1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = 684 qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); 685 686 for (;;) { 687 section = address_space_translate_internal(d, addr, &addr, plen, false); 688 689 iommu_mr = memory_region_get_iommu(section->mr); 690 if (!iommu_mr) { 691 break; 692 } 693 694 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 695 696 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 697 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 698 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 699 * doesn't short-cut its translation table walk. 700 */ 701 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 702 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 703 | (addr & iotlb.addr_mask)); 704 /* Update the caller's prot bits to remove permissions the IOMMU 705 * is giving us a failure response for. If we get down to no 706 * permissions left at all we can give up now. 707 */ 708 if (!(iotlb.perm & IOMMU_RO)) { 709 *prot &= ~(PAGE_READ | PAGE_EXEC); 710 } 711 if (!(iotlb.perm & IOMMU_WO)) { 712 *prot &= ~PAGE_WRITE; 713 } 714 715 if (!*prot) { 716 goto translate_fail; 717 } 718 719 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 720 } 721 722 assert(!memory_region_is_iommu(section->mr)); 723 *xlat = addr; 724 return section; 725 726 translate_fail: 727 /* 728 * We should be given a page-aligned address -- certainly 729 * tlb_set_page_with_attrs() does so. The page offset of xlat 730 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 731 * The page portion of xlat will be logged by memory_region_access_valid() 732 * when this memory access is rejected, so use the original untranslated 733 * physical address. 734 */ 735 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 736 *xlat = orig_addr; 737 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 738 } 739 740 void cpu_address_space_init(CPUState *cpu, int asidx, 741 const char *prefix, MemoryRegion *mr) 742 { 743 CPUAddressSpace *newas; 744 AddressSpace *as = g_new0(AddressSpace, 1); 745 char *as_name; 746 747 assert(mr); 748 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 749 address_space_init(as, mr, as_name); 750 g_free(as_name); 751 752 /* Target code should have set num_ases before calling us */ 753 assert(asidx < cpu->num_ases); 754 755 if (asidx == 0) { 756 /* address space 0 gets the convenience alias */ 757 cpu->as = as; 758 } 759 760 /* KVM cannot currently support multiple address spaces. */ 761 assert(asidx == 0 || !kvm_enabled()); 762 763 if (!cpu->cpu_ases) { 764 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 765 } 766 767 newas = &cpu->cpu_ases[asidx]; 768 newas->cpu = cpu; 769 newas->as = as; 770 if (tcg_enabled()) { 771 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 772 newas->tcg_as_listener.commit = tcg_commit; 773 newas->tcg_as_listener.name = "tcg"; 774 memory_listener_register(&newas->tcg_as_listener, as); 775 } 776 } 777 778 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 779 { 780 /* Return the AddressSpace corresponding to the specified index */ 781 return cpu->cpu_ases[asidx].as; 782 } 783 784 /* Called from RCU critical section */ 785 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 786 { 787 RAMBlock *block; 788 789 block = qatomic_rcu_read(&ram_list.mru_block); 790 if (block && addr - block->offset < block->max_length) { 791 return block; 792 } 793 RAMBLOCK_FOREACH(block) { 794 if (addr - block->offset < block->max_length) { 795 goto found; 796 } 797 } 798 799 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 800 abort(); 801 802 found: 803 /* It is safe to write mru_block outside the iothread lock. This 804 * is what happens: 805 * 806 * mru_block = xxx 807 * rcu_read_unlock() 808 * xxx removed from list 809 * rcu_read_lock() 810 * read mru_block 811 * mru_block = NULL; 812 * call_rcu(reclaim_ramblock, xxx); 813 * rcu_read_unlock() 814 * 815 * qatomic_rcu_set is not needed here. The block was already published 816 * when it was placed into the list. Here we're just making an extra 817 * copy of the pointer. 818 */ 819 ram_list.mru_block = block; 820 return block; 821 } 822 823 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 824 { 825 CPUState *cpu; 826 ram_addr_t start1; 827 RAMBlock *block; 828 ram_addr_t end; 829 830 assert(tcg_enabled()); 831 end = TARGET_PAGE_ALIGN(start + length); 832 start &= TARGET_PAGE_MASK; 833 834 RCU_READ_LOCK_GUARD(); 835 block = qemu_get_ram_block(start); 836 assert(block == qemu_get_ram_block(end - 1)); 837 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 838 CPU_FOREACH(cpu) { 839 tlb_reset_dirty(cpu, start1, length); 840 } 841 } 842 843 /* Note: start and end must be within the same ram block. */ 844 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 845 ram_addr_t length, 846 unsigned client) 847 { 848 DirtyMemoryBlocks *blocks; 849 unsigned long end, page, start_page; 850 bool dirty = false; 851 RAMBlock *ramblock; 852 uint64_t mr_offset, mr_size; 853 854 if (length == 0) { 855 return false; 856 } 857 858 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 859 start_page = start >> TARGET_PAGE_BITS; 860 page = start_page; 861 862 WITH_RCU_READ_LOCK_GUARD() { 863 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 864 ramblock = qemu_get_ram_block(start); 865 /* Range sanity check on the ramblock */ 866 assert(start >= ramblock->offset && 867 start + length <= ramblock->offset + ramblock->used_length); 868 869 while (page < end) { 870 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 872 unsigned long num = MIN(end - page, 873 DIRTY_MEMORY_BLOCK_SIZE - offset); 874 875 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 876 offset, num); 877 page += num; 878 } 879 880 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 881 mr_size = (end - start_page) << TARGET_PAGE_BITS; 882 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 883 } 884 885 if (dirty && tcg_enabled()) { 886 tlb_reset_dirty_range_all(start, length); 887 } 888 889 return dirty; 890 } 891 892 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 893 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 894 { 895 DirtyMemoryBlocks *blocks; 896 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 897 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 898 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 899 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 900 DirtyBitmapSnapshot *snap; 901 unsigned long page, end, dest; 902 903 snap = g_malloc0(sizeof(*snap) + 904 ((last - first) >> (TARGET_PAGE_BITS + 3))); 905 snap->start = first; 906 snap->end = last; 907 908 page = first >> TARGET_PAGE_BITS; 909 end = last >> TARGET_PAGE_BITS; 910 dest = 0; 911 912 WITH_RCU_READ_LOCK_GUARD() { 913 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 914 915 while (page < end) { 916 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 918 unsigned long num = MIN(end - page, 919 DIRTY_MEMORY_BLOCK_SIZE - offset); 920 921 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 922 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 923 offset >>= BITS_PER_LEVEL; 924 925 bitmap_copy_and_clear_atomic(snap->dirty + dest, 926 blocks->blocks[idx] + offset, 927 num); 928 page += num; 929 dest += num >> BITS_PER_LEVEL; 930 } 931 } 932 933 if (tcg_enabled()) { 934 tlb_reset_dirty_range_all(start, length); 935 } 936 937 memory_region_clear_dirty_bitmap(mr, offset, length); 938 939 return snap; 940 } 941 942 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 943 ram_addr_t start, 944 ram_addr_t length) 945 { 946 unsigned long page, end; 947 948 assert(start >= snap->start); 949 assert(start + length <= snap->end); 950 951 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 952 page = (start - snap->start) >> TARGET_PAGE_BITS; 953 954 while (page < end) { 955 if (test_bit(page, snap->dirty)) { 956 return true; 957 } 958 page++; 959 } 960 return false; 961 } 962 963 /* Called from RCU critical section */ 964 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 965 MemoryRegionSection *section) 966 { 967 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 968 return section - d->map.sections; 969 } 970 971 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 972 uint16_t section); 973 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 974 975 static uint16_t phys_section_add(PhysPageMap *map, 976 MemoryRegionSection *section) 977 { 978 /* The physical section number is ORed with a page-aligned 979 * pointer to produce the iotlb entries. Thus it should 980 * never overflow into the page-aligned value. 981 */ 982 assert(map->sections_nb < TARGET_PAGE_SIZE); 983 984 if (map->sections_nb == map->sections_nb_alloc) { 985 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 986 map->sections = g_renew(MemoryRegionSection, map->sections, 987 map->sections_nb_alloc); 988 } 989 map->sections[map->sections_nb] = *section; 990 memory_region_ref(section->mr); 991 return map->sections_nb++; 992 } 993 994 static void phys_section_destroy(MemoryRegion *mr) 995 { 996 bool have_sub_page = mr->subpage; 997 998 memory_region_unref(mr); 999 1000 if (have_sub_page) { 1001 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1002 object_unref(OBJECT(&subpage->iomem)); 1003 g_free(subpage); 1004 } 1005 } 1006 1007 static void phys_sections_free(PhysPageMap *map) 1008 { 1009 while (map->sections_nb > 0) { 1010 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1011 phys_section_destroy(section->mr); 1012 } 1013 g_free(map->sections); 1014 g_free(map->nodes); 1015 } 1016 1017 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1018 { 1019 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1020 subpage_t *subpage; 1021 hwaddr base = section->offset_within_address_space 1022 & TARGET_PAGE_MASK; 1023 MemoryRegionSection *existing = phys_page_find(d, base); 1024 MemoryRegionSection subsection = { 1025 .offset_within_address_space = base, 1026 .size = int128_make64(TARGET_PAGE_SIZE), 1027 }; 1028 hwaddr start, end; 1029 1030 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1031 1032 if (!