1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 #include "qemu/lockable.h" 29 30 #ifdef CONFIG_TCG 31 #include "accel/tcg/cpu-ops.h" 32 #endif /* CONFIG_TCG */ 33 34 #include "exec/exec-all.h" 35 #include "exec/page-protection.h" 36 #include "exec/target_page.h" 37 #include "exec/translation-block.h" 38 #include "hw/qdev-core.h" 39 #include "hw/qdev-properties.h" 40 #include "hw/boards.h" 41 #include "system/xen.h" 42 #include "system/kvm.h" 43 #include "system/tcg.h" 44 #include "system/qtest.h" 45 #include "qemu/timer.h" 46 #include "qemu/config-file.h" 47 #include "qemu/error-report.h" 48 #include "qemu/qemu-print.h" 49 #include "qemu/log.h" 50 #include "qemu/memalign.h" 51 #include "qemu/memfd.h" 52 #include "exec/memory.h" 53 #include "exec/ioport.h" 54 #include "system/dma.h" 55 #include "system/hostmem.h" 56 #include "system/hw_accel.h" 57 #include "system/xen-mapcache.h" 58 #include "trace.h" 59 60 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 61 #include <linux/falloc.h> 62 #endif 63 64 #include "qemu/rcu_queue.h" 65 #include "qemu/main-loop.h" 66 #include "system/replay.h" 67 68 #include "exec/memory-internal.h" 69 #include "exec/ram_addr.h" 70 71 #include "qemu/pmem.h" 72 73 #include "migration/cpr.h" 74 #include "migration/vmstate.h" 75 76 #include "qemu/range.h" 77 #ifndef _WIN32 78 #include "qemu/mmap-alloc.h" 79 #endif 80 81 #include "monitor/monitor.h" 82 83 #ifdef CONFIG_LIBDAXCTL 84 #include <daxctl/libdaxctl.h> 85 #endif 86 87 //#define DEBUG_SUBPAGE 88 89 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 90 * are protected by the ramlist lock. 91 */ 92 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 93 94 static MemoryRegion *system_memory; 95 static MemoryRegion *system_io; 96 97 AddressSpace address_space_io; 98 AddressSpace address_space_memory; 99 100 static MemoryRegion io_mem_unassigned; 101 102 typedef struct PhysPageEntry PhysPageEntry; 103 104 struct PhysPageEntry { 105 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 106 uint32_t skip : 6; 107 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 108 uint32_t ptr : 26; 109 }; 110 111 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 112 113 /* Size of the L2 (and L3, etc) page tables. */ 114 #define ADDR_SPACE_BITS 64 115 116 #define P_L2_BITS 9 117 #define P_L2_SIZE (1 << P_L2_BITS) 118 119 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 120 121 typedef PhysPageEntry Node[P_L2_SIZE]; 122 123 typedef struct PhysPageMap { 124 struct rcu_head rcu; 125 126 unsigned sections_nb; 127 unsigned sections_nb_alloc; 128 unsigned nodes_nb; 129 unsigned nodes_nb_alloc; 130 Node *nodes; 131 MemoryRegionSection *sections; 132 } PhysPageMap; 133 134 struct AddressSpaceDispatch { 135 MemoryRegionSection *mru_section; 136 /* This is a multi-level map on the physical address space. 137 * The bottom level has pointers to MemoryRegionSections. 138 */ 139 PhysPageEntry phys_map; 140 PhysPageMap map; 141 }; 142 143 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 144 typedef struct subpage_t { 145 MemoryRegion iomem; 146 FlatView *fv; 147 hwaddr base; 148 uint16_t sub_section[]; 149 } subpage_t; 150 151 #define PHYS_SECTION_UNASSIGNED 0 152 153 static void io_mem_init(void); 154 static void memory_map_init(void); 155 static void tcg_log_global_after_sync(MemoryListener *listener); 156 static void tcg_commit(MemoryListener *listener); 157 158 /** 159 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 160 * @cpu: the CPU whose AddressSpace this is 161 * @as: the AddressSpace itself 162 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 163 * @tcg_as_listener: listener for tracking changes to the AddressSpace 164 */ 165 typedef struct CPUAddressSpace { 166 CPUState *cpu; 167 AddressSpace *as; 168 struct AddressSpaceDispatch *memory_dispatch; 169 MemoryListener tcg_as_listener; 170 } CPUAddressSpace; 171 172 struct DirtyBitmapSnapshot { 173 ram_addr_t start; 174 ram_addr_t end; 175 unsigned long dirty[]; 176 }; 177 178 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 179 { 180 static unsigned alloc_hint = 16; 181 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 182 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 183 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 184 alloc_hint = map->nodes_nb_alloc; 185 } 186 } 187 188 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 189 { 190 unsigned i; 191 uint32_t ret; 192 PhysPageEntry e; 193 PhysPageEntry *p; 194 195 ret = map->nodes_nb++; 196 p = map->nodes[ret]; 197 assert(ret != PHYS_MAP_NODE_NIL); 198 assert(ret != map->nodes_nb_alloc); 199 200 e.skip = leaf ? 0 : 1; 201 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 202 for (i = 0; i < P_L2_SIZE; ++i) { 203 memcpy(&p[i], &e, sizeof(e)); 204 } 205 return ret; 206 } 207 208 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 209 hwaddr *index, uint64_t *nb, uint16_t leaf, 210 int level) 211 { 212 PhysPageEntry *p; 213 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 214 215 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 216 lp->ptr = phys_map_node_alloc(map, level == 0); 217 } 218 p = map->nodes[lp->ptr]; 219 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 220 221 while (*nb && lp < &p[P_L2_SIZE]) { 222 if ((*index & (step - 1)) == 0 && *nb >= step) { 223 lp->skip = 0; 224 lp->ptr = leaf; 225 *index += step; 226 *nb -= step; 227 } else { 228 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 229 } 230 ++lp; 231 } 232 } 233 234 static void phys_page_set(AddressSpaceDispatch *d, 235 hwaddr index, uint64_t nb, 236 uint16_t leaf) 237 { 238 /* Wildly overreserve - it doesn't matter much. */ 239 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 240 241 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 242 } 243 244 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 245 * and update our entry so we can skip it and go directly to the destination. 246 */ 247 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 248 { 249 unsigned valid_ptr = P_L2_SIZE; 250 int valid = 0; 251 PhysPageEntry *p; 252 int i; 253 254 if (lp->ptr == PHYS_MAP_NODE_NIL) { 255 return; 256 } 257 258 p = nodes[lp->ptr]; 259 for (i = 0; i < P_L2_SIZE; i++) { 260 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 261 continue; 262 } 263 264 valid_ptr = i; 265 valid++; 266 if (p[i].skip) { 267 phys_page_compact(&p[i], nodes); 268 } 269 } 270 271 /* We can only compress if there's only one child. */ 272 if (valid != 1) { 273 return; 274 } 275 276 assert(valid_ptr < P_L2_SIZE); 277 278 /* Don't compress if it won't fit in the # of bits we have. */ 279 if (P_L2_LEVELS >= (1 << 6) && 280 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 281 return; 282 } 283 284 lp->ptr = p[valid_ptr].ptr; 285 if (!p[valid_ptr].skip) { 286 /* If our only child is a leaf, make this a leaf. */ 287 /* By design, we should have made this node a leaf to begin with so we 288 * should never reach here. 289 * But since it's so simple to handle this, let's do it just in case we 290 * change this rule. 291 */ 292 lp->skip = 0; 293 } else { 294 lp->skip += p[valid_ptr].skip; 295 } 296 } 297 298 void address_space_dispatch_compact(AddressSpaceDispatch *d) 299 { 300 if (d->phys_map.skip) { 301 phys_page_compact(&d->phys_map, d->map.nodes); 302 } 303 } 304 305 static inline bool section_covers_addr(const MemoryRegionSection *section, 306 hwaddr addr) 307 { 308 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 309 * the section must cover the entire address space. 310 */ 311 return int128_gethi(section->size) || 312 range_covers_byte(section->offset_within_address_space, 313 int128_getlo(section->size), addr); 314 } 315 316 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 317 { 318 PhysPageEntry lp = d->phys_map, *p; 319 Node *nodes = d->map.nodes; 320 MemoryRegionSection *sections = d->map.sections; 321 hwaddr index = addr >> TARGET_PAGE_BITS; 322 int i; 323 324 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 325 if (lp.ptr == PHYS_MAP_NODE_NIL) { 326 return §ions[PHYS_SECTION_UNASSIGNED]; 327 } 328 p = nodes[lp.ptr]; 329 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 330 } 331 332 if (section_covers_addr(§ions[lp.ptr], addr)) { 333 return §ions[lp.ptr]; 334 } else { 335 return §ions[PHYS_SECTION_UNASSIGNED]; 336 } 337 } 338 339 /* Called from RCU critical section */ 340 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 341 hwaddr addr, 342 bool resolve_subpage) 343 { 344 MemoryRegionSection *section = qatomic_read(&d->mru_section); 345 subpage_t *subpage; 346 347 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 348 !section_covers_addr(section, addr)) { 349 section = phys_page_find(d, addr); 350 qatomic_set(&d->mru_section, section); 351 } 352 if (resolve_subpage && section->mr->subpage) { 353 subpage = container_of(section->mr, subpage_t, iomem); 354 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 355 } 356 return section; 357 } 358 359 /* Called from RCU critical section */ 360 static MemoryRegionSection * 361 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 362 hwaddr *plen, bool resolve_subpage) 363 { 364 MemoryRegionSection *section; 365 MemoryRegion *mr; 366 Int128 diff; 367 368 section = address_space_lookup_region(d, addr, resolve_subpage); 369 /* Compute offset within MemoryRegionSection */ 370 addr -= section->offset_within_address_space; 371 372 /* Compute offset within MemoryRegion */ 373 *xlat = addr + section->offset_within_region; 374 375 mr = section->mr; 376 377 /* MMIO registers can be expected to perform full-width accesses based only 378 * on their address, without considering adjacent registers that could 379 * decode to completely different MemoryRegions. When such registers 380 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 381 * regions overlap wildly. For this reason we cannot clamp the accesses 382 * here. 383 * 384 * If the length is small (as is the case for address_space_ldl/stl), 385 * everything works fine. If the incoming length is large, however, 386 * the caller really has to do the clamping through memory_access_size. 387 */ 388 if (memory_region_is_ram(mr)) { 389 diff = int128_sub(section->size, int128_make64(addr)); 390 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 391 } 392 return section; 393 } 394 395 /** 396 * address_space_translate_iommu - translate an address through an IOMMU 397 * memory region and then through the target address space. 398 * 399 * @iommu_mr: the IOMMU memory region that we start the translation from 400 * @addr: the address to be translated through the MMU 401 * @xlat: the translated address offset within the destination memory region. 402 * It cannot be %NULL. 403 * @plen_out: valid read/write length of the translated address. It 404 * cannot be %NULL. 405 * @page_mask_out: page mask for the translated address. This 406 * should only be meaningful for IOMMU translated 407 * addresses, since there may be huge pages that this bit 408 * would tell. It can be %NULL if we don't care about it. 409 * @is_write: whether the translation operation is for write 410 * @is_mmio: whether this can be MMIO, set true if it can 411 * @target_as: the address space targeted by the IOMMU 412 * @attrs: transaction attributes 413 * 414 * This function is called from RCU critical section. It is the common 415 * part of flatview_do_translate and address_space_translate_cached. 416 */ 417 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 418 hwaddr *xlat, 419 hwaddr *plen_out, 420 hwaddr *page_mask_out, 421 bool is_write, 422 bool is_mmio, 423 AddressSpace **target_as, 424 MemTxAttrs attrs) 425 { 426 MemoryRegionSection *section; 427 hwaddr page_mask = (hwaddr)-1; 428 429 do { 430 hwaddr addr = *xlat; 431 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 432 int iommu_idx = 0; 433 IOMMUTLBEntry iotlb; 434 435 if (imrc->attrs_to_index) { 436 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 437 } 438 439 iotlb = imrc->translate(iommu_mr, addr, is_write ? 440 IOMMU_WO : IOMMU_RO, iommu_idx); 441 442 if (!