1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = 684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 685 686 for (;;) { 687 section = address_space_translate_internal(d, addr, &addr, plen, false); 688 689 iommu_mr = memory_region_get_iommu(section->mr); 690 if (!iommu_mr) { 691 break; 692 } 693 694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 695 696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 699 * doesn't short-cut its translation table walk. 700 */ 701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 703 | (addr & iotlb.addr_mask)); 704 /* Update the caller's prot bits to remove permissions the IOMMU 705 * is giving us a failure response for. If we get down to no 706 * permissions left at all we can give up now. 707 */ 708 if (!(iotlb.perm & IOMMU_RO)) { 709 *prot &= ~(PAGE_READ | PAGE_EXEC); 710 } 711 if (!(iotlb.perm & IOMMU_WO)) { 712 *prot &= ~PAGE_WRITE; 713 } 714 715 if (!*prot) { 716 goto translate_fail; 717 } 718 719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 720 } 721 722 assert(!memory_region_is_iommu(section->mr)); 723 *xlat = addr; 724 return section; 725 726 translate_fail: 727 /* 728 * We should be given a page-aligned address -- certainly 729 * tlb_set_page_with_attrs() does so. The page offset of xlat 730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 731 * The page portion of xlat will be logged by memory_region_access_valid() 732 * when this memory access is rejected, so use the original untranslated 733 * physical address. 734 */ 735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 736 *xlat = orig_addr; 737 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 738 } 739 740 void cpu_address_space_init(CPUState *cpu, int asidx, 741 const char *prefix, MemoryRegion *mr) 742 { 743 CPUAddressSpace *newas; 744 AddressSpace *as = g_new0(AddressSpace, 1); 745 char *as_name; 746 747 assert(mr); 748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 749 address_space_init(as, mr, as_name); 750 g_free(as_name); 751 752 /* Target code should have set num_ases before calling us */ 753 assert(asidx < cpu->num_ases); 754 755 if (asidx == 0) { 756 /* address space 0 gets the convenience alias */ 757 cpu->as = as; 758 } 759 760 /* KVM cannot currently support multiple address spaces. */ 761 assert(asidx == 0 || !kvm_enabled()); 762 763 if (!cpu->cpu_ases) { 764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 765 } 766 767 newas = &cpu->cpu_ases[asidx]; 768 newas->cpu = cpu; 769 newas->as = as; 770 if (tcg_enabled()) { 771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 772 newas->tcg_as_listener.commit = tcg_commit; 773 newas->tcg_as_listener.name = "tcg"; 774 memory_listener_register(&newas->tcg_as_listener, as); 775 } 776 } 777 778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 779 { 780 /* Return the AddressSpace corresponding to the specified index */ 781 return cpu->cpu_ases[asidx].as; 782 } 783 784 /* Called from RCU critical section */ 785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 786 { 787 RAMBlock *block; 788 789 block = qatomic_rcu_read(&ram_list.mru_block); 790 if (block && addr - block->offset < block->max_length) { 791 return block; 792 } 793 RAMBLOCK_FOREACH(block) { 794 if (addr - block->offset < block->max_length) { 795 goto found; 796 } 797 } 798 799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 800 abort(); 801 802 found: 803 /* It is safe to write mru_block outside the iothread lock. This 804 * is what happens: 805 * 806 * mru_block = xxx 807 * rcu_read_unlock() 808 * xxx removed from list 809 * rcu_read_lock() 810 * read mru_block 811 * mru_block = NULL; 812 * call_rcu(reclaim_ramblock, xxx); 813 * rcu_read_unlock() 814 * 815 * qatomic_rcu_set is not needed here. The block was already published 816 * when it was placed into the list. Here we're just making an extra 817 * copy of the pointer. 818 */ 819 ram_list.mru_block = block; 820 return block; 821 } 822 823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 824 { 825 CPUState *cpu; 826 ram_addr_t start1; 827 RAMBlock *block; 828 ram_addr_t end; 829 830 assert(tcg_enabled()); 831 end = TARGET_PAGE_ALIGN(start + length); 832 start &= TARGET_PAGE_MASK; 833 834 RCU_READ_LOCK_GUARD(); 835 block = qemu_get_ram_block(start); 836 assert(block == qemu_get_ram_block(end - 1)); 837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 838 CPU_FOREACH(cpu) { 839 tlb_reset_dirty(cpu, start1, length); 840 } 841 } 842 843 /* Note: start and end must be within the same ram block. */ 844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 845 ram_addr_t length, 846 unsigned client) 847 { 848 DirtyMemoryBlocks *blocks; 849 unsigned long end, page, start_page; 850 bool dirty = false; 851 RAMBlock *ramblock; 852 uint64_t mr_offset, mr_size; 853 854 if (length == 0) { 855 return false; 856 } 857 858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 859 start_page = start >> TARGET_PAGE_BITS; 860 page = start_page; 861 862 WITH_RCU_READ_LOCK_GUARD() { 863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 864 ramblock = qemu_get_ram_block(start); 865 /* Range sanity check on the ramblock */ 866 assert(start >= ramblock->offset && 867 start + length <= ramblock->offset + ramblock->used_length); 868 869 while (page < end) { 870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 872 unsigned long num = MIN(end - page, 873 DIRTY_MEMORY_BLOCK_SIZE - offset); 874 875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 876 offset, num); 877 page += num; 878 } 879 880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 881 mr_size = (end - start_page) << TARGET_PAGE_BITS; 882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 883 } 884 885 if (dirty && tcg_enabled()) { 886 tlb_reset_dirty_range_all(start, length); 887 } 888 889 return dirty; 890 } 891 892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 894 { 895 DirtyMemoryBlocks *blocks; 896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 900 DirtyBitmapSnapshot *snap; 901 unsigned long page, end, dest; 902 903 snap = g_malloc0(sizeof(*snap) + 904 ((last - first) >> (TARGET_PAGE_BITS + 3))); 905 snap->start = first; 906 snap->end = last; 907 908 page = first >> TARGET_PAGE_BITS; 909 end = last >> TARGET_PAGE_BITS; 910 dest = 0; 911 912 WITH_RCU_READ_LOCK_GUARD() { 913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 914 915 while (page < end) { 916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 918 unsigned long num = MIN(end - page, 919 DIRTY_MEMORY_BLOCK_SIZE - offset); 920 921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 923 offset >>= BITS_PER_LEVEL; 924 925 bitmap_copy_and_clear_atomic(snap->dirty + dest, 926 blocks->blocks[idx] + offset, 927 num); 928 page += num; 929 dest += num >> BITS_PER_LEVEL; 930 } 931 } 932 933 if (tcg_enabled()) { 934 tlb_reset_dirty_range_all(start, length); 935 } 936 937 memory_region_clear_dirty_bitmap(mr, offset, length); 938 939 return snap; 940 } 941 942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 943 ram_addr_t start, 944 ram_addr_t length) 945 { 946 unsigned long page, end; 947 948 assert(start >= snap->start); 949 assert(start + length <= snap->end); 950 951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 952 page = (start - snap->start) >> TARGET_PAGE_BITS; 953 954 while (page < end) { 955 if (test_bit(page, snap->dirty)) { 956 return true; 957 } 958 page++; 959 } 960 return false; 961 } 962 963 /* Called from RCU critical section */ 964 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 965 MemoryRegionSection *section) 966 { 967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 968 return section - d->map.sections; 969 } 970 971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 972 uint16_t section); 973 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 974 975 static uint16_t phys_section_add(PhysPageMap *map, 976 MemoryRegionSection *section) 977 { 978 /* The physical section number is ORed with a page-aligned 979 * pointer to produce the iotlb entries. Thus it should 980 * never overflow into the page-aligned value. 981 */ 982 assert(map->sections_nb < TARGET_PAGE_SIZE); 983 984 if (map->sections_nb == map->sections_nb_alloc) { 985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 986 map->sections = g_renew(MemoryRegionSection, map->sections, 987 map->sections_nb_alloc); 988 } 989 map->sections[map->sections_nb] = *section; 990 memory_region_ref(section->mr); 991 return map->sections_nb++; 992 } 993 994 static void phys_section_destroy(MemoryRegion *mr) 995 { 996 bool have_sub_page = mr->subpage; 997 998 memory_region_unref(mr); 999 1000 if (have_sub_page) { 1001 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1002 object_unref(OBJECT(&subpage->iomem)); 1003 g_free(subpage); 1004 } 1005 } 1006 1007 static void phys_sections_free(PhysPageMap *map) 1008 { 1009 while (map->sections_nb > 0) { 1010 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1011 phys_section_destroy(section->mr); 1012 } 1013 g_free(map->sections); 1014 g_free(map->nodes); 1015 } 1016 1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1018 { 1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1020 subpage_t *subpage; 1021 hwaddr base = section->offset_within_address_space 1022 & TARGET_PAGE_MASK; 1023 MemoryRegionSection *existing = phys_page_find(d, base); 1024 MemoryRegionSection subsection = { 1025 .offset_within_address_space = base, 1026 .size = int128_make64(TARGET_PAGE_SIZE), 1027 }; 1028 hwaddr start, end; 1029 1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1031 1032 if (!