1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 27 #ifdef CONFIG_TCG 28 #include "hw/core/tcg-cpu-ops.h" 29 #endif /* CONFIG_TCG */ 30 31 #include "exec/exec-all.h" 32 #include "exec/target_page.h" 33 #include "hw/qdev-core.h" 34 #include "hw/qdev-properties.h" 35 #include "hw/boards.h" 36 #include "hw/xen/xen.h" 37 #include "sysemu/kvm.h" 38 #include "sysemu/tcg.h" 39 #include "sysemu/qtest.h" 40 #include "qemu/timer.h" 41 #include "qemu/config-file.h" 42 #include "qemu/error-report.h" 43 #include "qemu/qemu-print.h" 44 #include "exec/memory.h" 45 #include "exec/ioport.h" 46 #include "sysemu/dma.h" 47 #include "sysemu/hostmem.h" 48 #include "sysemu/hw_accel.h" 49 #include "sysemu/xen-mapcache.h" 50 #include "trace/trace-root.h" 51 52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 53 #include <linux/falloc.h> 54 #endif 55 56 #include "qemu/rcu_queue.h" 57 #include "qemu/main-loop.h" 58 #include "exec/translate-all.h" 59 #include "sysemu/replay.h" 60 61 #include "exec/memory-internal.h" 62 #include "exec/ram_addr.h" 63 #include "exec/log.h" 64 65 #include "qemu/pmem.h" 66 67 #include "migration/vmstate.h" 68 69 #include "qemu/range.h" 70 #ifndef _WIN32 71 #include "qemu/mmap-alloc.h" 72 #endif 73 74 #include "monitor/monitor.h" 75 76 #ifdef CONFIG_LIBDAXCTL 77 #include <daxctl/libdaxctl.h> 78 #endif 79 80 //#define DEBUG_SUBPAGE 81 82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 83 * are protected by the ramlist lock. 84 */ 85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 86 87 static MemoryRegion *system_memory; 88 static MemoryRegion *system_io; 89 90 AddressSpace address_space_io; 91 AddressSpace address_space_memory; 92 93 static MemoryRegion io_mem_unassigned; 94 95 typedef struct PhysPageEntry PhysPageEntry; 96 97 struct PhysPageEntry { 98 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 99 uint32_t skip : 6; 100 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 101 uint32_t ptr : 26; 102 }; 103 104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 105 106 /* Size of the L2 (and L3, etc) page tables. */ 107 #define ADDR_SPACE_BITS 64 108 109 #define P_L2_BITS 9 110 #define P_L2_SIZE (1 << P_L2_BITS) 111 112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 113 114 typedef PhysPageEntry Node[P_L2_SIZE]; 115 116 typedef struct PhysPageMap { 117 struct rcu_head rcu; 118 119 unsigned sections_nb; 120 unsigned sections_nb_alloc; 121 unsigned nodes_nb; 122 unsigned nodes_nb_alloc; 123 Node *nodes; 124 MemoryRegionSection *sections; 125 } PhysPageMap; 126 127 struct AddressSpaceDispatch { 128 MemoryRegionSection *mru_section; 129 /* This is a multi-level map on the physical address space. 130 * The bottom level has pointers to MemoryRegionSections. 131 */ 132 PhysPageEntry phys_map; 133 PhysPageMap map; 134 }; 135 136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 137 typedef struct subpage_t { 138 MemoryRegion iomem; 139 FlatView *fv; 140 hwaddr base; 141 uint16_t sub_section[]; 142 } subpage_t; 143 144 #define PHYS_SECTION_UNASSIGNED 0 145 146 static void io_mem_init(void); 147 static void memory_map_init(void); 148 static void tcg_log_global_after_sync(MemoryListener *listener); 149 static void tcg_commit(MemoryListener *listener); 150 151 /** 152 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 153 * @cpu: the CPU whose AddressSpace this is 154 * @as: the AddressSpace itself 155 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 156 * @tcg_as_listener: listener for tracking changes to the AddressSpace 157 */ 158 struct CPUAddressSpace { 159 CPUState *cpu; 160 AddressSpace *as; 161 struct AddressSpaceDispatch *memory_dispatch; 162 MemoryListener tcg_as_listener; 163 }; 164 165 struct DirtyBitmapSnapshot { 166 ram_addr_t start; 167 ram_addr_t end; 168 unsigned long dirty[]; 169 }; 170 171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 172 { 173 static unsigned alloc_hint = 16; 174 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 175 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 176 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 177 alloc_hint = map->nodes_nb_alloc; 178 } 179 } 180 181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 182 { 183 unsigned i; 184 uint32_t ret; 185 PhysPageEntry e; 186 PhysPageEntry *p; 187 188 ret = map->nodes_nb++; 189 p = map->nodes[ret]; 190 assert(ret != PHYS_MAP_NODE_NIL); 191 assert(ret != map->nodes_nb_alloc); 192 193 e.skip = leaf ? 0 : 1; 194 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 195 for (i = 0; i < P_L2_SIZE; ++i) { 196 memcpy(&p[i], &e, sizeof(e)); 197 } 198 return ret; 199 } 200 201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 202 hwaddr *index, uint64_t *nb, uint16_t leaf, 203 int level) 204 { 205 PhysPageEntry *p; 206 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 207 208 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 209 lp->ptr = phys_map_node_alloc(map, level == 0); 210 } 211 p = map->nodes[lp->ptr]; 212 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 213 214 while (*nb && lp < &p[P_L2_SIZE]) { 215 if ((*index & (step - 1)) == 0 && *nb >= step) { 216 lp->skip = 0; 217 lp->ptr = leaf; 218 *index += step; 219 *nb -= step; 220 } else { 221 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 222 } 223 ++lp; 224 } 225 } 226 227 static void phys_page_set(AddressSpaceDispatch *d, 228 hwaddr index, uint64_t nb, 229 uint16_t leaf) 230 { 231 /* Wildly overreserve - it doesn't matter much. */ 232 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 233 234 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 235 } 236 237 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 238 * and update our entry so we can skip it and go directly to the destination. 239 */ 240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 241 { 242 unsigned valid_ptr = P_L2_SIZE; 243 int valid = 0; 244 PhysPageEntry *p; 245 int i; 246 247 if (lp->ptr == PHYS_MAP_NODE_NIL) { 248 return; 249 } 250 251 p = nodes[lp->ptr]; 252 for (i = 0; i < P_L2_SIZE; i++) { 253 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 254 continue; 255 } 256 257 valid_ptr = i; 258 valid++; 259 if (p[i].skip) { 260 phys_page_compact(&p[i], nodes); 261 } 262 } 263 264 /* We can only compress if there's only one child. */ 265 if (valid != 1) { 266 return; 267 } 268 269 assert(valid_ptr < P_L2_SIZE); 270 271 /* Don't compress if it won't fit in the # of bits we have. */ 272 if (P_L2_LEVELS >= (1 << 6) && 273 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 274 return; 275 } 276 277 lp->ptr = p[valid_ptr].ptr; 278 if (!p[valid_ptr].skip) { 279 /* If our only child is a leaf, make this a leaf. */ 280 /* By design, we should have made this node a leaf to begin with so we 281 * should never reach here. 282 * But since it's so simple to handle this, let's do it just in case we 283 * change this rule. 284 */ 285 lp->skip = 0; 286 } else { 287 lp->skip += p[valid_ptr].skip; 288 } 289 } 290 291 void address_space_dispatch_compact(AddressSpaceDispatch *d) 292 { 293 if (d->phys_map.skip) { 294 phys_page_compact(&d->phys_map, d->map.nodes); 295 } 296 } 297 298 static inline bool section_covers_addr(const MemoryRegionSection *section, 299 hwaddr addr) 300 { 301 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 302 * the section must cover the entire address space. 303 */ 304 return int128_gethi(section->size) || 305 range_covers_byte(section->offset_within_address_space, 306 int128_getlo(section->size), addr); 307 } 308 309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 310 { 311 PhysPageEntry lp = d->phys_map, *p; 312 Node *nodes = d->map.nodes; 313 MemoryRegionSection *sections = d->map.sections; 314 hwaddr index = addr >> TARGET_PAGE_BITS; 315 int i; 316 317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 318 if (lp.ptr == PHYS_MAP_NODE_NIL) { 319 return §ions[PHYS_SECTION_UNASSIGNED]; 320 } 321 p = nodes[lp.ptr]; 322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 323 } 324 325 if (section_covers_addr(§ions[lp.ptr], addr)) { 326 return §ions[lp.ptr]; 327 } else { 328 return §ions[PHYS_SECTION_UNASSIGNED]; 329 } 330 } 331 332 /* Called from RCU critical section */ 333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 334 hwaddr addr, 335 bool resolve_subpage) 336 { 337 MemoryRegionSection *section = qatomic_read(&d->mru_section); 338 subpage_t *subpage; 339 340 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 341 !section_covers_addr(section, addr)) { 342 section = phys_page_find(d, addr); 343 qatomic_set(&d->mru_section, section); 344 } 345 if (resolve_subpage && section->mr->subpage) { 346 subpage = container_of(section->mr, subpage_t, iomem); 347 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 348 } 349 return section; 350 } 351 352 /* Called from RCU critical section */ 353 static MemoryRegionSection * 354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 355 hwaddr *plen, bool resolve_subpage) 356 { 357 MemoryRegionSection *section; 358 MemoryRegion *mr; 359 Int128 diff; 360 361 section = address_space_lookup_region(d, addr, resolve_subpage); 362 /* Compute offset within MemoryRegionSection */ 363 addr -= section->offset_within_address_space; 364 365 /* Compute offset within MemoryRegion */ 366 *xlat = addr + section->offset_within_region; 367 368 mr = section->mr; 369 370 /* MMIO registers can be expected to perform full-width accesses based only 371 * on their address, without considering adjacent registers that could 372 * decode to completely different MemoryRegions. When such registers 373 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 374 * regions overlap wildly. For this reason we cannot clamp the accesses 375 * here. 376 * 377 * If the length is small (as is the case for address_space_ldl/stl), 378 * everything works fine. If the incoming length is large, however, 379 * the caller really has to do the clamping through memory_access_size. 380 */ 381 if (memory_region_is_ram(mr)) { 382 diff = int128_sub(section->size, int128_make64(addr)); 383 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 384 } 385 return section; 386 } 387 388 /** 389 * address_space_translate_iommu - translate an address through an IOMMU 390 * memory region and then through the target address space. 391 * 392 * @iommu_mr: the IOMMU memory region that we start the translation from 393 * @addr: the address to be translated through the MMU 394 * @xlat: the translated address offset within the destination memory region. 395 * It cannot be %NULL. 396 * @plen_out: valid read/write length of the translated address. It 397 * cannot be %NULL. 398 * @page_mask_out: page mask for the translated address. This 399 * should only be meaningful for IOMMU translated 400 * addresses, since there may be huge pages that this bit 401 * would tell. It can be %NULL if we don't care about it. 402 * @is_write: whether the translation operation is for write 403 * @is_mmio: whether this can be MMIO, set true if it can 404 * @target_as: the address space targeted by the IOMMU 405 * @attrs: transaction attributes 406 * 407 * This function is called from RCU critical section. It is the common 408 * part of flatview_do_translate and address_space_translate_cached. 409 */ 410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 411 hwaddr *xlat, 412 hwaddr *plen_out, 413 hwaddr *page_mask_out, 414 bool is_write, 415 bool is_mmio, 416 AddressSpace **target_as, 417 MemTxAttrs attrs) 418 { 419 MemoryRegionSection *section; 420 hwaddr page_mask = (hwaddr)-1; 421 422 do { 423 hwaddr addr = *xlat; 424 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 425 int iommu_idx = 0; 426 IOMMUTLBEntry iotlb; 427 428 if (imrc->attrs_to_index) { 429 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 430 } 431 432 iotlb = imrc->translate(iommu_mr, addr, is_write ? 433 IOMMU_WO : IOMMU_RO, iommu_idx); 434 435 if (!