xref: /qemu/system/physmem.c (revision 33828ca11da08436e1b32f3e79dabce3061a0427)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d =
684         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
685 
686     for (;;) {
687         section = address_space_translate_internal(d, addr, &addr, plen, false);
688 
689         iommu_mr = memory_region_get_iommu(section->mr);
690         if (!iommu_mr) {
691             break;
692         }
693 
694         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
695 
696         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
697         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
698         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
699          * doesn't short-cut its translation table walk.
700          */
701         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
702         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
703                 | (addr & iotlb.addr_mask));
704         /* Update the caller's prot bits to remove permissions the IOMMU
705          * is giving us a failure response for. If we get down to no
706          * permissions left at all we can give up now.
707          */
708         if (!(iotlb.perm & IOMMU_RO)) {
709             *prot &= ~(PAGE_READ | PAGE_EXEC);
710         }
711         if (!(iotlb.perm & IOMMU_WO)) {
712             *prot &= ~PAGE_WRITE;
713         }
714 
715         if (!*prot) {
716             goto translate_fail;
717         }
718 
719         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
720     }
721 
722     assert(!memory_region_is_iommu(section->mr));
723     *xlat = addr;
724     return section;
725 
726 translate_fail:
727     /*
728      * We should be given a page-aligned address -- certainly
729      * tlb_set_page_with_attrs() does so.  The page offset of xlat
730      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
731      * The page portion of xlat will be logged by memory_region_access_valid()
732      * when this memory access is rejected, so use the original untranslated
733      * physical address.
734      */
735     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
736     *xlat = orig_addr;
737     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
738 }
739 
740 void cpu_address_space_init(CPUState *cpu, int asidx,
741                             const char *prefix, MemoryRegion *mr)
742 {
743     CPUAddressSpace *newas;
744     AddressSpace *as = g_new0(AddressSpace, 1);
745     char *as_name;
746 
747     assert(mr);
748     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
749     address_space_init(as, mr, as_name);
750     g_free(as_name);
751 
752     /* Target code should have set num_ases before calling us */
753     assert(asidx < cpu->num_ases);
754 
755     if (asidx == 0) {
756         /* address space 0 gets the convenience alias */
757         cpu->as = as;
758     }
759 
760     /* KVM cannot currently support multiple address spaces. */
761     assert(asidx == 0 || !kvm_enabled());
762 
763     if (!cpu->cpu_ases) {
764         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
765     }
766 
767     newas = &cpu->cpu_ases[asidx];
768     newas->cpu = cpu;
769     newas->as = as;
770     if (tcg_enabled()) {
771         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
772         newas->tcg_as_listener.commit = tcg_commit;
773         newas->tcg_as_listener.name = "tcg";
774         memory_listener_register(&newas->tcg_as_listener, as);
775     }
776 }
777 
778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
779 {
780     /* Return the AddressSpace corresponding to the specified index */
781     return cpu->cpu_ases[asidx].as;
782 }
783 
784 /* Called from RCU critical section */
785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
786 {
787     RAMBlock *block;
788 
789     block = qatomic_rcu_read(&ram_list.mru_block);
790     if (block && addr - block->offset < block->max_length) {
791         return block;
792     }
793     RAMBLOCK_FOREACH(block) {
794         if (addr - block->offset < block->max_length) {
795             goto found;
796         }
797     }
798 
799     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
800     abort();
801 
802 found:
803     /* It is safe to write mru_block outside the iothread lock.  This
804      * is what happens:
805      *
806      *     mru_block = xxx
807      *     rcu_read_unlock()
808      *                                        xxx removed from list
809      *                  rcu_read_lock()
810      *                  read mru_block
811      *                                        mru_block = NULL;
812      *                                        call_rcu(reclaim_ramblock, xxx);
813      *                  rcu_read_unlock()
814      *
815      * qatomic_rcu_set is not needed here.  The block was already published
816      * when it was placed into the list.  Here we're just making an extra
817      * copy of the pointer.
818      */
819     ram_list.mru_block = block;
820     return block;
821 }
822 
823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
824 {
825     CPUState *cpu;
826     ram_addr_t start1;
827     RAMBlock *block;
828     ram_addr_t end;
829 
830     assert(tcg_enabled());
831     end = TARGET_PAGE_ALIGN(start + length);
832     start &= TARGET_PAGE_MASK;
833 
834     RCU_READ_LOCK_GUARD();
835     block = qemu_get_ram_block(start);
836     assert(block == qemu_get_ram_block(end - 1));
837     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
838     CPU_FOREACH(cpu) {
839         tlb_reset_dirty(cpu, start1, length);
840     }
841 }
842 
843 /* Note: start and end must be within the same ram block.  */
844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
845                                               ram_addr_t length,
846                                               unsigned client)
847 {
848     DirtyMemoryBlocks *blocks;
849     unsigned long end, page, start_page;
850     bool dirty = false;
851     RAMBlock *ramblock;
852     uint64_t mr_offset, mr_size;
853 
854     if (length == 0) {
855         return false;
856     }
857 
858     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
859     start_page = start >> TARGET_PAGE_BITS;
860     page = start_page;
861 
862     WITH_RCU_READ_LOCK_GUARD() {
863         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
864         ramblock = qemu_get_ram_block(start);
865         /* Range sanity check on the ramblock */
866         assert(start >= ramblock->offset &&
867                start + length <= ramblock->offset + ramblock->used_length);
868 
869         while (page < end) {
870             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
871             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
872             unsigned long num = MIN(end - page,
873                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
874 
875             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
876                                                   offset, num);
877             page += num;
878         }
879 
880         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
881         mr_size = (end - start_page) << TARGET_PAGE_BITS;
882         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
883     }
884 
885     if (dirty && tcg_enabled()) {
886         tlb_reset_dirty_range_all(start, length);
887     }
888 
889     return dirty;
890 }
891 
892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
893     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
894 {
895     DirtyMemoryBlocks *blocks;
896     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
897     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
898     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
899     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
900     DirtyBitmapSnapshot *snap;
901     unsigned long page, end, dest;
902 
903     snap = g_malloc0(sizeof(*snap) +
904                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
905     snap->start = first;
906     snap->end   = last;
907 
908     page = first >> TARGET_PAGE_BITS;
909     end  = last  >> TARGET_PAGE_BITS;
910     dest = 0;
911 
912     WITH_RCU_READ_LOCK_GUARD() {
913         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
914 
915         while (page < end) {
916             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
917             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
918             unsigned long num = MIN(end - page,
919                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
920 
921             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
922             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
923             offset >>= BITS_PER_LEVEL;
924 
925             bitmap_copy_and_clear_atomic(snap->dirty + dest,
926                                          blocks->blocks[idx] + offset,
927                                          num);
928             page += num;
929             dest += num >> BITS_PER_LEVEL;
930         }
931     }
932 
933     if (tcg_enabled()) {
934         tlb_reset_dirty_range_all(start, length);
935     }
936 
937     memory_region_clear_dirty_bitmap(mr, offset, length);
938 
939     return snap;
940 }
941 
942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
943                                             ram_addr_t start,
944                                             ram_addr_t length)
945 {
946     unsigned long page, end;
947 
948     assert(start >= snap->start);
949     assert(start + length <= snap->end);
950 
951     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
952     page = (start - snap->start) >> TARGET_PAGE_BITS;
953 
954     while (page < end) {
955         if (test_bit(page, snap->dirty)) {
956             return true;
957         }
958         page++;
959     }
960     return false;
961 }
962 
963 /* Called from RCU critical section */
964 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
965                                        MemoryRegionSection *section)
966 {
967     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
968     return section - d->map.sections;
969 }
970 
971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
972                             uint16_t section);
973 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
974 
975 static uint16_t phys_section_add(PhysPageMap *map,
976                                  MemoryRegionSection *section)
977 {
978     /* The physical section number is ORed with a page-aligned
979      * pointer to produce the iotlb entries.  Thus it should
980      * never overflow into the page-aligned value.
981      */
982     assert(map->sections_nb < TARGET_PAGE_SIZE);
983 
984     if (map->sections_nb == map->sections_nb_alloc) {
985         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
986         map->sections = g_renew(MemoryRegionSection, map->sections,
987                                 map->sections_nb_alloc);
988     }
989     map->sections[map->sections_nb] = *section;
990     memory_region_ref(section->mr);
991     return map->sections_nb++;
992 }
993 
994 static void phys_section_destroy(MemoryRegion *mr)
995 {
996     bool have_sub_page = mr->subpage;
997 
998     memory_region_unref(mr);
999 
1000     if (have_sub_page) {
1001         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1002         object_unref(OBJECT(&subpage->iomem));
1003         g_free(subpage);
1004     }
1005 }
1006 
1007 static void phys_sections_free(PhysPageMap *map)
1008 {
1009     while (map->sections_nb > 0) {
1010         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1011         phys_section_destroy(section->mr);
1012     }
1013     g_free(map->sections);
1014     g_free(map->nodes);
1015 }
1016 
1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1018 {
1019     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1020     subpage_t *subpage;
1021     hwaddr base = section->offset_within_address_space
1022         & TARGET_PAGE_MASK;
1023     MemoryRegionSection *existing = phys_page_find(d, base);
1024     MemoryRegionSection subsection = {
1025         .offset_within_address_space = base,
1026         .size = int128_make64(TARGET_PAGE_SIZE),
1027     };
1028     hwaddr start, end;
1029 
1030     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1031 
1032     if (!(existing->mr->subpage)) {
1033         subpage = subpage_init(fv, base);
1034         subsection.fv = fv;
1035         subsection.mr = &subpage->iomem;
1036         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1037                       phys_section_add(&d->map, &subsection));
1038     } else {
1039         subpage = container_of(existing->mr, subpage_t, iomem);
1040     }
1041     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1042     end = start + int128_get64(section->size) - 1;
1043     subpage_register(subpage, start, end,
1044                      phys_section_add(&d->map, section));
1045 }
1046 
1047 
1048 static void register_multipage(FlatView *fv,
1049                                MemoryRegionSection *section)
1050 {
1051     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1052     hwaddr start_addr = section->offset_within_address_space;
1053     uint16_t section_index = phys_section_add(&d->map, section);
1054     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1055                                                     TARGET_PAGE_BITS));
1056 
1057     assert(num_pages);
1058     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1059 }
1060 
1061 /*
1062  * The range in *section* may look like this:
1063  *
1064  *      |s|PPPPPPP|s|
1065  *
1066  * where s stands for subpage and P for page.
