xref: /qemu/system/physmem.c (revision 4d6b23f7e2b7a34a6ab3b7c40693d8b1a0dee0b5)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684 
685     for (;;) {
686         section = address_space_translate_internal(d, addr, &addr, plen, false);
687 
688         iommu_mr = memory_region_get_iommu(section->mr);
689         if (!iommu_mr) {
690             break;
691         }
692 
693         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694 
695         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698          * doesn't short-cut its translation table walk.
699          */
700         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702                 | (addr & iotlb.addr_mask));
703         /* Update the caller's prot bits to remove permissions the IOMMU
704          * is giving us a failure response for. If we get down to no
705          * permissions left at all we can give up now.
706          */
707         if (!(iotlb.perm & IOMMU_RO)) {
708             *prot &= ~(PAGE_READ | PAGE_EXEC);
709         }
710         if (!(iotlb.perm & IOMMU_WO)) {
711             *prot &= ~PAGE_WRITE;
712         }
713 
714         if (!*prot) {
715             goto translate_fail;
716         }
717 
718         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719     }
720 
721     assert(!memory_region_is_iommu(section->mr));
722     *xlat = addr;
723     return section;
724 
725 translate_fail:
726     /*
727      * We should be given a page-aligned address -- certainly
728      * tlb_set_page_with_attrs() does so.  The page offset of xlat
729      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730      * The page portion of xlat will be logged by memory_region_access_valid()
731      * when this memory access is rejected, so use the original untranslated
732      * physical address.
733      */
734     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735     *xlat = orig_addr;
736     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738 
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740                             const char *prefix, MemoryRegion *mr)
741 {
742     CPUAddressSpace *newas;
743     AddressSpace *as = g_new0(AddressSpace, 1);
744     char *as_name;
745 
746     assert(mr);
747     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748     address_space_init(as, mr, as_name);
749     g_free(as_name);
750 
751     /* Target code should have set num_ases before calling us */
752     assert(asidx < cpu->num_ases);
753 
754     if (asidx == 0) {
755         /* address space 0 gets the convenience alias */
756         cpu->as = as;
757     }
758 
759     /* KVM cannot currently support multiple address spaces. */
760     assert(asidx == 0 || !kvm_enabled());
761 
762     if (!cpu->cpu_ases) {
763         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764     }
765 
766     newas = &cpu->cpu_ases[asidx];
767     newas->cpu = cpu;
768     newas->as = as;
769     if (tcg_enabled()) {
770         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771         newas->tcg_as_listener.commit = tcg_commit;
772         newas->tcg_as_listener.name = "tcg";
773         memory_listener_register(&newas->tcg_as_listener, as);
774     }
775 }
776 
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779     /* Return the AddressSpace corresponding to the specified index */
780     return cpu->cpu_ases[asidx].as;
781 }
782 
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786     RAMBlock *block;
787 
788     block = qatomic_rcu_read(&ram_list.mru_block);
789     if (block && addr - block->offset < block->max_length) {
790         return block;
791     }
792     RAMBLOCK_FOREACH(block) {
793         if (addr - block->offset < block->max_length) {
794             goto found;
795         }
796     }
797 
798     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799     abort();
800 
801 found:
802     /* It is safe to write mru_block outside the iothread lock.  This
803      * is what happens:
804      *
805      *     mru_block = xxx
806      *     rcu_read_unlock()
807      *                                        xxx removed from list
808      *                  rcu_read_lock()
809      *                  read mru_block
810      *                                        mru_block = NULL;
811      *                                        call_rcu(reclaim_ramblock, xxx);
812      *                  rcu_read_unlock()
813      *
814      * qatomic_rcu_set is not needed here.  The block was already published
815      * when it was placed into the list.  Here we're just making an extra
816      * copy of the pointer.
817      */
818     ram_list.mru_block = block;
819     return block;
820 }
821 
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824     CPUState *cpu;
825     ram_addr_t start1;
826     RAMBlock *block;
827     ram_addr_t end;
828 
829     assert(tcg_enabled());
830     end = TARGET_PAGE_ALIGN(start + length);
831     start &= TARGET_PAGE_MASK;
832 
833     RCU_READ_LOCK_GUARD();
834     block = qemu_get_ram_block(start);
835     assert(block == qemu_get_ram_block(end - 1));
836     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837     CPU_FOREACH(cpu) {
838         tlb_reset_dirty(cpu, start1, length);
839     }
840 }
841 
842 /* Note: start and end must be within the same ram block.  */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844                                               ram_addr_t length,
845                                               unsigned client)
846 {
847     DirtyMemoryBlocks *blocks;
848     unsigned long end, page, start_page;
849     bool dirty = false;
850     RAMBlock *ramblock;
851     uint64_t mr_offset, mr_size;
852 
853     if (length == 0) {
854         return false;
855     }
856 
857     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858     start_page = start >> TARGET_PAGE_BITS;
859     page = start_page;
860 
861     WITH_RCU_READ_LOCK_GUARD() {
862         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863         ramblock = qemu_get_ram_block(start);
864         /* Range sanity check on the ramblock */
865         assert(start >= ramblock->offset &&
866                start + length <= ramblock->offset + ramblock->used_length);
867 
868         while (page < end) {
869             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871             unsigned long num = MIN(end - page,
872                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
873 
874             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875                                                   offset, num);
876             page += num;
877         }
878 
879         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880         mr_size = (end - start_page) << TARGET_PAGE_BITS;
881         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882     }
883 
884     if (dirty && tcg_enabled()) {
885         tlb_reset_dirty_range_all(start, length);
886     }
887 
888     return dirty;
889 }
890 
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894     DirtyMemoryBlocks *blocks;
895     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
899     DirtyBitmapSnapshot *snap;
900     unsigned long page, end, dest;
901 
902     snap = g_malloc0(sizeof(*snap) +
903                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
904     snap->start = first;
905     snap->end   = last;
906 
907     page = first >> TARGET_PAGE_BITS;
908     end  = last  >> TARGET_PAGE_BITS;
909     dest = 0;
910 
911     WITH_RCU_READ_LOCK_GUARD() {
912         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913 
914         while (page < end) {
915             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
917             unsigned long num = MIN(end - page,
918                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
919 
920             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
921             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
922             offset >>= BITS_PER_LEVEL;
923 
924             bitmap_copy_and_clear_atomic(snap->dirty + dest,
925                                          blocks->blocks[idx] + offset,
926                                          num);
927             page += num;
928             dest += num >> BITS_PER_LEVEL;
929         }
930     }
931 
932     if (tcg_enabled()) {
933         tlb_reset_dirty_range_all(start, length);
934     }
935 
936     memory_region_clear_dirty_bitmap(mr, offset, length);
937 
938     return snap;
939 }
940 
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942                                             ram_addr_t start,
943                                             ram_addr_t length)
944 {
945     unsigned long page, end;
946 
947     assert(start >= snap->start);
948     assert(start + length <= snap->end);
949 
950     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951     page = (start - snap->start) >> TARGET_PAGE_BITS;
952 
953     while (page < end) {
954         if (test_bit(page, snap->dirty)) {
955             return true;
956         }
957         page++;
958     }
959     return false;
960 }
961 
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964                                        MemoryRegionSection *section)
965 {
966     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967     return section - d->map.sections;
968 }
969 
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971                             uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973 
974 static uint16_t phys_section_add(PhysPageMap *map,
975                                  MemoryRegionSection *section)
976 {
977     /* The physical section number is ORed with a page-aligned
978      * pointer to produce the iotlb entries.  Thus it should
979      * never overflow into the page-aligned value.
980      */
981     assert(map->sections_nb < TARGET_PAGE_SIZE);
982 
983     if (map->sections_nb == map->sections_nb_alloc) {
984         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985         map->sections = g_renew(MemoryRegionSection, map->sections,
986                                 map->sections_nb_alloc);
987     }
988     map->sections[map->sections_nb] = *section;
989     memory_region_ref(section->mr);
990     return map->sections_nb++;
991 }
992 
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995     bool have_sub_page = mr->subpage;
996 
997     memory_region_unref(mr);
998 
999     if (have_sub_page) {
1000         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001         object_unref(OBJECT(&subpage->iomem));
1002         g_free(subpage);
1003     }
1004 }
1005 
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008     while (map->sections_nb > 0) {
1009         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010         phys_section_destroy(section->mr);
1011     }
1012     g_free(map->sections);
1013     g_free(map->nodes);
1014 }
1015 
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019     subpage_t *subpage;
1020     hwaddr base = section->offset_within_address_space
1021         & TARGET_PAGE_MASK;
1022     MemoryRegionSection *existing = phys_page_find(d, base);
1023     MemoryRegionSection subsection = {
1024         .offset_within_address_space = base,
1025         .size = int128_make64(TARGET_PAGE_SIZE),
1026     };
1027     hwaddr start, end;
1028 
1029     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030 
1031     if (!(existing->mr->subpage)) {
1032         subpage = subpage_init(fv, base);
1033         subsection.fv = fv;
1034         subsection.mr = &subpage->iomem;
1035         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036                       phys_section_add(&d->map, &subsection));
1037     } else {
1038         subpage = container_of(existing->mr, subpage_t, iomem);
1039     }
1040     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041     end = start + int128_get64(section->size) - 1;
1042     subpage_register(subpage, start, end,
1043                      phys_section_add(&d->map, section));
1044 }
1045 
1046 
1047 static void register_multipage(FlatView *fv,
1048                                MemoryRegionSection *section)
1049 {
1050     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051     hwaddr start_addr = section->offset_within_address_space;
1052     uint16_t section_index = phys_section_add(&d->map, section);
1053     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054                                                     TARGET_PAGE_BITS));
1055 
1056     assert(num_pages);
1057     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059 
1060 /*
1061  * The range in *section* may look like this:
1062  *
1063  *      |s|PPPPPPP|s|
1064  *
1065  * where s stands for subpage and P for page.