(existing->mr->subpage)) { 1033 subpage = subpage_init(fv, base); 1034 subsection.fv = fv; 1035 subsection.mr = &subpage->iomem; 1036 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1037 phys_section_add(&d->map, &subsection)); 1038 } else { 1039 subpage = container_of(existing->mr, subpage_t, iomem); 1040 } 1041 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1042 end = start + int128_get64(section->size) - 1; 1043 subpage_register(subpage, start, end, 1044 phys_section_add(&d->map, section)); 1045 } 1046 1047 1048 static void register_multipage(FlatView *fv, 1049 MemoryRegionSection *section) 1050 { 1051 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1052 hwaddr start_addr = section->offset_within_address_space; 1053 uint16_t section_index = phys_section_add(&d->map, section); 1054 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1055 TARGET_PAGE_BITS)); 1056 1057 assert(num_pages); 1058 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1059 } 1060 1061 /* 1062 * The range in *section* may look like this: 1063 * 1064 * |s|PPPPPPP|s| 1065 * 1066 * where s stands for subpage and P for page. 1067 */ 1068 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1069 { 1070 MemoryRegionSection remain = *section; 1071 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1072 1073 /* register first subpage */ 1074 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1075 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1076 - remain.offset_within_address_space; 1077 1078 MemoryRegionSection now = remain; 1079 now.size = int128_min(int128_make64(left), now.size); 1080 register_subpage(fv, &now); 1081 if (int128_eq(remain.size, now.size)) { 1082 return; 1083 } 1084 remain.size = int128_sub(remain.size, now.size); 1085 remain.offset_within_address_space += int128_get64(now.size); 1086 remain.offset_within_region += int128_get64(now.size); 1087 } 1088 1089 /* register whole pages */ 1090 if (int128_ge(remain.size, page_size)) { 1091 MemoryRegionSection now = remain; 1092 now.size = int128_and(now.size, int128_neg(page_size)); 1093 register_multipage(fv, &now); 1094 if (int128_eq(remain.size, now.size)) { 1095 return; 1096 } 1097 remain.size = int128_sub(remain.size, now.size); 1098 remain.offset_within_address_space += int128_get64(now.size); 1099 remain.offset_within_region += int128_get64(now.size); 1100 } 1101 1102 /* register last subpage */ 1103 register_subpage(fv, &remain); 1104 } 1105 1106 void qemu_flush_coalesced_mmio_buffer(void) 1107 { 1108 if (kvm_enabled()) 1109 kvm_flush_coalesced_mmio_buffer(); 1110 } 1111 1112 void qemu_mutex_lock_ramlist(void) 1113 { 1114 qemu_mutex_lock(&ram_list.mutex); 1115 } 1116 1117 void qemu_mutex_unlock_ramlist(void) 1118 { 1119 qemu_mutex_unlock(&ram_list.mutex); 1120 } 1121 1122 GString *ram_block_format(void) 1123 { 1124 RAMBlock *block; 1125 char *psize; 1126 GString *buf = g_string_new(""); 1127 1128 RCU_READ_LOCK_GUARD(); 1129 g_string_append_printf(buf, "%24s %8s %18s %18s %18s\n", 1130 "Block Name", "PSize", "Offset", "Used", "Total"); 1131 RAMBLOCK_FOREACH(block) { 1132 psize = size_to_str(block->page_size); 1133 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1134 " 0x%016" PRIx64 "\n", block->idstr, psize, 1135 (uint64_t)block->offset, 1136 (uint64_t)block->used_length, 1137 (uint64_t)block->max_length); 1138 g_free(psize); 1139 } 1140 1141 return buf; 1142 } 1143 1144 static int find_min_backend_pagesize(Object *obj, void *opaque) 1145 { 1146 long *hpsize_min = opaque; 1147 1148 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1149 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1150 long hpsize = host_memory_backend_pagesize(backend); 1151 1152 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1153 *hpsize_min = hpsize; 1154 } 1155 } 1156 1157 return 0; 1158 } 1159 1160 static int find_max_backend_pagesize(Object *obj, void *opaque) 1161 { 1162 long *hpsize_max = opaque; 1163 1164 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1165 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1166 long hpsize = host_memory_backend_pagesize(backend); 1167 1168 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1169 *hpsize_max = hpsize; 1170 } 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* 1177 * TODO: We assume right now that all mapped host memory backends are 1178 * used as RAM, however some might be used for different purposes. 1179 */ 1180 long qemu_minrampagesize(void) 1181 { 1182 long hpsize = LONG_MAX; 1183 Object *memdev_root = object_resolve_path("/objects", NULL); 1184 1185 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1186 return hpsize; 1187 } 1188 1189 long qemu_maxrampagesize(void) 1190 { 1191 long pagesize = 0; 1192 Object *memdev_root = object_resolve_path("/objects", NULL); 1193 1194 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1195 return pagesize; 1196 } 1197 1198 #ifdef CONFIG_POSIX 1199 static int64_t get_file_size(int fd) 1200 { 1201 int64_t size; 1202 #if defined(__linux__) 1203 struct stat st; 1204 1205 if (fstat(fd, &st) < 0) { 1206 return -errno; 1207 } 1208 1209 /* Special handling for devdax character devices */ 1210 if (S_ISCHR(st.st_mode)) { 1211 g_autofree char *subsystem_path = NULL; 1212 g_autofree char *subsystem = NULL; 1213 1214 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1215 major(st.st_rdev), minor(st.st_rdev)); 1216 subsystem = g_file_read_link(subsystem_path, NULL); 1217 1218 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1219 g_autofree char *size_path = NULL; 1220 g_autofree char *size_str = NULL; 1221 1222 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1223 major(st.st_rdev), minor(st.st_rdev)); 1224 1225 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1226 return g_ascii_strtoll(size_str, NULL, 0); 1227 } 1228 } 1229 } 1230 #endif /* defined(__linux__) */ 1231 1232 /* st.st_size may be zero for special files yet lseek(2) works */ 1233 size = lseek(fd, 0, SEEK_END); 1234 if (size < 0) { 1235 return -errno; 1236 } 1237 return size; 1238 } 1239 1240 static int64_t get_file_align(int fd) 1241 { 1242 int64_t align = -1; 1243 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1244 struct stat st; 1245 1246 if (fstat(fd, &st) < 0) { 1247 return -errno; 1248 } 1249 1250 /* Special handling for devdax character devices */ 1251 if (S_ISCHR(st.st_mode)) { 1252 g_autofree char *path = NULL; 1253 g_autofree char *rpath = NULL; 1254 struct daxctl_ctx *ctx; 1255 struct daxctl_region *region; 1256 int rc = 0; 1257 1258 path = g_strdup_printf("/sys/dev/char/%d:%d", 1259 major(st.st_rdev), minor(st.st_rdev)); 1260 rpath = realpath(path, NULL); 1261 if (!rpath) { 1262 return -errno; 1263 } 1264 1265 rc = daxctl_new(&ctx); 1266 if (rc) { 1267 return -1; 1268 } 1269 1270 daxctl_region_foreach(ctx, region) { 1271 if (strstr(rpath, daxctl_region_get_path(region))) { 1272 align = daxctl_region_get_align(region); 1273 break; 1274 } 1275 } 1276 daxctl_unref(ctx); 1277 } 1278 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1279 1280 return align; 1281 } 1282 1283 static int file_ram_open(const char *path, 1284 const char *region_name, 1285 bool readonly, 1286 bool *created, 1287 Error **errp) 1288 { 1289 char *filename; 1290 char *sanitized_name; 1291 char *c; 1292 int fd = -1; 1293 1294 *created = false; 1295 for (;;) { 1296 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1297 if (fd >= 0) { 1298 /* @path names an existing file, use it */ 1299 break; 1300 } 1301 if (errno == ENOENT) { 1302 /* @path names a file that doesn't exist, create it */ 1303 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1304 if (fd >= 0) { 1305 *created = true; 1306 break; 1307 } 1308 } else if (errno == EISDIR) { 1309 /* @path names a directory, create a file there */ 1310 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1311 sanitized_name = g_strdup(region_name); 1312 for (c = sanitized_name; *c != '\0'; c++) { 1313 if (*c == '/') { 1314 *c = '_'; 1315 } 1316 } 1317 1318 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1319 sanitized_name); 1320 g_free(sanitized_name); 1321 1322 fd = mkstemp(filename); 1323 if (fd >= 0) { 1324 unlink(filename); 1325 g_free(filename); 1326 break; 1327 } 1328 g_free(filename); 1329 } 1330 if (errno != EEXIST && errno != EINTR) { 1331 error_setg_errno(errp, errno, 1332 "can't open backing store %s for guest RAM", 1333 path); 1334 return -1; 1335 } 1336 /* 1337 * Try again on EINTR and EEXIST. The latter happens when 1338 * something else creates the file between our two open(). 1339 */ 1340 } 1341 1342 return fd; 1343 } 1344 1345 static void *file_ram_alloc(RAMBlock *block, 1346 ram_addr_t memory, 1347 int fd, 1348 bool readonly, 1349 bool truncate, 1350 off_t offset, 1351 Error **errp) 1352 { 1353 uint32_t qemu_map_flags; 1354 void *area; 1355 1356 block->page_size = qemu_fd_getpagesize(fd); 1357 if (block->mr->align % block->page_size) { 1358 error_setg(errp, "alignment 0x%" PRIx64 1359 " must be multiples of page size 0x%zx", 1360 block->mr->align, block->page_size); 1361 return NULL; 1362 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1363 error_setg(errp, "alignment 0x%" PRIx64 1364 " must be a power of two", block->mr->align); 1365 return NULL; 1366 } 1367 block->mr->align = MAX(block->page_size, block->mr->align); 1368 #if defined(__s390x__) 1369 if (kvm_enabled()) { 1370 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1371 } 1372 #endif 1373 1374 if (memory < block->page_size) { 1375 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1376 "or larger than page size 0x%zx", 1377 memory, block->page_size); 1378 return NULL; 1379 } 1380 1381 memory = ROUND_UP(memory, block->page_size); 1382 1383 /* 1384 * ftruncate is not supported by hugetlbfs in older 1385 * hosts, so don't bother bailing out on errors. 1386 * If anything goes wrong with it under other filesystems, 1387 * mmap will fail. 1388 * 1389 * Do not truncate the non-empty backend file to avoid corrupting 1390 * the existing data in the file. Disabling shrinking is not 1391 * enough. For example, the current vNVDIMM implementation stores 1392 * the guest NVDIMM labels at the end of the backend file. If the 1393 * backend file is later extended, QEMU will not be able to find 1394 * those labels. Therefore, extending the non-empty backend file 1395 * is disabled as well. 1396 */ 1397 if (truncate && ftruncate(fd, memory)) { 1398 perror("ftruncate"); 1399 } 1400 1401 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1402 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1403 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1404 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1405 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1406 if (area == MAP_FAILED) { 1407 error_setg_errno(errp, errno, 1408 "unable to map backing store for guest RAM"); 1409 return NULL; 1410 } 1411 1412 block->fd = fd; 1413 return area; 1414 } 1415 #endif 1416 1417 /* Allocate space within the ram_addr_t space that governs the 1418 * dirty bitmaps. 