1067  */
1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1069 {
1070     MemoryRegionSection remain = *section;
1071     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1072 
1073     /* register first subpage */
1074     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1075         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1076                         - remain.offset_within_address_space;
1077 
1078         MemoryRegionSection now = remain;
1079         now.size = int128_min(int128_make64(left), now.size);
1080         register_subpage(fv, &now);
1081         if (int128_eq(remain.size, now.size)) {
1082             return;
1083         }
1084         remain.size = int128_sub(remain.size, now.size);
1085         remain.offset_within_address_space += int128_get64(now.size);
1086         remain.offset_within_region += int128_get64(now.size);
1087     }
1088 
1089     /* register whole pages */
1090     if (int128_ge(remain.size, page_size)) {
1091         MemoryRegionSection now = remain;
1092         now.size = int128_and(now.size, int128_neg(page_size));
1093         register_multipage(fv, &now);
1094         if (int128_eq(remain.size, now.size)) {
1095             return;
1096         }
1097         remain.size = int128_sub(remain.size, now.size);
1098         remain.offset_within_address_space += int128_get64(now.size);
1099         remain.offset_within_region += int128_get64(now.size);
1100     }
1101 
1102     /* register last subpage */
1103     register_subpage(fv, &remain);
1104 }
1105 
1106 void qemu_flush_coalesced_mmio_buffer(void)
1107 {
1108     if (kvm_enabled())
1109         kvm_flush_coalesced_mmio_buffer();
1110 }
1111 
1112 void qemu_mutex_lock_ramlist(void)
1113 {
1114     qemu_mutex_lock(&ram_list.mutex);
1115 }
1116 
1117 void qemu_mutex_unlock_ramlist(void)
1118 {
1119     qemu_mutex_unlock(&ram_list.mutex);
1120 }
1121 
1122 GString *ram_block_format(void)
1123 {
1124     RAMBlock *block;
1125     char *psize;
1126     GString *buf = g_string_new("");
1127 
1128     RCU_READ_LOCK_GUARD();
1129     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1130                            "Block Name", "PSize", "Offset", "Used", "Total");
1131     RAMBLOCK_FOREACH(block) {
1132         psize = size_to_str(block->page_size);
1133         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1134                                " 0x%016" PRIx64 "\n", block->idstr, psize,
1135                                (uint64_t)block->offset,
1136                                (uint64_t)block->used_length,
1137                                (uint64_t)block->max_length);
1138         g_free(psize);
1139     }
1140 
1141     return buf;
1142 }
1143 
1144 static int find_min_backend_pagesize(Object *obj, void *opaque)
1145 {
1146     long *hpsize_min = opaque;
1147 
1148     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1149         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1150         long hpsize = host_memory_backend_pagesize(backend);
1151 
1152         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1153             *hpsize_min = hpsize;
1154         }
1155     }
1156 
1157     return 0;
1158 }
1159 
1160 static int find_max_backend_pagesize(Object *obj, void *opaque)
1161 {
1162     long *hpsize_max = opaque;
1163 
1164     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1165         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1166         long hpsize = host_memory_backend_pagesize(backend);
1167 
1168         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1169             *hpsize_max = hpsize;
1170         }
1171     }
1172 
1173     return 0;
1174 }
1175 
1176 /*
1177  * TODO: We assume right now that all mapped host memory backends are
1178  * used as RAM, however some might be used for different purposes.
1179  */
1180 long qemu_minrampagesize(void)
1181 {
1182     long hpsize = LONG_MAX;
1183     Object *memdev_root = object_resolve_path("/objects", NULL);
1184 
1185     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1186     return hpsize;
1187 }
1188 
1189 long qemu_maxrampagesize(void)
1190 {
1191     long pagesize = 0;
1192     Object *memdev_root = object_resolve_path("/objects", NULL);
1193 
1194     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1195     return pagesize;
1196 }
1197 
1198 #ifdef CONFIG_POSIX
1199 static int64_t get_file_size(int fd)
1200 {
1201     int64_t size;
1202 #if defined(__linux__)
1203     struct stat st;
1204 
1205     if (fstat(fd, &st) < 0) {
1206         return -errno;
1207     }
1208 
1209     /* Special handling for devdax character devices */
1210     if (S_ISCHR(st.st_mode)) {
1211         g_autofree char *subsystem_path = NULL;
1212         g_autofree char *subsystem = NULL;
1213 
1214         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1215                                          major(st.st_rdev), minor(st.st_rdev));
1216         subsystem = g_file_read_link(subsystem_path, NULL);
1217 
1218         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1219             g_autofree char *size_path = NULL;
1220             g_autofree char *size_str = NULL;
1221 
1222             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1223                                     major(st.st_rdev), minor(st.st_rdev));
1224 
1225             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1226                 return g_ascii_strtoll(size_str, NULL, 0);
1227             }
1228         }
1229     }
1230 #endif /* defined(__linux__) */
1231 
1232     /* st.st_size may be zero for special files yet lseek(2) works */
1233     size = lseek(fd, 0, SEEK_END);
1234     if (size < 0) {
1235         return -errno;
1236     }
1237     return size;
1238 }
1239 
1240 static int64_t get_file_align(int fd)
1241 {
1242     int64_t align = -1;
1243 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1244     struct stat st;
1245 
1246     if (fstat(fd, &st) < 0) {
1247         return -errno;
1248     }
1249 
1250     /* Special handling for devdax character devices */
1251     if (S_ISCHR(st.st_mode)) {
1252         g_autofree char *path = NULL;
1253         g_autofree char *rpath = NULL;
1254         struct daxctl_ctx *ctx;
1255         struct daxctl_region *region;
1256         int rc = 0;
1257 
1258         path = g_strdup_printf("/sys/dev/char/%d:%d",
1259                     major(st.st_rdev), minor(st.st_rdev));
1260         rpath = realpath(path, NULL);
1261         if (!rpath) {
1262             return -errno;
1263         }
1264 
1265         rc = daxctl_new(&ctx);
1266         if (rc) {
1267             return -1;
1268         }
1269 
1270         daxctl_region_foreach(ctx, region) {
1271             if (strstr(rpath, daxctl_region_get_path(region))) {
1272                 align = daxctl_region_get_align(region);
1273                 break;
1274             }
1275         }
1276         daxctl_unref(ctx);
1277     }
1278 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1279 
1280     return align;
1281 }
1282 
1283 static int file_ram_open(const char *path,
1284                          const char *region_name,
1285                          bool readonly,
1286                          bool *created,
1287                          Error **errp)
1288 {
1289     char *filename;
1290     char *sanitized_name;
1291     char *c;
1292     int fd = -1;
1293 
1294     *created = false;
1295     for (;;) {
1296         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1297         if (fd >= 0) {
1298             /* @path names an existing file, use it */
1299             break;
1300         }
1301         if (errno == ENOENT) {
1302             /* @path names a file that doesn't exist, create it */
1303             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1304             if (fd >= 0) {
1305                 *created = true;
1306                 break;
1307             }
1308         } else if (errno == EISDIR) {
1309             /* @path names a directory, create a file there */
1310             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1311             sanitized_name = g_strdup(region_name);
1312             for (c = sanitized_name; *c != '\0'; c++) {
1313                 if (*c == '/') {
1314                     *c = '_';
1315                 }
1316             }
1317 
1318             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1319                                        sanitized_name);
1320             g_free(sanitized_name);
1321 
1322             fd = mkstemp(filename);
1323             if (fd >= 0) {
1324                 unlink(filename);
1325                 g_free(filename);
1326                 break;
1327             }
1328             g_free(filename);
1329         }
1330         if (errno != EEXIST && errno != EINTR) {
1331             error_setg_errno(errp, errno,
1332                              "can't open backing store %s for guest RAM",
1333                              path);
1334             return -1;
1335         }
1336         /*
1337          * Try again on EINTR and EEXIST.  The latter happens when
1338          * something else creates the file between our two open().
1339          */
1340     }
1341 
1342     return fd;
1343 }
1344 
1345 static void *file_ram_alloc(RAMBlock *block,
1346                             ram_addr_t memory,
1347                             int fd,
1348                             bool readonly,
1349                             bool truncate,
1350                             off_t offset,
1351                             Error **errp)
1352 {
1353     uint32_t qemu_map_flags;
1354     void *area;
1355 
1356     block->page_size = qemu_fd_getpagesize(fd);
1357     if (block->mr->align % block->page_size) {
1358         error_setg(errp, "alignment 0x%" PRIx64
1359                    " must be multiples of page size 0x%zx",
1360                    block->mr->align, block->page_size);
1361         return NULL;
1362     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1363         error_setg(errp, "alignment 0x%" PRIx64
1364                    " must be a power of two", block->mr->align);
1365         return NULL;
1366     }
1367     block->mr->align = MAX(block->page_size, block->mr->align);
1368 #if defined(__s390x__)
1369     if (kvm_enabled()) {
1370         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1371     }
1372 #endif
1373 
1374     if (memory < block->page_size) {
1375         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1376                    "or larger than page size 0x%zx",
1377                    memory, block->page_size);
1378         return NULL;
1379     }
1380 
1381     memory = ROUND_UP(memory, block->page_size);
1382 
1383     /*
1384      * ftruncate is not supported by hugetlbfs in older
1385      * hosts, so don't bother bailing out on errors.
1386      * If anything goes wrong with it under other filesystems,
1387      * mmap will fail.
1388      *
1389      * Do not truncate the non-empty backend file to avoid corrupting
1390      * the existing data in the file. Disabling shrinking is not
1391      * enough. For example, the current vNVDIMM implementation stores
1392      * the guest NVDIMM labels at the end of the backend file. If the
1393      * backend file is later extended, QEMU will not be able to find
1394      * those labels. Therefore, extending the non-empty backend file
1395      * is disabled as well.
1396      */
1397     if (truncate && ftruncate(fd, memory)) {
1398         perror("ftruncate");
1399     }
1400 
1401     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1402     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1403     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1404     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1405     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1406     if (area == MAP_FAILED) {
1407         error_setg_errno(errp, errno,
1408                          "unable to map backing store for guest RAM");
1409         return NULL;
1410     }
1411 
1412     block->fd = fd;
1413     return area;
1414 }
1415 #endif
1416 
1417 /* Allocate space within the ram_addr_t space that governs the
1418  * dirty bitmaps.
1419  * Called with the ramlist lock held.
1420  */
1421 static ram_addr_t find_ram_offset(ram_addr_t size)
1422 {
1423     RAMBlock *block, *next_block;
1424     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1425 
1426     assert(size != 0); /* it would hand out same offset multiple times */
1427 
1428     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1429         return 0;
1430     }
1431 
1432     RAMBLOCK_FOREACH(block) {
1433         ram_addr_t candidate, next = RAM_ADDR_MAX;
1434 
1435         /* Align blocks to start on a 'long' in the bitmap
1436          * which makes the bitmap sync'ing take the fast path.
1437          */
1438         candidate = block->offset + block->max_length;
1439         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1440 
1441         /* Search for the closest following block
1442          * and find the gap.
1443          */
1444         RAMBLOCK_FOREACH(next_block) {
1445             if (next_block->offset >= candidate) {
1446                 next = MIN(next, next_block->offset);
1447             }
1448         }
1449 
1450         /* If it fits remember our place and remember the size
1451          * of gap, but keep going so that we might find a smaller
1452          * gap to fill so avoiding fragmentation.
