_set_migratable(RAMBlock *rb)
1742 {
1743     rb->flags |= RAM_MIGRATABLE;
1744 }
1745 
1746 void qemu_ram_unset_migratable(RAMBlock *rb)
1747 {
1748     rb->flags &= ~RAM_MIGRATABLE;
1749 }
1750 
1751 int qemu_ram_get_fd(RAMBlock *rb)
1752 {
1753     return rb->fd;
1754 }
1755 
1756 /* Called with iothread lock held.  */
1757 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1758 {
1759     RAMBlock *block;
1760 
1761     assert(new_block);
1762     assert(!new_block->idstr[0]);
1763 
1764     if (dev) {
1765         char *id = qdev_get_dev_path(dev);
1766         if (id) {
1767             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1768             g_free(id);
1769         }
1770     }
1771     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1772 
1773     RCU_READ_LOCK_GUARD();
1774     RAMBLOCK_FOREACH(block) {
1775         if (block != new_block &&
1776             !strcmp(block->idstr, new_block->idstr)) {
1777             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1778                     new_block->idstr);
1779             abort();
1780         }
1781     }
1782 }
1783 
1784 /* Called with iothread lock held.  */
1785 void qemu_ram_unset_idstr(RAMBlock *block)
1786 {
1787     /* FIXME: arch_init.c assumes that this is not called throughout
1788      * migration.  Ignore the problem since hot-unplug during migration
1789      * does not work anyway.
1790      */
1791     if (block) {
1792         memset(block->idstr, 0, sizeof(block->idstr));
1793     }
1794 }
1795 
1796 size_t qemu_ram_pagesize(RAMBlock *rb)
1797 {
1798     return rb->page_size;
1799 }
1800 
1801 /* Returns the largest size of page in use */
1802 size_t qemu_ram_pagesize_largest(void)
1803 {
1804     RAMBlock *block;
1805     size_t largest = 0;
1806 
1807     RAMBLOCK_FOREACH(block) {
1808         largest = MAX(largest, qemu_ram_pagesize(block));
1809     }
1810 
1811     return largest;
1812 }
1813 
1814 static int memory_try_enable_merging(void *addr, size_t len)
1815 {
1816     if (!machine_mem_merge(current_machine)) {
1817         /* disabled by the user */
1818         return 0;
1819     }
1820 
1821     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1822 }
1823 
1824 /*
1825  * Resizing RAM while migrating can result in the migration being canceled.
1826  * Care has to be taken if the guest might have already detected the memory.
1827  *
1828  * As memory core doesn't know how is memory accessed, it is up to
1829  * resize callback to update device state and/or add assertions to detect
1830  * misuse, if necessary.
1831  */
1832 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1833 {
1834     const ram_addr_t oldsize = block->used_length;
1835     const ram_addr_t unaligned_size = newsize;
1836 
1837     assert(block);
1838 
1839     newsize = HOST_PAGE_ALIGN(newsize);
1840 
1841     if (block->used_length == newsize) {
1842         /*
1843          * We don't have to resize the ram block (which only knows aligned
1844          * sizes), however, we have to notify if the unaligned size changed.
1845          */
1846         if (unaligned_size != memory_region_size(block->mr)) {
1847             memory_region_set_size(block->mr, unaligned_size);
1848             if (block->resized) {
1849                 block->resized(block->idstr, unaligned_size, block->host);
1850             }
1851         }
1852         return 0;
1853     }
1854 
1855     if (!(block->flags & RAM_RESIZEABLE)) {
1856         error_setg_errno(errp, EINVAL,
1857                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1858                          " != 0x" RAM_ADDR_FMT, block->idstr,
1859                          newsize, block->used_length);
1860         return -EINVAL;
1861     }
1862 
1863     if (block->max_length < newsize) {
1864         error_setg_errno(errp, EINVAL,
1865                          "Size too large: %s: 0x" RAM_ADDR_FMT
1866                          " > 0x" RAM_ADDR_FMT, block->idstr,
1867                          newsize, block->max_length);
1868         return -EINVAL;
1869     }
1870 
1871     /* Notify before modifying the ram block and touching the bitmaps. */
1872     if (block->host) {
1873         ram_block_notify_resize(block->host, oldsize, newsize);
1874     }
1875 
1876     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1877     block->used_length = newsize;
1878     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1879                                         DIRTY_CLIENTS_ALL);
1880     memory_region_set_size(block->mr, unaligned_size);
1881     if (block->resized) {
1882         block->resized(block->idstr, unaligned_size, block->host);
1883     }
1884     return 0;
1885 }
1886 
1887 /*
1888  * Trigger sync on the given ram block for range [start, start + length]
1889  * with the backing store if one is available.
1890  * Otherwise no-op.
1891  * @Note: this is supposed to be a synchronous op.
1892  */
1893 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1894 {
1895     /* The requested range should fit in within the block range */
1896     g_assert((start + length) <= block->used_length);
1897 
1898 #ifdef CONFIG_LIBPMEM
1899     /* The lack of support for pmem should not block the sync */
1900     if (ramblock_is_pmem(block)) {
1901         void *addr = ramblock_ptr(block, start);
1902         pmem_persist(addr, length);
1903         return;
1904     }
1905 #endif
1906     if (block->fd >= 0) {
1907         /**
1908          * Case there is no support for PMEM or the memory has not been
1909          * specified as persistent (or is not one) - use the msync.
1910          * Less optimal but still achieves the same goal
1911          */
1912         void *addr = ramblock_ptr(block, start);
1913         if (qemu_msync(addr, length, block->fd)) {
1914             warn_report("%s: failed to sync memory range: start: "
1915                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1916                     __func__, start, length);
1917         }
1918     }
1919 }
1920 
1921 /* Called with ram_list.mutex held */
1922 static void dirty_memory_extend(ram_addr_t old_ram_size,
1923                                 ram_addr_t new_ram_size)
1924 {
1925     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1926                                              DIRTY_MEMORY_BLOCK_SIZE);
1927     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1928                                              DIRTY_MEMORY_BLOCK_SIZE);
1929     int i;
1930 
1931     /* Only need to extend if block count increased */
1932     if (new_num_blocks <= old_num_blocks) {
1933         return;
1934     }
1935 
1936     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1937         DirtyMemoryBlocks *old_blocks;
1938         DirtyMemoryBlocks *new_blocks;
1939         int j;
1940 
1941         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1942         new_blocks = g_malloc(sizeof(*new_blocks) +
1943                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1944 
1945         if (old_num_blocks) {
1946             memcpy(new_blocks->blocks, old_blocks->blocks,
1947                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1948         }
1949 
1950         for (j = old_num_blocks; j < new_num_blocks; j++) {
1951             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1952         }
1953 
1954         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1955 
1956         if (old_blocks) {
1957             g_free_rcu(old_blocks, rcu);
1958         }
1959     }
1960 }
1961 
1962 static void ram_block_add(RAMBlock *new_block, Error **errp)
1963 {
1964     const bool noreserve = qemu_ram_is_noreserve(new_block);
1965     const bool shared = qemu_ram_is_shared(new_block);
1966     RAMBlock *block;
1967     RAMBlock *last_block = NULL;
1968     ram_addr_t old_ram_size, new_ram_size;
1969     Error *err = NULL;
1970 
1971     old_ram_size = last_ram_page();
1972 
1973     qemu_mutex_lock_ramlist();
1974     new_block->offset = find_ram_offset(new_block->max_length);
1975 
1976     if (!new_block->host) {
1977         if (xen_enabled()) {
1978             xen_ram_alloc(new_block->offset, new_block->max_length,
1979                           new_block->mr, &err);
1980             if (err) {
1981                 error_propagate(errp, err);
1982                 qemu_mutex_unlock_ramlist();
1983                 return;
1984             }
1985         } else {
1986             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1987                                                   &new_block->mr->align,
1988                                                   shared, noreserve);
1989             if (!new_block->host) {
1990                 error_setg_errno(errp, errno,
1991                                  "cannot set up guest memory '%s'",
1992                                  memory_region_name(new_block->mr));
1993                 qemu_mutex_unlock_ramlist();
1994                 return;
1995             }
1996             memory_try_enable_merging(new_block->host, new_block->max_length);
1997         }
1998     }
1999 
2000     new_ram_size = MAX(old_ram_size,
2001               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2002     if (new_ram_size > old_ram_size) {
2003         dirty_memory_extend(old_ram_size, new_ram_size);
2004     }
2005     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2006      * QLIST (which has an RCU-friendly variant) does not have insertion at
2007      * tail, so save the last element in last_block.