(existing->mr->subpage)) { 1033 subpage = subpage_init(fv, base); 1034 subsection.fv = fv; 1035 subsection.mr = &subpage->iomem; 1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1037 phys_section_add(&d->map, &subsection)); 1038 } else { 1039 subpage = container_of(existing->mr, subpage_t, iomem); 1040 } 1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1042 end = start + int128_get64(section->size) - 1; 1043 subpage_register(subpage, start, end, 1044 phys_section_add(&d->map, section)); 1045 } 1046 1047 1048 static void register_multipage(FlatView *fv, 1049 MemoryRegionSection *section) 1050 { 1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1052 hwaddr start_addr = section->offset_within_address_space; 1053 uint16_t section_index = phys_section_add(&d->map, section); 1054 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1055 TARGET_PAGE_BITS)); 1056 1057 assert(num_pages); 1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1059 } 1060 1061 /* 1062 * The range in *section* may look like this: 1063 * 1064 * |s|PPPPPPP|s| 1065 * 1066 * where s stands for subpage and P for page. 1067 */ 1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1069 { 1070 MemoryRegionSection remain = *section; 1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1072 1073 /* register first subpage */ 1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1076 - remain.offset_within_address_space; 1077 1078 MemoryRegionSection now = remain; 1079 now.size = int128_min(int128_make64(left), now.size); 1080 register_subpage(fv, &now); 1081 if (int128_eq(remain.size, now.size)) { 1082 return; 1083 } 1084 remain.size = int128_sub(remain.size, now.size); 1085 remain.offset_within_address_space += int128_get64(now.size); 1086 remain.offset_within_region += int128_get64(now.size); 1087 } 1088 1089 /* register whole pages */ 1090 if (int128_ge(remain.size, page_size)) { 1091 MemoryRegionSection now = remain; 1092 now.size = int128_and(now.size, int128_neg(page_size)); 1093 register_multipage(fv, &now); 1094 if (int128_eq(remain.size, now.size)) { 1095 return; 1096 } 1097 remain.size = int128_sub(remain.size, now.size); 1098 remain.offset_within_address_space += int128_get64(now.size); 1099 remain.offset_within_region += int128_get64(now.size); 1100 } 1101 1102 /* register last subpage */ 1103 register_subpage(fv, &remain); 1104 } 1105 1106 void qemu_flush_coalesced_mmio_buffer(void) 1107 { 1108 if (kvm_enabled()) 1109 kvm_flush_coalesced_mmio_buffer(); 1110 } 1111 1112 void qemu_mutex_lock_ramlist(void) 1113 { 1114 qemu_mutex_lock(&ram_list.mutex); 1115 } 1116 1117 void qemu_mutex_unlock_ramlist(void) 1118 { 1119 qemu_mutex_unlock(&ram_list.mutex); 1120 } 1121 1122 GString *ram_block_format(void) 1123 { 1124 RAMBlock *block; 1125 char *psize; 1126 GString *buf = g_string_new(""); 1127 1128 RCU_READ_LOCK_GUARD(); 1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1130 "Block Name", "PSize", "Offset", "Used", "Total", 1131 "HVA", "RO"); 1132 1133 RAMBLOCK_FOREACH(block) { 1134 psize = size_to_str(block->page_size); 1135 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1136 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1137 block->idstr, psize, 1138 (uint64_t)block->offset, 1139 (uint64_t)block->used_length, 1140 (uint64_t)block->max_length, 1141 (uint64_t)(uintptr_t)block->host, 1142 block->mr->readonly ? "ro" : "rw"); 1143 1144 g_free(psize); 1145 } 1146 1147 return buf; 1148 } 1149 1150 static int find_min_backend_pagesize(Object *obj, void *opaque) 1151 { 1152 long *hpsize_min = opaque; 1153 1154 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1155 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1156 long hpsize = host_memory_backend_pagesize(backend); 1157 1158 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1159 *hpsize_min = hpsize; 1160 } 1161 } 1162 1163 return 0; 1164 } 1165 1166 static int find_max_backend_pagesize(Object *obj, void *opaque) 1167 { 1168 long *hpsize_max = opaque; 1169 1170 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1171 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1172 long hpsize = host_memory_backend_pagesize(backend); 1173 1174 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1175 *hpsize_max = hpsize; 1176 } 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * TODO: We assume right now that all mapped host memory backends are 1184 * used as RAM, however some might be used for different purposes. 1185 */ 1186 long qemu_minrampagesize(void) 1187 { 1188 long hpsize = LONG_MAX; 1189 Object *memdev_root = object_resolve_path("/objects", NULL); 1190 1191 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1192 return hpsize; 1193 } 1194 1195 long qemu_maxrampagesize(void) 1196 { 1197 long pagesize = 0; 1198 Object *memdev_root = object_resolve_path("/objects", NULL); 1199 1200 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1201 return pagesize; 1202 } 1203 1204 #ifdef CONFIG_POSIX 1205 static int64_t get_file_size(int fd) 1206 { 1207 int64_t size; 1208 #if defined(__linux__) 1209 struct stat st; 1210 1211 if (fstat(fd, &st) < 0) { 1212 return -errno; 1213 } 1214 1215 /* Special handling for devdax character devices */ 1216 if (S_ISCHR(st.st_mode)) { 1217 g_autofree char *subsystem_path = NULL; 1218 g_autofree char *subsystem = NULL; 1219 1220 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1221 major(st.st_rdev), minor(st.st_rdev)); 1222 subsystem = g_file_read_link(subsystem_path, NULL); 1223 1224 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1225 g_autofree char *size_path = NULL; 1226 g_autofree char *size_str = NULL; 1227 1228 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1229 major(st.st_rdev), minor(st.st_rdev)); 1230 1231 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1232 return g_ascii_strtoll(size_str, NULL, 0); 1233 } 1234 } 1235 } 1236 #endif /* defined(__linux__) */ 1237 1238 /* st.st_size may be zero for special files yet lseek(2) works */ 1239 size = lseek(fd, 0, SEEK_END); 1240 if (size < 0) { 1241 return -errno; 1242 } 1243 return size; 1244 } 1245 1246 static int64_t get_file_align(int fd) 1247 { 1248 int64_t align = -1; 1249 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1250 struct stat st; 1251 1252 if (fstat(fd, &st) < 0) { 1253 return -errno; 1254 } 1255 1256 /* Special handling for devdax character devices */ 1257 if (S_ISCHR(st.st_mode)) { 1258 g_autofree char *path = NULL; 1259 g_autofree char *rpath = NULL; 1260 struct daxctl_ctx *ctx; 1261 struct daxctl_region *region; 1262 int rc = 0; 1263 1264 path = g_strdup_printf("/sys/dev/char/%d:%d", 1265 major(st.st_rdev), minor(st.st_rdev)); 1266 rpath = realpath(path, NULL); 1267 if (!rpath) { 1268 return -errno; 1269 } 1270 1271 rc = daxctl_new(&ctx); 1272 if (rc) { 1273 return -1; 1274 } 1275 1276 daxctl_region_foreach(ctx, region) { 1277 if (strstr(rpath, daxctl_region_get_path(region))) { 1278 align = daxctl_region_get_align(region); 1279 break; 1280 } 1281 } 1282 daxctl_unref(ctx); 1283 } 1284 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1285 1286 return align; 1287 } 1288 1289 static int file_ram_open(const char *path, 1290 const char *region_name, 1291 bool readonly, 1292 bool *created, 1293 Error **errp) 1294 { 1295 char *filename; 1296 char *sanitized_name; 1297 char *c; 1298 int fd = -1; 1299 1300 *created = false; 1301 for (;;) { 1302 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1303 if (fd >= 0) { 1304 /* @path names an existing file, use it */ 1305 break; 1306 } 1307 if (errno == ENOENT) { 1308 /* @path names a file that doesn't exist, create it */ 1309 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1310 if (fd >= 0) { 1311 *created = true; 1312 break; 1313 } 1314 } else if (errno == EISDIR) { 1315 /* @path names a directory, create a file there */ 1316 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1317 sanitized_name = g_strdup(region_name); 1318 for (c = sanitized_name; *c != '\0'; c++) { 1319 if (*c == '/') { 1320 *c = '_'; 1321 } 1322 } 1323 1324 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1325 sanitized_name); 1326 g_free(sanitized_name); 1327 1328 fd = mkstemp(filename); 1329 if (fd >= 0) { 1330 unlink(filename); 1331 g_free(filename); 1332 break; 1333 } 1334 g_free(filename); 1335 } 1336 if (errno != EEXIST && errno != EINTR) { 1337 error_setg_errno(errp, errno, 1338 "can't open backing store %s for guest RAM", 1339 path); 1340 return -1; 1341 } 1342 /* 1343 * Try again on EINTR and EEXIST. The latter happens when 1344 * something else creates the file between our two open(). 1345 */ 1346 } 1347 1348 return fd; 1349 } 1350 1351 static void *file_ram_alloc(RAMBlock *block, 1352 ram_addr_t memory, 1353 int fd, 1354 bool readonly, 1355 bool truncate, 1356 off_t offset, 1357 Error **errp) 1358 { 1359 uint32_t qemu_map_flags; 1360 void *area; 1361 1362 block->page_size = qemu_fd_getpagesize(fd); 1363 if (block->mr->align % block->page_size) { 1364 error_setg(errp, "alignment 0x%" PRIx64 1365 " must be multiples of page size 0x%zx", 1366 block->mr->align, block->page_size); 1367 return NULL; 1368 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1369 error_setg(errp, "alignment 0x%" PRIx64 1370 " must be a power of two", block->mr->align); 1371 return NULL; 1372 } else if (offset % block->page_size) { 1373 error_setg(errp, "offset 0x%" PRIx64 1374 " must be multiples of page size 0x%zx", 1375 offset, block->page_size); 1376 return NULL; 1377 } 1378 block->mr->align = MAX(block->page_size, block->mr->align); 1379 #if defined(__s390x__) 1380 if (kvm_enabled()) { 1381 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1382 } 1383 #endif 1384 1385 if (memory < block->page_size) { 1386 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1387 "or larger than page size 0x%zx", 1388 memory, block->page_size); 1389 return NULL; 1390 } 1391 1392 memory = ROUND_UP(memory, block->page_size); 1393 1394 /* 1395 * ftruncate is not supported by hugetlbfs in older 1396 * hosts, so don't bother bailing out on errors. 1397 * If anything goes wrong with it under other filesystems, 1398 * mmap will fail. 1399 * 1400 * Do not truncate the non-empty backend file to avoid corrupting 1401 * the existing data in the file. Disabling shrinking is not 1402 * enough. For example, the current vNVDIMM implementation stores 1403 * the guest NVDIMM labels at the end of the backend file. If the 1404 * backend file is later extended, QEMU will not be able to find 1405 * those labels. Therefore, extending the non-empty backend file 1406 * is disabled as well. 1407 */ 1408 if (truncate && ftruncate(fd, offset + memory)) { 1409 perror("ftruncate"); 1410 } 1411 1412 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1413 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1414 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1415 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1416 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1417 if (area == MAP_FAILED) { 1418 error_setg_errno(errp, errno, 1419 "unable to map backing store for guest RAM"); 1420 return NULL; 1421 } 1422 1423 block->fd = fd; 1424 block->fd_offset = offset; 1425 return area; 1426 } 1427 #endif 1428 1429 /* Allocate space within the ram_addr_t space that governs the 1430 * dirty bitmaps. 