1453          */
1454         if (next - candidate >= size && next - candidate < mingap) {
1455             offset = candidate;
1456             mingap = next - candidate;
1457         }
1458 
1459         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1460     }
1461 
1462     if (offset == RAM_ADDR_MAX) {
1463         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1464                 (uint64_t)size);
1465         abort();
1466     }
1467 
1468     trace_find_ram_offset(size, offset);
1469 
1470     return offset;
1471 }
1472 
1473 static unsigned long last_ram_page(void)
1474 {
1475     RAMBlock *block;
1476     ram_addr_t last = 0;
1477 
1478     RCU_READ_LOCK_GUARD();
1479     RAMBLOCK_FOREACH(block) {
1480         last = MAX(last, block->offset + block->max_length);
1481     }
1482     return last >> TARGET_PAGE_BITS;
1483 }
1484 
1485 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1486 {
1487     int ret;
1488 
1489     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1490     if (!machine_dump_guest_core(current_machine)) {
1491         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1492         if (ret) {
1493             perror("qemu_madvise");
1494             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1495                             "but dump_guest_core=off specified\n");
1496         }
1497     }
1498 }
1499 
1500 const char *qemu_ram_get_idstr(RAMBlock *rb)
1501 {
1502     return rb->idstr;
1503 }
1504 
1505 void *qemu_ram_get_host_addr(RAMBlock *rb)
1506 {
1507     return rb->host;
1508 }
1509 
1510 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1511 {
1512     return rb->offset;
1513 }
1514 
1515 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1516 {
1517     return rb->used_length;
1518 }
1519 
1520 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1521 {
1522     return rb->max_length;
1523 }
1524 
1525 bool qemu_ram_is_shared(RAMBlock *rb)
1526 {
1527     return rb->flags & RAM_SHARED;
1528 }
1529 
1530 bool qemu_ram_is_noreserve(RAMBlock *rb)
1531 {
1532     return rb->flags & RAM_NORESERVE;
1533 }
1534 
1535 /* Note: Only set at the start of postcopy */
1536 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1537 {
1538     return rb->flags & RAM_UF_ZEROPAGE;
1539 }
1540 
1541 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1542 {
1543     rb->flags |= RAM_UF_ZEROPAGE;
1544 }
1545 
1546 bool qemu_ram_is_migratable(RAMBlock *rb)
1547 {
1548     return rb->flags & RAM_MIGRATABLE;
1549 }
1550 
1551 void qemu_ram_set_migratable(RAMBlock *rb)
1552 {
1553     rb->flags |= RAM_MIGRATABLE;
1554 }
1555 
1556 void qemu_ram_unset_migratable(RAMBlock *rb)
1557 {
1558     rb->flags &= ~RAM_MIGRATABLE;
1559 }
1560 
1561 int qemu_ram_get_fd(RAMBlock *rb)
1562 {
1563     return rb->fd;
1564 }
1565 
1566 /* Called with iothread lock held.  */
1567 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1568 {
1569     RAMBlock *block;
1570 
1571     assert(new_block);
1572     assert(!new_block->idstr[0]);
1573 
1574     if (dev) {
1575         char *id = qdev_get_dev_path(dev);
1576         if (id) {
1577             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1578             g_free(id);
1579         }
1580     }
1581     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1582 
1583     RCU_READ_LOCK_GUARD();
1584     RAMBLOCK_FOREACH(block) {
1585         if (block != new_block &&
1586             !strcmp(block->idstr, new_block->idstr)) {
1587             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1588                     new_block->idstr);
1589             abort();
1590         }
1591     }
1592 }
1593 
1594 /* Called with iothread lock held.  */
1595 void qemu_ram_unset_idstr(RAMBlock *block)
1596 {
1597     /* FIXME: arch_init.c assumes that this is not called throughout
1598      * migration.  Ignore the problem since hot-unplug during migration
1599      * does not work anyway.
1600      */
1601     if (block) {
1602         memset(block->idstr, 0, sizeof(block->idstr));
1603     }
1604 }
1605 
1606 size_t qemu_ram_pagesize(RAMBlock *rb)
1607 {
1608     return rb->page_size;
1609 }
1610 
1611 /* Returns the largest size of page in use */
1612 size_t qemu_ram_pagesize_largest(void)
1613 {
1614     RAMBlock *block;
1615     size_t largest = 0;
1616 
1617     RAMBLOCK_FOREACH(block) {
1618         largest = MAX(largest, qemu_ram_pagesize(block));
1619     }
1620 
1621     return largest;
1622 }
1623 
1624 static int memory_try_enable_merging(void *addr, size_t len)
1625 {
1626     if (!machine_mem_merge(current_machine)) {
1627         /* disabled by the user */
1628         return 0;
1629     }
1630 
1631     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1632 }
1633 
1634 /*
1635  * Resizing RAM while migrating can result in the migration being canceled.
1636  * Care has to be taken if the guest might have already detected the memory.
1637  *
1638  * As memory core doesn't know how is memory accessed, it is up to
1639  * resize callback to update device state and/or add assertions to detect
1640  * misuse, if necessary.
1641  */
1642 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1643 {
1644     const ram_addr_t oldsize = block->used_length;
1645     const ram_addr_t unaligned_size = newsize;
1646 
1647     assert(block);
1648 
1649     newsize = HOST_PAGE_ALIGN(newsize);
1650 
1651     if (block->used_length == newsize) {
1652         /*
1653          * We don't have to resize the ram block (which only knows aligned
1654          * sizes), however, we have to notify if the unaligned size changed.
1655          */
1656         if (unaligned_size != memory_region_size(block->mr)) {
1657             memory_region_set_size(block->mr, unaligned_size);
1658             if (block->resized) {
1659                 block->resized(block->idstr, unaligned_size, block->host);
1660             }
1661         }
1662         return 0;
1663     }
1664 
1665     if (!(block->flags & RAM_RESIZEABLE)) {
1666         error_setg_errno(errp, EINVAL,
1667                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1668                          " != 0x" RAM_ADDR_FMT, block->idstr,
1669                          newsize, block->used_length);
1670         return -EINVAL;
1671     }
1672 
1673     if (block->max_length < newsize) {
1674         error_setg_errno(errp, EINVAL,
1675                          "Size too large: %s: 0x" RAM_ADDR_FMT
1676                          " > 0x" RAM_ADDR_FMT, block->idstr,
1677                          newsize, block->max_length);
1678         return -EINVAL;
1679     }
1680 
1681     /* Notify before modifying the ram block and touching the bitmaps. */
1682     if (block->host) {
1683         ram_block_notify_resize(block->host, oldsize, newsize);
1684     }
1685 
1686     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1687     block->used_length = newsize;
1688     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1689                                         DIRTY_CLIENTS_ALL);
1690     memory_region_set_size(block->mr, unaligned_size);
1691     if (block->resized) {
1692         block->resized(block->idstr, unaligned_size, block->host);
1693     }
1694     return 0;
1695 }
1696 
1697 /*
1698  * Trigger sync on the given ram block for range [start, start + length]
1699  * with the backing store if one is available.
1700  * Otherwise no-op.
1701  * @Note: this is supposed to be a synchronous op.
1702  */
1703 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1704 {
1705     /* The requested range should fit in within the block range */
1706     g_assert((start + length) <= block->used_length);
1707 
1708 #ifdef CONFIG_LIBPMEM
1709     /* The lack of support for pmem should not block the sync */
1710     if (ramblock_is_pmem(block)) {
1711         void *addr = ramblock_ptr(block, start);
1712         pmem_persist(addr, length);
1713         return;
1714     }
1715 #endif
1716     if (block->fd >= 0) {
1717         /**
1718          * Case there is no support for PMEM or the memory has not been
1719          * specified as persistent (or is not one) - use the msync.
1720          * Less optimal but still achieves the same goal
1721          */
1722         void *addr = ramblock_ptr(block, start);
1723         if (qemu_msync(addr, length, block->fd)) {
1724             warn_report("%s: failed to sync memory range: start: "
1725                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1726                     __func__, start, length);
1727         }
1728     }
1729 }
1730 
1731 /* Called with ram_list.mutex held */
1732 static void dirty_memory_extend(ram_addr_t old_ram_size,
1733                                 ram_addr_t new_ram_size)
1734 {
1735     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1736                                              DIRTY_MEMORY_BLOCK_SIZE);
1737     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1738                                              DIRTY_MEMORY_BLOCK_SIZE);
1739     int i;
1740 
1741     /* Only need to extend if block count increased */
1742     if (new_num_blocks <= old_num_blocks) {
1743         return;
1744     }
1745 
1746     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1747         DirtyMemoryBlocks *old_blocks;
1748         DirtyMemoryBlocks *new_blocks;
1749         int j;
1750 
1751         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1752         new_blocks = g_malloc(sizeof(*new_blocks) +
1753                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1754 
1755         if (old_num_blocks) {
1756             memcpy(new_blocks->blocks, old_blocks->blocks,
1757                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1758         }
1759 
1760         for (j = old_num_blocks; j < new_num_blocks; j++) {
1761             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1762         }
1763 
1764         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1765 
1766         if (old_blocks) {
1767             g_free_rcu(old_blocks, rcu);
1768         }
1769     }
1770 }
1771 
1772 static void ram_block_add(RAMBlock *new_block, Error **errp)
1773 {
1774     const bool noreserve = qemu_ram_is_noreserve(new_block);
1775     const bool shared = qemu_ram_is_shared(new_block);
1776     RAMBlock *block;
1777     RAMBlock *last_block = NULL;
1778     ram_addr_t old_ram_size, new_ram_size;
1779     Error *err = NULL;
1780 
1781     old_ram_size = last_ram_page();
1782 
1783     qemu_mutex_lock_ramlist();
1784     new_block->offset = find_ram_offset(new_block->max_length);
1785 
1786     if (!new_block->host) {
1787         if (xen_enabled()) {
1788             xen_ram_alloc(new_block->offset, new_block->max_length,
1789                           new_block->mr, &err);
1790             if (err) {
1791                 error_propagate(errp, err);
1792                 qemu_mutex_unlock_ramlist();
1793                 return;
1794             }
1795         } else {
1796             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1797                                                   &new_block->mr->align,
1798                                                   shared, noreserve);
1799             if (!new_block->host) {
1800                 error_setg_errno(errp, errno,
1801                                  "cannot set up guest memory '%s'",
1802                                  memory_region_name(new_block->mr));
1803                 qemu_mutex_unlock_ramlist();
1804                 return;
1805             }
1806             memory_try_enable_merging(new_block->host, new_block->max_length);
1807         }
1808     }
1809 
1810     new_ram_size = MAX(old_ram_size,
1811               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1812     if (new_ram_size > old_ram_size) {
1813         dirty_memory_extend(old_ram_size, new_ram_size);
1814     }
1815     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1816      * QLIST (which has an RCU-friendly variant) does not have insertion at
1817      * tail, so save the last element in last_block.