2008      */
2009     RAMBLOCK_FOREACH(block) {
2010         last_block = block;
2011         if (block->max_length < new_block->max_length) {
2012             break;
2013         }
2014     }
2015     if (block) {
2016         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2017     } else if (last_block) {
2018         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2019     } else { /* list is empty */
2020         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2021     }
2022     ram_list.mru_block = NULL;
2023 
2024     /* Write list before version */
2025     smp_wmb();
2026     ram_list.version++;
2027     qemu_mutex_unlock_ramlist();
2028 
2029     cpu_physical_memory_set_dirty_range(new_block->offset,
2030                                         new_block->used_length,
2031                                         DIRTY_CLIENTS_ALL);
2032 
2033     if (new_block->host) {
2034         qemu_ram_setup_dump(new_block->host, new_block->max_length);
2035         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2036         /*
2037          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2038          * Configure it unless the machine is a qtest server, in which case
2039          * KVM is not used and it may be forked (eg for fuzzing purposes).
2040          */
2041         if (!qtest_enabled()) {
2042             qemu_madvise(new_block->host, new_block->max_length,
2043                          QEMU_MADV_DONTFORK);
2044         }
2045         ram_block_notify_add(new_block->host, new_block->used_length,
2046                              new_block->max_length);
2047     }
2048 }
2049 
2050 #ifdef CONFIG_POSIX
2051 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2052                                  uint32_t ram_flags, int fd, off_t offset,
2053                                  bool readonly, Error **errp)
2054 {
2055     RAMBlock *new_block;
2056     Error *local_err = NULL;
2057     int64_t file_size, file_align;
2058 
2059     /* Just support these ram flags by now. */
2060     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2061                           RAM_PROTECTED)) == 0);
2062 
2063     if (xen_enabled()) {
2064         error_setg(errp, "-mem-path not supported with Xen");
2065         return NULL;
2066     }
2067 
2068     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2069         error_setg(errp,
2070                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2071         return NULL;
2072     }
2073 
2074     size = HOST_PAGE_ALIGN(size);
2075     file_size = get_file_size(fd);
2076     if (file_size > 0 && file_size < size) {
2077         error_setg(errp, "backing store size 0x%" PRIx64
2078                    " does not match 'size' option 0x" RAM_ADDR_FMT,
2079                    file_size, size);
2080         return NULL;
2081     }
2082 
2083     file_align = get_file_align(fd);
2084     if (file_align > 0 && file_align > mr->align) {
2085         error_setg(errp, "backing store align 0x%" PRIx64
2086                    " is larger than 'align' option 0x%" PRIx64,
2087                    file_align, mr->align);
2088         return NULL;
2089     }
2090 
2091     new_block = g_malloc0(sizeof(*new_block));
2092     new_block->mr = mr;
2093     new_block->used_length = size;
2094     new_block->max_length = size;
2095     new_block->flags = ram_flags;
2096     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2097                                      !file_size, offset, errp);
2098     if (!new_block->host) {
2099         g_free(new_block);
2100         return NULL;
2101     }
2102 
2103     ram_block_add(new_block, &local_err);
2104     if (local_err) {
2105         g_free(new_block);
2106         error_propagate(errp, local_err);
2107         return NULL;
2108     }
2109     return new_block;
2110 
2111 }
2112 
2113 
2114 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2115                                    uint32_t ram_flags, const char *mem_path,
2116                                    bool readonly, Error **errp)
2117 {
2118     int fd;
2119     bool created;
2120     RAMBlock *block;
2121 
2122     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2123                        errp);
2124     if (fd < 0) {
2125         return NULL;
2126     }
2127 
2128     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2129     if (!block) {
2130         if (created) {
2131             unlink(mem_path);
2132         }
2133         close(fd);
2134         return NULL;
2135     }
2136 
2137     return block;
2138 }
2139 #endif
2140 
2141 static
2142 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2143                                   void (*resized)(const char*,
2144                                                   uint64_t length,
2145                                                   void *host),
2146                                   void *host, uint32_t ram_flags,
2147                                   MemoryRegion *mr, Error **errp)
2148 {
2149     RAMBlock *new_block;
2150     Error *local_err = NULL;
2151 
2152     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2153                           RAM_NORESERVE)) == 0);
2154     assert(!host ^ (ram_flags & RAM_PREALLOC));
2155 
2156     size = HOST_PAGE_ALIGN(size);
2157     max_size = HOST_PAGE_ALIGN(max_size);
2158     new_block = g_malloc0(sizeof(*new_block));
2159     new_block->mr = mr;
2160     new_block->resized = resized;
2161     new_block->used_length = size;
2162     new_block->max_length = max_size;
2163     assert(max_size >= size);
2164     new_block->fd = -1;
2165     new_block->page_size = qemu_real_host_page_size();
2166     new_block->host = host;
2167     new_block->flags = ram_flags;
2168     ram_block_add(new_block, &local_err);
2169     if (local_err) {
2170         g_free(new_block);
2171         error_propagate(errp, local_err);
2172         return NULL;
2173     }
2174     return new_block;
2175 }
2176 
2177 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2178                                    MemoryRegion *mr, Error **errp)
2179 {
2180     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2181                                    errp);
2182 }
2183 
2184 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2185                          MemoryRegion *mr, Error **errp)
2186 {
2187     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2188     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2189 }
2190 
2191 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2192                                      void (*resized)(const char*,
2193                                                      uint64_t length,
2194                                                      void *host),
2195                                      MemoryRegion *mr, Error **errp)
2196 {
2197     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2198                                    RAM_RESIZEABLE, mr, errp);
2199 }
2200 
2201 static void reclaim_ramblock(RAMBlock *block)
2202 {
2203     if (block->flags & RAM_PREALLOC) {
2204         ;
2205     } else if (xen_enabled()) {
2206         xen_invalidate_map_cache_entry(block->host);
2207 #ifndef _WIN32
2208     } else if (block->fd >= 0) {
2209         qemu_ram_munmap(block->fd, block->host, block->max_length);
2210         close(block->fd);
2211 #endif
2212     } else {
2213         qemu_anon_ram_free(block->host, block->max_length);
2214     }
2215     g_free(block);
2216 }
2217 
2218 void qemu_ram_free(RAMBlock *block)
2219 {
2220     if (!block) {
2221         return;
2222     }
2223 
2224     if (block->host) {
2225         ram_block_notify_remove(block->host, block->used_length,
2226                                 block->max_length);
2227     }
2228 
2229     qemu_mutex_lock_ramlist();
2230     QLIST_REMOVE_RCU(block, next);
2231     ram_list.mru_block = NULL;
2232     /* Write list before version */
2233     smp_wmb();
2234     ram_list.version++;
2235     call_rcu(block, reclaim_ramblock, rcu);
2236     qemu_mutex_unlock_ramlist();
2237 }
2238 
2239 #ifndef _WIN32
2240 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2241 {
2242     RAMBlock *block;
2243     ram_addr_t offset;
2244     int flags;
2245     void *area, *vaddr;
2246 
2247     RAMBLOCK_FOREACH(block) {
2248         offset = addr - block->offset;
2249         if (offset < block->max_length) {
2250             vaddr = ramblock_ptr(block, offset);
2251             if (block->flags & RAM_PREALLOC) {
2252                 ;
2253             } else if (xen_enabled()) {
2254                 abort();
2255             } else {
2256                 flags = MAP_FIXED;
2257                 flags |= block->flags & RAM_SHARED ?