1431 * Called with the ramlist lock held. 1432 */ 1433 static ram_addr_t find_ram_offset(ram_addr_t size) 1434 { 1435 RAMBlock *block, *next_block; 1436 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1437 1438 assert(size != 0); /* it would hand out same offset multiple times */ 1439 1440 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1441 return 0; 1442 } 1443 1444 RAMBLOCK_FOREACH(block) { 1445 ram_addr_t candidate, next = RAM_ADDR_MAX; 1446 1447 /* Align blocks to start on a 'long' in the bitmap 1448 * which makes the bitmap sync'ing take the fast path. 1449 */ 1450 candidate = block->offset + block->max_length; 1451 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1452 1453 /* Search for the closest following block 1454 * and find the gap. 1455 */ 1456 RAMBLOCK_FOREACH(next_block) { 1457 if (next_block->offset >= candidate) { 1458 next = MIN(next, next_block->offset); 1459 } 1460 } 1461 1462 /* If it fits remember our place and remember the size 1463 * of gap, but keep going so that we might find a smaller 1464 * gap to fill so avoiding fragmentation. 1465 */ 1466 if (next - candidate >= size && next - candidate < mingap) { 1467 offset = candidate; 1468 mingap = next - candidate; 1469 } 1470 1471 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1472 } 1473 1474 if (offset == RAM_ADDR_MAX) { 1475 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1476 (uint64_t)size); 1477 abort(); 1478 } 1479 1480 trace_find_ram_offset(size, offset); 1481 1482 return offset; 1483 } 1484 1485 static unsigned long last_ram_page(void) 1486 { 1487 RAMBlock *block; 1488 ram_addr_t last = 0; 1489 1490 RCU_READ_LOCK_GUARD(); 1491 RAMBLOCK_FOREACH(block) { 1492 last = MAX(last, block->offset + block->max_length); 1493 } 1494 return last >> TARGET_PAGE_BITS; 1495 } 1496 1497 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1498 { 1499 int ret; 1500 1501 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1502 if (!machine_dump_guest_core(current_machine)) { 1503 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1504 if (ret) { 1505 perror("qemu_madvise"); 1506 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1507 "but dump_guest_core=off specified\n"); 1508 } 1509 } 1510 } 1511 1512 const char *qemu_ram_get_idstr(RAMBlock *rb) 1513 { 1514 return rb->idstr; 1515 } 1516 1517 void *qemu_ram_get_host_addr(RAMBlock *rb) 1518 { 1519 return rb->host; 1520 } 1521 1522 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1523 { 1524 return rb->offset; 1525 } 1526 1527 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1528 { 1529 return rb->used_length; 1530 } 1531 1532 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1533 { 1534 return rb->max_length; 1535 } 1536 1537 bool qemu_ram_is_shared(RAMBlock *rb) 1538 { 1539 return rb->flags & RAM_SHARED; 1540 } 1541 1542 bool qemu_ram_is_noreserve(RAMBlock *rb) 1543 { 1544 return rb->flags & RAM_NORESERVE; 1545 } 1546 1547 /* Note: Only set at the start of postcopy */ 1548 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1549 { 1550 return rb->flags & RAM_UF_ZEROPAGE; 1551 } 1552 1553 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1554 { 1555 rb->flags |= RAM_UF_ZEROPAGE; 1556 } 1557 1558 bool qemu_ram_is_migratable(RAMBlock *rb) 1559 { 1560 return rb->flags & RAM_MIGRATABLE; 1561 } 1562 1563 void qemu_ram_set_migratable(RAMBlock *rb) 1564 { 1565 rb->flags |= RAM_MIGRATABLE; 1566 } 1567 1568 void qemu_ram_unset_migratable(RAMBlock *rb) 1569 { 1570 rb->flags &= ~RAM_MIGRATABLE; 1571 } 1572 1573 int qemu_ram_get_fd(RAMBlock *rb) 1574 { 1575 return rb->fd; 1576 } 1577 1578 /* Called with iothread lock held. */ 1579 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1580 { 1581 RAMBlock *block; 1582 1583 assert(new_block); 1584 assert(!new_block->idstr[0]); 1585 1586 if (dev) { 1587 char *id = qdev_get_dev_path(dev); 1588 if (id) { 1589 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1590 g_free(id); 1591 } 1592 } 1593 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1594 1595 RCU_READ_LOCK_GUARD(); 1596 RAMBLOCK_FOREACH(block) { 1597 if (block != new_block && 1598 !strcmp(block->idstr, new_block->idstr)) { 1599 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1600 new_block->idstr); 1601 abort(); 1602 } 1603 } 1604 } 1605 1606 /* Called with iothread lock held. */ 1607 void qemu_ram_unset_idstr(RAMBlock *block) 1608 { 1609 /* FIXME: arch_init.c assumes that this is not called throughout 1610 * migration. Ignore the problem since hot-unplug during migration 1611 * does not work anyway. 1612 */ 1613 if (block) { 1614 memset(block->idstr, 0, sizeof(block->idstr)); 1615 } 1616 } 1617 1618 size_t qemu_ram_pagesize(RAMBlock *rb) 1619 { 1620 return rb->page_size; 1621 } 1622 1623 /* Returns the largest size of page in use */ 1624 size_t qemu_ram_pagesize_largest(void) 1625 { 1626 RAMBlock *block; 1627 size_t largest = 0; 1628 1629 RAMBLOCK_FOREACH(block) { 1630 largest = MAX(largest, qemu_ram_pagesize(block)); 1631 } 1632 1633 return largest; 1634 } 1635 1636 static int memory_try_enable_merging(void *addr, size_t len) 1637 { 1638 if (!machine_mem_merge(current_machine)) { 1639 /* disabled by the user */ 1640 return 0; 1641 } 1642 1643 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1644 } 1645 1646 /* 1647 * Resizing RAM while migrating can result in the migration being canceled. 1648 * Care has to be taken if the guest might have already detected the memory. 1649 * 1650 * As memory core doesn't know how is memory accessed, it is up to 1651 * resize callback to update device state and/or add assertions to detect 1652 * misuse, if necessary. 1653 */ 1654 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1655 { 1656 const ram_addr_t oldsize = block->used_length; 1657 const ram_addr_t unaligned_size = newsize; 1658 1659 assert(block); 1660 1661 newsize = HOST_PAGE_ALIGN(newsize); 1662 1663 if (block->used_length == newsize) { 1664 /* 1665 * We don't have to resize the ram block (which only knows aligned 1666 * sizes), however, we have to notify if the unaligned size changed. 1667 */ 1668 if (unaligned_size != memory_region_size(block->mr)) { 1669 memory_region_set_size(block->mr, unaligned_size); 1670 if (block->resized) { 1671 block->resized(block->idstr, unaligned_size, block->host); 1672 } 1673 } 1674 return 0; 1675 } 1676 1677 if (!(block->flags & RAM_RESIZEABLE)) { 1678 error_setg_errno(errp, EINVAL, 1679 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1680 " != 0x" RAM_ADDR_FMT, block->idstr, 1681 newsize, block->used_length); 1682 return -EINVAL; 1683 } 1684 1685 if (block->max_length < newsize) { 1686 error_setg_errno(errp, EINVAL, 1687 "Size too large: %s: 0x" RAM_ADDR_FMT 1688 " > 0x" RAM_ADDR_FMT, block->idstr, 1689 newsize, block->max_length); 1690 return -EINVAL; 1691 } 1692 1693 /* Notify before modifying the ram block and touching the bitmaps. */ 1694 if (block->host) { 1695 ram_block_notify_resize(block->host, oldsize, newsize); 1696 } 1697 1698 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1699 block->used_length = newsize; 1700 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1701 DIRTY_CLIENTS_ALL); 1702 memory_region_set_size(block->mr, unaligned_size); 1703 if (block->resized) { 1704 block->resized(block->idstr, unaligned_size, block->host); 1705 } 1706 return 0; 1707 } 1708 1709 /* 1710 * Trigger sync on the given ram block for range [start, start + length] 1711 * with the backing store if one is available. 1712 * Otherwise no-op. 1713 * @Note: this is supposed to be a synchronous op. 1714 */ 1715 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1716 { 1717 /* The requested range should fit in within the block range */ 1718 g_assert((start + length) <= block->used_length); 1719 1720 #ifdef CONFIG_LIBPMEM 1721 /* The lack of support for pmem should not block the sync */ 1722 if (ramblock_is_pmem(block)) { 1723 void *addr = ramblock_ptr(block, start); 1724 pmem_persist(addr, length); 1725 return; 1726 } 1727 #endif 1728 if (block->fd >= 0) { 1729 /** 1730 * Case there is no support for PMEM or the memory has not been 1731 * specified as persistent (or is not one) - use the msync. 1732 * Less optimal but still achieves the same goal 1733 */ 1734 void *addr = ramblock_ptr(block, start); 1735 if (qemu_msync(addr, length, block->fd)) { 1736 warn_report("%s: failed to sync memory range: start: " 1737 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1738 __func__, start, length); 1739 } 1740 } 1741 } 1742 1743 /* Called with ram_list.mutex held */ 1744 static void dirty_memory_extend(ram_addr_t old_ram_size, 1745 ram_addr_t new_ram_size) 1746 { 1747 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1748 DIRTY_MEMORY_BLOCK_SIZE); 1749 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1750 DIRTY_MEMORY_BLOCK_SIZE); 1751 int i; 1752 1753 /* Only need to extend if block count increased */ 1754 if (new_num_blocks <= old_num_blocks) { 1755 return; 1756 } 1757 1758 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1759 DirtyMemoryBlocks *old_blocks; 1760 DirtyMemoryBlocks *new_blocks; 1761 int j; 1762 1763 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1764 new_blocks = g_malloc(sizeof(*new_blocks) + 1765 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1766 1767 if (old_num_blocks) { 1768 memcpy(new_blocks->blocks, old_blocks->blocks, 1769 old_num_blocks * sizeof(old_blocks->blocks[0])); 1770 } 1771 1772 for (j = old_num_blocks; j < new_num_blocks; j++) { 1773 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1774 } 1775 1776 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1777 1778 if (old_blocks) { 1779 g_free_rcu(old_blocks, rcu); 1780 } 1781 } 1782 } 1783 1784 static void ram_block_add(RAMBlock *new_block, Error **errp) 1785 { 1786 const bool noreserve = qemu_ram_is_noreserve(new_block); 1787 const bool shared = qemu_ram_is_shared(new_block); 1788 RAMBlock *block; 1789 RAMBlock *last_block = NULL; 1790 ram_addr_t old_ram_size, new_ram_size; 1791 Error *err = NULL; 1792 1793 old_ram_size = last_ram_page(); 1794 1795 qemu_mutex_lock_ramlist(); 1796 new_block->offset = find_ram_offset(new_block->max_length); 1797 1798 if (!new_block->host) { 1799 if (xen_enabled()) { 1800 xen_ram_alloc(new_block->offset, new_block->max_length, 1801 new_block->mr, &err); 1802 if (err) { 1803 error_propagate(errp, err); 1804 qemu_mutex_unlock_ramlist(); 1805 return; 1806 } 1807 } else { 1808 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1809 &new_block->mr->align, 1810 shared, noreserve); 1811 if (!new_block->host) { 1812 error_setg_errno(errp, errno, 1813 "cannot set up guest memory '%s'", 1814 memory_region_name(new_block->mr)); 1815 qemu_mutex_unlock_ramlist(); 1816 return; 1817 } 1818 memory_try_enable_merging(new_block->host, new_block->max_length); 1819 } 1820 } 1821 1822 new_ram_size = MAX(old_ram_size, 1823 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1824 if (new_ram_size > old_ram_size) { 1825 dirty_memory_extend(old_ram_size, new_ram_size); 1826 } 1827 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1828 * QLIST (which has an RCU-friendly variant) does not have insertion at 1829 * tail, so save the last element in last_block. 