1818      */
1819     RAMBLOCK_FOREACH(block) {
1820         last_block = block;
1821         if (block->max_length < new_block->max_length) {
1822             break;
1823         }
1824     }
1825     if (block) {
1826         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1827     } else if (last_block) {
1828         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1829     } else { /* list is empty */
1830         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1831     }
1832     ram_list.mru_block = NULL;
1833 
1834     /* Write list before version */
1835     smp_wmb();
1836     ram_list.version++;
1837     qemu_mutex_unlock_ramlist();
1838 
1839     cpu_physical_memory_set_dirty_range(new_block->offset,
1840                                         new_block->used_length,
1841                                         DIRTY_CLIENTS_ALL);
1842 
1843     if (new_block->host) {
1844         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1845         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1846         /*
1847          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1848          * Configure it unless the machine is a qtest server, in which case
1849          * KVM is not used and it may be forked (eg for fuzzing purposes).
1850          */
1851         if (!qtest_enabled()) {
1852             qemu_madvise(new_block->host, new_block->max_length,
1853                          QEMU_MADV_DONTFORK);
1854         }
1855         ram_block_notify_add(new_block->host, new_block->used_length,
1856                              new_block->max_length);
1857     }
1858 }
1859 
1860 #ifdef CONFIG_POSIX
1861 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1862                                  uint32_t ram_flags, int fd, off_t offset,
1863                                  bool readonly, Error **errp)
1864 {
1865     RAMBlock *new_block;
1866     Error *local_err = NULL;
1867     int64_t file_size, file_align;
1868 
1869     /* Just support these ram flags by now. */
1870     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1871                           RAM_PROTECTED)) == 0);
1872 
1873     if (xen_enabled()) {
1874         error_setg(errp, "-mem-path not supported with Xen");
1875         return NULL;
1876     }
1877 
1878     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1879         error_setg(errp,
1880                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1881         return NULL;
1882     }
1883 
1884     size = HOST_PAGE_ALIGN(size);
1885     file_size = get_file_size(fd);
1886     if (file_size > 0 && file_size < size) {
1887         error_setg(errp, "backing store size 0x%" PRIx64
1888                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1889                    file_size, size);
1890         return NULL;
1891     }
1892 
1893     file_align = get_file_align(fd);
1894     if (file_align > 0 && file_align > mr->align) {
1895         error_setg(errp, "backing store align 0x%" PRIx64
1896                    " is larger than 'align' option 0x%" PRIx64,
1897                    file_align, mr->align);
1898         return NULL;
1899     }
1900 
1901     new_block = g_malloc0(sizeof(*new_block));
1902     new_block->mr = mr;
1903     new_block->used_length = size;
1904     new_block->max_length = size;
1905     new_block->flags = ram_flags;
1906     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
1907                                      !file_size, offset, errp);
1908     if (!new_block->host) {
1909         g_free(new_block);
1910         return NULL;
1911     }
1912 
1913     ram_block_add(new_block, &local_err);
1914     if (local_err) {
1915         g_free(new_block);
1916         error_propagate(errp, local_err);
1917         return NULL;
1918     }
1919     return new_block;
1920 
1921 }
1922 
1923 
1924 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1925                                    uint32_t ram_flags, const char *mem_path,
1926                                    bool readonly, Error **errp)
1927 {
1928     int fd;
1929     bool created;
1930     RAMBlock *block;
1931 
1932     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
1933                        errp);
1934     if (fd < 0) {
1935         return NULL;
1936     }
1937 
1938     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
1939     if (!block) {
1940         if (created) {
1941             unlink(mem_path);
1942         }
1943         close(fd);
1944         return NULL;
1945     }
1946 
1947     return block;
1948 }
1949 #endif
1950 
1951 static
1952 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1953                                   void (*resized)(const char*,
1954                                                   uint64_t length,
1955                                                   void *host),
1956                                   void *host, uint32_t ram_flags,
1957                                   MemoryRegion *mr, Error **errp)
1958 {
1959     RAMBlock *new_block;
1960     Error *local_err = NULL;
1961 
1962     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
1963                           RAM_NORESERVE)) == 0);
1964     assert(!host ^ (ram_flags & RAM_PREALLOC));
1965 
1966     size = HOST_PAGE_ALIGN(size);
1967     max_size = HOST_PAGE_ALIGN(max_size);
1968     new_block = g_malloc0(sizeof(*new_block));
1969     new_block->mr = mr;
1970     new_block->resized = resized;
1971     new_block->used_length = size;
1972     new_block->max_length = max_size;
1973     assert(max_size >= size);
1974     new_block->fd = -1;
1975     new_block->page_size = qemu_real_host_page_size();
1976     new_block->host = host;
1977     new_block->flags = ram_flags;
1978     ram_block_add(new_block, &local_err);
1979     if (local_err) {
1980         g_free(new_block);
1981         error_propagate(errp, local_err);
1982         return NULL;
1983     }
1984     return new_block;
1985 }
1986 
1987 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1988                                    MemoryRegion *mr, Error **errp)
1989 {
1990     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
1991                                    errp);
1992 }
1993 
1994 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
1995                          MemoryRegion *mr, Error **errp)
1996 {
1997     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
1998     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
1999 }
2000 
2001 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2002                                      void (*resized)(const char*,
2003                                                      uint64_t length,
2004                                                      void *host),
2005                                      MemoryRegion *mr, Error **errp)
2006 {
2007     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2008                                    RAM_RESIZEABLE, mr, errp);
2009 }
2010 
2011 static void reclaim_ramblock(RAMBlock *block)
2012 {
2013     if (block->flags & RAM_PREALLOC) {
2014         ;
2015     } else if (xen_enabled()) {
2016         xen_invalidate_map_cache_entry(block->host);
2017 #ifndef _WIN32
2018     } else if (block->fd >= 0) {
2019         qemu_ram_munmap(block->fd, block->host, block->max_length);
2020         close(block->fd);
2021 #endif
2022     } else {
2023         qemu_anon_ram_free(block->host, block->max_length);
2024     }
2025     g_free(block);
2026 }
2027 
2028 void qemu_ram_free(RAMBlock *block)
2029 {
2030     if (!block) {
2031         return;
2032     }
2033 
2034     if (block->host) {
2035         ram_block_notify_remove(block->host, block->used_length,
2036                                 block->max_length);
2037     }
2038 
2039     qemu_mutex_lock_ramlist();
2040     QLIST_REMOVE_RCU(block, next);
2041     ram_list.mru_block = NULL;
2042     /* Write list before version */
2043     smp_wmb();
2044     ram_list.version++;
2045     call_rcu(block, reclaim_ramblock, rcu);
2046     qemu_mutex_unlock_ramlist();
2047 }
2048 
2049 #ifndef _WIN32
2050 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2051 {
2052     RAMBlock *block;
2053     ram_addr_t offset;
2054     int flags;
2055     void *area, *vaddr;
2056 
2057     RAMBLOCK_FOREACH(block) {
2058         offset = addr - block->offset;
2059         if (offset < block->max_length) {
2060             vaddr = ramblock_ptr(block, offset);
2061             if (block->flags & RAM_PREALLOC) {
2062                 ;
2063             } else if (xen_enabled()) {
2064                 abort();
2065             } else {
2066                 flags = MAP_FIXED;
2067                 flags |= block->flags & RAM_SHARED ?
2068                          MAP_SHARED : MAP_PRIVATE;
2069                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2070                 if (block->fd >= 0) {
2071                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2072                                 flags, block->fd, offset);
2073                 } else {
2074                     flags |= MAP_ANONYMOUS;
2075                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2076                                 flags, -1, 0);
2077                 }
2078                 if (area != vaddr) {
2079                     error_report("Could not remap addr: "
2080                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2081                                  length, addr);
2082                     exit(1);
2083                 }
2084                 memory_try_enable_merging(vaddr, length);
2085                 qemu_ram_setup_dump(vaddr, length);
2086             }
2087         }
2088     }
2089 }
2090 #endif /* !_WIN32 */
2091 
2092 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2093  * This should not be used for general purpose DMA.  Use address_space_map
2094  * or address_space_rw instead. For local memory (e.g. video ram) that the
2095  * device owns, use memory_region_get_ram_ptr.
2096  *
2097  * Called within RCU critical section.
2098  */
2099 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2100 {
2101     RAMBlock *block = ram_block;
2102 
2103     if (block == NULL) {
2104         block = qemu_get_ram_block(addr);
2105         addr -= block->offset;
2106     }
2107 
2108     if (xen_enabled() && block->host == NULL) {
2109         /* We need to check if the requested address is in the RAM
2110          * because we don't want to map the entire memory in QEMU.
2111          * In that case just map until the end of the page.
2112          */
2113         if (block->offset == 0) {
2114             return xen_map_cache(addr, 0, 0, false);
2115         }
2116 
2117         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2118     }
2119     return ramblock_ptr(block, addr);
2120 }
2121 
2122 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2123  * but takes a size argument.
2124  *
2125  * Called within RCU critical section.
2126  */
2127 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2128                                  hwaddr *size, bool lock)
2129 {
2130     RAMBlock *block = ram_block;
2131     if (*size == 0) {
2132         return NULL;
2133     }
2134 
2135     if (block == NULL) {
2136         block = qemu_get_ram_block(addr);
2137         addr -= block->offset;
2138     }
2139     *size = MIN(*size, block->max_length - addr);
2140 
2141     if (xen_enabled() && block->host == NULL) {
2142         /* We need to check if the requested address is in the RAM
2143          * because we don't want to map the entire memory in QEMU.
2144          * In that case just map the requested area.
2145          */
2146         if (block->offset == 0) {
2147             return xen_map_cache(addr, *size, lock, lock);
2148         }
2149 
2150         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2151     }
2152 
2153     return ramblock_ptr(block, addr);
2154 }
2155 
2156 /* Return the offset of a hostpointer within a ramblock */
2157 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2158 {
2159     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2160     assert((uintptr_t)host >= (uintptr_t)rb->host);
2161     assert(res < rb->max_length);
2162 
2163     return res;
2164 }
2165 
2166 /*
2167  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2168  * in that RAMBlock.
2169  *
2170  * ptr: Host pointer to look up
2171  * round_offset: If true round the result offset down to a page boundary
2172  * *ram_addr: set to result ram_addr
2173  * *offset: set to result offset within the RAMBlock
2174  *
2175  * Returns: RAMBlock (or NULL if not found)
2176  *
2177  * By the time this function returns, the returned pointer is not protected
2178  * by RCU anymore.  If the caller is not within an RCU critical section and
2179  * does not hold the iothread lock, it must have other means of protecting the
2180  * pointer, such as a reference to the region that includes the incoming
2181  * ram_addr_t.