2258                          MAP_SHARED : MAP_PRIVATE;
2259                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2260                 if (block->fd >= 0) {
2261                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2262                                 flags, block->fd, offset);
2263                 } else {
2264                     flags |= MAP_ANONYMOUS;
2265                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2266                                 flags, -1, 0);
2267                 }
2268                 if (area != vaddr) {
2269                     error_report("Could not remap addr: "
2270                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2271                                  length, addr);
2272                     exit(1);
2273                 }
2274                 memory_try_enable_merging(vaddr, length);
2275                 qemu_ram_setup_dump(vaddr, length);
2276             }
2277         }
2278     }
2279 }
2280 #endif /* !_WIN32 */
2281 
2282 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2283  * This should not be used for general purpose DMA.  Use address_space_map
2284  * or address_space_rw instead. For local memory (e.g. video ram) that the
2285  * device owns, use memory_region_get_ram_ptr.
2286  *
2287  * Called within RCU critical section.
2288  */
2289 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2290 {
2291     RAMBlock *block = ram_block;
2292 
2293     if (block == NULL) {
2294         block = qemu_get_ram_block(addr);
2295         addr -= block->offset;
2296     }
2297 
2298     if (xen_enabled() && block->host == NULL) {
2299         /* We need to check if the requested address is in the RAM
2300          * because we don't want to map the entire memory in QEMU.
2301          * In that case just map until the end of the page.
2302          */
2303         if (block->offset == 0) {
2304             return xen_map_cache(addr, 0, 0, false);
2305         }
2306 
2307         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2308     }
2309     return ramblock_ptr(block, addr);
2310 }
2311 
2312 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2313  * but takes a size argument.
2314  *
2315  * Called within RCU critical section.
2316  */
2317 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2318                                  hwaddr *size, bool lock)
2319 {
2320     RAMBlock *block = ram_block;
2321     if (*size == 0) {
2322         return NULL;
2323     }
2324 
2325     if (block == NULL) {
2326         block = qemu_get_ram_block(addr);
2327         addr -= block->offset;
2328     }
2329     *size = MIN(*size, block->max_length - addr);
2330 
2331     if (xen_enabled() && block->host == NULL) {
2332         /* We need to check if the requested address is in the RAM
2333          * because we don't want to map the entire memory in QEMU.
2334          * In that case just map the requested area.
2335          */
2336         if (block->offset == 0) {
2337             return xen_map_cache(addr, *size, lock, lock);
2338         }
2339 
2340         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2341     }
2342 
2343     return ramblock_ptr(block, addr);
2344 }
2345 
2346 /* Return the offset of a hostpointer within a ramblock */
2347 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2348 {
2349     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2350     assert((uintptr_t)host >= (uintptr_t)rb->host);
2351     assert(res < rb->max_length);
2352 
2353     return res;
2354 }
2355 
2356 /*
2357  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2358  * in that RAMBlock.
2359  *
2360  * ptr: Host pointer to look up
2361  * round_offset: If true round the result offset down to a page boundary
2362  * *ram_addr: set to result ram_addr
2363  * *offset: set to result offset within the RAMBlock
2364  *
2365  * Returns: RAMBlock (or NULL if not found)
2366  *
2367  * By the time this function returns, the returned pointer is not protected
2368  * by RCU anymore.  If the caller is not within an RCU critical section and
2369  * does not hold the iothread lock, it must have other means of protecting the
2370  * pointer, such as a reference to the region that includes the incoming
2371  * ram_addr_t.
2372  */
2373 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2374                                    ram_addr_t *offset)
2375 {
2376     RAMBlock *block;
2377     uint8_t *host = ptr;
2378 
2379     if (xen_enabled()) {
2380         ram_addr_t ram_addr;
2381         RCU_READ_LOCK_GUARD();
2382         ram_addr = xen_ram_addr_from_mapcache(ptr);
2383         block = qemu_get_ram_block(ram_addr);
2384         if (block) {
2385             *offset = ram_addr - block->offset;
2386         }
2387         return block;
2388     }
2389 
2390     RCU_READ_LOCK_GUARD();
2391     block = qatomic_rcu_read(&ram_list.mru_block);
2392     if (block && block->host && host - block->host < block->max_length) {
2393         goto found;
2394     }
2395 
2396     RAMBLOCK_FOREACH(block) {
2397         /* This case append when the block is not mapped. */
2398         if (block->host == NULL) {
2399             continue;
2400         }
2401         if (host - block->host < block->max_length) {
2402             goto found;
2403         }
2404     }
2405 
2406     return NULL;
2407 
2408 found:
2409     *offset = (host - block->host);
2410     if (round_offset) {
2411         *offset &= TARGET_PAGE_MASK;
2412     }
2413     return block;
2414 }
2415 
2416 /*
2417  * Finds the named RAMBlock
2418  *
2419  * name: The name of RAMBlock to find
2420  *
2421  * Returns: RAMBlock (or NULL if not found)
2422  */
2423 RAMBlock *qemu_ram_block_by_name(const char *name)
2424 {
2425     RAMBlock *block;
2426 
2427     RAMBLOCK_FOREACH(block) {
2428         if (!strcmp(name, block->idstr)) {
2429             return block;
2430         }
2431     }
2432 
2433     return NULL;
2434 }
2435 
2436 /* Some of the softmmu routines need to translate from a host pointer
2437    (typically a TLB entry) back to a ram offset.  */
2438 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2439 {
2440     RAMBlock *block;
2441     ram_addr_t offset;
2442 
2443     block = qemu_ram_block_from_host(ptr, false, &offset);
2444     if (!block) {
2445         return RAM_ADDR_INVALID;
2446     }
2447 
2448     return block->offset + offset;
2449 }
2450 
2451 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2452 {
2453     ram_addr_t ram_addr;
2454 
2455     ram_addr = qemu_ram_addr_from_host(ptr);
2456     if (ram_addr == RAM_ADDR_INVALID) {
2457         error_report("Bad ram pointer %p", ptr);
2458         abort();
2459     }
2460     return ram_addr;
2461 }
2462 
2463 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2464                                  MemTxAttrs attrs, void *buf, hwaddr len);
2465 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2466                                   const void *buf, hwaddr len);
2467 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2468                                   bool is_write, MemTxAttrs attrs);
2469 
2470 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2471                                 unsigned len, MemTxAttrs attrs)
2472 {
2473     subpage_t *subpage = opaque;
2474     uint8_t buf[8];
2475     MemTxResult res;
2476 
2477 #if defined(DEBUG_SUBPAGE)
2478     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2479            subpage, len, addr);
2480 #endif
2481     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2482     if (res) {
2483         return res;
2484     }
2485     *data = ldn_p(buf, len);
2486     return MEMTX_OK;
2487 }
2488 
2489 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2490                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2491 {
2492     subpage_t *subpage = opaque;
2493     uint8_t buf[8];
2494 
2495 #if defined(DEBUG_SUBPAGE)
2496     printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2497            " value %"PRIx64"\n",
2498            __func__, subpage, len, addr, value);
2499 #endif
2500     stn_p(buf, len, value);
2501     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2502 }
2503 
2504 static bool subpage_accepts(void *opaque, hwaddr addr,
2505                             unsigned len, bool is_write,
2506                             MemTxAttrs attrs)
2507 {
2508     subpage_t *subpage = opaque;
2509 #if defined(DEBUG_SUBPAGE)
2510     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2511            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2512 #endif
2513 
2514     return flatview_access_valid(subpage->fv, addr + subpage->base,
2515                                  len, is_write, attrs);
2516 }
2517 
2518 static const MemoryRegionOps subpage_ops = {