1066  */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069     MemoryRegionSection remain = *section;
1070     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071 
1072     /* register first subpage */
1073     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075                         - remain.offset_within_address_space;
1076 
1077         MemoryRegionSection now = remain;
1078         now.size = int128_min(int128_make64(left), now.size);
1079         register_subpage(fv, &now);
1080         if (int128_eq(remain.size, now.size)) {
1081             return;
1082         }
1083         remain.size = int128_sub(remain.size, now.size);
1084         remain.offset_within_address_space += int128_get64(now.size);
1085         remain.offset_within_region += int128_get64(now.size);
1086     }
1087 
1088     /* register whole pages */
1089     if (int128_ge(remain.size, page_size)) {
1090         MemoryRegionSection now = remain;
1091         now.size = int128_and(now.size, int128_neg(page_size));
1092         register_multipage(fv, &now);
1093         if (int128_eq(remain.size, now.size)) {
1094             return;
1095         }
1096         remain.size = int128_sub(remain.size, now.size);
1097         remain.offset_within_address_space += int128_get64(now.size);
1098         remain.offset_within_region += int128_get64(now.size);
1099     }
1100 
1101     /* register last subpage */
1102     register_subpage(fv, &remain);
1103 }
1104 
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107     if (kvm_enabled())
1108         kvm_flush_coalesced_mmio_buffer();
1109 }
1110 
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113     qemu_mutex_lock(&ram_list.mutex);
1114 }
1115 
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118     qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120 
1121 GString *ram_block_format(void)
1122 {
1123     RAMBlock *block;
1124     char *psize;
1125     GString *buf = g_string_new("");
1126 
1127     RCU_READ_LOCK_GUARD();
1128     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1129                            "Block Name", "PSize", "Offset", "Used", "Total",
1130                            "HVA", "RO");
1131 
1132     RAMBLOCK_FOREACH(block) {
1133         psize = size_to_str(block->page_size);
1134         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1135                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136                                block->idstr, psize,
1137                                (uint64_t)block->offset,
1138                                (uint64_t)block->used_length,
1139                                (uint64_t)block->max_length,
1140                                (uint64_t)(uintptr_t)block->host,
1141                                block->mr->readonly ? "ro" : "rw");
1142 
1143         g_free(psize);
1144     }
1145 
1146     return buf;
1147 }
1148 
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151     long *hpsize_min = opaque;
1152 
1153     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155         long hpsize = host_memory_backend_pagesize(backend);
1156 
1157         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158             *hpsize_min = hpsize;
1159         }
1160     }
1161 
1162     return 0;
1163 }
1164 
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167     long *hpsize_max = opaque;
1168 
1169     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171         long hpsize = host_memory_backend_pagesize(backend);
1172 
1173         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174             *hpsize_max = hpsize;
1175         }
1176     }
1177 
1178     return 0;
1179 }
1180 
1181 /*
1182  * TODO: We assume right now that all mapped host memory backends are
1183  * used as RAM, however some might be used for different purposes.
1184  */
1185 long qemu_minrampagesize(void)
1186 {
1187     long hpsize = LONG_MAX;
1188     Object *memdev_root = object_resolve_path("/objects", NULL);
1189 
1190     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191     return hpsize;
1192 }
1193 
1194 long qemu_maxrampagesize(void)
1195 {
1196     long pagesize = 0;
1197     Object *memdev_root = object_resolve_path("/objects", NULL);
1198 
1199     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200     return pagesize;
1201 }
1202 
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206     int64_t size;
1207 #if defined(__linux__)
1208     struct stat st;
1209 
1210     if (fstat(fd, &st) < 0) {
1211         return -errno;
1212     }
1213 
1214     /* Special handling for devdax character devices */
1215     if (S_ISCHR(st.st_mode)) {
1216         g_autofree char *subsystem_path = NULL;
1217         g_autofree char *subsystem = NULL;
1218 
1219         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220                                          major(st.st_rdev), minor(st.st_rdev));
1221         subsystem = g_file_read_link(subsystem_path, NULL);
1222 
1223         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224             g_autofree char *size_path = NULL;
1225             g_autofree char *size_str = NULL;
1226 
1227             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228                                     major(st.st_rdev), minor(st.st_rdev));
1229 
1230             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231                 return g_ascii_strtoll(size_str, NULL, 0);
1232             }
1233         }
1234     }
1235 #endif /* defined(__linux__) */
1236 
1237     /* st.st_size may be zero for special files yet lseek(2) works */
1238     size = lseek(fd, 0, SEEK_END);
1239     if (size < 0) {
1240         return -errno;
1241     }
1242     return size;
1243 }
1244 
1245 static int64_t get_file_align(int fd)
1246 {
1247     int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249     struct stat st;
1250 
1251     if (fstat(fd, &st) < 0) {
1252         return -errno;
1253     }
1254 
1255     /* Special handling for devdax character devices */
1256     if (S_ISCHR(st.st_mode)) {
1257         g_autofree char *path = NULL;
1258         g_autofree char *rpath = NULL;
1259         struct daxctl_ctx *ctx;
1260         struct daxctl_region *region;
1261         int rc = 0;
1262 
1263         path = g_strdup_printf("/sys/dev/char/%d:%d",
1264                     major(st.st_rdev), minor(st.st_rdev));
1265         rpath = realpath(path, NULL);
1266         if (!rpath) {
1267             return -errno;
1268         }
1269 
1270         rc = daxctl_new(&ctx);
1271         if (rc) {
1272             return -1;
1273         }
1274 
1275         daxctl_region_foreach(ctx, region) {
1276             if (strstr(rpath, daxctl_region_get_path(region))) {
1277                 align = daxctl_region_get_align(region);
1278                 break;
1279             }
1280         }
1281         daxctl_unref(ctx);
1282     }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284 
1285     return align;
1286 }
1287 
1288 static int file_ram_open(const char *path,
1289                          const char *region_name,
1290                          bool readonly,
1291                          bool *created)
1292 {
1293     char *filename;
1294     char *sanitized_name;
1295     char *c;
1296     int fd = -1;
1297 
1298     *created = false;
1299     for (;;) {
1300         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301         if (fd >= 0) {
1302             /* @path names an existing file, use it */
1303             break;
1304         }
1305         if (errno == ENOENT) {
1306             if (readonly) {
1307                 /* Refuse to create new, readonly files. */
1308                 return -ENOENT;
1309             }
1310             /* @path names a file that doesn't exist, create it */
1311             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1312             if (fd >= 0) {
1313                 *created = true;
1314                 break;
1315             }
1316         } else if (errno == EISDIR) {
1317             /* @path names a directory, create a file there */
1318             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1319             sanitized_name = g_strdup(region_name);
1320             for (c = sanitized_name; *c != '\0'; c++) {
1321                 if (*c == '/') {
1322                     *c = '_';
1323                 }
1324             }
1325 
1326             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1327                                        sanitized_name);
1328             g_free(sanitized_name);
1329 
1330             fd = mkstemp(filename);
1331             if (fd >= 0) {
1332                 unlink(filename);
1333                 g_free(filename);
1334                 break;
1335             }
1336             g_free(filename);
1337         }
1338         if (errno != EEXIST && errno != EINTR) {
1339             return -errno;
1340         }
1341         /*
1342          * Try again on EINTR and EEXIST.  The latter happens when
1343          * something else creates the file between our two open().
1344          */
1345     }
1346 
1347     return fd;
1348 }
1349 
1350 static void *file_ram_alloc(RAMBlock *block,
1351                             ram_addr_t memory,
1352                             int fd,
1353                             bool truncate,
1354                             off_t offset,
1355                             Error **errp)
1356 {
1357     uint32_t qemu_map_flags;
1358     void *area;
1359 
1360     block->page_size = qemu_fd_getpagesize(fd);
1361     if (block->mr->align % block->page_size) {
1362         error_setg(errp, "alignment 0x%" PRIx64
1363                    " must be multiples of page size 0x%zx",
1364                    block->mr->align, block->page_size);
1365         return NULL;
1366     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1367         error_setg(errp, "alignment 0x%" PRIx64
1368                    " must be a power of two", block->mr->align);
1369         return NULL;
1370     } else if (offset % block->page_size) {
1371         error_setg(errp, "offset 0x%" PRIx64
1372                    " must be multiples of page size 0x%zx",
1373                    offset, block->page_size);
1374         return NULL;
1375     }
1376     block->mr->align = MAX(block->page_size, block->mr->align);
1377 #if defined(__s390x__)
1378     if (kvm_enabled()) {
1379         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1380     }
1381 #endif
1382 
1383     if (memory < block->page_size) {
1384         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1385                    "or larger than page size 0x%zx",
1386                    memory, block->page_size);
1387         return NULL;
1388     }
1389 
1390     memory = ROUND_UP(memory, block->page_size);
1391 
1392     /*
1393      * ftruncate is not supported by hugetlbfs in older
1394      * hosts, so don't bother bailing out on errors.
1395      * If anything goes wrong with it under other filesystems,
1396      * mmap will fail.
1397      *
1398      * Do not truncate the non-empty backend file to avoid corrupting
1399      * the existing data in the file. Disabling shrinking is not
1400      * enough. For example, the current vNVDIMM implementation stores
1401      * the guest NVDIMM labels at the end of the backend file. If the
1402      * backend file is later extended, QEMU will not be able to find
1403      * those labels. Therefore, extending the non-empty backend file
1404      * is disabled as well.
1405      */
1406     if (truncate && ftruncate(fd, offset + memory)) {
1407         perror("ftruncate");
1408     }
1409 
1410     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1411     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1412     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1413     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1414     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1415     if (area == MAP_FAILED) {
1416         error_setg_errno(errp, errno,
1417                          "unable to map backing store for guest RAM");
1418         return NULL;
1419     }
1420 
1421     block->fd = fd;
1422     block->fd_offset = offset;
1423     return area;
1424 }
1425 #endif
1426 
1427 /* Allocate space within the ram_addr_t space that governs the
1428  * dirty bitmaps.
1429  * Called with the ramlist lock held.
1430  */
1431 static ram_addr_t find_ram_offset(ram_addr_t size)
1432 {
1433     RAMBlock *block, *next_block;
1434     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1435 
1436     assert(size != 0); /* it would hand out same offset multiple times */
1437 
1438     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1439         return 0;
1440     }
1441 
1442     RAMBLOCK_FOREACH(block) {
1443         ram_addr_t candidate, next = RAM_ADDR_MAX;
1444 
1445         /* Align blocks to start on a 'long' in the bitmap
1446          * which makes the bitmap sync'ing take the fast path.
1447          */
1448         candidate = block->offset + block->max_length;
1449         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1450 
1451         /* Search for the closest following block
1452          * and find the gap.
1453          */
1454         RAMBLOCK_FOREACH(next_block) {
1455             if (next_block->offset >= candidate) {
1456                 next = MIN(next, next_block->offset);
1457             }
1458         }
1459 
1460         /* If it fits remember our place and remember the size
1461          * of gap, but keep going so that we might find a smaller
1462          * gap to fill so avoiding fragmentation.
