xref: /qemu/system/physmem.c (revision 4b870dc4d0c0895859d34d14ce0272a4bcbccf78)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d =
684         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 
686     for (;;) {
687         section = address_space_translate_internal(d, addr, &addr, plen, false);
688 
689         iommu_mr = memory_region_get_iommu(section->mr);
690         if (!iommu_mr) {
691             break;
692         }
693 
694         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 
696         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699          * doesn't short-cut its translation table walk.
700          */
701         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703                 | (addr & iotlb.addr_mask));
704         /* Update the caller's prot bits to remove permissions the IOMMU
705          * is giving us a failure response for. If we get down to no
706          * permissions left at all we can give up now.
707          */
708         if (!(iotlb.perm & IOMMU_RO)) {
709             *prot &= ~(PAGE_READ | PAGE_EXEC);
710         }
711         if (!(iotlb.perm & IOMMU_WO)) {
712             *prot &= ~PAGE_WRITE;
713         }
714 
715         if (!*prot) {
716             goto translate_fail;
717         }
718 
719         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720     }
721 
722     assert(!memory_region_is_iommu(section->mr));
723     *xlat = addr;
724     return section;
725 
726 translate_fail:
727     /*
728      * We should be given a page-aligned address -- certainly
729      * tlb_set_page_with_attrs() does so.  The page offset of xlat
730      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731      * The page portion of xlat will be logged by memory_region_access_valid()
732      * when this memory access is rejected, so use the original untranslated
733      * physical address.
734      */
735     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736     *xlat = orig_addr;
737     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739 
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741                             const char *prefix, MemoryRegion *mr)
742 {
743     CPUAddressSpace *newas;
744     AddressSpace *as = g_new0(AddressSpace, 1);
745     char *as_name;
746 
747     assert(mr);
748     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749     address_space_init(as, mr, as_name);
750     g_free(as_name);
751 
752     /* Target code should have set num_ases before calling us */
753     assert(asidx < cpu->num_ases);
754 
755     if (asidx == 0) {
756         /* address space 0 gets the convenience alias */
757         cpu->as = as;
758     }
759 
760     /* KVM cannot currently support multiple address spaces. */
761     assert(asidx == 0 || !kvm_enabled());
762 
763     if (!cpu->cpu_ases) {
764         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765     }
766 
767     newas = &cpu->cpu_ases[asidx];
768     newas->cpu = cpu;
769     newas->as = as;
770     if (tcg_enabled()) {
771         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772         newas->tcg_as_listener.commit = tcg_commit;
773         newas->tcg_as_listener.name = "tcg";
774         memory_listener_register(&newas->tcg_as_listener, as);
775     }
776 }
777 
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780     /* Return the AddressSpace corresponding to the specified index */
781     return cpu->cpu_ases[asidx].as;
782 }
783 
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 {
787     RAMBlock *block;
788 
789     block = qatomic_rcu_read(&ram_list.mru_block);
790     if (block && addr - block->offset < block->max_length) {
791         return block;
792     }
793     RAMBLOCK_FOREACH(block) {
794         if (addr - block->offset < block->max_length) {
795             goto found;
796         }
797     }
798 
799     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800     abort();
801 
802 found:
803     /* It is safe to write mru_block outside the iothread lock.  This
804      * is what happens:
805      *
806      *     mru_block = xxx
807      *     rcu_read_unlock()
808      *                                        xxx removed from list
809      *                  rcu_read_lock()
810      *                  read mru_block
811      *                                        mru_block = NULL;
812      *                                        call_rcu(reclaim_ramblock, xxx);
813      *                  rcu_read_unlock()
814      *
815      * qatomic_rcu_set is not needed here.  The block was already published
816      * when it was placed into the list.  Here we're just making an extra
817      * copy of the pointer.
818      */
819     ram_list.mru_block = block;
820     return block;
821 }
822 
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 {
825     CPUState *cpu;
826     ram_addr_t start1;
827     RAMBlock *block;
828     ram_addr_t end;
829 
830     assert(tcg_enabled());
831     end = TARGET_PAGE_ALIGN(start + length);
832     start &= TARGET_PAGE_MASK;
833 
834     RCU_READ_LOCK_GUARD();
835     block = qemu_get_ram_block(start);
836     assert(block == qemu_get_ram_block(end - 1));
837     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838     CPU_FOREACH(cpu) {
839         tlb_reset_dirty(cpu, start1, length);
840     }
841 }
842 
843 /* Note: start and end must be within the same ram block.  */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845                                               ram_addr_t length,
846                                               unsigned client)
847 {
848     DirtyMemoryBlocks *blocks;
849     unsigned long end, page, start_page;
850     bool dirty = false;
851     RAMBlock *ramblock;
852     uint64_t mr_offset, mr_size;
853 
854     if (length == 0) {
855         return false;
856     }
857 
858     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859     start_page = start >> TARGET_PAGE_BITS;
860     page = start_page;
861 
862     WITH_RCU_READ_LOCK_GUARD() {
863         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864         ramblock = qemu_get_ram_block(start);
865         /* Range sanity check on the ramblock */
866         assert(start >= ramblock->offset &&
867                start + length <= ramblock->offset + ramblock->used_length);
868 
869         while (page < end) {
870             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872             unsigned long num = MIN(end - page,
873                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
874 
875             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876                                                   offset, num);
877             page += num;
878         }
879 
880         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881         mr_size = (end - start_page) << TARGET_PAGE_BITS;
882         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
883     }
884 
885     if (dirty && tcg_enabled()) {
886         tlb_reset_dirty_range_all(start, length);
887     }
888 
889     return dirty;
890 }
891 
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 {
895     DirtyMemoryBlocks *blocks;
896     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
900     DirtyBitmapSnapshot *snap;
901     unsigned long page, end, dest;
902 
903     snap = g_malloc0(sizeof(*snap) +
904                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
905     snap->start = first;
906     snap->end   = last;
907 
908     page = first >> TARGET_PAGE_BITS;
909     end  = last  >> TARGET_PAGE_BITS;
910     dest = 0;
911 
912     WITH_RCU_READ_LOCK_GUARD() {
913         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914 
915         while (page < end) {
916             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918             unsigned long num = MIN(end - page,
919                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
920 
921             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
923             offset >>= BITS_PER_LEVEL;
924 
925             bitmap_copy_and_clear_atomic(snap->dirty + dest,
926                                          blocks->blocks[idx] + offset,
927                                          num);
928             page += num;
929             dest += num >> BITS_PER_LEVEL;
930         }
931     }
932 
933     if (tcg_enabled()) {
934         tlb_reset_dirty_range_all(start, length);
935     }
936 
937     memory_region_clear_dirty_bitmap(mr, offset, length);
938 
939     return snap;
940 }
941 
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943                                             ram_addr_t start,
944                                             ram_addr_t length)
945 {
946     unsigned long page, end;
947 
948     assert(start >= snap->start);
949     assert(start + length <= snap->end);
950 
951     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952     page = (start - snap->start) >> TARGET_PAGE_BITS;
953 
954     while (page < end) {
955         if (test_bit(page, snap->dirty)) {
956             return true;
957         }
958         page++;
959     }
960     return false;
961 }
962 
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965                                        MemoryRegionSection *section)
966 {
967     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968     return section - d->map.sections;
969 }
970 
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972                             uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974 
975 static uint16_t phys_section_add(PhysPageMap *map,
976                                  MemoryRegionSection *section)
977 {
978     /* The physical section number is ORed with a page-aligned
979      * pointer to produce the iotlb entries.  Thus it should
980      * never overflow into the page-aligned value.
981      */
982     assert(map->sections_nb < TARGET_PAGE_SIZE);
983 
984     if (map->sections_nb == map->sections_nb_alloc) {
985         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986         map->sections = g_renew(MemoryRegionSection, map->sections,
987                                 map->sections_nb_alloc);
988     }
989     map->sections[map->sections_nb] = *section;
990     memory_region_ref(section->mr);
991     return map->sections_nb++;
992 }
993 
994 static void phys_section_destroy(MemoryRegion *mr)
995 {
996     bool have_sub_page = mr->subpage;
997 
998     memory_region_unref(mr);
999 
1000     if (have_sub_page) {
1001         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002         object_unref(OBJECT(&subpage->iomem));
1003         g_free(subpage);
1004     }
1005 }
1006 
1007 static void phys_sections_free(PhysPageMap *map)
1008 {
1009     while (map->sections_nb > 0) {
1010         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011         phys_section_destroy(section->mr);
1012     }
1013     g_free(map->sections);
1014     g_free(map->nodes);
1015 }
1016 
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 {
1019     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020     subpage_t *subpage;
1021     hwaddr base = section->offset_within_address_space
1022         & TARGET_PAGE_MASK;
1023     MemoryRegionSection *existing = phys_page_find(d, base);
1024     MemoryRegionSection subsection = {
1025         .offset_within_address_space = base,
1026         .size = int128_make64(TARGET_PAGE_SIZE),
1027     };
1028     hwaddr start, end;
1029 
1030     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031 
1032     if (!(existing->mr->subpage)) {
1033         subpage = subpage_init(fv, base);
1034         subsection.fv = fv;
1035         subsection.mr = &subpage->iomem;
1036         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037                       phys_section_add(&d->map, &subsection));
1038     } else {
1039         subpage = container_of(existing->mr, subpage_t, iomem);
1040     }
1041     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042     end = start + int128_get64(section->size) - 1;
1043     subpage_register(subpage, start, end,
1044                      phys_section_add(&d->map, section));
1045 }
1046 
1047 
1048 static void register_multipage(FlatView *fv,
1049                                MemoryRegionSection *section)
1050 {
1051     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052     hwaddr start_addr = section->offset_within_address_space;
1053     uint16_t section_index = phys_section_add(&d->map, section);
1054     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055                                                     TARGET_PAGE_BITS));
1056 
1057     assert(num_pages);
1058     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059 }
1060 
1061 /*
1062  * The range in *section* may look like this:
1063  *
1064  *      |s|PPPPPPP|s|
1065  *
1066  * where s stands for subpage and P for page.