2519     .read_with_attrs = subpage_read,
2520     .write_with_attrs = subpage_write,
2521     .impl.min_access_size = 1,
2522     .impl.max_access_size = 8,
2523     .valid.min_access_size = 1,
2524     .valid.max_access_size = 8,
2525     .valid.accepts = subpage_accepts,
2526     .endianness = DEVICE_NATIVE_ENDIAN,
2527 };
2528 
2529 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2530                             uint16_t section)
2531 {
2532     int idx, eidx;
2533 
2534     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2535         return -1;
2536     idx = SUBPAGE_IDX(start);
2537     eidx = SUBPAGE_IDX(end);
2538 #if defined(DEBUG_SUBPAGE)
2539     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2540            __func__, mmio, start, end, idx, eidx, section);
2541 #endif
2542     for (; idx <= eidx; idx++) {
2543         mmio->sub_section[idx] = section;
2544     }
2545 
2546     return 0;
2547 }
2548 
2549 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2550 {
2551     subpage_t *mmio;
2552 
2553     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2554     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2555     mmio->fv = fv;
2556     mmio->base = base;
2557     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2558                           NULL, TARGET_PAGE_SIZE);
2559     mmio->iomem.subpage = true;
2560 #if defined(DEBUG_SUBPAGE)
2561     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2562            mmio, base, TARGET_PAGE_SIZE);
2563 #endif
2564 
2565     return mmio;
2566 }
2567 
2568 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2569 {
2570     assert(fv);
2571     MemoryRegionSection section = {
2572         .fv = fv,
2573         .mr = mr,
2574         .offset_within_address_space = 0,
2575         .offset_within_region = 0,
2576         .size = int128_2_64(),
2577     };
2578 
2579     return phys_section_add(map, &section);
2580 }
2581 
2582 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2583                                       hwaddr index, MemTxAttrs attrs)
2584 {
2585     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2586     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2587     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2588     MemoryRegionSection *sections = d->map.sections;
2589 
2590     return &sections[index & ~TARGET_PAGE_MASK];
2591 }
2592 
2593 static void io_mem_init(void)
2594 {
2595     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2596                           NULL, UINT64_MAX);
2597 }
2598 
2599 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2600 {
2601     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2602     uint16_t n;
2603 
2604     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2605     assert(n == PHYS_SECTION_UNASSIGNED);
2606 
2607     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2608 
2609     return d;
2610 }
2611 
2612 void address_space_dispatch_free(AddressSpaceDispatch *d)
2613 {
2614     phys_sections_free(&d->map);
2615     g_free(d);
2616 }
2617 
2618 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2619 {
2620 }
2621 
2622 static void tcg_log_global_after_sync(MemoryListener *listener)
2623 {
2624     CPUAddressSpace *cpuas;
2625 
2626     /* Wait for the CPU to end the current TB.  This avoids the following
2627      * incorrect race:
2628      *
2629      *      vCPU                         migration
2630      *      ----------------------       -------------------------
2631      *      TLB check -> slow path
2632      *        notdirty_mem_write
2633      *          write to RAM
2634      *          mark dirty
2635      *                                   clear dirty flag
2636      *      TLB check -> fast path
2637      *                                   read memory
2638      *        write to RAM
2639      *
2640      * by pushing the migration thread's memory read after the vCPU thread has
2641      * written the memory.
2642      */
2643     if (replay_mode == REPLAY_MODE_NONE) {
2644         /*
2645          * VGA can make calls to this function while updating the screen.
2646          * In record/replay mode this causes a deadlock, because
2647          * run_on_cpu waits for rr mutex. Therefore no races are possible
2648          * in this case and no need for making run_on_cpu when
2649          * record/replay is enabled.
2650          */
2651         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2653     }
2654 }
2655 
2656 static void tcg_commit(MemoryListener *listener)
2657 {
2658     CPUAddressSpace *cpuas;
2659     AddressSpaceDispatch *d;
2660 
2661     assert(tcg_enabled());
2662     /* since each CPU stores ram addresses in its TLB cache, we must
2663        reset the modified entries */
2664     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2665     cpu_reloading_memory_map();
2666     /* The CPU and TLB are protected by the iothread lock.
2667      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2668      * may have split the RCU critical section.
2669      */
2670     d = address_space_to_dispatch(cpuas->as);
2671     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2672     tlb_flush(cpuas->cpu);
2673 }
2674 
2675 static void memory_map_init(void)
2676 {
2677     system_memory = g_malloc(sizeof(*system_memory));
2678 
2679     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2680     address_space_init(&address_space_memory, system_memory, "memory");
2681 
2682     system_io = g_malloc(sizeof(*system_io));
2683     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2684                           65536);
2685     address_space_init(&address_space_io, system_io, "I/O");
2686 }
2687 
2688 MemoryRegion *get_system_memory(void)
2689 {
2690     return system_memory;
2691 }
2692 
2693 MemoryRegion *get_system_io(void)
2694 {
2695     return system_io;
2696 }
2697 
2698 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2699                                      hwaddr length)
2700 {
2701     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2702     addr += memory_region_get_ram_addr(mr);
2703 
2704     /* No early return if dirty_log_mask is or becomes 0, because
2705      * cpu_physical_memory_set_dirty_range will still call
2706      * xen_modified_memory.
2707      */
2708     if (dirty_log_mask) {
2709         dirty_log_mask =
2710             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2711     }
2712     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2713         assert(tcg_enabled());
2714         tb_invalidate_phys_range(addr, addr + length);
2715         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2716     }
2717     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2718 }
2719 
2720 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2721 {
2722     /*
2723      * In principle this function would work on other memory region types too,
2724      * but the ROM device use case is the only one where this operation is
2725      * necessary.  Other memory regions should use the
2726      * address_space_read/write() APIs.
2727      */
2728     assert(memory_region_is_romd(mr));
2729 
2730     invalidate_and_set_dirty(mr, addr, size);
2731 }
2732 
2733 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2734 {
2735     unsigned access_size_max = mr->ops->valid.max_access_size;
2736 
2737     /* Regions are assumed to support 1-4 byte accesses unless
2738        otherwise specified.  */
2739     if (access_size_max == 0) {
2740         access_size_max = 4;
2741     }
2742 
2743     /* Bound the maximum access by the alignment of the address.  */
2744     if (!mr->ops->impl.unaligned) {
2745         unsigned align_size_max = addr & -addr;
2746         if (align_size_max != 0 && align_size_max < access_size_max) {
2747             access_size_max = align_size_max;
2748         }
2749     }
2750 
2751     /* Don't attempt accesses larger than the maximum.  */
2752     if (l > access_size_max) {
2753         l = access_size_max;
2754     }
2755     l = pow2floor(l);
2756 
2757     return l;
2758 }
2759 
2760 bool prepare_mmio_access(MemoryRegion *mr)
2761 {
2762     bool release_lock = false;
2763 
2764     if (!qemu_mutex_iothread_locked()) {
2765         qemu_mutex_lock_iothread();
2766         release_lock = true;
2767     }
2768     if (mr->flush_coalesced_mmio) {
2769         qemu_flush_coalesced_mmio_buffer();
2770     }
2771 
2772     return release_lock;
2773 }
2774 
2775 /**
2776  * flatview_access_allowed
2777  * @mr: #MemoryRegion to be accessed
2778  * @attrs: memory transaction attributes
2779  * @addr: address within that memory region
2780  * @len: the number of bytes to access
2781  *
2782  * Check if a memory transaction is allowed.
2783  *
2784  * Returns: true if transaction is allowed, false if denied.