(iotlb.perm & (1 << is_write))) { 443 goto unassigned; 444 } 445 446 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 447 | (addr & iotlb.addr_mask)); 448 page_mask &= iotlb.addr_mask; 449 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 450 *target_as = iotlb.target_as; 451 452 section = address_space_translate_internal( 453 address_space_to_dispatch(iotlb.target_as), addr, xlat, 454 plen_out, is_mmio); 455 456 iommu_mr = memory_region_get_iommu(section->mr); 457 } while (unlikely(iommu_mr)); 458 459 if (page_mask_out) { 460 *page_mask_out = page_mask; 461 } 462 return *section; 463 464 unassigned: 465 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 466 } 467 468 /** 469 * flatview_do_translate - translate an address in FlatView 470 * 471 * @fv: the flat view that we want to translate on 472 * @addr: the address to be translated in above address space 473 * @xlat: the translated address offset within memory region. It 474 * cannot be @NULL. 475 * @plen_out: valid read/write length of the translated address. It 476 * can be @NULL when we don't care about it. 477 * @page_mask_out: page mask for the translated address. This 478 * should only be meaningful for IOMMU translated 479 * addresses, since there may be huge pages that this bit 480 * would tell. It can be @NULL if we don't care about it. 481 * @is_write: whether the translation operation is for write 482 * @is_mmio: whether this can be MMIO, set true if it can 483 * @target_as: the address space targeted by the IOMMU 484 * @attrs: memory transaction attributes 485 * 486 * This function is called from RCU critical section 487 */ 488 static MemoryRegionSection flatview_do_translate(FlatView *fv, 489 hwaddr addr, 490 hwaddr *xlat, 491 hwaddr *plen_out, 492 hwaddr *page_mask_out, 493 bool is_write, 494 bool is_mmio, 495 AddressSpace **target_as, 496 MemTxAttrs attrs) 497 { 498 MemoryRegionSection *section; 499 IOMMUMemoryRegion *iommu_mr; 500 hwaddr plen = (hwaddr)(-1); 501 502 if (!plen_out) { 503 plen_out = &plen; 504 } 505 506 section = address_space_translate_internal( 507 flatview_to_dispatch(fv), addr, xlat, 508 plen_out, is_mmio); 509 510 iommu_mr = memory_region_get_iommu(section->mr); 511 if (unlikely(iommu_mr)) { 512 return address_space_translate_iommu(iommu_mr, xlat, 513 plen_out, page_mask_out, 514 is_write, is_mmio, 515 target_as, attrs); 516 } 517 if (page_mask_out) { 518 /* Not behind an IOMMU, use default page size. */ 519 *page_mask_out = ~TARGET_PAGE_MASK; 520 } 521 522 return *section; 523 } 524 525 /* Called from RCU critical section */ 526 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 527 bool is_write, MemTxAttrs attrs) 528 { 529 MemoryRegionSection section; 530 hwaddr xlat, page_mask; 531 532 /* 533 * This can never be MMIO, and we don't really care about plen, 534 * but page mask. 535 */ 536 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 537 NULL, &page_mask, is_write, false, &as, 538 attrs); 539 540 /* Illegal translation */ 541 if (section.mr == &io_mem_unassigned) { 542 goto iotlb_fail; 543 } 544 545 /* Convert memory region offset into address space offset */ 546 xlat += section.offset_within_address_space - 547 section.offset_within_region; 548 549 return (IOMMUTLBEntry) { 550 .target_as = as, 551 .iova = addr & ~page_mask, 552 .translated_addr = xlat & ~page_mask, 553 .addr_mask = page_mask, 554 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 555 .perm = IOMMU_RW, 556 }; 557 558 iotlb_fail: 559 return (IOMMUTLBEntry) {0}; 560 } 561 562 /* Called from RCU critical section */ 563 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 564 hwaddr *plen, bool is_write, 565 MemTxAttrs attrs) 566 { 567 MemoryRegion *mr; 568 MemoryRegionSection section; 569 AddressSpace *as = NULL; 570 571 /* This can be MMIO, so setup MMIO bit. */ 572 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 573 is_write, true, &as, attrs); 574 mr = section.mr; 575 576 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) { 577 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 578 *plen = MIN(page, *plen); 579 } 580 581 return mr; 582 } 583 584 typedef struct TCGIOMMUNotifier { 585 IOMMUNotifier n; 586 MemoryRegion *mr; 587 CPUState *cpu; 588 int iommu_idx; 589 bool active; 590 } TCGIOMMUNotifier; 591 592 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 593 { 594 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 595 596 if (!notifier->active) { 597 return; 598 } 599 tlb_flush(notifier->cpu); 600 notifier->active = false; 601 /* We leave the notifier struct on the list to avoid reallocating it later. 602 * Generally the number of IOMMUs a CPU deals with will be small. 603 * In any case we can't unregister the iommu notifier from a notify 604 * callback. 605 */ 606 } 607 608 static void tcg_register_iommu_notifier(CPUState *cpu, 609 IOMMUMemoryRegion *iommu_mr, 610 int iommu_idx) 611 { 612 /* Make sure this CPU has an IOMMU notifier registered for this 613 * IOMMU/IOMMU index combination, so that we can flush its TLB 614 * when the IOMMU tells us the mappings we've cached have changed. 615 */ 616 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 617 TCGIOMMUNotifier *notifier = NULL; 618 int i; 619 620 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 621 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 622 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 623 break; 624 } 625 } 626 if (i == cpu->iommu_notifiers->len) { 627 /* Not found, add a new entry at the end of the array */ 628 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 629 notifier = g_new0(TCGIOMMUNotifier, 1); 630 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 631 632 notifier->mr = mr; 633 notifier->iommu_idx = iommu_idx; 634 notifier->cpu = cpu; 635 /* Rather than trying to register interest in the specific part 636 * of the iommu's address space that we've accessed and then 637 * expand it later as subsequent accesses touch more of it, we 638 * just register interest in the whole thing, on the assumption 639 * that iommu reconfiguration will be rare. 640 */ 641 iommu_notifier_init(¬ifier->n, 642 tcg_iommu_unmap_notify, 643 IOMMU_NOTIFIER_UNMAP, 644 0, 645 HWADDR_MAX, 646 iommu_idx); 647 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 648 &error_fatal); 649 } 650 651 if (!notifier->active) { 652 notifier->active = true; 653 } 654 } 655 656 void tcg_iommu_free_notifier_list(CPUState *cpu) 657 { 658 /* Destroy the CPU's notifier list */ 659 int i; 660 TCGIOMMUNotifier *notifier; 661 662 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 663 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 664 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 665 g_free(notifier); 666 } 667 g_array_free(cpu->iommu_notifiers, true); 668 } 669 670 void tcg_iommu_init_notifier_list(CPUState *cpu) 671 { 672 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 673 } 674 675 /* Called from RCU critical section */ 676 MemoryRegionSection * 677 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 678 hwaddr *xlat, hwaddr *plen, 679 MemTxAttrs attrs, int *prot) 680 { 681 MemoryRegionSection *section; 682 IOMMUMemoryRegion *iommu_mr; 683 IOMMUMemoryRegionClass *imrc; 684 IOMMUTLBEntry iotlb; 685 int iommu_idx; 686 hwaddr addr = orig_addr; 687 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 688 689 for (;;) { 690 section = address_space_translate_internal(d, addr, &addr, plen, false); 691 692 iommu_mr = memory_region_get_iommu(section->mr); 693 if (!iommu_mr) { 694 break; 695 } 696 697 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 698 699 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 700 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 701 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 702 * doesn't short-cut its translation table walk. 703 */ 704 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 705 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 706 | (addr & iotlb.addr_mask)); 707 /* Update the caller's prot bits to remove permissions the IOMMU 708 * is giving us a failure response for. If we get down to no 709 * permissions left at all we can give up now. 710 */ 711 if (!(iotlb.perm & IOMMU_RO)) { 712 *prot &= ~(PAGE_READ | PAGE_EXEC); 713 } 714 if (!(iotlb.perm & IOMMU_WO)) { 715 *prot &= ~PAGE_WRITE; 716 } 717 718 if (!*prot) { 719 goto translate_fail; 720 } 721 722 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 723 } 724 725 assert(!memory_region_is_iommu(section->mr)); 726 *xlat = addr; 727 return section; 728 729 translate_fail: 730 /* 731 * We should be given a page-aligned address -- certainly 732 * tlb_set_page_with_attrs() does so. The page offset of xlat 733 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 734 * The page portion of xlat will be logged by memory_region_access_valid() 735 * when this memory access is rejected, so use the original untranslated 736 * physical address. 737 */ 738 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 739 *xlat = orig_addr; 740 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 741 } 742 743 void cpu_address_space_init(CPUState *cpu, int asidx, 744 const char *prefix, MemoryRegion *mr) 745 { 746 CPUAddressSpace *newas; 747 AddressSpace *as = g_new0(AddressSpace, 1); 748 char *as_name; 749 750 assert(mr); 751 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 752 address_space_init(as, mr, as_name); 753 g_free(as_name); 754 755 /* Target code should have set num_ases before calling us */ 756 assert(asidx < cpu->num_ases); 757 758 if (asidx == 0) { 759 /* address space 0 gets the convenience alias */ 760 cpu->as = as; 761 } 762 763 /* KVM cannot currently support multiple address spaces. */ 764 assert(asidx == 0 || !kvm_enabled()); 765 766 if (!cpu->cpu_ases) { 767 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 768 cpu->cpu_ases_count = cpu->num_ases; 769 } 770 771 newas = &cpu->cpu_ases[asidx]; 772 newas->cpu = cpu; 773 newas->as = as; 774 if (tcg_enabled()) { 775 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 776 newas->tcg_as_listener.commit = tcg_commit; 777 newas->tcg_as_listener.name = "tcg"; 778 memory_listener_register(&newas->tcg_as_listener, as); 779 } 780 } 781 782 void cpu_address_space_destroy(CPUState *cpu, int asidx) 783 { 784 CPUAddressSpace *cpuas; 785 786 assert(cpu->cpu_ases); 787 assert(asidx >= 0 && asidx < cpu->num_ases); 788 /* KVM cannot currently support multiple address spaces. */ 789 assert(asidx == 0 || !kvm_enabled()); 790 791 cpuas = &cpu->cpu_ases[asidx]; 792 if (tcg_enabled()) { 793 memory_listener_unregister(&cpuas->tcg_as_listener); 794 } 795 796 address_space_destroy(cpuas->as); 797 g_free_rcu(cpuas->as, rcu); 798 799 if (asidx == 0) { 800 /* reset the convenience alias for address space 0 */ 801 cpu->as = NULL; 802 } 803 804 if (--cpu->cpu_ases_count == 0) { 805 g_free(cpu->cpu_ases); 806 cpu->cpu_ases = NULL; 807 } 808 } 809 810 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 811 { 812 /* Return the AddressSpace corresponding to the specified index */ 813 return cpu->cpu_ases[asidx].as; 814 } 815 816 /* Called from RCU critical section */ 817 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 818 { 819 RAMBlock *block; 820 821 block = qatomic_rcu_read(&ram_list.mru_block); 822 if (block && addr - block->offset < block->max_length) { 823 return block; 824 } 825 RAMBLOCK_FOREACH(block) { 826 if (addr - block->offset < block->max_length) { 827 goto found; 828 } 829 } 830 831 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 832 abort(); 833 834 found: 835 /* It is safe to write mru_block outside the BQL. This 836 * is what happens: 837 * 838 * mru_block = xxx 839 * rcu_read_unlock() 840 * xxx removed from list 841 * rcu_read_lock() 842 * read mru_block 843 * mru_block = NULL; 844 * call_rcu(reclaim_ramblock, xxx); 845 * rcu_read_unlock() 846 * 847 * qatomic_rcu_set is not needed here. The block was already published 848 * when it was placed into the list. Here we're just making an extra 849 * copy of the pointer. 