1830 */ 1831 RAMBLOCK_FOREACH(block) { 1832 last_block = block; 1833 if (block->max_length < new_block->max_length) { 1834 break; 1835 } 1836 } 1837 if (block) { 1838 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1839 } else if (last_block) { 1840 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1841 } else { /* list is empty */ 1842 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1843 } 1844 ram_list.mru_block = NULL; 1845 1846 /* Write list before version */ 1847 smp_wmb(); 1848 ram_list.version++; 1849 qemu_mutex_unlock_ramlist(); 1850 1851 cpu_physical_memory_set_dirty_range(new_block->offset, 1852 new_block->used_length, 1853 DIRTY_CLIENTS_ALL); 1854 1855 if (new_block->host) { 1856 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1857 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1858 /* 1859 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1860 * Configure it unless the machine is a qtest server, in which case 1861 * KVM is not used and it may be forked (eg for fuzzing purposes). 1862 */ 1863 if (!qtest_enabled()) { 1864 qemu_madvise(new_block->host, new_block->max_length, 1865 QEMU_MADV_DONTFORK); 1866 } 1867 ram_block_notify_add(new_block->host, new_block->used_length, 1868 new_block->max_length); 1869 } 1870 } 1871 1872 #ifdef CONFIG_POSIX 1873 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1874 uint32_t ram_flags, int fd, off_t offset, 1875 bool readonly, Error **errp) 1876 { 1877 RAMBlock *new_block; 1878 Error *local_err = NULL; 1879 int64_t file_size, file_align; 1880 1881 /* Just support these ram flags by now. */ 1882 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1883 RAM_PROTECTED)) == 0); 1884 1885 if (xen_enabled()) { 1886 error_setg(errp, "-mem-path not supported with Xen"); 1887 return NULL; 1888 } 1889 1890 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1891 error_setg(errp, 1892 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1893 return NULL; 1894 } 1895 1896 size = HOST_PAGE_ALIGN(size); 1897 file_size = get_file_size(fd); 1898 if (file_size > offset && file_size < (offset + size)) { 1899 error_setg(errp, "backing store size 0x%" PRIx64 1900 " does not match 'size' option 0x" RAM_ADDR_FMT, 1901 file_size, size); 1902 return NULL; 1903 } 1904 1905 file_align = get_file_align(fd); 1906 if (file_align > 0 && file_align > mr->align) { 1907 error_setg(errp, "backing store align 0x%" PRIx64 1908 " is larger than 'align' option 0x%" PRIx64, 1909 file_align, mr->align); 1910 return NULL; 1911 } 1912 1913 new_block = g_malloc0(sizeof(*new_block)); 1914 new_block->mr = mr; 1915 new_block->used_length = size; 1916 new_block->max_length = size; 1917 new_block->flags = ram_flags; 1918 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 1919 !file_size, offset, errp); 1920 if (!new_block->host) { 1921 g_free(new_block); 1922 return NULL; 1923 } 1924 1925 ram_block_add(new_block, &local_err); 1926 if (local_err) { 1927 g_free(new_block); 1928 error_propagate(errp, local_err); 1929 return NULL; 1930 } 1931 return new_block; 1932 1933 } 1934 1935 1936 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1937 uint32_t ram_flags, const char *mem_path, 1938 off_t offset, bool readonly, Error **errp) 1939 { 1940 int fd; 1941 bool created; 1942 RAMBlock *block; 1943 1944 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 1945 errp); 1946 if (fd < 0) { 1947 return NULL; 1948 } 1949 1950 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly, 1951 errp); 1952 if (!block) { 1953 if (created) { 1954 unlink(mem_path); 1955 } 1956 close(fd); 1957 return NULL; 1958 } 1959 1960 return block; 1961 } 1962 #endif 1963 1964 static 1965 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 1966 void (*resized)(const char*, 1967 uint64_t length, 1968 void *host), 1969 void *host, uint32_t ram_flags, 1970 MemoryRegion *mr, Error **errp) 1971 { 1972 RAMBlock *new_block; 1973 Error *local_err = NULL; 1974 1975 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 1976 RAM_NORESERVE)) == 0); 1977 assert(!host ^ (ram_flags & RAM_PREALLOC)); 1978 1979 size = HOST_PAGE_ALIGN(size); 1980 max_size = HOST_PAGE_ALIGN(max_size); 1981 new_block = g_malloc0(sizeof(*new_block)); 1982 new_block->mr = mr; 1983 new_block->resized = resized; 1984 new_block->used_length = size; 1985 new_block->max_length = max_size; 1986 assert(max_size >= size); 1987 new_block->fd = -1; 1988 new_block->page_size = qemu_real_host_page_size(); 1989 new_block->host = host; 1990 new_block->flags = ram_flags; 1991 ram_block_add(new_block, &local_err); 1992 if (local_err) { 1993 g_free(new_block); 1994 error_propagate(errp, local_err); 1995 return NULL; 1996 } 1997 return new_block; 1998 } 1999 2000 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2001 MemoryRegion *mr, Error **errp) 2002 { 2003 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2004 errp); 2005 } 2006 2007 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2008 MemoryRegion *mr, Error **errp) 2009 { 2010 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2011 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2012 } 2013 2014 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2015 void (*resized)(const char*, 2016 uint64_t length, 2017 void *host), 2018 MemoryRegion *mr, Error **errp) 2019 { 2020 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2021 RAM_RESIZEABLE, mr, errp); 2022 } 2023 2024 static void reclaim_ramblock(RAMBlock *block) 2025 { 2026 if (block->flags & RAM_PREALLOC) { 2027 ; 2028 } else if (xen_enabled()) { 2029 xen_invalidate_map_cache_entry(block->host); 2030 #ifndef _WIN32 2031 } else if (block->fd >= 0) { 2032 qemu_ram_munmap(block->fd, block->host, block->max_length); 2033 close(block->fd); 2034 #endif 2035 } else { 2036 qemu_anon_ram_free(block->host, block->max_length); 2037 } 2038 g_free(block); 2039 } 2040 2041 void qemu_ram_free(RAMBlock *block) 2042 { 2043 if (!block) { 2044 return; 2045 } 2046 2047 if (block->host) { 2048 ram_block_notify_remove(block->host, block->used_length, 2049 block->max_length); 2050 } 2051 2052 qemu_mutex_lock_ramlist(); 2053 QLIST_REMOVE_RCU(block, next); 2054 ram_list.mru_block = NULL; 2055 /* Write list before version */ 2056 smp_wmb(); 2057 ram_list.version++; 2058 call_rcu(block, reclaim_ramblock, rcu); 2059 qemu_mutex_unlock_ramlist(); 2060 } 2061 2062 #ifndef _WIN32 2063 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2064 { 2065 RAMBlock *block; 2066 ram_addr_t offset; 2067 int flags; 2068 void *area, *vaddr; 2069 2070 RAMBLOCK_FOREACH(block) { 2071 offset = addr - block->offset; 2072 if (offset < block->max_length) { 2073 vaddr = ramblock_ptr(block, offset); 2074 if (block->flags & RAM_PREALLOC) { 2075 ; 2076 } else if (xen_enabled()) { 2077 abort(); 2078 } else { 2079 flags = MAP_FIXED; 2080 flags |= block->flags & RAM_SHARED ? 2081 MAP_SHARED : MAP_PRIVATE; 2082 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2083 if (block->fd >= 0) { 2084 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2085 flags, block->fd, offset + block->fd_offset); 2086 } else { 2087 flags |= MAP_ANONYMOUS; 2088 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2089 flags, -1, 0); 2090 } 2091 if (area != vaddr) { 2092 error_report("Could not remap addr: " 2093 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2094 length, addr); 2095 exit(1); 2096 } 2097 memory_try_enable_merging(vaddr, length); 2098 qemu_ram_setup_dump(vaddr, length); 2099 } 2100 } 2101 } 2102 } 2103 #endif /* !_WIN32 */ 2104 2105 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2106 * This should not be used for general purpose DMA. Use address_space_map 2107 * or address_space_rw instead. For local memory (e.g. video ram) that the 2108 * device owns, use memory_region_get_ram_ptr. 2109 * 2110 * Called within RCU critical section. 2111 */ 2112 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2113 { 2114 RAMBlock *block = ram_block; 2115 2116 if (block == NULL) { 2117 block = qemu_get_ram_block(addr); 2118 addr -= block->offset; 2119 } 2120 2121 if (xen_enabled() && block->host == NULL) { 2122 /* We need to check if the requested address is in the RAM 2123 * because we don't want to map the entire memory in QEMU. 2124 * In that case just map until the end of the page. 2125 */ 2126 if (block->offset == 0) { 2127 return xen_map_cache(addr, 0, 0, false); 2128 } 2129 2130 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2131 } 2132 return ramblock_ptr(block, addr); 2133 } 2134 2135 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2136 * but takes a size argument. 2137 * 2138 * Called within RCU critical section. 2139 */ 2140 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2141 hwaddr *size, bool lock) 2142 { 2143 RAMBlock *block = ram_block; 2144 if (*size == 0) { 2145 return NULL; 2146 } 2147 2148 if (block == NULL) { 2149 block = qemu_get_ram_block(addr); 2150 addr -= block->offset; 2151 } 2152 *size = MIN(*size, block->max_length - addr); 2153 2154 if (xen_enabled() && block->host == NULL) { 2155 /* We need to check if the requested address is in the RAM 2156 * because we don't want to map the entire memory in QEMU. 2157 * In that case just map the requested area. 2158 */ 2159 if (block->offset == 0) { 2160 return xen_map_cache(addr, *size, lock, lock); 2161 } 2162 2163 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2164 } 2165 2166 return ramblock_ptr(block, addr); 2167 } 2168 2169 /* Return the offset of a hostpointer within a ramblock */ 2170 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2171 { 2172 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2173 assert((uintptr_t)host >= (uintptr_t)rb->host); 2174 assert(res < rb->max_length); 2175 2176 return res; 2177 } 2178 2179 /* 2180 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2181 * in that RAMBlock. 