(iotlb.perm & (1 << is_write))) { 436 goto unassigned; 437 } 438 439 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 440 | (addr & iotlb.addr_mask)); 441 page_mask &= iotlb.addr_mask; 442 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 443 *target_as = iotlb.target_as; 444 445 section = address_space_translate_internal( 446 address_space_to_dispatch(iotlb.target_as), addr, xlat, 447 plen_out, is_mmio); 448 449 iommu_mr = memory_region_get_iommu(section->mr); 450 } while (unlikely(iommu_mr)); 451 452 if (page_mask_out) { 453 *page_mask_out = page_mask; 454 } 455 return *section; 456 457 unassigned: 458 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 459 } 460 461 /** 462 * flatview_do_translate - translate an address in FlatView 463 * 464 * @fv: the flat view that we want to translate on 465 * @addr: the address to be translated in above address space 466 * @xlat: the translated address offset within memory region. It 467 * cannot be @NULL. 468 * @plen_out: valid read/write length of the translated address. It 469 * can be @NULL when we don't care about it. 470 * @page_mask_out: page mask for the translated address. This 471 * should only be meaningful for IOMMU translated 472 * addresses, since there may be huge pages that this bit 473 * would tell. It can be @NULL if we don't care about it. 474 * @is_write: whether the translation operation is for write 475 * @is_mmio: whether this can be MMIO, set true if it can 476 * @target_as: the address space targeted by the IOMMU 477 * @attrs: memory transaction attributes 478 * 479 * This function is called from RCU critical section 480 */ 481 static MemoryRegionSection flatview_do_translate(FlatView *fv, 482 hwaddr addr, 483 hwaddr *xlat, 484 hwaddr *plen_out, 485 hwaddr *page_mask_out, 486 bool is_write, 487 bool is_mmio, 488 AddressSpace **target_as, 489 MemTxAttrs attrs) 490 { 491 MemoryRegionSection *section; 492 IOMMUMemoryRegion *iommu_mr; 493 hwaddr plen = (hwaddr)(-1); 494 495 if (!plen_out) { 496 plen_out = &plen; 497 } 498 499 section = address_space_translate_internal( 500 flatview_to_dispatch(fv), addr, xlat, 501 plen_out, is_mmio); 502 503 iommu_mr = memory_region_get_iommu(section->mr); 504 if (unlikely(iommu_mr)) { 505 return address_space_translate_iommu(iommu_mr, xlat, 506 plen_out, page_mask_out, 507 is_write, is_mmio, 508 target_as, attrs); 509 } 510 if (page_mask_out) { 511 /* Not behind an IOMMU, use default page size. */ 512 *page_mask_out = ~TARGET_PAGE_MASK; 513 } 514 515 return *section; 516 } 517 518 /* Called from RCU critical section */ 519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 520 bool is_write, MemTxAttrs attrs) 521 { 522 MemoryRegionSection section; 523 hwaddr xlat, page_mask; 524 525 /* 526 * This can never be MMIO, and we don't really care about plen, 527 * but page mask. 528 */ 529 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 530 NULL, &page_mask, is_write, false, &as, 531 attrs); 532 533 /* Illegal translation */ 534 if (section.mr == &io_mem_unassigned) { 535 goto iotlb_fail; 536 } 537 538 /* Convert memory region offset into address space offset */ 539 xlat += section.offset_within_address_space - 540 section.offset_within_region; 541 542 return (IOMMUTLBEntry) { 543 .target_as = as, 544 .iova = addr & ~page_mask, 545 .translated_addr = xlat & ~page_mask, 546 .addr_mask = page_mask, 547 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 548 .perm = IOMMU_RW, 549 }; 550 551 iotlb_fail: 552 return (IOMMUTLBEntry) {0}; 553 } 554 555 /* Called from RCU critical section */ 556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 557 hwaddr *plen, bool is_write, 558 MemTxAttrs attrs) 559 { 560 MemoryRegion *mr; 561 MemoryRegionSection section; 562 AddressSpace *as = NULL; 563 564 /* This can be MMIO, so setup MMIO bit. */ 565 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 566 is_write, true, &as, attrs); 567 mr = section.mr; 568 569 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 570 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 571 *plen = MIN(page, *plen); 572 } 573 574 return mr; 575 } 576 577 typedef struct TCGIOMMUNotifier { 578 IOMMUNotifier n; 579 MemoryRegion *mr; 580 CPUState *cpu; 581 int iommu_idx; 582 bool active; 583 } TCGIOMMUNotifier; 584 585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 586 { 587 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 588 589 if (!notifier->active) { 590 return; 591 } 592 tlb_flush(notifier->cpu); 593 notifier->active = false; 594 /* We leave the notifier struct on the list to avoid reallocating it later. 595 * Generally the number of IOMMUs a CPU deals with will be small. 596 * In any case we can't unregister the iommu notifier from a notify 597 * callback. 598 */ 599 } 600 601 static void tcg_register_iommu_notifier(CPUState *cpu, 602 IOMMUMemoryRegion *iommu_mr, 603 int iommu_idx) 604 { 605 /* Make sure this CPU has an IOMMU notifier registered for this 606 * IOMMU/IOMMU index combination, so that we can flush its TLB 607 * when the IOMMU tells us the mappings we've cached have changed. 608 */ 609 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 610 TCGIOMMUNotifier *notifier = NULL; 611 int i; 612 613 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 614 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 615 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 616 break; 617 } 618 } 619 if (i == cpu->iommu_notifiers->len) { 620 /* Not found, add a new entry at the end of the array */ 621 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 622 notifier = g_new0(TCGIOMMUNotifier, 1); 623 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 624 625 notifier->mr = mr; 626 notifier->iommu_idx = iommu_idx; 627 notifier->cpu = cpu; 628 /* Rather than trying to register interest in the specific part 629 * of the iommu's address space that we've accessed and then 630 * expand it later as subsequent accesses touch more of it, we 631 * just register interest in the whole thing, on the assumption 632 * that iommu reconfiguration will be rare. 633 */ 634 iommu_notifier_init(¬ifier->n, 635 tcg_iommu_unmap_notify, 636 IOMMU_NOTIFIER_UNMAP, 637 0, 638 HWADDR_MAX, 639 iommu_idx); 640 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 641 &error_fatal); 642 } 643 644 if (!notifier->active) { 645 notifier->active = true; 646 } 647 } 648 649 void tcg_iommu_free_notifier_list(CPUState *cpu) 650 { 651 /* Destroy the CPU's notifier list */ 652 int i; 653 TCGIOMMUNotifier *notifier; 654 655 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 656 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 657 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 658 g_free(notifier); 659 } 660 g_array_free(cpu->iommu_notifiers, true); 661 } 662 663 void tcg_iommu_init_notifier_list(CPUState *cpu) 664 { 665 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 666 } 667 668 /* Called from RCU critical section */ 669 MemoryRegionSection * 670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, 671 hwaddr *xlat, hwaddr *plen, 672 MemTxAttrs attrs, int *prot) 673 { 674 MemoryRegionSection *section; 675 IOMMUMemoryRegion *iommu_mr; 676 IOMMUMemoryRegionClass *imrc; 677 IOMMUTLBEntry iotlb; 678 int iommu_idx; 679 AddressSpaceDispatch *d = 680 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 681 682 for (;;) { 683 section = address_space_translate_internal(d, addr, &addr, plen, false); 684 685 iommu_mr = memory_region_get_iommu(section->mr); 686 if (!iommu_mr) { 687 break; 688 } 689 690 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 691 692 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 693 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 694 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 695 * doesn't short-cut its translation table walk. 696 */ 697 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 698 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 699 | (addr & iotlb.addr_mask)); 700 /* Update the caller's prot bits to remove permissions the IOMMU 701 * is giving us a failure response for. If we get down to no 702 * permissions left at all we can give up now. 703 */ 704 if (!(iotlb.perm & IOMMU_RO)) { 705 *prot &= ~(PAGE_READ | PAGE_EXEC); 706 } 707 if (!(iotlb.perm & IOMMU_WO)) { 708 *prot &= ~PAGE_WRITE; 709 } 710 711 if (!*prot) { 712 goto translate_fail; 713 } 714 715 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 716 } 717 718 assert(!memory_region_is_iommu(section->mr)); 719 *xlat = addr; 720 return section; 721 722 translate_fail: 723 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 724 } 725 726 void cpu_address_space_init(CPUState *cpu, int asidx, 727 const char *prefix, MemoryRegion *mr) 728 { 729 CPUAddressSpace *newas; 730 AddressSpace *as = g_new0(AddressSpace, 1); 731 char *as_name; 732 733 assert(mr); 734 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 735 address_space_init(as, mr, as_name); 736 g_free(as_name); 737 738 /* Target code should have set num_ases before calling us */ 739 assert(asidx < cpu->num_ases); 740 741 if (asidx == 0) { 742 /* address space 0 gets the convenience alias */ 743 cpu->as = as; 744 } 745 746 /* KVM cannot currently support multiple address spaces. */ 747 assert(asidx == 0 || !kvm_enabled()); 748 749 if (!cpu->cpu_ases) { 750 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 751 } 752 753 newas = &cpu->cpu_ases[asidx]; 754 newas->cpu = cpu; 755 newas->as = as; 756 if (tcg_enabled()) { 757 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 758 newas->tcg_as_listener.commit = tcg_commit; 759 memory_listener_register(&newas->tcg_as_listener, as); 760 } 761 } 762 763 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 764 { 765 /* Return the AddressSpace corresponding to the specified index */ 766 return cpu->cpu_ases[asidx].as; 767 } 768 769 /* Add a watchpoint. */ 770 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 771 int flags, CPUWatchpoint **watchpoint) 772 { 773 CPUWatchpoint *wp; 774 vaddr in_page; 775 776 /* forbid ranges which are empty or run off the end of the address space */ 777 if (len == 0 || (addr + len - 1) < addr) { 778 error_report("tried to set invalid watchpoint at %" 779 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); 780 return -EINVAL; 781 } 782 wp = g_malloc(sizeof(*wp)); 783 784 wp->vaddr = addr; 785 wp->len = len; 786 wp->flags = flags; 787 788 /* keep all GDB-injected watchpoints in front */ 789 if (flags & BP_GDB) { 790 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); 791 } else { 792 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); 793 } 794 795 in_page = -(addr | TARGET_PAGE_MASK); 796 if (len <= in_page) { 797 tlb_flush_page(cpu, addr); 798 } else { 799 tlb_flush(cpu); 800 } 801 802 if (watchpoint) 803 *watchpoint = wp; 804 return 0; 805 } 806 807 /* Remove a specific watchpoint. */ 808 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, 809 int flags) 810 { 811 CPUWatchpoint *wp; 812 813 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 814 if (addr == wp->vaddr && len == wp->len 815 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { 816 cpu_watchpoint_remove_by_ref(cpu, wp); 817 return 0; 818 } 819 } 820 return -ENOENT; 821 } 822 823 /* Remove a specific watchpoint by reference. */ 824 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) 825 { 826 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); 827 828 tlb_flush_page(cpu, watchpoint->vaddr); 829 830 g_free(watchpoint); 831 } 832 833 /* Remove all matching watchpoints. */ 834 void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 835 { 836 CPUWatchpoint *wp, *next; 837 838 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { 839 if (wp->flags & mask) { 840 cpu_watchpoint_remove_by_ref(cpu, wp); 841 } 842 } 843 } 844 845 #ifdef CONFIG_TCG 846 /* Return true if this watchpoint address matches the specified 847 * access (ie the address range covered by the watchpoint overlaps 848 * partially or completely with the address range covered by the 849 * access). 850 */ 851 static inline bool watchpoint_address_matches(CPUWatchpoint *wp, 852 vaddr addr, vaddr len) 853 { 854 /* We know the lengths are non-zero, but a little caution is 855 * required to avoid errors in the case where the range ends 856 * exactly at the top of the address space and so addr + len 857 * wraps round to zero. 858 */ 859 vaddr wpend = wp->vaddr + wp->len - 1; 860 vaddr addrend = addr + len - 1; 861 862 return !(addr > wpend || wp->vaddr > addrend); 863 } 864 865 /* Return flags for watchpoints that match addr + prot. */ 866 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len) 867 { 868 CPUWatchpoint *wp; 869 int ret = 0; 870 871 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 872 if (watchpoint_address_matches(wp, addr, len)) { 873 ret |= wp->flags; 874 } 875 } 876 return ret; 877 } 878 879 /* Generate a debug exception if a watchpoint has been hit. */ 880 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 881 MemTxAttrs attrs, int flags, uintptr_t ra) 882 { 883 CPUClass *cc = CPU_GET_CLASS(cpu); 884 CPUWatchpoint *wp; 885 886 assert(tcg_enabled()); 887 if (cpu->watchpoint_hit) { 888 /* 889 * We re-entered the check after replacing the TB. 890 * Now raise the debug interrupt so that it will 891 * trigger after the current instruction. 892 */ 893 qemu_mutex_lock_iothread(); 894 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); 895 qemu_mutex_unlock_iothread(); 896 return; 897 } 898 899 if (cc->tcg_ops->adjust_watchpoint_address) { 900 /* this is currently used only by ARM BE32 */ 901 addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len); 902 } 903 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 904 if (watchpoint_address_matches(wp, addr, len) 905 && (wp->flags & flags)) { 906 if (replay_running_debug()) { 907 /* 908 * replay_breakpoint reads icount. 909 * Force recompile to succeed, because icount may 910 * be read only at the end of the block. 911 */ 912 if (!cpu->can_do_io) { 913 /* Force execution of one insn next time. */ 914 cpu->cflags_next_tb = 1 | CF_LAST_IO | curr_cflags(cpu); 915 cpu_loop_exit_restore(cpu, ra); 916 } 917 /* 918 * Don't process the watchpoints when we are 919 * in a reverse debugging operation. 