1419 * Called with the ramlist lock held. 1420 */ 1421 static ram_addr_t find_ram_offset(ram_addr_t size) 1422 { 1423 RAMBlock *block, *next_block; 1424 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1425 1426 assert(size != 0); /* it would hand out same offset multiple times */ 1427 1428 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1429 return 0; 1430 } 1431 1432 RAMBLOCK_FOREACH(block) { 1433 ram_addr_t candidate, next = RAM_ADDR_MAX; 1434 1435 /* Align blocks to start on a 'long' in the bitmap 1436 * which makes the bitmap sync'ing take the fast path. 1437 */ 1438 candidate = block->offset + block->max_length; 1439 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1440 1441 /* Search for the closest following block 1442 * and find the gap. 1443 */ 1444 RAMBLOCK_FOREACH(next_block) { 1445 if (next_block->offset >= candidate) { 1446 next = MIN(next, next_block->offset); 1447 } 1448 } 1449 1450 /* If it fits remember our place and remember the size 1451 * of gap, but keep going so that we might find a smaller 1452 * gap to fill so avoiding fragmentation. 1453 */ 1454 if (next - candidate >= size && next - candidate < mingap) { 1455 offset = candidate; 1456 mingap = next - candidate; 1457 } 1458 1459 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1460 } 1461 1462 if (offset == RAM_ADDR_MAX) { 1463 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1464 (uint64_t)size); 1465 abort(); 1466 } 1467 1468 trace_find_ram_offset(size, offset); 1469 1470 return offset; 1471 } 1472 1473 static unsigned long last_ram_page(void) 1474 { 1475 RAMBlock *block; 1476 ram_addr_t last = 0; 1477 1478 RCU_READ_LOCK_GUARD(); 1479 RAMBLOCK_FOREACH(block) { 1480 last = MAX(last, block->offset + block->max_length); 1481 } 1482 return last >> TARGET_PAGE_BITS; 1483 } 1484 1485 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1486 { 1487 int ret; 1488 1489 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1490 if (!machine_dump_guest_core(current_machine)) { 1491 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1492 if (ret) { 1493 perror("qemu_madvise"); 1494 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1495 "but dump_guest_core=off specified\n"); 1496 } 1497 } 1498 } 1499 1500 const char *qemu_ram_get_idstr(RAMBlock *rb) 1501 { 1502 return rb->idstr; 1503 } 1504 1505 void *qemu_ram_get_host_addr(RAMBlock *rb) 1506 { 1507 return rb->host; 1508 } 1509 1510 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1511 { 1512 return rb->offset; 1513 } 1514 1515 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1516 { 1517 return rb->used_length; 1518 } 1519 1520 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1521 { 1522 return rb->max_length; 1523 } 1524 1525 bool qemu_ram_is_shared(RAMBlock *rb) 1526 { 1527 return rb->flags & RAM_SHARED; 1528 } 1529 1530 bool qemu_ram_is_noreserve(RAMBlock *rb) 1531 { 1532 return rb->flags & RAM_NORESERVE; 1533 } 1534 1535 /* Note: Only set at the start of postcopy */ 1536 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1537 { 1538 return rb->flags & RAM_UF_ZEROPAGE; 1539 } 1540 1541 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1542 { 1543 rb->flags |= RAM_UF_ZEROPAGE; 1544 } 1545 1546 bool qemu_ram_is_migratable(RAMBlock *rb) 1547 { 1548 return rb->flags & RAM_MIGRATABLE; 1549 } 1550 1551 void qemu_ram_set_migratable(RAMBlock *rb) 1552 { 1553 rb->flags |= RAM_MIGRATABLE; 1554 } 1555 1556 void qemu_ram_unset_migratable(RAMBlock *rb) 1557 { 1558 rb->flags &= ~RAM_MIGRATABLE; 1559 } 1560 1561 int qemu_ram_get_fd(RAMBlock *rb) 1562 { 1563 return rb->fd; 1564 } 1565 1566 /* Called with iothread lock held. */ 1567 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1568 { 1569 RAMBlock *block; 1570 1571 assert(new_block); 1572 assert(!new_block->idstr[0]); 1573 1574 if (dev) { 1575 char *id = qdev_get_dev_path(dev); 1576 if (id) { 1577 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1578 g_free(id); 1579 } 1580 } 1581 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1582 1583 RCU_READ_LOCK_GUARD(); 1584 RAMBLOCK_FOREACH(block) { 1585 if (block != new_block && 1586 !strcmp(block->idstr, new_block->idstr)) { 1587 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1588 new_block->idstr); 1589 abort(); 1590 } 1591 } 1592 } 1593 1594 /* Called with iothread lock held. */ 1595 void qemu_ram_unset_idstr(RAMBlock *block) 1596 { 1597 /* FIXME: arch_init.c assumes that this is not called throughout 1598 * migration. Ignore the problem since hot-unplug during migration 1599 * does not work anyway. 1600 */ 1601 if (block) { 1602 memset(block->idstr, 0, sizeof(block->idstr)); 1603 } 1604 } 1605 1606 size_t qemu_ram_pagesize(RAMBlock *rb) 1607 { 1608 return rb->page_size; 1609 } 1610 1611 /* Returns the largest size of page in use */ 1612 size_t qemu_ram_pagesize_largest(void) 1613 { 1614 RAMBlock *block; 1615 size_t largest = 0; 1616 1617 RAMBLOCK_FOREACH(block) { 1618 largest = MAX(largest, qemu_ram_pagesize(block)); 1619 } 1620 1621 return largest; 1622 } 1623 1624 static int memory_try_enable_merging(void *addr, size_t len) 1625 { 1626 if (!machine_mem_merge(current_machine)) { 1627 /* disabled by the user */ 1628 return 0; 1629 } 1630 1631 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1632 } 1633 1634 /* 1635 * Resizing RAM while migrating can result in the migration being canceled. 1636 * Care has to be taken if the guest might have already detected the memory. 1637 * 1638 * As memory core doesn't know how is memory accessed, it is up to 1639 * resize callback to update device state and/or add assertions to detect 1640 * misuse, if necessary. 1641 */ 1642 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1643 { 1644 const ram_addr_t oldsize = block->used_length; 1645 const ram_addr_t unaligned_size = newsize; 1646 1647 assert(block); 1648 1649 newsize = HOST_PAGE_ALIGN(newsize); 1650 1651 if (block->used_length == newsize) { 1652 /* 1653 * We don't have to resize the ram block (which only knows aligned 1654 * sizes), however, we have to notify if the unaligned size changed. 1655 */ 1656 if (unaligned_size != memory_region_size(block->mr)) { 1657 memory_region_set_size(block->mr, unaligned_size); 1658 if (block->resized) { 1659 block->resized(block->idstr, unaligned_size, block->host); 1660 } 1661 } 1662 return 0; 1663 } 1664 1665 if (!(block->flags & RAM_RESIZEABLE)) { 1666 error_setg_errno(errp, EINVAL, 1667 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1668 " != 0x" RAM_ADDR_FMT, block->idstr, 1669 newsize, block->used_length); 1670 return -EINVAL; 1671 } 1672 1673 if (block->max_length < newsize) { 1674 error_setg_errno(errp, EINVAL, 1675 "Size too large: %s: 0x" RAM_ADDR_FMT 1676 " > 0x" RAM_ADDR_FMT, block->idstr, 1677 newsize, block->max_length); 1678 return -EINVAL; 1679 } 1680 1681 /* Notify before modifying the ram block and touching the bitmaps. */ 1682 if (block->host) { 1683 ram_block_notify_resize(block->host, oldsize, newsize); 1684 } 1685 1686 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1687 block->used_length = newsize; 1688 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1689 DIRTY_CLIENTS_ALL); 1690 memory_region_set_size(block->mr, unaligned_size); 1691 if (block->resized) { 1692 block->resized(block->idstr, unaligned_size, block->host); 1693 } 1694 return 0; 1695 } 1696 1697 /* 1698 * Trigger sync on the given ram block for range [start, start + length] 1699 * with the backing store if one is available. 1700 * Otherwise no-op. 1701 * @Note: this is supposed to be a synchronous op. 1702 */ 1703 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1704 { 1705 /* The requested range should fit in within the block range */ 1706 g_assert((start + length) <= block->used_length); 1707 1708 #ifdef CONFIG_LIBPMEM 1709 /* The lack of support for pmem should not block the sync */ 1710 if (ramblock_is_pmem(block)) { 1711 void *addr = ramblock_ptr(block, start); 1712 pmem_persist(addr, length); 1713 return; 1714 } 1715 #endif 1716 if (block->fd >= 0) { 1717 /** 1718 * Case there is no support for PMEM or the memory has not been 1719 * specified as persistent (or is not one) - use the msync. 1720 * Less optimal but still achieves the same goal 1721 */ 1722 void *addr = ramblock_ptr(block, start); 1723 if (qemu_msync(addr, length, block->fd)) { 1724 warn_report("%s: failed to sync memory range: start: " 1725 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1726 __func__, start, length); 1727 } 1728 } 1729 } 1730 1731 /* Called with ram_list.mutex held */ 1732 static void dirty_memory_extend(ram_addr_t old_ram_size, 1733 ram_addr_t new_ram_size) 1734 { 1735 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1736 DIRTY_MEMORY_BLOCK_SIZE); 1737 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1738 DIRTY_MEMORY_BLOCK_SIZE); 1739 int i; 1740 1741 /* Only need to extend if block count increased */ 1742 if (new_num_blocks <= old_num_blocks) { 1743 return; 1744 } 1745 1746 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1747 DirtyMemoryBlocks *old_blocks; 1748 DirtyMemoryBlocks *new_blocks; 1749 int j; 1750 1751 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1752 new_blocks = g_malloc(sizeof(*new_blocks) + 1753 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1754 1755 if (old_num_blocks) { 1756 memcpy(new_blocks->blocks, old_blocks->blocks, 1757 old_num_blocks * sizeof(old_blocks->blocks[0])); 1758 } 1759 1760 for (j = old_num_blocks; j < new_num_blocks; j++) { 1761 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1762 } 1763 1764 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1765 1766 if (old_blocks) { 1767 g_free_rcu(old_blocks, rcu); 1768 } 1769 } 1770 } 1771 1772 static void ram_block_add(RAMBlock *new_block, Error **errp) 1773 { 1774 const bool noreserve = qemu_ram_is_noreserve(new_block); 1775 const bool shared = qemu_ram_is_shared(new_block); 1776 RAMBlock *block; 1777 RAMBlock *last_block = NULL; 1778 ram_addr_t old_ram_size, new_ram_size; 1779 Error *err = NULL; 1780 1781 old_ram_size = last_ram_page(); 1782 1783 qemu_mutex_lock_ramlist(); 1784 new_block->offset = find_ram_offset(new_block->max_length); 1785 1786 if (!new_block->host) { 1787 if (xen_enabled()) { 1788 xen_ram_alloc(new_block->offset, new_block->max_length, 1789 new_block->mr, &err); 1790 if (err) { 1791 error_propagate(errp, err); 1792 qemu_mutex_unlock_ramlist(); 1793 return; 1794 } 1795 } else { 1796 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1797 &new_block->mr->align, 1798 shared, noreserve); 1799 if (!new_block->host) { 1800 error_setg_errno(errp, errno, 1801 "cannot set up guest memory '%s'", 1802 memory_region_name(new_block->mr)); 1803 qemu_mutex_unlock_ramlist(); 1804 return; 1805 } 1806 memory_try_enable_merging(new_block->host, new_block->max_length); 1807 } 1808 } 1809 1810 new_ram_size = MAX(old_ram_size, 1811 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1812 if (new_ram_size > old_ram_size) { 1813 dirty_memory_extend(old_ram_size, new_ram_size); 1814 } 1815 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1816 * QLIST (which has an RCU-friendly variant) does not have insertion at 1817 * tail, so save the last element in last_block. 