2785  */
2786 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2787                                     hwaddr addr, hwaddr len)
2788 {
2789     if (likely(!attrs.memory)) {
2790         return true;
2791     }
2792     if (memory_region_is_ram(mr)) {
2793         return true;
2794     }
2795     qemu_log_mask(LOG_GUEST_ERROR,
2796                   "Invalid access to non-RAM device at "
2797                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2798                   "region '%s'\n", addr, len, memory_region_name(mr));
2799     return false;
2800 }
2801 
2802 /* Called within RCU critical section.  */
2803 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2804                                            MemTxAttrs attrs,
2805                                            const void *ptr,
2806                                            hwaddr len, hwaddr addr1,
2807                                            hwaddr l, MemoryRegion *mr)
2808 {
2809     uint8_t *ram_ptr;
2810     uint64_t val;
2811     MemTxResult result = MEMTX_OK;
2812     bool release_lock = false;
2813     const uint8_t *buf = ptr;
2814 
2815     for (;;) {
2816         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2817             result |= MEMTX_ACCESS_ERROR;
2818             /* Keep going. */
2819         } else if (!memory_access_is_direct(mr, true)) {
2820             release_lock |= prepare_mmio_access(mr);
2821             l = memory_access_size(mr, l, addr1);
2822             /* XXX: could force current_cpu to NULL to avoid
2823                potential bugs */
2824             val = ldn_he_p(buf, l);
2825             result |= memory_region_dispatch_write(mr, addr1, val,
2826                                                    size_memop(l), attrs);
2827         } else {
2828             /* RAM case */
2829             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2830             memcpy(ram_ptr, buf, l);
2831             invalidate_and_set_dirty(mr, addr1, l);
2832         }
2833 
2834         if (release_lock) {
2835             qemu_mutex_unlock_iothread();
2836             release_lock = false;
2837         }
2838 
2839         len -= l;
2840         buf += l;
2841         addr += l;
2842 
2843         if (!len) {
2844             break;
2845         }
2846 
2847         l = len;
2848         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2849     }
2850 
2851     return result;
2852 }
2853 
2854 /* Called from RCU critical section.  */
2855 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2856                                   const void *buf, hwaddr len)
2857 {
2858     hwaddr l;
2859     hwaddr addr1;
2860     MemoryRegion *mr;
2861 
2862     l = len;
2863     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2864     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2865         return MEMTX_ACCESS_ERROR;
2866     }
2867     return flatview_write_continue(fv, addr, attrs, buf, len,
2868                                    addr1, l, mr);
2869 }
2870 
2871 /* Called within RCU critical section.  */
2872 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2873                                    MemTxAttrs attrs, void *ptr,
2874                                    hwaddr len, hwaddr addr1, hwaddr l,
2875                                    MemoryRegion *mr)
2876 {
2877     uint8_t *ram_ptr;
2878     uint64_t val;
2879     MemTxResult result = MEMTX_OK;
2880     bool release_lock = false;
2881     uint8_t *buf = ptr;
2882 
2883     fuzz_dma_read_cb(addr, len, mr);
2884     for (;;) {
2885         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2886             result |= MEMTX_ACCESS_ERROR;
2887             /* Keep going. */
2888         } else if (!memory_access_is_direct(mr, false)) {
2889             /* I/O case */
2890             release_lock |= prepare_mmio_access(mr);
2891             l = memory_access_size(mr, l, addr1);
2892             result |= memory_region_dispatch_read(mr, addr1, &val,
2893                                                   size_memop(l), attrs);
2894             stn_he_p(buf, l, val);
2895         } else {
2896             /* RAM case */
2897             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2898             memcpy(buf, ram_ptr, l);
2899         }
2900 
2901         if (release_lock) {
2902             qemu_mutex_unlock_iothread();
2903             release_lock = false;
2904         }
2905 
2906         len -= l;
2907         buf += l;
2908         addr += l;
2909 
2910         if (!len) {
2911             break;
2912         }
2913 
2914         l = len;
2915         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2916     }
2917 
2918     return result;
2919 }
2920 
2921 /* Called from RCU critical section.  */
2922 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2923                                  MemTxAttrs attrs, void *buf, hwaddr len)
2924 {
2925     hwaddr l;
2926     hwaddr addr1;
2927     MemoryRegion *mr;
2928 
2929     l = len;
2930     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2931     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2932         return MEMTX_ACCESS_ERROR;
2933     }
2934     return flatview_read_continue(fv, addr, attrs, buf, len,
2935                                   addr1, l, mr);
2936 }
2937 
2938 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2939                                     MemTxAttrs attrs, void *buf, hwaddr len)
2940 {
2941     MemTxResult result = MEMTX_OK;
2942     FlatView *fv;
2943 
2944     if (len > 0) {
2945         RCU_READ_LOCK_GUARD();
2946         fv = address_space_to_flatview(as);
2947         result = flatview_read(fv, addr, attrs, buf, len);
2948     }
2949 
2950     return result;
2951 }
2952 
2953 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2954                                 MemTxAttrs attrs,
2955                                 const void *buf, hwaddr len)
2956 {
2957     MemTxResult result = MEMTX_OK;
2958     FlatView *fv;
2959 
2960     if (len > 0) {
2961         RCU_READ_LOCK_GUARD();
2962         fv = address_space_to_flatview(as);
2963         result = flatview_write(fv, addr, attrs, buf, len);
2964     }
2965 
2966     return result;
2967 }
2968 
2969 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2970                              void *buf, hwaddr len, bool is_write)
2971 {
2972     if (is_write) {
2973         return address_space_write(as, addr, attrs, buf, len);
2974     } else {
2975         return address_space_read_full(as, addr, attrs, buf, len);
2976     }
2977 }
2978 
2979 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2980                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2981 {
2982 #define FILLBUF_SIZE 512
2983     uint8_t fillbuf[FILLBUF_SIZE];
2984     int l;
2985     MemTxResult error = MEMTX_OK;
2986 
2987     memset(fillbuf, c, FILLBUF_SIZE);
2988     while (len > 0) {
2989         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2990         error |= address_space_write(as, addr, attrs, fillbuf, l);
2991         len -= l;
2992         addr += l;
2993     }
2994 
2995     return error;
2996 }
2997 
2998 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2999                             hwaddr len, bool is_write)
3000 {
3001     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3002                      buf, len, is_write);
3003 }
3004 
3005 enum write_rom_type {
3006     WRITE_DATA,
3007     FLUSH_CACHE,
3008 };
3009 
3010 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3011                                                            hwaddr addr,
3012                                                            MemTxAttrs attrs,
3013                                                            const void *ptr,
3014                                                            hwaddr len,
3015                                                            enum write_rom_type type)
3016 {
3017     hwaddr l;
3018     uint8_t *ram_ptr;
3019     hwaddr addr1;
3020     MemoryRegion *mr;
3021     const uint8_t *buf = ptr;
3022 
3023     RCU_READ_LOCK_GUARD();
3024     while (len > 0) {
3025         l = len;
3026         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3027 
3028         if (!(memory_region_is_ram(mr) ||
3029               memory_region_is_romd(mr))) {
3030             l = memory_access_size(mr, l, addr1);
3031         } else {
3032             /* ROM/RAM case */
3033             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3034             switch (type) {
3035             case WRITE_DATA:
3036                 memcpy(ram_ptr, buf, l);
3037                 invalidate_and_set_dirty(mr, addr1, l);
3038                 break;
3039             case FLUSH_CACHE:
3040                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3041                 break;
3042             }
3043         }
3044         len -= l;
3045         buf += l;
3046         addr += l;
3047     }
3048     return MEMTX_OK;
3049 }
3050 
3051 /* used for ROM loading : can write in RAM and ROM */
3052 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3053                                     MemTxAttrs attrs,
3054                                     const void *buf, hwaddr len)
3055 {
3056     return address_space_write_rom_internal(as, addr, attrs,
3057                                             buf, len, WRITE_DATA);
3058 }
3059 
3060 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3061 {
3062     /*
3063      * This function should do the same thing as an icache flush that was
3064      * triggered from within the guest. For TCG we are always cache coherent,
3065      * so there is no need to flush anything. For KVM / Xen we need to flush
3066      * the host's instruction cache at least.