920 */ 921 replay_breakpoint(); 922 return; 923 } 924 if (flags == BP_MEM_READ) { 925 wp->flags |= BP_WATCHPOINT_HIT_READ; 926 } else { 927 wp->flags |= BP_WATCHPOINT_HIT_WRITE; 928 } 929 wp->hitaddr = MAX(addr, wp->vaddr); 930 wp->hitattrs = attrs; 931 if (!cpu->watchpoint_hit) { 932 if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint && 933 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) { 934 wp->flags &= ~BP_WATCHPOINT_HIT; 935 continue; 936 } 937 cpu->watchpoint_hit = wp; 938 939 mmap_lock(); 940 tb_check_watchpoint(cpu, ra); 941 if (wp->flags & BP_STOP_BEFORE_ACCESS) { 942 cpu->exception_index = EXCP_DEBUG; 943 mmap_unlock(); 944 cpu_loop_exit_restore(cpu, ra); 945 } else { 946 /* Force execution of one insn next time. */ 947 cpu->cflags_next_tb = 1 | curr_cflags(cpu); 948 mmap_unlock(); 949 if (ra) { 950 cpu_restore_state(cpu, ra, true); 951 } 952 cpu_loop_exit_noexc(cpu); 953 } 954 } 955 } else { 956 wp->flags &= ~BP_WATCHPOINT_HIT; 957 } 958 } 959 } 960 961 #endif /* CONFIG_TCG */ 962 963 /* Called from RCU critical section */ 964 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 965 { 966 RAMBlock *block; 967 968 block = qatomic_rcu_read(&ram_list.mru_block); 969 if (block && addr - block->offset < block->max_length) { 970 return block; 971 } 972 RAMBLOCK_FOREACH(block) { 973 if (addr - block->offset < block->max_length) { 974 goto found; 975 } 976 } 977 978 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 979 abort(); 980 981 found: 982 /* It is safe to write mru_block outside the iothread lock. This 983 * is what happens: 984 * 985 * mru_block = xxx 986 * rcu_read_unlock() 987 * xxx removed from list 988 * rcu_read_lock() 989 * read mru_block 990 * mru_block = NULL; 991 * call_rcu(reclaim_ramblock, xxx); 992 * rcu_read_unlock() 993 * 994 * qatomic_rcu_set is not needed here. The block was already published 995 * when it was placed into the list. Here we're just making an extra 996 * copy of the pointer. 997 */ 998 ram_list.mru_block = block; 999 return block; 1000 } 1001 1002 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 1003 { 1004 CPUState *cpu; 1005 ram_addr_t start1; 1006 RAMBlock *block; 1007 ram_addr_t end; 1008 1009 assert(tcg_enabled()); 1010 end = TARGET_PAGE_ALIGN(start + length); 1011 start &= TARGET_PAGE_MASK; 1012 1013 RCU_READ_LOCK_GUARD(); 1014 block = qemu_get_ram_block(start); 1015 assert(block == qemu_get_ram_block(end - 1)); 1016 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 1017 CPU_FOREACH(cpu) { 1018 tlb_reset_dirty(cpu, start1, length); 1019 } 1020 } 1021 1022 /* Note: start and end must be within the same ram block. */ 1023 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 1024 ram_addr_t length, 1025 unsigned client) 1026 { 1027 DirtyMemoryBlocks *blocks; 1028 unsigned long end, page, start_page; 1029 bool dirty = false; 1030 RAMBlock *ramblock; 1031 uint64_t mr_offset, mr_size; 1032 1033 if (length == 0) { 1034 return false; 1035 } 1036 1037 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 1038 start_page = start >> TARGET_PAGE_BITS; 1039 page = start_page; 1040 1041 WITH_RCU_READ_LOCK_GUARD() { 1042 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1043 ramblock = qemu_get_ram_block(start); 1044 /* Range sanity check on the ramblock */ 1045 assert(start >= ramblock->offset && 1046 start + length <= ramblock->offset + ramblock->used_length); 1047 1048 while (page < end) { 1049 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1050 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1051 unsigned long num = MIN(end - page, 1052 DIRTY_MEMORY_BLOCK_SIZE - offset); 1053 1054 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 1055 offset, num); 1056 page += num; 1057 } 1058 1059 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 1060 mr_size = (end - start_page) << TARGET_PAGE_BITS; 1061 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 1062 } 1063 1064 if (dirty && tcg_enabled()) { 1065 tlb_reset_dirty_range_all(start, length); 1066 } 1067 1068 return dirty; 1069 } 1070 1071 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 1072 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 1073 { 1074 DirtyMemoryBlocks *blocks; 1075 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 1076 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 1077 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 1078 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 1079 DirtyBitmapSnapshot *snap; 1080 unsigned long page, end, dest; 1081 1082 snap = g_malloc0(sizeof(*snap) + 1083 ((last - first) >> (TARGET_PAGE_BITS + 3))); 1084 snap->start = first; 1085 snap->end = last; 1086 1087 page = first >> TARGET_PAGE_BITS; 1088 end = last >> TARGET_PAGE_BITS; 1089 dest = 0; 1090 1091 WITH_RCU_READ_LOCK_GUARD() { 1092 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 1093 1094 while (page < end) { 1095 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 1096 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 1097 unsigned long num = MIN(end - page, 1098 DIRTY_MEMORY_BLOCK_SIZE - offset); 1099 1100 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 1101 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 1102 offset >>= BITS_PER_LEVEL; 1103 1104 bitmap_copy_and_clear_atomic(snap->dirty + dest, 1105 blocks->blocks[idx] + offset, 1106 num); 1107 page += num; 1108 dest += num >> BITS_PER_LEVEL; 1109 } 1110 } 1111 1112 if (tcg_enabled()) { 1113 tlb_reset_dirty_range_all(start, length); 1114 } 1115 1116 memory_region_clear_dirty_bitmap(mr, offset, length); 1117 1118 return snap; 1119 } 1120 1121 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 1122 ram_addr_t start, 1123 ram_addr_t length) 1124 { 1125 unsigned long page, end; 1126 1127 assert(start >= snap->start); 1128 assert(start + length <= snap->end); 1129 1130 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 1131 page = (start - snap->start) >> TARGET_PAGE_BITS; 1132 1133 while (page < end) { 1134 if (test_bit(page, snap->dirty)) { 1135 return true; 1136 } 1137 page++; 1138 } 1139 return false; 1140 } 1141 1142 /* Called from RCU critical section */ 1143 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1144 MemoryRegionSection *section) 1145 { 1146 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1147 return section - d->map.sections; 1148 } 1149 1150 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1151 uint16_t section); 1152 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1153 1154 static uint16_t phys_section_add(PhysPageMap *map, 1155 MemoryRegionSection *section) 1156 { 1157 /* The physical section number is ORed with a page-aligned 1158 * pointer to produce the iotlb entries. Thus it should 1159 * never overflow into the page-aligned value. 1160 */ 1161 assert(map->sections_nb < TARGET_PAGE_SIZE); 1162 1163 if (map->sections_nb == map->sections_nb_alloc) { 1164 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1165 map->sections = g_renew(MemoryRegionSection, map->sections, 1166 map->sections_nb_alloc); 1167 } 1168 map->sections[map->sections_nb] = *section; 1169 memory_region_ref(section->mr); 1170 return map->sections_nb++; 1171 } 1172 1173 static void phys_section_destroy(MemoryRegion *mr) 1174 { 1175 bool have_sub_page = mr->subpage; 1176 1177 memory_region_unref(mr); 1178 1179 if (have_sub_page) { 1180 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1181 object_unref(OBJECT(&subpage->iomem)); 1182 g_free(subpage); 1183 } 1184 } 1185 1186 static void phys_sections_free(PhysPageMap *map) 1187 { 1188 while (map->sections_nb > 0) { 1189 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1190 phys_section_destroy(section->mr); 1191 } 1192 g_free(map->sections); 1193 g_free(map->nodes); 1194 } 1195 1196 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1197 { 1198 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1199 subpage_t *subpage; 1200 hwaddr base = section->offset_within_address_space 1201 & TARGET_PAGE_MASK; 1202 MemoryRegionSection *existing = phys_page_find(d, base); 1203 MemoryRegionSection subsection = { 1204 .offset_within_address_space = base, 1205 .size = int128_make64(TARGET_PAGE_SIZE), 1206 }; 1207 hwaddr start, end; 1208 1209 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1210 1211 if (!(existing->mr->subpage)) { 1212 subpage = subpage_init(fv, base); 1213 subsection.fv = fv; 1214 subsection.mr = &subpage->iomem; 1215 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1216 phys_section_add(&d->map, &subsection)); 1217 } else { 1218 subpage = container_of(existing->mr, subpage_t, iomem); 1219 } 1220 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1221 end = start + int128_get64(section->size) - 1; 1222 subpage_register(subpage, start, end, 1223 phys_section_add(&d->map, section)); 1224 } 1225 1226 1227 static void register_multipage(FlatView *fv, 1228 MemoryRegionSection *section) 1229 { 1230 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1231 hwaddr start_addr = section->offset_within_address_space; 1232 uint16_t section_index = phys_section_add(&d->map, section); 1233 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1234 TARGET_PAGE_BITS)); 1235 1236 assert(num_pages); 1237 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1238 } 1239 1240 /* 1241 * The range in *section* may look like this: 1242 * 1243 * |s|PPPPPPP|s| 1244 * 1245 * where s stands for subpage and P for page. 1246 */ 1247 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1248 { 1249 MemoryRegionSection remain = *section; 1250 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1251 1252 /* register first subpage */ 1253 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1254 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1255 - remain.offset_within_address_space; 1256 1257 MemoryRegionSection now = remain; 1258 now.size = int128_min(int128_make64(left), now.size); 1259 register_subpage(fv, &now); 1260 if (int128_eq(remain.size, now.size)) { 1261 return; 1262 } 1263 remain.size = int128_sub(remain.size, now.size); 1264 remain.offset_within_address_space += int128_get64(now.size); 1265 remain.offset_within_region += int128_get64(now.size); 1266 } 1267 1268 /* register whole pages */ 1269 if (int128_ge(remain.size, page_size)) { 1270 MemoryRegionSection now = remain; 1271 now.size = int128_and(now.size, int128_neg(page_size)); 1272 register_multipage(fv, &now); 1273 if (int128_eq(remain.size, now.size)) { 1274 return; 1275 } 1276 remain.size = int128_sub(remain.size, now.size); 1277 remain.offset_within_address_space += int128_get64(now.size); 1278 remain.offset_within_region += int128_get64(now.size); 1279 } 1280 1281 /* register last subpage */ 1282 register_subpage(fv, &remain); 1283 } 1284 1285 void qemu_flush_coalesced_mmio_buffer(void) 1286 { 1287 if (kvm_enabled()) 1288 kvm_flush_coalesced_mmio_buffer(); 1289 } 1290 1291 void qemu_mutex_lock_ramlist(void) 1292 { 1293 qemu_mutex_lock(&ram_list.mutex); 1294 } 1295 1296 void qemu_mutex_unlock_ramlist(void) 1297 { 1298 qemu_mutex_unlock(&ram_list.mutex); 1299 } 1300 1301 void ram_block_dump(Monitor *mon) 1302 { 1303 RAMBlock *block; 1304 char *psize; 1305 1306 RCU_READ_LOCK_GUARD(); 1307 monitor_printf(mon, "%24s %8s %18s %18s %18s\n", 1308 "Block Name", "PSize", "Offset", "Used", "Total"); 1309 RAMBLOCK_FOREACH(block) { 1310 psize = size_to_str(block->page_size); 1311 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1312 " 0x%016" PRIx64 "\n", block->idstr, psize, 1313 (uint64_t)block->offset, 1314 (uint64_t)block->used_length, 1315 (uint64_t)block->max_length); 1316 g_free(psize); 1317 } 1318 } 1319 1320 #ifdef __linux__ 1321 /* 1322 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which 1323 * may or may not name the same files / on the same filesystem now as 1324 * when we actually open and map them. Iterate over the file 1325 * descriptors instead, and use qemu_fd_getpagesize(). 1326 */ 1327 static int find_min_backend_pagesize(Object *obj, void *opaque) 1328 { 1329 long *hpsize_min = opaque; 1330 1331 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1332 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1333 long hpsize = host_memory_backend_pagesize(backend); 1334 1335 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1336 *hpsize_min = hpsize; 1337 } 1338 } 1339 1340 return 0; 1341 } 1342 1343 static int find_max_backend_pagesize(Object *obj, void *opaque) 1344 { 1345 long *hpsize_max = opaque; 1346 1347 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1348 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1349 long hpsize = host_memory_backend_pagesize(backend); 1350 1351 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1352 *hpsize_max = hpsize; 1353 } 1354 } 1355 1356 return 0; 1357 } 1358 1359 /* 1360 * TODO: We assume right now that all mapped host memory backends are 1361 * used as RAM, however some might be used for different purposes. 