1067  */
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 {
1070     MemoryRegionSection remain = *section;
1071     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072 
1073     /* register first subpage */
1074     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076                         - remain.offset_within_address_space;
1077 
1078         MemoryRegionSection now = remain;
1079         now.size = int128_min(int128_make64(left), now.size);
1080         register_subpage(fv, &now);
1081         if (int128_eq(remain.size, now.size)) {
1082             return;
1083         }
1084         remain.size = int128_sub(remain.size, now.size);
1085         remain.offset_within_address_space += int128_get64(now.size);
1086         remain.offset_within_region += int128_get64(now.size);
1087     }
1088 
1089     /* register whole pages */
1090     if (int128_ge(remain.size, page_size)) {
1091         MemoryRegionSection now = remain;
1092         now.size = int128_and(now.size, int128_neg(page_size));
1093         register_multipage(fv, &now);
1094         if (int128_eq(remain.size, now.size)) {
1095             return;
1096         }
1097         remain.size = int128_sub(remain.size, now.size);
1098         remain.offset_within_address_space += int128_get64(now.size);
1099         remain.offset_within_region += int128_get64(now.size);
1100     }
1101 
1102     /* register last subpage */
1103     register_subpage(fv, &remain);
1104 }
1105 
1106 void qemu_flush_coalesced_mmio_buffer(void)
1107 {
1108     if (kvm_enabled())
1109         kvm_flush_coalesced_mmio_buffer();
1110 }
1111 
1112 void qemu_mutex_lock_ramlist(void)
1113 {
1114     qemu_mutex_lock(&ram_list.mutex);
1115 }
1116 
1117 void qemu_mutex_unlock_ramlist(void)
1118 {
1119     qemu_mutex_unlock(&ram_list.mutex);
1120 }
1121 
1122 GString *ram_block_format(void)
1123 {
1124     RAMBlock *block;
1125     char *psize;
1126     GString *buf = g_string_new("");
1127 
1128     RCU_READ_LOCK_GUARD();
1129     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1130                            "Block Name", "PSize", "Offset", "Used", "Total",
1131                            "HVA", "RO");
1132 
1133     RAMBLOCK_FOREACH(block) {
1134         psize = size_to_str(block->page_size);
1135         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1136                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1137                                block->idstr, psize,
1138                                (uint64_t)block->offset,
1139                                (uint64_t)block->used_length,
1140                                (uint64_t)block->max_length,
1141                                (uint64_t)(uintptr_t)block->host,
1142                                block->mr->readonly ? "ro" : "rw");
1143 
1144         g_free(psize);
1145     }
1146 
1147     return buf;
1148 }
1149 
1150 static int find_min_backend_pagesize(Object *obj, void *opaque)
1151 {
1152     long *hpsize_min = opaque;
1153 
1154     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1155         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1156         long hpsize = host_memory_backend_pagesize(backend);
1157 
1158         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1159             *hpsize_min = hpsize;
1160         }
1161     }
1162 
1163     return 0;
1164 }
1165 
1166 static int find_max_backend_pagesize(Object *obj, void *opaque)
1167 {
1168     long *hpsize_max = opaque;
1169 
1170     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1171         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1172         long hpsize = host_memory_backend_pagesize(backend);
1173 
1174         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1175             *hpsize_max = hpsize;
1176         }
1177     }
1178 
1179     return 0;
1180 }
1181 
1182 /*
1183  * TODO: We assume right now that all mapped host memory backends are
1184  * used as RAM, however some might be used for different purposes.
1185  */
1186 long qemu_minrampagesize(void)
1187 {
1188     long hpsize = LONG_MAX;
1189     Object *memdev_root = object_resolve_path("/objects", NULL);
1190 
1191     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1192     return hpsize;
1193 }
1194 
1195 long qemu_maxrampagesize(void)
1196 {
1197     long pagesize = 0;
1198     Object *memdev_root = object_resolve_path("/objects", NULL);
1199 
1200     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1201     return pagesize;
1202 }
1203 
1204 #ifdef CONFIG_POSIX
1205 static int64_t get_file_size(int fd)
1206 {
1207     int64_t size;
1208 #if defined(__linux__)
1209     struct stat st;
1210 
1211     if (fstat(fd, &st) < 0) {
1212         return -errno;
1213     }
1214 
1215     /* Special handling for devdax character devices */
1216     if (S_ISCHR(st.st_mode)) {
1217         g_autofree char *subsystem_path = NULL;
1218         g_autofree char *subsystem = NULL;
1219 
1220         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1221                                          major(st.st_rdev), minor(st.st_rdev));
1222         subsystem = g_file_read_link(subsystem_path, NULL);
1223 
1224         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1225             g_autofree char *size_path = NULL;
1226             g_autofree char *size_str = NULL;
1227 
1228             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1229                                     major(st.st_rdev), minor(st.st_rdev));
1230 
1231             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1232                 return g_ascii_strtoll(size_str, NULL, 0);
1233             }
1234         }
1235     }
1236 #endif /* defined(__linux__) */
1237 
1238     /* st.st_size may be zero for special files yet lseek(2) works */
1239     size = lseek(fd, 0, SEEK_END);
1240     if (size < 0) {
1241         return -errno;
1242     }
1243     return size;
1244 }
1245 
1246 static int64_t get_file_align(int fd)
1247 {
1248     int64_t align = -1;
1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1250     struct stat st;
1251 
1252     if (fstat(fd, &st) < 0) {
1253         return -errno;
1254     }
1255 
1256     /* Special handling for devdax character devices */
1257     if (S_ISCHR(st.st_mode)) {
1258         g_autofree char *path = NULL;
1259         g_autofree char *rpath = NULL;
1260         struct daxctl_ctx *ctx;
1261         struct daxctl_region *region;
1262         int rc = 0;
1263 
1264         path = g_strdup_printf("/sys/dev/char/%d:%d",
1265                     major(st.st_rdev), minor(st.st_rdev));
1266         rpath = realpath(path, NULL);
1267         if (!rpath) {
1268             return -errno;
1269         }
1270 
1271         rc = daxctl_new(&ctx);
1272         if (rc) {
1273             return -1;
1274         }
1275 
1276         daxctl_region_foreach(ctx, region) {
1277             if (strstr(rpath, daxctl_region_get_path(region))) {
1278                 align = daxctl_region_get_align(region);
1279                 break;
1280             }
1281         }
1282         daxctl_unref(ctx);
1283     }
1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1285 
1286     return align;
1287 }
1288 
1289 static int file_ram_open(const char *path,
1290                          const char *region_name,
1291                          bool readonly,
1292                          bool *created,
1293                          Error **errp)
1294 {
1295     char *filename;
1296     char *sanitized_name;
1297     char *c;
1298     int fd = -1;
1299 
1300     *created = false;
1301     for (;;) {
1302         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1303         if (fd >= 0) {
1304             /* @path names an existing file, use it */
1305             break;
1306         }
1307         if (errno == ENOENT) {
1308             /* @path names a file that doesn't exist, create it */
1309             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1310             if (fd >= 0) {
1311                 *created = true;
1312                 break;
1313             }
1314         } else if (errno == EISDIR) {
1315             /* @path names a directory, create a file there */
1316             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1317             sanitized_name = g_strdup(region_name);
1318             for (c = sanitized_name; *c != '\0'; c++) {
1319                 if (*c == '/') {
1320                     *c = '_';
1321                 }
1322             }
1323 
1324             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1325                                        sanitized_name);
1326             g_free(sanitized_name);
1327 
1328             fd = mkstemp(filename);
1329             if (fd >= 0) {
1330                 unlink(filename);
1331                 g_free(filename);
1332                 break;
1333             }
1334             g_free(filename);
1335         }
1336         if (errno != EEXIST && errno != EINTR) {
1337             error_setg_errno(errp, errno,
1338                              "can't open backing store %s for guest RAM",
1339                              path);
1340             return -1;
1341         }
1342         /*
1343          * Try again on EINTR and EEXIST.  The latter happens when
1344          * something else creates the file between our two open().
1345          */
1346     }
1347 
1348     return fd;
1349 }
1350 
1351 static void *file_ram_alloc(RAMBlock *block,
1352                             ram_addr_t memory,
1353                             int fd,
1354                             bool readonly,
1355                             bool truncate,
1356                             off_t offset,
1357                             Error **errp)
1358 {
1359     uint32_t qemu_map_flags;
1360     void *area;
1361 
1362     block->page_size = qemu_fd_getpagesize(fd);
1363     if (block->mr->align % block->page_size) {
1364         error_setg(errp, "alignment 0x%" PRIx64
1365                    " must be multiples of page size 0x%zx",
1366                    block->mr->align, block->page_size);
1367         return NULL;
1368     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1369         error_setg(errp, "alignment 0x%" PRIx64
1370                    " must be a power of two", block->mr->align);
1371         return NULL;
1372     } else if (offset % block->page_size) {
1373         error_setg(errp, "offset 0x%" PRIx64
1374                    " must be multiples of page size 0x%zx",
1375                    offset, block->page_size);
1376         return NULL;
1377     }
1378     block->mr->align = MAX(block->page_size, block->mr->align);
1379 #if defined(__s390x__)
1380     if (kvm_enabled()) {
1381         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1382     }
1383 #endif
1384 
1385     if (memory < block->page_size) {
1386         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1387                    "or larger than page size 0x%zx",
1388                    memory, block->page_size);
1389         return NULL;
1390     }
1391 
1392     memory = ROUND_UP(memory, block->page_size);
1393 
1394     /*
1395      * ftruncate is not supported by hugetlbfs in older
1396      * hosts, so don't bother bailing out on errors.
1397      * If anything goes wrong with it under other filesystems,
1398      * mmap will fail.
1399      *
1400      * Do not truncate the non-empty backend file to avoid corrupting
1401      * the existing data in the file. Disabling shrinking is not
1402      * enough. For example, the current vNVDIMM implementation stores
1403      * the guest NVDIMM labels at the end of the backend file. If the
1404      * backend file is later extended, QEMU will not be able to find
1405      * those labels. Therefore, extending the non-empty backend file
1406      * is disabled as well.
1407      */
1408     if (truncate && ftruncate(fd, offset + memory)) {
1409         perror("ftruncate");
1410     }
1411 
1412     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1413     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1414     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1415     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1416     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1417     if (area == MAP_FAILED) {
1418         error_setg_errno(errp, errno,
1419                          "unable to map backing store for guest RAM");
1420         return NULL;
1421     }
1422 
1423     block->fd = fd;
1424     block->fd_offset = offset;
1425     return area;
1426 }
1427 #endif
1428 
1429 /* Allocate space within the ram_addr_t space that governs the
1430  * dirty bitmaps.
1431  * Called with the ramlist lock held.
1432  */
1433 static ram_addr_t find_ram_offset(ram_addr_t size)
1434 {
1435     RAMBlock *block, *next_block;
1436     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1437 
1438     assert(size != 0); /* it would hand out same offset multiple times */
1439 
1440     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1441         return 0;
1442     }
1443 
1444     RAMBLOCK_FOREACH(block) {
1445         ram_addr_t candidate, next = RAM_ADDR_MAX;
1446 
1447         /* Align blocks to start on a 'long' in the bitmap
1448          * which makes the bitmap sync'ing take the fast path.
1449          */
1450         candidate = block->offset + block->max_length;
1451         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1452 
1453         /* Search for the closest following block
1454          * and find the gap.
1455          */
1456         RAMBLOCK_FOREACH(next_block) {
1457             if (next_block->offset >= candidate) {
1458                 next = MIN(next, next_block->offset);
1459             }
1460         }
1461 
1462         /* If it fits remember our place and remember the size
1463          * of gap, but keep going so that we might find a smaller
1464          * gap to fill so avoiding fragmentation.