850 */ 851 ram_list.mru_block = block; 852 return block; 853 } 854 855 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 856 { 857 CPUState *cpu; 858 ram_addr_t start1; 859 RAMBlock *block; 860 ram_addr_t end; 861 862 assert(tcg_enabled()); 863 end = TARGET_PAGE_ALIGN(start + length); 864 start &= TARGET_PAGE_MASK; 865 866 RCU_READ_LOCK_GUARD(); 867 block = qemu_get_ram_block(start); 868 assert(block == qemu_get_ram_block(end - 1)); 869 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 870 CPU_FOREACH(cpu) { 871 tlb_reset_dirty(cpu, start1, length); 872 } 873 } 874 875 /* Note: start and end must be within the same ram block. */ 876 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 877 ram_addr_t length, 878 unsigned client) 879 { 880 DirtyMemoryBlocks *blocks; 881 unsigned long end, page, start_page; 882 bool dirty = false; 883 RAMBlock *ramblock; 884 uint64_t mr_offset, mr_size; 885 886 if (length == 0) { 887 return false; 888 } 889 890 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 891 start_page = start >> TARGET_PAGE_BITS; 892 page = start_page; 893 894 WITH_RCU_READ_LOCK_GUARD() { 895 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 896 ramblock = qemu_get_ram_block(start); 897 /* Range sanity check on the ramblock */ 898 assert(start >= ramblock->offset && 899 start + length <= ramblock->offset + ramblock->used_length); 900 901 while (page < end) { 902 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 903 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 904 unsigned long num = MIN(end - page, 905 DIRTY_MEMORY_BLOCK_SIZE - offset); 906 907 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 908 offset, num); 909 page += num; 910 } 911 912 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 913 mr_size = (end - start_page) << TARGET_PAGE_BITS; 914 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 915 } 916 917 if (dirty) { 918 cpu_physical_memory_dirty_bits_cleared(start, length); 919 } 920 921 return dirty; 922 } 923 924 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 925 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 926 { 927 DirtyMemoryBlocks *blocks; 928 ram_addr_t start, first, last; 929 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 930 DirtyBitmapSnapshot *snap; 931 unsigned long page, end, dest; 932 933 start = memory_region_get_ram_addr(mr); 934 /* We know we're only called for RAM MemoryRegions */ 935 assert(start != RAM_ADDR_INVALID); 936 start += offset; 937 938 first = QEMU_ALIGN_DOWN(start, align); 939 last = QEMU_ALIGN_UP(start + length, align); 940 941 snap = g_malloc0(sizeof(*snap) + 942 ((last - first) >> (TARGET_PAGE_BITS + 3))); 943 snap->start = first; 944 snap->end = last; 945 946 page = first >> TARGET_PAGE_BITS; 947 end = last >> TARGET_PAGE_BITS; 948 dest = 0; 949 950 WITH_RCU_READ_LOCK_GUARD() { 951 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 952 953 while (page < end) { 954 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 955 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE; 956 unsigned long num = MIN(end - page, 957 DIRTY_MEMORY_BLOCK_SIZE - ofs); 958 959 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL))); 960 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 961 ofs >>= BITS_PER_LEVEL; 962 963 bitmap_copy_and_clear_atomic(snap->dirty + dest, 964 blocks->blocks[idx] + ofs, 965 num); 966 page += num; 967 dest += num >> BITS_PER_LEVEL; 968 } 969 } 970 971 cpu_physical_memory_dirty_bits_cleared(start, length); 972 973 memory_region_clear_dirty_bitmap(mr, offset, length); 974 975 return snap; 976 } 977 978 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 979 ram_addr_t start, 980 ram_addr_t length) 981 { 982 unsigned long page, end; 983 984 assert(start >= snap->start); 985 assert(start + length <= snap->end); 986 987 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 988 page = (start - snap->start) >> TARGET_PAGE_BITS; 989 990 while (page < end) { 991 if (test_bit(page, snap->dirty)) { 992 return true; 993 } 994 page++; 995 } 996 return false; 997 } 998 999 /* Called from RCU critical section */ 1000 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 1001 MemoryRegionSection *section) 1002 { 1003 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 1004 return section - d->map.sections; 1005 } 1006 1007 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 1008 uint16_t section); 1009 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 1010 1011 static uint16_t phys_section_add(PhysPageMap *map, 1012 MemoryRegionSection *section) 1013 { 1014 /* The physical section number is ORed with a page-aligned 1015 * pointer to produce the iotlb entries. Thus it should 1016 * never overflow into the page-aligned value. 1017 */ 1018 assert(map->sections_nb < TARGET_PAGE_SIZE); 1019 1020 if (map->sections_nb == map->sections_nb_alloc) { 1021 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 1022 map->sections = g_renew(MemoryRegionSection, map->sections, 1023 map->sections_nb_alloc); 1024 } 1025 map->sections[map->sections_nb] = *section; 1026 memory_region_ref(section->mr); 1027 return map->sections_nb++; 1028 } 1029 1030 static void phys_section_destroy(MemoryRegion *mr) 1031 { 1032 bool have_sub_page = mr->subpage; 1033 1034 memory_region_unref(mr); 1035 1036 if (have_sub_page) { 1037 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1038 object_unref(OBJECT(&subpage->iomem)); 1039 g_free(subpage); 1040 } 1041 } 1042 1043 static void phys_sections_free(PhysPageMap *map) 1044 { 1045 while (map->sections_nb > 0) { 1046 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1047 phys_section_destroy(section->mr); 1048 } 1049 g_free(map->sections); 1050 g_free(map->nodes); 1051 } 1052 1053 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1054 { 1055 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1056 subpage_t *subpage; 1057 hwaddr base = section->offset_within_address_space 1058 & TARGET_PAGE_MASK; 1059 MemoryRegionSection *existing = phys_page_find(d, base); 1060 MemoryRegionSection subsection = { 1061 .offset_within_address_space = base, 1062 .size = int128_make64(TARGET_PAGE_SIZE), 1063 }; 1064 hwaddr start, end; 1065 1066 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1067 1068 if (!(existing->mr->subpage)) { 1069 subpage = subpage_init(fv, base); 1070 subsection.fv = fv; 1071 subsection.mr = &subpage->iomem; 1072 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1073 phys_section_add(&d->map, &subsection)); 1074 } else { 1075 subpage = container_of(existing->mr, subpage_t, iomem); 1076 } 1077 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1078 end = start + int128_get64(section->size) - 1; 1079 subpage_register(subpage, start, end, 1080 phys_section_add(&d->map, section)); 1081 } 1082 1083 1084 static void register_multipage(FlatView *fv, 1085 MemoryRegionSection *section) 1086 { 1087 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1088 hwaddr start_addr = section->offset_within_address_space; 1089 uint16_t section_index = phys_section_add(&d->map, section); 1090 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1091 TARGET_PAGE_BITS)); 1092 1093 assert(num_pages); 1094 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1095 } 1096 1097 /* 1098 * The range in *section* may look like this: 1099 * 1100 * |s|PPPPPPP|s| 1101 * 1102 * where s stands for subpage and P for page. 1103 */ 1104 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1105 { 1106 MemoryRegionSection remain = *section; 1107 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1108 1109 /* register first subpage */ 1110 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1111 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1112 - remain.offset_within_address_space; 1113 1114 MemoryRegionSection now = remain; 1115 now.size = int128_min(int128_make64(left), now.size); 1116 register_subpage(fv, &now); 1117 if (int128_eq(remain.size, now.size)) { 1118 return; 1119 } 1120 remain.size = int128_sub(remain.size, now.size); 1121 remain.offset_within_address_space += int128_get64(now.size); 1122 remain.offset_within_region += int128_get64(now.size); 1123 } 1124 1125 /* register whole pages */ 1126 if (int128_ge(remain.size, page_size)) { 1127 MemoryRegionSection now = remain; 1128 now.size = int128_and(now.size, int128_neg(page_size)); 1129 register_multipage(fv, &now); 1130 if (int128_eq(remain.size, now.size)) { 1131 return; 1132 } 1133 remain.size = int128_sub(remain.size, now.size); 1134 remain.offset_within_address_space += int128_get64(now.size); 1135 remain.offset_within_region += int128_get64(now.size); 1136 } 1137 1138 /* register last subpage */ 1139 register_subpage(fv, &remain); 1140 } 1141 1142 void qemu_flush_coalesced_mmio_buffer(void) 1143 { 1144 if (kvm_enabled()) 1145 kvm_flush_coalesced_mmio_buffer(); 1146 } 1147 1148 void qemu_mutex_lock_ramlist(void) 1149 { 1150 qemu_mutex_lock(&ram_list.mutex); 1151 } 1152 1153 void qemu_mutex_unlock_ramlist(void) 1154 { 1155 qemu_mutex_unlock(&ram_list.mutex); 1156 } 1157 1158 GString *ram_block_format(void) 1159 { 1160 RAMBlock *block; 1161 char *psize; 1162 GString *buf = g_string_new(""); 1163 1164 RCU_READ_LOCK_GUARD(); 1165 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1166 "Block Name", "PSize", "Offset", "Used", "Total", 1167 "HVA", "RO"); 1168 1169 RAMBLOCK_FOREACH(block) { 1170 psize = size_to_str(block->page_size); 1171 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1172 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1173 block->idstr, psize, 1174 (uint64_t)block->offset, 1175 (uint64_t)block->used_length, 1176 (uint64_t)block->max_length, 1177 (uint64_t)(uintptr_t)block->host, 1178 block->mr->readonly ? "ro" : "rw"); 1179 1180 g_free(psize); 1181 } 1182 1183 return buf; 1184 } 1185 1186 static int find_min_backend_pagesize(Object *obj, void *opaque) 1187 { 1188 long *hpsize_min = opaque; 1189 1190 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1191 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1192 long hpsize = host_memory_backend_pagesize(backend); 1193 1194 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1195 *hpsize_min = hpsize; 1196 } 1197 } 1198 1199 return 0; 1200 } 1201 1202 static int find_max_backend_pagesize(Object *obj, void *opaque) 1203 { 1204 long *hpsize_max = opaque; 1205 1206 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1207 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1208 long hpsize = host_memory_backend_pagesize(backend); 1209 1210 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1211 *hpsize_max = hpsize; 1212 } 1213 } 1214 1215 return 0; 1216 } 1217 1218 /* 1219 * TODO: We assume right now that all mapped host memory backends are 1220 * used as RAM, however some might be used for different purposes. 