1818 */ 1819 RAMBLOCK_FOREACH(block) { 1820 last_block = block; 1821 if (block->max_length < new_block->max_length) { 1822 break; 1823 } 1824 } 1825 if (block) { 1826 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1827 } else if (last_block) { 1828 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1829 } else { /* list is empty */ 1830 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1831 } 1832 ram_list.mru_block = NULL; 1833 1834 /* Write list before version */ 1835 smp_wmb(); 1836 ram_list.version++; 1837 qemu_mutex_unlock_ramlist(); 1838 1839 cpu_physical_memory_set_dirty_range(new_block->offset, 1840 new_block->used_length, 1841 DIRTY_CLIENTS_ALL); 1842 1843 if (new_block->host) { 1844 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1845 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1846 /* 1847 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1848 * Configure it unless the machine is a qtest server, in which case 1849 * KVM is not used and it may be forked (eg for fuzzing purposes). 1850 */ 1851 if (!qtest_enabled()) { 1852 qemu_madvise(new_block->host, new_block->max_length, 1853 QEMU_MADV_DONTFORK); 1854 } 1855 ram_block_notify_add(new_block->host, new_block->used_length, 1856 new_block->max_length); 1857 } 1858 } 1859 1860 #ifdef CONFIG_POSIX 1861 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1862 uint32_t ram_flags, int fd, off_t offset, 1863 bool readonly, Error **errp) 1864 { 1865 RAMBlock *new_block; 1866 Error *local_err = NULL; 1867 int64_t file_size, file_align; 1868 1869 /* Just support these ram flags by now. */ 1870 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1871 RAM_PROTECTED)) == 0); 1872 1873 if (xen_enabled()) { 1874 error_setg(errp, "-mem-path not supported with Xen"); 1875 return NULL; 1876 } 1877 1878 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1879 error_setg(errp, 1880 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1881 return NULL; 1882 } 1883 1884 size = HOST_PAGE_ALIGN(size); 1885 file_size = get_file_size(fd); 1886 if (file_size > 0 && file_size < size) { 1887 error_setg(errp, "backing store size 0x%" PRIx64 1888 " does not match 'size' option 0x" RAM_ADDR_FMT, 1889 file_size, size); 1890 return NULL; 1891 } 1892 1893 file_align = get_file_align(fd); 1894 if (file_align > 0 && file_align > mr->align) { 1895 error_setg(errp, "backing store align 0x%" PRIx64 1896 " is larger than 'align' option 0x%" PRIx64, 1897 file_align, mr->align); 1898 return NULL; 1899 } 1900 1901 new_block = g_malloc0(sizeof(*new_block)); 1902 new_block->mr = mr; 1903 new_block->used_length = size; 1904 new_block->max_length = size; 1905 new_block->flags = ram_flags; 1906 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 1907 !file_size, offset, errp); 1908 if (!new_block->host) { 1909 g_free(new_block); 1910 return NULL; 1911 } 1912 1913 ram_block_add(new_block, &local_err); 1914 if (local_err) { 1915 g_free(new_block); 1916 error_propagate(errp, local_err); 1917 return NULL; 1918 } 1919 return new_block; 1920 1921 } 1922 1923 1924 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1925 uint32_t ram_flags, const char *mem_path, 1926 bool readonly, Error **errp) 1927 { 1928 int fd; 1929 bool created; 1930 RAMBlock *block; 1931 1932 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 1933 errp); 1934 if (fd < 0) { 1935 return NULL; 1936 } 1937 1938 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp); 1939 if (!block) { 1940 if (created) { 1941 unlink(mem_path); 1942 } 1943 close(fd); 1944 return NULL; 1945 } 1946 1947 return block; 1948 } 1949 #endif 1950 1951 static 1952 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 1953 void (*resized)(const char*, 1954 uint64_t length, 1955 void *host), 1956 void *host, uint32_t ram_flags, 1957 MemoryRegion *mr, Error **errp) 1958 { 1959 RAMBlock *new_block; 1960 Error *local_err = NULL; 1961 1962 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 1963 RAM_NORESERVE)) == 0); 1964 assert(!host ^ (ram_flags & RAM_PREALLOC)); 1965 1966 size = HOST_PAGE_ALIGN(size); 1967 max_size = HOST_PAGE_ALIGN(max_size); 1968 new_block = g_malloc0(sizeof(*new_block)); 1969 new_block->mr = mr; 1970 new_block->resized = resized; 1971 new_block->used_length = size; 1972 new_block->max_length = max_size; 1973 assert(max_size >= size); 1974 new_block->fd = -1; 1975 new_block->page_size = qemu_real_host_page_size(); 1976 new_block->host = host; 1977 new_block->flags = ram_flags; 1978 ram_block_add(new_block, &local_err); 1979 if (local_err) { 1980 g_free(new_block); 1981 error_propagate(errp, local_err); 1982 return NULL; 1983 } 1984 return new_block; 1985 } 1986 1987 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 1988 MemoryRegion *mr, Error **errp) 1989 { 1990 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 1991 errp); 1992 } 1993 1994 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 1995 MemoryRegion *mr, Error **errp) 1996 { 1997 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 1998 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 1999 } 2000 2001 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2002 void (*resized)(const char*, 2003 uint64_t length, 2004 void *host), 2005 MemoryRegion *mr, Error **errp) 2006 { 2007 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2008 RAM_RESIZEABLE, mr, errp); 2009 } 2010 2011 static void reclaim_ramblock(RAMBlock *block) 2012 { 2013 if (block->flags & RAM_PREALLOC) { 2014 ; 2015 } else if (xen_enabled()) { 2016 xen_invalidate_map_cache_entry(block->host); 2017 #ifndef _WIN32 2018 } else if (block->fd >= 0) { 2019 qemu_ram_munmap(block->fd, block->host, block->max_length); 2020 close(block->fd); 2021 #endif 2022 } else { 2023 qemu_anon_ram_free(block->host, block->max_length); 2024 } 2025 g_free(block); 2026 } 2027 2028 void qemu_ram_free(RAMBlock *block) 2029 { 2030 if (!block) { 2031 return; 2032 } 2033 2034 if (block->host) { 2035 ram_block_notify_remove(block->host, block->used_length, 2036 block->max_length); 2037 } 2038 2039 qemu_mutex_lock_ramlist(); 2040 QLIST_REMOVE_RCU(block, next); 2041 ram_list.mru_block = NULL; 2042 /* Write list before version */ 2043 smp_wmb(); 2044 ram_list.version++; 2045 call_rcu(block, reclaim_ramblock, rcu); 2046 qemu_mutex_unlock_ramlist(); 2047 } 2048 2049 #ifndef _WIN32 2050 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2051 { 2052 RAMBlock *block; 2053 ram_addr_t offset; 2054 int flags; 2055 void *area, *vaddr; 2056 2057 RAMBLOCK_FOREACH(block) { 2058 offset = addr - block->offset; 2059 if (offset < block->max_length) { 2060 vaddr = ramblock_ptr(block, offset); 2061 if (block->flags & RAM_PREALLOC) { 2062 ; 2063 } else if (xen_enabled()) { 2064 abort(); 2065 } else { 2066 flags = MAP_FIXED; 2067 flags |= block->flags & RAM_SHARED ? 2068 MAP_SHARED : MAP_PRIVATE; 2069 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2070 if (block->fd >= 0) { 2071 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2072 flags, block->fd, offset); 2073 } else { 2074 flags |= MAP_ANONYMOUS; 2075 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2076 flags, -1, 0); 2077 } 2078 if (area != vaddr) { 2079 error_report("Could not remap addr: " 2080 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2081 length, addr); 2082 exit(1); 2083 } 2084 memory_try_enable_merging(vaddr, length); 2085 qemu_ram_setup_dump(vaddr, length); 2086 } 2087 } 2088 } 2089 } 2090 #endif /* !_WIN32 */ 2091 2092 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2093 * This should not be used for general purpose DMA. Use address_space_map 2094 * or address_space_rw instead. For local memory (e.g. video ram) that the 2095 * device owns, use memory_region_get_ram_ptr. 2096 * 2097 * Called within RCU critical section. 2098 */ 2099 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2100 { 2101 RAMBlock *block = ram_block; 2102 2103 if (block == NULL) { 2104 block = qemu_get_ram_block(addr); 2105 addr -= block->offset; 2106 } 2107 2108 if (xen_enabled() && block->host == NULL) { 2109 /* We need to check if the requested address is in the RAM 2110 * because we don't want to map the entire memory in QEMU. 2111 * In that case just map until the end of the page. 2112 */ 2113 if (block->offset == 0) { 2114 return xen_map_cache(addr, 0, 0, false); 2115 } 2116 2117 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2118 } 2119 return ramblock_ptr(block, addr); 2120 } 2121 2122 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2123 * but takes a size argument. 2124 * 2125 * Called within RCU critical section. 2126 */ 2127 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2128 hwaddr *size, bool lock) 2129 { 2130 RAMBlock *block = ram_block; 2131 if (*size == 0) { 2132 return NULL; 2133 } 2134 2135 if (block == NULL) { 2136 block = qemu_get_ram_block(addr); 2137 addr -= block->offset; 2138 } 2139 *size = MIN(*size, block->max_length - addr); 2140 2141 if (xen_enabled() && block->host == NULL) { 2142 /* We need to check if the requested address is in the RAM 2143 * because we don't want to map the entire memory in QEMU. 2144 * In that case just map the requested area. 2145 */ 2146 if (block->offset == 0) { 2147 return xen_map_cache(addr, *size, lock, lock); 2148 } 2149 2150 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2151 } 2152 2153 return ramblock_ptr(block, addr); 2154 } 2155 2156 /* Return the offset of a hostpointer within a ramblock */ 2157 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2158 { 2159 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2160 assert((uintptr_t)host >= (uintptr_t)rb->host); 2161 assert(res < rb->max_length); 2162 2163 return res; 2164 } 2165 2166 /* 2167 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2168 * in that RAMBlock. 