1362 */ 1363 long qemu_minrampagesize(void) 1364 { 1365 long hpsize = LONG_MAX; 1366 Object *memdev_root = object_resolve_path("/objects", NULL); 1367 1368 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1369 return hpsize; 1370 } 1371 1372 long qemu_maxrampagesize(void) 1373 { 1374 long pagesize = 0; 1375 Object *memdev_root = object_resolve_path("/objects", NULL); 1376 1377 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1378 return pagesize; 1379 } 1380 #else 1381 long qemu_minrampagesize(void) 1382 { 1383 return qemu_real_host_page_size; 1384 } 1385 long qemu_maxrampagesize(void) 1386 { 1387 return qemu_real_host_page_size; 1388 } 1389 #endif 1390 1391 #ifdef CONFIG_POSIX 1392 static int64_t get_file_size(int fd) 1393 { 1394 int64_t size; 1395 #if defined(__linux__) 1396 struct stat st; 1397 1398 if (fstat(fd, &st) < 0) { 1399 return -errno; 1400 } 1401 1402 /* Special handling for devdax character devices */ 1403 if (S_ISCHR(st.st_mode)) { 1404 g_autofree char *subsystem_path = NULL; 1405 g_autofree char *subsystem = NULL; 1406 1407 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1408 major(st.st_rdev), minor(st.st_rdev)); 1409 subsystem = g_file_read_link(subsystem_path, NULL); 1410 1411 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1412 g_autofree char *size_path = NULL; 1413 g_autofree char *size_str = NULL; 1414 1415 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1416 major(st.st_rdev), minor(st.st_rdev)); 1417 1418 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1419 return g_ascii_strtoll(size_str, NULL, 0); 1420 } 1421 } 1422 } 1423 #endif /* defined(__linux__) */ 1424 1425 /* st.st_size may be zero for special files yet lseek(2) works */ 1426 size = lseek(fd, 0, SEEK_END); 1427 if (size < 0) { 1428 return -errno; 1429 } 1430 return size; 1431 } 1432 1433 static int64_t get_file_align(int fd) 1434 { 1435 int64_t align = -1; 1436 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1437 struct stat st; 1438 1439 if (fstat(fd, &st) < 0) { 1440 return -errno; 1441 } 1442 1443 /* Special handling for devdax character devices */ 1444 if (S_ISCHR(st.st_mode)) { 1445 g_autofree char *path = NULL; 1446 g_autofree char *rpath = NULL; 1447 struct daxctl_ctx *ctx; 1448 struct daxctl_region *region; 1449 int rc = 0; 1450 1451 path = g_strdup_printf("/sys/dev/char/%d:%d", 1452 major(st.st_rdev), minor(st.st_rdev)); 1453 rpath = realpath(path, NULL); 1454 if (!rpath) { 1455 return -errno; 1456 } 1457 1458 rc = daxctl_new(&ctx); 1459 if (rc) { 1460 return -1; 1461 } 1462 1463 daxctl_region_foreach(ctx, region) { 1464 if (strstr(rpath, daxctl_region_get_path(region))) { 1465 align = daxctl_region_get_align(region); 1466 break; 1467 } 1468 } 1469 daxctl_unref(ctx); 1470 } 1471 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1472 1473 return align; 1474 } 1475 1476 static int file_ram_open(const char *path, 1477 const char *region_name, 1478 bool readonly, 1479 bool *created, 1480 Error **errp) 1481 { 1482 char *filename; 1483 char *sanitized_name; 1484 char *c; 1485 int fd = -1; 1486 1487 *created = false; 1488 for (;;) { 1489 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1490 if (fd >= 0) { 1491 /* @path names an existing file, use it */ 1492 break; 1493 } 1494 if (errno == ENOENT) { 1495 /* @path names a file that doesn't exist, create it */ 1496 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1497 if (fd >= 0) { 1498 *created = true; 1499 break; 1500 } 1501 } else if (errno == EISDIR) { 1502 /* @path names a directory, create a file there */ 1503 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1504 sanitized_name = g_strdup(region_name); 1505 for (c = sanitized_name; *c != '\0'; c++) { 1506 if (*c == '/') { 1507 *c = '_'; 1508 } 1509 } 1510 1511 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1512 sanitized_name); 1513 g_free(sanitized_name); 1514 1515 fd = mkstemp(filename); 1516 if (fd >= 0) { 1517 unlink(filename); 1518 g_free(filename); 1519 break; 1520 } 1521 g_free(filename); 1522 } 1523 if (errno != EEXIST && errno != EINTR) { 1524 error_setg_errno(errp, errno, 1525 "can't open backing store %s for guest RAM", 1526 path); 1527 return -1; 1528 } 1529 /* 1530 * Try again on EINTR and EEXIST. The latter happens when 1531 * something else creates the file between our two open(). 1532 */ 1533 } 1534 1535 return fd; 1536 } 1537 1538 static void *file_ram_alloc(RAMBlock *block, 1539 ram_addr_t memory, 1540 int fd, 1541 bool readonly, 1542 bool truncate, 1543 off_t offset, 1544 Error **errp) 1545 { 1546 uint32_t qemu_map_flags; 1547 void *area; 1548 1549 block->page_size = qemu_fd_getpagesize(fd); 1550 if (block->mr->align % block->page_size) { 1551 error_setg(errp, "alignment 0x%" PRIx64 1552 " must be multiples of page size 0x%zx", 1553 block->mr->align, block->page_size); 1554 return NULL; 1555 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1556 error_setg(errp, "alignment 0x%" PRIx64 1557 " must be a power of two", block->mr->align); 1558 return NULL; 1559 } 1560 block->mr->align = MAX(block->page_size, block->mr->align); 1561 #if defined(__s390x__) 1562 if (kvm_enabled()) { 1563 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1564 } 1565 #endif 1566 1567 if (memory < block->page_size) { 1568 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1569 "or larger than page size 0x%zx", 1570 memory, block->page_size); 1571 return NULL; 1572 } 1573 1574 memory = ROUND_UP(memory, block->page_size); 1575 1576 /* 1577 * ftruncate is not supported by hugetlbfs in older 1578 * hosts, so don't bother bailing out on errors. 1579 * If anything goes wrong with it under other filesystems, 1580 * mmap will fail. 1581 * 1582 * Do not truncate the non-empty backend file to avoid corrupting 1583 * the existing data in the file. Disabling shrinking is not 1584 * enough. For example, the current vNVDIMM implementation stores 1585 * the guest NVDIMM labels at the end of the backend file. If the 1586 * backend file is later extended, QEMU will not be able to find 1587 * those labels. Therefore, extending the non-empty backend file 1588 * is disabled as well. 1589 */ 1590 if (truncate && ftruncate(fd, memory)) { 1591 perror("ftruncate"); 1592 } 1593 1594 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1595 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1596 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1597 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1598 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1599 if (area == MAP_FAILED) { 1600 error_setg_errno(errp, errno, 1601 "unable to map backing store for guest RAM"); 1602 return NULL; 1603 } 1604 1605 block->fd = fd; 1606 return area; 1607 } 1608 #endif 1609 1610 /* Allocate space within the ram_addr_t space that governs the 1611 * dirty bitmaps. 1612 * Called with the ramlist lock held. 1613 */ 1614 static ram_addr_t find_ram_offset(ram_addr_t size) 1615 { 1616 RAMBlock *block, *next_block; 1617 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1618 1619 assert(size != 0); /* it would hand out same offset multiple times */ 1620 1621 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1622 return 0; 1623 } 1624 1625 RAMBLOCK_FOREACH(block) { 1626 ram_addr_t candidate, next = RAM_ADDR_MAX; 1627 1628 /* Align blocks to start on a 'long' in the bitmap 1629 * which makes the bitmap sync'ing take the fast path. 1630 */ 1631 candidate = block->offset + block->max_length; 1632 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1633 1634 /* Search for the closest following block 1635 * and find the gap. 1636 */ 1637 RAMBLOCK_FOREACH(next_block) { 1638 if (next_block->offset >= candidate) { 1639 next = MIN(next, next_block->offset); 1640 } 1641 } 1642 1643 /* If it fits remember our place and remember the size 1644 * of gap, but keep going so that we might find a smaller 1645 * gap to fill so avoiding fragmentation. 1646 */ 1647 if (next - candidate >= size && next - candidate < mingap) { 1648 offset = candidate; 1649 mingap = next - candidate; 1650 } 1651 1652 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1653 } 1654 1655 if (offset == RAM_ADDR_MAX) { 1656 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1657 (uint64_t)size); 1658 abort(); 1659 } 1660 1661 trace_find_ram_offset(size, offset); 1662 1663 return offset; 1664 } 1665 1666 static unsigned long last_ram_page(void) 1667 { 1668 RAMBlock *block; 1669 ram_addr_t last = 0; 1670 1671 RCU_READ_LOCK_GUARD(); 1672 RAMBLOCK_FOREACH(block) { 1673 last = MAX(last, block->offset + block->max_length); 1674 } 1675 return last >> TARGET_PAGE_BITS; 1676 } 1677 1678 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1679 { 1680 int ret; 1681 1682 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1683 if (!machine_dump_guest_core(current_machine)) { 1684 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1685 if (ret) { 1686 perror("qemu_madvise"); 1687 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1688 "but dump_guest_core=off specified\n"); 1689 } 1690 } 1691 } 1692 1693 const char *qemu_ram_get_idstr(RAMBlock *rb) 1694 { 1695 return rb->idstr; 1696 } 1697 1698 void *qemu_ram_get_host_addr(RAMBlock *rb) 1699 { 1700 return rb->host; 1701 } 1702 1703 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1704 { 1705 return rb->offset; 1706 } 1707 1708 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1709 { 1710 return rb->used_length; 1711 } 1712 1713 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1714 { 1715 return rb->max_length; 1716 } 1717 1718 bool qemu_ram_is_shared(RAMBlock *rb) 1719 { 1720 return rb->flags & RAM_SHARED; 1721 } 1722 1723 bool qemu_ram_is_noreserve(RAMBlock *rb) 1724 { 1725 return rb->flags & RAM_NORESERVE; 1726 } 1727 1728 /* Note: Only set at the start of postcopy */ 1729 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1730 { 1731 return rb->flags & RAM_UF_ZEROPAGE; 1732 } 1733 1734 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1735 { 1736 rb->flags |= RAM_UF_ZEROPAGE; 1737 } 1738 1739 bool qemu_ram_is_migratable(RAMBlock *rb) 1740 { 1741 return rb->flags & RAM_MIGRATABLE; 1742 } 1743 1744 void qemu_ram_set_migratable(RAMBlock *rb) 1745 { 1746 rb->flags |= RAM_MIGRATABLE; 1747 } 1748 1749 void qemu_ram_unset_migratable(RAMBlock *rb) 1750 { 1751 rb->flags &= ~RAM_MIGRATABLE; 1752 } 1753 1754 /* Called with iothread lock held. */ 1755 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1756 { 1757 RAMBlock *block; 1758 1759 assert(new_block); 1760 assert(!new_block->idstr[0]); 1761 1762 if (dev) { 1763 char *id = qdev_get_dev_path(dev); 1764 if (id) { 1765 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1766 g_free(id); 1767 } 1768 } 1769 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1770 1771 RCU_READ_LOCK_GUARD(); 1772 RAMBLOCK_FOREACH(block) { 1773 if (block != new_block && 1774 !strcmp(block->idstr, new_block->idstr)) { 1775 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1776 new_block->idstr); 1777 abort(); 1778 } 1779 } 1780 } 1781 1782 /* Called with iothread lock held. */ 1783 void qemu_ram_unset_idstr(RAMBlock *block) 1784 { 1785 /* FIXME: arch_init.c assumes that this is not called throughout 1786 * migration. Ignore the problem since hot-unplug during migration 1787 * does not work anyway. 1788 */ 1789 if (block) { 1790 memset(block->idstr, 0, sizeof(block->idstr)); 1791 } 1792 } 1793 1794 size_t qemu_ram_pagesize(RAMBlock *rb) 1795 { 1796 return rb->page_size; 1797 } 1798 1799 /* Returns the largest size of page in use */ 1800 size_t qemu_ram_pagesize_largest(void) 1801 { 1802 RAMBlock *block; 1803 size_t largest = 0; 1804 1805 RAMBLOCK_FOREACH(block) { 1806 largest = MAX(largest, qemu_ram_pagesize(block)); 1807 } 1808 1809 return largest; 1810 } 1811 1812 static int memory_try_enable_merging(void *addr, size_t len) 1813 { 1814 if (!machine_mem_merge(current_machine)) { 1815 /* disabled by the user */ 1816 return 0; 1817 } 1818 1819 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1820 } 1821 1822 /* 1823 * Resizing RAM while migrating can result in the migration being canceled. 1824 * Care has to be taken if the guest might have already detected the memory. 1825 * 1826 * As memory core doesn't know how is memory accessed, it is up to 1827 * resize callback to update device state and/or add assertions to detect 1828 * misuse, if necessary. 1829 */ 1830 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1831 { 1832 const ram_addr_t oldsize = block->used_length; 1833 const ram_addr_t unaligned_size = newsize; 1834 1835 assert(block); 1836 1837 newsize = HOST_PAGE_ALIGN(newsize); 1838 1839 if (block->used_length == newsize) { 1840 /* 1841 * We don't have to resize the ram block (which only knows aligned 1842 * sizes), however, we have to notify if the unaligned size changed. 1843 */ 1844 if (unaligned_size != memory_region_size(block->mr)) { 1845 memory_region_set_size(block->mr, unaligned_size); 1846 if (block->resized) { 1847 block->resized(block->idstr, unaligned_size, block->host); 1848 } 1849 } 1850 return 0; 1851 } 1852 1853 if (!(block->flags & RAM_RESIZEABLE)) { 1854 error_setg_errno(errp, EINVAL, 1855 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1856 " != 0x" RAM_ADDR_FMT, block->idstr, 1857 newsize, block->used_length); 1858 return -EINVAL; 1859 } 1860 1861 if (block->max_length < newsize) { 1862 error_setg_errno(errp, EINVAL, 1863 "Size too large: %s: 0x" RAM_ADDR_FMT 1864 " > 0x" RAM_ADDR_FMT, block->idstr, 1865 newsize, block->max_length); 1866 return -EINVAL; 1867 } 1868 1869 /* Notify before modifying the ram block and touching the bitmaps. */ 1870 if (block->host) { 1871 ram_block_notify_resize(block->host, oldsize, newsize); 1872 } 1873 1874 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1875 block->used_length = newsize; 1876 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1877 DIRTY_CLIENTS_ALL); 1878 memory_region_set_size(block->mr, unaligned_size); 1879 if (block->resized) { 1880 block->resized(block->idstr, unaligned_size, block->host); 1881 } 1882 return 0; 1883 } 1884 1885 /* 1886 * Trigger sync on the given ram block for range [start, start + length] 1887 * with the backing store if one is available. 