2182 * 2183 * ptr: Host pointer to look up 2184 * round_offset: If true round the result offset down to a page boundary 2185 * *ram_addr: set to result ram_addr 2186 * *offset: set to result offset within the RAMBlock 2187 * 2188 * Returns: RAMBlock (or NULL if not found) 2189 * 2190 * By the time this function returns, the returned pointer is not protected 2191 * by RCU anymore. If the caller is not within an RCU critical section and 2192 * does not hold the iothread lock, it must have other means of protecting the 2193 * pointer, such as a reference to the region that includes the incoming 2194 * ram_addr_t. 2195 */ 2196 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2197 ram_addr_t *offset) 2198 { 2199 RAMBlock *block; 2200 uint8_t *host = ptr; 2201 2202 if (xen_enabled()) { 2203 ram_addr_t ram_addr; 2204 RCU_READ_LOCK_GUARD(); 2205 ram_addr = xen_ram_addr_from_mapcache(ptr); 2206 block = qemu_get_ram_block(ram_addr); 2207 if (block) { 2208 *offset = ram_addr - block->offset; 2209 } 2210 return block; 2211 } 2212 2213 RCU_READ_LOCK_GUARD(); 2214 block = qatomic_rcu_read(&ram_list.mru_block); 2215 if (block && block->host && host - block->host < block->max_length) { 2216 goto found; 2217 } 2218 2219 RAMBLOCK_FOREACH(block) { 2220 /* This case append when the block is not mapped. */ 2221 if (block->host == NULL) { 2222 continue; 2223 } 2224 if (host - block->host < block->max_length) { 2225 goto found; 2226 } 2227 } 2228 2229 return NULL; 2230 2231 found: 2232 *offset = (host - block->host); 2233 if (round_offset) { 2234 *offset &= TARGET_PAGE_MASK; 2235 } 2236 return block; 2237 } 2238 2239 /* 2240 * Finds the named RAMBlock 2241 * 2242 * name: The name of RAMBlock to find 2243 * 2244 * Returns: RAMBlock (or NULL if not found) 2245 */ 2246 RAMBlock *qemu_ram_block_by_name(const char *name) 2247 { 2248 RAMBlock *block; 2249 2250 RAMBLOCK_FOREACH(block) { 2251 if (!strcmp(name, block->idstr)) { 2252 return block; 2253 } 2254 } 2255 2256 return NULL; 2257 } 2258 2259 /* Some of the softmmu routines need to translate from a host pointer 2260 (typically a TLB entry) back to a ram offset. */ 2261 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2262 { 2263 RAMBlock *block; 2264 ram_addr_t offset; 2265 2266 block = qemu_ram_block_from_host(ptr, false, &offset); 2267 if (!block) { 2268 return RAM_ADDR_INVALID; 2269 } 2270 2271 return block->offset + offset; 2272 } 2273 2274 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2275 { 2276 ram_addr_t ram_addr; 2277 2278 ram_addr = qemu_ram_addr_from_host(ptr); 2279 if (ram_addr == RAM_ADDR_INVALID) { 2280 error_report("Bad ram pointer %p", ptr); 2281 abort(); 2282 } 2283 return ram_addr; 2284 } 2285 2286 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2287 MemTxAttrs attrs, void *buf, hwaddr len); 2288 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2289 const void *buf, hwaddr len); 2290 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2291 bool is_write, MemTxAttrs attrs); 2292 2293 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2294 unsigned len, MemTxAttrs attrs) 2295 { 2296 subpage_t *subpage = opaque; 2297 uint8_t buf[8]; 2298 MemTxResult res; 2299 2300 #if defined(DEBUG_SUBPAGE) 2301 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2302 subpage, len, addr); 2303 #endif 2304 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2305 if (res) { 2306 return res; 2307 } 2308 *data = ldn_p(buf, len); 2309 return MEMTX_OK; 2310 } 2311 2312 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2313 uint64_t value, unsigned len, MemTxAttrs attrs) 2314 { 2315 subpage_t *subpage = opaque; 2316 uint8_t buf[8]; 2317 2318 #if defined(DEBUG_SUBPAGE) 2319 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2320 " value %"PRIx64"\n", 2321 __func__, subpage, len, addr, value); 2322 #endif 2323 stn_p(buf, len, value); 2324 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2325 } 2326 2327 static bool subpage_accepts(void *opaque, hwaddr addr, 2328 unsigned len, bool is_write, 2329 MemTxAttrs attrs) 2330 { 2331 subpage_t *subpage = opaque; 2332 #if defined(DEBUG_SUBPAGE) 2333 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2334 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2335 #endif 2336 2337 return flatview_access_valid(subpage->fv, addr + subpage->base, 2338 len, is_write, attrs); 2339 } 2340 2341 static const MemoryRegionOps subpage_ops = { 2342 .read_with_attrs = subpage_read, 2343 .write_with_attrs = subpage_write, 2344 .impl.min_access_size = 1, 2345 .impl.max_access_size = 8, 2346 .valid.min_access_size = 1, 2347 .valid.max_access_size = 8, 2348 .valid.accepts = subpage_accepts, 2349 .endianness = DEVICE_NATIVE_ENDIAN, 2350 }; 2351 2352 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2353 uint16_t section) 2354 { 2355 int idx, eidx; 2356 2357 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2358 return -1; 2359 idx = SUBPAGE_IDX(start); 2360 eidx = SUBPAGE_IDX(end); 2361 #if defined(DEBUG_SUBPAGE) 2362 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2363 __func__, mmio, start, end, idx, eidx, section); 2364 #endif 2365 for (; idx <= eidx; idx++) { 2366 mmio->sub_section[idx] = section; 2367 } 2368 2369 return 0; 2370 } 2371 2372 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2373 { 2374 subpage_t *mmio; 2375 2376 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2377 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2378 mmio->fv = fv; 2379 mmio->base = base; 2380 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2381 NULL, TARGET_PAGE_SIZE); 2382 mmio->iomem.subpage = true; 2383 #if defined(DEBUG_SUBPAGE) 2384 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2385 mmio, base, TARGET_PAGE_SIZE); 2386 #endif 2387 2388 return mmio; 2389 } 2390 2391 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2392 { 2393 assert(fv); 2394 MemoryRegionSection section = { 2395 .fv = fv, 2396 .mr = mr, 2397 .offset_within_address_space = 0, 2398 .offset_within_region = 0, 2399 .size = int128_2_64(), 2400 }; 2401 2402 return phys_section_add(map, §ion); 2403 } 2404 2405 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2406 hwaddr index, MemTxAttrs attrs) 2407 { 2408 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2409 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2410 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2411 MemoryRegionSection *sections = d->map.sections; 2412 2413 return §ions[index & ~TARGET_PAGE_MASK]; 2414 } 2415 2416 static void io_mem_init(void) 2417 { 2418 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2419 NULL, UINT64_MAX); 2420 } 2421 2422 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2423 { 2424 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2425 uint16_t n; 2426 2427 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2428 assert(n == PHYS_SECTION_UNASSIGNED); 2429 2430 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2431 2432 return d; 2433 } 2434 2435 void address_space_dispatch_free(AddressSpaceDispatch *d) 2436 { 2437 phys_sections_free(&d->map); 2438 g_free(d); 2439 } 2440 2441 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2442 { 2443 } 2444 2445 static void tcg_log_global_after_sync(MemoryListener *listener) 2446 { 2447 CPUAddressSpace *cpuas; 2448 2449 /* Wait for the CPU to end the current TB. This avoids the following 2450 * incorrect race: 2451 * 2452 * vCPU migration 2453 * ---------------------- ------------------------- 2454 * TLB check -> slow path 2455 * notdirty_mem_write 2456 * write to RAM 2457 * mark dirty 2458 * clear dirty flag 2459 * TLB check -> fast path 2460 * read memory 2461 * write to RAM 2462 * 2463 * by pushing the migration thread's memory read after the vCPU thread has 2464 * written the memory. 2465 */ 2466 if (replay_mode == REPLAY_MODE_NONE) { 2467 /* 2468 * VGA can make calls to this function while updating the screen. 2469 * In record/replay mode this causes a deadlock, because 2470 * run_on_cpu waits for rr mutex. Therefore no races are possible 2471 * in this case and no need for making run_on_cpu when 2472 * record/replay is enabled. 2473 */ 2474 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2475 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2476 } 2477 } 2478 2479 static void tcg_commit(MemoryListener *listener) 2480 { 2481 CPUAddressSpace *cpuas; 2482 AddressSpaceDispatch *d; 2483 2484 assert(tcg_enabled()); 2485 /* since each CPU stores ram addresses in its TLB cache, we must 2486 reset the modified entries */ 2487 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2488 cpu_reloading_memory_map(); 2489 /* The CPU and TLB are protected by the iothread lock. 2490 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2491 * may have split the RCU critical section. 2492 */ 2493 d = address_space_to_dispatch(cpuas->as); 2494 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2495 tlb_flush(cpuas->cpu); 2496 } 2497 2498 static void memory_map_init(void) 2499 { 2500 system_memory = g_malloc(sizeof(*system_memory)); 2501 2502 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2503 address_space_init(&address_space_memory, system_memory, "memory"); 2504 2505 system_io = g_malloc(sizeof(*system_io)); 2506 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2507 65536); 2508 address_space_init(&address_space_io, system_io, "I/O"); 2509 } 2510 2511 MemoryRegion *get_system_memory(void) 2512 { 2513 return system_memory; 2514 } 2515 2516 MemoryRegion *get_system_io(void) 2517 { 2518 return system_io; 2519 } 2520 2521 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2522 hwaddr length) 2523 { 2524 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2525 addr += memory_region_get_ram_addr(mr); 2526 2527 /* No early return if dirty_log_mask is or becomes 0, because 2528 * cpu_physical_memory_set_dirty_range will still call 2529 * xen_modified_memory. 