3067      */
3068     if (tcg_enabled()) {
3069         return;
3070     }
3071 
3072     address_space_write_rom_internal(&address_space_memory,
3073                                      start, MEMTXATTRS_UNSPECIFIED,
3074                                      NULL, len, FLUSH_CACHE);
3075 }
3076 
3077 typedef struct {
3078     MemoryRegion *mr;
3079     void *buffer;
3080     hwaddr addr;
3081     hwaddr len;
3082     bool in_use;
3083 } BounceBuffer;
3084 
3085 static BounceBuffer bounce;
3086 
3087 typedef struct MapClient {
3088     QEMUBH *bh;
3089     QLIST_ENTRY(MapClient) link;
3090 } MapClient;
3091 
3092 QemuMutex map_client_list_lock;
3093 static QLIST_HEAD(, MapClient) map_client_list
3094     = QLIST_HEAD_INITIALIZER(map_client_list);
3095 
3096 static void cpu_unregister_map_client_do(MapClient *client)
3097 {
3098     QLIST_REMOVE(client, link);
3099     g_free(client);
3100 }
3101 
3102 static void cpu_notify_map_clients_locked(void)
3103 {
3104     MapClient *client;
3105 
3106     while (!QLIST_EMPTY(&map_client_list)) {
3107         client = QLIST_FIRST(&map_client_list);
3108         qemu_bh_schedule(client->bh);
3109         cpu_unregister_map_client_do(client);
3110     }
3111 }
3112 
3113 void cpu_register_map_client(QEMUBH *bh)
3114 {
3115     MapClient *client = g_malloc(sizeof(*client));
3116 
3117     qemu_mutex_lock(&map_client_list_lock);
3118     client->bh = bh;
3119     QLIST_INSERT_HEAD(&map_client_list, client, link);
3120     if (!qatomic_read(&bounce.in_use)) {
3121         cpu_notify_map_clients_locked();
3122     }
3123     qemu_mutex_unlock(&map_client_list_lock);
3124 }
3125 
3126 void cpu_exec_init_all(void)
3127 {
3128     qemu_mutex_init(&ram_list.mutex);
3129     /* The data structures we set up here depend on knowing the page size,
3130      * so no more changes can be made after this point.
3131      * In an ideal world, nothing we did before we had finished the
3132      * machine setup would care about the target page size, and we could
3133      * do this much later, rather than requiring board models to state
3134      * up front what their requirements are.
3135      */
3136     finalize_target_page_bits();
3137     io_mem_init();
3138     memory_map_init();
3139     qemu_mutex_init(&map_client_list_lock);
3140 }
3141 
3142 void cpu_unregister_map_client(QEMUBH *bh)
3143 {
3144     MapClient *client;
3145 
3146     qemu_mutex_lock(&map_client_list_lock);
3147     QLIST_FOREACH(client, &map_client_list, link) {
3148         if (client->bh == bh) {
3149             cpu_unregister_map_client_do(client);
3150             break;
3151         }
3152     }
3153     qemu_mutex_unlock(&map_client_list_lock);
3154 }
3155 
3156 static void cpu_notify_map_clients(void)
3157 {
3158     qemu_mutex_lock(&map_client_list_lock);
3159     cpu_notify_map_clients_locked();
3160     qemu_mutex_unlock(&map_client_list_lock);
3161 }
3162 
3163 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3164                                   bool is_write, MemTxAttrs attrs)
3165 {
3166     MemoryRegion *mr;
3167     hwaddr l, xlat;
3168 
3169     while (len > 0) {
3170         l = len;
3171         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3172         if (!memory_access_is_direct(mr, is_write)) {
3173             l = memory_access_size(mr, l, addr);
3174             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3175                 return false;
3176             }
3177         }
3178 
3179         len -= l;
3180         addr += l;
3181     }
3182     return true;
3183 }
3184 
3185 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3186                                 hwaddr len, bool is_write,
3187                                 MemTxAttrs attrs)
3188 {
3189     FlatView *fv;
3190 
3191     RCU_READ_LOCK_GUARD();
3192     fv = address_space_to_flatview(as);
3193     return flatview_access_valid(fv, addr, len, is_write, attrs);
3194 }
3195 
3196 static hwaddr
3197 flatview_extend_translation(FlatView *fv, hwaddr addr,
3198                             hwaddr target_len,
3199                             MemoryRegion *mr, hwaddr base, hwaddr len,
3200                             bool is_write, MemTxAttrs attrs)
3201 {
3202     hwaddr done = 0;
3203     hwaddr xlat;
3204     MemoryRegion *this_mr;
3205 
3206     for (;;) {
3207         target_len -= len;
3208         addr += len;
3209         done += len;
3210         if (target_len == 0) {
3211             return done;
3212         }
3213 
3214         len = target_len;
3215         this_mr = flatview_translate(fv, addr, &xlat,
3216                                      &len, is_write, attrs);
3217         if (this_mr != mr || xlat != base + done) {
3218             return done;
3219         }
3220     }
3221 }
3222 
3223 /* Map a physical memory region into a host virtual address.
3224  * May map a subset of the requested range, given by and returned in *plen.
3225  * May return NULL if resources needed to perform the mapping are exhausted.
3226  * Use only for reads OR writes - not for read-modify-write operations.
3227  * Use cpu_register_map_client() to know when retrying the map operation is
3228  * likely to succeed.
3229  */
3230 void *address_space_map(AddressSpace *as,
3231                         hwaddr addr,
3232                         hwaddr *plen,
3233                         bool is_write,
3234                         MemTxAttrs attrs)
3235 {
3236     hwaddr len = *plen;
3237     hwaddr l, xlat;
3238     MemoryRegion *mr;
3239     FlatView *fv;
3240 
3241     if (len == 0) {
3242         return NULL;
3243     }
3244 
3245     l = len;
3246     RCU_READ_LOCK_GUARD();
3247     fv = address_space_to_flatview(as);
3248     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3249 
3250     if (!memory_access_is_direct(mr, is_write)) {
3251         if (qatomic_xchg(&bounce.in_use, true)) {
3252             *plen = 0;
3253             return NULL;
3254         }
3255         /* Avoid unbounded allocations */
3256         l = MIN(l, TARGET_PAGE_SIZE);
3257         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3258         bounce.addr = addr;
3259         bounce.len = l;
3260 
3261         memory_region_ref(mr);
3262         bounce.mr = mr;
3263         if (!is_write) {
3264             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3265                                bounce.buffer, l);
3266         }
3267 
3268         *plen = l;
3269         return bounce.buffer;
3270     }
3271 
3272 
3273     memory_region_ref(mr);
3274     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3275                                         l, is_write, attrs);
3276     fuzz_dma_read_cb(addr, *plen, mr);
3277     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3278 }
3279 
3280 /* Unmaps a memory region previously mapped by address_space_map().
3281  * Will also mark the memory as dirty if is_write is true.  access_len gives
3282  * the amount of memory that was actually read or written by the caller.
3283  */
3284 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3285                          bool is_write, hwaddr access_len)
3286 {
3287     if (buffer != bounce.buffer) {
3288         MemoryRegion *mr;
3289         ram_addr_t addr1;
3290 
3291         mr = memory_region_from_host(buffer, &addr1);
3292         assert(mr != NULL);
3293         if (is_write) {
3294             invalidate_and_set_dirty(mr, addr1, access_len);
3295         }
3296         if (xen_enabled()) {
3297             xen_invalidate_map_cache_entry(buffer);
3298         }
3299         memory_region_unref(mr);
3300         return;
3301     }
3302     if (is_write) {
3303         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3304                             bounce.buffer, access_len);
3305     }
3306     qemu_vfree(bounce.buffer);
3307     bounce.buffer = NULL;
3308     memory_region_unref(bounce.mr);
3309     qatomic_mb_set(&bounce.in_use, false);
3310     cpu_notify_map_clients();
3311 }
3312 
3313 void *cpu_physical_memory_map(hwaddr addr,
3314                               hwaddr *plen,
3315                               bool is_write)
3316 {
3317     return address_space_map(&address_space_memory, addr, plen, is_write,
3318                              MEMTXATTRS_UNSPECIFIED);
3319 }
3320 
3321 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3322                                bool is_write, hwaddr access_len)
3323 {
3324     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3325 }
3326 
3327 #define ARG1_DECL                AddressSpace *as
3328 #define ARG1                     as
3329 #define SUFFIX
3330 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3331 #define RCU_READ_LOCK(...)       rcu_read_lock()
3332 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3333 #include "memory_ldst.c.inc"
3334 
3335 int64_t address_space_cache_init(MemoryRegionCache *cache,
3336                                  AddressSpace *as,
3337                                  hwaddr addr,
3338                                  hwaddr len,
3339                                  bool is_write)
3340 {
3341     AddressSpaceDispatch *d;
3342     hwaddr l;
3343     MemoryRegion *mr;
3344     Int128 diff;
3345 
3346     assert(len > 0);
3347 
3348     l = len;
3349     cache->fv = address_space_get_flatview(as);
3350     d = flatview_to_dispatch(cache->fv);
3351     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3352 
3353     /*
3354      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3355      * Take that into account to compute how many bytes are there between
3356      * cache->xlat and the end of the section.