1465          */
1466         if (next - candidate >= size && next - candidate < mingap) {
1467             offset = candidate;
1468             mingap = next - candidate;
1469         }
1470 
1471         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1472     }
1473 
1474     if (offset == RAM_ADDR_MAX) {
1475         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1476                 (uint64_t)size);
1477         abort();
1478     }
1479 
1480     trace_find_ram_offset(size, offset);
1481 
1482     return offset;
1483 }
1484 
1485 static unsigned long last_ram_page(void)
1486 {
1487     RAMBlock *block;
1488     ram_addr_t last = 0;
1489 
1490     RCU_READ_LOCK_GUARD();
1491     RAMBLOCK_FOREACH(block) {
1492         last = MAX(last, block->offset + block->max_length);
1493     }
1494     return last >> TARGET_PAGE_BITS;
1495 }
1496 
1497 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1498 {
1499     int ret;
1500 
1501     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1502     if (!machine_dump_guest_core(current_machine)) {
1503         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1504         if (ret) {
1505             perror("qemu_madvise");
1506             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1507                             "but dump_guest_core=off specified\n");
1508         }
1509     }
1510 }
1511 
1512 const char *qemu_ram_get_idstr(RAMBlock *rb)
1513 {
1514     return rb->idstr;
1515 }
1516 
1517 void *qemu_ram_get_host_addr(RAMBlock *rb)
1518 {
1519     return rb->host;
1520 }
1521 
1522 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1523 {
1524     return rb->offset;
1525 }
1526 
1527 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1528 {
1529     return rb->used_length;
1530 }
1531 
1532 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1533 {
1534     return rb->max_length;
1535 }
1536 
1537 bool qemu_ram_is_shared(RAMBlock *rb)
1538 {
1539     return rb->flags & RAM_SHARED;
1540 }
1541 
1542 bool qemu_ram_is_noreserve(RAMBlock *rb)
1543 {
1544     return rb->flags & RAM_NORESERVE;
1545 }
1546 
1547 /* Note: Only set at the start of postcopy */
1548 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1549 {
1550     return rb->flags & RAM_UF_ZEROPAGE;
1551 }
1552 
1553 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1554 {
1555     rb->flags |= RAM_UF_ZEROPAGE;
1556 }
1557 
1558 bool qemu_ram_is_migratable(RAMBlock *rb)
1559 {
1560     return rb->flags & RAM_MIGRATABLE;
1561 }
1562 
1563 void qemu_ram_set_migratable(RAMBlock *rb)
1564 {
1565     rb->flags |= RAM_MIGRATABLE;
1566 }
1567 
1568 void qemu_ram_unset_migratable(RAMBlock *rb)
1569 {
1570     rb->flags &= ~RAM_MIGRATABLE;
1571 }
1572 
1573 int qemu_ram_get_fd(RAMBlock *rb)
1574 {
1575     return rb->fd;
1576 }
1577 
1578 /* Called with iothread lock held.  */
1579 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1580 {
1581     RAMBlock *block;
1582 
1583     assert(new_block);
1584     assert(!new_block->idstr[0]);
1585 
1586     if (dev) {
1587         char *id = qdev_get_dev_path(dev);
1588         if (id) {
1589             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1590             g_free(id);
1591         }
1592     }
1593     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1594 
1595     RCU_READ_LOCK_GUARD();
1596     RAMBLOCK_FOREACH(block) {
1597         if (block != new_block &&
1598             !strcmp(block->idstr, new_block->idstr)) {
1599             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1600                     new_block->idstr);
1601             abort();
1602         }
1603     }
1604 }
1605 
1606 /* Called with iothread lock held.  */
1607 void qemu_ram_unset_idstr(RAMBlock *block)
1608 {
1609     /* FIXME: arch_init.c assumes that this is not called throughout
1610      * migration.  Ignore the problem since hot-unplug during migration
1611      * does not work anyway.
1612      */
1613     if (block) {
1614         memset(block->idstr, 0, sizeof(block->idstr));
1615     }
1616 }
1617 
1618 size_t qemu_ram_pagesize(RAMBlock *rb)
1619 {
1620     return rb->page_size;
1621 }
1622 
1623 /* Returns the largest size of page in use */
1624 size_t qemu_ram_pagesize_largest(void)
1625 {
1626     RAMBlock *block;
1627     size_t largest = 0;
1628 
1629     RAMBLOCK_FOREACH(block) {
1630         largest = MAX(largest, qemu_ram_pagesize(block));
1631     }
1632 
1633     return largest;
1634 }
1635 
1636 static int memory_try_enable_merging(void *addr, size_t len)
1637 {
1638     if (!machine_mem_merge(current_machine)) {
1639         /* disabled by the user */
1640         return 0;
1641     }
1642 
1643     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1644 }
1645 
1646 /*
1647  * Resizing RAM while migrating can result in the migration being canceled.
1648  * Care has to be taken if the guest might have already detected the memory.
1649  *
1650  * As memory core doesn't know how is memory accessed, it is up to
1651  * resize callback to update device state and/or add assertions to detect
1652  * misuse, if necessary.
1653  */
1654 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1655 {
1656     const ram_addr_t oldsize = block->used_length;
1657     const ram_addr_t unaligned_size = newsize;
1658 
1659     assert(block);
1660 
1661     newsize = HOST_PAGE_ALIGN(newsize);
1662 
1663     if (block->used_length == newsize) {
1664         /*
1665          * We don't have to resize the ram block (which only knows aligned
1666          * sizes), however, we have to notify if the unaligned size changed.
1667          */
1668         if (unaligned_size != memory_region_size(block->mr)) {
1669             memory_region_set_size(block->mr, unaligned_size);
1670             if (block->resized) {
1671                 block->resized(block->idstr, unaligned_size, block->host);
1672             }
1673         }
1674         return 0;
1675     }
1676 
1677     if (!(block->flags & RAM_RESIZEABLE)) {
1678         error_setg_errno(errp, EINVAL,
1679                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1680                          " != 0x" RAM_ADDR_FMT, block->idstr,
1681                          newsize, block->used_length);
1682         return -EINVAL;
1683     }
1684 
1685     if (block->max_length < newsize) {
1686         error_setg_errno(errp, EINVAL,
1687                          "Size too large: %s: 0x" RAM_ADDR_FMT
1688                          " > 0x" RAM_ADDR_FMT, block->idstr,
1689                          newsize, block->max_length);
1690         return -EINVAL;
1691     }
1692 
1693     /* Notify before modifying the ram block and touching the bitmaps. */
1694     if (block->host) {
1695         ram_block_notify_resize(block->host, oldsize, newsize);
1696     }
1697 
1698     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1699     block->used_length = newsize;
1700     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1701                                         DIRTY_CLIENTS_ALL);
1702     memory_region_set_size(block->mr, unaligned_size);
1703     if (block->resized) {
1704         block->resized(block->idstr, unaligned_size, block->host);
1705     }
1706     return 0;
1707 }
1708 
1709 /*
1710  * Trigger sync on the given ram block for range [start, start + length]
1711  * with the backing store if one is available.
1712  * Otherwise no-op.
1713  * @Note: this is supposed to be a synchronous op.
1714  */
1715 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1716 {
1717     /* The requested range should fit in within the block range */
1718     g_assert((start + length) <= block->used_length);
1719 
1720 #ifdef CONFIG_LIBPMEM
1721     /* The lack of support for pmem should not block the sync */
1722     if (ramblock_is_pmem(block)) {
1723         void *addr = ramblock_ptr(block, start);
1724         pmem_persist(addr, length);
1725         return;
1726     }
1727 #endif
1728     if (block->fd >= 0) {
1729         /**
1730          * Case there is no support for PMEM or the memory has not been
1731          * specified as persistent (or is not one) - use the msync.
1732          * Less optimal but still achieves the same goal
1733          */
1734         void *addr = ramblock_ptr(block, start);
1735         if (qemu_msync(addr, length, block->fd)) {
1736             warn_report("%s: failed to sync memory range: start: "
1737                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1738                     __func__, start, length);
1739         }
1740     }
1741 }
1742 
1743 /* Called with ram_list.mutex held */
1744 static void dirty_memory_extend(ram_addr_t old_ram_size,
1745                                 ram_addr_t new_ram_size)
1746 {
1747     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1748                                              DIRTY_MEMORY_BLOCK_SIZE);
1749     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1750                                              DIRTY_MEMORY_BLOCK_SIZE);
1751     int i;
1752 
1753     /* Only need to extend if block count increased */
1754     if (new_num_blocks <= old_num_blocks) {
1755         return;
1756     }
1757 
1758     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1759         DirtyMemoryBlocks *old_blocks;
1760         DirtyMemoryBlocks *new_blocks;
1761         int j;
1762 
1763         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1764         new_blocks = g_malloc(sizeof(*new_blocks) +
1765                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1766 
1767         if (old_num_blocks) {
1768             memcpy(new_blocks->blocks, old_blocks->blocks,
1769                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1770         }
1771 
1772         for (j = old_num_blocks; j < new_num_blocks; j++) {
1773             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1774         }
1775 
1776         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1777 
1778         if (old_blocks) {
1779             g_free_rcu(old_blocks, rcu);
1780         }
1781     }
1782 }
1783 
1784 static void ram_block_add(RAMBlock *new_block, Error **errp)
1785 {
1786     const bool noreserve = qemu_ram_is_noreserve(new_block);
1787     const bool shared = qemu_ram_is_shared(new_block);
1788     RAMBlock *block;
1789     RAMBlock *last_block = NULL;
1790     ram_addr_t old_ram_size, new_ram_size;
1791     Error *err = NULL;
1792 
1793     old_ram_size = last_ram_page();
1794 
1795     qemu_mutex_lock_ramlist();
1796     new_block->offset = find_ram_offset(new_block->max_length);
1797 
1798     if (!new_block->host) {
1799         if (xen_enabled()) {
1800             xen_ram_alloc(new_block->offset, new_block->max_length,
1801                           new_block->mr, &err);
1802             if (err) {
1803                 error_propagate(errp, err);
1804                 qemu_mutex_unlock_ramlist();
1805                 return;
1806             }
1807         } else {
1808             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1809                                                   &new_block->mr->align,
1810                                                   shared, noreserve);
1811             if (!new_block->host) {
1812                 error_setg_errno(errp, errno,
1813                                  "cannot set up guest memory '%s'",
1814                                  memory_region_name(new_block->mr));
1815                 qemu_mutex_unlock_ramlist();
1816                 return;
1817             }
1818             memory_try_enable_merging(new_block->host, new_block->max_length);
1819         }
1820     }
1821 
1822     new_ram_size = MAX(old_ram_size,
1823               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1824     if (new_ram_size > old_ram_size) {
1825         dirty_memory_extend(old_ram_size, new_ram_size);
1826     }
1827     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1828      * QLIST (which has an RCU-friendly variant) does not have insertion at
1829      * tail, so save the last element in last_block.
1830      */
1831     RAMBLOCK_FOREACH(block) {
1832         last_block = block;
1833         if (block->max_length < new_block->max_length) {
1834             break;
1835         }
1836     }
1837     if (block) {
1838         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1839     } else if (last_block) {
1840         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1841     } else { /* list is empty */
1842         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1843     }
1844     ram_list.mru_block = NULL;
1845 
1846     /* Write list before version */
1847     smp_wmb();
1848     ram_list.version++;
1849     qemu_mutex_unlock_ramlist();
1850 
1851     cpu_physical_memory_set_dirty_range(new_block->offset,
1852                                         new_block->used_length,
1853                                         DIRTY_CLIENTS_ALL);
1854 
1855     if (new_block->host) {
1856         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1857         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1858         /*
1859          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1860          * Configure it unless the machine is a qtest server, in which case
1861          * KVM is not used and it may be forked (eg for fuzzing purposes).