2530 */ 2531 if (dirty_log_mask) { 2532 dirty_log_mask = 2533 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2534 } 2535 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2536 assert(tcg_enabled()); 2537 tb_invalidate_phys_range(addr, addr + length - 1); 2538 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2539 } 2540 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2541 } 2542 2543 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2544 { 2545 /* 2546 * In principle this function would work on other memory region types too, 2547 * but the ROM device use case is the only one where this operation is 2548 * necessary. Other memory regions should use the 2549 * address_space_read/write() APIs. 2550 */ 2551 assert(memory_region_is_romd(mr)); 2552 2553 invalidate_and_set_dirty(mr, addr, size); 2554 } 2555 2556 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2557 { 2558 unsigned access_size_max = mr->ops->valid.max_access_size; 2559 2560 /* Regions are assumed to support 1-4 byte accesses unless 2561 otherwise specified. */ 2562 if (access_size_max == 0) { 2563 access_size_max = 4; 2564 } 2565 2566 /* Bound the maximum access by the alignment of the address. */ 2567 if (!mr->ops->impl.unaligned) { 2568 unsigned align_size_max = addr & -addr; 2569 if (align_size_max != 0 && align_size_max < access_size_max) { 2570 access_size_max = align_size_max; 2571 } 2572 } 2573 2574 /* Don't attempt accesses larger than the maximum. */ 2575 if (l > access_size_max) { 2576 l = access_size_max; 2577 } 2578 l = pow2floor(l); 2579 2580 return l; 2581 } 2582 2583 bool prepare_mmio_access(MemoryRegion *mr) 2584 { 2585 bool release_lock = false; 2586 2587 if (!qemu_mutex_iothread_locked()) { 2588 qemu_mutex_lock_iothread(); 2589 release_lock = true; 2590 } 2591 if (mr->flush_coalesced_mmio) { 2592 qemu_flush_coalesced_mmio_buffer(); 2593 } 2594 2595 return release_lock; 2596 } 2597 2598 /** 2599 * flatview_access_allowed 2600 * @mr: #MemoryRegion to be accessed 2601 * @attrs: memory transaction attributes 2602 * @addr: address within that memory region 2603 * @len: the number of bytes to access 2604 * 2605 * Check if a memory transaction is allowed. 2606 * 2607 * Returns: true if transaction is allowed, false if denied. 2608 */ 2609 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2610 hwaddr addr, hwaddr len) 2611 { 2612 if (likely(!attrs.memory)) { 2613 return true; 2614 } 2615 if (memory_region_is_ram(mr)) { 2616 return true; 2617 } 2618 qemu_log_mask(LOG_GUEST_ERROR, 2619 "Invalid access to non-RAM device at " 2620 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2621 "region '%s'\n", addr, len, memory_region_name(mr)); 2622 return false; 2623 } 2624 2625 /* Called within RCU critical section. */ 2626 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2627 MemTxAttrs attrs, 2628 const void *ptr, 2629 hwaddr len, hwaddr addr1, 2630 hwaddr l, MemoryRegion *mr) 2631 { 2632 uint8_t *ram_ptr; 2633 uint64_t val; 2634 MemTxResult result = MEMTX_OK; 2635 bool release_lock = false; 2636 const uint8_t *buf = ptr; 2637 2638 for (;;) { 2639 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2640 result |= MEMTX_ACCESS_ERROR; 2641 /* Keep going. */ 2642 } else if (!memory_access_is_direct(mr, true)) { 2643 release_lock |= prepare_mmio_access(mr); 2644 l = memory_access_size(mr, l, addr1); 2645 /* XXX: could force current_cpu to NULL to avoid 2646 potential bugs */ 2647 val = ldn_he_p(buf, l); 2648 result |= memory_region_dispatch_write(mr, addr1, val, 2649 size_memop(l), attrs); 2650 } else { 2651 /* RAM case */ 2652 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2653 memmove(ram_ptr, buf, l); 2654 invalidate_and_set_dirty(mr, addr1, l); 2655 } 2656 2657 if (release_lock) { 2658 qemu_mutex_unlock_iothread(); 2659 release_lock = false; 2660 } 2661 2662 len -= l; 2663 buf += l; 2664 addr += l; 2665 2666 if (!len) { 2667 break; 2668 } 2669 2670 l = len; 2671 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2672 } 2673 2674 return result; 2675 } 2676 2677 /* Called from RCU critical section. */ 2678 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2679 const void *buf, hwaddr len) 2680 { 2681 hwaddr l; 2682 hwaddr addr1; 2683 MemoryRegion *mr; 2684 2685 l = len; 2686 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2687 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2688 return MEMTX_ACCESS_ERROR; 2689 } 2690 return flatview_write_continue(fv, addr, attrs, buf, len, 2691 addr1, l, mr); 2692 } 2693 2694 /* Called within RCU critical section. */ 2695 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2696 MemTxAttrs attrs, void *ptr, 2697 hwaddr len, hwaddr addr1, hwaddr l, 2698 MemoryRegion *mr) 2699 { 2700 uint8_t *ram_ptr; 2701 uint64_t val; 2702 MemTxResult result = MEMTX_OK; 2703 bool release_lock = false; 2704 uint8_t *buf = ptr; 2705 2706 fuzz_dma_read_cb(addr, len, mr); 2707 for (;;) { 2708 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2709 result |= MEMTX_ACCESS_ERROR; 2710 /* Keep going. */ 2711 } else if (!memory_access_is_direct(mr, false)) { 2712 /* I/O case */ 2713 release_lock |= prepare_mmio_access(mr); 2714 l = memory_access_size(mr, l, addr1); 2715 result |= memory_region_dispatch_read(mr, addr1, &val, 2716 size_memop(l), attrs); 2717 stn_he_p(buf, l, val); 2718 } else { 2719 /* RAM case */ 2720 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2721 memcpy(buf, ram_ptr, l); 2722 } 2723 2724 if (release_lock) { 2725 qemu_mutex_unlock_iothread(); 2726 release_lock = false; 2727 } 2728 2729 len -= l; 2730 buf += l; 2731 addr += l; 2732 2733 if (!len) { 2734 break; 2735 } 2736 2737 l = len; 2738 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2739 } 2740 2741 return result; 2742 } 2743 2744 /* Called from RCU critical section. */ 2745 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2746 MemTxAttrs attrs, void *buf, hwaddr len) 2747 { 2748 hwaddr l; 2749 hwaddr addr1; 2750 MemoryRegion *mr; 2751 2752 l = len; 2753 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2754 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2755 return MEMTX_ACCESS_ERROR; 2756 } 2757 return flatview_read_continue(fv, addr, attrs, buf, len, 2758 addr1, l, mr); 2759 } 2760 2761 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2762 MemTxAttrs attrs, void *buf, hwaddr len) 2763 { 2764 MemTxResult result = MEMTX_OK; 2765 FlatView *fv; 2766 2767 if (len > 0) { 2768 RCU_READ_LOCK_GUARD(); 2769 fv = address_space_to_flatview(as); 2770 result = flatview_read(fv, addr, attrs, buf, len); 2771 } 2772 2773 return result; 2774 } 2775 2776 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2777 MemTxAttrs attrs, 2778 const void *buf, hwaddr len) 2779 { 2780 MemTxResult result = MEMTX_OK; 2781 FlatView *fv; 2782 2783 if (len > 0) { 2784 RCU_READ_LOCK_GUARD(); 2785 fv = address_space_to_flatview(as); 2786 result = flatview_write(fv, addr, attrs, buf, len); 2787 } 2788 2789 return result; 2790 } 2791 2792 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2793 void *buf, hwaddr len, bool is_write) 2794 { 2795 if (is_write) { 2796 return address_space_write(as, addr, attrs, buf, len); 2797 } else { 2798 return address_space_read_full(as, addr, attrs, buf, len); 2799 } 2800 } 2801 2802 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2803 uint8_t c, hwaddr len, MemTxAttrs attrs) 2804 { 2805 #define FILLBUF_SIZE 512 2806 uint8_t fillbuf[FILLBUF_SIZE]; 2807 int l; 2808 MemTxResult error = MEMTX_OK; 2809 2810 memset(fillbuf, c, FILLBUF_SIZE); 2811 while (len > 0) { 2812 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2813 error |= address_space_write(as, addr, attrs, fillbuf, l); 2814 len -= l; 2815 addr += l; 2816 } 2817 2818 return error; 2819 } 2820 2821 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2822 hwaddr len, bool is_write) 2823 { 2824 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2825 buf, len, is_write); 2826 } 2827 2828 enum write_rom_type { 2829 WRITE_DATA, 2830 FLUSH_CACHE, 2831 }; 2832 2833 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2834 hwaddr addr, 2835 MemTxAttrs attrs, 2836 const void *ptr, 2837 hwaddr len, 2838 enum write_rom_type type) 2839 { 2840 hwaddr l; 2841 uint8_t *ram_ptr; 2842 hwaddr addr1; 2843 MemoryRegion *mr; 2844 const uint8_t *buf = ptr; 2845 2846 RCU_READ_LOCK_GUARD(); 2847 while (len > 0) { 2848 l = len; 2849 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2850 2851 if (!(memory_region_is_ram(mr) || 2852 memory_region_is_romd(mr))) { 2853 l = memory_access_size(mr, l, addr1); 2854 } else { 2855 /* ROM/RAM case */ 2856 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2857 switch (type) { 2858 case WRITE_DATA: 2859 memcpy(ram_ptr, buf, l); 2860 invalidate_and_set_dirty(mr, addr1, l); 2861 break; 2862 case FLUSH_CACHE: 2863 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2864 break; 2865 } 2866 } 2867 len -= l; 2868 buf += l; 2869 addr += l; 2870 } 2871 return MEMTX_OK; 2872 } 2873 2874 /* used for ROM loading : can write in RAM and ROM */ 2875 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2876 MemTxAttrs attrs, 2877 const void *buf, hwaddr len) 2878 { 2879 return address_space_write_rom_internal(as, addr, attrs, 2880 buf, len, WRITE_DATA); 2881 } 2882 2883 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2884 { 2885 /* 2886 * This function should do the same thing as an icache flush that was 2887 * triggered from within the guest. For TCG we are always cache coherent, 2888 * so there is no need to flush anything. For KVM / Xen we need to flush 2889 * the host's instruction cache at least. 2890 */ 2891 if (tcg_enabled()) { 2892 return; 2893 } 2894 2895 address_space_write_rom_internal(&address_space_memory, 2896 start, MEMTXATTRS_UNSPECIFIED, 2897 NULL, len, FLUSH_CACHE); 2898 } 2899 2900 typedef struct { 2901 MemoryRegion *mr; 2902 void *buffer; 2903 hwaddr addr; 2904 hwaddr len; 2905 bool in_use; 2906 } BounceBuffer; 2907 2908 static BounceBuffer bounce; 2909 2910 typedef struct MapClient { 2911 QEMUBH *bh; 2912 QLIST_ENTRY(MapClient) link; 2913 } MapClient; 2914 2915 QemuMutex map_client_list_lock; 2916 static QLIST_HEAD(, MapClient) map_client_list 2917 = QLIST_HEAD_INITIALIZER(map_client_list); 2918 2919 static void cpu_unregister_map_client_do(MapClient *client) 2920 { 2921 QLIST_REMOVE(client, link); 2922 g_free(client); 2923 } 2924 2925 static void cpu_notify_map_clients_locked(void) 2926 { 2927 MapClient *client; 2928 2929 while (!QLIST_EMPTY(&map_client_list)) { 2930 client = QLIST_FIRST(&map_client_list); 2931 qemu_bh_schedule(client->bh); 2932 cpu_unregister_map_client_do(client); 2933 } 2934 } 2935 2936 void cpu_register_map_client(QEMUBH *bh) 2937 { 2938 MapClient *client = g_malloc(sizeof(*client)); 2939 2940 qemu_mutex_lock(&map_client_list_lock); 2941 client->bh = bh; 2942 QLIST_INSERT_HEAD(&map_client_list, client, link); 2943 /* Write map_client_list before reading in_use. */ 2944 smp_mb(); 2945 if (!qatomic_read(&bounce.in_use)) { 2946 cpu_notify_map_clients_locked(); 2947 } 2948 qemu_mutex_unlock(&map_client_list_lock); 2949 } 2950 2951 void cpu_exec_init_all(void) 2952 { 2953 qemu_mutex_init(&ram_list.mutex); 2954 /* The data structures we set up here depend on knowing the page size, 2955 * so no more changes can be made after this point. 