2169 * 2170 * ptr: Host pointer to look up 2171 * round_offset: If true round the result offset down to a page boundary 2172 * *ram_addr: set to result ram_addr 2173 * *offset: set to result offset within the RAMBlock 2174 * 2175 * Returns: RAMBlock (or NULL if not found) 2176 * 2177 * By the time this function returns, the returned pointer is not protected 2178 * by RCU anymore. If the caller is not within an RCU critical section and 2179 * does not hold the iothread lock, it must have other means of protecting the 2180 * pointer, such as a reference to the region that includes the incoming 2181 * ram_addr_t. 2182 */ 2183 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2184 ram_addr_t *offset) 2185 { 2186 RAMBlock *block; 2187 uint8_t *host = ptr; 2188 2189 if (xen_enabled()) { 2190 ram_addr_t ram_addr; 2191 RCU_READ_LOCK_GUARD(); 2192 ram_addr = xen_ram_addr_from_mapcache(ptr); 2193 block = qemu_get_ram_block(ram_addr); 2194 if (block) { 2195 *offset = ram_addr - block->offset; 2196 } 2197 return block; 2198 } 2199 2200 RCU_READ_LOCK_GUARD(); 2201 block = qatomic_rcu_read(&ram_list.mru_block); 2202 if (block && block->host && host - block->host < block->max_length) { 2203 goto found; 2204 } 2205 2206 RAMBLOCK_FOREACH(block) { 2207 /* This case append when the block is not mapped. */ 2208 if (block->host == NULL) { 2209 continue; 2210 } 2211 if (host - block->host < block->max_length) { 2212 goto found; 2213 } 2214 } 2215 2216 return NULL; 2217 2218 found: 2219 *offset = (host - block->host); 2220 if (round_offset) { 2221 *offset &= TARGET_PAGE_MASK; 2222 } 2223 return block; 2224 } 2225 2226 /* 2227 * Finds the named RAMBlock 2228 * 2229 * name: The name of RAMBlock to find 2230 * 2231 * Returns: RAMBlock (or NULL if not found) 2232 */ 2233 RAMBlock *qemu_ram_block_by_name(const char *name) 2234 { 2235 RAMBlock *block; 2236 2237 RAMBLOCK_FOREACH(block) { 2238 if (!strcmp(name, block->idstr)) { 2239 return block; 2240 } 2241 } 2242 2243 return NULL; 2244 } 2245 2246 /* Some of the softmmu routines need to translate from a host pointer 2247 (typically a TLB entry) back to a ram offset. */ 2248 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2249 { 2250 RAMBlock *block; 2251 ram_addr_t offset; 2252 2253 block = qemu_ram_block_from_host(ptr, false, &offset); 2254 if (!block) { 2255 return RAM_ADDR_INVALID; 2256 } 2257 2258 return block->offset + offset; 2259 } 2260 2261 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2262 { 2263 ram_addr_t ram_addr; 2264 2265 ram_addr = qemu_ram_addr_from_host(ptr); 2266 if (ram_addr == RAM_ADDR_INVALID) { 2267 error_report("Bad ram pointer %p", ptr); 2268 abort(); 2269 } 2270 return ram_addr; 2271 } 2272 2273 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2274 MemTxAttrs attrs, void *buf, hwaddr len); 2275 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2276 const void *buf, hwaddr len); 2277 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2278 bool is_write, MemTxAttrs attrs); 2279 2280 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2281 unsigned len, MemTxAttrs attrs) 2282 { 2283 subpage_t *subpage = opaque; 2284 uint8_t buf[8]; 2285 MemTxResult res; 2286 2287 #if defined(DEBUG_SUBPAGE) 2288 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2289 subpage, len, addr); 2290 #endif 2291 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2292 if (res) { 2293 return res; 2294 } 2295 *data = ldn_p(buf, len); 2296 return MEMTX_OK; 2297 } 2298 2299 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2300 uint64_t value, unsigned len, MemTxAttrs attrs) 2301 { 2302 subpage_t *subpage = opaque; 2303 uint8_t buf[8]; 2304 2305 #if defined(DEBUG_SUBPAGE) 2306 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2307 " value %"PRIx64"\n", 2308 __func__, subpage, len, addr, value); 2309 #endif 2310 stn_p(buf, len, value); 2311 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2312 } 2313 2314 static bool subpage_accepts(void *opaque, hwaddr addr, 2315 unsigned len, bool is_write, 2316 MemTxAttrs attrs) 2317 { 2318 subpage_t *subpage = opaque; 2319 #if defined(DEBUG_SUBPAGE) 2320 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2321 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2322 #endif 2323 2324 return flatview_access_valid(subpage->fv, addr + subpage->base, 2325 len, is_write, attrs); 2326 } 2327 2328 static const MemoryRegionOps subpage_ops = { 2329 .read_with_attrs = subpage_read, 2330 .write_with_attrs = subpage_write, 2331 .impl.min_access_size = 1, 2332 .impl.max_access_size = 8, 2333 .valid.min_access_size = 1, 2334 .valid.max_access_size = 8, 2335 .valid.accepts = subpage_accepts, 2336 .endianness = DEVICE_NATIVE_ENDIAN, 2337 }; 2338 2339 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2340 uint16_t section) 2341 { 2342 int idx, eidx; 2343 2344 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2345 return -1; 2346 idx = SUBPAGE_IDX(start); 2347 eidx = SUBPAGE_IDX(end); 2348 #if defined(DEBUG_SUBPAGE) 2349 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2350 __func__, mmio, start, end, idx, eidx, section); 2351 #endif 2352 for (; idx <= eidx; idx++) { 2353 mmio->sub_section[idx] = section; 2354 } 2355 2356 return 0; 2357 } 2358 2359 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2360 { 2361 subpage_t *mmio; 2362 2363 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2364 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2365 mmio->fv = fv; 2366 mmio->base = base; 2367 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2368 NULL, TARGET_PAGE_SIZE); 2369 mmio->iomem.subpage = true; 2370 #if defined(DEBUG_SUBPAGE) 2371 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2372 mmio, base, TARGET_PAGE_SIZE); 2373 #endif 2374 2375 return mmio; 2376 } 2377 2378 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2379 { 2380 assert(fv); 2381 MemoryRegionSection section = { 2382 .fv = fv, 2383 .mr = mr, 2384 .offset_within_address_space = 0, 2385 .offset_within_region = 0, 2386 .size = int128_2_64(), 2387 }; 2388 2389 return phys_section_add(map, §ion); 2390 } 2391 2392 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2393 hwaddr index, MemTxAttrs attrs) 2394 { 2395 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2396 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2397 AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch); 2398 MemoryRegionSection *sections = d->map.sections; 2399 2400 return §ions[index & ~TARGET_PAGE_MASK]; 2401 } 2402 2403 static void io_mem_init(void) 2404 { 2405 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2406 NULL, UINT64_MAX); 2407 } 2408 2409 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2410 { 2411 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2412 uint16_t n; 2413 2414 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2415 assert(n == PHYS_SECTION_UNASSIGNED); 2416 2417 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2418 2419 return d; 2420 } 2421 2422 void address_space_dispatch_free(AddressSpaceDispatch *d) 2423 { 2424 phys_sections_free(&d->map); 2425 g_free(d); 2426 } 2427 2428 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2429 { 2430 } 2431 2432 static void tcg_log_global_after_sync(MemoryListener *listener) 2433 { 2434 CPUAddressSpace *cpuas; 2435 2436 /* Wait for the CPU to end the current TB. This avoids the following 2437 * incorrect race: 2438 * 2439 * vCPU migration 2440 * ---------------------- ------------------------- 2441 * TLB check -> slow path 2442 * notdirty_mem_write 2443 * write to RAM 2444 * mark dirty 2445 * clear dirty flag 2446 * TLB check -> fast path 2447 * read memory 2448 * write to RAM 2449 * 2450 * by pushing the migration thread's memory read after the vCPU thread has 2451 * written the memory. 2452 */ 2453 if (replay_mode == REPLAY_MODE_NONE) { 2454 /* 2455 * VGA can make calls to this function while updating the screen. 2456 * In record/replay mode this causes a deadlock, because 2457 * run_on_cpu waits for rr mutex. Therefore no races are possible 2458 * in this case and no need for making run_on_cpu when 2459 * record/replay is enabled. 2460 */ 2461 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2462 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2463 } 2464 } 2465 2466 static void tcg_commit(MemoryListener *listener) 2467 { 2468 CPUAddressSpace *cpuas; 2469 AddressSpaceDispatch *d; 2470 2471 assert(tcg_enabled()); 2472 /* since each CPU stores ram addresses in its TLB cache, we must 2473 reset the modified entries */ 2474 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2475 cpu_reloading_memory_map(); 2476 /* The CPU and TLB are protected by the iothread lock. 2477 * We reload the dispatch pointer now because cpu_reloading_memory_map() 2478 * may have split the RCU critical section. 2479 */ 2480 d = address_space_to_dispatch(cpuas->as); 2481 qatomic_rcu_set(&cpuas->memory_dispatch, d); 2482 tlb_flush(cpuas->cpu); 2483 } 2484 2485 static void memory_map_init(void) 2486 { 2487 system_memory = g_malloc(sizeof(*system_memory)); 2488 2489 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2490 address_space_init(&address_space_memory, system_memory, "memory"); 2491 2492 system_io = g_malloc(sizeof(*system_io)); 2493 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2494 65536); 2495 address_space_init(&address_space_io, system_io, "I/O"); 2496 } 2497 2498 MemoryRegion *get_system_memory(void) 2499 { 2500 return system_memory; 2501 } 2502 2503 MemoryRegion *get_system_io(void) 2504 { 2505 return system_io; 2506 } 2507 2508 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2509 hwaddr length) 2510 { 2511 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2512 addr += memory_region_get_ram_addr(mr); 2513 2514 /* No early return if dirty_log_mask is or becomes 0, because 2515 * cpu_physical_memory_set_dirty_range will still call 2516 * xen_modified_memory. 