1463          */
1464         if (next - candidate >= size && next - candidate < mingap) {
1465             offset = candidate;
1466             mingap = next - candidate;
1467         }
1468 
1469         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1470     }
1471 
1472     if (offset == RAM_ADDR_MAX) {
1473         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1474                 (uint64_t)size);
1475         abort();
1476     }
1477 
1478     trace_find_ram_offset(size, offset);
1479 
1480     return offset;
1481 }
1482 
1483 static unsigned long last_ram_page(void)
1484 {
1485     RAMBlock *block;
1486     ram_addr_t last = 0;
1487 
1488     RCU_READ_LOCK_GUARD();
1489     RAMBLOCK_FOREACH(block) {
1490         last = MAX(last, block->offset + block->max_length);
1491     }
1492     return last >> TARGET_PAGE_BITS;
1493 }
1494 
1495 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1496 {
1497     int ret;
1498 
1499     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1500     if (!machine_dump_guest_core(current_machine)) {
1501         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1502         if (ret) {
1503             perror("qemu_madvise");
1504             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1505                             "but dump_guest_core=off specified\n");
1506         }
1507     }
1508 }
1509 
1510 const char *qemu_ram_get_idstr(RAMBlock *rb)
1511 {
1512     return rb->idstr;
1513 }
1514 
1515 void *qemu_ram_get_host_addr(RAMBlock *rb)
1516 {
1517     return rb->host;
1518 }
1519 
1520 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1521 {
1522     return rb->offset;
1523 }
1524 
1525 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1526 {
1527     return rb->used_length;
1528 }
1529 
1530 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1531 {
1532     return rb->max_length;
1533 }
1534 
1535 bool qemu_ram_is_shared(RAMBlock *rb)
1536 {
1537     return rb->flags & RAM_SHARED;
1538 }
1539 
1540 bool qemu_ram_is_noreserve(RAMBlock *rb)
1541 {
1542     return rb->flags & RAM_NORESERVE;
1543 }
1544 
1545 /* Note: Only set at the start of postcopy */
1546 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1547 {
1548     return rb->flags & RAM_UF_ZEROPAGE;
1549 }
1550 
1551 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1552 {
1553     rb->flags |= RAM_UF_ZEROPAGE;
1554 }
1555 
1556 bool qemu_ram_is_migratable(RAMBlock *rb)
1557 {
1558     return rb->flags & RAM_MIGRATABLE;
1559 }
1560 
1561 void qemu_ram_set_migratable(RAMBlock *rb)
1562 {
1563     rb->flags |= RAM_MIGRATABLE;
1564 }
1565 
1566 void qemu_ram_unset_migratable(RAMBlock *rb)
1567 {
1568     rb->flags &= ~RAM_MIGRATABLE;
1569 }
1570 
1571 bool qemu_ram_is_named_file(RAMBlock *rb)
1572 {
1573     return rb->flags & RAM_NAMED_FILE;
1574 }
1575 
1576 int qemu_ram_get_fd(RAMBlock *rb)
1577 {
1578     return rb->fd;
1579 }
1580 
1581 /* Called with iothread lock held.  */
1582 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1583 {
1584     RAMBlock *block;
1585 
1586     assert(new_block);
1587     assert(!new_block->idstr[0]);
1588 
1589     if (dev) {
1590         char *id = qdev_get_dev_path(dev);
1591         if (id) {
1592             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1593             g_free(id);
1594         }
1595     }
1596     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1597 
1598     RCU_READ_LOCK_GUARD();
1599     RAMBLOCK_FOREACH(block) {
1600         if (block != new_block &&
1601             !strcmp(block->idstr, new_block->idstr)) {
1602             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1603                     new_block->idstr);
1604             abort();
1605         }
1606     }
1607 }
1608 
1609 /* Called with iothread lock held.  */
1610 void qemu_ram_unset_idstr(RAMBlock *block)
1611 {
1612     /* FIXME: arch_init.c assumes that this is not called throughout
1613      * migration.  Ignore the problem since hot-unplug during migration
1614      * does not work anyway.
1615      */
1616     if (block) {
1617         memset(block->idstr, 0, sizeof(block->idstr));
1618     }
1619 }
1620 
1621 size_t qemu_ram_pagesize(RAMBlock *rb)
1622 {
1623     return rb->page_size;
1624 }
1625 
1626 /* Returns the largest size of page in use */
1627 size_t qemu_ram_pagesize_largest(void)
1628 {
1629     RAMBlock *block;
1630     size_t largest = 0;
1631 
1632     RAMBLOCK_FOREACH(block) {
1633         largest = MAX(largest, qemu_ram_pagesize(block));
1634     }
1635 
1636     return largest;
1637 }
1638 
1639 static int memory_try_enable_merging(void *addr, size_t len)
1640 {
1641     if (!machine_mem_merge(current_machine)) {
1642         /* disabled by the user */
1643         return 0;
1644     }
1645 
1646     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1647 }
1648 
1649 /*
1650  * Resizing RAM while migrating can result in the migration being canceled.
1651  * Care has to be taken if the guest might have already detected the memory.
1652  *
1653  * As memory core doesn't know how is memory accessed, it is up to
1654  * resize callback to update device state and/or add assertions to detect
1655  * misuse, if necessary.
1656  */
1657 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1658 {
1659     const ram_addr_t oldsize = block->used_length;
1660     const ram_addr_t unaligned_size = newsize;
1661 
1662     assert(block);
1663 
1664     newsize = HOST_PAGE_ALIGN(newsize);
1665 
1666     if (block->used_length == newsize) {
1667         /*
1668          * We don't have to resize the ram block (which only knows aligned
1669          * sizes), however, we have to notify if the unaligned size changed.
1670          */
1671         if (unaligned_size != memory_region_size(block->mr)) {
1672             memory_region_set_size(block->mr, unaligned_size);
1673             if (block->resized) {
1674                 block->resized(block->idstr, unaligned_size, block->host);
1675             }
1676         }
1677         return 0;
1678     }
1679 
1680     if (!(block->flags & RAM_RESIZEABLE)) {
1681         error_setg_errno(errp, EINVAL,
1682                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1683                          " != 0x" RAM_ADDR_FMT, block->idstr,
1684                          newsize, block->used_length);
1685         return -EINVAL;
1686     }
1687 
1688     if (block->max_length < newsize) {
1689         error_setg_errno(errp, EINVAL,
1690                          "Size too large: %s: 0x" RAM_ADDR_FMT
1691                          " > 0x" RAM_ADDR_FMT, block->idstr,
1692                          newsize, block->max_length);
1693         return -EINVAL;
1694     }
1695 
1696     /* Notify before modifying the ram block and touching the bitmaps. */
1697     if (block->host) {
1698         ram_block_notify_resize(block->host, oldsize, newsize);
1699     }
1700 
1701     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1702     block->used_length = newsize;
1703     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1704                                         DIRTY_CLIENTS_ALL);
1705     memory_region_set_size(block->mr, unaligned_size);
1706     if (block->resized) {
1707         block->resized(block->idstr, unaligned_size, block->host);
1708     }
1709     return 0;
1710 }
1711 
1712 /*
1713  * Trigger sync on the given ram block for range [start, start + length]
1714  * with the backing store if one is available.
1715  * Otherwise no-op.
1716  * @Note: this is supposed to be a synchronous op.
1717  */
1718 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1719 {
1720     /* The requested range should fit in within the block range */
1721     g_assert((start + length) <= block->used_length);
1722 
1723 #ifdef CONFIG_LIBPMEM
1724     /* The lack of support for pmem should not block the sync */
1725     if (ramblock_is_pmem(block)) {
1726         void *addr = ramblock_ptr(block, start);
1727         pmem_persist(addr, length);
1728         return;
1729     }
1730 #endif
1731     if (block->fd >= 0) {
1732         /**
1733          * Case there is no support for PMEM or the memory has not been
1734          * specified as persistent (or is not one) - use the msync.
1735          * Less optimal but still achieves the same goal
1736          */
1737         void *addr = ramblock_ptr(block, start);
1738         if (qemu_msync(addr, length, block->fd)) {
1739             warn_report("%s: failed to sync memory range: start: "
1740                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1741                     __func__, start, length);
1742         }
1743     }
1744 }
1745 
1746 /* Called with ram_list.mutex held */
1747 static void dirty_memory_extend(ram_addr_t old_ram_size,
1748                                 ram_addr_t new_ram_size)
1749 {
1750     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1751                                              DIRTY_MEMORY_BLOCK_SIZE);
1752     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1753                                              DIRTY_MEMORY_BLOCK_SIZE);
1754     int i;
1755 
1756     /* Only need to extend if block count increased */
1757     if (new_num_blocks <= old_num_blocks) {
1758         return;
1759     }
1760 
1761     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1762         DirtyMemoryBlocks *old_blocks;
1763         DirtyMemoryBlocks *new_blocks;
1764         int j;
1765 
1766         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1767         new_blocks = g_malloc(sizeof(*new_blocks) +
1768                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1769 
1770         if (old_num_blocks) {
1771             memcpy(new_blocks->blocks, old_blocks->blocks,
1772                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1773         }
1774 
1775         for (j = old_num_blocks; j < new_num_blocks; j++) {
1776             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1777         }
1778 
1779         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1780 
1781         if (old_blocks) {
1782             g_free_rcu(old_blocks, rcu);
1783         }
1784     }
1785 }
1786 
1787 static void ram_block_add(RAMBlock *new_block, Error **errp)
1788 {
1789     const bool noreserve = qemu_ram_is_noreserve(new_block);
1790     const bool shared = qemu_ram_is_shared(new_block);
1791     RAMBlock *block;
1792     RAMBlock *last_block = NULL;
1793     ram_addr_t old_ram_size, new_ram_size;
1794     Error *err = NULL;
1795 
1796     old_ram_size = last_ram_page();
1797 
1798     qemu_mutex_lock_ramlist();
1799     new_block->offset = find_ram_offset(new_block->max_length);
1800 
1801     if (!new_block->host) {
1802         if (xen_enabled()) {
1803             xen_ram_alloc(new_block->offset, new_block->max_length,
1804                           new_block->mr, &err);
1805             if (err) {
1806                 error_propagate(errp, err);
1807                 qemu_mutex_unlock_ramlist();
1808                 return;
1809             }
1810         } else {
1811             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1812                                                   &new_block->mr->align,
1813                                                   shared, noreserve);
1814             if (!new_block->host) {
1815                 error_setg_errno(errp, errno,
1816                                  "cannot set up guest memory '%s'",
1817                                  memory_region_name(new_block->mr));
1818                 qemu_mutex_unlock_ramlist();
1819                 return;
1820             }
1821             memory_try_enable_merging(new_block->host, new_block->max_length);
1822         }
1823     }
1824 
1825     new_ram_size = MAX(old_ram_size,
1826               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1827     if (new_ram_size > old_ram_size) {
1828         dirty_memory_extend(old_ram_size, new_ram_size);
1829     }
1830     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1831      * QLIST (which has an RCU-friendly variant) does not have insertion at
1832      * tail, so save the last element in last_block.
1833      */
1834     RAMBLOCK_FOREACH(block) {
1835         last_block = block;
1836         if (block->max_length < new_block->max_length) {
1837             break;
1838         }
1839     }
1840     if (block) {
1841         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1842     } else if (last_block) {
1843         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1844     } else { /* list is empty */
1845         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1846     }
1847     ram_list.mru_block = NULL;
1848 
1849     /* Write list before version */
1850     smp_wmb();
1851     ram_list.version++;
1852     qemu_mutex_unlock_ramlist();
1853 
1854     cpu_physical_memory_set_dirty_range(new_block->offset,
1855                                         new_block->used_length,
1856                                         DIRTY_CLIENTS_ALL);
1857 
1858     if (new_block->host) {
1859         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1860         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1861         /*
1862          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1863          * Configure it unless the machine is a qtest server, in which case
1864          * KVM is not used and it may be forked (eg for fuzzing purposes).