1888 * Otherwise no-op. 1889 * @Note: this is supposed to be a synchronous op. 1890 */ 1891 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1892 { 1893 /* The requested range should fit in within the block range */ 1894 g_assert((start + length) <= block->used_length); 1895 1896 #ifdef CONFIG_LIBPMEM 1897 /* The lack of support for pmem should not block the sync */ 1898 if (ramblock_is_pmem(block)) { 1899 void *addr = ramblock_ptr(block, start); 1900 pmem_persist(addr, length); 1901 return; 1902 } 1903 #endif 1904 if (block->fd >= 0) { 1905 /** 1906 * Case there is no support for PMEM or the memory has not been 1907 * specified as persistent (or is not one) - use the msync. 1908 * Less optimal but still achieves the same goal 1909 */ 1910 void *addr = ramblock_ptr(block, start); 1911 if (qemu_msync(addr, length, block->fd)) { 1912 warn_report("%s: failed to sync memory range: start: " 1913 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1914 __func__, start, length); 1915 } 1916 } 1917 } 1918 1919 /* Called with ram_list.mutex held */ 1920 static void dirty_memory_extend(ram_addr_t old_ram_size, 1921 ram_addr_t new_ram_size) 1922 { 1923 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1924 DIRTY_MEMORY_BLOCK_SIZE); 1925 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1926 DIRTY_MEMORY_BLOCK_SIZE); 1927 int i; 1928 1929 /* Only need to extend if block count increased */ 1930 if (new_num_blocks <= old_num_blocks) { 1931 return; 1932 } 1933 1934 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1935 DirtyMemoryBlocks *old_blocks; 1936 DirtyMemoryBlocks *new_blocks; 1937 int j; 1938 1939 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1940 new_blocks = g_malloc(sizeof(*new_blocks) + 1941 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1942 1943 if (old_num_blocks) { 1944 memcpy(new_blocks->blocks, old_blocks->blocks, 1945 old_num_blocks * sizeof(old_blocks->blocks[0])); 1946 } 1947 1948 for (j = old_num_blocks; j < new_num_blocks; j++) { 1949 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1950 } 1951 1952 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1953 1954 if (old_blocks) { 1955 g_free_rcu(old_blocks, rcu); 1956 } 1957 } 1958 } 1959 1960 static void ram_block_add(RAMBlock *new_block, Error **errp) 1961 { 1962 const bool noreserve = qemu_ram_is_noreserve(new_block); 1963 const bool shared = qemu_ram_is_shared(new_block); 1964 RAMBlock *block; 1965 RAMBlock *last_block = NULL; 1966 ram_addr_t old_ram_size, new_ram_size; 1967 Error *err = NULL; 1968 1969 old_ram_size = last_ram_page(); 1970 1971 qemu_mutex_lock_ramlist(); 1972 new_block->offset = find_ram_offset(new_block->max_length); 1973 1974 if (!new_block->host) { 1975 if (xen_enabled()) { 1976 xen_ram_alloc(new_block->offset, new_block->max_length, 1977 new_block->mr, &err); 1978 if (err) { 1979 error_propagate(errp, err); 1980 qemu_mutex_unlock_ramlist(); 1981 return; 1982 } 1983 } else { 1984 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1985 &new_block->mr->align, 1986 shared, noreserve); 1987 if (!new_block->host) { 1988 error_setg_errno(errp, errno, 1989 "cannot set up guest memory '%s'", 1990 memory_region_name(new_block->mr)); 1991 qemu_mutex_unlock_ramlist(); 1992 return; 1993 } 1994 memory_try_enable_merging(new_block->host, new_block->max_length); 1995 } 1996 } 1997 1998 new_ram_size = MAX(old_ram_size, 1999 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 2000 if (new_ram_size > old_ram_size) { 2001 dirty_memory_extend(old_ram_size, new_ram_size); 2002 } 2003 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 2004 * QLIST (which has an RCU-friendly variant) does not have insertion at 2005 * tail, so save the last element in last_block. 2006 */ 2007 RAMBLOCK_FOREACH(block) { 2008 last_block = block; 2009 if (block->max_length < new_block->max_length) { 2010 break; 2011 } 2012 } 2013 if (block) { 2014 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 2015 } else if (last_block) { 2016 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 2017 } else { /* list is empty */ 2018 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 2019 } 2020 ram_list.mru_block = NULL; 2021 2022 /* Write list before version */ 2023 smp_wmb(); 2024 ram_list.version++; 2025 qemu_mutex_unlock_ramlist(); 2026 2027 cpu_physical_memory_set_dirty_range(new_block->offset, 2028 new_block->used_length, 2029 DIRTY_CLIENTS_ALL); 2030 2031 if (new_block->host) { 2032 qemu_ram_setup_dump(new_block->host, new_block->max_length); 2033 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 2034 /* 2035 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 2036 * Configure it unless the machine is a qtest server, in which case 2037 * KVM is not used and it may be forked (eg for fuzzing purposes). 2038 */ 2039 if (!qtest_enabled()) { 2040 qemu_madvise(new_block->host, new_block->max_length, 2041 QEMU_MADV_DONTFORK); 2042 } 2043 ram_block_notify_add(new_block->host, new_block->used_length, 2044 new_block->max_length); 2045 } 2046 } 2047 2048 #ifdef CONFIG_POSIX 2049 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 2050 uint32_t ram_flags, int fd, off_t offset, 2051 bool readonly, Error **errp) 2052 { 2053 RAMBlock *new_block; 2054 Error *local_err = NULL; 2055 int64_t file_size, file_align; 2056 2057 /* Just support these ram flags by now. */ 2058 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 2059 RAM_PROTECTED)) == 0); 2060 2061 if (xen_enabled()) { 2062 error_setg(errp, "-mem-path not supported with Xen"); 2063 return NULL; 2064 } 2065 2066 if (kvm_enabled() && !kvm_has_sync_mmu()) { 2067 error_setg(errp, 2068 "host lacks kvm mmu notifiers, -mem-path unsupported"); 2069 return NULL; 2070 } 2071 2072 size = HOST_PAGE_ALIGN(size); 2073 file_size = get_file_size(fd); 2074 if (file_size > 0 && file_size < size) { 2075 error_setg(errp, "backing store size 0x%" PRIx64 2076 " does not match 'size' option 0x" RAM_ADDR_FMT, 2077 file_size, size); 2078 return NULL; 2079 } 2080 2081 file_align = get_file_align(fd); 2082 if (file_align > 0 && file_align > mr->align) { 2083 error_setg(errp, "backing store align 0x%" PRIx64 2084 " is larger than 'align' option 0x%" PRIx64, 2085 file_align, mr->align); 2086 return NULL; 2087 } 2088 2089 new_block = g_malloc0(sizeof(*new_block)); 2090 new_block->mr = mr; 2091 new_block->used_length = size; 2092 new_block->max_length = size; 2093 new_block->flags = ram_flags; 2094 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 2095 !file_size, offset, errp); 2096 if (!new_block->host) { 2097 g_free(new_block); 2098 return NULL; 2099 } 2100 2101 ram_block_add(new_block, &local_err); 2102 if (local_err) { 2103 g_free(new_block); 2104 error_propagate(errp, local_err); 2105 return NULL; 2106 } 2107 return new_block; 2108 2109 } 2110 2111 2112 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2113 uint32_t ram_flags, const char *mem_path, 2114 bool readonly, Error **errp) 2115 { 2116 int fd; 2117 bool created; 2118 RAMBlock *block; 2119 2120 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 2121 errp); 2122 if (fd < 0) { 2123 return NULL; 2124 } 2125 2126 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 2127 if (!block) { 2128 if (created) { 2129 unlink(mem_path); 2130 } 2131 close(fd); 2132 return NULL; 2133 } 2134 2135 return block; 2136 } 2137 #endif 2138 2139 static 2140 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2141 void (*resized)(const char*, 2142 uint64_t length, 2143 void *host), 2144 void *host, uint32_t ram_flags, 2145 MemoryRegion *mr, Error **errp) 2146 { 2147 RAMBlock *new_block; 2148 Error *local_err = NULL; 2149 2150 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2151 RAM_NORESERVE)) == 0); 2152 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2153 2154 size = HOST_PAGE_ALIGN(size); 2155 max_size = HOST_PAGE_ALIGN(max_size); 2156 new_block = g_malloc0(sizeof(*new_block)); 2157 new_block->mr = mr; 2158 new_block->resized = resized; 2159 new_block->used_length = size; 2160 new_block->max_length = max_size; 2161 assert(max_size >= size); 2162 new_block->fd = -1; 2163 new_block->page_size = qemu_real_host_page_size; 2164 new_block->host = host; 2165 new_block->flags = ram_flags; 2166 ram_block_add(new_block, &local_err); 2167 if (local_err) { 2168 g_free(new_block); 2169 error_propagate(errp, local_err); 2170 return NULL; 2171 } 2172 return new_block; 2173 } 2174 2175 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2176 MemoryRegion *mr, Error **errp) 2177 { 2178 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2179 errp); 2180 } 2181 2182 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2183 MemoryRegion *mr, Error **errp) 2184 { 2185 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2186 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2187 } 2188 2189 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2190 void (*resized)(const char*, 2191 uint64_t length, 2192 void *host), 2193 MemoryRegion *mr, Error **errp) 2194 { 2195 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2196 RAM_RESIZEABLE, mr, errp); 2197 } 2198 2199 static void reclaim_ramblock(RAMBlock *block) 2200 { 2201 if (block->flags & RAM_PREALLOC) { 2202 ; 2203 } else if (xen_enabled()) { 2204 xen_invalidate_map_cache_entry(block->host); 2205 #ifndef _WIN32 2206 } else if (block->fd >= 0) { 2207 qemu_ram_munmap(block->fd, block->host, block->max_length); 2208 close(block->fd); 2209 #endif 2210 } else { 2211 qemu_anon_ram_free(block->host, block->max_length); 2212 } 2213 g_free(block); 2214 } 2215 2216 void qemu_ram_free(RAMBlock *block) 2217 { 2218 if (!block) { 2219 return; 2220 } 2221 2222 if (block->host) { 2223 ram_block_notify_remove(block->host, block->used_length, 2224 block->max_length); 2225 } 2226 2227 qemu_mutex_lock_ramlist(); 2228 QLIST_REMOVE_RCU(block, next); 2229 ram_list.mru_block = NULL; 2230 /* Write list before version */ 2231 smp_wmb(); 2232 ram_list.version++; 2233 call_rcu(block, reclaim_ramblock, rcu); 2234 qemu_mutex_unlock_ramlist(); 2235 } 2236 2237 #ifndef _WIN32 2238 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2239 { 2240 RAMBlock *block; 2241 ram_addr_t offset; 2242 int flags; 2243 void *area, *vaddr; 2244 2245 RAMBLOCK_FOREACH(block) { 2246 offset = addr - block->offset; 2247 if (offset < block->max_length) { 2248 vaddr = ramblock_ptr(block, offset); 2249 if (block->flags & RAM_PREALLOC) { 2250 ; 2251 } else if (xen_enabled()) { 2252 abort(); 2253 } else { 2254 flags = MAP_FIXED; 2255 flags |= block->flags & RAM_SHARED ? 2256 MAP_SHARED : MAP_PRIVATE; 2257 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2258 if (block->fd >= 0) { 2259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2260 flags, block->fd, offset); 2261 } else { 2262 flags |= MAP_ANONYMOUS; 2263 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2264 flags, -1, 0); 2265 } 2266 if (area != vaddr) { 2267 error_report("Could not remap addr: " 2268 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2269 length, addr); 2270 exit(1); 2271 } 2272 memory_try_enable_merging(vaddr, length); 2273 qemu_ram_setup_dump(vaddr, length); 2274 } 2275 } 2276 } 2277 } 2278 #endif /* !_WIN32 */ 2279 2280 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2281 * This should not be used for general purpose DMA. Use address_space_map 2282 * or address_space_rw instead. For local memory (e.g. video ram) that the 2283 * device owns, use memory_region_get_ram_ptr. 2284 * 2285 * Called within RCU critical section. 2286 */ 2287 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2288 { 2289 RAMBlock *block = ram_block; 2290 2291 if (block == NULL) { 2292 block = qemu_get_ram_block(addr); 2293 addr -= block->offset; 2294 } 2295 2296 if (xen_enabled() && block->host == NULL) { 2297 /* We need to check if the requested address is in the RAM 2298 * because we don't want to map the entire memory in QEMU. 2299 * In that case just map until the end of the page. 2300 */ 2301 if (block->offset == 0) { 2302 return xen_map_cache(addr, 0, 0, false); 2303 } 2304 2305 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2306 } 2307 return ramblock_ptr(block, addr); 2308 } 2309 2310 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2311 * but takes a size argument. 2312 * 2313 * Called within RCU critical section. 2314 */ 2315 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2316 hwaddr *size, bool lock) 2317 { 2318 RAMBlock *block = ram_block; 2319 if (*size == 0) { 2320 return NULL; 2321 } 2322 2323 if (block == NULL) { 2324 block = qemu_get_ram_block(addr); 2325 addr -= block->offset; 2326 } 2327 *size = MIN(*size, block->max_length - addr); 2328 2329 if (xen_enabled() && block->host == NULL) { 2330 /* We need to check if the requested address is in the RAM 2331 * because we don't want to map the entire memory in QEMU. 2332 * In that case just map the requested area. 2333 */ 2334 if (block->offset == 0) { 2335 return xen_map_cache(addr, *size, lock, lock); 2336 } 2337 2338 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2339 } 2340 2341 return ramblock_ptr(block, addr); 2342 } 2343 2344 /* Return the offset of a hostpointer within a ramblock */ 2345 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2346 { 2347 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2348 assert((uintptr_t)host >= (uintptr_t)rb->host); 2349 assert(res < rb->max_length); 2350 2351 return res; 2352 } 2353 2354 /* 2355 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2356 * in that RAMBlock. 