1221 */ 1222 long qemu_minrampagesize(void) 1223 { 1224 long hpsize = LONG_MAX; 1225 Object *memdev_root = object_resolve_path("/objects", NULL); 1226 1227 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1228 return hpsize; 1229 } 1230 1231 long qemu_maxrampagesize(void) 1232 { 1233 long pagesize = 0; 1234 Object *memdev_root = object_resolve_path("/objects", NULL); 1235 1236 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1237 return pagesize; 1238 } 1239 1240 #ifdef CONFIG_POSIX 1241 static int64_t get_file_size(int fd) 1242 { 1243 int64_t size; 1244 #if defined(__linux__) 1245 struct stat st; 1246 1247 if (fstat(fd, &st) < 0) { 1248 return -errno; 1249 } 1250 1251 /* Special handling for devdax character devices */ 1252 if (S_ISCHR(st.st_mode)) { 1253 g_autofree char *subsystem_path = NULL; 1254 g_autofree char *subsystem = NULL; 1255 1256 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1257 major(st.st_rdev), minor(st.st_rdev)); 1258 subsystem = g_file_read_link(subsystem_path, NULL); 1259 1260 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1261 g_autofree char *size_path = NULL; 1262 g_autofree char *size_str = NULL; 1263 1264 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1265 major(st.st_rdev), minor(st.st_rdev)); 1266 1267 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1268 return g_ascii_strtoll(size_str, NULL, 0); 1269 } 1270 } 1271 } 1272 #endif /* defined(__linux__) */ 1273 1274 /* st.st_size may be zero for special files yet lseek(2) works */ 1275 size = lseek(fd, 0, SEEK_END); 1276 if (size < 0) { 1277 return -errno; 1278 } 1279 return size; 1280 } 1281 1282 static int64_t get_file_align(int fd) 1283 { 1284 int64_t align = -1; 1285 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1286 struct stat st; 1287 1288 if (fstat(fd, &st) < 0) { 1289 return -errno; 1290 } 1291 1292 /* Special handling for devdax character devices */ 1293 if (S_ISCHR(st.st_mode)) { 1294 g_autofree char *path = NULL; 1295 g_autofree char *rpath = NULL; 1296 struct daxctl_ctx *ctx; 1297 struct daxctl_region *region; 1298 int rc = 0; 1299 1300 path = g_strdup_printf("/sys/dev/char/%d:%d", 1301 major(st.st_rdev), minor(st.st_rdev)); 1302 rpath = realpath(path, NULL); 1303 if (!rpath) { 1304 return -errno; 1305 } 1306 1307 rc = daxctl_new(&ctx); 1308 if (rc) { 1309 return -1; 1310 } 1311 1312 daxctl_region_foreach(ctx, region) { 1313 if (strstr(rpath, daxctl_region_get_path(region))) { 1314 align = daxctl_region_get_align(region); 1315 break; 1316 } 1317 } 1318 daxctl_unref(ctx); 1319 } 1320 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1321 1322 return align; 1323 } 1324 1325 static int file_ram_open(const char *path, 1326 const char *region_name, 1327 bool readonly, 1328 bool *created) 1329 { 1330 char *filename; 1331 char *sanitized_name; 1332 char *c; 1333 int fd = -1; 1334 1335 *created = false; 1336 for (;;) { 1337 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1338 if (fd >= 0) { 1339 /* 1340 * open(O_RDONLY) won't fail with EISDIR. Check manually if we 1341 * opened a directory and fail similarly to how we fail ENOENT 1342 * in readonly mode. Note that mkstemp() would imply O_RDWR. 1343 */ 1344 if (readonly) { 1345 struct stat file_stat; 1346 1347 if (fstat(fd, &file_stat)) { 1348 close(fd); 1349 if (errno == EINTR) { 1350 continue; 1351 } 1352 return -errno; 1353 } else if (S_ISDIR(file_stat.st_mode)) { 1354 close(fd); 1355 return -EISDIR; 1356 } 1357 } 1358 /* @path names an existing file, use it */ 1359 break; 1360 } 1361 if (errno == ENOENT) { 1362 if (readonly) { 1363 /* Refuse to create new, readonly files. */ 1364 return -ENOENT; 1365 } 1366 /* @path names a file that doesn't exist, create it */ 1367 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1368 if (fd >= 0) { 1369 *created = true; 1370 break; 1371 } 1372 } else if (errno == EISDIR) { 1373 /* @path names a directory, create a file there */ 1374 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1375 sanitized_name = g_strdup(region_name); 1376 for (c = sanitized_name; *c != '\0'; c++) { 1377 if (*c == '/') { 1378 *c = '_'; 1379 } 1380 } 1381 1382 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1383 sanitized_name); 1384 g_free(sanitized_name); 1385 1386 fd = mkstemp(filename); 1387 if (fd >= 0) { 1388 unlink(filename); 1389 g_free(filename); 1390 break; 1391 } 1392 g_free(filename); 1393 } 1394 if (errno != EEXIST && errno != EINTR) { 1395 return -errno; 1396 } 1397 /* 1398 * Try again on EINTR and EEXIST. The latter happens when 1399 * something else creates the file between our two open(). 1400 */ 1401 } 1402 1403 return fd; 1404 } 1405 1406 static void *file_ram_alloc(RAMBlock *block, 1407 ram_addr_t memory, 1408 int fd, 1409 bool truncate, 1410 off_t offset, 1411 Error **errp) 1412 { 1413 uint32_t qemu_map_flags; 1414 void *area; 1415 1416 block->page_size = qemu_fd_getpagesize(fd); 1417 if (block->mr->align % block->page_size) { 1418 error_setg(errp, "alignment 0x%" PRIx64 1419 " must be multiples of page size 0x%zx", 1420 block->mr->align, block->page_size); 1421 return NULL; 1422 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1423 error_setg(errp, "alignment 0x%" PRIx64 1424 " must be a power of two", block->mr->align); 1425 return NULL; 1426 } else if (offset % block->page_size) { 1427 error_setg(errp, "offset 0x%" PRIx64 1428 " must be multiples of page size 0x%zx", 1429 offset, block->page_size); 1430 return NULL; 1431 } 1432 block->mr->align = MAX(block->page_size, block->mr->align); 1433 #if defined(__s390x__) 1434 if (kvm_enabled()) { 1435 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1436 } 1437 #endif 1438 1439 if (memory < block->page_size) { 1440 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1441 "or larger than page size 0x%zx", 1442 memory, block->page_size); 1443 return NULL; 1444 } 1445 1446 memory = ROUND_UP(memory, block->page_size); 1447 1448 /* 1449 * ftruncate is not supported by hugetlbfs in older 1450 * hosts, so don't bother bailing out on errors. 1451 * If anything goes wrong with it under other filesystems, 1452 * mmap will fail. 1453 * 1454 * Do not truncate the non-empty backend file to avoid corrupting 1455 * the existing data in the file. Disabling shrinking is not 1456 * enough. For example, the current vNVDIMM implementation stores 1457 * the guest NVDIMM labels at the end of the backend file. If the 1458 * backend file is later extended, QEMU will not be able to find 1459 * those labels. Therefore, extending the non-empty backend file 1460 * is disabled as well. 1461 */ 1462 if (truncate && ftruncate(fd, offset + memory)) { 1463 perror("ftruncate"); 1464 } 1465 1466 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0; 1467 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1468 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1469 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1470 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1471 if (area == MAP_FAILED) { 1472 error_setg_errno(errp, errno, 1473 "unable to map backing store for guest RAM"); 1474 return NULL; 1475 } 1476 1477 block->fd = fd; 1478 block->fd_offset = offset; 1479 return area; 1480 } 1481 #endif 1482 1483 /* Allocate space within the ram_addr_t space that governs the 1484 * dirty bitmaps. 1485 * Called with the ramlist lock held. 1486 */ 1487 static ram_addr_t find_ram_offset(ram_addr_t size) 1488 { 1489 RAMBlock *block, *next_block; 1490 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1491 1492 assert(size != 0); /* it would hand out same offset multiple times */ 1493 1494 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1495 return 0; 1496 } 1497 1498 RAMBLOCK_FOREACH(block) { 1499 ram_addr_t candidate, next = RAM_ADDR_MAX; 1500 1501 /* Align blocks to start on a 'long' in the bitmap 1502 * which makes the bitmap sync'ing take the fast path. 1503 */ 1504 candidate = block->offset + block->max_length; 1505 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1506 1507 /* Search for the closest following block 1508 * and find the gap. 1509 */ 1510 RAMBLOCK_FOREACH(next_block) { 1511 if (next_block->offset >= candidate) { 1512 next = MIN(next, next_block->offset); 1513 } 1514 } 1515 1516 /* If it fits remember our place and remember the size 1517 * of gap, but keep going so that we might find a smaller 1518 * gap to fill so avoiding fragmentation. 1519 */ 1520 if (next - candidate >= size && next - candidate < mingap) { 1521 offset = candidate; 1522 mingap = next - candidate; 1523 } 1524 1525 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1526 } 1527 1528 if (offset == RAM_ADDR_MAX) { 1529 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1530 (uint64_t)size); 1531 abort(); 1532 } 1533 1534 trace_find_ram_offset(size, offset); 1535 1536 return offset; 1537 } 1538 1539 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1540 { 1541 int ret; 1542 1543 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1544 if (!machine_dump_guest_core(current_machine)) { 1545 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1546 if (ret) { 1547 perror("qemu_madvise"); 1548 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1549 "but dump-guest-core=off specified\n"); 1550 } 1551 } 1552 } 1553 1554 const char *qemu_ram_get_idstr(RAMBlock *rb) 1555 { 1556 return rb->idstr; 1557 } 1558 1559 void *qemu_ram_get_host_addr(RAMBlock *rb) 1560 { 1561 return rb->host; 1562 } 1563 1564 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1565 { 1566 return rb->offset; 1567 } 1568 1569 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1570 { 1571 return rb->used_length; 1572 } 1573 1574 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1575 { 1576 return rb->max_length; 1577 } 1578 1579 bool qemu_ram_is_shared(RAMBlock *rb) 1580 { 1581 return rb->flags & RAM_SHARED; 1582 } 1583 1584 bool qemu_ram_is_noreserve(RAMBlock *rb) 1585 { 1586 return rb->flags & RAM_NORESERVE; 1587 } 1588 1589 /* Note: Only set at the start of postcopy */ 1590 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1591 { 1592 return rb->flags & RAM_UF_ZEROPAGE; 1593 } 1594 1595 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1596 { 1597 rb->flags |= RAM_UF_ZEROPAGE; 1598 } 1599 1600 bool qemu_ram_is_migratable(RAMBlock *rb) 1601 { 1602 return rb->flags & RAM_MIGRATABLE; 1603 } 1604 1605 void qemu_ram_set_migratable(RAMBlock *rb) 1606 { 1607 rb->flags |= RAM_MIGRATABLE; 1608 } 1609 1610 void qemu_ram_unset_migratable(RAMBlock *rb) 1611 { 1612 rb->flags &= ~RAM_MIGRATABLE; 1613 } 1614 1615 bool qemu_ram_is_named_file(RAMBlock *rb) 1616 { 1617 return rb->flags & RAM_NAMED_FILE; 1618 } 1619 1620 int qemu_ram_get_fd(RAMBlock *rb) 1621 { 1622 return rb->fd; 1623 } 1624 1625 /* Called with the BQL held. */ 1626 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1627 { 1628 RAMBlock *block; 1629 1630 assert(new_block); 1631 assert(!new_block->idstr[0]); 1632 1633 if (dev) { 1634 char *id = qdev_get_dev_path(dev); 1635 if (id) { 1636 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1637 g_free(id); 1638 } 1639 } 1640 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1641 1642 RCU_READ_LOCK_GUARD(); 1643 RAMBLOCK_FOREACH(block) { 1644 if (block != new_block && 1645 !strcmp(block->idstr, new_block->idstr)) { 1646 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1647 new_block->idstr); 1648 abort(); 1649 } 1650 } 1651 } 1652 1653 /* Called with the BQL held. */ 1654 void qemu_ram_unset_idstr(RAMBlock *block) 1655 { 1656 /* FIXME: arch_init.c assumes that this is not called throughout 1657 * migration. Ignore the problem since hot-unplug during migration 1658 * does not work anyway. 1659 */ 1660 if (block) { 1661 memset(block->idstr, 0, sizeof(block->idstr)); 1662 } 1663 } 1664 1665 static char *cpr_name(MemoryRegion *mr) 1666 { 1667 const char *mr_name = memory_region_name(mr); 1668 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL; 1669 1670 if (id) { 1671 return g_strdup_printf("%s/%s", id, mr_name); 1672 } else { 1673 return g_strdup(mr_name); 1674 } 1675 } 1676 1677 size_t qemu_ram_pagesize(RAMBlock *rb) 1678 { 1679 return rb->page_size; 1680 } 1681 1682 /* Returns the largest size of page in use */ 1683 size_t qemu_ram_pagesize_largest(void) 1684 { 1685 RAMBlock *block; 1686 size_t largest = 0; 1687 1688 RAMBLOCK_FOREACH(block) { 1689 largest = MAX(largest, qemu_ram_pagesize(block)); 1690 } 1691 1692 return largest; 1693 } 1694 1695 static int memory_try_enable_merging(void *addr, size_t len) 1696 { 1697 if (!machine_mem_merge(current_machine)) { 1698 /* disabled by the user */ 1699 return 0; 1700 } 1701 1702 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1703 } 1704 1705 /* 1706 * Resizing RAM while migrating can result in the migration being canceled. 1707 * Care has to be taken if the guest might have already detected the memory. 1708 * 1709 * As memory core doesn't know how is memory accessed, it is up to 1710 * resize callback to update device state and/or add assertions to detect 1711 * misuse, if necessary. 1712 */ 1713 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1714 { 1715 const ram_addr_t oldsize = block->used_length; 1716 const ram_addr_t unaligned_size = newsize; 1717 1718 assert(block); 1719 1720 newsize = TARGET_PAGE_ALIGN(newsize); 1721 newsize = REAL_HOST_PAGE_ALIGN(newsize); 1722 1723 if (block->used_length == newsize) { 1724 /* 1725 * We don't have to resize the ram block (which only knows aligned 1726 * sizes), however, we have to notify if the unaligned size changed. 