3357      */
3358     diff = int128_sub(cache->mrs.size,
3359 		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3360     l = int128_get64(int128_min(diff, int128_make64(l)));
3361 
3362     mr = cache->mrs.mr;
3363     memory_region_ref(mr);
3364     if (memory_access_is_direct(mr, is_write)) {
3365         /* We don't care about the memory attributes here as we're only
3366          * doing this if we found actual RAM, which behaves the same
3367          * regardless of attributes; so UNSPECIFIED is fine.
3368          */
3369         l = flatview_extend_translation(cache->fv, addr, len, mr,
3370                                         cache->xlat, l, is_write,
3371                                         MEMTXATTRS_UNSPECIFIED);
3372         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3373     } else {
3374         cache->ptr = NULL;
3375     }
3376 
3377     cache->len = l;
3378     cache->is_write = is_write;
3379     return l;
3380 }
3381 
3382 void address_space_cache_invalidate(MemoryRegionCache *cache,
3383                                     hwaddr addr,
3384                                     hwaddr access_len)
3385 {
3386     assert(cache->is_write);
3387     if (likely(cache->ptr)) {
3388         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3389     }
3390 }
3391 
3392 void address_space_cache_destroy(MemoryRegionCache *cache)
3393 {
3394     if (!cache->mrs.mr) {
3395         return;
3396     }
3397 
3398     if (xen_enabled()) {
3399         xen_invalidate_map_cache_entry(cache->ptr);
3400     }
3401     memory_region_unref(cache->mrs.mr);
3402     flatview_unref(cache->fv);
3403     cache->mrs.mr = NULL;
3404     cache->fv = NULL;
3405 }
3406 
3407 /* Called from RCU critical section.  This function has the same
3408  * semantics as address_space_translate, but it only works on a
3409  * predefined range of a MemoryRegion that was mapped with
3410  * address_space_cache_init.
3411  */
3412 static inline MemoryRegion *address_space_translate_cached(
3413     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3414     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3415 {
3416     MemoryRegionSection section;
3417     MemoryRegion *mr;
3418     IOMMUMemoryRegion *iommu_mr;
3419     AddressSpace *target_as;
3420 
3421     assert(!cache->ptr);
3422     *xlat = addr + cache->xlat;
3423 
3424     mr = cache->mrs.mr;
3425     iommu_mr = memory_region_get_iommu(mr);
3426     if (!iommu_mr) {
3427         /* MMIO region.  */
3428         return mr;
3429     }
3430 
3431     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3432                                             NULL, is_write, true,
3433                                             &target_as, attrs);
3434     return section.mr;
3435 }
3436 
3437 /* Called from RCU critical section. address_space_read_cached uses this
3438  * out of line function when the target is an MMIO or IOMMU region.
3439  */
3440 MemTxResult
3441 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3442                                    void *buf, hwaddr len)
3443 {
3444     hwaddr addr1, l;
3445     MemoryRegion *mr;
3446 
3447     l = len;
3448     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3449                                         MEMTXATTRS_UNSPECIFIED);
3450     return flatview_read_continue(cache->fv,
3451                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3452                                   addr1, l, mr);
3453 }
3454 
3455 /* Called from RCU critical section. address_space_write_cached uses this
3456  * out of line function when the target is an MMIO or IOMMU region.
3457  */
3458 MemTxResult
3459 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3460                                     const void *buf, hwaddr len)
3461 {
3462     hwaddr addr1, l;
3463     MemoryRegion *mr;
3464 
3465     l = len;
3466     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3467                                         MEMTXATTRS_UNSPECIFIED);
3468     return flatview_write_continue(cache->fv,
3469                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3470                                    addr1, l, mr);
3471 }
3472 
3473 #define ARG1_DECL                MemoryRegionCache *cache
3474 #define ARG1                     cache
3475 #define SUFFIX                   _cached_slow
3476 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3477 #define RCU_READ_LOCK()          ((void)0)
3478 #define RCU_READ_UNLOCK()        ((void)0)
3479 #include "memory_ldst.c.inc"
3480 
3481 /* virtual memory access for debug (includes writing to ROM) */
3482 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3483                         void *ptr, size_t len, bool is_write)
3484 {
3485     hwaddr phys_addr;
3486     vaddr l, page;
3487     uint8_t *buf = ptr;
3488 
3489     cpu_synchronize_state(cpu);
3490     while (len > 0) {
3491         int asidx;
3492         MemTxAttrs attrs;
3493         MemTxResult res;
3494 
3495         page = addr & TARGET_PAGE_MASK;
3496         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3497         asidx = cpu_asidx_from_attrs(cpu, attrs);
3498         /* if no physical page mapped, return an error */
3499         if (phys_addr == -1)
3500             return -1;
3501         l = (page + TARGET_PAGE_SIZE) - addr;
3502         if (l > len)
3503             l = len;
3504         phys_addr += (addr & ~TARGET_PAGE_MASK);
3505         if (is_write) {
3506             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3507                                           attrs, buf, l);
3508         } else {
3509             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3510                                      attrs, buf, l);
3511         }
3512         if (res != MEMTX_OK) {
3513             return -1;
3514         }
3515         len -= l;
3516         buf += l;
3517         addr += l;
3518     }
3519     return 0;
3520 }
3521 
3522 /*
3523  * Allows code that needs to deal with migration bitmaps etc to still be built
3524  * target independent.
3525  */
3526 size_t qemu_target_page_size(void)
3527 {
3528     return TARGET_PAGE_SIZE;
3529 }
3530 
3531 int qemu_target_page_bits(void)
3532 {
3533     return TARGET_PAGE_BITS;
3534 }
3535 
3536 int qemu_target_page_bits_min(void)
3537 {
3538     return TARGET_PAGE_BITS_MIN;
3539 }
3540 
3541 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3542 {
3543     MemoryRegion*mr;
3544     hwaddr l = 1;
3545 
3546     RCU_READ_LOCK_GUARD();
3547     mr = address_space_translate(&address_space_memory,
3548                                  phys_addr, &phys_addr, &l, false,
3549                                  MEMTXATTRS_UNSPECIFIED);
3550 
3551     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3552 }
3553 
3554 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3555 {
3556     RAMBlock *block;
3557     int ret = 0;
3558 
3559     RCU_READ_LOCK_GUARD();
3560     RAMBLOCK_FOREACH(block) {
3561         ret = func(block, opaque);
3562         if (ret) {
3563             break;
3564         }
3565     }
3566     return ret;
3567 }
3568 
3569 /*
3570  * Unmap pages of memory from start to start+length such that
3571  * they a) read as 0, b) Trigger whatever fault mechanism
3572  * the OS provides for postcopy.
3573  * The pages must be unmapped by the end of the function.
3574  * Returns: 0 on success, none-0 on failure
3575  *
3576  */
3577 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3578 {
3579     int ret = -1;
3580 
3581     uint8_t *host_startaddr = rb->host + start;
3582 
3583     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3584         error_report("ram_block_discard_range: Unaligned start address: %p",
3585                      host_startaddr);
3586         goto err;
3587     }
3588 
3589     if ((start + length) <= rb->max_length) {
3590         bool need_madvise, need_fallocate;
3591         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3592             error_report("ram_block_discard_range: Unaligned length: %zx",
3593                          length);
3594             goto err;
3595         }
3596 
3597         errno = ENOTSUP; /* If we are missing MADVISE etc */
3598 
3599         /* The logic here is messy;
3600          *    madvise DONTNEED fails for hugepages
3601          *    fallocate works on hugepages and shmem
3602          *    shared anonymous memory requires madvise REMOVE
3603          */
3604         need_madvise = (rb->page_size == qemu_host_page_size);
3605         need_fallocate = rb->fd != -1;
3606         if (need_fallocate) {
3607             /* For a file, this causes the area of the file to be zero'd
3608              * if read, and for hugetlbfs also causes it to be unmapped
3609              * so a userfault will trigger.