2357 * 2358 * ptr: Host pointer to look up 2359 * round_offset: If true round the result offset down to a page boundary 2360 * *ram_addr: set to result ram_addr 2361 * *offset: set to result offset within the RAMBlock 2362 * 2363 * Returns: RAMBlock (or NULL if not found) 2364 * 2365 * By the time this function returns, the returned pointer is not protected 2366 * by RCU anymore. If the caller is not within an RCU critical section and 2367 * does not hold the iothread lock, it must have other means of protecting the 2368 * pointer, such as a reference to the region that includes the incoming 2369 * ram_addr_t. 2370 */ 2371 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2372 ram_addr_t *offset) 2373 { 2374 RAMBlock *block; 2375 uint8_t *host = ptr; 2376 2377 if (xen_enabled()) { 2378 ram_addr_t ram_addr; 2379 RCU_READ_LOCK_GUARD(); 2380 ram_addr = xen_ram_addr_from_mapcache(ptr); 2381 block = qemu_get_ram_block(ram_addr); 2382 if (block) { 2383 *offset = ram_addr - block->offset; 2384 } 2385 return block; 2386 } 2387 2388 RCU_READ_LOCK_GUARD(); 2389 block = qatomic_rcu_read(&ram_list.mru_block); 2390 if (block && block->host && host - block->host < block->max_length) { 2391 goto found; 2392 } 2393 2394 RAMBLOCK_FOREACH(block) { 2395 /* This case append when the block is not mapped. */ 2396 if (block->host == NULL) { 2397 continue; 2398 } 2399 if (host - block->host < block->max_length) { 2400 goto found; 2401 } 2402 } 2403 2404 return NULL; 2405 2406 found: 2407 *offset = (host - block->host); 2408 if (round_offset) { 2409 *offset &= TARGET_PAGE_MASK; 2410 } 2411 return block; 2412 } 2413 2414 /* 2415 * Finds the named RAMBlock 2416 * 2417 * name: The name of RAMBlock to find 2418 * 2419 * Returns: RAMBlock (or NULL if not found) 2420 */ 2421 RAMBlock *qemu_ram_block_by_name(const char *name) 2422 { 2423 RAMBlock *block; 2424 2425 RAMBLOCK_FOREACH(block) { 2426 if (!strcmp(name, block->idstr)) { 2427 return block; 2428 } 2429 } 2430 2431 return NULL; 2432 } 2433 2434 /* Some of the softmmu routines need to translate from a host pointer 2435 (typically a TLB entry) back to a ram offset. */ 2436 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2437 { 2438 RAMBlock *block; 2439 ram_addr_t offset; 2440 2441 block = qemu_ram_block_from_host(ptr, false, &offset); 2442 if (!block) { 2443 return RAM_ADDR_INVALID; 2444 } 2445 2446 return block->offset + offset; 2447 } 2448 2449 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2450 MemTxAttrs attrs, void *buf, hwaddr len); 2451 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2452 const void *buf, hwaddr len); 2453 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2454 bool is_write, MemTxAttrs attrs); 2455 2456 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2457 unsigned len, MemTxAttrs attrs) 2458 { 2459 subpage_t *subpage = opaque; 2460 uint8_t buf[8]; 2461 MemTxResult res; 2462 2463 #if defined(DEBUG_SUBPAGE) 2464 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, 2465 subpage, len, addr); 2466 #endif 2467 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2468 if (res) { 2469 return res; 2470 } 2471 *data = ldn_p(buf, len); 2472 return MEMTX_OK; 2473 } 2474 2475 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2476 uint64_t value, unsigned len, MemTxAttrs attrs) 2477 { 2478 subpage_t *subpage = opaque; 2479 uint8_t buf[8]; 2480 2481 #if defined(DEBUG_SUBPAGE) 2482 printf("%s: subpage %p len %u addr " TARGET_FMT_plx 2483 " value %"PRIx64"\n", 2484 __func__, subpage, len, addr, value); 2485 #endif 2486 stn_p(buf, len, value); 2487 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2488 } 2489 2490 static bool subpage_accepts(void *opaque, hwaddr addr, 2491 unsigned len, bool is_write, 2492 MemTxAttrs attrs) 2493 { 2494 subpage_t *subpage = opaque; 2495 #if defined(DEBUG_SUBPAGE) 2496 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", 2497 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2498 #endif 2499 2500 return flatview_access_valid(subpage->fv, addr + subpage->base, 2501 len, is_write, attrs); 2502 } 2503 2504 static const MemoryRegionOps subpage_ops = { 2505 .read_with_attrs = subpage_read, 2506 .write_with_attrs = subpage_write, 2507 .impl.min_access_size = 1, 2508 .impl.max_access_size = 8, 2509 .valid.min_access_size = 1, 2510 .valid.max_access_size = 8, 2511 .valid.accepts = subpage_accepts, 2512 .endianness = DEVICE_NATIVE_ENDIAN, 2513 }; 2514 2515 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2516 uint16_t section) 2517 { 2518 int idx, eidx; 2519 2520 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2521 return -1; 2522 idx = SUBPAGE_IDX(start); 2523 eidx = SUBPAGE_IDX(end); 2524 #if defined(DEBUG_SUBPAGE) 2525 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2526 __func__, mmio, start, end, idx, eidx, section); 2527 #endif 2528 for (; idx <= eidx; idx++) { 2529 mmio->sub_section[idx] = section; 2530 } 2531 2532 return 0; 2533 } 2534 2535 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2536 { 2537 subpage_t *mmio; 2538 2539 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2540 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2541 mmio->fv = fv; 2542 mmio->base = base; 2543 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2544 NULL, TARGET_PAGE_SIZE); 2545 mmio->iomem.subpage = true; 2546 #if defined(DEBUG_SUBPAGE) 2547 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, 2548 mmio, base, TARGET_PAGE_SIZE); 2549 #endif 2550 2551 return mmio; 2552 } 2553 2554 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2555 { 2556 assert(fv); 2557 MemoryRegionSection section = { 2558 .fv = fv, 2559 .mr = mr, 2560 .offset_within_address_space = 0, 2561 .offset_within_region = 0, 2562 .size = int128_2_64(), 2563 }; 2564 2565 return phys_section_add(map, §ion); 2566 } 2567 2568 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2569 hwaddr index, MemTxAttrs attrs) 2570 { 2571 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2572 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2573 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2574 MemoryRegionSection *sections = d->map.sections; 2575 2576 return §ions[index & ~TARGET_PAGE_MASK]; 2577 } 2578 2579 static void io_mem_init(void) 2580 { 2581 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2582 NULL, UINT64_MAX); 2583 } 2584 2585 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2586 { 2587 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2588 uint16_t n; 2589 2590 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2591 assert(n == PHYS_SECTION_UNASSIGNED); 2592 2593 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2594 2595 return d; 2596 } 2597 2598 void address_space_dispatch_free(AddressSpaceDispatch *d) 2599 { 2600 phys_sections_free(&d->map); 2601 g_free(d); 2602 } 2603 2604 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2605 { 2606 } 2607 2608 static void tcg_log_global_after_sync(MemoryListener *listener) 2609 { 2610 CPUAddressSpace *cpuas; 2611 2612 /* Wait for the CPU to end the current TB. This avoids the following 2613 * incorrect race: 2614 * 2615 * vCPU migration 2616 * ---------------------- ------------------------- 2617 * TLB check -> slow path 2618 * notdirty_mem_write 2619 * write to RAM 2620 * mark dirty 2621 * clear dirty flag 2622 * TLB check -> fast path 2623 * read memory 2624 * write to RAM 2625 * 2626 * by pushing the migration thread's memory read after the vCPU thread has 2627 * written the memory. 2628 */ 2629 if (replay_mode == REPLAY_MODE_NONE) { 2630 /* 2631 * VGA can make calls to this function while updating the screen. 2632 * In record/replay mode this causes a deadlock, because 2633 * run_on_cpu waits for rr mutex. Therefore no races are possible 2634 * in this case and no need for making run_on_cpu when 2635 * record/replay is not enabled. 2636 */ 2637 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2638 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2639 } 2640 } 2641 2642 static void tcg_commit(MemoryListener *listener) 2643 { 2644 CPUAddressSpace *cpuas; 2645 AddressSpaceDispatch *d; 2646 2647 assert(tcg_enabled()); 2648 /* since each CPU stores ram addresses in its TLB cache, we must 2649 reset the modified entries */ 2650 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2651 cpu_reloading_memory_map(); 2652 /* The CPU and TLB are protected by the iothread lock. 2653 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2654 * may have split the RCU critical section. 2655 */ 2656 d = address_space_to_dispatch(cpuas->as); 2657 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2658 tlb_flush(cpuas->cpu); 2659 } 2660 2661 static void memory_map_init(void) 2662 { 2663 system_memory = g_malloc(sizeof(*system_memory)); 2664 2665 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2666 address_space_init(&address_space_memory, system_memory, "memory"); 2667 2668 system_io = g_malloc(sizeof(*system_io)); 2669 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2670 65536); 2671 address_space_init(&address_space_io, system_io, "I/O"); 2672 } 2673 2674 MemoryRegion *get_system_memory(void) 2675 { 2676 return system_memory; 2677 } 2678 2679 MemoryRegion *get_system_io(void) 2680 { 2681 return system_io; 2682 } 2683 2684 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2685 hwaddr length) 2686 { 2687 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2688 addr += memory_region_get_ram_addr(mr); 2689 2690 /* No early return if dirty_log_mask is or becomes 0, because 2691 * cpu_physical_memory_set_dirty_range will still call 2692 * xen_modified_memory. 2693 */ 2694 if (dirty_log_mask) { 2695 dirty_log_mask = 2696 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2697 } 2698 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2699 assert(tcg_enabled()); 2700 tb_invalidate_phys_range(addr, addr + length); 2701 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2702 } 2703 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2704 } 2705 2706 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2707 { 2708 /* 2709 * In principle this function would work on other memory region types too, 2710 * but the ROM device use case is the only one where this operation is 2711 * necessary. Other memory regions should use the 2712 * address_space_read/write() APIs. 2713 */ 2714 assert(memory_region_is_romd(mr)); 2715 2716 invalidate_and_set_dirty(mr, addr, size); 2717 } 2718 2719 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2720 { 2721 unsigned access_size_max = mr->ops->valid.max_access_size; 2722 2723 /* Regions are assumed to support 1-4 byte accesses unless 2724 otherwise specified. */ 2725 if (access_size_max == 0) { 2726 access_size_max = 4; 2727 } 2728 2729 /* Bound the maximum access by the alignment of the address. */ 2730 if (!mr->ops->impl.unaligned) { 2731 unsigned align_size_max = addr & -addr; 2732 if (align_size_max != 0 && align_size_max < access_size_max) { 2733 access_size_max = align_size_max; 2734 } 2735 } 2736 2737 /* Don't attempt accesses larger than the maximum. */ 2738 if (l > access_size_max) { 2739 l = access_size_max; 2740 } 2741 l = pow2floor(l); 2742 2743 return l; 2744 } 2745 2746 static bool prepare_mmio_access(MemoryRegion *mr) 2747 { 2748 bool release_lock = false; 2749 2750 if (!qemu_mutex_iothread_locked()) { 2751 qemu_mutex_lock_iothread(); 2752 release_lock = true; 2753 } 2754 if (mr->flush_coalesced_mmio) { 2755 qemu_flush_coalesced_mmio_buffer(); 2756 } 2757 2758 return release_lock; 2759 } 2760 2761 /* Called within RCU critical section. */ 2762 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2763 MemTxAttrs attrs, 2764 const void *ptr, 2765 hwaddr len, hwaddr addr1, 2766 hwaddr l, MemoryRegion *mr) 2767 { 2768 uint8_t *ram_ptr; 2769 uint64_t val; 2770 MemTxResult result = MEMTX_OK; 2771 bool release_lock = false; 2772 const uint8_t *buf = ptr; 2773 2774 for (;;) { 2775 if (!memory_access_is_direct(mr, true)) { 2776 release_lock |= prepare_mmio_access(mr); 2777 l = memory_access_size(mr, l, addr1); 2778 /* XXX: could force current_cpu to NULL to avoid 2779 potential bugs */ 2780 val = ldn_he_p(buf, l); 2781 result |= memory_region_dispatch_write(mr, addr1, val, 2782 size_memop(l), attrs); 2783 } else { 2784 /* RAM case */ 2785 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2786 memcpy(ram_ptr, buf, l); 2787 invalidate_and_set_dirty(mr, addr1, l); 2788 } 2789 2790 if (release_lock) { 2791 qemu_mutex_unlock_iothread(); 2792 release_lock = false; 2793 } 2794 2795 len -= l; 2796 buf += l; 2797 addr += l; 2798 2799 if (!len) { 2800 break; 2801 } 2802 2803 l = len; 2804 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2805 } 2806 2807 return result; 2808 } 2809 2810 /* Called from RCU critical section. */ 2811 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2812 const void *buf, hwaddr len) 2813 { 2814 hwaddr l; 2815 hwaddr addr1; 2816 MemoryRegion *mr; 2817 MemTxResult result = MEMTX_OK; 2818 2819 l = len; 2820 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2821 result = flatview_write_continue(fv, addr, attrs, buf, len, 2822 addr1, l, mr); 2823 2824 