1727 */ 1728 if (unaligned_size != memory_region_size(block->mr)) { 1729 memory_region_set_size(block->mr, unaligned_size); 1730 if (block->resized) { 1731 block->resized(block->idstr, unaligned_size, block->host); 1732 } 1733 } 1734 return 0; 1735 } 1736 1737 if (!(block->flags & RAM_RESIZEABLE)) { 1738 error_setg_errno(errp, EINVAL, 1739 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1740 " != 0x" RAM_ADDR_FMT, block->idstr, 1741 newsize, block->used_length); 1742 return -EINVAL; 1743 } 1744 1745 if (block->max_length < newsize) { 1746 error_setg_errno(errp, EINVAL, 1747 "Size too large: %s: 0x" RAM_ADDR_FMT 1748 " > 0x" RAM_ADDR_FMT, block->idstr, 1749 newsize, block->max_length); 1750 return -EINVAL; 1751 } 1752 1753 /* Notify before modifying the ram block and touching the bitmaps. */ 1754 if (block->host) { 1755 ram_block_notify_resize(block->host, oldsize, newsize); 1756 } 1757 1758 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1759 block->used_length = newsize; 1760 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1761 DIRTY_CLIENTS_ALL); 1762 memory_region_set_size(block->mr, unaligned_size); 1763 if (block->resized) { 1764 block->resized(block->idstr, unaligned_size, block->host); 1765 } 1766 return 0; 1767 } 1768 1769 /* 1770 * Trigger sync on the given ram block for range [start, start + length] 1771 * with the backing store if one is available. 1772 * Otherwise no-op. 1773 * @Note: this is supposed to be a synchronous op. 1774 */ 1775 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1776 { 1777 /* The requested range should fit in within the block range */ 1778 g_assert((start + length) <= block->used_length); 1779 1780 #ifdef CONFIG_LIBPMEM 1781 /* The lack of support for pmem should not block the sync */ 1782 if (ramblock_is_pmem(block)) { 1783 void *addr = ramblock_ptr(block, start); 1784 pmem_persist(addr, length); 1785 return; 1786 } 1787 #endif 1788 if (block->fd >= 0) { 1789 /** 1790 * Case there is no support for PMEM or the memory has not been 1791 * specified as persistent (or is not one) - use the msync. 1792 * Less optimal but still achieves the same goal 1793 */ 1794 void *addr = ramblock_ptr(block, start); 1795 if (qemu_msync(addr, length, block->fd)) { 1796 warn_report("%s: failed to sync memory range: start: " 1797 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1798 __func__, start, length); 1799 } 1800 } 1801 } 1802 1803 /* Called with ram_list.mutex held */ 1804 static void dirty_memory_extend(ram_addr_t new_ram_size) 1805 { 1806 unsigned int old_num_blocks = ram_list.num_dirty_blocks; 1807 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size, 1808 DIRTY_MEMORY_BLOCK_SIZE); 1809 int i; 1810 1811 /* Only need to extend if block count increased */ 1812 if (new_num_blocks <= old_num_blocks) { 1813 return; 1814 } 1815 1816 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1817 DirtyMemoryBlocks *old_blocks; 1818 DirtyMemoryBlocks *new_blocks; 1819 int j; 1820 1821 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1822 new_blocks = g_malloc(sizeof(*new_blocks) + 1823 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1824 1825 if (old_num_blocks) { 1826 memcpy(new_blocks->blocks, old_blocks->blocks, 1827 old_num_blocks * sizeof(old_blocks->blocks[0])); 1828 } 1829 1830 for (j = old_num_blocks; j < new_num_blocks; j++) { 1831 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1832 } 1833 1834 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1835 1836 if (old_blocks) { 1837 g_free_rcu(old_blocks, rcu); 1838 } 1839 } 1840 1841 ram_list.num_dirty_blocks = new_num_blocks; 1842 } 1843 1844 static void ram_block_add(RAMBlock *new_block, Error **errp) 1845 { 1846 const bool noreserve = qemu_ram_is_noreserve(new_block); 1847 const bool shared = qemu_ram_is_shared(new_block); 1848 RAMBlock *block; 1849 RAMBlock *last_block = NULL; 1850 bool free_on_error = false; 1851 ram_addr_t ram_size; 1852 Error *err = NULL; 1853 1854 qemu_mutex_lock_ramlist(); 1855 new_block->offset = find_ram_offset(new_block->max_length); 1856 1857 if (!new_block->host) { 1858 if (xen_enabled()) { 1859 xen_ram_alloc(new_block->offset, new_block->max_length, 1860 new_block->mr, &err); 1861 if (err) { 1862 error_propagate(errp, err); 1863 qemu_mutex_unlock_ramlist(); 1864 return; 1865 } 1866 } else { 1867 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1868 &new_block->mr->align, 1869 shared, noreserve); 1870 if (!new_block->host) { 1871 error_setg_errno(errp, errno, 1872 "cannot set up guest memory '%s'", 1873 memory_region_name(new_block->mr)); 1874 qemu_mutex_unlock_ramlist(); 1875 return; 1876 } 1877 memory_try_enable_merging(new_block->host, new_block->max_length); 1878 free_on_error = true; 1879 } 1880 } 1881 1882 if (new_block->flags & RAM_GUEST_MEMFD) { 1883 int ret; 1884 1885 if (!kvm_enabled()) { 1886 error_setg(errp, "cannot set up private guest memory for %s: KVM required", 1887 object_get_typename(OBJECT(current_machine->cgs))); 1888 goto out_free; 1889 } 1890 assert(new_block->guest_memfd < 0); 1891 1892 ret = ram_block_discard_require(true); 1893 if (ret < 0) { 1894 error_setg_errno(errp, -ret, 1895 "cannot set up private guest memory: discard currently blocked"); 1896 error_append_hint(errp, "Are you using assigned devices?\n"); 1897 goto out_free; 1898 } 1899 1900 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length, 1901 0, errp); 1902 if (new_block->guest_memfd < 0) { 1903 qemu_mutex_unlock_ramlist(); 1904 goto out_free; 1905 } 1906 } 1907 1908 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS; 1909 dirty_memory_extend(ram_size); 1910 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1911 * QLIST (which has an RCU-friendly variant) does not have insertion at 1912 * tail, so save the last element in last_block. 1913 */ 1914 RAMBLOCK_FOREACH(block) { 1915 last_block = block; 1916 if (block->max_length < new_block->max_length) { 1917 break; 1918 } 1919 } 1920 if (block) { 1921 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1922 } else if (last_block) { 1923 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1924 } else { /* list is empty */ 1925 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1926 } 1927 ram_list.mru_block = NULL; 1928 1929 /* Write list before version */ 1930 smp_wmb(); 1931 ram_list.version++; 1932 qemu_mutex_unlock_ramlist(); 1933 1934 cpu_physical_memory_set_dirty_range(new_block->offset, 1935 new_block->used_length, 1936 DIRTY_CLIENTS_ALL); 1937 1938 if (new_block->host) { 1939 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1940 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1941 /* 1942 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1943 * Configure it unless the machine is a qtest server, in which case 1944 * KVM is not used and it may be forked (eg for fuzzing purposes). 1945 */ 1946 if (!qtest_enabled()) { 1947 qemu_madvise(new_block->host, new_block->max_length, 1948 QEMU_MADV_DONTFORK); 1949 } 1950 ram_block_notify_add(new_block->host, new_block->used_length, 1951 new_block->max_length); 1952 } 1953 return; 1954 1955 out_free: 1956 if (free_on_error) { 1957 qemu_anon_ram_free(new_block->host, new_block->max_length); 1958 new_block->host = NULL; 1959 } 1960 } 1961 1962 #ifdef CONFIG_POSIX 1963 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size, 1964 qemu_ram_resize_cb resized, MemoryRegion *mr, 1965 uint32_t ram_flags, int fd, off_t offset, 1966 bool grow, 1967 Error **errp) 1968 { 1969 ERRP_GUARD(); 1970 RAMBlock *new_block; 1971 Error *local_err = NULL; 1972 int64_t file_size, file_align, share_flags; 1973 1974 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 1975 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 1976 ram_flags &= ~RAM_PRIVATE; 1977 1978 /* Just support these ram flags by now. */ 1979 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1980 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY | 1981 RAM_READONLY_FD | RAM_GUEST_MEMFD | 1982 RAM_RESIZEABLE)) == 0); 1983 assert(max_size >= size); 1984 1985 if (xen_enabled()) { 1986 error_setg(errp, "-mem-path not supported with Xen"); 1987 return NULL; 1988 } 1989 1990 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1991 error_setg(errp, 1992 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1993 return NULL; 1994 } 1995 1996 size = TARGET_PAGE_ALIGN(size); 1997 size = REAL_HOST_PAGE_ALIGN(size); 1998 max_size = TARGET_PAGE_ALIGN(max_size); 1999 max_size = REAL_HOST_PAGE_ALIGN(max_size); 2000 2001 file_size = get_file_size(fd); 2002 if (file_size && file_size < offset + max_size && !grow) { 2003 error_setg(errp, "%s backing store size 0x%" PRIx64 2004 " is too small for 'size' option 0x" RAM_ADDR_FMT 2005 " plus 'offset' option 0x%" PRIx64, 2006 memory_region_name(mr), file_size, max_size, 2007 (uint64_t)offset); 2008 return NULL; 2009 } 2010 2011 file_align = get_file_align(fd); 2012 if (file_align > 0 && file_align > mr->align) { 2013 error_setg(errp, "backing store align 0x%" PRIx64 2014 " is larger than 'align' option 0x%" PRIx64, 2015 file_align, mr->align); 2016 return NULL; 2017 } 2018 2019 new_block = g_malloc0(sizeof(*new_block)); 2020 new_block->mr = mr; 2021 new_block->used_length = size; 2022 new_block->max_length = max_size; 2023 new_block->resized = resized; 2024 new_block->flags = ram_flags; 2025 new_block->guest_memfd = -1; 2026 new_block->host = file_ram_alloc(new_block, max_size, fd, 2027 file_size < offset + max_size, 2028 offset, errp); 2029 if (!new_block->host) { 2030 g_free(new_block); 2031 return NULL; 2032 } 2033 2034 ram_block_add(new_block, &local_err); 2035 if (local_err) { 2036 g_free(new_block); 2037 error_propagate(errp, local_err); 2038 return NULL; 2039 } 2040 return new_block; 2041 2042 } 2043 2044 2045 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 2046 uint32_t ram_flags, const char *mem_path, 2047 off_t offset, Error **errp) 2048 { 2049 int fd; 2050 bool created; 2051 RAMBlock *block; 2052 2053 fd = file_ram_open(mem_path, memory_region_name(mr), 2054 !!(ram_flags & RAM_READONLY_FD), &created); 2055 if (fd < 0) { 2056 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM", 2057 mem_path); 2058 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) && 2059 fd == -EACCES) { 2060 /* 2061 * If we can open the file R/O (note: will never create a new file) 2062 * and we are dealing with a private mapping, there are still ways 2063 * to consume such files and get RAM instead of ROM. 2064 */ 2065 fd = file_ram_open(mem_path, memory_region_name(mr), true, 2066 &created); 2067 if (fd < 0) { 2068 return NULL; 2069 } 2070 assert(!created); 2071 close(fd); 2072 error_append_hint(errp, "Consider opening the backing store" 2073 " read-only but still creating writable RAM using" 2074 " '-object memory-backend-file,readonly=on,rom=off...'" 2075 " (see \"VM templating\" documentation)\n"); 2076 } 2077 return NULL; 2078 } 2079 2080 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset, 2081 false, errp); 2082 if (!block) { 2083 if (created) { 2084 unlink(mem_path); 2085 } 2086 close(fd); 2087 return NULL; 2088 } 2089 2090 return block; 2091 } 2092 #endif 2093 2094 #ifdef CONFIG_POSIX 2095 /* 2096 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be 2097 * shared with another process if CPR is being used. Use memfd if available 2098 * because it has no size limits, else use POSIX shm. 2099 */ 2100 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp) 2101 { 2102 int fd = cpr_find_fd(name, 0); 2103 2104 if (fd >= 0) { 2105 *reused = true; 2106 return fd; 2107 } 2108 2109 if (qemu_memfd_check(0)) { 2110 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp); 2111 } else { 2112 fd = qemu_shm_alloc(0, errp); 2113 } 2114 2115 if (fd >= 0) { 2116 cpr_save_fd(name, 0, fd); 2117 } 2118 *reused = false; 2119 return fd; 2120 } 2121 #endif 2122 2123 static 2124 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 2125 qemu_ram_resize_cb resized, 2126 void *host, uint32_t ram_flags, 2127 MemoryRegion *mr, Error **errp) 2128 { 2129 RAMBlock *new_block; 2130 Error *local_err = NULL; 2131 int align, share_flags; 2132 2133 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED); 2134 assert(share_flags != (RAM_SHARED | RAM_PRIVATE)); 2135 ram_flags &= ~RAM_PRIVATE; 2136 2137 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 2138 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0); 2139 assert(!host ^ (ram_flags & RAM_PREALLOC)); 2140 assert(max_size >= size); 2141 2142 #ifdef CONFIG_POSIX /* ignore RAM_SHARED for Windows */ 2143 if (!host) { 2144 if (!share_flags && current_machine->aux_ram_share) { 2145 ram_flags |= RAM_SHARED; 2146 } 2147 if (ram_flags & RAM_SHARED) { 2148 bool reused; 2149 g_autofree char *name = cpr_name(mr); 2150 int fd = qemu_ram_get_shared_fd(name, &reused, errp); 2151 2152 if (fd < 0) { 2153 return NULL; 2154 } 2155 2156 /* Use same alignment as qemu_anon_ram_alloc */ 2157 mr->align = QEMU_VMALLOC_ALIGN; 2158 2159 /* 2160 * This can fail if the shm mount size is too small, or alloc from 2161 * fd is not supported, but previous QEMU versions that called 2162 * qemu_anon_ram_alloc for anonymous shared memory could have 2163 * succeeded. Quietly fail and fall back. 2164 * 2165 * After cpr-transfer, new QEMU could create a memory region 2166 * with a larger max size than old, so pass reused to grow the 2167 * region if necessary. The extra space will be usable after a 2168 * guest reset. 