3610              */
3611 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3612             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3613                             start, length);
3614             if (ret) {
3615                 ret = -errno;
3616                 error_report("ram_block_discard_range: Failed to fallocate "
3617                              "%s:%" PRIx64 " +%zx (%d)",
3618                              rb->idstr, start, length, ret);
3619                 goto err;
3620             }
3621 #else
3622             ret = -ENOSYS;
3623             error_report("ram_block_discard_range: fallocate not available/file"
3624                          "%s:%" PRIx64 " +%zx (%d)",
3625                          rb->idstr, start, length, ret);
3626             goto err;
3627 #endif
3628         }
3629         if (need_madvise) {
3630             /* For normal RAM this causes it to be unmapped,
3631              * for shared memory it causes the local mapping to disappear
3632              * and to fall back on the file contents (which we just
3633              * fallocate'd away).
3634              */
3635 #if defined(CONFIG_MADVISE)
3636             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3637                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3638             } else {
3639                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3640             }
3641             if (ret) {
3642                 ret = -errno;
3643                 error_report("ram_block_discard_range: Failed to discard range "
3644                              "%s:%" PRIx64 " +%zx (%d)",
3645                              rb->idstr, start, length, ret);
3646                 goto err;
3647             }
3648 #else
3649             ret = -ENOSYS;
3650             error_report("ram_block_discard_range: MADVISE not available"
3651                          "%s:%" PRIx64 " +%zx (%d)",
3652                          rb->idstr, start, length, ret);
3653             goto err;
3654 #endif
3655         }
3656         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3657                                       need_madvise, need_fallocate, ret);
3658     } else {
3659         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3660                      "/%zx/" RAM_ADDR_FMT")",
3661                      rb->idstr, start, length, rb->max_length);
3662     }
3663 
3664 err:
3665     return ret;
3666 }
3667 
3668 bool ramblock_is_pmem(RAMBlock *rb)
3669 {
3670     return rb->flags & RAM_PMEM;
3671 }
3672 
3673 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3674 {
3675     if (start == end - 1) {
3676         qemu_printf("\t%3d      ", start);
3677     } else {
3678         qemu_printf("\t%3d..%-3d ", start, end - 1);
3679     }
3680     qemu_printf(" skip=%d ", skip);
3681     if (ptr == PHYS_MAP_NODE_NIL) {
3682         qemu_printf(" ptr=NIL");
3683     } else if (!skip) {
3684         qemu_printf(" ptr=#%d", ptr);
3685     } else {
3686         qemu_printf(" ptr=[%d]", ptr);
3687     }
3688     qemu_printf("\n");
3689 }
3690 
3691 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3692                            int128_sub((size), int128_one())) : 0)
3693 
3694 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3695 {
3696     int i;
3697 
3698     qemu_printf("  Dispatch\n");
3699     qemu_printf("    Physical sections\n");
3700 
3701     for (i = 0; i < d->map.sections_nb; ++i) {
3702         MemoryRegionSection *s = d->map.sections + i;
3703         const char *names[] = { " [unassigned]", " [not dirty]",
3704                                 " [ROM]", " [watch]" };
3705 
3706         qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3707                     " %s%s%s%s%s",
3708             i,
3709             s->offset_within_address_space,
3710             s->offset_within_address_space + MR_SIZE(s->size),
3711             s->mr->name ? s->mr->name : "(noname)",
3712             i < ARRAY_SIZE(names) ? names[i] : "",
3713             s->mr == root ? " [ROOT]" : "",
3714             s == d->mru_section ? " [MRU]" : "",
3715             s->mr->is_iommu ? " [iommu]" : "");
3716 
3717         if (s->mr->alias) {
3718             qemu_printf(" alias=%s", s->mr->alias->name ?
3719                     s->mr->alias->name : "noname");
3720         }
3721         qemu_printf("\n");
3722     }
3723 
3724     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3725                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3726     for (i = 0; i < d->map.nodes_nb; ++i) {
3727         int j, jprev;
3728         PhysPageEntry prev;
3729         Node *n = d->map.nodes + i;
3730 
3731         qemu_printf("      [%d]\n", i);
3732 
3733         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3734             PhysPageEntry *pe = *n + j;
3735 
3736             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3737                 continue;
3738             }
3739 
3740             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3741 
3742             jprev = j;
3743             prev = *pe;
3744         }
3745 
3746         if (jprev != ARRAY_SIZE(*n)) {
3747             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3748         }
3749     }
3750 }
3751 
3752 /* Require any discards to work. */
3753 static unsigned int ram_block_discard_required_cnt;
3754 /* Require only coordinated discards to work. */
3755 static unsigned int ram_block_coordinated_discard_required_cnt;
3756 /* Disable any discards. */
3757 static unsigned int ram_block_discard_disabled_cnt;
3758 /* Disable only uncoordinated discards. */
3759 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3760 static QemuMutex ram_block_discard_disable_mutex;
3761 
3762 static void ram_block_discard_disable_mutex_lock(void)
3763 {
3764     static gsize initialized;
3765 
3766     if (g_once_init_enter(&initialized)) {
3767         qemu_mutex_init(&ram_block_discard_disable_mutex);
3768         g_once_init_leave(&initialized, 1);
3769     }
3770     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3771 }
3772 
3773 static void ram_block_discard_disable_mutex_unlock(void)
3774 {
3775     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3776 }
3777 
3778 int ram_block_discard_disable(bool state)
3779 {
3780     int ret = 0;
3781 
3782     ram_block_discard_disable_mutex_lock();
3783     if (!state) {
3784         ram_block_discard_disabled_cnt--;
3785     } else if (ram_block_discard_required_cnt ||
3786                ram_block_coordinated_discard_required_cnt) {
3787         ret = -EBUSY;
3788     } else {
3789         ram_block_discard_disabled_cnt++;
3790     }
3791     ram_block_discard_disable_mutex_unlock();
3792     return ret;
3793 }
3794 
3795 int ram_block_uncoordinated_discard_disable(bool state)
3796 {
3797     int ret = 0;
3798 
3799     ram_block_discard_disable_mutex_lock();
3800     if (!state) {
3801         ram_block_uncoordinated_discard_disabled_cnt--;
3802     } else if (ram_block_discard_required_cnt) {
3803         ret = -EBUSY;
3804     } else {
3805         ram_block_uncoordinated_discard_disabled_cnt++;
3806     }
3807     ram_block_discard_disable_mutex_unlock();
3808     return ret;
3809 }
3810 
3811 int ram_block_discard_require(bool state)
3812 {
3813     int ret = 0;
3814 
3815     ram_block_discard_disable_mutex_lock();
3816     if (!state) {
3817         ram_block_discard_required_cnt--;
3818     } else if (ram_block_discard_disabled_cnt ||
3819                ram_block_uncoordinated_discard_disabled_cnt) {
3820         ret = -EBUSY;
3821     } else {
3822         ram_block_discard_required_cnt++;
3823     }
3824     ram_block_discard_disable_mutex_unlock();
3825     return ret;
3826 }
3827 
3828 int ram_block_coordinated_discard_require(bool state)
3829 {
3830     int ret = 0;
3831 
3832     ram_block_discard_disable_mutex_lock();
3833     if (!state) {
3834         ram_block_coordinated_discard_required_cnt--;
3835     } else if (ram_block_discard_disabled_cnt) {
3836         ret = -EBUSY;
3837     } else {
3838         ram_block_coordinated_discard_required_cnt++;
3839     }
3840     ram_block_discard_disable_mutex_unlock();
3841     return ret;
3842 }
3843 
3844 bool ram_block_discard_is_disabled(void)
3845 {
3846     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3847            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3848 }
3849 
3850 bool ram_block_discard_is_required(void)
3851 {
3852     return qatomic_read(&ram_block_discard_required_cnt) ||
3853            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3854 }
3855