1865          */
1866         if (!qtest_enabled()) {
1867             qemu_madvise(new_block->host, new_block->max_length,
1868                          QEMU_MADV_DONTFORK);
1869         }
1870         ram_block_notify_add(new_block->host, new_block->used_length,
1871                              new_block->max_length);
1872     }
1873 }
1874 
1875 #ifdef CONFIG_POSIX
1876 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1877                                  uint32_t ram_flags, int fd, off_t offset,
1878                                  Error **errp)
1879 {
1880     RAMBlock *new_block;
1881     Error *local_err = NULL;
1882     int64_t file_size, file_align;
1883 
1884     /* Just support these ram flags by now. */
1885     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1886                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1887                           RAM_READONLY_FD)) == 0);
1888 
1889     if (xen_enabled()) {
1890         error_setg(errp, "-mem-path not supported with Xen");
1891         return NULL;
1892     }
1893 
1894     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1895         error_setg(errp,
1896                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1897         return NULL;
1898     }
1899 
1900     size = HOST_PAGE_ALIGN(size);
1901     file_size = get_file_size(fd);
1902     if (file_size > offset && file_size < (offset + size)) {
1903         error_setg(errp, "backing store size 0x%" PRIx64
1904                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1905                    file_size, size);
1906         return NULL;
1907     }
1908 
1909     file_align = get_file_align(fd);
1910     if (file_align > 0 && file_align > mr->align) {
1911         error_setg(errp, "backing store align 0x%" PRIx64
1912                    " is larger than 'align' option 0x%" PRIx64,
1913                    file_align, mr->align);
1914         return NULL;
1915     }
1916 
1917     new_block = g_malloc0(sizeof(*new_block));
1918     new_block->mr = mr;
1919     new_block->used_length = size;
1920     new_block->max_length = size;
1921     new_block->flags = ram_flags;
1922     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1923                                      errp);
1924     if (!new_block->host) {
1925         g_free(new_block);
1926         return NULL;
1927     }
1928 
1929     ram_block_add(new_block, &local_err);
1930     if (local_err) {
1931         g_free(new_block);
1932         error_propagate(errp, local_err);
1933         return NULL;
1934     }
1935     return new_block;
1936 
1937 }
1938 
1939 
1940 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1941                                    uint32_t ram_flags, const char *mem_path,
1942                                    off_t offset, Error **errp)
1943 {
1944     int fd;
1945     bool created;
1946     RAMBlock *block;
1947 
1948     fd = file_ram_open(mem_path, memory_region_name(mr),
1949                        !!(ram_flags & RAM_READONLY_FD), &created);
1950     if (fd < 0) {
1951         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1952                          mem_path);
1953         return NULL;
1954     }
1955 
1956     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1957     if (!block) {
1958         if (created) {
1959             unlink(mem_path);
1960         }
1961         close(fd);
1962         return NULL;
1963     }
1964 
1965     return block;
1966 }
1967 #endif
1968 
1969 static
1970 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1971                                   void (*resized)(const char*,
1972                                                   uint64_t length,
1973                                                   void *host),
1974                                   void *host, uint32_t ram_flags,
1975                                   MemoryRegion *mr, Error **errp)
1976 {
1977     RAMBlock *new_block;
1978     Error *local_err = NULL;
1979 
1980     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1981                           RAM_NORESERVE)) == 0);
1982     assert(!host ^ (ram_flags & RAM_PREALLOC));
1983 
1984     size = HOST_PAGE_ALIGN(size);
1985     max_size = HOST_PAGE_ALIGN(max_size);
1986     new_block = g_malloc0(sizeof(*new_block));
1987     new_block->mr = mr;
1988     new_block->resized = resized;
1989     new_block->used_length = size;
1990     new_block->max_length = max_size;
1991     assert(max_size >= size);
1992     new_block->fd = -1;
1993     new_block->page_size = qemu_real_host_page_size();
1994     new_block->host = host;
1995     new_block->flags = ram_flags;
1996     ram_block_add(new_block, &local_err);
1997     if (local_err) {
1998         g_free(new_block);
1999         error_propagate(errp, local_err);
2000         return NULL;
2001     }
2002     return new_block;
2003 }
2004 
2005 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2006                                    MemoryRegion *mr, Error **errp)
2007 {
2008     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2009                                    errp);
2010 }
2011 
2012 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2013                          MemoryRegion *mr, Error **errp)
2014 {
2015     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2016     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2017 }
2018 
2019 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2020                                      void (*resized)(const char*,
2021                                                      uint64_t length,
2022                                                      void *host),
2023                                      MemoryRegion *mr, Error **errp)
2024 {
2025     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2026                                    RAM_RESIZEABLE, mr, errp);
2027 }
2028 
2029 static void reclaim_ramblock(RAMBlock *block)
2030 {
2031     if (block->flags & RAM_PREALLOC) {
2032         ;
2033     } else if (xen_enabled()) {
2034         xen_invalidate_map_cache_entry(block->host);
2035 #ifndef _WIN32
2036     } else if (block->fd >= 0) {
2037         qemu_ram_munmap(block->fd, block->host, block->max_length);
2038         close(block->fd);
2039 #endif
2040     } else {
2041         qemu_anon_ram_free(block->host, block->max_length);
2042     }
2043     g_free(block);
2044 }
2045 
2046 void qemu_ram_free(RAMBlock *block)
2047 {
2048     if (!block) {
2049         return;
2050     }
2051 
2052     if (block->host) {
2053         ram_block_notify_remove(block->host, block->used_length,
2054                                 block->max_length);
2055     }
2056 
2057     qemu_mutex_lock_ramlist();
2058     QLIST_REMOVE_RCU(block, next);
2059     ram_list.mru_block = NULL;
2060     /* Write list before version */
2061     smp_wmb();
2062     ram_list.version++;
2063     call_rcu(block, reclaim_ramblock, rcu);
2064     qemu_mutex_unlock_ramlist();
2065 }
2066 
2067 #ifndef _WIN32
2068 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2069 {
2070     RAMBlock *block;
2071     ram_addr_t offset;
2072     int flags;
2073     void *area, *vaddr;
2074     int prot;
2075 
2076     RAMBLOCK_FOREACH(block) {
2077         offset = addr - block->offset;
2078         if (offset < block->max_length) {
2079             vaddr = ramblock_ptr(block, offset);
2080             if (block->flags & RAM_PREALLOC) {
2081                 ;
2082             } else if (xen_enabled()) {
2083                 abort();
2084             } else {
2085                 flags = MAP_FIXED;
2086                 flags |= block->flags & RAM_SHARED ?
2087                          MAP_SHARED : MAP_PRIVATE;
2088                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2089                 prot = PROT_READ;
2090                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2091                 if (block->fd >= 0) {
2092                     area = mmap(vaddr, length, prot, flags, block->fd,
2093                                 offset + block->fd_offset);
2094                 } else {
2095                     flags |= MAP_ANONYMOUS;
2096                     area = mmap(vaddr, length, prot, flags, -1, 0);
2097                 }
2098                 if (area != vaddr) {
2099                     error_report("Could not remap addr: "
2100                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2101                                  length, addr);
2102                     exit(1);
2103                 }
2104                 memory_try_enable_merging(vaddr, length);
2105                 qemu_ram_setup_dump(vaddr, length);
2106             }
2107         }
2108     }
2109 }
2110 #endif /* !_WIN32 */
2111 
2112 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2113  * This should not be used for general purpose DMA.  Use address_space_map
2114  * or address_space_rw instead. For local memory (e.g. video ram) that the
2115  * device owns, use memory_region_get_ram_ptr.
2116  *
2117  * Called within RCU critical section.
2118  */
2119 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2120 {
2121     RAMBlock *block = ram_block;
2122 
2123     if (block == NULL) {
2124         block = qemu_get_ram_block(addr);
2125         addr -= block->offset;
2126     }
2127 
2128     if (xen_enabled() && block->host == NULL) {
2129         /* We need to check if the requested address is in the RAM
2130          * because we don't want to map the entire memory in QEMU.
2131          * In that case just map until the end of the page.
2132          */
2133         if (block->offset == 0) {
2134             return xen_map_cache(addr, 0, 0, false);
2135         }
2136 
2137         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2138     }
2139     return ramblock_ptr(block, addr);
2140 }
2141 
2142 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2143  * but takes a size argument.
2144  *
2145  * Called within RCU critical section.
2146  */
2147 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2148                                  hwaddr *size, bool lock)
2149 {
2150     RAMBlock *block = ram_block;
2151     if (*size == 0) {
2152         return NULL;
2153     }
2154 
2155     if (block == NULL) {
2156         block = qemu_get_ram_block(addr);
2157         addr -= block->offset;
2158     }
2159     *size = MIN(*size, block->max_length - addr);
2160 
2161     if (xen_enabled() && block->host == NULL) {
2162         /* We need to check if the requested address is in the RAM
2163          * because we don't want to map the entire memory in QEMU.
2164          * In that case just map the requested area.
2165          */
2166         if (block->offset == 0) {
2167             return xen_map_cache(addr, *size, lock, lock);
2168         }
2169 
2170         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2171     }
2172 
2173     return ramblock_ptr(block, addr);
2174 }
2175 
2176 /* Return the offset of a hostpointer within a ramblock */
2177 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2178 {
2179     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2180     assert((uintptr_t)host >= (uintptr_t)rb->host);
2181     assert(res < rb->max_length);
2182 
2183     return res;
2184 }
2185 
2186 /*
2187  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2188  * in that RAMBlock.
2189  *
2190  * ptr: Host pointer to look up
2191  * round_offset: If true round the result offset down to a page boundary
2192  * *ram_addr: set to result ram_addr
2193  * *offset: set to result offset within the RAMBlock
2194  *
2195  * Returns: RAMBlock (or NULL if not found)
2196  *
2197  * By the time this function returns, the returned pointer is not protected
2198  * by RCU anymore.  If the caller is not within an RCU critical section and
2199  * does not hold the iothread lock, it must have other means of protecting the
2200  * pointer, such as a reference to the region that includes the incoming
2201  * ram_addr_t.