2956 * In an ideal world, nothing we did before we had finished the 2957 * machine setup would care about the target page size, and we could 2958 * do this much later, rather than requiring board models to state 2959 * up front what their requirements are. 2960 */ 2961 finalize_target_page_bits(); 2962 io_mem_init(); 2963 memory_map_init(); 2964 qemu_mutex_init(&map_client_list_lock); 2965 } 2966 2967 void cpu_unregister_map_client(QEMUBH *bh) 2968 { 2969 MapClient *client; 2970 2971 qemu_mutex_lock(&map_client_list_lock); 2972 QLIST_FOREACH(client, &map_client_list, link) { 2973 if (client->bh == bh) { 2974 cpu_unregister_map_client_do(client); 2975 break; 2976 } 2977 } 2978 qemu_mutex_unlock(&map_client_list_lock); 2979 } 2980 2981 static void cpu_notify_map_clients(void) 2982 { 2983 qemu_mutex_lock(&map_client_list_lock); 2984 cpu_notify_map_clients_locked(); 2985 qemu_mutex_unlock(&map_client_list_lock); 2986 } 2987 2988 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2989 bool is_write, MemTxAttrs attrs) 2990 { 2991 MemoryRegion *mr; 2992 hwaddr l, xlat; 2993 2994 while (len > 0) { 2995 l = len; 2996 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 2997 if (!memory_access_is_direct(mr, is_write)) { 2998 l = memory_access_size(mr, l, addr); 2999 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3000 return false; 3001 } 3002 } 3003 3004 len -= l; 3005 addr += l; 3006 } 3007 return true; 3008 } 3009 3010 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3011 hwaddr len, bool is_write, 3012 MemTxAttrs attrs) 3013 { 3014 FlatView *fv; 3015 3016 RCU_READ_LOCK_GUARD(); 3017 fv = address_space_to_flatview(as); 3018 return flatview_access_valid(fv, addr, len, is_write, attrs); 3019 } 3020 3021 static hwaddr 3022 flatview_extend_translation(FlatView *fv, hwaddr addr, 3023 hwaddr target_len, 3024 MemoryRegion *mr, hwaddr base, hwaddr len, 3025 bool is_write, MemTxAttrs attrs) 3026 { 3027 hwaddr done = 0; 3028 hwaddr xlat; 3029 MemoryRegion *this_mr; 3030 3031 for (;;) { 3032 target_len -= len; 3033 addr += len; 3034 done += len; 3035 if (target_len == 0) { 3036 return done; 3037 } 3038 3039 len = target_len; 3040 this_mr = flatview_translate(fv, addr, &xlat, 3041 &len, is_write, attrs); 3042 if (this_mr != mr || xlat != base + done) { 3043 return done; 3044 } 3045 } 3046 } 3047 3048 /* Map a physical memory region into a host virtual address. 3049 * May map a subset of the requested range, given by and returned in *plen. 3050 * May return NULL if resources needed to perform the mapping are exhausted. 3051 * Use only for reads OR writes - not for read-modify-write operations. 3052 * Use cpu_register_map_client() to know when retrying the map operation is 3053 * likely to succeed. 3054 */ 3055 void *address_space_map(AddressSpace *as, 3056 hwaddr addr, 3057 hwaddr *plen, 3058 bool is_write, 3059 MemTxAttrs attrs) 3060 { 3061 hwaddr len = *plen; 3062 hwaddr l, xlat; 3063 MemoryRegion *mr; 3064 FlatView *fv; 3065 3066 if (len == 0) { 3067 return NULL; 3068 } 3069 3070 l = len; 3071 RCU_READ_LOCK_GUARD(); 3072 fv = address_space_to_flatview(as); 3073 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3074 3075 if (!memory_access_is_direct(mr, is_write)) { 3076 if (qatomic_xchg(&bounce.in_use, true)) { 3077 *plen = 0; 3078 return NULL; 3079 } 3080 /* Avoid unbounded allocations */ 3081 l = MIN(l, TARGET_PAGE_SIZE); 3082 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3083 bounce.addr = addr; 3084 bounce.len = l; 3085 3086 memory_region_ref(mr); 3087 bounce.mr = mr; 3088 if (!is_write) { 3089 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3090 bounce.buffer, l); 3091 } 3092 3093 *plen = l; 3094 return bounce.buffer; 3095 } 3096 3097 3098 memory_region_ref(mr); 3099 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3100 l, is_write, attrs); 3101 fuzz_dma_read_cb(addr, *plen, mr); 3102 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3103 } 3104 3105 /* Unmaps a memory region previously mapped by address_space_map(). 3106 * Will also mark the memory as dirty if is_write is true. access_len gives 3107 * the amount of memory that was actually read or written by the caller. 3108 */ 3109 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3110 bool is_write, hwaddr access_len) 3111 { 3112 if (buffer != bounce.buffer) { 3113 MemoryRegion *mr; 3114 ram_addr_t addr1; 3115 3116 mr = memory_region_from_host(buffer, &addr1); 3117 assert(mr != NULL); 3118 if (is_write) { 3119 invalidate_and_set_dirty(mr, addr1, access_len); 3120 } 3121 if (xen_enabled()) { 3122 xen_invalidate_map_cache_entry(buffer); 3123 } 3124 memory_region_unref(mr); 3125 return; 3126 } 3127 if (is_write) { 3128 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3129 bounce.buffer, access_len); 3130 } 3131 qemu_vfree(bounce.buffer); 3132 bounce.buffer = NULL; 3133 memory_region_unref(bounce.mr); 3134 /* Clear in_use before reading map_client_list. */ 3135 qatomic_mb_set(&bounce.in_use, false); 3136 cpu_notify_map_clients(); 3137 } 3138 3139 void *cpu_physical_memory_map(hwaddr addr, 3140 hwaddr *plen, 3141 bool is_write) 3142 { 3143 return address_space_map(&address_space_memory, addr, plen, is_write, 3144 MEMTXATTRS_UNSPECIFIED); 3145 } 3146 3147 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3148 bool is_write, hwaddr access_len) 3149 { 3150 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3151 } 3152 3153 #define ARG1_DECL AddressSpace *as 3154 #define ARG1 as 3155 #define SUFFIX 3156 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3157 #define RCU_READ_LOCK(...) rcu_read_lock() 3158 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3159 #include "memory_ldst.c.inc" 3160 3161 int64_t address_space_cache_init(MemoryRegionCache *cache, 3162 AddressSpace *as, 3163 hwaddr addr, 3164 hwaddr len, 3165 bool is_write) 3166 { 3167 AddressSpaceDispatch *d; 3168 hwaddr l; 3169 MemoryRegion *mr; 3170 Int128 diff; 3171 3172 assert(len > 0); 3173 3174 l = len; 3175 cache->fv = address_space_get_flatview(as); 3176 d = flatview_to_dispatch(cache->fv); 3177 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3178 3179 /* 3180 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3181 * Take that into account to compute how many bytes are there between 3182 * cache->xlat and the end of the section. 3183 */ 3184 diff = int128_sub(cache->mrs.size, 3185 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3186 l = int128_get64(int128_min(diff, int128_make64(l))); 3187 3188 mr = cache->mrs.mr; 3189 memory_region_ref(mr); 3190 if (memory_access_is_direct(mr, is_write)) { 3191 /* We don't care about the memory attributes here as we're only 3192 * doing this if we found actual RAM, which behaves the same 3193 * regardless of attributes; so UNSPECIFIED is fine. 3194 */ 3195 l = flatview_extend_translation(cache->fv, addr, len, mr, 3196 cache->xlat, l, is_write, 3197 MEMTXATTRS_UNSPECIFIED); 3198 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3199 } else { 3200 cache->ptr = NULL; 3201 } 3202 3203 cache->len = l; 3204 cache->is_write = is_write; 3205 return l; 3206 } 3207 3208 void address_space_cache_invalidate(MemoryRegionCache *cache, 3209 hwaddr addr, 3210 hwaddr access_len) 3211 { 3212 assert(cache->is_write); 3213 if (likely(cache->ptr)) { 3214 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3215 } 3216 } 3217 3218 void address_space_cache_destroy(MemoryRegionCache *cache) 3219 { 3220 if (!cache->mrs.mr) { 3221 return; 3222 } 3223 3224 if (xen_enabled()) { 3225 xen_invalidate_map_cache_entry(cache->ptr); 3226 } 3227 memory_region_unref(cache->mrs.mr); 3228 flatview_unref(cache->fv); 3229 cache->mrs.mr = NULL; 3230 cache->fv = NULL; 3231 } 3232 3233 /* Called from RCU critical section. This function has the same 3234 * semantics as address_space_translate, but it only works on a 3235 * predefined range of a MemoryRegion that was mapped with 3236 * address_space_cache_init. 3237 */ 3238 static inline MemoryRegion *address_space_translate_cached( 3239 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3240 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3241 { 3242 MemoryRegionSection section; 3243 MemoryRegion *mr; 3244 IOMMUMemoryRegion *iommu_mr; 3245 AddressSpace *target_as; 3246 3247 assert(!cache->ptr); 3248 *xlat = addr + cache->xlat; 3249 3250 mr = cache->mrs.mr; 3251 iommu_mr = memory_region_get_iommu(mr); 3252 if (!iommu_mr) { 3253 /* MMIO region. */ 3254 return mr; 3255 } 3256 3257 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3258 NULL, is_write, true, 3259 &target_as, attrs); 3260 return section.mr; 3261 } 3262 3263 /* Called from RCU critical section. address_space_read_cached uses this 3264 * out of line function when the target is an MMIO or IOMMU region. 3265 */ 3266 MemTxResult 3267 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3268 void *buf, hwaddr len) 3269 { 3270 hwaddr addr1, l; 3271 MemoryRegion *mr; 3272 3273 l = len; 3274 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3275 MEMTXATTRS_UNSPECIFIED); 3276 return flatview_read_continue(cache->fv, 3277 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3278 addr1, l, mr); 3279 } 3280 3281 /* Called from RCU critical section. address_space_write_cached uses this 3282 * out of line function when the target is an MMIO or IOMMU region. 3283 */ 3284 MemTxResult 3285 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3286 const void *buf, hwaddr len) 3287 { 3288 hwaddr addr1, l; 3289 MemoryRegion *mr; 3290 3291 l = len; 3292 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3293 MEMTXATTRS_UNSPECIFIED); 3294 return flatview_write_continue(cache->fv, 3295 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3296 addr1, l, mr); 3297 } 3298 3299 #define ARG1_DECL MemoryRegionCache *cache 3300 #define ARG1 cache 3301 #define SUFFIX _cached_slow 3302 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3303 #define RCU_READ_LOCK() ((void)0) 3304 #define RCU_READ_UNLOCK() ((void)0) 3305 #include "memory_ldst.c.inc" 3306 3307 /* virtual memory access for debug (includes writing to ROM) */ 3308 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3309 void *ptr, size_t len, bool is_write) 3310 { 3311 hwaddr phys_addr; 3312 vaddr l, page; 3313 uint8_t *buf = ptr; 3314 3315 cpu_synchronize_state(cpu); 3316 while (len > 0) { 3317 int asidx; 3318 MemTxAttrs attrs; 3319 MemTxResult res; 3320 3321 page = addr & TARGET_PAGE_MASK; 3322 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3323 asidx = cpu_asidx_from_attrs(cpu, attrs); 3324 /* if no physical page mapped, return an error */ 3325 if (phys_addr == -1) 3326 return -1; 3327 l = (page + TARGET_PAGE_SIZE) - addr; 3328 if (l > len) 3329 l = len; 3330 phys_addr += (addr & ~TARGET_PAGE_MASK); 3331 if (is_write) { 3332 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3333 attrs, buf, l); 3334 } else { 3335 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3336 attrs, buf, l); 3337 } 3338 if (res != MEMTX_OK) { 3339 return -1; 3340 } 3341 len -= l; 3342 buf += l; 3343 addr += l; 3344 } 3345 return 0; 3346 } 3347 3348 /* 3349 * Allows code that needs to deal with migration bitmaps etc to still be built 3350 * target independent. 