return result; 2825 } 2826 2827 /* Called within RCU critical section. */ 2828 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2829 MemTxAttrs attrs, void *ptr, 2830 hwaddr len, hwaddr addr1, hwaddr l, 2831 MemoryRegion *mr) 2832 { 2833 uint8_t *ram_ptr; 2834 uint64_t val; 2835 MemTxResult result = MEMTX_OK; 2836 bool release_lock = false; 2837 uint8_t *buf = ptr; 2838 2839 fuzz_dma_read_cb(addr, len, mr); 2840 for (;;) { 2841 if (!memory_access_is_direct(mr, false)) { 2842 /* I/O case */ 2843 release_lock |= prepare_mmio_access(mr); 2844 l = memory_access_size(mr, l, addr1); 2845 result |= memory_region_dispatch_read(mr, addr1, &val, 2846 size_memop(l), attrs); 2847 stn_he_p(buf, l, val); 2848 } else { 2849 /* RAM case */ 2850 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2851 memcpy(buf, ram_ptr, l); 2852 } 2853 2854 if (release_lock) { 2855 qemu_mutex_unlock_iothread(); 2856 release_lock = false; 2857 } 2858 2859 len -= l; 2860 buf += l; 2861 addr += l; 2862 2863 if (!len) { 2864 break; 2865 } 2866 2867 l = len; 2868 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2869 } 2870 2871 return result; 2872 } 2873 2874 /* Called from RCU critical section. */ 2875 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2876 MemTxAttrs attrs, void *buf, hwaddr len) 2877 { 2878 hwaddr l; 2879 hwaddr addr1; 2880 MemoryRegion *mr; 2881 2882 l = len; 2883 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2884 return flatview_read_continue(fv, addr, attrs, buf, len, 2885 addr1, l, mr); 2886 } 2887 2888 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2889 MemTxAttrs attrs, void *buf, hwaddr len) 2890 { 2891 MemTxResult result = MEMTX_OK; 2892 FlatView *fv; 2893 2894 if (len > 0) { 2895 RCU_READ_LOCK_GUARD(); 2896 fv = address_space_to_flatview(as); 2897 result = flatview_read(fv, addr, attrs, buf, len); 2898 } 2899 2900 return result; 2901 } 2902 2903 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2904 MemTxAttrs attrs, 2905 const void *buf, hwaddr len) 2906 { 2907 MemTxResult result = MEMTX_OK; 2908 FlatView *fv; 2909 2910 if (len > 0) { 2911 RCU_READ_LOCK_GUARD(); 2912 fv = address_space_to_flatview(as); 2913 result = flatview_write(fv, addr, attrs, buf, len); 2914 } 2915 2916 return result; 2917 } 2918 2919 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2920 void *buf, hwaddr len, bool is_write) 2921 { 2922 if (is_write) { 2923 return address_space_write(as, addr, attrs, buf, len); 2924 } else { 2925 return address_space_read_full(as, addr, attrs, buf, len); 2926 } 2927 } 2928 2929 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2930 hwaddr len, bool is_write) 2931 { 2932 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2933 buf, len, is_write); 2934 } 2935 2936 enum write_rom_type { 2937 WRITE_DATA, 2938 FLUSH_CACHE, 2939 }; 2940 2941 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2942 hwaddr addr, 2943 MemTxAttrs attrs, 2944 const void *ptr, 2945 hwaddr len, 2946 enum write_rom_type type) 2947 { 2948 hwaddr l; 2949 uint8_t *ram_ptr; 2950 hwaddr addr1; 2951 MemoryRegion *mr; 2952 const uint8_t *buf = ptr; 2953 2954 RCU_READ_LOCK_GUARD(); 2955 while (len > 0) { 2956 l = len; 2957 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2958 2959 if (!(memory_region_is_ram(mr) || 2960 memory_region_is_romd(mr))) { 2961 l = memory_access_size(mr, l, addr1); 2962 } else { 2963 /* ROM/RAM case */ 2964 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2965 switch (type) { 2966 case WRITE_DATA: 2967 memcpy(ram_ptr, buf, l); 2968 invalidate_and_set_dirty(mr, addr1, l); 2969 break; 2970 case FLUSH_CACHE: 2971 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2972 break; 2973 } 2974 } 2975 len -= l; 2976 buf += l; 2977 addr += l; 2978 } 2979 return MEMTX_OK; 2980 } 2981 2982 /* used for ROM loading : can write in RAM and ROM */ 2983 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2984 MemTxAttrs attrs, 2985 const void *buf, hwaddr len) 2986 { 2987 return address_space_write_rom_internal(as, addr, attrs, 2988 buf, len, WRITE_DATA); 2989 } 2990 2991 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2992 { 2993 /* 2994 * This function should do the same thing as an icache flush that was 2995 * triggered from within the guest. For TCG we are always cache coherent, 2996 * so there is no need to flush anything. For KVM / Xen we need to flush 2997 * the host's instruction cache at least. 2998 */ 2999 if (tcg_enabled()) { 3000 return; 3001 } 3002 3003 address_space_write_rom_internal(&address_space_memory, 3004 start, MEMTXATTRS_UNSPECIFIED, 3005 NULL, len, FLUSH_CACHE); 3006 } 3007 3008 typedef struct { 3009 MemoryRegion *mr; 3010 void *buffer; 3011 hwaddr addr; 3012 hwaddr len; 3013 bool in_use; 3014 } BounceBuffer; 3015 3016 static BounceBuffer bounce; 3017 3018 typedef struct MapClient { 3019 QEMUBH *bh; 3020 QLIST_ENTRY(MapClient) link; 3021 } MapClient; 3022 3023 QemuMutex map_client_list_lock; 3024 static QLIST_HEAD(, MapClient) map_client_list 3025 = QLIST_HEAD_INITIALIZER(map_client_list); 3026 3027 static void cpu_unregister_map_client_do(MapClient *client) 3028 { 3029 QLIST_REMOVE(client, link); 3030 g_free(client); 3031 } 3032 3033 static void cpu_notify_map_clients_locked(void) 3034 { 3035 MapClient *client; 3036 3037 while (!QLIST_EMPTY(&map_client_list)) { 3038 client = QLIST_FIRST(&map_client_list); 3039 qemu_bh_schedule(client->bh); 3040 cpu_unregister_map_client_do(client); 3041 } 3042 } 3043 3044 void cpu_register_map_client(QEMUBH *bh) 3045 { 3046 MapClient *client = g_malloc(sizeof(*client)); 3047 3048 qemu_mutex_lock(&map_client_list_lock); 3049 client->bh = bh; 3050 QLIST_INSERT_HEAD(&map_client_list, client, link); 3051 if (!qatomic_read(&bounce.in_use)) { 3052 cpu_notify_map_clients_locked(); 3053 } 3054 qemu_mutex_unlock(&map_client_list_lock); 3055 } 3056 3057 void cpu_exec_init_all(void) 3058 { 3059 qemu_mutex_init(&ram_list.mutex); 3060 /* The data structures we set up here depend on knowing the page size, 3061 * so no more changes can be made after this point. 3062 * In an ideal world, nothing we did before we had finished the 3063 * machine setup would care about the target page size, and we could 3064 * do this much later, rather than requiring board models to state 3065 * up front what their requirements are. 3066 */ 3067 finalize_target_page_bits(); 3068 io_mem_init(); 3069 memory_map_init(); 3070 qemu_mutex_init(&map_client_list_lock); 3071 } 3072 3073 void cpu_unregister_map_client(QEMUBH *bh) 3074 { 3075 MapClient *client; 3076 3077 qemu_mutex_lock(&map_client_list_lock); 3078 QLIST_FOREACH(client, &map_client_list, link) { 3079 if (client->bh == bh) { 3080 cpu_unregister_map_client_do(client); 3081 break; 3082 } 3083 } 3084 qemu_mutex_unlock(&map_client_list_lock); 3085 } 3086 3087 static void cpu_notify_map_clients(void) 3088 { 3089 qemu_mutex_lock(&map_client_list_lock); 3090 cpu_notify_map_clients_locked(); 3091 qemu_mutex_unlock(&map_client_list_lock); 3092 } 3093 3094 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3095 bool is_write, MemTxAttrs attrs) 3096 { 3097 MemoryRegion *mr; 3098 hwaddr l, xlat; 3099 3100 while (len > 0) { 3101 l = len; 3102 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3103 if (!memory_access_is_direct(mr, is_write)) { 3104 l = memory_access_size(mr, l, addr); 3105 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3106 return false; 3107 } 3108 } 3109 3110 len -= l; 3111 addr += l; 3112 } 3113 return true; 3114 } 3115 3116 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3117 hwaddr len, bool is_write, 3118 MemTxAttrs attrs) 3119 { 3120 FlatView *fv; 3121 bool result; 3122 3123 RCU_READ_LOCK_GUARD(); 3124 fv = address_space_to_flatview(as); 3125 result = flatview_access_valid(fv, addr, len, is_write, attrs); 3126 return result; 3127 } 3128 3129 static hwaddr 3130 flatview_extend_translation(FlatView *fv, hwaddr addr, 3131 hwaddr target_len, 3132 MemoryRegion *mr, hwaddr base, hwaddr len, 3133 bool is_write, MemTxAttrs attrs) 3134 { 3135 hwaddr done = 0; 3136 hwaddr xlat; 3137 MemoryRegion *this_mr; 3138 3139 for (;;) { 3140 target_len -= len; 3141 addr += len; 3142 done += len; 3143 if (target_len == 0) { 3144 return done; 3145 } 3146 3147 len = target_len; 3148 this_mr = flatview_translate(fv, addr, &xlat, 3149 &len, is_write, attrs); 3150 if (this_mr != mr || xlat != base + done) { 3151 return done; 3152 } 3153 } 3154 } 3155 3156 /* Map a physical memory region into a host virtual address. 3157 * May map a subset of the requested range, given by and returned in *plen. 3158 * May return NULL if resources needed to perform the mapping are exhausted. 3159 * Use only for reads OR writes - not for read-modify-write operations. 3160 * Use cpu_register_map_client() to know when retrying the map operation is 3161 * likely to succeed. 3162 */ 3163 void *address_space_map(AddressSpace *as, 3164 hwaddr addr, 3165 hwaddr *plen, 3166 bool is_write, 3167 MemTxAttrs attrs) 3168 { 3169 hwaddr len = *plen; 3170 hwaddr l, xlat; 3171 MemoryRegion *mr; 3172 void *ptr; 3173 FlatView *fv; 3174 3175 if (len == 0) { 3176 return NULL; 3177 } 3178 3179 l = len; 3180 RCU_READ_LOCK_GUARD(); 3181 fv = address_space_to_flatview(as); 3182 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3183 3184 if (!memory_access_is_direct(mr, is_write)) { 3185 if (qatomic_xchg(&bounce.in_use, true)) { 3186 *plen = 0; 3187 return NULL; 3188 } 3189 /* Avoid unbounded allocations */ 3190 l = MIN(l, TARGET_PAGE_SIZE); 3191 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3192 bounce.addr = addr; 3193 bounce.len = l; 3194 3195 memory_region_ref(mr); 3196 bounce.mr = mr; 3197 if (!is_write) { 3198 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3199 bounce.buffer, l); 3200 } 3201 3202 *plen = l; 3203 return bounce.buffer; 3204 } 3205 3206 3207 memory_region_ref(mr); 3208 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3209 l, is_write, attrs); 3210 fuzz_dma_read_cb(addr, *plen, mr); 3211 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3212 3213 return ptr; 3214 } 3215 3216 /* Unmaps a memory region previously mapped by address_space_map(). 3217 * Will also mark the memory as dirty if is_write is true. access_len gives 3218 * the amount of memory that was actually read or written by the caller. 3219 */ 3220 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3221 bool is_write, hwaddr access_len) 3222 { 3223 if (buffer != bounce.buffer) { 3224 MemoryRegion *mr; 3225 ram_addr_t addr1; 3226 3227 mr = memory_region_from_host(buffer, &addr1); 3228 assert(mr != NULL); 3229 if (is_write) { 3230 invalidate_and_set_dirty(mr, addr1, access_len); 3231 } 3232 if (xen_enabled()) { 3233 xen_invalidate_map_cache_entry(buffer); 3234 } 3235 memory_region_unref(mr); 3236 return; 3237 } 3238 if (is_write) { 3239 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3240 bounce.buffer, access_len); 3241 } 3242 qemu_vfree(bounce.buffer); 3243 bounce.buffer = NULL; 3244 memory_region_unref(bounce.mr); 3245 qatomic_mb_set(&bounce.in_use, false); 3246 cpu_notify_map_clients(); 3247 } 3248 3249 void *cpu_physical_memory_map(hwaddr addr, 3250 hwaddr *plen, 3251 bool is_write) 3252 { 3253 return address_space_map(&address_space_memory, addr, plen, is_write, 3254 MEMTXATTRS_UNSPECIFIED); 3255 } 3256 3257 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3258 bool is_write, hwaddr access_len) 3259 { 3260 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3261 } 3262 3263 #define ARG1_DECL AddressSpace *as 3264 #define ARG1 as 3265 #define SUFFIX 3266 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3267 #define RCU_READ_LOCK(...) rcu_read_lock() 3268 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3269 #include "memory_ldst.c.inc" 3270 3271 int64_t address_space_cache_init(MemoryRegionCache *cache, 3272 AddressSpace *as, 3273 hwaddr addr, 3274 hwaddr len, 3275 bool is_write) 3276 { 3277 AddressSpaceDispatch *d; 3278 hwaddr l; 3279 MemoryRegion *mr; 3280 Int128 diff; 3281 3282 assert(len > 0); 3283 3284 l = len; 3285 cache->fv = address_space_get_flatview(as); 3286 d = flatview_to_dispatch(cache->fv); 3287 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3288 3289 /* 3290 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3291 * Take that into account to compute how many bytes are there between 3292 * cache->xlat and the end of the section. 