2202  */
2203 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2204                                    ram_addr_t *offset)
2205 {
2206     RAMBlock *block;
2207     uint8_t *host = ptr;
2208 
2209     if (xen_enabled()) {
2210         ram_addr_t ram_addr;
2211         RCU_READ_LOCK_GUARD();
2212         ram_addr = xen_ram_addr_from_mapcache(ptr);
2213         block = qemu_get_ram_block(ram_addr);
2214         if (block) {
2215             *offset = ram_addr - block->offset;
2216         }
2217         return block;
2218     }
2219 
2220     RCU_READ_LOCK_GUARD();
2221     block = qatomic_rcu_read(&ram_list.mru_block);
2222     if (block && block->host && host - block->host < block->max_length) {
2223         goto found;
2224     }
2225 
2226     RAMBLOCK_FOREACH(block) {
2227         /* This case append when the block is not mapped. */
2228         if (block->host == NULL) {
2229             continue;
2230         }
2231         if (host - block->host < block->max_length) {
2232             goto found;
2233         }
2234     }
2235 
2236     return NULL;
2237 
2238 found:
2239     *offset = (host - block->host);
2240     if (round_offset) {
2241         *offset &= TARGET_PAGE_MASK;
2242     }
2243     return block;
2244 }
2245 
2246 /*
2247  * Finds the named RAMBlock
2248  *
2249  * name: The name of RAMBlock to find
2250  *
2251  * Returns: RAMBlock (or NULL if not found)
2252  */
2253 RAMBlock *qemu_ram_block_by_name(const char *name)
2254 {
2255     RAMBlock *block;
2256 
2257     RAMBLOCK_FOREACH(block) {
2258         if (!strcmp(name, block->idstr)) {
2259             return block;
2260         }
2261     }
2262 
2263     return NULL;
2264 }
2265 
2266 /* Some of the softmmu routines need to translate from a host pointer
2267    (typically a TLB entry) back to a ram offset.  */
2268 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2269 {
2270     RAMBlock *block;
2271     ram_addr_t offset;
2272 
2273     block = qemu_ram_block_from_host(ptr, false, &offset);
2274     if (!block) {
2275         return RAM_ADDR_INVALID;
2276     }
2277 
2278     return block->offset + offset;
2279 }
2280 
2281 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2282 {
2283     ram_addr_t ram_addr;
2284 
2285     ram_addr = qemu_ram_addr_from_host(ptr);
2286     if (ram_addr == RAM_ADDR_INVALID) {
2287         error_report("Bad ram pointer %p", ptr);
2288         abort();
2289     }
2290     return ram_addr;
2291 }
2292 
2293 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2294                                  MemTxAttrs attrs, void *buf, hwaddr len);
2295 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2296                                   const void *buf, hwaddr len);
2297 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2298                                   bool is_write, MemTxAttrs attrs);
2299 
2300 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2301                                 unsigned len, MemTxAttrs attrs)
2302 {
2303     subpage_t *subpage = opaque;
2304     uint8_t buf[8];
2305     MemTxResult res;
2306 
2307 #if defined(DEBUG_SUBPAGE)
2308     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2309            subpage, len, addr);
2310 #endif
2311     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2312     if (res) {
2313         return res;
2314     }
2315     *data = ldn_p(buf, len);
2316     return MEMTX_OK;
2317 }
2318 
2319 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2320                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2321 {
2322     subpage_t *subpage = opaque;
2323     uint8_t buf[8];
2324 
2325 #if defined(DEBUG_SUBPAGE)
2326     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2327            " value %"PRIx64"\n",
2328            __func__, subpage, len, addr, value);
2329 #endif
2330     stn_p(buf, len, value);
2331     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2332 }
2333 
2334 static bool subpage_accepts(void *opaque, hwaddr addr,
2335                             unsigned len, bool is_write,
2336                             MemTxAttrs attrs)
2337 {
2338     subpage_t *subpage = opaque;
2339 #if defined(DEBUG_SUBPAGE)
2340     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2341            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2342 #endif
2343 
2344     return flatview_access_valid(subpage->fv, addr + subpage->base,
2345                                  len, is_write, attrs);
2346 }
2347 
2348 static const MemoryRegionOps subpage_ops = {
2349     .read_with_attrs = subpage_read,
2350     .write_with_attrs = subpage_write,
2351     .impl.min_access_size = 1,
2352     .impl.max_access_size = 8,
2353     .valid.min_access_size = 1,
2354     .valid.max_access_size = 8,
2355     .valid.accepts = subpage_accepts,
2356     .endianness = DEVICE_NATIVE_ENDIAN,
2357 };
2358 
2359 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2360                             uint16_t section)
2361 {
2362     int idx, eidx;
2363 
2364     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2365         return -1;
2366     idx = SUBPAGE_IDX(start);
2367     eidx = SUBPAGE_IDX(end);
2368 #if defined(DEBUG_SUBPAGE)
2369     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2370            __func__, mmio, start, end, idx, eidx, section);
2371 #endif
2372     for (; idx <= eidx; idx++) {
2373         mmio->sub_section[idx] = section;
2374     }
2375 
2376     return 0;
2377 }
2378 
2379 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2380 {
2381     subpage_t *mmio;
2382 
2383     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2384     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2385     mmio->fv = fv;
2386     mmio->base = base;
2387     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2388                           NULL, TARGET_PAGE_SIZE);
2389     mmio->iomem.subpage = true;
2390 #if defined(DEBUG_SUBPAGE)
2391     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2392            mmio, base, TARGET_PAGE_SIZE);
2393 #endif
2394 
2395     return mmio;
2396 }
2397 
2398 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2399 {
2400     assert(fv);
2401     MemoryRegionSection section = {
2402         .fv = fv,
2403         .mr = mr,
2404         .offset_within_address_space = 0,
2405         .offset_within_region = 0,
2406         .size = int128_2_64(),
2407     };
2408 
2409     return phys_section_add(map, &section);
2410 }
2411 
2412 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2413                                       hwaddr index, MemTxAttrs attrs)
2414 {
2415     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2416     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2417     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2418     int section_index = index & ~TARGET_PAGE_MASK;
2419     MemoryRegionSection *ret;
2420 
2421     assert(section_index < d->map.sections_nb);
2422     ret = d->map.sections + section_index;
2423     assert(ret->mr);
2424     assert(ret->mr->ops);
2425 
2426     return ret;
2427 }
2428 
2429 static void io_mem_init(void)
2430 {
2431     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2432                           NULL, UINT64_MAX);
2433 }
2434 
2435 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2436 {
2437     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2438     uint16_t n;
2439 
2440     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2441     assert(n == PHYS_SECTION_UNASSIGNED);
2442 
2443     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2444 
2445     return d;
2446 }
2447 
2448 void address_space_dispatch_free(AddressSpaceDispatch *d)
2449 {
2450     phys_sections_free(&d->map);
2451     g_free(d);
2452 }
2453 
2454 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2455 {
2456 }
2457 
2458 static void tcg_log_global_after_sync(MemoryListener *listener)
2459 {
2460     CPUAddressSpace *cpuas;
2461 
2462     /* Wait for the CPU to end the current TB.  This avoids the following
2463      * incorrect race:
2464      *
2465      *      vCPU                         migration
2466      *      ----------------------       -------------------------
2467      *      TLB check -> slow path
2468      *        notdirty_mem_write
2469      *          write to RAM
2470      *          mark dirty
2471      *                                   clear dirty flag
2472      *      TLB check -> fast path
2473      *                                   read memory
2474      *        write to RAM
2475      *
2476      * by pushing the migration thread's memory read after the vCPU thread has
2477      * written the memory.
2478      */
2479     if (replay_mode == REPLAY_MODE_NONE) {
2480         /*
2481          * VGA can make calls to this function while updating the screen.
2482          * In record/replay mode this causes a deadlock, because
2483          * run_on_cpu waits for rr mutex. Therefore no races are possible
2484          * in this case and no need for making run_on_cpu when
2485          * record/replay is enabled.
2486          */
2487         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2488         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2489     }
2490 }
2491 
2492 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2493 {
2494     CPUAddressSpace *cpuas = data.host_ptr;
2495 
2496     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2497     tlb_flush(cpu);
2498 }
2499 
2500 static void tcg_commit(MemoryListener *listener)
2501 {
2502     CPUAddressSpace *cpuas;
2503     CPUState *cpu;
2504 
2505     assert(tcg_enabled());
2506     /* since each CPU stores ram addresses in its TLB cache, we must
2507        reset the modified entries */
2508     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2509     cpu = cpuas->cpu;
2510 
2511     /*
2512      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2513      * Otherwise we race between (1) other cpu threads and (2) ongoing
2514      * i/o for the current cpu thread, with data cached by mmu_lookup().
2515      *
2516      * In addition, queueing the work function will kick the cpu back to
2517      * the main loop, which will end the RCU critical section and reclaim
2518      * the memory data structures.
2519      *
2520      * That said, the listener is also called during realize, before
2521      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2522      */
2523     if (cpu->halt_cond) {
2524         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2525     } else {
2526         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2527     }
2528 }
2529 
2530 static void memory_map_init(void)
2531 {
2532     system_memory = g_malloc(sizeof(*system_memory));
2533 
2534     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2535     address_space_init(&address_space_memory, system_memory, "memory");
2536 
2537     system_io = g_malloc(sizeof(*system_io));
2538     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2539                           65536);
2540     address_space_init(&address_space_io, system_io, "I/O");
2541 }
2542 
2543 MemoryRegion *get_system_memory(void)
2544 {
2545     return system_memory;
2546 }
2547 
2548 MemoryRegion *get_system_io(void)
2549 {
2550     return system_io;
2551 }
2552 
2553 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2554                                      hwaddr length)
2555 {
2556     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2557     addr += memory_region_get_ram_addr(mr);
2558 
2559     /* No early return if dirty_log_mask is or becomes 0, because
2560      * cpu_physical_memory_set_dirty_range will still call
2561      * xen_modified_memory.
2562      */
2563     if (dirty_log_mask) {
2564         dirty_log_mask =
2565             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2566     }
2567     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2568         assert(tcg_enabled());
2569         tb_invalidate_phys_range(addr, addr + length - 1);
2570         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2571     }
2572     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2573 }
2574 
2575 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2576 {
2577     /*
2578      * In principle this function would work on other memory region types too,
2579      * but the ROM device use case is the only one where this operation is
2580      * necessary.  Other memory regions should use the
2581      * address_space_read/write() APIs.
2582      */
2583     assert(memory_region_is_romd(mr));
2584 
2585     invalidate_and_set_dirty(mr, addr, size);
2586 }
2587 
2588 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2589 {
2590     unsigned access_size_max = mr->ops->valid.max_access_size;
2591 
2592     /* Regions are assumed to support 1-4 byte accesses unless
2593        otherwise specified.  */
2594     if (access_size_max == 0) {
2595         access_size_max = 4;
2596     }
2597 
2598     /* Bound the maximum access by the alignment of the address.  */
2599     if (!mr->ops->impl.unaligned) {
2600         unsigned align_size_max = addr & -addr;
2601         if (align_size_max != 0 && align_size_max < access_size_max) {
2602             access_size_max = align_size_max;
2603         }
2604     }
2605 
2606     /* Don't attempt accesses larger than the maximum.  */
2607     if (l > access_size_max) {
2608         l = access_size_max;
2609     }
2610     l = pow2floor(l);
2611 
2612     return l;
2613 }
2614 
2615 bool prepare_mmio_access(MemoryRegion *mr)
2616 {
2617     bool release_lock = false;
2618 
2619     if (!qemu_mutex_iothread_locked()) {
2620         qemu_mutex_lock_iothread();
2621         release_lock = true;
2622     }
2623     if (mr->flush_coalesced_mmio) {
2624         qemu_flush_coalesced_mmio_buffer();
2625     }
2626 
2627     return release_lock;
2628 }
2629 
2630 /**
2631  * flatview_access_allowed
2632  * @mr: #MemoryRegion to be accessed
2633  * @attrs: memory transaction attributes
2634  * @addr: address within that memory region
2635  * @len: the number of bytes to access
2636  *
2637  * Check if a memory transaction is allowed.
2638  *
2639  * Returns: true if transaction is allowed, false if denied.