2182  */
2183 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2184                                    ram_addr_t *offset)
2185 {
2186     RAMBlock *block;
2187     uint8_t *host = ptr;
2188 
2189     if (xen_enabled()) {
2190         ram_addr_t ram_addr;
2191         RCU_READ_LOCK_GUARD();
2192         ram_addr = xen_ram_addr_from_mapcache(ptr);
2193         block = qemu_get_ram_block(ram_addr);
2194         if (block) {
2195             *offset = ram_addr - block->offset;
2196         }
2197         return block;
2198     }
2199 
2200     RCU_READ_LOCK_GUARD();
2201     block = qatomic_rcu_read(&ram_list.mru_block);
2202     if (block && block->host && host - block->host < block->max_length) {
2203         goto found;
2204     }
2205 
2206     RAMBLOCK_FOREACH(block) {
2207         /* This case append when the block is not mapped. */
2208         if (block->host == NULL) {
2209             continue;
2210         }
2211         if (host - block->host < block->max_length) {
2212             goto found;
2213         }
2214     }
2215 
2216     return NULL;
2217 
2218 found:
2219     *offset = (host - block->host);
2220     if (round_offset) {
2221         *offset &= TARGET_PAGE_MASK;
2222     }
2223     return block;
2224 }
2225 
2226 /*
2227  * Finds the named RAMBlock
2228  *
2229  * name: The name of RAMBlock to find
2230  *
2231  * Returns: RAMBlock (or NULL if not found)
2232  */
2233 RAMBlock *qemu_ram_block_by_name(const char *name)
2234 {
2235     RAMBlock *block;
2236 
2237     RAMBLOCK_FOREACH(block) {
2238         if (!strcmp(name, block->idstr)) {
2239             return block;
2240         }
2241     }
2242 
2243     return NULL;
2244 }
2245 
2246 /* Some of the softmmu routines need to translate from a host pointer
2247    (typically a TLB entry) back to a ram offset.  */
2248 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2249 {
2250     RAMBlock *block;
2251     ram_addr_t offset;
2252 
2253     block = qemu_ram_block_from_host(ptr, false, &offset);
2254     if (!block) {
2255         return RAM_ADDR_INVALID;
2256     }
2257 
2258     return block->offset + offset;
2259 }
2260 
2261 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2262 {
2263     ram_addr_t ram_addr;
2264 
2265     ram_addr = qemu_ram_addr_from_host(ptr);
2266     if (ram_addr == RAM_ADDR_INVALID) {
2267         error_report("Bad ram pointer %p", ptr);
2268         abort();
2269     }
2270     return ram_addr;
2271 }
2272 
2273 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2274                                  MemTxAttrs attrs, void *buf, hwaddr len);
2275 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2276                                   const void *buf, hwaddr len);
2277 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2278                                   bool is_write, MemTxAttrs attrs);
2279 
2280 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2281                                 unsigned len, MemTxAttrs attrs)
2282 {
2283     subpage_t *subpage = opaque;
2284     uint8_t buf[8];
2285     MemTxResult res;
2286 
2287 #if defined(DEBUG_SUBPAGE)
2288     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2289            subpage, len, addr);
2290 #endif
2291     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2292     if (res) {
2293         return res;
2294     }
2295     *data = ldn_p(buf, len);
2296     return MEMTX_OK;
2297 }
2298 
2299 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2300                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2301 {
2302     subpage_t *subpage = opaque;
2303     uint8_t buf[8];
2304 
2305 #if defined(DEBUG_SUBPAGE)
2306     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2307            " value %"PRIx64"\n",
2308            __func__, subpage, len, addr, value);
2309 #endif
2310     stn_p(buf, len, value);
2311     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2312 }
2313 
2314 static bool subpage_accepts(void *opaque, hwaddr addr,
2315                             unsigned len, bool is_write,
2316                             MemTxAttrs attrs)
2317 {
2318     subpage_t *subpage = opaque;
2319 #if defined(DEBUG_SUBPAGE)
2320     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2321            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2322 #endif
2323 
2324     return flatview_access_valid(subpage->fv, addr + subpage->base,
2325                                  len, is_write, attrs);
2326 }
2327 
2328 static const MemoryRegionOps subpage_ops = {
2329     .read_with_attrs = subpage_read,
2330     .write_with_attrs = subpage_write,
2331     .impl.min_access_size = 1,
2332     .impl.max_access_size = 8,
2333     .valid.min_access_size = 1,
2334     .valid.max_access_size = 8,
2335     .valid.accepts = subpage_accepts,
2336     .endianness = DEVICE_NATIVE_ENDIAN,
2337 };
2338 
2339 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2340                             uint16_t section)
2341 {
2342     int idx, eidx;
2343 
2344     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2345         return -1;
2346     idx = SUBPAGE_IDX(start);
2347     eidx = SUBPAGE_IDX(end);
2348 #if defined(DEBUG_SUBPAGE)
2349     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2350            __func__, mmio, start, end, idx, eidx, section);
2351 #endif
2352     for (; idx <= eidx; idx++) {
2353         mmio->sub_section[idx] = section;
2354     }
2355 
2356     return 0;
2357 }
2358 
2359 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2360 {
2361     subpage_t *mmio;
2362 
2363     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2364     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2365     mmio->fv = fv;
2366     mmio->base = base;
2367     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2368                           NULL, TARGET_PAGE_SIZE);
2369     mmio->iomem.subpage = true;
2370 #if defined(DEBUG_SUBPAGE)
2371     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2372            mmio, base, TARGET_PAGE_SIZE);
2373 #endif
2374 
2375     return mmio;
2376 }
2377 
2378 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2379 {
2380     assert(fv);
2381     MemoryRegionSection section = {
2382         .fv = fv,
2383         .mr = mr,
2384         .offset_within_address_space = 0,
2385         .offset_within_region = 0,
2386         .size = int128_2_64(),
2387     };
2388 
2389     return phys_section_add(map, &section);
2390 }
2391 
2392 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2393                                       hwaddr index, MemTxAttrs attrs)
2394 {
2395     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2396     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2397     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2398     MemoryRegionSection *sections = d->map.sections;
2399 
2400     return &sections[index & ~TARGET_PAGE_MASK];
2401 }
2402 
2403 static void io_mem_init(void)
2404 {
2405     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2406                           NULL, UINT64_MAX);
2407 }
2408 
2409 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2410 {
2411     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2412     uint16_t n;
2413 
2414     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2415     assert(n == PHYS_SECTION_UNASSIGNED);
2416 
2417     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2418 
2419     return d;
2420 }
2421 
2422 void address_space_dispatch_free(AddressSpaceDispatch *d)
2423 {
2424     phys_sections_free(&d->map);
2425     g_free(d);
2426 }
2427 
2428 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2429 {
2430 }
2431 
2432 static void tcg_log_global_after_sync(MemoryListener *listener)
2433 {
2434     CPUAddressSpace *cpuas;
2435 
2436     /* Wait for the CPU to end the current TB.  This avoids the following
2437      * incorrect race:
2438      *
2439      *      vCPU                         migration
2440      *      ----------------------       -------------------------
2441      *      TLB check -> slow path
2442      *        notdirty_mem_write
2443      *          write to RAM
2444      *          mark dirty
2445      *                                   clear dirty flag
2446      *      TLB check -> fast path
2447      *                                   read memory
2448      *        write to RAM
2449      *
2450      * by pushing the migration thread's memory read after the vCPU thread has
2451      * written the memory.
2452      */
2453     if (replay_mode == REPLAY_MODE_NONE) {
2454         /*
2455          * VGA can make calls to this function while updating the screen.
2456          * In record/replay mode this causes a deadlock, because
2457          * run_on_cpu waits for rr mutex. Therefore no races are possible
2458          * in this case and no need for making run_on_cpu when
2459          * record/replay is enabled.
2460          */
2461         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2462         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2463     }
2464 }
2465 
2466 static void tcg_commit(MemoryListener *listener)
2467 {
2468     CPUAddressSpace *cpuas;
2469     AddressSpaceDispatch *d;
2470 
2471     assert(tcg_enabled());
2472     /* since each CPU stores ram addresses in its TLB cache, we must
2473        reset the modified entries */
2474     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2475     cpu_reloading_memory_map();
2476     /* The CPU and TLB are protected by the iothread lock.
2477      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2478      * may have split the RCU critical section.
2479      */
2480     d = address_space_to_dispatch(cpuas->as);
2481     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2482     tlb_flush(cpuas->cpu);
2483 }
2484 
2485 static void memory_map_init(void)
2486 {
2487     system_memory = g_malloc(sizeof(*system_memory));
2488 
2489     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2490     address_space_init(&address_space_memory, system_memory, "memory");
2491 
2492     system_io = g_malloc(sizeof(*system_io));
2493     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2494                           65536);
2495     address_space_init(&address_space_io, system_io, "I/O");
2496 }
2497 
2498 MemoryRegion *get_system_memory(void)
2499 {
2500     return system_memory;
2501 }
2502 
2503 MemoryRegion *get_system_io(void)
2504 {
2505     return system_io;
2506 }
2507 
2508 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2509                                      hwaddr length)
2510 {
2511     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2512     addr += memory_region_get_ram_addr(mr);
2513 
2514     /* No early return if dirty_log_mask is or becomes 0, because
2515      * cpu_physical_memory_set_dirty_range will still call
2516      * xen_modified_memory.
2517      */
2518     if (dirty_log_mask) {
2519         dirty_log_mask =
2520             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2521     }
2522     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2523         assert(tcg_enabled());
2524         tb_invalidate_phys_range(addr, addr + length);
2525         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2526     }
2527     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2528 }
2529 
2530 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2531 {
2532     /*
2533      * In principle this function would work on other memory region types too,
2534      * but the ROM device use case is the only one where this operation is
2535      * necessary.  Other memory regions should use the
2536      * address_space_read/write() APIs.
2537      */
2538     assert(memory_region_is_romd(mr));
2539 
2540     invalidate_and_set_dirty(mr, addr, size);
2541 }
2542 
2543 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2544 {
2545     unsigned access_size_max = mr->ops->valid.max_access_size;
2546 
2547     /* Regions are assumed to support 1-4 byte accesses unless
2548        otherwise specified.  */
2549     if (access_size_max == 0) {
2550         access_size_max = 4;
2551     }
2552 
2553     /* Bound the maximum access by the alignment of the address.  */
2554     if (!mr->ops->impl.unaligned) {
2555         unsigned align_size_max = addr & -addr;
2556         if (align_size_max != 0 && align_size_max < access_size_max) {
2557             access_size_max = align_size_max;
2558         }
2559     }
2560 
2561     /* Don't attempt accesses larger than the maximum.  */
2562     if (l > access_size_max) {
2563         l = access_size_max;
2564     }
2565     l = pow2floor(l);
2566 
2567     return l;
2568 }
2569 
2570 bool prepare_mmio_access(MemoryRegion *mr)
2571 {
2572     bool release_lock = false;
2573 
2574     if (!qemu_mutex_iothread_locked()) {
2575         qemu_mutex_lock_iothread();
2576         release_lock = true;
2577     }
2578     if (mr->flush_coalesced_mmio) {
2579         qemu_flush_coalesced_mmio_buffer();
2580     }
2581 
2582     return release_lock;
2583 }
2584 
2585 /**
2586  * flatview_access_allowed
2587  * @mr: #MemoryRegion to be accessed
2588  * @attrs: memory transaction attributes
2589  * @addr: address within that memory region
2590  * @len: the number of bytes to access
2591  *
2592  * Check if a memory transaction is allowed.
2593  *
2594  * Returns: true if transaction is allowed, false if denied.