1862          */
1863         if (!qtest_enabled()) {
1864             qemu_madvise(new_block->host, new_block->max_length,
1865                          QEMU_MADV_DONTFORK);
1866         }
1867         ram_block_notify_add(new_block->host, new_block->used_length,
1868                              new_block->max_length);
1869     }
1870 }
1871 
1872 #ifdef CONFIG_POSIX
1873 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1874                                  uint32_t ram_flags, int fd, off_t offset,
1875                                  bool readonly, Error **errp)
1876 {
1877     RAMBlock *new_block;
1878     Error *local_err = NULL;
1879     int64_t file_size, file_align;
1880 
1881     /* Just support these ram flags by now. */
1882     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1883                           RAM_PROTECTED)) == 0);
1884 
1885     if (xen_enabled()) {
1886         error_setg(errp, "-mem-path not supported with Xen");
1887         return NULL;
1888     }
1889 
1890     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1891         error_setg(errp,
1892                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1893         return NULL;
1894     }
1895 
1896     size = HOST_PAGE_ALIGN(size);
1897     file_size = get_file_size(fd);
1898     if (file_size > offset && file_size < (offset + size)) {
1899         error_setg(errp, "backing store size 0x%" PRIx64
1900                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1901                    file_size, size);
1902         return NULL;
1903     }
1904 
1905     file_align = get_file_align(fd);
1906     if (file_align > 0 && file_align > mr->align) {
1907         error_setg(errp, "backing store align 0x%" PRIx64
1908                    " is larger than 'align' option 0x%" PRIx64,
1909                    file_align, mr->align);
1910         return NULL;
1911     }
1912 
1913     new_block = g_malloc0(sizeof(*new_block));
1914     new_block->mr = mr;
1915     new_block->used_length = size;
1916     new_block->max_length = size;
1917     new_block->flags = ram_flags;
1918     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1919                                      !file_size, offset, errp);
1920     if (!new_block->host) {
1921         g_free(new_block);
1922         return NULL;
1923     }
1924 
1925     ram_block_add(new_block, &local_err);
1926     if (local_err) {
1927         g_free(new_block);
1928         error_propagate(errp, local_err);
1929         return NULL;
1930     }
1931     return new_block;
1932 
1933 }
1934 
1935 
1936 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1937                                    uint32_t ram_flags, const char *mem_path,
1938                                    off_t offset, bool readonly, Error **errp)
1939 {
1940     int fd;
1941     bool created;
1942     RAMBlock *block;
1943 
1944     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1945                        errp);
1946     if (fd < 0) {
1947         return NULL;
1948     }
1949 
1950     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly,
1951                                    errp);
1952     if (!block) {
1953         if (created) {
1954             unlink(mem_path);
1955         }
1956         close(fd);
1957         return NULL;
1958     }
1959 
1960     return block;
1961 }
1962 #endif
1963 
1964 static
1965 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1966                                   void (*resized)(const char*,
1967                                                   uint64_t length,
1968                                                   void *host),
1969                                   void *host, uint32_t ram_flags,
1970                                   MemoryRegion *mr, Error **errp)
1971 {
1972     RAMBlock *new_block;
1973     Error *local_err = NULL;
1974 
1975     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1976                           RAM_NORESERVE)) == 0);
1977     assert(!host ^ (ram_flags & RAM_PREALLOC));
1978 
1979     size = HOST_PAGE_ALIGN(size);
1980     max_size = HOST_PAGE_ALIGN(max_size);
1981     new_block = g_malloc0(sizeof(*new_block));
1982     new_block->mr = mr;
1983     new_block->resized = resized;
1984     new_block->used_length = size;
1985     new_block->max_length = max_size;
1986     assert(max_size >= size);
1987     new_block->fd = -1;
1988     new_block->page_size = qemu_real_host_page_size();
1989     new_block->host = host;
1990     new_block->flags = ram_flags;
1991     ram_block_add(new_block, &local_err);
1992     if (local_err) {
1993         g_free(new_block);
1994         error_propagate(errp, local_err);
1995         return NULL;
1996     }
1997     return new_block;
1998 }
1999 
2000 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2001                                    MemoryRegion *mr, Error **errp)
2002 {
2003     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2004                                    errp);
2005 }
2006 
2007 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2008                          MemoryRegion *mr, Error **errp)
2009 {
2010     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2011     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2012 }
2013 
2014 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2015                                      void (*resized)(const char*,
2016                                                      uint64_t length,
2017                                                      void *host),
2018                                      MemoryRegion *mr, Error **errp)
2019 {
2020     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2021                                    RAM_RESIZEABLE, mr, errp);
2022 }
2023 
2024 static void reclaim_ramblock(RAMBlock *block)
2025 {
2026     if (block->flags & RAM_PREALLOC) {
2027         ;
2028     } else if (xen_enabled()) {
2029         xen_invalidate_map_cache_entry(block->host);
2030 #ifndef _WIN32
2031     } else if (block->fd >= 0) {
2032         qemu_ram_munmap(block->fd, block->host, block->max_length);
2033         close(block->fd);
2034 #endif
2035     } else {
2036         qemu_anon_ram_free(block->host, block->max_length);
2037     }
2038     g_free(block);
2039 }
2040 
2041 void qemu_ram_free(RAMBlock *block)
2042 {
2043     if (!block) {
2044         return;
2045     }
2046 
2047     if (block->host) {
2048         ram_block_notify_remove(block->host, block->used_length,
2049                                 block->max_length);
2050     }
2051 
2052     qemu_mutex_lock_ramlist();
2053     QLIST_REMOVE_RCU(block, next);
2054     ram_list.mru_block = NULL;
2055     /* Write list before version */
2056     smp_wmb();
2057     ram_list.version++;
2058     call_rcu(block, reclaim_ramblock, rcu);
2059     qemu_mutex_unlock_ramlist();
2060 }
2061 
2062 #ifndef _WIN32
2063 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2064 {
2065     RAMBlock *block;
2066     ram_addr_t offset;
2067     int flags;
2068     void *area, *vaddr;
2069 
2070     RAMBLOCK_FOREACH(block) {
2071         offset = addr - block->offset;
2072         if (offset < block->max_length) {
2073             vaddr = ramblock_ptr(block, offset);
2074             if (block->flags & RAM_PREALLOC) {
2075                 ;
2076             } else if (xen_enabled()) {
2077                 abort();
2078             } else {
2079                 flags = MAP_FIXED;
2080                 flags |= block->flags & RAM_SHARED ?
2081                          MAP_SHARED : MAP_PRIVATE;
2082                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2083                 if (block->fd >= 0) {
2084                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2085                                 flags, block->fd, offset + block->fd_offset);
2086                 } else {
2087                     flags |= MAP_ANONYMOUS;
2088                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2089                                 flags, -1, 0);
2090                 }
2091                 if (area != vaddr) {
2092                     error_report("Could not remap addr: "
2093                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2094                                  length, addr);
2095                     exit(1);
2096                 }
2097                 memory_try_enable_merging(vaddr, length);
2098                 qemu_ram_setup_dump(vaddr, length);
2099             }
2100         }
2101     }
2102 }
2103 #endif /* !_WIN32 */
2104 
2105 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2106  * This should not be used for general purpose DMA.  Use address_space_map
2107  * or address_space_rw instead. For local memory (e.g. video ram) that the
2108  * device owns, use memory_region_get_ram_ptr.
2109  *
2110  * Called within RCU critical section.
2111  */
2112 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2113 {
2114     RAMBlock *block = ram_block;
2115 
2116     if (block == NULL) {
2117         block = qemu_get_ram_block(addr);
2118         addr -= block->offset;
2119     }
2120 
2121     if (xen_enabled() && block->host == NULL) {
2122         /* We need to check if the requested address is in the RAM
2123          * because we don't want to map the entire memory in QEMU.
2124          * In that case just map until the end of the page.
2125          */
2126         if (block->offset == 0) {
2127             return xen_map_cache(addr, 0, 0, false);
2128         }
2129 
2130         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2131     }
2132     return ramblock_ptr(block, addr);
2133 }
2134 
2135 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2136  * but takes a size argument.
2137  *
2138  * Called within RCU critical section.
2139  */
2140 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2141                                  hwaddr *size, bool lock)
2142 {
2143     RAMBlock *block = ram_block;
2144     if (*size == 0) {
2145         return NULL;
2146     }
2147 
2148     if (block == NULL) {
2149         block = qemu_get_ram_block(addr);
2150         addr -= block->offset;
2151     }
2152     *size = MIN(*size, block->max_length - addr);
2153 
2154     if (xen_enabled() && block->host == NULL) {
2155         /* We need to check if the requested address is in the RAM
2156          * because we don't want to map the entire memory in QEMU.
2157          * In that case just map the requested area.
2158          */
2159         if (block->offset == 0) {
2160             return xen_map_cache(addr, *size, lock, lock);
2161         }
2162 
2163         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2164     }
2165 
2166     return ramblock_ptr(block, addr);
2167 }
2168 
2169 /* Return the offset of a hostpointer within a ramblock */
2170 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2171 {
2172     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2173     assert((uintptr_t)host >= (uintptr_t)rb->host);
2174     assert(res < rb->max_length);
2175 
2176     return res;
2177 }
2178 
2179 /*
2180  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2181  * in that RAMBlock.
2182  *
2183  * ptr: Host pointer to look up
2184  * round_offset: If true round the result offset down to a page boundary
2185  * *ram_addr: set to result ram_addr
2186  * *offset: set to result offset within the RAMBlock
2187  *
2188  * Returns: RAMBlock (or NULL if not found)
2189  *
2190  * By the time this function returns, the returned pointer is not protected
2191  * by RCU anymore.  If the caller is not within an RCU critical section and
2192  * does not hold the iothread lock, it must have other means of protecting the
2193  * pointer, such as a reference to the region that includes the incoming
2194  * ram_addr_t.