2640  */
2641 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2642                                     hwaddr addr, hwaddr len)
2643 {
2644     if (likely(!attrs.memory)) {
2645         return true;
2646     }
2647     if (memory_region_is_ram(mr)) {
2648         return true;
2649     }
2650     qemu_log_mask(LOG_GUEST_ERROR,
2651                   "Invalid access to non-RAM device at "
2652                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2653                   "region '%s'\n", addr, len, memory_region_name(mr));
2654     return false;
2655 }
2656 
2657 /* Called within RCU critical section.  */
2658 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2659                                            MemTxAttrs attrs,
2660                                            const void *ptr,
2661                                            hwaddr len, hwaddr addr1,
2662                                            hwaddr l, MemoryRegion *mr)
2663 {
2664     uint8_t *ram_ptr;
2665     uint64_t val;
2666     MemTxResult result = MEMTX_OK;
2667     bool release_lock = false;
2668     const uint8_t *buf = ptr;
2669 
2670     for (;;) {
2671         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2672             result |= MEMTX_ACCESS_ERROR;
2673             /* Keep going. */
2674         } else if (!memory_access_is_direct(mr, true)) {
2675             release_lock |= prepare_mmio_access(mr);
2676             l = memory_access_size(mr, l, addr1);
2677             /* XXX: could force current_cpu to NULL to avoid
2678                potential bugs */
2679             val = ldn_he_p(buf, l);
2680             result |= memory_region_dispatch_write(mr, addr1, val,
2681                                                    size_memop(l), attrs);
2682         } else {
2683             /* RAM case */
2684             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2685             memmove(ram_ptr, buf, l);
2686             invalidate_and_set_dirty(mr, addr1, l);
2687         }
2688 
2689         if (release_lock) {
2690             qemu_mutex_unlock_iothread();
2691             release_lock = false;
2692         }
2693 
2694         len -= l;
2695         buf += l;
2696         addr += l;
2697 
2698         if (!len) {
2699             break;
2700         }
2701 
2702         l = len;
2703         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2704     }
2705 
2706     return result;
2707 }
2708 
2709 /* Called from RCU critical section.  */
2710 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2711                                   const void *buf, hwaddr len)
2712 {
2713     hwaddr l;
2714     hwaddr addr1;
2715     MemoryRegion *mr;
2716 
2717     l = len;
2718     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2719     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2720         return MEMTX_ACCESS_ERROR;
2721     }
2722     return flatview_write_continue(fv, addr, attrs, buf, len,
2723                                    addr1, l, mr);
2724 }
2725 
2726 /* Called within RCU critical section.  */
2727 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2728                                    MemTxAttrs attrs, void *ptr,
2729                                    hwaddr len, hwaddr addr1, hwaddr l,
2730                                    MemoryRegion *mr)
2731 {
2732     uint8_t *ram_ptr;
2733     uint64_t val;
2734     MemTxResult result = MEMTX_OK;
2735     bool release_lock = false;
2736     uint8_t *buf = ptr;
2737 
2738     fuzz_dma_read_cb(addr, len, mr);
2739     for (;;) {
2740         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2741             result |= MEMTX_ACCESS_ERROR;
2742             /* Keep going. */
2743         } else if (!memory_access_is_direct(mr, false)) {
2744             /* I/O case */
2745             release_lock |= prepare_mmio_access(mr);
2746             l = memory_access_size(mr, l, addr1);
2747             result |= memory_region_dispatch_read(mr, addr1, &val,
2748                                                   size_memop(l), attrs);
2749             stn_he_p(buf, l, val);
2750         } else {
2751             /* RAM case */
2752             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2753             memcpy(buf, ram_ptr, l);
2754         }
2755 
2756         if (release_lock) {
2757             qemu_mutex_unlock_iothread();
2758             release_lock = false;
2759         }
2760 
2761         len -= l;
2762         buf += l;
2763         addr += l;
2764 
2765         if (!len) {
2766             break;
2767         }
2768 
2769         l = len;
2770         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2771     }
2772 
2773     return result;
2774 }
2775 
2776 /* Called from RCU critical section.  */
2777 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2778                                  MemTxAttrs attrs, void *buf, hwaddr len)
2779 {
2780     hwaddr l;
2781     hwaddr addr1;
2782     MemoryRegion *mr;
2783 
2784     l = len;
2785     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2786     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2787         return MEMTX_ACCESS_ERROR;
2788     }
2789     return flatview_read_continue(fv, addr, attrs, buf, len,
2790                                   addr1, l, mr);
2791 }
2792 
2793 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2794                                     MemTxAttrs attrs, void *buf, hwaddr len)
2795 {
2796     MemTxResult result = MEMTX_OK;
2797     FlatView *fv;
2798 
2799     if (len > 0) {
2800         RCU_READ_LOCK_GUARD();
2801         fv = address_space_to_flatview(as);
2802         result = flatview_read(fv, addr, attrs, buf, len);
2803     }
2804 
2805     return result;
2806 }
2807 
2808 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2809                                 MemTxAttrs attrs,
2810                                 const void *buf, hwaddr len)
2811 {
2812     MemTxResult result = MEMTX_OK;
2813     FlatView *fv;
2814 
2815     if (len > 0) {
2816         RCU_READ_LOCK_GUARD();
2817         fv = address_space_to_flatview(as);
2818         result = flatview_write(fv, addr, attrs, buf, len);
2819     }
2820 
2821     return result;
2822 }
2823 
2824 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2825                              void *buf, hwaddr len, bool is_write)
2826 {
2827     if (is_write) {
2828         return address_space_write(as, addr, attrs, buf, len);
2829     } else {
2830         return address_space_read_full(as, addr, attrs, buf, len);
2831     }
2832 }
2833 
2834 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2835                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2836 {
2837 #define FILLBUF_SIZE 512
2838     uint8_t fillbuf[FILLBUF_SIZE];
2839     int l;
2840     MemTxResult error = MEMTX_OK;
2841 
2842     memset(fillbuf, c, FILLBUF_SIZE);
2843     while (len > 0) {
2844         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2845         error |= address_space_write(as, addr, attrs, fillbuf, l);
2846         len -= l;
2847         addr += l;
2848     }
2849 
2850     return error;
2851 }
2852 
2853 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2854                             hwaddr len, bool is_write)
2855 {
2856     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2857                      buf, len, is_write);
2858 }
2859 
2860 enum write_rom_type {
2861     WRITE_DATA,
2862     FLUSH_CACHE,
2863 };
2864 
2865 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2866                                                            hwaddr addr,
2867                                                            MemTxAttrs attrs,
2868                                                            const void *ptr,
2869                                                            hwaddr len,
2870                                                            enum write_rom_type type)
2871 {
2872     hwaddr l;
2873     uint8_t *ram_ptr;
2874     hwaddr addr1;
2875     MemoryRegion *mr;
2876     const uint8_t *buf = ptr;
2877 
2878     RCU_READ_LOCK_GUARD();
2879     while (len > 0) {
2880         l = len;
2881         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2882 
2883         if (!(memory_region_is_ram(mr) ||
2884               memory_region_is_romd(mr))) {
2885             l = memory_access_size(mr, l, addr1);
2886         } else {
2887             /* ROM/RAM case */
2888             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2889             switch (type) {
2890             case WRITE_DATA:
2891                 memcpy(ram_ptr, buf, l);
2892                 invalidate_and_set_dirty(mr, addr1, l);
2893                 break;
2894             case FLUSH_CACHE:
2895                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2896                 break;
2897             }
2898         }
2899         len -= l;
2900         buf += l;
2901         addr += l;
2902     }
2903     return MEMTX_OK;
2904 }
2905 
2906 /* used for ROM loading : can write in RAM and ROM */
2907 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2908                                     MemTxAttrs attrs,
2909                                     const void *buf, hwaddr len)
2910 {
2911     return address_space_write_rom_internal(as, addr, attrs,
2912                                             buf, len, WRITE_DATA);
2913 }
2914 
2915 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2916 {
2917     /*
2918      * This function should do the same thing as an icache flush that was
2919      * triggered from within the guest. For TCG we are always cache coherent,
2920      * so there is no need to flush anything. For KVM / Xen we need to flush
2921      * the host's instruction cache at least.
2922      */
2923     if (tcg_enabled()) {
2924         return;
2925     }
2926 
2927     address_space_write_rom_internal(&address_space_memory,
2928                                      start, MEMTXATTRS_UNSPECIFIED,
2929                                      NULL, len, FLUSH_CACHE);
2930 }
2931 
2932 typedef struct {
2933     MemoryRegion *mr;
2934     void *buffer;
2935     hwaddr addr;
2936     hwaddr len;
2937     bool in_use;
2938 } BounceBuffer;
2939 
2940 static BounceBuffer bounce;
2941 
2942 typedef struct MapClient {
2943     QEMUBH *bh;
2944     QLIST_ENTRY(MapClient) link;
2945 } MapClient;
2946 
2947 QemuMutex map_client_list_lock;
2948 static QLIST_HEAD(, MapClient) map_client_list
2949     = QLIST_HEAD_INITIALIZER(map_client_list);
2950 
2951 static void cpu_unregister_map_client_do(MapClient *client)
2952 {
2953     QLIST_REMOVE(client, link);
2954     g_free(client);
2955 }
2956 
2957 static void cpu_notify_map_clients_locked(void)
2958 {
2959     MapClient *client;
2960 
2961     while (!QLIST_EMPTY(&map_client_list)) {
2962         client = QLIST_FIRST(&map_client_list);
2963         qemu_bh_schedule(client->bh);
2964         cpu_unregister_map_client_do(client);
2965     }
2966 }
2967 
2968 void cpu_register_map_client(QEMUBH *bh)
2969 {
2970     MapClient *client = g_malloc(sizeof(*client));
2971 
2972     qemu_mutex_lock(&map_client_list_lock);
2973     client->bh = bh;
2974     QLIST_INSERT_HEAD(&map_client_list, client, link);
2975     /* Write map_client_list before reading in_use.  */
2976     smp_mb();
2977     if (!qatomic_read(&bounce.in_use)) {
2978         cpu_notify_map_clients_locked();
2979     }
2980     qemu_mutex_unlock(&map_client_list_lock);
2981 }
2982 
2983 void cpu_exec_init_all(void)
2984 {
2985     qemu_mutex_init(&ram_list.mutex);
2986     /* The data structures we set up here depend on knowing the page size,
2987      * so no more changes can be made after this point.
2988      * In an ideal world, nothing we did before we had finished the
2989      * machine setup would care about the target page size, and we could
2990      * do this much later, rather than requiring board models to state
2991      * up front what their requirements are.
2992      */
2993     finalize_target_page_bits();
2994     io_mem_init();
2995     memory_map_init();
2996     qemu_mutex_init(&map_client_list_lock);
2997 }
2998 
2999 void cpu_unregister_map_client(QEMUBH *bh)
3000 {
3001     MapClient *client;
3002 
3003     qemu_mutex_lock(&map_client_list_lock);
3004     QLIST_FOREACH(client, &map_client_list, link) {
3005         if (client->bh == bh) {
3006             cpu_unregister_map_client_do(client);
3007             break;
3008         }
3009     }
3010     qemu_mutex_unlock(&map_client_list_lock);
3011 }
3012 
3013 static void cpu_notify_map_clients(void)
3014 {
3015     qemu_mutex_lock(&map_client_list_lock);
3016     cpu_notify_map_clients_locked();
3017     qemu_mutex_unlock(&map_client_list_lock);
3018 }
3019 
3020 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3021                                   bool is_write, MemTxAttrs attrs)
3022 {
3023     MemoryRegion *mr;
3024     hwaddr l, xlat;
3025 
3026     while (len > 0) {
3027         l = len;
3028         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3029         if (!memory_access_is_direct(mr, is_write)) {
3030             l = memory_access_size(mr, l, addr);
3031             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3032                 return false;
3033             }
3034         }
3035 
3036         len -= l;
3037         addr += l;
3038     }
3039     return true;
3040 }
3041 
3042 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3043                                 hwaddr len, bool is_write,
3044                                 MemTxAttrs attrs)
3045 {
3046     FlatView *fv;
3047 
3048     RCU_READ_LOCK_GUARD();
3049     fv = address_space_to_flatview(as);
3050     return flatview_access_valid(fv, addr, len, is_write, attrs);
3051 }
3052 
3053 static hwaddr
3054 flatview_extend_translation(FlatView *fv, hwaddr addr,
3055                             hwaddr target_len,
3056                             MemoryRegion *mr, hwaddr base, hwaddr len,
3057                             bool is_write, MemTxAttrs attrs)
3058 {
3059     hwaddr done = 0;
3060     hwaddr xlat;
3061     MemoryRegion *this_mr;
3062 
3063     for (;;) {
3064         target_len -= len;
3065         addr += len;
3066         done += len;
3067         if (target_len == 0) {
3068             return done;
3069         }
3070 
3071         len = target_len;
3072         this_mr = flatview_translate(fv, addr, &xlat,
3073                                      &len, is_write, attrs);
3074         if (this_mr != mr || xlat != base + done) {
3075             return done;
3076         }
3077     }
3078 }
3079 
3080 /* Map a physical memory region into a host virtual address.