2169 */ 2170 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr, 2171 ram_flags, fd, 0, reused, NULL); 2172 if (new_block) { 2173 trace_qemu_ram_alloc_shared(name, new_block->used_length, 2174 new_block->max_length, fd, 2175 new_block->host); 2176 return new_block; 2177 } 2178 2179 cpr_delete_fd(name, 0); 2180 close(fd); 2181 /* fall back to anon allocation */ 2182 } 2183 } 2184 #endif 2185 2186 align = qemu_real_host_page_size(); 2187 align = MAX(align, TARGET_PAGE_SIZE); 2188 size = ROUND_UP(size, align); 2189 max_size = ROUND_UP(max_size, align); 2190 2191 new_block = g_malloc0(sizeof(*new_block)); 2192 new_block->mr = mr; 2193 new_block->resized = resized; 2194 new_block->used_length = size; 2195 new_block->max_length = max_size; 2196 new_block->fd = -1; 2197 new_block->guest_memfd = -1; 2198 new_block->page_size = qemu_real_host_page_size(); 2199 new_block->host = host; 2200 new_block->flags = ram_flags; 2201 ram_block_add(new_block, &local_err); 2202 if (local_err) { 2203 g_free(new_block); 2204 error_propagate(errp, local_err); 2205 return NULL; 2206 } 2207 return new_block; 2208 } 2209 2210 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2211 MemoryRegion *mr, Error **errp) 2212 { 2213 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2214 errp); 2215 } 2216 2217 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2218 MemoryRegion *mr, Error **errp) 2219 { 2220 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD | 2221 RAM_PRIVATE)) == 0); 2222 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2223 } 2224 2225 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2226 qemu_ram_resize_cb resized, 2227 MemoryRegion *mr, Error **errp) 2228 { 2229 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2230 RAM_RESIZEABLE, mr, errp); 2231 } 2232 2233 static void reclaim_ramblock(RAMBlock *block) 2234 { 2235 if (block->flags & RAM_PREALLOC) { 2236 ; 2237 } else if (xen_enabled()) { 2238 xen_invalidate_map_cache_entry(block->host); 2239 #ifndef _WIN32 2240 } else if (block->fd >= 0) { 2241 qemu_ram_munmap(block->fd, block->host, block->max_length); 2242 close(block->fd); 2243 #endif 2244 } else { 2245 qemu_anon_ram_free(block->host, block->max_length); 2246 } 2247 2248 if (block->guest_memfd >= 0) { 2249 close(block->guest_memfd); 2250 ram_block_discard_require(false); 2251 } 2252 2253 g_free(block); 2254 } 2255 2256 void qemu_ram_free(RAMBlock *block) 2257 { 2258 g_autofree char *name = NULL; 2259 2260 if (!block) { 2261 return; 2262 } 2263 2264 if (block->host) { 2265 ram_block_notify_remove(block->host, block->used_length, 2266 block->max_length); 2267 } 2268 2269 qemu_mutex_lock_ramlist(); 2270 name = cpr_name(block->mr); 2271 cpr_delete_fd(name, 0); 2272 QLIST_REMOVE_RCU(block, next); 2273 ram_list.mru_block = NULL; 2274 /* Write list before version */ 2275 smp_wmb(); 2276 ram_list.version++; 2277 call_rcu(block, reclaim_ramblock, rcu); 2278 qemu_mutex_unlock_ramlist(); 2279 } 2280 2281 #ifndef _WIN32 2282 /* Simply remap the given VM memory location from start to start+length */ 2283 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length) 2284 { 2285 int flags, prot; 2286 void *area; 2287 void *host_startaddr = block->host + start; 2288 2289 assert(block->fd < 0); 2290 flags = MAP_FIXED | MAP_ANONYMOUS; 2291 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE; 2292 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2293 prot = PROT_READ; 2294 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE; 2295 area = mmap(host_startaddr, length, prot, flags, -1, 0); 2296 return area != host_startaddr ? -errno : 0; 2297 } 2298 2299 /* 2300 * qemu_ram_remap - remap a single RAM page 2301 * 2302 * @addr: address in ram_addr_t address space. 2303 * 2304 * This function will try remapping a single page of guest RAM identified by 2305 * @addr, essentially discarding memory to recover from previously poisoned 2306 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr 2307 * does not have to point at the start of the page. 2308 * 2309 * This function is only to be used during system resets; it will kill the 2310 * VM if remapping failed. 2311 */ 2312 void qemu_ram_remap(ram_addr_t addr) 2313 { 2314 RAMBlock *block; 2315 uint64_t offset; 2316 void *vaddr; 2317 size_t page_size; 2318 2319 RAMBLOCK_FOREACH(block) { 2320 offset = addr - block->offset; 2321 if (offset < block->max_length) { 2322 /* Respect the pagesize of our RAMBlock */ 2323 page_size = qemu_ram_pagesize(block); 2324 offset = QEMU_ALIGN_DOWN(offset, page_size); 2325 2326 vaddr = ramblock_ptr(block, offset); 2327 if (block->flags & RAM_PREALLOC) { 2328 ; 2329 } else if (xen_enabled()) { 2330 abort(); 2331 } else { 2332 if (ram_block_discard_range(block, offset, page_size) != 0) { 2333 /* 2334 * Fall back to using mmap() only for anonymous mapping, 2335 * as if a backing file is associated we may not be able 2336 * to recover the memory in all cases. 2337 * So don't take the risk of using only mmap and fail now. 2338 */ 2339 if (block->fd >= 0) { 2340 error_report("Could not remap RAM %s:%" PRIx64 "+%" 2341 PRIx64 " +%zx", block->idstr, offset, 2342 block->fd_offset, page_size); 2343 exit(1); 2344 } 2345 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) { 2346 error_report("Could not remap RAM %s:%" PRIx64 " +%zx", 2347 block->idstr, offset, page_size); 2348 exit(1); 2349 } 2350 } 2351 memory_try_enable_merging(vaddr, page_size); 2352 qemu_ram_setup_dump(vaddr, page_size); 2353 } 2354 2355 break; 2356 } 2357 } 2358 } 2359 #endif /* !_WIN32 */ 2360 2361 /* 2362 * Return a host pointer to guest's ram. 2363 * For Xen, foreign mappings get created if they don't already exist. 2364 * 2365 * @block: block for the RAM to lookup (optional and may be NULL). 2366 * @addr: address within the memory region. 2367 * @size: pointer to requested size (optional and may be NULL). 2368 * size may get modified and return a value smaller than 2369 * what was requested. 2370 * @lock: wether to lock the mapping in xen-mapcache until invalidated. 2371 * @is_write: hint wether to map RW or RO in the xen-mapcache. 2372 * (optional and may always be set to true). 2373 * 2374 * Called within RCU critical section. 2375 */ 2376 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr, 2377 hwaddr *size, bool lock, 2378 bool is_write) 2379 { 2380 hwaddr len = 0; 2381 2382 if (size && *size == 0) { 2383 return NULL; 2384 } 2385 2386 if (block == NULL) { 2387 block = qemu_get_ram_block(addr); 2388 addr -= block->offset; 2389 } 2390 if (size) { 2391 *size = MIN(*size, block->max_length - addr); 2392 len = *size; 2393 } 2394 2395 if (xen_enabled() && block->host == NULL) { 2396 /* We need to check if the requested address is in the RAM 2397 * because we don't want to map the entire memory in QEMU. 2398 * In that case just map the requested area. 2399 */ 2400 if (xen_mr_is_memory(block->mr)) { 2401 return xen_map_cache(block->mr, block->offset + addr, 2402 len, block->offset, 2403 lock, lock, is_write); 2404 } 2405 2406 block->host = xen_map_cache(block->mr, block->offset, 2407 block->max_length, 2408 block->offset, 2409 1, lock, is_write); 2410 } 2411 2412 return ramblock_ptr(block, addr); 2413 } 2414 2415 /* 2416 * Return a host pointer to ram allocated with qemu_ram_alloc. 2417 * This should not be used for general purpose DMA. Use address_space_map 2418 * or address_space_rw instead. For local memory (e.g. video ram) that the 2419 * device owns, use memory_region_get_ram_ptr. 2420 * 2421 * Called within RCU critical section. 2422 */ 2423 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2424 { 2425 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true); 2426 } 2427 2428 /* Return the offset of a hostpointer within a ramblock */ 2429 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2430 { 2431 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2432 assert((uintptr_t)host >= (uintptr_t)rb->host); 2433 assert(res < rb->max_length); 2434 2435 return res; 2436 } 2437 2438 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2439 ram_addr_t *offset) 2440 { 2441 RAMBlock *block; 2442 uint8_t *host = ptr; 2443 2444 if (xen_enabled()) { 2445 ram_addr_t ram_addr; 2446 RCU_READ_LOCK_GUARD(); 2447 ram_addr = xen_ram_addr_from_mapcache(ptr); 2448 if (ram_addr == RAM_ADDR_INVALID) { 2449 return NULL; 2450 } 2451 2452 block = qemu_get_ram_block(ram_addr); 2453 if (block) { 2454 *offset = ram_addr - block->offset; 2455 } 2456 return block; 2457 } 2458 2459 RCU_READ_LOCK_GUARD(); 2460 block = qatomic_rcu_read(&ram_list.mru_block); 2461 if (block && block->host && host - block->host < block->max_length) { 2462 goto found; 2463 } 2464 2465 RAMBLOCK_FOREACH(block) { 2466 /* This case append when the block is not mapped. */ 2467 if (block->host == NULL) { 2468 continue; 2469 } 2470 if (host - block->host < block->max_length) { 2471 goto found; 2472 } 2473 } 2474 2475 return NULL; 2476 2477 found: 2478 *offset = (host - block->host); 2479 if (round_offset) { 2480 *offset &= TARGET_PAGE_MASK; 2481 } 2482 return block; 2483 } 2484 2485 /* 2486 * Finds the named RAMBlock 2487 * 2488 * name: The name of RAMBlock to find 2489 * 2490 * Returns: RAMBlock (or NULL if not found) 2491 */ 2492 RAMBlock *qemu_ram_block_by_name(const char *name) 2493 { 2494 RAMBlock *block; 2495 2496 RAMBLOCK_FOREACH(block) { 2497 if (!strcmp(name, block->idstr)) { 2498 return block; 2499 } 2500 } 2501 2502 return NULL; 2503 } 2504 2505 /* 2506 * Some of the system routines need to translate from a host pointer 2507 * (typically a TLB entry) back to a ram offset. 