2195  */
2196 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2197                                    ram_addr_t *offset)
2198 {
2199     RAMBlock *block;
2200     uint8_t *host = ptr;
2201 
2202     if (xen_enabled()) {
2203         ram_addr_t ram_addr;
2204         RCU_READ_LOCK_GUARD();
2205         ram_addr = xen_ram_addr_from_mapcache(ptr);
2206         block = qemu_get_ram_block(ram_addr);
2207         if (block) {
2208             *offset = ram_addr - block->offset;
2209         }
2210         return block;
2211     }
2212 
2213     RCU_READ_LOCK_GUARD();
2214     block = qatomic_rcu_read(&ram_list.mru_block);
2215     if (block && block->host && host - block->host < block->max_length) {
2216         goto found;
2217     }
2218 
2219     RAMBLOCK_FOREACH(block) {
2220         /* This case append when the block is not mapped. */
2221         if (block->host == NULL) {
2222             continue;
2223         }
2224         if (host - block->host < block->max_length) {
2225             goto found;
2226         }
2227     }
2228 
2229     return NULL;
2230 
2231 found:
2232     *offset = (host - block->host);
2233     if (round_offset) {
2234         *offset &= TARGET_PAGE_MASK;
2235     }
2236     return block;
2237 }
2238 
2239 /*
2240  * Finds the named RAMBlock
2241  *
2242  * name: The name of RAMBlock to find
2243  *
2244  * Returns: RAMBlock (or NULL if not found)
2245  */
2246 RAMBlock *qemu_ram_block_by_name(const char *name)
2247 {
2248     RAMBlock *block;
2249 
2250     RAMBLOCK_FOREACH(block) {
2251         if (!strcmp(name, block->idstr)) {
2252             return block;
2253         }
2254     }
2255 
2256     return NULL;
2257 }
2258 
2259 /* Some of the softmmu routines need to translate from a host pointer
2260    (typically a TLB entry) back to a ram offset.  */
2261 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2262 {
2263     RAMBlock *block;
2264     ram_addr_t offset;
2265 
2266     block = qemu_ram_block_from_host(ptr, false, &offset);
2267     if (!block) {
2268         return RAM_ADDR_INVALID;
2269     }
2270 
2271     return block->offset + offset;
2272 }
2273 
2274 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2275 {
2276     ram_addr_t ram_addr;
2277 
2278     ram_addr = qemu_ram_addr_from_host(ptr);
2279     if (ram_addr == RAM_ADDR_INVALID) {
2280         error_report("Bad ram pointer %p", ptr);
2281         abort();
2282     }
2283     return ram_addr;
2284 }
2285 
2286 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2287                                  MemTxAttrs attrs, void *buf, hwaddr len);
2288 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2289                                   const void *buf, hwaddr len);
2290 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2291                                   bool is_write, MemTxAttrs attrs);
2292 
2293 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2294                                 unsigned len, MemTxAttrs attrs)
2295 {
2296     subpage_t *subpage = opaque;
2297     uint8_t buf[8];
2298     MemTxResult res;
2299 
2300 #if defined(DEBUG_SUBPAGE)
2301     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2302            subpage, len, addr);
2303 #endif
2304     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2305     if (res) {
2306         return res;
2307     }
2308     *data = ldn_p(buf, len);
2309     return MEMTX_OK;
2310 }
2311 
2312 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2313                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2314 {
2315     subpage_t *subpage = opaque;
2316     uint8_t buf[8];
2317 
2318 #if defined(DEBUG_SUBPAGE)
2319     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2320            " value %"PRIx64"\n",
2321            __func__, subpage, len, addr, value);
2322 #endif
2323     stn_p(buf, len, value);
2324     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2325 }
2326 
2327 static bool subpage_accepts(void *opaque, hwaddr addr,
2328                             unsigned len, bool is_write,
2329                             MemTxAttrs attrs)
2330 {
2331     subpage_t *subpage = opaque;
2332 #if defined(DEBUG_SUBPAGE)
2333     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2334            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2335 #endif
2336 
2337     return flatview_access_valid(subpage->fv, addr + subpage->base,
2338                                  len, is_write, attrs);
2339 }
2340 
2341 static const MemoryRegionOps subpage_ops = {
2342     .read_with_attrs = subpage_read,
2343     .write_with_attrs = subpage_write,
2344     .impl.min_access_size = 1,
2345     .impl.max_access_size = 8,
2346     .valid.min_access_size = 1,
2347     .valid.max_access_size = 8,
2348     .valid.accepts = subpage_accepts,
2349     .endianness = DEVICE_NATIVE_ENDIAN,
2350 };
2351 
2352 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2353                             uint16_t section)
2354 {
2355     int idx, eidx;
2356 
2357     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2358         return -1;
2359     idx = SUBPAGE_IDX(start);
2360     eidx = SUBPAGE_IDX(end);
2361 #if defined(DEBUG_SUBPAGE)
2362     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2363            __func__, mmio, start, end, idx, eidx, section);
2364 #endif
2365     for (; idx <= eidx; idx++) {
2366         mmio->sub_section[idx] = section;
2367     }
2368 
2369     return 0;
2370 }
2371 
2372 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2373 {
2374     subpage_t *mmio;
2375 
2376     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2377     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2378     mmio->fv = fv;
2379     mmio->base = base;
2380     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2381                           NULL, TARGET_PAGE_SIZE);
2382     mmio->iomem.subpage = true;
2383 #if defined(DEBUG_SUBPAGE)
2384     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2385            mmio, base, TARGET_PAGE_SIZE);
2386 #endif
2387 
2388     return mmio;
2389 }
2390 
2391 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2392 {
2393     assert(fv);
2394     MemoryRegionSection section = {
2395         .fv = fv,
2396         .mr = mr,
2397         .offset_within_address_space = 0,
2398         .offset_within_region = 0,
2399         .size = int128_2_64(),
2400     };
2401 
2402     return phys_section_add(map, &section);
2403 }
2404 
2405 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2406                                       hwaddr index, MemTxAttrs attrs)
2407 {
2408     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2409     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2410     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2411     MemoryRegionSection *sections = d->map.sections;
2412 
2413     return &sections[index & ~TARGET_PAGE_MASK];
2414 }
2415 
2416 static void io_mem_init(void)
2417 {
2418     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2419                           NULL, UINT64_MAX);
2420 }
2421 
2422 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2423 {
2424     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2425     uint16_t n;
2426 
2427     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2428     assert(n == PHYS_SECTION_UNASSIGNED);
2429 
2430     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2431 
2432     return d;
2433 }
2434 
2435 void address_space_dispatch_free(AddressSpaceDispatch *d)
2436 {
2437     phys_sections_free(&d->map);
2438     g_free(d);
2439 }
2440 
2441 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2442 {
2443 }
2444 
2445 static void tcg_log_global_after_sync(MemoryListener *listener)
2446 {
2447     CPUAddressSpace *cpuas;
2448 
2449     /* Wait for the CPU to end the current TB.  This avoids the following
2450      * incorrect race:
2451      *
2452      *      vCPU                         migration
2453      *      ----------------------       -------------------------
2454      *      TLB check -> slow path
2455      *        notdirty_mem_write
2456      *          write to RAM
2457      *          mark dirty
2458      *                                   clear dirty flag
2459      *      TLB check -> fast path
2460      *                                   read memory
2461      *        write to RAM
2462      *
2463      * by pushing the migration thread's memory read after the vCPU thread has
2464      * written the memory.
2465      */
2466     if (replay_mode == REPLAY_MODE_NONE) {
2467         /*
2468          * VGA can make calls to this function while updating the screen.
2469          * In record/replay mode this causes a deadlock, because
2470          * run_on_cpu waits for rr mutex. Therefore no races are possible
2471          * in this case and no need for making run_on_cpu when
2472          * record/replay is enabled.
2473          */
2474         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2475         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2476     }
2477 }
2478 
2479 static void tcg_commit(MemoryListener *listener)
2480 {
2481     CPUAddressSpace *cpuas;
2482     AddressSpaceDispatch *d;
2483 
2484     assert(tcg_enabled());
2485     /* since each CPU stores ram addresses in its TLB cache, we must
2486        reset the modified entries */
2487     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2488     cpu_reloading_memory_map();
2489     /* The CPU and TLB are protected by the iothread lock.
2490      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2491      * may have split the RCU critical section.
2492      */
2493     d = address_space_to_dispatch(cpuas->as);
2494     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2495     tlb_flush(cpuas->cpu);
2496 }
2497 
2498 static void memory_map_init(void)
2499 {
2500     system_memory = g_malloc(sizeof(*system_memory));
2501 
2502     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2503     address_space_init(&address_space_memory, system_memory, "memory");
2504 
2505     system_io = g_malloc(sizeof(*system_io));
2506     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2507                           65536);
2508     address_space_init(&address_space_io, system_io, "I/O");
2509 }
2510 
2511 MemoryRegion *get_system_memory(void)
2512 {
2513     return system_memory;
2514 }
2515 
2516 MemoryRegion *get_system_io(void)
2517 {
2518     return system_io;
2519 }
2520 
2521 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2522                                      hwaddr length)
2523 {
2524     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2525     addr += memory_region_get_ram_addr(mr);
2526 
2527     /* No early return if dirty_log_mask is or becomes 0, because
2528      * cpu_physical_memory_set_dirty_range will still call
2529      * xen_modified_memory.
2530      */
2531     if (dirty_log_mask) {
2532         dirty_log_mask =
2533             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2534     }
2535     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2536         assert(tcg_enabled());
2537         tb_invalidate_phys_range(addr, addr + length - 1);
2538         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2539     }
2540     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2541 }
2542 
2543 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2544 {
2545     /*
2546      * In principle this function would work on other memory region types too,
2547      * but the ROM device use case is the only one where this operation is
2548      * necessary.  Other memory regions should use the
2549      * address_space_read/write() APIs.
2550      */
2551     assert(memory_region_is_romd(mr));
2552 
2553     invalidate_and_set_dirty(mr, addr, size);
2554 }
2555 
2556 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2557 {
2558     unsigned access_size_max = mr->ops->valid.max_access_size;
2559 
2560     /* Regions are assumed to support 1-4 byte accesses unless
2561        otherwise specified.  */
2562     if (access_size_max == 0) {
2563         access_size_max = 4;
2564     }
2565 
2566     /* Bound the maximum access by the alignment of the address.  */
2567     if (!mr->ops->impl.unaligned) {
2568         unsigned align_size_max = addr & -addr;
2569         if (align_size_max != 0 && align_size_max < access_size_max) {
2570             access_size_max = align_size_max;
2571         }
2572     }
2573 
2574     /* Don't attempt accesses larger than the maximum.  */
2575     if (l > access_size_max) {
2576         l = access_size_max;
2577     }
2578     l = pow2floor(l);
2579 
2580     return l;
2581 }
2582 
2583 bool prepare_mmio_access(MemoryRegion *mr)
2584 {
2585     bool release_lock = false;
2586 
2587     if (!qemu_mutex_iothread_locked()) {
2588         qemu_mutex_lock_iothread();
2589         release_lock = true;
2590     }
2591     if (mr->flush_coalesced_mmio) {
2592         qemu_flush_coalesced_mmio_buffer();
2593     }
2594 
2595     return release_lock;
2596 }
2597 
2598 /**
2599  * flatview_access_allowed
2600  * @mr: #MemoryRegion to be accessed
2601  * @attrs: memory transaction attributes
2602  * @addr: address within that memory region
2603  * @len: the number of bytes to access
2604  *
2605  * Check if a memory transaction is allowed.
2606  *
2607  * Returns: true if transaction is allowed, false if denied.