3351 */ 3352 size_t qemu_target_page_size(void) 3353 { 3354 return TARGET_PAGE_SIZE; 3355 } 3356 3357 int qemu_target_page_bits(void) 3358 { 3359 return TARGET_PAGE_BITS; 3360 } 3361 3362 int qemu_target_page_bits_min(void) 3363 { 3364 return TARGET_PAGE_BITS_MIN; 3365 } 3366 3367 /* Convert target pages to MiB (2**20). */ 3368 size_t qemu_target_pages_to_MiB(size_t pages) 3369 { 3370 int page_bits = TARGET_PAGE_BITS; 3371 3372 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3373 g_assert(page_bits < 20); 3374 3375 return pages >> (20 - page_bits); 3376 } 3377 3378 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3379 { 3380 MemoryRegion*mr; 3381 hwaddr l = 1; 3382 3383 RCU_READ_LOCK_GUARD(); 3384 mr = address_space_translate(&address_space_memory, 3385 phys_addr, &phys_addr, &l, false, 3386 MEMTXATTRS_UNSPECIFIED); 3387 3388 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3389 } 3390 3391 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3392 { 3393 RAMBlock *block; 3394 int ret = 0; 3395 3396 RCU_READ_LOCK_GUARD(); 3397 RAMBLOCK_FOREACH(block) { 3398 ret = func(block, opaque); 3399 if (ret) { 3400 break; 3401 } 3402 } 3403 return ret; 3404 } 3405 3406 /* 3407 * Unmap pages of memory from start to start+length such that 3408 * they a) read as 0, b) Trigger whatever fault mechanism 3409 * the OS provides for postcopy. 3410 * The pages must be unmapped by the end of the function. 3411 * Returns: 0 on success, none-0 on failure 3412 * 3413 */ 3414 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3415 { 3416 int ret = -1; 3417 3418 uint8_t *host_startaddr = rb->host + start; 3419 3420 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3421 error_report("ram_block_discard_range: Unaligned start address: %p", 3422 host_startaddr); 3423 goto err; 3424 } 3425 3426 if ((start + length) <= rb->max_length) { 3427 bool need_madvise, need_fallocate; 3428 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3429 error_report("ram_block_discard_range: Unaligned length: %zx", 3430 length); 3431 goto err; 3432 } 3433 3434 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3435 3436 /* The logic here is messy; 3437 * madvise DONTNEED fails for hugepages 3438 * fallocate works on hugepages and shmem 3439 * shared anonymous memory requires madvise REMOVE 3440 */ 3441 need_madvise = (rb->page_size == qemu_host_page_size); 3442 need_fallocate = rb->fd != -1; 3443 if (need_fallocate) { 3444 /* For a file, this causes the area of the file to be zero'd 3445 * if read, and for hugetlbfs also causes it to be unmapped 3446 * so a userfault will trigger. 3447 */ 3448 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3449 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3450 start, length); 3451 if (ret) { 3452 ret = -errno; 3453 error_report("ram_block_discard_range: Failed to fallocate " 3454 "%s:%" PRIx64 " +%zx (%d)", 3455 rb->idstr, start, length, ret); 3456 goto err; 3457 } 3458 #else 3459 ret = -ENOSYS; 3460 error_report("ram_block_discard_range: fallocate not available/file" 3461 "%s:%" PRIx64 " +%zx (%d)", 3462 rb->idstr, start, length, ret); 3463 goto err; 3464 #endif 3465 } 3466 if (need_madvise) { 3467 /* For normal RAM this causes it to be unmapped, 3468 * for shared memory it causes the local mapping to disappear 3469 * and to fall back on the file contents (which we just 3470 * fallocate'd away). 3471 */ 3472 #if defined(CONFIG_MADVISE) 3473 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3474 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3475 } else { 3476 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3477 } 3478 if (ret) { 3479 ret = -errno; 3480 error_report("ram_block_discard_range: Failed to discard range " 3481 "%s:%" PRIx64 " +%zx (%d)", 3482 rb->idstr, start, length, ret); 3483 goto err; 3484 } 3485 #else 3486 ret = -ENOSYS; 3487 error_report("ram_block_discard_range: MADVISE not available" 3488 "%s:%" PRIx64 " +%zx (%d)", 3489 rb->idstr, start, length, ret); 3490 goto err; 3491 #endif 3492 } 3493 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3494 need_madvise, need_fallocate, ret); 3495 } else { 3496 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3497 "/%zx/" RAM_ADDR_FMT")", 3498 rb->idstr, start, length, rb->max_length); 3499 } 3500 3501 err: 3502 return ret; 3503 } 3504 3505 bool ramblock_is_pmem(RAMBlock *rb) 3506 { 3507 return rb->flags & RAM_PMEM; 3508 } 3509 3510 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3511 { 3512 if (start == end - 1) { 3513 qemu_printf("\t%3d ", start); 3514 } else { 3515 qemu_printf("\t%3d..%-3d ", start, end - 1); 3516 } 3517 qemu_printf(" skip=%d ", skip); 3518 if (ptr == PHYS_MAP_NODE_NIL) { 3519 qemu_printf(" ptr=NIL"); 3520 } else if (!skip) { 3521 qemu_printf(" ptr=#%d", ptr); 3522 } else { 3523 qemu_printf(" ptr=[%d]", ptr); 3524 } 3525 qemu_printf("\n"); 3526 } 3527 3528 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3529 int128_sub((size), int128_one())) : 0) 3530 3531 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3532 { 3533 int i; 3534 3535 qemu_printf(" Dispatch\n"); 3536 qemu_printf(" Physical sections\n"); 3537 3538 for (i = 0; i < d->map.sections_nb; ++i) { 3539 MemoryRegionSection *s = d->map.sections + i; 3540 const char *names[] = { " [unassigned]", " [not dirty]", 3541 " [ROM]", " [watch]" }; 3542 3543 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3544 " %s%s%s%s%s", 3545 i, 3546 s->offset_within_address_space, 3547 s->offset_within_address_space + MR_SIZE(s->size), 3548 s->mr->name ? s->mr->name : "(noname)", 3549 i < ARRAY_SIZE(names) ? names[i] : "", 3550 s->mr == root ? " [ROOT]" : "", 3551 s == d->mru_section ? " [MRU]" : "", 3552 s->mr->is_iommu ? " [iommu]" : ""); 3553 3554 if (s->mr->alias) { 3555 qemu_printf(" alias=%s", s->mr->alias->name ? 3556 s->mr->alias->name : "noname"); 3557 } 3558 qemu_printf("\n"); 3559 } 3560 3561 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3562 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3563 for (i = 0; i < d->map.nodes_nb; ++i) { 3564 int j, jprev; 3565 PhysPageEntry prev; 3566 Node *n = d->map.nodes + i; 3567 3568 qemu_printf(" [%d]\n", i); 3569 3570 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3571 PhysPageEntry *pe = *n + j; 3572 3573 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3574 continue; 3575 } 3576 3577 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3578 3579 jprev = j; 3580 prev = *pe; 3581 } 3582 3583 if (jprev != ARRAY_SIZE(*n)) { 3584 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3585 } 3586 } 3587 } 3588 3589 /* Require any discards to work. */ 3590 static unsigned int ram_block_discard_required_cnt; 3591 /* Require only coordinated discards to work. */ 3592 static unsigned int ram_block_coordinated_discard_required_cnt; 3593 /* Disable any discards. */ 3594 static unsigned int ram_block_discard_disabled_cnt; 3595 /* Disable only uncoordinated discards. */ 3596 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3597 static QemuMutex ram_block_discard_disable_mutex; 3598 3599 static void ram_block_discard_disable_mutex_lock(void) 3600 { 3601 static gsize initialized; 3602 3603 if (g_once_init_enter(&initialized)) { 3604 qemu_mutex_init(&ram_block_discard_disable_mutex); 3605 g_once_init_leave(&initialized, 1); 3606 } 3607 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3608 } 3609 3610 static void ram_block_discard_disable_mutex_unlock(void) 3611 { 3612 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3613 } 3614 3615 int ram_block_discard_disable(bool state) 3616 { 3617 int ret = 0; 3618 3619 ram_block_discard_disable_mutex_lock(); 3620 if (!state) { 3621 ram_block_discard_disabled_cnt--; 3622 } else if (ram_block_discard_required_cnt || 3623 ram_block_coordinated_discard_required_cnt) { 3624 ret = -EBUSY; 3625 } else { 3626 ram_block_discard_disabled_cnt++; 3627 } 3628 ram_block_discard_disable_mutex_unlock(); 3629 return ret; 3630 } 3631 3632 int ram_block_uncoordinated_discard_disable(bool state) 3633 { 3634 int ret = 0; 3635 3636 ram_block_discard_disable_mutex_lock(); 3637 if (!state) { 3638 ram_block_uncoordinated_discard_disabled_cnt--; 3639 } else if (ram_block_discard_required_cnt) { 3640 ret = -EBUSY; 3641 } else { 3642 ram_block_uncoordinated_discard_disabled_cnt++; 3643 } 3644 ram_block_discard_disable_mutex_unlock(); 3645 return ret; 3646 } 3647 3648 int ram_block_discard_require(bool state) 3649 { 3650 int ret = 0; 3651 3652 ram_block_discard_disable_mutex_lock(); 3653 if (!state) { 3654 ram_block_discard_required_cnt--; 3655 } else if (ram_block_discard_disabled_cnt || 3656 ram_block_uncoordinated_discard_disabled_cnt) { 3657 ret = -EBUSY; 3658 } else { 3659 ram_block_discard_required_cnt++; 3660 } 3661 ram_block_discard_disable_mutex_unlock(); 3662 return ret; 3663 } 3664 3665 int ram_block_coordinated_discard_require(bool state) 3666 { 3667 int ret = 0; 3668 3669 ram_block_discard_disable_mutex_lock(); 3670 if (!state) { 3671 ram_block_coordinated_discard_required_cnt--; 3672 } else if (ram_block_discard_disabled_cnt) { 3673 ret = -EBUSY; 3674 } else { 3675 ram_block_coordinated_discard_required_cnt++; 3676 } 3677 ram_block_discard_disable_mutex_unlock(); 3678 return ret; 3679 } 3680 3681 bool ram_block_discard_is_disabled(void) 3682 { 3683 return qatomic_read(&ram_block_discard_disabled_cnt) || 3684 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3685 } 3686 3687 bool ram_block_discard_is_required(void) 3688 { 3689 return qatomic_read(&ram_block_discard_required_cnt) || 3690 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3691 } 3692