2508 */ 2509 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2510 { 2511 RAMBlock *block; 2512 ram_addr_t offset; 2513 2514 block = qemu_ram_block_from_host(ptr, false, &offset); 2515 if (!block) { 2516 return RAM_ADDR_INVALID; 2517 } 2518 2519 return block->offset + offset; 2520 } 2521 2522 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2523 { 2524 ram_addr_t ram_addr; 2525 2526 ram_addr = qemu_ram_addr_from_host(ptr); 2527 if (ram_addr == RAM_ADDR_INVALID) { 2528 error_report("Bad ram pointer %p", ptr); 2529 abort(); 2530 } 2531 return ram_addr; 2532 } 2533 2534 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2535 MemTxAttrs attrs, void *buf, hwaddr len); 2536 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2537 const void *buf, hwaddr len); 2538 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2539 bool is_write, MemTxAttrs attrs); 2540 2541 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2542 unsigned len, MemTxAttrs attrs) 2543 { 2544 subpage_t *subpage = opaque; 2545 uint8_t buf[8]; 2546 MemTxResult res; 2547 2548 #if defined(DEBUG_SUBPAGE) 2549 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2550 subpage, len, addr); 2551 #endif 2552 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2553 if (res) { 2554 return res; 2555 } 2556 *data = ldn_p(buf, len); 2557 return MEMTX_OK; 2558 } 2559 2560 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2561 uint64_t value, unsigned len, MemTxAttrs attrs) 2562 { 2563 subpage_t *subpage = opaque; 2564 uint8_t buf[8]; 2565 2566 #if defined(DEBUG_SUBPAGE) 2567 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2568 " value %"PRIx64"\n", 2569 __func__, subpage, len, addr, value); 2570 #endif 2571 stn_p(buf, len, value); 2572 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2573 } 2574 2575 static bool subpage_accepts(void *opaque, hwaddr addr, 2576 unsigned len, bool is_write, 2577 MemTxAttrs attrs) 2578 { 2579 subpage_t *subpage = opaque; 2580 #if defined(DEBUG_SUBPAGE) 2581 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2582 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2583 #endif 2584 2585 return flatview_access_valid(subpage->fv, addr + subpage->base, 2586 len, is_write, attrs); 2587 } 2588 2589 static const MemoryRegionOps subpage_ops = { 2590 .read_with_attrs = subpage_read, 2591 .write_with_attrs = subpage_write, 2592 .impl.min_access_size = 1, 2593 .impl.max_access_size = 8, 2594 .valid.min_access_size = 1, 2595 .valid.max_access_size = 8, 2596 .valid.accepts = subpage_accepts, 2597 .endianness = DEVICE_NATIVE_ENDIAN, 2598 }; 2599 2600 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2601 uint16_t section) 2602 { 2603 int idx, eidx; 2604 2605 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2606 return -1; 2607 idx = SUBPAGE_IDX(start); 2608 eidx = SUBPAGE_IDX(end); 2609 #if defined(DEBUG_SUBPAGE) 2610 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2611 __func__, mmio, start, end, idx, eidx, section); 2612 #endif 2613 for (; idx <= eidx; idx++) { 2614 mmio->sub_section[idx] = section; 2615 } 2616 2617 return 0; 2618 } 2619 2620 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2621 { 2622 subpage_t *mmio; 2623 2624 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2625 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2626 mmio->fv = fv; 2627 mmio->base = base; 2628 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2629 NULL, TARGET_PAGE_SIZE); 2630 mmio->iomem.subpage = true; 2631 #if defined(DEBUG_SUBPAGE) 2632 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2633 mmio, base, TARGET_PAGE_SIZE); 2634 #endif 2635 2636 return mmio; 2637 } 2638 2639 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2640 { 2641 assert(fv); 2642 MemoryRegionSection section = { 2643 .fv = fv, 2644 .mr = mr, 2645 .offset_within_address_space = 0, 2646 .offset_within_region = 0, 2647 .size = int128_2_64(), 2648 }; 2649 2650 return phys_section_add(map, §ion); 2651 } 2652 2653 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2654 hwaddr index, MemTxAttrs attrs) 2655 { 2656 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2657 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2658 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2659 int section_index = index & ~TARGET_PAGE_MASK; 2660 MemoryRegionSection *ret; 2661 2662 assert(section_index < d->map.sections_nb); 2663 ret = d->map.sections + section_index; 2664 assert(ret->mr); 2665 assert(ret->mr->ops); 2666 2667 return ret; 2668 } 2669 2670 static void io_mem_init(void) 2671 { 2672 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2673 NULL, UINT64_MAX); 2674 } 2675 2676 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2677 { 2678 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2679 uint16_t n; 2680 2681 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2682 assert(n == PHYS_SECTION_UNASSIGNED); 2683 2684 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2685 2686 return d; 2687 } 2688 2689 void address_space_dispatch_free(AddressSpaceDispatch *d) 2690 { 2691 phys_sections_free(&d->map); 2692 g_free(d); 2693 } 2694 2695 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2696 { 2697 } 2698 2699 static void tcg_log_global_after_sync(MemoryListener *listener) 2700 { 2701 CPUAddressSpace *cpuas; 2702 2703 /* Wait for the CPU to end the current TB. This avoids the following 2704 * incorrect race: 2705 * 2706 * vCPU migration 2707 * ---------------------- ------------------------- 2708 * TLB check -> slow path 2709 * notdirty_mem_write 2710 * write to RAM 2711 * mark dirty 2712 * clear dirty flag 2713 * TLB check -> fast path 2714 * read memory 2715 * write to RAM 2716 * 2717 * by pushing the migration thread's memory read after the vCPU thread has 2718 * written the memory. 2719 */ 2720 if (replay_mode == REPLAY_MODE_NONE) { 2721 /* 2722 * VGA can make calls to this function while updating the screen. 2723 * In record/replay mode this causes a deadlock, because 2724 * run_on_cpu waits for rr mutex. Therefore no races are possible 2725 * in this case and no need for making run_on_cpu when 2726 * record/replay is enabled. 2727 */ 2728 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2729 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2730 } 2731 } 2732 2733 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2734 { 2735 CPUAddressSpace *cpuas = data.host_ptr; 2736 2737 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2738 tlb_flush(cpu); 2739 } 2740 2741 static void tcg_commit(MemoryListener *listener) 2742 { 2743 CPUAddressSpace *cpuas; 2744 CPUState *cpu; 2745 2746 assert(tcg_enabled()); 2747 /* since each CPU stores ram addresses in its TLB cache, we must 2748 reset the modified entries */ 2749 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2750 cpu = cpuas->cpu; 2751 2752 /* 2753 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2754 * Otherwise we race between (1) other cpu threads and (2) ongoing 2755 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2756 * 2757 * In addition, queueing the work function will kick the cpu back to 2758 * the main loop, which will end the RCU critical section and reclaim 2759 * the memory data structures. 2760 * 2761 * That said, the listener is also called during realize, before 2762 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2763 */ 2764 if (cpu->halt_cond) { 2765 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2766 } else { 2767 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2768 } 2769 } 2770 2771 static void memory_map_init(void) 2772 { 2773 system_memory = g_malloc(sizeof(*system_memory)); 2774 2775 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2776 address_space_init(&address_space_memory, system_memory, "memory"); 2777 2778 system_io = g_malloc(sizeof(*system_io)); 2779 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2780 65536); 2781 address_space_init(&address_space_io, system_io, "I/O"); 2782 } 2783 2784 MemoryRegion *get_system_memory(void) 2785 { 2786 return system_memory; 2787 } 2788 2789 MemoryRegion *get_system_io(void) 2790 { 2791 return system_io; 2792 } 2793 2794 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2795 hwaddr length) 2796 { 2797 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2798 ram_addr_t ramaddr = memory_region_get_ram_addr(mr); 2799 2800 /* We know we're only called for RAM MemoryRegions */ 2801 assert(ramaddr != RAM_ADDR_INVALID); 2802 addr += ramaddr; 2803 2804 /* No early return if dirty_log_mask is or becomes 0, because 2805 * cpu_physical_memory_set_dirty_range will still call 2806 * xen_modified_memory. 2807 */ 2808 if (dirty_log_mask) { 2809 dirty_log_mask = 2810 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2811 } 2812 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2813 assert(tcg_enabled()); 2814 tb_invalidate_phys_range(addr, addr + length - 1); 2815 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2816 } 2817 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2818 } 2819 2820 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2821 { 2822 /* 2823 * In principle this function would work on other memory region types too, 2824 * but the ROM device use case is the only one where this operation is 2825 * necessary. Other memory regions should use the 2826 * address_space_read/write() APIs. 2827 */ 2828 assert(memory_region_is_romd(mr)); 2829 2830 invalidate_and_set_dirty(mr, addr, size); 2831 } 2832 2833 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2834 { 2835 unsigned access_size_max = mr->ops->valid.max_access_size; 2836 2837 /* Regions are assumed to support 1-4 byte accesses unless 2838 otherwise specified. */ 2839 if (access_size_max == 0) { 2840 access_size_max = 4; 2841 } 2842 2843 /* Bound the maximum access by the alignment of the address. */ 2844 if (!mr->ops->impl.unaligned) { 2845 unsigned align_size_max = addr & -addr; 2846 if (align_size_max != 0 && align_size_max < access_size_max) { 2847 access_size_max = align_size_max; 2848 } 2849 } 2850 2851 /* Don't attempt accesses larger than the maximum. */ 2852 if (l > access_size_max) { 2853 l = access_size_max; 2854 } 2855 l = pow2floor(l); 2856 2857 return l; 2858 } 2859 2860 bool prepare_mmio_access(MemoryRegion *mr) 2861 { 2862 bool release_lock = false; 2863 2864 if (!bql_locked()) { 2865 bql_lock(); 2866 release_lock = true; 2867 } 2868 if (mr->flush_coalesced_mmio) { 2869 qemu_flush_coalesced_mmio_buffer(); 2870 } 2871 2872 return release_lock; 2873 } 2874 2875 /** 2876 * flatview_access_allowed 2877 * @mr: #MemoryRegion to be accessed 2878 * @attrs: memory transaction attributes 2879 * @addr: address within that memory region 2880 * @len: the number of bytes to access 2881 * 2882 * Check if a memory transaction is allowed. 2883 * 2884 * Returns: true if transaction is allowed, false if denied. 2885 */ 2886 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2887 hwaddr addr, hwaddr len) 2888 { 2889 if (likely(!attrs.memory)) { 2890 return true; 2891 } 2892 if (memory_region_is_ram(mr)) { 2893 return true; 2894 } 2895 qemu_log_mask(LOG_INVALID_MEM, 2896 "Invalid access to non-RAM device at " 2897 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2898 "region '%s'\n", addr, len, memory_region_name(mr)); 2899 return false; 2900 } 2901 2902 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs, 2903 const uint8_t *buf, 2904 hwaddr len, hwaddr mr_addr, 2905 hwaddr *l, MemoryRegion *mr) 2906 { 2907 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 2908 return MEMTX_ACCESS_ERROR; 2909 } 2910 2911 if (!memory_access_is_direct(mr, true, attrs)) { 2912 uint64_t val; 2913 MemTxResult result; 2914 bool release_lock = prepare_mmio_access(mr); 2915 2916 *l = memory_access_size(mr, *l, mr_addr); 2917 /* 2918 * XXX: could force current_cpu to NULL to avoid 2919 * potential bugs 2920 */ 2921 2922 /* 2923 * Assure Coverity (and ourselves) that we are not going to OVERRUN 2924 * the buffer by following ldn_he_p(). 2925 */ 2926 #ifdef QEMU_STATIC_ANALYSIS 2927 assert((*l == 1 && len >= 1) || 2928 (*l == 2 && len >= 2) || 2929 (*l == 4 && len >= 4) || 2930 (*l == 8 && len >= 8)); 2931 #endif 2932 val = ldn_he_p(buf, *l); 2933 result = memory_region_dispatch_write(mr, mr_addr, val, 2934 size_memop(*l), attrs); 2935 if (release_lock) { 2936 bql_unlock(); 2937 } 2938 2939 return result; 2940 } else { 2941 /* RAM case */ 2942 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 2943 false, true); 2944 2945 memmove(ram_ptr, buf, *l); 2946 invalidate_and_set_dirty(mr, mr_addr, *l); 2947 2948 return MEMTX_OK; 2949 } 2950 } 2951 2952 /* Called within RCU critical section. */ 2953 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2954 MemTxAttrs attrs, 2955 const void *ptr, 2956 hwaddr len, hwaddr mr_addr, 2957 hwaddr l, MemoryRegion *mr) 2958 { 2959 MemTxResult result = MEMTX_OK; 2960 const uint8_t *buf = ptr; 2961 2962 for (;;) { 2963 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 2964 mr); 2965 2966 len -= l; 2967 buf += l; 2968 addr += l; 2969 2970 if (!len) { 2971 break; 2972 } 2973 2974 l = len; 2975 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2976 } 2977 2978 return result; 2979 } 2980 2981 /* Called from RCU critical section. */ 2982 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2983 const void *buf, hwaddr len) 2984 { 2985 hwaddr l; 2986 hwaddr mr_addr; 2987 MemoryRegion *mr; 2988 2989 l = len; 2990 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs); 2991 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2992 return MEMTX_ACCESS_ERROR; 2993 } 2994 return flatview_write_continue(fv, addr, attrs, buf, len, 2995 mr_addr, l, mr); 2996 } 2997 2998 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf, 2999 hwaddr len, hwaddr mr_addr, 3000 hwaddr *l, 3001 MemoryRegion *mr) 3002 { 3003 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) { 3004 return MEMTX_ACCESS_ERROR; 3005 } 3006 3007 if (!memory_access_is_direct(mr, false, attrs)) { 3008 /* I/O case */ 3009 uint64_t val; 3010 MemTxResult result; 3011 bool release_lock = prepare_mmio_access(mr); 3012 3013 *l = memory_access_size(mr, *l, mr_addr); 3014 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l), 3015 attrs); 3016 3017 /* 3018 * Assure Coverity (and ourselves) that we are not going to OVERRUN 3019 * the buffer by following stn_he_p(). 