2608  */
2609 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2610                                     hwaddr addr, hwaddr len)
2611 {
2612     if (likely(!attrs.memory)) {
2613         return true;
2614     }
2615     if (memory_region_is_ram(mr)) {
2616         return true;
2617     }
2618     qemu_log_mask(LOG_GUEST_ERROR,
2619                   "Invalid access to non-RAM device at "
2620                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2621                   "region '%s'\n", addr, len, memory_region_name(mr));
2622     return false;
2623 }
2624 
2625 /* Called within RCU critical section.  */
2626 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2627                                            MemTxAttrs attrs,
2628                                            const void *ptr,
2629                                            hwaddr len, hwaddr addr1,
2630                                            hwaddr l, MemoryRegion *mr)
2631 {
2632     uint8_t *ram_ptr;
2633     uint64_t val;
2634     MemTxResult result = MEMTX_OK;
2635     bool release_lock = false;
2636     const uint8_t *buf = ptr;
2637 
2638     for (;;) {
2639         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2640             result |= MEMTX_ACCESS_ERROR;
2641             /* Keep going. */
2642         } else if (!memory_access_is_direct(mr, true)) {
2643             release_lock |= prepare_mmio_access(mr);
2644             l = memory_access_size(mr, l, addr1);
2645             /* XXX: could force current_cpu to NULL to avoid
2646                potential bugs */
2647             val = ldn_he_p(buf, l);
2648             result |= memory_region_dispatch_write(mr, addr1, val,
2649                                                    size_memop(l), attrs);
2650         } else {
2651             /* RAM case */
2652             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2653             memmove(ram_ptr, buf, l);
2654             invalidate_and_set_dirty(mr, addr1, l);
2655         }
2656 
2657         if (release_lock) {
2658             qemu_mutex_unlock_iothread();
2659             release_lock = false;
2660         }
2661 
2662         len -= l;
2663         buf += l;
2664         addr += l;
2665 
2666         if (!len) {
2667             break;
2668         }
2669 
2670         l = len;
2671         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2672     }
2673 
2674     return result;
2675 }
2676 
2677 /* Called from RCU critical section.  */
2678 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2679                                   const void *buf, hwaddr len)
2680 {
2681     hwaddr l;
2682     hwaddr addr1;
2683     MemoryRegion *mr;
2684 
2685     l = len;
2686     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2687     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2688         return MEMTX_ACCESS_ERROR;
2689     }
2690     return flatview_write_continue(fv, addr, attrs, buf, len,
2691                                    addr1, l, mr);
2692 }
2693 
2694 /* Called within RCU critical section.  */
2695 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2696                                    MemTxAttrs attrs, void *ptr,
2697                                    hwaddr len, hwaddr addr1, hwaddr l,
2698                                    MemoryRegion *mr)
2699 {
2700     uint8_t *ram_ptr;
2701     uint64_t val;
2702     MemTxResult result = MEMTX_OK;
2703     bool release_lock = false;
2704     uint8_t *buf = ptr;
2705 
2706     fuzz_dma_read_cb(addr, len, mr);
2707     for (;;) {
2708         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2709             result |= MEMTX_ACCESS_ERROR;
2710             /* Keep going. */
2711         } else if (!memory_access_is_direct(mr, false)) {
2712             /* I/O case */
2713             release_lock |= prepare_mmio_access(mr);
2714             l = memory_access_size(mr, l, addr1);
2715             result |= memory_region_dispatch_read(mr, addr1, &val,
2716                                                   size_memop(l), attrs);
2717             stn_he_p(buf, l, val);
2718         } else {
2719             /* RAM case */
2720             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2721             memcpy(buf, ram_ptr, l);
2722         }
2723 
2724         if (release_lock) {
2725             qemu_mutex_unlock_iothread();
2726             release_lock = false;
2727         }
2728 
2729         len -= l;
2730         buf += l;
2731         addr += l;
2732 
2733         if (!len) {
2734             break;
2735         }
2736 
2737         l = len;
2738         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2739     }
2740 
2741     return result;
2742 }
2743 
2744 /* Called from RCU critical section.  */
2745 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2746                                  MemTxAttrs attrs, void *buf, hwaddr len)
2747 {
2748     hwaddr l;
2749     hwaddr addr1;
2750     MemoryRegion *mr;
2751 
2752     l = len;
2753     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2754     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2755         return MEMTX_ACCESS_ERROR;
2756     }
2757     return flatview_read_continue(fv, addr, attrs, buf, len,
2758                                   addr1, l, mr);
2759 }
2760 
2761 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2762                                     MemTxAttrs attrs, void *buf, hwaddr len)
2763 {
2764     MemTxResult result = MEMTX_OK;
2765     FlatView *fv;
2766 
2767     if (len > 0) {
2768         RCU_READ_LOCK_GUARD();
2769         fv = address_space_to_flatview(as);
2770         result = flatview_read(fv, addr, attrs, buf, len);
2771     }
2772 
2773     return result;
2774 }
2775 
2776 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2777                                 MemTxAttrs attrs,
2778                                 const void *buf, hwaddr len)
2779 {
2780     MemTxResult result = MEMTX_OK;
2781     FlatView *fv;
2782 
2783     if (len > 0) {
2784         RCU_READ_LOCK_GUARD();
2785         fv = address_space_to_flatview(as);
2786         result = flatview_write(fv, addr, attrs, buf, len);
2787     }
2788 
2789     return result;
2790 }
2791 
2792 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2793                              void *buf, hwaddr len, bool is_write)
2794 {
2795     if (is_write) {
2796         return address_space_write(as, addr, attrs, buf, len);
2797     } else {
2798         return address_space_read_full(as, addr, attrs, buf, len);
2799     }
2800 }
2801 
2802 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2803                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2804 {
2805 #define FILLBUF_SIZE 512
2806     uint8_t fillbuf[FILLBUF_SIZE];
2807     int l;
2808     MemTxResult error = MEMTX_OK;
2809 
2810     memset(fillbuf, c, FILLBUF_SIZE);
2811     while (len > 0) {
2812         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2813         error |= address_space_write(as, addr, attrs, fillbuf, l);
2814         len -= l;
2815         addr += l;
2816     }
2817 
2818     return error;
2819 }
2820 
2821 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2822                             hwaddr len, bool is_write)
2823 {
2824     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2825                      buf, len, is_write);
2826 }
2827 
2828 enum write_rom_type {
2829     WRITE_DATA,
2830     FLUSH_CACHE,
2831 };
2832 
2833 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2834                                                            hwaddr addr,
2835                                                            MemTxAttrs attrs,
2836                                                            const void *ptr,
2837                                                            hwaddr len,
2838                                                            enum write_rom_type type)
2839 {
2840     hwaddr l;
2841     uint8_t *ram_ptr;
2842     hwaddr addr1;
2843     MemoryRegion *mr;
2844     const uint8_t *buf = ptr;
2845 
2846     RCU_READ_LOCK_GUARD();
2847     while (len > 0) {
2848         l = len;
2849         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2850 
2851         if (!(memory_region_is_ram(mr) ||
2852               memory_region_is_romd(mr))) {
2853             l = memory_access_size(mr, l, addr1);
2854         } else {
2855             /* ROM/RAM case */
2856             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2857             switch (type) {
2858             case WRITE_DATA:
2859                 memcpy(ram_ptr, buf, l);
2860                 invalidate_and_set_dirty(mr, addr1, l);
2861                 break;
2862             case FLUSH_CACHE:
2863                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2864                 break;
2865             }
2866         }
2867         len -= l;
2868         buf += l;
2869         addr += l;
2870     }
2871     return MEMTX_OK;
2872 }
2873 
2874 /* used for ROM loading : can write in RAM and ROM */
2875 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2876                                     MemTxAttrs attrs,
2877                                     const void *buf, hwaddr len)
2878 {
2879     return address_space_write_rom_internal(as, addr, attrs,
2880                                             buf, len, WRITE_DATA);
2881 }
2882 
2883 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2884 {
2885     /*
2886      * This function should do the same thing as an icache flush that was
2887      * triggered from within the guest. For TCG we are always cache coherent,
2888      * so there is no need to flush anything. For KVM / Xen we need to flush
2889      * the host's instruction cache at least.
2890      */
2891     if (tcg_enabled()) {
2892         return;
2893     }
2894 
2895     address_space_write_rom_internal(&address_space_memory,
2896                                      start, MEMTXATTRS_UNSPECIFIED,
2897                                      NULL, len, FLUSH_CACHE);
2898 }
2899 
2900 typedef struct {
2901     MemoryRegion *mr;
2902     void *buffer;
2903     hwaddr addr;
2904     hwaddr len;
2905     bool in_use;
2906 } BounceBuffer;
2907 
2908 static BounceBuffer bounce;
2909 
2910 typedef struct MapClient {
2911     QEMUBH *bh;
2912     QLIST_ENTRY(MapClient) link;
2913 } MapClient;
2914 
2915 QemuMutex map_client_list_lock;
2916 static QLIST_HEAD(, MapClient) map_client_list
2917     = QLIST_HEAD_INITIALIZER(map_client_list);
2918 
2919 static void cpu_unregister_map_client_do(MapClient *client)
2920 {
2921     QLIST_REMOVE(client, link);
2922     g_free(client);
2923 }
2924 
2925 static void cpu_notify_map_clients_locked(void)
2926 {
2927     MapClient *client;
2928 
2929     while (!QLIST_EMPTY(&map_client_list)) {
2930         client = QLIST_FIRST(&map_client_list);
2931         qemu_bh_schedule(client->bh);
2932         cpu_unregister_map_client_do(client);
2933     }
2934 }
2935 
2936 void cpu_register_map_client(QEMUBH *bh)
2937 {
2938     MapClient *client = g_malloc(sizeof(*client));
2939 
2940     qemu_mutex_lock(&map_client_list_lock);
2941     client->bh = bh;
2942     QLIST_INSERT_HEAD(&map_client_list, client, link);
2943     /* Write map_client_list before reading in_use.  */
2944     smp_mb();
2945     if (!qatomic_read(&bounce.in_use)) {
2946         cpu_notify_map_clients_locked();
2947     }
2948     qemu_mutex_unlock(&map_client_list_lock);
2949 }
2950 
2951 void cpu_exec_init_all(void)
2952 {
2953     qemu_mutex_init(&ram_list.mutex);
2954     /* The data structures we set up here depend on knowing the page size,
2955      * so no more changes can be made after this point.
2956      * In an ideal world, nothing we did before we had finished the
2957      * machine setup would care about the target page size, and we could
2958      * do this much later, rather than requiring board models to state
2959      * up front what their requirements are.