2517 */ 2518 if (dirty_log_mask) { 2519 dirty_log_mask = 2520 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2521 } 2522 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2523 assert(tcg_enabled()); 2524 tb_invalidate_phys_range(addr, addr + length); 2525 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2526 } 2527 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2528 } 2529 2530 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2531 { 2532 /* 2533 * In principle this function would work on other memory region types too, 2534 * but the ROM device use case is the only one where this operation is 2535 * necessary. Other memory regions should use the 2536 * address_space_read/write() APIs. 2537 */ 2538 assert(memory_region_is_romd(mr)); 2539 2540 invalidate_and_set_dirty(mr, addr, size); 2541 } 2542 2543 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2544 { 2545 unsigned access_size_max = mr->ops->valid.max_access_size; 2546 2547 /* Regions are assumed to support 1-4 byte accesses unless 2548 otherwise specified. */ 2549 if (access_size_max == 0) { 2550 access_size_max = 4; 2551 } 2552 2553 /* Bound the maximum access by the alignment of the address. */ 2554 if (!mr->ops->impl.unaligned) { 2555 unsigned align_size_max = addr & -addr; 2556 if (align_size_max != 0 && align_size_max < access_size_max) { 2557 access_size_max = align_size_max; 2558 } 2559 } 2560 2561 /* Don't attempt accesses larger than the maximum. */ 2562 if (l > access_size_max) { 2563 l = access_size_max; 2564 } 2565 l = pow2floor(l); 2566 2567 return l; 2568 } 2569 2570 bool prepare_mmio_access(MemoryRegion *mr) 2571 { 2572 bool release_lock = false; 2573 2574 if (!qemu_mutex_iothread_locked()) { 2575 qemu_mutex_lock_iothread(); 2576 release_lock = true; 2577 } 2578 if (mr->flush_coalesced_mmio) { 2579 qemu_flush_coalesced_mmio_buffer(); 2580 } 2581 2582 return release_lock; 2583 } 2584 2585 /** 2586 * flatview_access_allowed 2587 * @mr: #MemoryRegion to be accessed 2588 * @attrs: memory transaction attributes 2589 * @addr: address within that memory region 2590 * @len: the number of bytes to access 2591 * 2592 * Check if a memory transaction is allowed. 2593 * 2594 * Returns: true if transaction is allowed, false if denied. 2595 */ 2596 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2597 hwaddr addr, hwaddr len) 2598 { 2599 if (likely(!attrs.memory)) { 2600 return true; 2601 } 2602 if (memory_region_is_ram(mr)) { 2603 return true; 2604 } 2605 qemu_log_mask(LOG_GUEST_ERROR, 2606 "Invalid access to non-RAM device at " 2607 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2608 "region '%s'\n", addr, len, memory_region_name(mr)); 2609 return false; 2610 } 2611 2612 /* Called within RCU critical section. */ 2613 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2614 MemTxAttrs attrs, 2615 const void *ptr, 2616 hwaddr len, hwaddr addr1, 2617 hwaddr l, MemoryRegion *mr) 2618 { 2619 uint8_t *ram_ptr; 2620 uint64_t val; 2621 MemTxResult result = MEMTX_OK; 2622 bool release_lock = false; 2623 const uint8_t *buf = ptr; 2624 2625 for (;;) { 2626 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2627 result |= MEMTX_ACCESS_ERROR; 2628 /* Keep going. */ 2629 } else if (!memory_access_is_direct(mr, true)) { 2630 release_lock |= prepare_mmio_access(mr); 2631 l = memory_access_size(mr, l, addr1); 2632 /* XXX: could force current_cpu to NULL to avoid 2633 potential bugs */ 2634 val = ldn_he_p(buf, l); 2635 result |= memory_region_dispatch_write(mr, addr1, val, 2636 size_memop(l), attrs); 2637 } else { 2638 /* RAM case */ 2639 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2640 memmove(ram_ptr, buf, l); 2641 invalidate_and_set_dirty(mr, addr1, l); 2642 } 2643 2644 if (release_lock) { 2645 qemu_mutex_unlock_iothread(); 2646 release_lock = false; 2647 } 2648 2649 len -= l; 2650 buf += l; 2651 addr += l; 2652 2653 if (!len) { 2654 break; 2655 } 2656 2657 l = len; 2658 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2659 } 2660 2661 return result; 2662 } 2663 2664 /* Called from RCU critical section. */ 2665 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2666 const void *buf, hwaddr len) 2667 { 2668 hwaddr l; 2669 hwaddr addr1; 2670 MemoryRegion *mr; 2671 2672 l = len; 2673 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2674 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2675 return MEMTX_ACCESS_ERROR; 2676 } 2677 return flatview_write_continue(fv, addr, attrs, buf, len, 2678 addr1, l, mr); 2679 } 2680 2681 /* Called within RCU critical section. */ 2682 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2683 MemTxAttrs attrs, void *ptr, 2684 hwaddr len, hwaddr addr1, hwaddr l, 2685 MemoryRegion *mr) 2686 { 2687 uint8_t *ram_ptr; 2688 uint64_t val; 2689 MemTxResult result = MEMTX_OK; 2690 bool release_lock = false; 2691 uint8_t *buf = ptr; 2692 2693 fuzz_dma_read_cb(addr, len, mr); 2694 for (;;) { 2695 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2696 result |= MEMTX_ACCESS_ERROR; 2697 /* Keep going. */ 2698 } else if (!memory_access_is_direct(mr, false)) { 2699 /* I/O case */ 2700 release_lock |= prepare_mmio_access(mr); 2701 l = memory_access_size(mr, l, addr1); 2702 result |= memory_region_dispatch_read(mr, addr1, &val, 2703 size_memop(l), attrs); 2704 stn_he_p(buf, l, val); 2705 } else { 2706 /* RAM case */ 2707 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2708 memcpy(buf, ram_ptr, l); 2709 } 2710 2711 if (release_lock) { 2712 qemu_mutex_unlock_iothread(); 2713 release_lock = false; 2714 } 2715 2716 len -= l; 2717 buf += l; 2718 addr += l; 2719 2720 if (!len) { 2721 break; 2722 } 2723 2724 l = len; 2725 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2726 } 2727 2728 return result; 2729 } 2730 2731 /* Called from RCU critical section. */ 2732 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2733 MemTxAttrs attrs, void *buf, hwaddr len) 2734 { 2735 hwaddr l; 2736 hwaddr addr1; 2737 MemoryRegion *mr; 2738 2739 l = len; 2740 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2741 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2742 return MEMTX_ACCESS_ERROR; 2743 } 2744 return flatview_read_continue(fv, addr, attrs, buf, len, 2745 addr1, l, mr); 2746 } 2747 2748 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2749 MemTxAttrs attrs, void *buf, hwaddr len) 2750 { 2751 MemTxResult result = MEMTX_OK; 2752 FlatView *fv; 2753 2754 if (len > 0) { 2755 RCU_READ_LOCK_GUARD(); 2756 fv = address_space_to_flatview(as); 2757 result = flatview_read(fv, addr, attrs, buf, len); 2758 } 2759 2760 return result; 2761 } 2762 2763 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2764 MemTxAttrs attrs, 2765 const void *buf, hwaddr len) 2766 { 2767 MemTxResult result = MEMTX_OK; 2768 FlatView *fv; 2769 2770 if (len > 0) { 2771 RCU_READ_LOCK_GUARD(); 2772 fv = address_space_to_flatview(as); 2773 result = flatview_write(fv, addr, attrs, buf, len); 2774 } 2775 2776 return result; 2777 } 2778 2779 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2780 void *buf, hwaddr len, bool is_write) 2781 { 2782 if (is_write) { 2783 return address_space_write(as, addr, attrs, buf, len); 2784 } else { 2785 return address_space_read_full(as, addr, attrs, buf, len); 2786 } 2787 } 2788 2789 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2790 uint8_t c, hwaddr len, MemTxAttrs attrs) 2791 { 2792 #define FILLBUF_SIZE 512 2793 uint8_t fillbuf[FILLBUF_SIZE]; 2794 int l; 2795 MemTxResult error = MEMTX_OK; 2796 2797 memset(fillbuf, c, FILLBUF_SIZE); 2798 while (len > 0) { 2799 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2800 error |= address_space_write(as, addr, attrs, fillbuf, l); 2801 len -= l; 2802 addr += l; 2803 } 2804 2805 return error; 2806 } 2807 2808 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2809 hwaddr len, bool is_write) 2810 { 2811 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2812 buf, len, is_write); 2813 } 2814 2815 enum write_rom_type { 2816 WRITE_DATA, 2817 FLUSH_CACHE, 2818 }; 2819 2820 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2821 hwaddr addr, 2822 MemTxAttrs attrs, 2823 const void *ptr, 2824 hwaddr len, 2825 enum write_rom_type type) 2826 { 2827 hwaddr l; 2828 uint8_t *ram_ptr; 2829 hwaddr addr1; 2830 MemoryRegion *mr; 2831 const uint8_t *buf = ptr; 2832 2833 RCU_READ_LOCK_GUARD(); 2834 while (len > 0) { 2835 l = len; 2836 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2837 2838 if (!(memory_region_is_ram(mr) || 2839 memory_region_is_romd(mr))) { 2840 l = memory_access_size(mr, l, addr1); 2841 } else { 2842 /* ROM/RAM case */ 2843 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2844 switch (type) { 2845 case WRITE_DATA: 2846 memcpy(ram_ptr, buf, l); 2847 invalidate_and_set_dirty(mr, addr1, l); 2848 break; 2849 case FLUSH_CACHE: 2850 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2851 break; 2852 } 2853 } 2854 len -= l; 2855 buf += l; 2856 addr += l; 2857 } 2858 return MEMTX_OK; 2859 } 2860 2861 /* used for ROM loading : can write in RAM and ROM */ 2862 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2863 MemTxAttrs attrs, 2864 const void *buf, hwaddr len) 2865 { 2866 return address_space_write_rom_internal(as, addr, attrs, 2867 buf, len, WRITE_DATA); 2868 } 2869 2870 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2871 { 2872 /* 2873 * This function should do the same thing as an icache flush that was 2874 * triggered from within the guest. For TCG we are always cache coherent, 2875 * so there is no need to flush anything. For KVM / Xen we need to flush 2876 * the host's instruction cache at least. 2877 */ 2878 if (tcg_enabled()) { 2879 return; 2880 } 2881 2882 address_space_write_rom_internal(&address_space_memory, 2883 start, MEMTXATTRS_UNSPECIFIED, 2884 NULL, len, FLUSH_CACHE); 2885 } 2886 2887 typedef struct { 2888 MemoryRegion *mr; 2889 void *buffer; 2890 hwaddr addr; 2891 hwaddr len; 2892 bool in_use; 2893 } BounceBuffer; 2894 2895 static BounceBuffer bounce; 2896 2897 typedef struct MapClient { 2898 QEMUBH *bh; 2899 QLIST_ENTRY(MapClient) link; 2900 } MapClient; 2901 2902 QemuMutex map_client_list_lock; 2903 static QLIST_HEAD(, MapClient) map_client_list 2904 = QLIST_HEAD_INITIALIZER(map_client_list); 2905 2906 static void cpu_unregister_map_client_do(MapClient *client) 2907 { 2908 QLIST_REMOVE(client, link); 2909 g_free(client); 2910 } 2911 2912 static void cpu_notify_map_clients_locked(void) 2913 { 2914 MapClient *client; 2915 2916 while (!QLIST_EMPTY(&map_client_list)) { 2917 client = QLIST_FIRST(&map_client_list); 2918 qemu_bh_schedule(client->bh); 2919 cpu_unregister_map_client_do(client); 2920 } 2921 } 2922 2923 void cpu_register_map_client(QEMUBH *bh) 2924 { 2925 MapClient *client = g_malloc(sizeof(*client)); 2926 2927 qemu_mutex_lock(&map_client_list_lock); 2928 client->bh = bh; 2929 QLIST_INSERT_HEAD(&map_client_list, client, link); 2930 /* Write map_client_list before reading in_use. */ 2931 smp_mb(); 2932 if (!qatomic_read(&bounce.in_use)) { 2933 cpu_notify_map_clients_locked(); 2934 } 2935 qemu_mutex_unlock(&map_client_list_lock); 2936 } 2937 2938 void cpu_exec_init_all(void) 2939 { 2940 qemu_mutex_init(&ram_list.mutex); 2941 /* The data structures we set up here depend on knowing the page size, 2942 * so no more changes can be made after this point. 