3081  * May map a subset of the requested range, given by and returned in *plen.
3082  * May return NULL if resources needed to perform the mapping are exhausted.
3083  * Use only for reads OR writes - not for read-modify-write operations.
3084  * Use cpu_register_map_client() to know when retrying the map operation is
3085  * likely to succeed.
3086  */
3087 void *address_space_map(AddressSpace *as,
3088                         hwaddr addr,
3089                         hwaddr *plen,
3090                         bool is_write,
3091                         MemTxAttrs attrs)
3092 {
3093     hwaddr len = *plen;
3094     hwaddr l, xlat;
3095     MemoryRegion *mr;
3096     FlatView *fv;
3097 
3098     if (len == 0) {
3099         return NULL;
3100     }
3101 
3102     l = len;
3103     RCU_READ_LOCK_GUARD();
3104     fv = address_space_to_flatview(as);
3105     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3106 
3107     if (!memory_access_is_direct(mr, is_write)) {
3108         if (qatomic_xchg(&bounce.in_use, true)) {
3109             *plen = 0;
3110             return NULL;
3111         }
3112         /* Avoid unbounded allocations */
3113         l = MIN(l, TARGET_PAGE_SIZE);
3114         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3115         bounce.addr = addr;
3116         bounce.len = l;
3117 
3118         memory_region_ref(mr);
3119         bounce.mr = mr;
3120         if (!is_write) {
3121             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3122                                bounce.buffer, l);
3123         }
3124 
3125         *plen = l;
3126         return bounce.buffer;
3127     }
3128 
3129 
3130     memory_region_ref(mr);
3131     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3132                                         l, is_write, attrs);
3133     fuzz_dma_read_cb(addr, *plen, mr);
3134     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3135 }
3136 
3137 /* Unmaps a memory region previously mapped by address_space_map().
3138  * Will also mark the memory as dirty if is_write is true.  access_len gives
3139  * the amount of memory that was actually read or written by the caller.
3140  */
3141 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3142                          bool is_write, hwaddr access_len)
3143 {
3144     if (buffer != bounce.buffer) {
3145         MemoryRegion *mr;
3146         ram_addr_t addr1;
3147 
3148         mr = memory_region_from_host(buffer, &addr1);
3149         assert(mr != NULL);
3150         if (is_write) {
3151             invalidate_and_set_dirty(mr, addr1, access_len);
3152         }
3153         if (xen_enabled()) {
3154             xen_invalidate_map_cache_entry(buffer);
3155         }
3156         memory_region_unref(mr);
3157         return;
3158     }
3159     if (is_write) {
3160         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3161                             bounce.buffer, access_len);
3162     }
3163     qemu_vfree(bounce.buffer);
3164     bounce.buffer = NULL;
3165     memory_region_unref(bounce.mr);
3166     /* Clear in_use before reading map_client_list.  */
3167     qatomic_set_mb(&bounce.in_use, false);
3168     cpu_notify_map_clients();
3169 }
3170 
3171 void *cpu_physical_memory_map(hwaddr addr,
3172                               hwaddr *plen,
3173                               bool is_write)
3174 {
3175     return address_space_map(&address_space_memory, addr, plen, is_write,
3176                              MEMTXATTRS_UNSPECIFIED);
3177 }
3178 
3179 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3180                                bool is_write, hwaddr access_len)
3181 {
3182     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3183 }
3184 
3185 #define ARG1_DECL                AddressSpace *as
3186 #define ARG1                     as
3187 #define SUFFIX
3188 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3189 #define RCU_READ_LOCK(...)       rcu_read_lock()
3190 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3191 #include "memory_ldst.c.inc"
3192 
3193 int64_t address_space_cache_init(MemoryRegionCache *cache,
3194                                  AddressSpace *as,
3195                                  hwaddr addr,
3196                                  hwaddr len,
3197                                  bool is_write)
3198 {
3199     AddressSpaceDispatch *d;
3200     hwaddr l;
3201     MemoryRegion *mr;
3202     Int128 diff;
3203 
3204     assert(len > 0);
3205 
3206     l = len;
3207     cache->fv = address_space_get_flatview(as);
3208     d = flatview_to_dispatch(cache->fv);
3209     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3210 
3211     /*
3212      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3213      * Take that into account to compute how many bytes are there between
3214      * cache->xlat and the end of the section.
3215      */
3216     diff = int128_sub(cache->mrs.size,
3217                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3218     l = int128_get64(int128_min(diff, int128_make64(l)));
3219 
3220     mr = cache->mrs.mr;
3221     memory_region_ref(mr);
3222     if (memory_access_is_direct(mr, is_write)) {
3223         /* We don't care about the memory attributes here as we're only
3224          * doing this if we found actual RAM, which behaves the same
3225          * regardless of attributes; so UNSPECIFIED is fine.
3226          */
3227         l = flatview_extend_translation(cache->fv, addr, len, mr,
3228                                         cache->xlat, l, is_write,
3229                                         MEMTXATTRS_UNSPECIFIED);
3230         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3231     } else {
3232         cache->ptr = NULL;
3233     }
3234 
3235     cache->len = l;
3236     cache->is_write = is_write;
3237     return l;
3238 }
3239 
3240 void address_space_cache_invalidate(MemoryRegionCache *cache,
3241                                     hwaddr addr,
3242                                     hwaddr access_len)
3243 {
3244     assert(cache->is_write);
3245     if (likely(cache->ptr)) {
3246         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3247     }
3248 }
3249 
3250 void address_space_cache_destroy(MemoryRegionCache *cache)
3251 {
3252     if (!cache->mrs.mr) {
3253         return;
3254     }
3255 
3256     if (xen_enabled()) {
3257         xen_invalidate_map_cache_entry(cache->ptr);
3258     }
3259     memory_region_unref(cache->mrs.mr);
3260     flatview_unref(cache->fv);
3261     cache->mrs.mr = NULL;
3262     cache->fv = NULL;
3263 }
3264 
3265 /* Called from RCU critical section.  This function has the same
3266  * semantics as address_space_translate, but it only works on a
3267  * predefined range of a MemoryRegion that was mapped with
3268  * address_space_cache_init.
3269  */
3270 static inline MemoryRegion *address_space_translate_cached(
3271     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3272     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3273 {
3274     MemoryRegionSection section;
3275     MemoryRegion *mr;
3276     IOMMUMemoryRegion *iommu_mr;
3277     AddressSpace *target_as;
3278 
3279     assert(!cache->ptr);
3280     *xlat = addr + cache->xlat;
3281 
3282     mr = cache->mrs.mr;
3283     iommu_mr = memory_region_get_iommu(mr);
3284     if (!iommu_mr) {
3285         /* MMIO region.  */
3286         return mr;
3287     }
3288 
3289     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3290                                             NULL, is_write, true,
3291                                             &target_as, attrs);
3292     return section.mr;
3293 }
3294 
3295 /* Called from RCU critical section. address_space_read_cached uses this
3296  * out of line function when the target is an MMIO or IOMMU region.
3297  */
3298 MemTxResult
3299 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3300                                    void *buf, hwaddr len)
3301 {
3302     hwaddr addr1, l;
3303     MemoryRegion *mr;
3304 
3305     l = len;
3306     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3307                                         MEMTXATTRS_UNSPECIFIED);
3308     return flatview_read_continue(cache->fv,
3309                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3310                                   addr1, l, mr);
3311 }
3312 
3313 /* Called from RCU critical section. address_space_write_cached uses this
3314  * out of line function when the target is an MMIO or IOMMU region.
3315  */
3316 MemTxResult
3317 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3318                                     const void *buf, hwaddr len)
3319 {
3320     hwaddr addr1, l;
3321     MemoryRegion *mr;
3322 
3323     l = len;
3324     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3325                                         MEMTXATTRS_UNSPECIFIED);
3326     return flatview_write_continue(cache->fv,
3327                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3328                                    addr1, l, mr);
3329 }
3330 
3331 #define ARG1_DECL                MemoryRegionCache *cache
3332 #define ARG1                     cache
3333 #define SUFFIX                   _cached_slow
3334 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3335 #define RCU_READ_LOCK()          ((void)0)
3336 #define RCU_READ_UNLOCK()        ((void)0)
3337 #include "memory_ldst.c.inc"
3338 
3339 /* virtual memory access for debug (includes writing to ROM) */
3340 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3341                         void *ptr, size_t len, bool is_write)
3342 {
3343     hwaddr phys_addr;
3344     vaddr l, page;
3345     uint8_t *buf = ptr;
3346 
3347     cpu_synchronize_state(cpu);
3348     while (len > 0) {
3349         int asidx;
3350         MemTxAttrs attrs;
3351         MemTxResult res;
3352 
3353         page = addr & TARGET_PAGE_MASK;
3354         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3355         asidx = cpu_asidx_from_attrs(cpu, attrs);
3356         /* if no physical page mapped, return an error */
3357         if (phys_addr == -1)
3358             return -1;
3359         l = (page + TARGET_PAGE_SIZE) - addr;
3360         if (l > len)
3361             l = len;
3362         phys_addr += (addr & ~TARGET_PAGE_MASK);
3363         if (is_write) {
3364             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3365                                           attrs, buf, l);
3366         } else {
3367             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3368                                      attrs, buf, l);
3369         }
3370         if (res != MEMTX_OK) {
3371             return -1;
3372         }
3373         len -= l;
3374         buf += l;
3375         addr += l;
3376     }
3377     return 0;
3378 }
3379 
3380 /*
3381  * Allows code that needs to deal with migration bitmaps etc to still be built
3382  * target independent.