2960      */
2961     finalize_target_page_bits();
2962     io_mem_init();
2963     memory_map_init();
2964     qemu_mutex_init(&map_client_list_lock);
2965 }
2966 
2967 void cpu_unregister_map_client(QEMUBH *bh)
2968 {
2969     MapClient *client;
2970 
2971     qemu_mutex_lock(&map_client_list_lock);
2972     QLIST_FOREACH(client, &map_client_list, link) {
2973         if (client->bh == bh) {
2974             cpu_unregister_map_client_do(client);
2975             break;
2976         }
2977     }
2978     qemu_mutex_unlock(&map_client_list_lock);
2979 }
2980 
2981 static void cpu_notify_map_clients(void)
2982 {
2983     qemu_mutex_lock(&map_client_list_lock);
2984     cpu_notify_map_clients_locked();
2985     qemu_mutex_unlock(&map_client_list_lock);
2986 }
2987 
2988 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2989                                   bool is_write, MemTxAttrs attrs)
2990 {
2991     MemoryRegion *mr;
2992     hwaddr l, xlat;
2993 
2994     while (len > 0) {
2995         l = len;
2996         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
2997         if (!memory_access_is_direct(mr, is_write)) {
2998             l = memory_access_size(mr, l, addr);
2999             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3000                 return false;
3001             }
3002         }
3003 
3004         len -= l;
3005         addr += l;
3006     }
3007     return true;
3008 }
3009 
3010 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3011                                 hwaddr len, bool is_write,
3012                                 MemTxAttrs attrs)
3013 {
3014     FlatView *fv;
3015 
3016     RCU_READ_LOCK_GUARD();
3017     fv = address_space_to_flatview(as);
3018     return flatview_access_valid(fv, addr, len, is_write, attrs);
3019 }
3020 
3021 static hwaddr
3022 flatview_extend_translation(FlatView *fv, hwaddr addr,
3023                             hwaddr target_len,
3024                             MemoryRegion *mr, hwaddr base, hwaddr len,
3025                             bool is_write, MemTxAttrs attrs)
3026 {
3027     hwaddr done = 0;
3028     hwaddr xlat;
3029     MemoryRegion *this_mr;
3030 
3031     for (;;) {
3032         target_len -= len;
3033         addr += len;
3034         done += len;
3035         if (target_len == 0) {
3036             return done;
3037         }
3038 
3039         len = target_len;
3040         this_mr = flatview_translate(fv, addr, &xlat,
3041                                      &len, is_write, attrs);
3042         if (this_mr != mr || xlat != base + done) {
3043             return done;
3044         }
3045     }
3046 }
3047 
3048 /* Map a physical memory region into a host virtual address.
3049  * May map a subset of the requested range, given by and returned in *plen.
3050  * May return NULL if resources needed to perform the mapping are exhausted.
3051  * Use only for reads OR writes - not for read-modify-write operations.
3052  * Use cpu_register_map_client() to know when retrying the map operation is
3053  * likely to succeed.
3054  */
3055 void *address_space_map(AddressSpace *as,
3056                         hwaddr addr,
3057                         hwaddr *plen,
3058                         bool is_write,
3059                         MemTxAttrs attrs)
3060 {
3061     hwaddr len = *plen;
3062     hwaddr l, xlat;
3063     MemoryRegion *mr;
3064     FlatView *fv;
3065 
3066     if (len == 0) {
3067         return NULL;
3068     }
3069 
3070     l = len;
3071     RCU_READ_LOCK_GUARD();
3072     fv = address_space_to_flatview(as);
3073     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3074 
3075     if (!memory_access_is_direct(mr, is_write)) {
3076         if (qatomic_xchg(&bounce.in_use, true)) {
3077             *plen = 0;
3078             return NULL;
3079         }
3080         /* Avoid unbounded allocations */
3081         l = MIN(l, TARGET_PAGE_SIZE);
3082         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3083         bounce.addr = addr;
3084         bounce.len = l;
3085 
3086         memory_region_ref(mr);
3087         bounce.mr = mr;
3088         if (!is_write) {
3089             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3090                                bounce.buffer, l);
3091         }
3092 
3093         *plen = l;
3094         return bounce.buffer;
3095     }
3096 
3097 
3098     memory_region_ref(mr);
3099     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3100                                         l, is_write, attrs);
3101     fuzz_dma_read_cb(addr, *plen, mr);
3102     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3103 }
3104 
3105 /* Unmaps a memory region previously mapped by address_space_map().
3106  * Will also mark the memory as dirty if is_write is true.  access_len gives
3107  * the amount of memory that was actually read or written by the caller.
3108  */
3109 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3110                          bool is_write, hwaddr access_len)
3111 {
3112     if (buffer != bounce.buffer) {
3113         MemoryRegion *mr;
3114         ram_addr_t addr1;
3115 
3116         mr = memory_region_from_host(buffer, &addr1);
3117         assert(mr != NULL);
3118         if (is_write) {
3119             invalidate_and_set_dirty(mr, addr1, access_len);
3120         }
3121         if (xen_enabled()) {
3122             xen_invalidate_map_cache_entry(buffer);
3123         }
3124         memory_region_unref(mr);
3125         return;
3126     }
3127     if (is_write) {
3128         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3129                             bounce.buffer, access_len);
3130     }
3131     qemu_vfree(bounce.buffer);
3132     bounce.buffer = NULL;
3133     memory_region_unref(bounce.mr);
3134     /* Clear in_use before reading map_client_list.  */
3135     qatomic_mb_set(&bounce.in_use, false);
3136     cpu_notify_map_clients();
3137 }
3138 
3139 void *cpu_physical_memory_map(hwaddr addr,
3140                               hwaddr *plen,
3141                               bool is_write)
3142 {
3143     return address_space_map(&address_space_memory, addr, plen, is_write,
3144                              MEMTXATTRS_UNSPECIFIED);
3145 }
3146 
3147 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3148                                bool is_write, hwaddr access_len)
3149 {
3150     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3151 }
3152 
3153 #define ARG1_DECL                AddressSpace *as
3154 #define ARG1                     as
3155 #define SUFFIX
3156 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3157 #define RCU_READ_LOCK(...)       rcu_read_lock()
3158 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3159 #include "memory_ldst.c.inc"
3160 
3161 int64_t address_space_cache_init(MemoryRegionCache *cache,
3162                                  AddressSpace *as,
3163                                  hwaddr addr,
3164                                  hwaddr len,
3165                                  bool is_write)
3166 {
3167     AddressSpaceDispatch *d;
3168     hwaddr l;
3169     MemoryRegion *mr;
3170     Int128 diff;
3171 
3172     assert(len > 0);
3173 
3174     l = len;
3175     cache->fv = address_space_get_flatview(as);
3176     d = flatview_to_dispatch(cache->fv);
3177     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3178 
3179     /*
3180      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3181      * Take that into account to compute how many bytes are there between
3182      * cache->xlat and the end of the section.
3183      */
3184     diff = int128_sub(cache->mrs.size,
3185                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3186     l = int128_get64(int128_min(diff, int128_make64(l)));
3187 
3188     mr = cache->mrs.mr;
3189     memory_region_ref(mr);
3190     if (memory_access_is_direct(mr, is_write)) {
3191         /* We don't care about the memory attributes here as we're only
3192          * doing this if we found actual RAM, which behaves the same
3193          * regardless of attributes; so UNSPECIFIED is fine.
3194          */
3195         l = flatview_extend_translation(cache->fv, addr, len, mr,
3196                                         cache->xlat, l, is_write,
3197                                         MEMTXATTRS_UNSPECIFIED);
3198         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3199     } else {
3200         cache->ptr = NULL;
3201     }
3202 
3203     cache->len = l;
3204     cache->is_write = is_write;
3205     return l;
3206 }
3207 
3208 void address_space_cache_invalidate(MemoryRegionCache *cache,
3209                                     hwaddr addr,
3210                                     hwaddr access_len)
3211 {
3212     assert(cache->is_write);
3213     if (likely(cache->ptr)) {
3214         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3215     }
3216 }
3217 
3218 void address_space_cache_destroy(MemoryRegionCache *cache)
3219 {
3220     if (!cache->mrs.mr) {
3221         return;
3222     }
3223 
3224     if (xen_enabled()) {
3225         xen_invalidate_map_cache_entry(cache->ptr);
3226     }
3227     memory_region_unref(cache->mrs.mr);
3228     flatview_unref(cache->fv);
3229     cache->mrs.mr = NULL;
3230     cache->fv = NULL;
3231 }
3232 
3233 /* Called from RCU critical section.  This function has the same
3234  * semantics as address_space_translate, but it only works on a
3235  * predefined range of a MemoryRegion that was mapped with
3236  * address_space_cache_init.
3237  */
3238 static inline MemoryRegion *address_space_translate_cached(
3239     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3240     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3241 {
3242     MemoryRegionSection section;
3243     MemoryRegion *mr;
3244     IOMMUMemoryRegion *iommu_mr;
3245     AddressSpace *target_as;
3246 
3247     assert(!cache->ptr);
3248     *xlat = addr + cache->xlat;
3249 
3250     mr = cache->mrs.mr;
3251     iommu_mr = memory_region_get_iommu(mr);
3252     if (!iommu_mr) {
3253         /* MMIO region.  */
3254         return mr;
3255     }
3256 
3257     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3258                                             NULL, is_write, true,
3259                                             &target_as, attrs);
3260     return section.mr;
3261 }
3262 
3263 /* Called from RCU critical section. address_space_read_cached uses this
3264  * out of line function when the target is an MMIO or IOMMU region.
3265  */
3266 MemTxResult
3267 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3268                                    void *buf, hwaddr len)
3269 {
3270     hwaddr addr1, l;
3271     MemoryRegion *mr;
3272 
3273     l = len;
3274     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3275                                         MEMTXATTRS_UNSPECIFIED);
3276     return flatview_read_continue(cache->fv,
3277                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3278                                   addr1, l, mr);
3279 }
3280 
3281 /* Called from RCU critical section. address_space_write_cached uses this
3282  * out of line function when the target is an MMIO or IOMMU region.
3283  */
3284 MemTxResult
3285 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3286                                     const void *buf, hwaddr len)
3287 {
3288     hwaddr addr1, l;
3289     MemoryRegion *mr;
3290 
3291     l = len;
3292     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3293                                         MEMTXATTRS_UNSPECIFIED);
3294     return flatview_write_continue(cache->fv,
3295                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3296                                    addr1, l, mr);
3297 }
3298 
3299 #define ARG1_DECL                MemoryRegionCache *cache
3300 #define ARG1                     cache
3301 #define SUFFIX                   _cached_slow
3302 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3303 #define RCU_READ_LOCK()          ((void)0)
3304 #define RCU_READ_UNLOCK()        ((void)0)
3305 #include "memory_ldst.c.inc"
3306 
3307 /* virtual memory access for debug (includes writing to ROM) */
3308 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3309                         void *ptr, size_t len, bool is_write)
3310 {
3311     hwaddr phys_addr;
3312     vaddr l, page;
3313     uint8_t *buf = ptr;
3314 
3315     cpu_synchronize_state(cpu);
3316     while (len > 0) {
3317         int asidx;
3318         MemTxAttrs attrs;
3319         MemTxResult res;
3320 
3321         page = addr & TARGET_PAGE_MASK;
3322         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3323         asidx = cpu_asidx_from_attrs(cpu, attrs);
3324         /* if no physical page mapped, return an error */
3325         if (phys_addr == -1)
3326             return -1;
3327         l = (page + TARGET_PAGE_SIZE) - addr;
3328         if (l > len)
3329             l = len;
3330         phys_addr += (addr & ~TARGET_PAGE_MASK);
3331         if (is_write) {
3332             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3333                                           attrs, buf, l);
3334         } else {
3335             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3336                                      attrs, buf, l);
3337         }
3338         if (res != MEMTX_OK) {
3339             return -1;
3340         }
3341         len -= l;
3342         buf += l;
3343         addr += l;
3344     }
3345     return 0;
3346 }
3347 
3348 /*
3349  * Allows code that needs to deal with migration bitmaps etc to still be built
3350  * target independent.