2943 * In an ideal world, nothing we did before we had finished the 2944 * machine setup would care about the target page size, and we could 2945 * do this much later, rather than requiring board models to state 2946 * up front what their requirements are. 2947 */ 2948 finalize_target_page_bits(); 2949 io_mem_init(); 2950 memory_map_init(); 2951 qemu_mutex_init(&map_client_list_lock); 2952 } 2953 2954 void cpu_unregister_map_client(QEMUBH *bh) 2955 { 2956 MapClient *client; 2957 2958 qemu_mutex_lock(&map_client_list_lock); 2959 QLIST_FOREACH(client, &map_client_list, link) { 2960 if (client->bh == bh) { 2961 cpu_unregister_map_client_do(client); 2962 break; 2963 } 2964 } 2965 qemu_mutex_unlock(&map_client_list_lock); 2966 } 2967 2968 static void cpu_notify_map_clients(void) 2969 { 2970 qemu_mutex_lock(&map_client_list_lock); 2971 cpu_notify_map_clients_locked(); 2972 qemu_mutex_unlock(&map_client_list_lock); 2973 } 2974 2975 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2976 bool is_write, MemTxAttrs attrs) 2977 { 2978 MemoryRegion *mr; 2979 hwaddr l, xlat; 2980 2981 while (len > 0) { 2982 l = len; 2983 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 2984 if (!memory_access_is_direct(mr, is_write)) { 2985 l = memory_access_size(mr, l, addr); 2986 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 2987 return false; 2988 } 2989 } 2990 2991 len -= l; 2992 addr += l; 2993 } 2994 return true; 2995 } 2996 2997 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 2998 hwaddr len, bool is_write, 2999 MemTxAttrs attrs) 3000 { 3001 FlatView *fv; 3002 3003 RCU_READ_LOCK_GUARD(); 3004 fv = address_space_to_flatview(as); 3005 return flatview_access_valid(fv, addr, len, is_write, attrs); 3006 } 3007 3008 static hwaddr 3009 flatview_extend_translation(FlatView *fv, hwaddr addr, 3010 hwaddr target_len, 3011 MemoryRegion *mr, hwaddr base, hwaddr len, 3012 bool is_write, MemTxAttrs attrs) 3013 { 3014 hwaddr done = 0; 3015 hwaddr xlat; 3016 MemoryRegion *this_mr; 3017 3018 for (;;) { 3019 target_len -= len; 3020 addr += len; 3021 done += len; 3022 if (target_len == 0) { 3023 return done; 3024 } 3025 3026 len = target_len; 3027 this_mr = flatview_translate(fv, addr, &xlat, 3028 &len, is_write, attrs); 3029 if (this_mr != mr || xlat != base + done) { 3030 return done; 3031 } 3032 } 3033 } 3034 3035 /* Map a physical memory region into a host virtual address. 3036 * May map a subset of the requested range, given by and returned in *plen. 3037 * May return NULL if resources needed to perform the mapping are exhausted. 3038 * Use only for reads OR writes - not for read-modify-write operations. 3039 * Use cpu_register_map_client() to know when retrying the map operation is 3040 * likely to succeed. 3041 */ 3042 void *address_space_map(AddressSpace *as, 3043 hwaddr addr, 3044 hwaddr *plen, 3045 bool is_write, 3046 MemTxAttrs attrs) 3047 { 3048 hwaddr len = *plen; 3049 hwaddr l, xlat; 3050 MemoryRegion *mr; 3051 FlatView *fv; 3052 3053 if (len == 0) { 3054 return NULL; 3055 } 3056 3057 l = len; 3058 RCU_READ_LOCK_GUARD(); 3059 fv = address_space_to_flatview(as); 3060 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3061 3062 if (!memory_access_is_direct(mr, is_write)) { 3063 if (qatomic_xchg(&bounce.in_use, true)) { 3064 *plen = 0; 3065 return NULL; 3066 } 3067 /* Avoid unbounded allocations */ 3068 l = MIN(l, TARGET_PAGE_SIZE); 3069 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3070 bounce.addr = addr; 3071 bounce.len = l; 3072 3073 memory_region_ref(mr); 3074 bounce.mr = mr; 3075 if (!is_write) { 3076 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3077 bounce.buffer, l); 3078 } 3079 3080 *plen = l; 3081 return bounce.buffer; 3082 } 3083 3084 3085 memory_region_ref(mr); 3086 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3087 l, is_write, attrs); 3088 fuzz_dma_read_cb(addr, *plen, mr); 3089 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3090 } 3091 3092 /* Unmaps a memory region previously mapped by address_space_map(). 3093 * Will also mark the memory as dirty if is_write is true. access_len gives 3094 * the amount of memory that was actually read or written by the caller. 3095 */ 3096 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3097 bool is_write, hwaddr access_len) 3098 { 3099 if (buffer != bounce.buffer) { 3100 MemoryRegion *mr; 3101 ram_addr_t addr1; 3102 3103 mr = memory_region_from_host(buffer, &addr1); 3104 assert(mr != NULL); 3105 if (is_write) { 3106 invalidate_and_set_dirty(mr, addr1, access_len); 3107 } 3108 if (xen_enabled()) { 3109 xen_invalidate_map_cache_entry(buffer); 3110 } 3111 memory_region_unref(mr); 3112 return; 3113 } 3114 if (is_write) { 3115 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3116 bounce.buffer, access_len); 3117 } 3118 qemu_vfree(bounce.buffer); 3119 bounce.buffer = NULL; 3120 memory_region_unref(bounce.mr); 3121 /* Clear in_use before reading map_client_list. */ 3122 qatomic_mb_set(&bounce.in_use, false); 3123 cpu_notify_map_clients(); 3124 } 3125 3126 void *cpu_physical_memory_map(hwaddr addr, 3127 hwaddr *plen, 3128 bool is_write) 3129 { 3130 return address_space_map(&address_space_memory, addr, plen, is_write, 3131 MEMTXATTRS_UNSPECIFIED); 3132 } 3133 3134 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3135 bool is_write, hwaddr access_len) 3136 { 3137 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3138 } 3139 3140 #define ARG1_DECL AddressSpace *as 3141 #define ARG1 as 3142 #define SUFFIX 3143 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3144 #define RCU_READ_LOCK(...) rcu_read_lock() 3145 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3146 #include "memory_ldst.c.inc" 3147 3148 int64_t address_space_cache_init(MemoryRegionCache *cache, 3149 AddressSpace *as, 3150 hwaddr addr, 3151 hwaddr len, 3152 bool is_write) 3153 { 3154 AddressSpaceDispatch *d; 3155 hwaddr l; 3156 MemoryRegion *mr; 3157 Int128 diff; 3158 3159 assert(len > 0); 3160 3161 l = len; 3162 cache->fv = address_space_get_flatview(as); 3163 d = flatview_to_dispatch(cache->fv); 3164 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3165 3166 /* 3167 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3168 * Take that into account to compute how many bytes are there between 3169 * cache->xlat and the end of the section. 3170 */ 3171 diff = int128_sub(cache->mrs.size, 3172 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3173 l = int128_get64(int128_min(diff, int128_make64(l))); 3174 3175 mr = cache->mrs.mr; 3176 memory_region_ref(mr); 3177 if (memory_access_is_direct(mr, is_write)) { 3178 /* We don't care about the memory attributes here as we're only 3179 * doing this if we found actual RAM, which behaves the same 3180 * regardless of attributes; so UNSPECIFIED is fine. 3181 */ 3182 l = flatview_extend_translation(cache->fv, addr, len, mr, 3183 cache->xlat, l, is_write, 3184 MEMTXATTRS_UNSPECIFIED); 3185 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3186 } else { 3187 cache->ptr = NULL; 3188 } 3189 3190 cache->len = l; 3191 cache->is_write = is_write; 3192 return l; 3193 } 3194 3195 void address_space_cache_invalidate(MemoryRegionCache *cache, 3196 hwaddr addr, 3197 hwaddr access_len) 3198 { 3199 assert(cache->is_write); 3200 if (likely(cache->ptr)) { 3201 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3202 } 3203 } 3204 3205 void address_space_cache_destroy(MemoryRegionCache *cache) 3206 { 3207 if (!cache->mrs.mr) { 3208 return; 3209 } 3210 3211 if (xen_enabled()) { 3212 xen_invalidate_map_cache_entry(cache->ptr); 3213 } 3214 memory_region_unref(cache->mrs.mr); 3215 flatview_unref(cache->fv); 3216 cache->mrs.mr = NULL; 3217 cache->fv = NULL; 3218 } 3219 3220 /* Called from RCU critical section. This function has the same 3221 * semantics as address_space_translate, but it only works on a 3222 * predefined range of a MemoryRegion that was mapped with 3223 * address_space_cache_init. 3224 */ 3225 static inline MemoryRegion *address_space_translate_cached( 3226 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3227 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3228 { 3229 MemoryRegionSection section; 3230 MemoryRegion *mr; 3231 IOMMUMemoryRegion *iommu_mr; 3232 AddressSpace *target_as; 3233 3234 assert(!cache->ptr); 3235 *xlat = addr + cache->xlat; 3236 3237 mr = cache->mrs.mr; 3238 iommu_mr = memory_region_get_iommu(mr); 3239 if (!iommu_mr) { 3240 /* MMIO region. */ 3241 return mr; 3242 } 3243 3244 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3245 NULL, is_write, true, 3246 &target_as, attrs); 3247 return section.mr; 3248 } 3249 3250 /* Called from RCU critical section. address_space_read_cached uses this 3251 * out of line function when the target is an MMIO or IOMMU region. 3252 */ 3253 MemTxResult 3254 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3255 void *buf, hwaddr len) 3256 { 3257 hwaddr addr1, l; 3258 MemoryRegion *mr; 3259 3260 l = len; 3261 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3262 MEMTXATTRS_UNSPECIFIED); 3263 return flatview_read_continue(cache->fv, 3264 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3265 addr1, l, mr); 3266 } 3267 3268 /* Called from RCU critical section. address_space_write_cached uses this 3269 * out of line function when the target is an MMIO or IOMMU region. 