2595  */
2596 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2597                                     hwaddr addr, hwaddr len)
2598 {
2599     if (likely(!attrs.memory)) {
2600         return true;
2601     }
2602     if (memory_region_is_ram(mr)) {
2603         return true;
2604     }
2605     qemu_log_mask(LOG_GUEST_ERROR,
2606                   "Invalid access to non-RAM device at "
2607                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2608                   "region '%s'\n", addr, len, memory_region_name(mr));
2609     return false;
2610 }
2611 
2612 /* Called within RCU critical section.  */
2613 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2614                                            MemTxAttrs attrs,
2615                                            const void *ptr,
2616                                            hwaddr len, hwaddr addr1,
2617                                            hwaddr l, MemoryRegion *mr)
2618 {
2619     uint8_t *ram_ptr;
2620     uint64_t val;
2621     MemTxResult result = MEMTX_OK;
2622     bool release_lock = false;
2623     const uint8_t *buf = ptr;
2624 
2625     for (;;) {
2626         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2627             result |= MEMTX_ACCESS_ERROR;
2628             /* Keep going. */
2629         } else if (!memory_access_is_direct(mr, true)) {
2630             release_lock |= prepare_mmio_access(mr);
2631             l = memory_access_size(mr, l, addr1);
2632             /* XXX: could force current_cpu to NULL to avoid
2633                potential bugs */
2634             val = ldn_he_p(buf, l);
2635             result |= memory_region_dispatch_write(mr, addr1, val,
2636                                                    size_memop(l), attrs);
2637         } else {
2638             /* RAM case */
2639             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2640             memmove(ram_ptr, buf, l);
2641             invalidate_and_set_dirty(mr, addr1, l);
2642         }
2643 
2644         if (release_lock) {
2645             qemu_mutex_unlock_iothread();
2646             release_lock = false;
2647         }
2648 
2649         len -= l;
2650         buf += l;
2651         addr += l;
2652 
2653         if (!len) {
2654             break;
2655         }
2656 
2657         l = len;
2658         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2659     }
2660 
2661     return result;
2662 }
2663 
2664 /* Called from RCU critical section.  */
2665 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2666                                   const void *buf, hwaddr len)
2667 {
2668     hwaddr l;
2669     hwaddr addr1;
2670     MemoryRegion *mr;
2671 
2672     l = len;
2673     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2674     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2675         return MEMTX_ACCESS_ERROR;
2676     }
2677     return flatview_write_continue(fv, addr, attrs, buf, len,
2678                                    addr1, l, mr);
2679 }
2680 
2681 /* Called within RCU critical section.  */
2682 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2683                                    MemTxAttrs attrs, void *ptr,
2684                                    hwaddr len, hwaddr addr1, hwaddr l,
2685                                    MemoryRegion *mr)
2686 {
2687     uint8_t *ram_ptr;
2688     uint64_t val;
2689     MemTxResult result = MEMTX_OK;
2690     bool release_lock = false;
2691     uint8_t *buf = ptr;
2692 
2693     fuzz_dma_read_cb(addr, len, mr);
2694     for (;;) {
2695         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2696             result |= MEMTX_ACCESS_ERROR;
2697             /* Keep going. */
2698         } else if (!memory_access_is_direct(mr, false)) {
2699             /* I/O case */
2700             release_lock |= prepare_mmio_access(mr);
2701             l = memory_access_size(mr, l, addr1);
2702             result |= memory_region_dispatch_read(mr, addr1, &val,
2703                                                   size_memop(l), attrs);
2704             stn_he_p(buf, l, val);
2705         } else {
2706             /* RAM case */
2707             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2708             memcpy(buf, ram_ptr, l);
2709         }
2710 
2711         if (release_lock) {
2712             qemu_mutex_unlock_iothread();
2713             release_lock = false;
2714         }
2715 
2716         len -= l;
2717         buf += l;
2718         addr += l;
2719 
2720         if (!len) {
2721             break;
2722         }
2723 
2724         l = len;
2725         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2726     }
2727 
2728     return result;
2729 }
2730 
2731 /* Called from RCU critical section.  */
2732 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2733                                  MemTxAttrs attrs, void *buf, hwaddr len)
2734 {
2735     hwaddr l;
2736     hwaddr addr1;
2737     MemoryRegion *mr;
2738 
2739     l = len;
2740     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2741     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2742         return MEMTX_ACCESS_ERROR;
2743     }
2744     return flatview_read_continue(fv, addr, attrs, buf, len,
2745                                   addr1, l, mr);
2746 }
2747 
2748 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2749                                     MemTxAttrs attrs, void *buf, hwaddr len)
2750 {
2751     MemTxResult result = MEMTX_OK;
2752     FlatView *fv;
2753 
2754     if (len > 0) {
2755         RCU_READ_LOCK_GUARD();
2756         fv = address_space_to_flatview(as);
2757         result = flatview_read(fv, addr, attrs, buf, len);
2758     }
2759 
2760     return result;
2761 }
2762 
2763 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2764                                 MemTxAttrs attrs,
2765                                 const void *buf, hwaddr len)
2766 {
2767     MemTxResult result = MEMTX_OK;
2768     FlatView *fv;
2769 
2770     if (len > 0) {
2771         RCU_READ_LOCK_GUARD();
2772         fv = address_space_to_flatview(as);
2773         result = flatview_write(fv, addr, attrs, buf, len);
2774     }
2775 
2776     return result;
2777 }
2778 
2779 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2780                              void *buf, hwaddr len, bool is_write)
2781 {
2782     if (is_write) {
2783         return address_space_write(as, addr, attrs, buf, len);
2784     } else {
2785         return address_space_read_full(as, addr, attrs, buf, len);
2786     }
2787 }
2788 
2789 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2790                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2791 {
2792 #define FILLBUF_SIZE 512
2793     uint8_t fillbuf[FILLBUF_SIZE];
2794     int l;
2795     MemTxResult error = MEMTX_OK;
2796 
2797     memset(fillbuf, c, FILLBUF_SIZE);
2798     while (len > 0) {
2799         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2800         error |= address_space_write(as, addr, attrs, fillbuf, l);
2801         len -= l;
2802         addr += l;
2803     }
2804 
2805     return error;
2806 }
2807 
2808 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2809                             hwaddr len, bool is_write)
2810 {
2811     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2812                      buf, len, is_write);
2813 }
2814 
2815 enum write_rom_type {
2816     WRITE_DATA,
2817     FLUSH_CACHE,
2818 };
2819 
2820 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2821                                                            hwaddr addr,
2822                                                            MemTxAttrs attrs,
2823                                                            const void *ptr,
2824                                                            hwaddr len,
2825                                                            enum write_rom_type type)
2826 {
2827     hwaddr l;
2828     uint8_t *ram_ptr;
2829     hwaddr addr1;
2830     MemoryRegion *mr;
2831     const uint8_t *buf = ptr;
2832 
2833     RCU_READ_LOCK_GUARD();
2834     while (len > 0) {
2835         l = len;
2836         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2837 
2838         if (!(memory_region_is_ram(mr) ||
2839               memory_region_is_romd(mr))) {
2840             l = memory_access_size(mr, l, addr1);
2841         } else {
2842             /* ROM/RAM case */
2843             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2844             switch (type) {
2845             case WRITE_DATA:
2846                 memcpy(ram_ptr, buf, l);
2847                 invalidate_and_set_dirty(mr, addr1, l);
2848                 break;
2849             case FLUSH_CACHE:
2850                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2851                 break;
2852             }
2853         }
2854         len -= l;
2855         buf += l;
2856         addr += l;
2857     }
2858     return MEMTX_OK;
2859 }
2860 
2861 /* used for ROM loading : can write in RAM and ROM */
2862 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2863                                     MemTxAttrs attrs,
2864                                     const void *buf, hwaddr len)
2865 {
2866     return address_space_write_rom_internal(as, addr, attrs,
2867                                             buf, len, WRITE_DATA);
2868 }
2869 
2870 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2871 {
2872     /*
2873      * This function should do the same thing as an icache flush that was
2874      * triggered from within the guest. For TCG we are always cache coherent,
2875      * so there is no need to flush anything. For KVM / Xen we need to flush
2876      * the host's instruction cache at least.
2877      */
2878     if (tcg_enabled()) {
2879         return;
2880     }
2881 
2882     address_space_write_rom_internal(&address_space_memory,
2883                                      start, MEMTXATTRS_UNSPECIFIED,
2884                                      NULL, len, FLUSH_CACHE);
2885 }
2886 
2887 typedef struct {
2888     MemoryRegion *mr;
2889     void *buffer;
2890     hwaddr addr;
2891     hwaddr len;
2892     bool in_use;
2893 } BounceBuffer;
2894 
2895 static BounceBuffer bounce;
2896 
2897 typedef struct MapClient {
2898     QEMUBH *bh;
2899     QLIST_ENTRY(MapClient) link;
2900 } MapClient;
2901 
2902 QemuMutex map_client_list_lock;
2903 static QLIST_HEAD(, MapClient) map_client_list
2904     = QLIST_HEAD_INITIALIZER(map_client_list);
2905 
2906 static void cpu_unregister_map_client_do(MapClient *client)
2907 {
2908     QLIST_REMOVE(client, link);
2909     g_free(client);
2910 }
2911 
2912 static void cpu_notify_map_clients_locked(void)
2913 {
2914     MapClient *client;
2915 
2916     while (!QLIST_EMPTY(&map_client_list)) {
2917         client = QLIST_FIRST(&map_client_list);
2918         qemu_bh_schedule(client->bh);
2919         cpu_unregister_map_client_do(client);
2920     }
2921 }
2922 
2923 void cpu_register_map_client(QEMUBH *bh)
2924 {
2925     MapClient *client = g_malloc(sizeof(*client));
2926 
2927     qemu_mutex_lock(&map_client_list_lock);
2928     client->bh = bh;
2929     QLIST_INSERT_HEAD(&map_client_list, client, link);
2930     /* Write map_client_list before reading in_use.  */
2931     smp_mb();
2932     if (!qatomic_read(&bounce.in_use)) {
2933         cpu_notify_map_clients_locked();
2934     }
2935     qemu_mutex_unlock(&map_client_list_lock);
2936 }
2937 
2938 void cpu_exec_init_all(void)
2939 {
2940     qemu_mutex_init(&ram_list.mutex);
2941     /* The data structures we set up here depend on knowing the page size,
2942      * so no more changes can be made after this point.
2943      * In an ideal world, nothing we did before we had finished the
2944      * machine setup would care about the target page size, and we could
2945      * do this much later, rather than requiring board models to state
2946      * up front what their requirements are.