3351  */
3352 size_t qemu_target_page_size(void)
3353 {
3354     return TARGET_PAGE_SIZE;
3355 }
3356 
3357 int qemu_target_page_bits(void)
3358 {
3359     return TARGET_PAGE_BITS;
3360 }
3361 
3362 int qemu_target_page_bits_min(void)
3363 {
3364     return TARGET_PAGE_BITS_MIN;
3365 }
3366 
3367 /* Convert target pages to MiB (2**20). */
3368 size_t qemu_target_pages_to_MiB(size_t pages)
3369 {
3370     int page_bits = TARGET_PAGE_BITS;
3371 
3372     /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3373     g_assert(page_bits < 20);
3374 
3375     return pages >> (20 - page_bits);
3376 }
3377 
3378 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3379 {
3380     MemoryRegion*mr;
3381     hwaddr l = 1;
3382 
3383     RCU_READ_LOCK_GUARD();
3384     mr = address_space_translate(&address_space_memory,
3385                                  phys_addr, &phys_addr, &l, false,
3386                                  MEMTXATTRS_UNSPECIFIED);
3387 
3388     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3389 }
3390 
3391 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3392 {
3393     RAMBlock *block;
3394     int ret = 0;
3395 
3396     RCU_READ_LOCK_GUARD();
3397     RAMBLOCK_FOREACH(block) {
3398         ret = func(block, opaque);
3399         if (ret) {
3400             break;
3401         }
3402     }
3403     return ret;
3404 }
3405 
3406 /*
3407  * Unmap pages of memory from start to start+length such that
3408  * they a) read as 0, b) Trigger whatever fault mechanism
3409  * the OS provides for postcopy.
3410  * The pages must be unmapped by the end of the function.
3411  * Returns: 0 on success, none-0 on failure
3412  *
3413  */
3414 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3415 {
3416     int ret = -1;
3417 
3418     uint8_t *host_startaddr = rb->host + start;
3419 
3420     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3421         error_report("ram_block_discard_range: Unaligned start address: %p",
3422                      host_startaddr);
3423         goto err;
3424     }
3425 
3426     if ((start + length) <= rb->max_length) {
3427         bool need_madvise, need_fallocate;
3428         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3429             error_report("ram_block_discard_range: Unaligned length: %zx",
3430                          length);
3431             goto err;
3432         }
3433 
3434         errno = ENOTSUP; /* If we are missing MADVISE etc */
3435 
3436         /* The logic here is messy;
3437          *    madvise DONTNEED fails for hugepages
3438          *    fallocate works on hugepages and shmem
3439          *    shared anonymous memory requires madvise REMOVE
3440          */
3441         need_madvise = (rb->page_size == qemu_host_page_size);
3442         need_fallocate = rb->fd != -1;
3443         if (need_fallocate) {
3444             /* For a file, this causes the area of the file to be zero'd
3445              * if read, and for hugetlbfs also causes it to be unmapped
3446              * so a userfault will trigger.
3447              */
3448 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3449             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3450                             start, length);
3451             if (ret) {
3452                 ret = -errno;
3453                 error_report("ram_block_discard_range: Failed to fallocate "
3454                              "%s:%" PRIx64 " +%zx (%d)",
3455                              rb->idstr, start, length, ret);
3456                 goto err;
3457             }
3458 #else
3459             ret = -ENOSYS;
3460             error_report("ram_block_discard_range: fallocate not available/file"
3461                          "%s:%" PRIx64 " +%zx (%d)",
3462                          rb->idstr, start, length, ret);
3463             goto err;
3464 #endif
3465         }
3466         if (need_madvise) {
3467             /* For normal RAM this causes it to be unmapped,
3468              * for shared memory it causes the local mapping to disappear
3469              * and to fall back on the file contents (which we just
3470              * fallocate'd away).
3471              */
3472 #if defined(CONFIG_MADVISE)
3473             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3474                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3475             } else {
3476                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3477             }
3478             if (ret) {
3479                 ret = -errno;
3480                 error_report("ram_block_discard_range: Failed to discard range "
3481                              "%s:%" PRIx64 " +%zx (%d)",
3482                              rb->idstr, start, length, ret);
3483                 goto err;
3484             }
3485 #else
3486             ret = -ENOSYS;
3487             error_report("ram_block_discard_range: MADVISE not available"
3488                          "%s:%" PRIx64 " +%zx (%d)",
3489                          rb->idstr, start, length, ret);
3490             goto err;
3491 #endif
3492         }
3493         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3494                                       need_madvise, need_fallocate, ret);
3495     } else {
3496         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3497                      "/%zx/" RAM_ADDR_FMT")",
3498                      rb->idstr, start, length, rb->max_length);
3499     }
3500 
3501 err:
3502     return ret;
3503 }
3504 
3505 bool ramblock_is_pmem(RAMBlock *rb)
3506 {
3507     return rb->flags & RAM_PMEM;
3508 }
3509 
3510 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3511 {
3512     if (start == end - 1) {
3513         qemu_printf("\t%3d      ", start);
3514     } else {
3515         qemu_printf("\t%3d..%-3d ", start, end - 1);
3516     }
3517     qemu_printf(" skip=%d ", skip);
3518     if (ptr == PHYS_MAP_NODE_NIL) {
3519         qemu_printf(" ptr=NIL");
3520     } else if (!skip) {
3521         qemu_printf(" ptr=#%d", ptr);
3522     } else {
3523         qemu_printf(" ptr=[%d]", ptr);
3524     }
3525     qemu_printf("\n");
3526 }
3527 
3528 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3529                            int128_sub((size), int128_one())) : 0)
3530 
3531 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3532 {
3533     int i;
3534 
3535     qemu_printf("  Dispatch\n");
3536     qemu_printf("    Physical sections\n");
3537 
3538     for (i = 0; i < d->map.sections_nb; ++i) {
3539         MemoryRegionSection *s = d->map.sections + i;
3540         const char *names[] = { " [unassigned]", " [not dirty]",
3541                                 " [ROM]", " [watch]" };
3542 
3543         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3544                     " %s%s%s%s%s",
3545             i,
3546             s->offset_within_address_space,
3547             s->offset_within_address_space + MR_SIZE(s->size),
3548             s->mr->name ? s->mr->name : "(noname)",
3549             i < ARRAY_SIZE(names) ? names[i] : "",
3550             s->mr == root ? " [ROOT]" : "",
3551             s == d->mru_section ? " [MRU]" : "",
3552             s->mr->is_iommu ? " [iommu]" : "");
3553 
3554         if (s->mr->alias) {
3555             qemu_printf(" alias=%s", s->mr->alias->name ?
3556                     s->mr->alias->name : "noname");
3557         }
3558         qemu_printf("\n");
3559     }
3560 
3561     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3562                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3563     for (i = 0; i < d->map.nodes_nb; ++i) {
3564         int j, jprev;
3565         PhysPageEntry prev;
3566         Node *n = d->map.nodes + i;
3567 
3568         qemu_printf("      [%d]\n", i);
3569 
3570         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3571             PhysPageEntry *pe = *n + j;
3572 
3573             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3574                 continue;
3575             }
3576 
3577             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3578 
3579             jprev = j;
3580             prev = *pe;
3581         }
3582 
3583         if (jprev != ARRAY_SIZE(*n)) {
3584             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3585         }
3586     }
3587 }
3588 
3589 /* Require any discards to work. */
3590 static unsigned int ram_block_discard_required_cnt;
3591 /* Require only coordinated discards to work. */
3592 static unsigned int ram_block_coordinated_discard_required_cnt;
3593 /* Disable any discards. */
3594 static unsigned int ram_block_discard_disabled_cnt;
3595 /* Disable only uncoordinated discards. */
3596 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3597 static QemuMutex ram_block_discard_disable_mutex;
3598 
3599 static void ram_block_discard_disable_mutex_lock(void)
3600 {
3601     static gsize initialized;
3602 
3603     if (g_once_init_enter(&initialized)) {
3604         qemu_mutex_init(&ram_block_discard_disable_mutex);
3605         g_once_init_leave(&initialized, 1);
3606     }
3607     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3608 }
3609 
3610 static void ram_block_discard_disable_mutex_unlock(void)
3611 {
3612     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3613 }
3614 
3615 int ram_block_discard_disable(bool state)
3616 {
3617     int ret = 0;
3618 
3619     ram_block_discard_disable_mutex_lock();
3620     if (!state) {
3621         ram_block_discard_disabled_cnt--;
3622     } else if (ram_block_discard_required_cnt ||
3623                ram_block_coordinated_discard_required_cnt) {
3624         ret = -EBUSY;
3625     } else {
3626         ram_block_discard_disabled_cnt++;
3627     }
3628     ram_block_discard_disable_mutex_unlock();
3629     return ret;
3630 }
3631 
3632 int ram_block_uncoordinated_discard_disable(bool state)
3633 {
3634     int ret = 0;
3635 
3636     ram_block_discard_disable_mutex_lock();
3637     if (!state) {
3638         ram_block_uncoordinated_discard_disabled_cnt--;
3639     } else if (ram_block_discard_required_cnt) {
3640         ret = -EBUSY;
3641     } else {
3642         ram_block_uncoordinated_discard_disabled_cnt++;
3643     }
3644     ram_block_discard_disable_mutex_unlock();
3645     return ret;
3646 }
3647 
3648 int ram_block_discard_require(bool state)
3649 {
3650     int ret = 0;
3651 
3652     ram_block_discard_disable_mutex_lock();
3653     if (!state) {
3654         ram_block_discard_required_cnt--;
3655     } else if (ram_block_discard_disabled_cnt ||
3656                ram_block_uncoordinated_discard_disabled_cnt) {
3657         ret = -EBUSY;
3658     } else {
3659         ram_block_discard_required_cnt++;
3660     }
3661     ram_block_discard_disable_mutex_unlock();
3662     return ret;
3663 }
3664 
3665 int ram_block_coordinated_discard_require(bool state)
3666 {
3667     int ret = 0;
3668 
3669     ram_block_discard_disable_mutex_lock();
3670     if (!state) {
3671         ram_block_coordinated_discard_required_cnt--;
3672     } else if (ram_block_discard_disabled_cnt) {
3673         ret = -EBUSY;
3674     } else {
3675         ram_block_coordinated_discard_required_cnt++;
3676     }
3677     ram_block_discard_disable_mutex_unlock();
3678     return ret;
3679 }
3680 
3681 bool ram_block_discard_is_disabled(void)
3682 {
3683     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3684            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3685 }
3686 
3687 bool ram_block_discard_is_required(void)
3688 {
3689     return qatomic_read(&ram_block_discard_required_cnt) ||
3690            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3691 }
3692