3270 */ 3271 MemTxResult 3272 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3273 const void *buf, hwaddr len) 3274 { 3275 hwaddr addr1, l; 3276 MemoryRegion *mr; 3277 3278 l = len; 3279 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3280 MEMTXATTRS_UNSPECIFIED); 3281 return flatview_write_continue(cache->fv, 3282 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3283 addr1, l, mr); 3284 } 3285 3286 #define ARG1_DECL MemoryRegionCache *cache 3287 #define ARG1 cache 3288 #define SUFFIX _cached_slow 3289 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3290 #define RCU_READ_LOCK() ((void)0) 3291 #define RCU_READ_UNLOCK() ((void)0) 3292 #include "memory_ldst.c.inc" 3293 3294 /* virtual memory access for debug (includes writing to ROM) */ 3295 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3296 void *ptr, size_t len, bool is_write) 3297 { 3298 hwaddr phys_addr; 3299 vaddr l, page; 3300 uint8_t *buf = ptr; 3301 3302 cpu_synchronize_state(cpu); 3303 while (len > 0) { 3304 int asidx; 3305 MemTxAttrs attrs; 3306 MemTxResult res; 3307 3308 page = addr & TARGET_PAGE_MASK; 3309 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3310 asidx = cpu_asidx_from_attrs(cpu, attrs); 3311 /* if no physical page mapped, return an error */ 3312 if (phys_addr == -1) 3313 return -1; 3314 l = (page + TARGET_PAGE_SIZE) - addr; 3315 if (l > len) 3316 l = len; 3317 phys_addr += (addr & ~TARGET_PAGE_MASK); 3318 if (is_write) { 3319 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3320 attrs, buf, l); 3321 } else { 3322 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3323 attrs, buf, l); 3324 } 3325 if (res != MEMTX_OK) { 3326 return -1; 3327 } 3328 len -= l; 3329 buf += l; 3330 addr += l; 3331 } 3332 return 0; 3333 } 3334 3335 /* 3336 * Allows code that needs to deal with migration bitmaps etc to still be built 3337 * target independent. 3338 */ 3339 size_t qemu_target_page_size(void) 3340 { 3341 return TARGET_PAGE_SIZE; 3342 } 3343 3344 int qemu_target_page_bits(void) 3345 { 3346 return TARGET_PAGE_BITS; 3347 } 3348 3349 int qemu_target_page_bits_min(void) 3350 { 3351 return TARGET_PAGE_BITS_MIN; 3352 } 3353 3354 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3355 { 3356 MemoryRegion*mr; 3357 hwaddr l = 1; 3358 3359 RCU_READ_LOCK_GUARD(); 3360 mr = address_space_translate(&address_space_memory, 3361 phys_addr, &phys_addr, &l, false, 3362 MEMTXATTRS_UNSPECIFIED); 3363 3364 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3365 } 3366 3367 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3368 { 3369 RAMBlock *block; 3370 int ret = 0; 3371 3372 RCU_READ_LOCK_GUARD(); 3373 RAMBLOCK_FOREACH(block) { 3374 ret = func(block, opaque); 3375 if (ret) { 3376 break; 3377 } 3378 } 3379 return ret; 3380 } 3381 3382 /* 3383 * Unmap pages of memory from start to start+length such that 3384 * they a) read as 0, b) Trigger whatever fault mechanism 3385 * the OS provides for postcopy. 3386 * The pages must be unmapped by the end of the function. 3387 * Returns: 0 on success, none-0 on failure 3388 * 3389 */ 3390 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3391 { 3392 int ret = -1; 3393 3394 uint8_t *host_startaddr = rb->host + start; 3395 3396 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3397 error_report("ram_block_discard_range: Unaligned start address: %p", 3398 host_startaddr); 3399 goto err; 3400 } 3401 3402 if ((start + length) <= rb->max_length) { 3403 bool need_madvise, need_fallocate; 3404 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3405 error_report("ram_block_discard_range: Unaligned length: %zx", 3406 length); 3407 goto err; 3408 } 3409 3410 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3411 3412 /* The logic here is messy; 3413 * madvise DONTNEED fails for hugepages 3414 * fallocate works on hugepages and shmem 3415 * shared anonymous memory requires madvise REMOVE 3416 */ 3417 need_madvise = (rb->page_size == qemu_host_page_size); 3418 need_fallocate = rb->fd != -1; 3419 if (need_fallocate) { 3420 /* For a file, this causes the area of the file to be zero'd 3421 * if read, and for hugetlbfs also causes it to be unmapped 3422 * so a userfault will trigger. 3423 */ 3424 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3425 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3426 start, length); 3427 if (ret) { 3428 ret = -errno; 3429 error_report("ram_block_discard_range: Failed to fallocate " 3430 "%s:%" PRIx64 " +%zx (%d)", 3431 rb->idstr, start, length, ret); 3432 goto err; 3433 } 3434 #else 3435 ret = -ENOSYS; 3436 error_report("ram_block_discard_range: fallocate not available/file" 3437 "%s:%" PRIx64 " +%zx (%d)", 3438 rb->idstr, start, length, ret); 3439 goto err; 3440 #endif 3441 } 3442 if (need_madvise) { 3443 /* For normal RAM this causes it to be unmapped, 3444 * for shared memory it causes the local mapping to disappear 3445 * and to fall back on the file contents (which we just 3446 * fallocate'd away). 3447 */ 3448 #if defined(CONFIG_MADVISE) 3449 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3450 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3451 } else { 3452 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3453 } 3454 if (ret) { 3455 ret = -errno; 3456 error_report("ram_block_discard_range: Failed to discard range " 3457 "%s:%" PRIx64 " +%zx (%d)", 3458 rb->idstr, start, length, ret); 3459 goto err; 3460 } 3461 #else 3462 ret = -ENOSYS; 3463 error_report("ram_block_discard_range: MADVISE not available" 3464 "%s:%" PRIx64 " +%zx (%d)", 3465 rb->idstr, start, length, ret); 3466 goto err; 3467 #endif 3468 } 3469 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3470 need_madvise, need_fallocate, ret); 3471 } else { 3472 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3473 "/%zx/" RAM_ADDR_FMT")", 3474 rb->idstr, start, length, rb->max_length); 3475 } 3476 3477 err: 3478 return ret; 3479 } 3480 3481 bool ramblock_is_pmem(RAMBlock *rb) 3482 { 3483 return rb->flags & RAM_PMEM; 3484 } 3485 3486 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3487 { 3488 if (start == end - 1) { 3489 qemu_printf("\t%3d ", start); 3490 } else { 3491 qemu_printf("\t%3d..%-3d ", start, end - 1); 3492 } 3493 qemu_printf(" skip=%d ", skip); 3494 if (ptr == PHYS_MAP_NODE_NIL) { 3495 qemu_printf(" ptr=NIL"); 3496 } else if (!skip) { 3497 qemu_printf(" ptr=#%d", ptr); 3498 } else { 3499 qemu_printf(" ptr=[%d]", ptr); 3500 } 3501 qemu_printf("\n"); 3502 } 3503 3504 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3505 int128_sub((size), int128_one())) : 0) 3506 3507 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3508 { 3509 int i; 3510 3511 qemu_printf(" Dispatch\n"); 3512 qemu_printf(" Physical sections\n"); 3513 3514 for (i = 0; i < d->map.sections_nb; ++i) { 3515 MemoryRegionSection *s = d->map.sections + i; 3516 const char *names[] = { " [unassigned]", " [not dirty]", 3517 " [ROM]", " [watch]" }; 3518 3519 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3520 " %s%s%s%s%s", 3521 i, 3522 s->offset_within_address_space, 3523 s->offset_within_address_space + MR_SIZE(s->size), 3524 s->mr->name ? s->mr->name : "(noname)", 3525 i < ARRAY_SIZE(names) ? names[i] : "", 3526 s->mr == root ? " [ROOT]" : "", 3527 s == d->mru_section ? " [MRU]" : "", 3528 s->mr->is_iommu ? " [iommu]" : ""); 3529 3530 if (s->mr->alias) { 3531 qemu_printf(" alias=%s", s->mr->alias->name ? 3532 s->mr->alias->name : "noname"); 3533 } 3534 qemu_printf("\n"); 3535 } 3536 3537 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3538 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3539 for (i = 0; i < d->map.nodes_nb; ++i) { 3540 int j, jprev; 3541 PhysPageEntry prev; 3542 Node *n = d->map.nodes + i; 3543 3544 qemu_printf(" [%d]\n", i); 3545 3546 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3547 PhysPageEntry *pe = *n + j; 3548 3549 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3550 continue; 3551 } 3552 3553 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3554 3555 jprev = j; 3556 prev = *pe; 3557 } 3558 3559 if (jprev != ARRAY_SIZE(*n)) { 3560 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3561 } 3562 } 3563 } 3564 3565 /* Require any discards to work. */ 3566 static unsigned int ram_block_discard_required_cnt; 3567 /* Require only coordinated discards to work. */ 3568 static unsigned int ram_block_coordinated_discard_required_cnt; 3569 /* Disable any discards. */ 3570 static unsigned int ram_block_discard_disabled_cnt; 3571 /* Disable only uncoordinated discards. */ 3572 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3573 static QemuMutex ram_block_discard_disable_mutex; 3574 3575 static void ram_block_discard_disable_mutex_lock(void) 3576 { 3577 static gsize initialized; 3578 3579 if (g_once_init_enter(&initialized)) { 3580 qemu_mutex_init(&ram_block_discard_disable_mutex); 3581 g_once_init_leave(&initialized, 1); 3582 } 3583 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3584 } 3585 3586 static void ram_block_discard_disable_mutex_unlock(void) 3587 { 3588 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3589 } 3590 3591 int ram_block_discard_disable(bool state) 3592 { 3593 int ret = 0; 3594 3595 ram_block_discard_disable_mutex_lock(); 3596 if (!state) { 3597 ram_block_discard_disabled_cnt--; 3598 } else if (ram_block_discard_required_cnt || 3599 ram_block_coordinated_discard_required_cnt) { 3600 ret = -EBUSY; 3601 } else { 3602 ram_block_discard_disabled_cnt++; 3603 } 3604 ram_block_discard_disable_mutex_unlock(); 3605 return ret; 3606 } 3607 3608 int ram_block_uncoordinated_discard_disable(bool state) 3609 { 3610 int ret = 0; 3611 3612 ram_block_discard_disable_mutex_lock(); 3613 if (!state) { 3614 ram_block_uncoordinated_discard_disabled_cnt--; 3615 } else if (ram_block_discard_required_cnt) { 3616 ret = -EBUSY; 3617 } else { 3618 ram_block_uncoordinated_discard_disabled_cnt++; 3619 } 3620 ram_block_discard_disable_mutex_unlock(); 3621 return ret; 3622 } 3623 3624 int ram_block_discard_require(bool state) 3625 { 3626 int ret = 0; 3627 3628 ram_block_discard_disable_mutex_lock(); 3629 if (!state) { 3630 ram_block_discard_required_cnt--; 3631 } else if (ram_block_discard_disabled_cnt || 3632 ram_block_uncoordinated_discard_disabled_cnt) { 3633 ret = -EBUSY; 3634 } else { 3635 ram_block_discard_required_cnt++; 3636 } 3637 ram_block_discard_disable_mutex_unlock(); 3638 return ret; 3639 } 3640 3641 int ram_block_coordinated_discard_require(bool state) 3642 { 3643 int ret = 0; 3644 3645 ram_block_discard_disable_mutex_lock(); 3646 if (!state) { 3647 ram_block_coordinated_discard_required_cnt--; 3648 } else if (ram_block_discard_disabled_cnt) { 3649 ret = -EBUSY; 3650 } else { 3651 ram_block_coordinated_discard_required_cnt++; 3652 } 3653 ram_block_discard_disable_mutex_unlock(); 3654 return ret; 3655 } 3656 3657 bool ram_block_discard_is_disabled(void) 3658 { 3659 return qatomic_read(&ram_block_discard_disabled_cnt) || 3660 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3661 } 3662 3663 bool ram_block_discard_is_required(void) 3664 { 3665 return qatomic_read(&ram_block_discard_required_cnt) || 3666 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3667 } 3668