2947      */
2948     finalize_target_page_bits();
2949     io_mem_init();
2950     memory_map_init();
2951     qemu_mutex_init(&map_client_list_lock);
2952 }
2953 
2954 void cpu_unregister_map_client(QEMUBH *bh)
2955 {
2956     MapClient *client;
2957 
2958     qemu_mutex_lock(&map_client_list_lock);
2959     QLIST_FOREACH(client, &map_client_list, link) {
2960         if (client->bh == bh) {
2961             cpu_unregister_map_client_do(client);
2962             break;
2963         }
2964     }
2965     qemu_mutex_unlock(&map_client_list_lock);
2966 }
2967 
2968 static void cpu_notify_map_clients(void)
2969 {
2970     qemu_mutex_lock(&map_client_list_lock);
2971     cpu_notify_map_clients_locked();
2972     qemu_mutex_unlock(&map_client_list_lock);
2973 }
2974 
2975 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2976                                   bool is_write, MemTxAttrs attrs)
2977 {
2978     MemoryRegion *mr;
2979     hwaddr l, xlat;
2980 
2981     while (len > 0) {
2982         l = len;
2983         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
2984         if (!memory_access_is_direct(mr, is_write)) {
2985             l = memory_access_size(mr, l, addr);
2986             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
2987                 return false;
2988             }
2989         }
2990 
2991         len -= l;
2992         addr += l;
2993     }
2994     return true;
2995 }
2996 
2997 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
2998                                 hwaddr len, bool is_write,
2999                                 MemTxAttrs attrs)
3000 {
3001     FlatView *fv;
3002 
3003     RCU_READ_LOCK_GUARD();
3004     fv = address_space_to_flatview(as);
3005     return flatview_access_valid(fv, addr, len, is_write, attrs);
3006 }
3007 
3008 static hwaddr
3009 flatview_extend_translation(FlatView *fv, hwaddr addr,
3010                             hwaddr target_len,
3011                             MemoryRegion *mr, hwaddr base, hwaddr len,
3012                             bool is_write, MemTxAttrs attrs)
3013 {
3014     hwaddr done = 0;
3015     hwaddr xlat;
3016     MemoryRegion *this_mr;
3017 
3018     for (;;) {
3019         target_len -= len;
3020         addr += len;
3021         done += len;
3022         if (target_len == 0) {
3023             return done;
3024         }
3025 
3026         len = target_len;
3027         this_mr = flatview_translate(fv, addr, &xlat,
3028                                      &len, is_write, attrs);
3029         if (this_mr != mr || xlat != base + done) {
3030             return done;
3031         }
3032     }
3033 }
3034 
3035 /* Map a physical memory region into a host virtual address.
3036  * May map a subset of the requested range, given by and returned in *plen.
3037  * May return NULL if resources needed to perform the mapping are exhausted.
3038  * Use only for reads OR writes - not for read-modify-write operations.
3039  * Use cpu_register_map_client() to know when retrying the map operation is
3040  * likely to succeed.
3041  */
3042 void *address_space_map(AddressSpace *as,
3043                         hwaddr addr,
3044                         hwaddr *plen,
3045                         bool is_write,
3046                         MemTxAttrs attrs)
3047 {
3048     hwaddr len = *plen;
3049     hwaddr l, xlat;
3050     MemoryRegion *mr;
3051     FlatView *fv;
3052 
3053     if (len == 0) {
3054         return NULL;
3055     }
3056 
3057     l = len;
3058     RCU_READ_LOCK_GUARD();
3059     fv = address_space_to_flatview(as);
3060     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3061 
3062     if (!memory_access_is_direct(mr, is_write)) {
3063         if (qatomic_xchg(&bounce.in_use, true)) {
3064             *plen = 0;
3065             return NULL;
3066         }
3067         /* Avoid unbounded allocations */
3068         l = MIN(l, TARGET_PAGE_SIZE);
3069         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3070         bounce.addr = addr;
3071         bounce.len = l;
3072 
3073         memory_region_ref(mr);
3074         bounce.mr = mr;
3075         if (!is_write) {
3076             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3077                                bounce.buffer, l);
3078         }
3079 
3080         *plen = l;
3081         return bounce.buffer;
3082     }
3083 
3084 
3085     memory_region_ref(mr);
3086     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3087                                         l, is_write, attrs);
3088     fuzz_dma_read_cb(addr, *plen, mr);
3089     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3090 }
3091 
3092 /* Unmaps a memory region previously mapped by address_space_map().
3093  * Will also mark the memory as dirty if is_write is true.  access_len gives
3094  * the amount of memory that was actually read or written by the caller.
3095  */
3096 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3097                          bool is_write, hwaddr access_len)
3098 {
3099     if (buffer != bounce.buffer) {
3100         MemoryRegion *mr;
3101         ram_addr_t addr1;
3102 
3103         mr = memory_region_from_host(buffer, &addr1);
3104         assert(mr != NULL);
3105         if (is_write) {
3106             invalidate_and_set_dirty(mr, addr1, access_len);
3107         }
3108         if (xen_enabled()) {
3109             xen_invalidate_map_cache_entry(buffer);
3110         }
3111         memory_region_unref(mr);
3112         return;
3113     }
3114     if (is_write) {
3115         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3116                             bounce.buffer, access_len);
3117     }
3118     qemu_vfree(bounce.buffer);
3119     bounce.buffer = NULL;
3120     memory_region_unref(bounce.mr);
3121     /* Clear in_use before reading map_client_list.  */
3122     qatomic_mb_set(&bounce.in_use, false);
3123     cpu_notify_map_clients();
3124 }
3125 
3126 void *cpu_physical_memory_map(hwaddr addr,
3127                               hwaddr *plen,
3128                               bool is_write)
3129 {
3130     return address_space_map(&address_space_memory, addr, plen, is_write,
3131                              MEMTXATTRS_UNSPECIFIED);
3132 }
3133 
3134 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3135                                bool is_write, hwaddr access_len)
3136 {
3137     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3138 }
3139 
3140 #define ARG1_DECL                AddressSpace *as
3141 #define ARG1                     as
3142 #define SUFFIX
3143 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3144 #define RCU_READ_LOCK(...)       rcu_read_lock()
3145 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3146 #include "memory_ldst.c.inc"
3147 
3148 int64_t address_space_cache_init(MemoryRegionCache *cache,
3149                                  AddressSpace *as,
3150                                  hwaddr addr,
3151                                  hwaddr len,
3152                                  bool is_write)
3153 {
3154     AddressSpaceDispatch *d;
3155     hwaddr l;
3156     MemoryRegion *mr;
3157     Int128 diff;
3158 
3159     assert(len > 0);
3160 
3161     l = len;
3162     cache->fv = address_space_get_flatview(as);
3163     d = flatview_to_dispatch(cache->fv);
3164     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3165 
3166     /*
3167      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3168      * Take that into account to compute how many bytes are there between
3169      * cache->xlat and the end of the section.
3170      */
3171     diff = int128_sub(cache->mrs.size,
3172 		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3173     l = int128_get64(int128_min(diff, int128_make64(l)));
3174 
3175     mr = cache->mrs.mr;
3176     memory_region_ref(mr);
3177     if (memory_access_is_direct(mr, is_write)) {
3178         /* We don't care about the memory attributes here as we're only
3179          * doing this if we found actual RAM, which behaves the same
3180          * regardless of attributes; so UNSPECIFIED is fine.
3181          */
3182         l = flatview_extend_translation(cache->fv, addr, len, mr,
3183                                         cache->xlat, l, is_write,
3184                                         MEMTXATTRS_UNSPECIFIED);
3185         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3186     } else {
3187         cache->ptr = NULL;
3188     }
3189 
3190     cache->len = l;
3191     cache->is_write = is_write;
3192     return l;
3193 }
3194 
3195 void address_space_cache_invalidate(MemoryRegionCache *cache,
3196                                     hwaddr addr,
3197                                     hwaddr access_len)
3198 {
3199     assert(cache->is_write);
3200     if (likely(cache->ptr)) {
3201         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3202     }
3203 }
3204 
3205 void address_space_cache_destroy(MemoryRegionCache *cache)
3206 {
3207     if (!cache->mrs.mr) {
3208         return;
3209     }
3210 
3211     if (xen_enabled()) {
3212         xen_invalidate_map_cache_entry(cache->ptr);
3213     }
3214     memory_region_unref(cache->mrs.mr);
3215     flatview_unref(cache->fv);
3216     cache->mrs.mr = NULL;
3217     cache->fv = NULL;
3218 }
3219 
3220 /* Called from RCU critical section.  This function has the same
3221  * semantics as address_space_translate, but it only works on a
3222  * predefined range of a MemoryRegion that was mapped with
3223  * address_space_cache_init.
3224  */
3225 static inline MemoryRegion *address_space_translate_cached(
3226     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3227     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3228 {
3229     MemoryRegionSection section;
3230     MemoryRegion *mr;
3231     IOMMUMemoryRegion *iommu_mr;
3232     AddressSpace *target_as;
3233 
3234     assert(!cache->ptr);
3235     *xlat = addr + cache->xlat;
3236 
3237     mr = cache->mrs.mr;
3238     iommu_mr = memory_region_get_iommu(mr);
3239     if (!iommu_mr) {
3240         /* MMIO region.  */
3241         return mr;
3242     }
3243 
3244     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3245                                             NULL, is_write, true,
3246                                             &target_as, attrs);
3247     return section.mr;
3248 }
3249 
3250 /* Called from RCU critical section. address_space_read_cached uses this
3251  * out of line function when the target is an MMIO or IOMMU region.
3252  */
3253 MemTxResult
3254 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3255                                    void *buf, hwaddr len)
3256 {
3257     hwaddr addr1, l;
3258     MemoryRegion *mr;
3259 
3260     l = len;
3261     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3262                                         MEMTXATTRS_UNSPECIFIED);
3263     return flatview_read_continue(cache->fv,
3264                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3265                                   addr1, l, mr);
3266 }
3267 
3268 /* Called from RCU critical section. address_space_write_cached uses this
3269  * out of line function when the target is an MMIO or IOMMU region.
3270  */
3271 MemTxResult
3272 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3273                                     const void *buf, hwaddr len)
3274 {
3275     hwaddr addr1, l;
3276     MemoryRegion *mr;
3277 
3278     l = len;
3279     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3280                                         MEMTXATTRS_UNSPECIFIED);
3281     return flatview_write_continue(cache->fv,
3282                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3283                                    addr1, l, mr);
3284 }
3285 
3286 #define ARG1_DECL                MemoryRegionCache *cache
3287 #define ARG1                     cache
3288 #define SUFFIX                   _cached_slow
3289 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3290 #define RCU_READ_LOCK()          ((void)0)
3291 #define RCU_READ_UNLOCK()        ((void)0)
3292 #include "memory_ldst.c.inc"
3293 
3294 /* virtual memory access for debug (includes writing to ROM) */
3295 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3296                         void *ptr, size_t len, bool is_write)
3297 {
3298     hwaddr phys_addr;
3299     vaddr l, page;
3300     uint8_t *buf = ptr;
3301 
3302     cpu_synchronize_state(cpu);
3303     while (len > 0) {
3304         int asidx;
3305         MemTxAttrs attrs;
3306         MemTxResult res;
3307 
3308         page = addr & TARGET_PAGE_MASK;
3309         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3310         asidx = cpu_asidx_from_attrs(cpu, attrs);
3311         /* if no physical page mapped, return an error */
3312         if (phys_addr == -1)
3313             return -1;
3314         l = (page + TARGET_PAGE_SIZE) - addr;
3315         if (l > len)
3316             l = len;
3317         phys_addr += (addr & ~TARGET_PAGE_MASK);
3318         if (is_write) {
3319             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3320                                           attrs, buf, l);
3321         } else {
3322             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3323                                      attrs, buf, l);
3324         }
3325         if (res != MEMTX_OK) {
3326             return -1;
3327         }
3328         len -= l;
3329         buf += l;
3330         addr += l;
3331     }
3332     return 0;
3333 }
3334 
3335 /*
3336  * Allows code that needs to deal with migration bitmaps etc to still be built
3337  * target independent.