3293 */ 3294 diff = int128_sub(cache->mrs.size, 3295 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3296 l = int128_get64(int128_min(diff, int128_make64(l))); 3297 3298 mr = cache->mrs.mr; 3299 memory_region_ref(mr); 3300 if (memory_access_is_direct(mr, is_write)) { 3301 /* We don't care about the memory attributes here as we're only 3302 * doing this if we found actual RAM, which behaves the same 3303 * regardless of attributes; so UNSPECIFIED is fine. 3304 */ 3305 l = flatview_extend_translation(cache->fv, addr, len, mr, 3306 cache->xlat, l, is_write, 3307 MEMTXATTRS_UNSPECIFIED); 3308 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3309 } else { 3310 cache->ptr = NULL; 3311 } 3312 3313 cache->len = l; 3314 cache->is_write = is_write; 3315 return l; 3316 } 3317 3318 void address_space_cache_invalidate(MemoryRegionCache *cache, 3319 hwaddr addr, 3320 hwaddr access_len) 3321 { 3322 assert(cache->is_write); 3323 if (likely(cache->ptr)) { 3324 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3325 } 3326 } 3327 3328 void address_space_cache_destroy(MemoryRegionCache *cache) 3329 { 3330 if (!cache->mrs.mr) { 3331 return; 3332 } 3333 3334 if (xen_enabled()) { 3335 xen_invalidate_map_cache_entry(cache->ptr); 3336 } 3337 memory_region_unref(cache->mrs.mr); 3338 flatview_unref(cache->fv); 3339 cache->mrs.mr = NULL; 3340 cache->fv = NULL; 3341 } 3342 3343 /* Called from RCU critical section. This function has the same 3344 * semantics as address_space_translate, but it only works on a 3345 * predefined range of a MemoryRegion that was mapped with 3346 * address_space_cache_init. 3347 */ 3348 static inline MemoryRegion *address_space_translate_cached( 3349 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3350 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3351 { 3352 MemoryRegionSection section; 3353 MemoryRegion *mr; 3354 IOMMUMemoryRegion *iommu_mr; 3355 AddressSpace *target_as; 3356 3357 assert(!cache->ptr); 3358 *xlat = addr + cache->xlat; 3359 3360 mr = cache->mrs.mr; 3361 iommu_mr = memory_region_get_iommu(mr); 3362 if (!iommu_mr) { 3363 /* MMIO region. */ 3364 return mr; 3365 } 3366 3367 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3368 NULL, is_write, true, 3369 &target_as, attrs); 3370 return section.mr; 3371 } 3372 3373 /* Called from RCU critical section. address_space_read_cached uses this 3374 * out of line function when the target is an MMIO or IOMMU region. 3375 */ 3376 MemTxResult 3377 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3378 void *buf, hwaddr len) 3379 { 3380 hwaddr addr1, l; 3381 MemoryRegion *mr; 3382 3383 l = len; 3384 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3385 MEMTXATTRS_UNSPECIFIED); 3386 return flatview_read_continue(cache->fv, 3387 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3388 addr1, l, mr); 3389 } 3390 3391 /* Called from RCU critical section. address_space_write_cached uses this 3392 * out of line function when the target is an MMIO or IOMMU region. 3393 */ 3394 MemTxResult 3395 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3396 const void *buf, hwaddr len) 3397 { 3398 hwaddr addr1, l; 3399 MemoryRegion *mr; 3400 3401 l = len; 3402 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3403 MEMTXATTRS_UNSPECIFIED); 3404 return flatview_write_continue(cache->fv, 3405 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3406 addr1, l, mr); 3407 } 3408 3409 #define ARG1_DECL MemoryRegionCache *cache 3410 #define ARG1 cache 3411 #define SUFFIX _cached_slow 3412 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3413 #define RCU_READ_LOCK() ((void)0) 3414 #define RCU_READ_UNLOCK() ((void)0) 3415 #include "memory_ldst.c.inc" 3416 3417 /* virtual memory access for debug (includes writing to ROM) */ 3418 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, 3419 void *ptr, target_ulong len, bool is_write) 3420 { 3421 hwaddr phys_addr; 3422 target_ulong l, page; 3423 uint8_t *buf = ptr; 3424 3425 cpu_synchronize_state(cpu); 3426 while (len > 0) { 3427 int asidx; 3428 MemTxAttrs attrs; 3429 MemTxResult res; 3430 3431 page = addr & TARGET_PAGE_MASK; 3432 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3433 asidx = cpu_asidx_from_attrs(cpu, attrs); 3434 /* if no physical page mapped, return an error */ 3435 if (phys_addr == -1) 3436 return -1; 3437 l = (page + TARGET_PAGE_SIZE) - addr; 3438 if (l > len) 3439 l = len; 3440 phys_addr += (addr & ~TARGET_PAGE_MASK); 3441 if (is_write) { 3442 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3443 attrs, buf, l); 3444 } else { 3445 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3446 attrs, buf, l); 3447 } 3448 if (res != MEMTX_OK) { 3449 return -1; 3450 } 3451 len -= l; 3452 buf += l; 3453 addr += l; 3454 } 3455 return 0; 3456 } 3457 3458 /* 3459 * Allows code that needs to deal with migration bitmaps etc to still be built 3460 * target independent. 3461 */ 3462 size_t qemu_target_page_size(void) 3463 { 3464 return TARGET_PAGE_SIZE; 3465 } 3466 3467 int qemu_target_page_bits(void) 3468 { 3469 return TARGET_PAGE_BITS; 3470 } 3471 3472 int qemu_target_page_bits_min(void) 3473 { 3474 return TARGET_PAGE_BITS_MIN; 3475 } 3476 3477 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3478 { 3479 MemoryRegion*mr; 3480 hwaddr l = 1; 3481 bool res; 3482 3483 RCU_READ_LOCK_GUARD(); 3484 mr = address_space_translate(&address_space_memory, 3485 phys_addr, &phys_addr, &l, false, 3486 MEMTXATTRS_UNSPECIFIED); 3487 3488 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3489 return res; 3490 } 3491 3492 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3493 { 3494 RAMBlock *block; 3495 int ret = 0; 3496 3497 RCU_READ_LOCK_GUARD(); 3498 RAMBLOCK_FOREACH(block) { 3499 ret = func(block, opaque); 3500 if (ret) { 3501 break; 3502 } 3503 } 3504 return ret; 3505 } 3506 3507 /* 3508 * Unmap pages of memory from start to start+length such that 3509 * they a) read as 0, b) Trigger whatever fault mechanism 3510 * the OS provides for postcopy. 3511 * The pages must be unmapped by the end of the function. 3512 * Returns: 0 on success, none-0 on failure 3513 * 3514 */ 3515 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3516 { 3517 int ret = -1; 3518 3519 uint8_t *host_startaddr = rb->host + start; 3520 3521 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3522 error_report("ram_block_discard_range: Unaligned start address: %p", 3523 host_startaddr); 3524 goto err; 3525 } 3526 3527 if ((start + length) <= rb->max_length) { 3528 bool need_madvise, need_fallocate; 3529 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3530 error_report("ram_block_discard_range: Unaligned length: %zx", 3531 length); 3532 goto err; 3533 } 3534 3535 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3536 3537 /* The logic here is messy; 3538 * madvise DONTNEED fails for hugepages 3539 * fallocate works on hugepages and shmem 3540 * shared anonymous memory requires madvise REMOVE 3541 */ 3542 need_madvise = (rb->page_size == qemu_host_page_size); 3543 need_fallocate = rb->fd != -1; 3544 if (need_fallocate) { 3545 /* For a file, this causes the area of the file to be zero'd 3546 * if read, and for hugetlbfs also causes it to be unmapped 3547 * so a userfault will trigger. 3548 */ 3549 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3550 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3551 start, length); 3552 if (ret) { 3553 ret = -errno; 3554 error_report("ram_block_discard_range: Failed to fallocate " 3555 "%s:%" PRIx64 " +%zx (%d)", 3556 rb->idstr, start, length, ret); 3557 goto err; 3558 } 3559 #else 3560 ret = -ENOSYS; 3561 error_report("ram_block_discard_range: fallocate not available/file" 3562 "%s:%" PRIx64 " +%zx (%d)", 3563 rb->idstr, start, length, ret); 3564 goto err; 3565 #endif 3566 } 3567 if (need_madvise) { 3568 /* For normal RAM this causes it to be unmapped, 3569 * for shared memory it causes the local mapping to disappear 3570 * and to fall back on the file contents (which we just 3571 * fallocate'd away). 3572 */ 3573 #if defined(CONFIG_MADVISE) 3574 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3575 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3576 } else { 3577 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3578 } 3579 if (ret) { 3580 ret = -errno; 3581 error_report("ram_block_discard_range: Failed to discard range " 3582 "%s:%" PRIx64 " +%zx (%d)", 3583 rb->idstr, start, length, ret); 3584 goto err; 3585 } 3586 #else 3587 ret = -ENOSYS; 3588 error_report("ram_block_discard_range: MADVISE not available" 3589 "%s:%" PRIx64 " +%zx (%d)", 3590 rb->idstr, start, length, ret); 3591 goto err; 3592 #endif 3593 } 3594 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3595 need_madvise, need_fallocate, ret); 3596 } else { 3597 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3598 "/%zx/" RAM_ADDR_FMT")", 3599 rb->idstr, start, length, rb->max_length); 3600 } 3601 3602 err: 3603 return ret; 3604 } 3605 3606 bool ramblock_is_pmem(RAMBlock *rb) 3607 { 3608 return rb->flags & RAM_PMEM; 3609 } 3610 3611 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3612 { 3613 if (start == end - 1) { 3614 qemu_printf("\t%3d ", start); 3615 } else { 3616 qemu_printf("\t%3d..%-3d ", start, end - 1); 3617 } 3618 qemu_printf(" skip=%d ", skip); 3619 if (ptr == PHYS_MAP_NODE_NIL) { 3620 qemu_printf(" ptr=NIL"); 3621 } else if (!skip) { 3622 qemu_printf(" ptr=#%d", ptr); 3623 } else { 3624 qemu_printf(" ptr=[%d]", ptr); 3625 } 3626 qemu_printf("\n"); 3627 } 3628 3629 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3630 int128_sub((size), int128_one())) : 0) 3631 3632 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3633 { 3634 int i; 3635 3636 qemu_printf(" Dispatch\n"); 3637 qemu_printf(" Physical sections\n"); 3638 3639 for (i = 0; i < d->map.sections_nb; ++i) { 3640 MemoryRegionSection *s = d->map.sections + i; 3641 const char *names[] = { " [unassigned]", " [not dirty]", 3642 " [ROM]", " [watch]" }; 3643 3644 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx 3645 " %s%s%s%s%s", 3646 i, 3647 s->offset_within_address_space, 3648 s->offset_within_address_space + MR_SIZE(s->mr->size), 3649 s->mr->name ? s->mr->name : "(noname)", 3650 i < ARRAY_SIZE(names) ? names[i] : "", 3651 s->mr == root ? " [ROOT]" : "", 3652 s == d->mru_section ? " [MRU]" : "", 3653 s->mr->is_iommu ? " [iommu]" : ""); 3654 3655 if (s->mr->alias) { 3656 qemu_printf(" alias=%s", s->mr->alias->name ? 3657 s->mr->alias->name : "noname"); 3658 } 3659 qemu_printf("\n"); 3660 } 3661 3662 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3663 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3664 for (i = 0; i < d->map.nodes_nb; ++i) { 3665 int j, jprev; 3666 PhysPageEntry prev; 3667 Node *n = d->map.nodes + i; 3668 3669 qemu_printf(" [%d]\n", i); 3670 3671 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3672 PhysPageEntry *pe = *n + j; 3673 3674 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3675 continue; 3676 } 3677 3678 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3679 3680 jprev = j; 3681 prev = *pe; 3682 } 3683 3684 if (jprev != ARRAY_SIZE(*n)) { 3685 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3686 } 3687 } 3688 } 3689 3690 /* Require any discards to work. */ 3691 static unsigned int ram_block_discard_required_cnt; 3692 /* Require only coordinated discards to work. */ 3693 static unsigned int ram_block_coordinated_discard_required_cnt; 3694 /* Disable any discards. */ 3695 static unsigned int ram_block_discard_disabled_cnt; 3696 /* Disable only uncoordinated discards. */ 3697 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3698 static QemuMutex ram_block_discard_disable_mutex; 3699 3700 static void ram_block_discard_disable_mutex_lock(void) 3701 { 3702 static gsize initialized; 3703 3704 if (g_once_init_enter(&initialized)) { 3705 qemu_mutex_init(&ram_block_discard_disable_mutex); 3706 g_once_init_leave(&initialized, 1); 3707 } 3708 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3709 } 3710 3711 static void ram_block_discard_disable_mutex_unlock(void) 3712 { 3713 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3714 } 3715 3716 int ram_block_discard_disable(bool state) 3717 { 3718 int ret = 0; 3719 3720 ram_block_discard_disable_mutex_lock(); 3721 if (!state) { 3722 ram_block_discard_disabled_cnt--; 3723 } else if (ram_block_discard_required_cnt || 3724 ram_block_coordinated_discard_required_cnt) { 3725 ret = -EBUSY; 3726 } else { 3727 ram_block_discard_disabled_cnt++; 3728 } 3729 ram_block_discard_disable_mutex_unlock(); 3730 return ret; 3731 } 3732 3733 int ram_block_uncoordinated_discard_disable(bool state) 3734 { 3735 int ret = 0; 3736 3737 ram_block_discard_disable_mutex_lock(); 3738 if (!state) { 3739 ram_block_uncoordinated_discard_disabled_cnt--; 3740 } else if (ram_block_discard_required_cnt) { 3741 ret = -EBUSY; 3742 } else { 3743 ram_block_uncoordinated_discard_disabled_cnt++; 3744 } 3745 ram_block_discard_disable_mutex_unlock(); 3746 return ret; 3747 } 3748 3749 int ram_block_discard_require(bool state) 3750 { 3751 int ret = 0; 3752 3753 ram_block_discard_disable_mutex_lock(); 3754 if (!state) { 3755 ram_block_discard_required_cnt--; 3756 } else if (ram_block_discard_disabled_cnt || 3757 ram_block_uncoordinated_discard_disabled_cnt) { 3758 ret = -EBUSY; 3759 } else { 3760 ram_block_discard_required_cnt++; 3761 } 3762 ram_block_discard_disable_mutex_unlock(); 3763 return ret; 3764 } 3765 3766 int ram_block_coordinated_discard_require(bool state) 3767 { 3768 int ret = 0; 3769 3770 ram_block_discard_disable_mutex_lock(); 3771 if (!state) { 3772 ram_block_coordinated_discard_required_cnt--; 3773 } else if (ram_block_discard_disabled_cnt) { 3774 ret = -EBUSY; 3775 } else { 3776 ram_block_coordinated_discard_required_cnt++; 3777 } 3778 ram_block_discard_disable_mutex_unlock(); 3779 return ret; 3780 } 3781 3782 bool ram_block_discard_is_disabled(void) 3783 { 3784 return qatomic_read(&ram_block_discard_disabled_cnt) || 3785 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3786 } 3787 3788 bool ram_block_discard_is_required(void) 3789 { 3790 return qatomic_read(&ram_block_discard_required_cnt) || 3791 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3792 } 3793