3383  */
3384 size_t qemu_target_page_size(void)
3385 {
3386     return TARGET_PAGE_SIZE;
3387 }
3388 
3389 int qemu_target_page_mask(void)
3390 {
3391     return TARGET_PAGE_MASK;
3392 }
3393 
3394 int qemu_target_page_bits(void)
3395 {
3396     return TARGET_PAGE_BITS;
3397 }
3398 
3399 int qemu_target_page_bits_min(void)
3400 {
3401     return TARGET_PAGE_BITS_MIN;
3402 }
3403 
3404 /* Convert target pages to MiB (2**20). */
3405 size_t qemu_target_pages_to_MiB(size_t pages)
3406 {
3407     int page_bits = TARGET_PAGE_BITS;
3408 
3409     /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3410     g_assert(page_bits < 20);
3411 
3412     return pages >> (20 - page_bits);
3413 }
3414 
3415 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3416 {
3417     MemoryRegion*mr;
3418     hwaddr l = 1;
3419 
3420     RCU_READ_LOCK_GUARD();
3421     mr = address_space_translate(&address_space_memory,
3422                                  phys_addr, &phys_addr, &l, false,
3423                                  MEMTXATTRS_UNSPECIFIED);
3424 
3425     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3426 }
3427 
3428 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3429 {
3430     RAMBlock *block;
3431     int ret = 0;
3432 
3433     RCU_READ_LOCK_GUARD();
3434     RAMBLOCK_FOREACH(block) {
3435         ret = func(block, opaque);
3436         if (ret) {
3437             break;
3438         }
3439     }
3440     return ret;
3441 }
3442 
3443 /*
3444  * Unmap pages of memory from start to start+length such that
3445  * they a) read as 0, b) Trigger whatever fault mechanism
3446  * the OS provides for postcopy.
3447  * The pages must be unmapped by the end of the function.
3448  * Returns: 0 on success, none-0 on failure
3449  *
3450  */
3451 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3452 {
3453     int ret = -1;
3454 
3455     uint8_t *host_startaddr = rb->host + start;
3456 
3457     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3458         error_report("ram_block_discard_range: Unaligned start address: %p",
3459                      host_startaddr);
3460         goto err;
3461     }
3462 
3463     if ((start + length) <= rb->max_length) {
3464         bool need_madvise, need_fallocate;
3465         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3466             error_report("ram_block_discard_range: Unaligned length: %zx",
3467                          length);
3468             goto err;
3469         }
3470 
3471         errno = ENOTSUP; /* If we are missing MADVISE etc */
3472 
3473         /* The logic here is messy;
3474          *    madvise DONTNEED fails for hugepages
3475          *    fallocate works on hugepages and shmem
3476          *    shared anonymous memory requires madvise REMOVE
3477          */
3478         need_madvise = (rb->page_size == qemu_host_page_size);
3479         need_fallocate = rb->fd != -1;
3480         if (need_fallocate) {
3481             /* For a file, this causes the area of the file to be zero'd
3482              * if read, and for hugetlbfs also causes it to be unmapped
3483              * so a userfault will trigger.
3484              */
3485 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3486             /*
3487              * fallocate() will fail with readonly files. Let's print a
3488              * proper error message.
3489              */
3490             if (rb->flags & RAM_READONLY_FD) {
3491                 error_report("ram_block_discard_range: Discarding RAM"
3492                              " with readonly files is not supported");
3493                 goto err;
3494 
3495             }
3496             /*
3497              * We'll discard data from the actual file, even though we only
3498              * have a MAP_PRIVATE mapping, possibly messing with other
3499              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3500              * change that behavior whithout violating the promised
3501              * semantics of ram_block_discard_range().
3502              *
3503              * Only warn, because it works as long as nobody else uses that
3504              * file.
3505              */
3506             if (!qemu_ram_is_shared(rb)) {
3507                 warn_report_once("ram_block_discard_range: Discarding RAM"
3508                                  " in private file mappings is possibly"
3509                                  " dangerous, because it will modify the"
3510                                  " underlying file and will affect other"
3511                                  " users of the file");
3512             }
3513 
3514             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3515                             start, length);
3516             if (ret) {
3517                 ret = -errno;
3518                 error_report("ram_block_discard_range: Failed to fallocate "
3519                              "%s:%" PRIx64 " +%zx (%d)",
3520                              rb->idstr, start, length, ret);
3521                 goto err;
3522             }
3523 #else
3524             ret = -ENOSYS;
3525             error_report("ram_block_discard_range: fallocate not available/file"
3526                          "%s:%" PRIx64 " +%zx (%d)",
3527                          rb->idstr, start, length, ret);
3528             goto err;
3529 #endif
3530         }
3531         if (need_madvise) {
3532             /* For normal RAM this causes it to be unmapped,
3533              * for shared memory it causes the local mapping to disappear
3534              * and to fall back on the file contents (which we just
3535              * fallocate'd away).
3536              */
3537 #if defined(CONFIG_MADVISE)
3538             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3539                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3540             } else {
3541                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3542             }
3543             if (ret) {
3544                 ret = -errno;
3545                 error_report("ram_block_discard_range: Failed to discard range "
3546                              "%s:%" PRIx64 " +%zx (%d)",
3547                              rb->idstr, start, length, ret);
3548                 goto err;
3549             }
3550 #else
3551             ret = -ENOSYS;
3552             error_report("ram_block_discard_range: MADVISE not available"
3553                          "%s:%" PRIx64 " +%zx (%d)",
3554                          rb->idstr, start, length, ret);
3555             goto err;
3556 #endif
3557         }
3558         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3559                                       need_madvise, need_fallocate, ret);
3560     } else {
3561         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3562                      "/%zx/" RAM_ADDR_FMT")",
3563                      rb->idstr, start, length, rb->max_length);
3564     }
3565 
3566 err:
3567     return ret;
3568 }
3569 
3570 bool ramblock_is_pmem(RAMBlock *rb)
3571 {
3572     return rb->flags & RAM_PMEM;
3573 }
3574 
3575 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3576 {
3577     if (start == end - 1) {
3578         qemu_printf("\t%3d      ", start);
3579     } else {
3580         qemu_printf("\t%3d..%-3d ", start, end - 1);
3581     }
3582     qemu_printf(" skip=%d ", skip);
3583     if (ptr == PHYS_MAP_NODE_NIL) {
3584         qemu_printf(" ptr=NIL");
3585     } else if (!skip) {
3586         qemu_printf(" ptr=#%d", ptr);
3587     } else {
3588         qemu_printf(" ptr=[%d]", ptr);
3589     }
3590     qemu_printf("\n");
3591 }
3592 
3593 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3594                            int128_sub((size), int128_one())) : 0)
3595 
3596 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3597 {
3598     int i;
3599 
3600     qemu_printf("  Dispatch\n");
3601     qemu_printf("    Physical sections\n");
3602 
3603     for (i = 0; i < d->map.sections_nb; ++i) {
3604         MemoryRegionSection *s = d->map.sections + i;
3605         const char *names[] = { " [unassigned]", " [not dirty]",
3606                                 " [ROM]", " [watch]" };
3607 
3608         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3609                     " %s%s%s%s%s",
3610             i,
3611             s->offset_within_address_space,
3612             s->offset_within_address_space + MR_SIZE(s->size),
3613             s->mr->name ? s->mr->name : "(noname)",
3614             i < ARRAY_SIZE(names) ? names[i] : "",
3615             s->mr == root ? " [ROOT]" : "",
3616             s == d->mru_section ? " [MRU]" : "",
3617             s->mr->is_iommu ? " [iommu]" : "");
3618 
3619         if (s->mr->alias) {
3620             qemu_printf(" alias=%s", s->mr->alias->name ?
3621                     s->mr->alias->name : "noname");
3622         }
3623         qemu_printf("\n");
3624     }
3625 
3626     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3627                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3628     for (i = 0; i < d->map.nodes_nb; ++i) {
3629         int j, jprev;
3630         PhysPageEntry prev;
3631         Node *n = d->map.nodes + i;
3632 
3633         qemu_printf("      [%d]\n", i);
3634 
3635         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3636             PhysPageEntry *pe = *n + j;
3637 
3638             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3639                 continue;
3640             }
3641 
3642             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3643 
3644             jprev = j;
3645             prev = *pe;
3646         }
3647 
3648         if (jprev != ARRAY_SIZE(*n)) {
3649             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3650         }
3651     }
3652 }
3653 
3654 /* Require any discards to work. */
3655 static unsigned int ram_block_discard_required_cnt;
3656 /* Require only coordinated discards to work. */
3657 static unsigned int ram_block_coordinated_discard_required_cnt;
3658 /* Disable any discards. */
3659 static unsigned int ram_block_discard_disabled_cnt;
3660 /* Disable only uncoordinated discards. */
3661 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3662 static QemuMutex ram_block_discard_disable_mutex;
3663 
3664 static void ram_block_discard_disable_mutex_lock(void)
3665 {
3666     static gsize initialized;
3667 
3668     if (g_once_init_enter(&initialized)) {
3669         qemu_mutex_init(&ram_block_discard_disable_mutex);
3670         g_once_init_leave(&initialized, 1);
3671     }
3672     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3673 }
3674 
3675 static void ram_block_discard_disable_mutex_unlock(void)
3676 {
3677     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3678 }
3679 
3680 int ram_block_discard_disable(bool state)
3681 {
3682     int ret = 0;
3683 
3684     ram_block_discard_disable_mutex_lock();
3685     if (!state) {
3686         ram_block_discard_disabled_cnt--;
3687     } else if (ram_block_discard_required_cnt ||
3688                ram_block_coordinated_discard_required_cnt) {
3689         ret = -EBUSY;
3690     } else {
3691         ram_block_discard_disabled_cnt++;
3692     }
3693     ram_block_discard_disable_mutex_unlock();
3694     return ret;
3695 }
3696 
3697 int ram_block_uncoordinated_discard_disable(bool state)
3698 {
3699     int ret = 0;
3700 
3701     ram_block_discard_disable_mutex_lock();
3702     if (!state) {
3703         ram_block_uncoordinated_discard_disabled_cnt--;
3704     } else if (ram_block_discard_required_cnt) {
3705         ret = -EBUSY;
3706     } else {
3707         ram_block_uncoordinated_discard_disabled_cnt++;
3708     }
3709     ram_block_discard_disable_mutex_unlock();
3710     return ret;
3711 }
3712 
3713 int ram_block_discard_require(bool state)
3714 {
3715     int ret = 0;
3716 
3717     ram_block_discard_disable_mutex_lock();
3718     if (!state) {
3719         ram_block_discard_required_cnt--;
3720     } else if (ram_block_discard_disabled_cnt ||
3721                ram_block_uncoordinated_discard_disabled_cnt) {
3722         ret = -EBUSY;
3723     } else {
3724         ram_block_discard_required_cnt++;
3725     }
3726     ram_block_discard_disable_mutex_unlock();
3727     return ret;
3728 }
3729 
3730 int ram_block_coordinated_discard_require(bool state)
3731 {
3732     int ret = 0;
3733 
3734     ram_block_discard_disable_mutex_lock();
3735     if (!state) {
3736         ram_block_coordinated_discard_required_cnt--;
3737     } else if (ram_block_discard_disabled_cnt) {
3738         ret = -EBUSY;
3739     } else {
3740         ram_block_coordinated_discard_required_cnt++;
3741     }
3742     ram_block_discard_disable_mutex_unlock();
3743     return ret;
3744 }
3745 
3746 bool ram_block_discard_is_disabled(void)
3747 {
3748     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3749            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3750 }
3751 
3752 bool ram_block_discard_is_required(void)
3753 {
3754     return qatomic_read(&ram_block_discard_required_cnt) ||
3755            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3756 }
3757