3338  */
3339 size_t qemu_target_page_size(void)
3340 {
3341     return TARGET_PAGE_SIZE;
3342 }
3343 
3344 int qemu_target_page_bits(void)
3345 {
3346     return TARGET_PAGE_BITS;
3347 }
3348 
3349 int qemu_target_page_bits_min(void)
3350 {
3351     return TARGET_PAGE_BITS_MIN;
3352 }
3353 
3354 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3355 {
3356     MemoryRegion*mr;
3357     hwaddr l = 1;
3358 
3359     RCU_READ_LOCK_GUARD();
3360     mr = address_space_translate(&address_space_memory,
3361                                  phys_addr, &phys_addr, &l, false,
3362                                  MEMTXATTRS_UNSPECIFIED);
3363 
3364     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3365 }
3366 
3367 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3368 {
3369     RAMBlock *block;
3370     int ret = 0;
3371 
3372     RCU_READ_LOCK_GUARD();
3373     RAMBLOCK_FOREACH(block) {
3374         ret = func(block, opaque);
3375         if (ret) {
3376             break;
3377         }
3378     }
3379     return ret;
3380 }
3381 
3382 /*
3383  * Unmap pages of memory from start to start+length such that
3384  * they a) read as 0, b) Trigger whatever fault mechanism
3385  * the OS provides for postcopy.
3386  * The pages must be unmapped by the end of the function.
3387  * Returns: 0 on success, none-0 on failure
3388  *
3389  */
3390 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3391 {
3392     int ret = -1;
3393 
3394     uint8_t *host_startaddr = rb->host + start;
3395 
3396     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3397         error_report("ram_block_discard_range: Unaligned start address: %p",
3398                      host_startaddr);
3399         goto err;
3400     }
3401 
3402     if ((start + length) <= rb->max_length) {
3403         bool need_madvise, need_fallocate;
3404         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3405             error_report("ram_block_discard_range: Unaligned length: %zx",
3406                          length);
3407             goto err;
3408         }
3409 
3410         errno = ENOTSUP; /* If we are missing MADVISE etc */
3411 
3412         /* The logic here is messy;
3413          *    madvise DONTNEED fails for hugepages
3414          *    fallocate works on hugepages and shmem
3415          *    shared anonymous memory requires madvise REMOVE
3416          */
3417         need_madvise = (rb->page_size == qemu_host_page_size);
3418         need_fallocate = rb->fd != -1;
3419         if (need_fallocate) {
3420             /* For a file, this causes the area of the file to be zero'd
3421              * if read, and for hugetlbfs also causes it to be unmapped
3422              * so a userfault will trigger.
3423              */
3424 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3425             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3426                             start, length);
3427             if (ret) {
3428                 ret = -errno;
3429                 error_report("ram_block_discard_range: Failed to fallocate "
3430                              "%s:%" PRIx64 " +%zx (%d)",
3431                              rb->idstr, start, length, ret);
3432                 goto err;
3433             }
3434 #else
3435             ret = -ENOSYS;
3436             error_report("ram_block_discard_range: fallocate not available/file"
3437                          "%s:%" PRIx64 " +%zx (%d)",
3438                          rb->idstr, start, length, ret);
3439             goto err;
3440 #endif
3441         }
3442         if (need_madvise) {
3443             /* For normal RAM this causes it to be unmapped,
3444              * for shared memory it causes the local mapping to disappear
3445              * and to fall back on the file contents (which we just
3446              * fallocate'd away).
3447              */
3448 #if defined(CONFIG_MADVISE)
3449             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3450                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3451             } else {
3452                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3453             }
3454             if (ret) {
3455                 ret = -errno;
3456                 error_report("ram_block_discard_range: Failed to discard range "
3457                              "%s:%" PRIx64 " +%zx (%d)",
3458                              rb->idstr, start, length, ret);
3459                 goto err;
3460             }
3461 #else
3462             ret = -ENOSYS;
3463             error_report("ram_block_discard_range: MADVISE not available"
3464                          "%s:%" PRIx64 " +%zx (%d)",
3465                          rb->idstr, start, length, ret);
3466             goto err;
3467 #endif
3468         }
3469         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3470                                       need_madvise, need_fallocate, ret);
3471     } else {
3472         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3473                      "/%zx/" RAM_ADDR_FMT")",
3474                      rb->idstr, start, length, rb->max_length);
3475     }
3476 
3477 err:
3478     return ret;
3479 }
3480 
3481 bool ramblock_is_pmem(RAMBlock *rb)
3482 {
3483     return rb->flags & RAM_PMEM;
3484 }
3485 
3486 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3487 {
3488     if (start == end - 1) {
3489         qemu_printf("\t%3d      ", start);
3490     } else {
3491         qemu_printf("\t%3d..%-3d ", start, end - 1);
3492     }
3493     qemu_printf(" skip=%d ", skip);
3494     if (ptr == PHYS_MAP_NODE_NIL) {
3495         qemu_printf(" ptr=NIL");
3496     } else if (!skip) {
3497         qemu_printf(" ptr=#%d", ptr);
3498     } else {
3499         qemu_printf(" ptr=[%d]", ptr);
3500     }
3501     qemu_printf("\n");
3502 }
3503 
3504 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3505                            int128_sub((size), int128_one())) : 0)
3506 
3507 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3508 {
3509     int i;
3510 
3511     qemu_printf("  Dispatch\n");
3512     qemu_printf("    Physical sections\n");
3513 
3514     for (i = 0; i < d->map.sections_nb; ++i) {
3515         MemoryRegionSection *s = d->map.sections + i;
3516         const char *names[] = { " [unassigned]", " [not dirty]",
3517                                 " [ROM]", " [watch]" };
3518 
3519         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3520                     " %s%s%s%s%s",
3521             i,
3522             s->offset_within_address_space,
3523             s->offset_within_address_space + MR_SIZE(s->size),
3524             s->mr->name ? s->mr->name : "(noname)",
3525             i < ARRAY_SIZE(names) ? names[i] : "",
3526             s->mr == root ? " [ROOT]" : "",
3527             s == d->mru_section ? " [MRU]" : "",
3528             s->mr->is_iommu ? " [iommu]" : "");
3529 
3530         if (s->mr->alias) {
3531             qemu_printf(" alias=%s", s->mr->alias->name ?
3532                     s->mr->alias->name : "noname");
3533         }
3534         qemu_printf("\n");
3535     }
3536 
3537     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3538                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3539     for (i = 0; i < d->map.nodes_nb; ++i) {
3540         int j, jprev;
3541         PhysPageEntry prev;
3542         Node *n = d->map.nodes + i;
3543 
3544         qemu_printf("      [%d]\n", i);
3545 
3546         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3547             PhysPageEntry *pe = *n + j;
3548 
3549             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3550                 continue;
3551             }
3552 
3553             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3554 
3555             jprev = j;
3556             prev = *pe;
3557         }
3558 
3559         if (jprev != ARRAY_SIZE(*n)) {
3560             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3561         }
3562     }
3563 }
3564 
3565 /* Require any discards to work. */
3566 static unsigned int ram_block_discard_required_cnt;
3567 /* Require only coordinated discards to work. */
3568 static unsigned int ram_block_coordinated_discard_required_cnt;
3569 /* Disable any discards. */
3570 static unsigned int ram_block_discard_disabled_cnt;
3571 /* Disable only uncoordinated discards. */
3572 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3573 static QemuMutex ram_block_discard_disable_mutex;
3574 
3575 static void ram_block_discard_disable_mutex_lock(void)
3576 {
3577     static gsize initialized;
3578 
3579     if (g_once_init_enter(&initialized)) {
3580         qemu_mutex_init(&ram_block_discard_disable_mutex);
3581         g_once_init_leave(&initialized, 1);
3582     }
3583     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3584 }
3585 
3586 static void ram_block_discard_disable_mutex_unlock(void)
3587 {
3588     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3589 }
3590 
3591 int ram_block_discard_disable(bool state)
3592 {
3593     int ret = 0;
3594 
3595     ram_block_discard_disable_mutex_lock();
3596     if (!state) {
3597         ram_block_discard_disabled_cnt--;
3598     } else if (ram_block_discard_required_cnt ||
3599                ram_block_coordinated_discard_required_cnt) {
3600         ret = -EBUSY;
3601     } else {
3602         ram_block_discard_disabled_cnt++;
3603     }
3604     ram_block_discard_disable_mutex_unlock();
3605     return ret;
3606 }
3607 
3608 int ram_block_uncoordinated_discard_disable(bool state)
3609 {
3610     int ret = 0;
3611 
3612     ram_block_discard_disable_mutex_lock();
3613     if (!state) {
3614         ram_block_uncoordinated_discard_disabled_cnt--;
3615     } else if (ram_block_discard_required_cnt) {
3616         ret = -EBUSY;
3617     } else {
3618         ram_block_uncoordinated_discard_disabled_cnt++;
3619     }
3620     ram_block_discard_disable_mutex_unlock();
3621     return ret;
3622 }
3623 
3624 int ram_block_discard_require(bool state)
3625 {
3626     int ret = 0;
3627 
3628     ram_block_discard_disable_mutex_lock();
3629     if (!state) {
3630         ram_block_discard_required_cnt--;
3631     } else if (ram_block_discard_disabled_cnt ||
3632                ram_block_uncoordinated_discard_disabled_cnt) {
3633         ret = -EBUSY;
3634     } else {
3635         ram_block_discard_required_cnt++;
3636     }
3637     ram_block_discard_disable_mutex_unlock();
3638     return ret;
3639 }
3640 
3641 int ram_block_coordinated_discard_require(bool state)
3642 {
3643     int ret = 0;
3644 
3645     ram_block_discard_disable_mutex_lock();
3646     if (!state) {
3647         ram_block_coordinated_discard_required_cnt--;
3648     } else if (ram_block_discard_disabled_cnt) {
3649         ret = -EBUSY;
3650     } else {
3651         ram_block_coordinated_discard_required_cnt++;
3652     }
3653     ram_block_discard_disable_mutex_unlock();
3654     return ret;
3655 }
3656 
3657 bool ram_block_discard_is_disabled(void)
3658 {
3659     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3660            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3661 }
3662 
3663 bool ram_block_discard_is_required(void)
3664 {
3665     return qatomic_read(&ram_block_discard_required_cnt) ||
3666            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3667 }
3668