3020 */ 3021 #ifdef QEMU_STATIC_ANALYSIS 3022 assert((*l == 1 && len >= 1) || 3023 (*l == 2 && len >= 2) || 3024 (*l == 4 && len >= 4) || 3025 (*l == 8 && len >= 8)); 3026 #endif 3027 stn_he_p(buf, *l, val); 3028 3029 if (release_lock) { 3030 bql_unlock(); 3031 } 3032 return result; 3033 } else { 3034 /* RAM case */ 3035 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l, 3036 false, false); 3037 3038 memcpy(buf, ram_ptr, *l); 3039 3040 return MEMTX_OK; 3041 } 3042 } 3043 3044 /* Called within RCU critical section. */ 3045 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 3046 MemTxAttrs attrs, void *ptr, 3047 hwaddr len, hwaddr mr_addr, hwaddr l, 3048 MemoryRegion *mr) 3049 { 3050 MemTxResult result = MEMTX_OK; 3051 uint8_t *buf = ptr; 3052 3053 fuzz_dma_read_cb(addr, len, mr); 3054 for (;;) { 3055 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3056 3057 len -= l; 3058 buf += l; 3059 addr += l; 3060 3061 if (!len) { 3062 break; 3063 } 3064 3065 l = len; 3066 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3067 } 3068 3069 return result; 3070 } 3071 3072 /* Called from RCU critical section. */ 3073 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 3074 MemTxAttrs attrs, void *buf, hwaddr len) 3075 { 3076 hwaddr l; 3077 hwaddr mr_addr; 3078 MemoryRegion *mr; 3079 3080 l = len; 3081 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs); 3082 if (!flatview_access_allowed(mr, attrs, addr, len)) { 3083 return MEMTX_ACCESS_ERROR; 3084 } 3085 return flatview_read_continue(fv, addr, attrs, buf, len, 3086 mr_addr, l, mr); 3087 } 3088 3089 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 3090 MemTxAttrs attrs, void *buf, hwaddr len) 3091 { 3092 MemTxResult result = MEMTX_OK; 3093 FlatView *fv; 3094 3095 if (len > 0) { 3096 RCU_READ_LOCK_GUARD(); 3097 fv = address_space_to_flatview(as); 3098 result = flatview_read(fv, addr, attrs, buf, len); 3099 } 3100 3101 return result; 3102 } 3103 3104 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 3105 MemTxAttrs attrs, 3106 const void *buf, hwaddr len) 3107 { 3108 MemTxResult result = MEMTX_OK; 3109 FlatView *fv; 3110 3111 if (len > 0) { 3112 RCU_READ_LOCK_GUARD(); 3113 fv = address_space_to_flatview(as); 3114 result = flatview_write(fv, addr, attrs, buf, len); 3115 } 3116 3117 return result; 3118 } 3119 3120 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 3121 void *buf, hwaddr len, bool is_write) 3122 { 3123 if (is_write) { 3124 return address_space_write(as, addr, attrs, buf, len); 3125 } else { 3126 return address_space_read_full(as, addr, attrs, buf, len); 3127 } 3128 } 3129 3130 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 3131 uint8_t c, hwaddr len, MemTxAttrs attrs) 3132 { 3133 #define FILLBUF_SIZE 512 3134 uint8_t fillbuf[FILLBUF_SIZE]; 3135 int l; 3136 MemTxResult error = MEMTX_OK; 3137 3138 memset(fillbuf, c, FILLBUF_SIZE); 3139 while (len > 0) { 3140 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 3141 error |= address_space_write(as, addr, attrs, fillbuf, l); 3142 len -= l; 3143 addr += l; 3144 } 3145 3146 return error; 3147 } 3148 3149 void cpu_physical_memory_rw(hwaddr addr, void *buf, 3150 hwaddr len, bool is_write) 3151 { 3152 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 3153 buf, len, is_write); 3154 } 3155 3156 enum write_rom_type { 3157 WRITE_DATA, 3158 FLUSH_CACHE, 3159 }; 3160 3161 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 3162 hwaddr addr, 3163 MemTxAttrs attrs, 3164 const void *ptr, 3165 hwaddr len, 3166 enum write_rom_type type) 3167 { 3168 hwaddr l; 3169 uint8_t *ram_ptr; 3170 hwaddr addr1; 3171 MemoryRegion *mr; 3172 const uint8_t *buf = ptr; 3173 3174 RCU_READ_LOCK_GUARD(); 3175 while (len > 0) { 3176 l = len; 3177 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 3178 3179 if (!memory_region_supports_direct_access(mr)) { 3180 l = memory_access_size(mr, l, addr1); 3181 } else { 3182 /* ROM/RAM case */ 3183 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 3184 switch (type) { 3185 case WRITE_DATA: 3186 memcpy(ram_ptr, buf, l); 3187 invalidate_and_set_dirty(mr, addr1, l); 3188 break; 3189 case FLUSH_CACHE: 3190 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 3191 break; 3192 } 3193 } 3194 len -= l; 3195 buf += l; 3196 addr += l; 3197 } 3198 return MEMTX_OK; 3199 } 3200 3201 /* used for ROM loading : can write in RAM and ROM */ 3202 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 3203 MemTxAttrs attrs, 3204 const void *buf, hwaddr len) 3205 { 3206 return address_space_write_rom_internal(as, addr, attrs, 3207 buf, len, WRITE_DATA); 3208 } 3209 3210 void cpu_flush_icache_range(hwaddr start, hwaddr len) 3211 { 3212 /* 3213 * This function should do the same thing as an icache flush that was 3214 * triggered from within the guest. For TCG we are always cache coherent, 3215 * so there is no need to flush anything. For KVM / Xen we need to flush 3216 * the host's instruction cache at least. 3217 */ 3218 if (tcg_enabled()) { 3219 return; 3220 } 3221 3222 address_space_write_rom_internal(&address_space_memory, 3223 start, MEMTXATTRS_UNSPECIFIED, 3224 NULL, len, FLUSH_CACHE); 3225 } 3226 3227 /* 3228 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used 3229 * to detect illegal pointers passed to address_space_unmap. 3230 */ 3231 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed 3232 3233 typedef struct { 3234 uint64_t magic; 3235 MemoryRegion *mr; 3236 hwaddr addr; 3237 size_t len; 3238 uint8_t buffer[]; 3239 } BounceBuffer; 3240 3241 static void 3242 address_space_unregister_map_client_do(AddressSpaceMapClient *client) 3243 { 3244 QLIST_REMOVE(client, link); 3245 g_free(client); 3246 } 3247 3248 static void address_space_notify_map_clients_locked(AddressSpace *as) 3249 { 3250 AddressSpaceMapClient *client; 3251 3252 while (!QLIST_EMPTY(&as->map_client_list)) { 3253 client = QLIST_FIRST(&as->map_client_list); 3254 qemu_bh_schedule(client->bh); 3255 address_space_unregister_map_client_do(client); 3256 } 3257 } 3258 3259 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh) 3260 { 3261 AddressSpaceMapClient *client = g_malloc(sizeof(*client)); 3262 3263 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3264 client->bh = bh; 3265 QLIST_INSERT_HEAD(&as->map_client_list, client, link); 3266 /* Write map_client_list before reading bounce_buffer_size. */ 3267 smp_mb(); 3268 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) { 3269 address_space_notify_map_clients_locked(as); 3270 } 3271 } 3272 3273 void cpu_exec_init_all(void) 3274 { 3275 qemu_mutex_init(&ram_list.mutex); 3276 /* The data structures we set up here depend on knowing the page size, 3277 * so no more changes can be made after this point. 3278 * In an ideal world, nothing we did before we had finished the 3279 * machine setup would care about the target page size, and we could 3280 * do this much later, rather than requiring board models to state 3281 * up front what their requirements are. 3282 */ 3283 finalize_target_page_bits(); 3284 io_mem_init(); 3285 memory_map_init(); 3286 } 3287 3288 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh) 3289 { 3290 AddressSpaceMapClient *client; 3291 3292 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3293 QLIST_FOREACH(client, &as->map_client_list, link) { 3294 if (client->bh == bh) { 3295 address_space_unregister_map_client_do(client); 3296 break; 3297 } 3298 } 3299 } 3300 3301 static void address_space_notify_map_clients(AddressSpace *as) 3302 { 3303 QEMU_LOCK_GUARD(&as->map_client_list_lock); 3304 address_space_notify_map_clients_locked(as); 3305 } 3306 3307 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3308 bool is_write, MemTxAttrs attrs) 3309 { 3310 MemoryRegion *mr; 3311 hwaddr l, xlat; 3312 3313 while (len > 0) { 3314 l = len; 3315 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3316 if (!memory_access_is_direct(mr, is_write, attrs)) { 3317 l = memory_access_size(mr, l, addr); 3318 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3319 return false; 3320 } 3321 } 3322 3323 len -= l; 3324 addr += l; 3325 } 3326 return true; 3327 } 3328 3329 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3330 hwaddr len, bool is_write, 3331 MemTxAttrs attrs) 3332 { 3333 FlatView *fv; 3334 3335 RCU_READ_LOCK_GUARD(); 3336 fv = address_space_to_flatview(as); 3337 return flatview_access_valid(fv, addr, len, is_write, attrs); 3338 } 3339 3340 static hwaddr 3341 flatview_extend_translation(FlatView *fv, hwaddr addr, 3342 hwaddr target_len, 3343 MemoryRegion *mr, hwaddr base, hwaddr len, 3344 bool is_write, MemTxAttrs attrs) 3345 { 3346 hwaddr done = 0; 3347 hwaddr xlat; 3348 MemoryRegion *this_mr; 3349 3350 for (;;) { 3351 target_len -= len; 3352 addr += len; 3353 done += len; 3354 if (target_len == 0) { 3355 return done; 3356 } 3357 3358 len = target_len; 3359 this_mr = flatview_translate(fv, addr, &xlat, 3360 &len, is_write, attrs); 3361 if (this_mr != mr || xlat != base + done) { 3362 return done; 3363 } 3364 } 3365 } 3366 3367 /* Map a physical memory region into a host virtual address. 3368 * May map a subset of the requested range, given by and returned in *plen. 3369 * May return NULL if resources needed to perform the mapping are exhausted. 3370 * Use only for reads OR writes - not for read-modify-write operations. 3371 * Use address_space_register_map_client() to know when retrying the map 3372 * operation is likely to succeed. 3373 */ 3374 void *address_space_map(AddressSpace *as, 3375 hwaddr addr, 3376 hwaddr *plen, 3377 bool is_write, 3378 MemTxAttrs attrs) 3379 { 3380 hwaddr len = *plen; 3381 hwaddr l, xlat; 3382 MemoryRegion *mr; 3383 FlatView *fv; 3384 3385 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs); 3386 3387 if (len == 0) { 3388 return NULL; 3389 } 3390 3391 l = len; 3392 RCU_READ_LOCK_GUARD(); 3393 fv = address_space_to_flatview(as); 3394 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3395 3396 if (!memory_access_is_direct(mr, is_write, attrs)) { 3397 size_t used = qatomic_read(&as->bounce_buffer_size); 3398 for (;;) { 3399 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l); 3400 size_t new_size = used + alloc; 3401 size_t actual = 3402 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size); 3403 if (actual == used) { 3404 l = alloc; 3405 break; 3406 } 3407 used = actual; 3408 } 3409 3410 if (l == 0) { 3411 *plen = 0; 3412 return NULL; 3413 } 3414 3415 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer)); 3416 bounce->magic = BOUNCE_BUFFER_MAGIC; 3417 memory_region_ref(mr); 3418 bounce->mr = mr; 3419 bounce->addr = addr; 3420 bounce->len = l; 3421 3422 if (!is_write) { 3423 flatview_read(fv, addr, attrs, 3424 bounce->buffer, l); 3425 } 3426 3427 *plen = l; 3428 return bounce->buffer; 3429 } 3430 3431 memory_region_ref(mr); 3432 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3433 l, is_write, attrs); 3434 fuzz_dma_read_cb(addr, *plen, mr); 3435 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write); 3436 } 3437 3438 /* Unmaps a memory region previously mapped by address_space_map(). 3439 * Will also mark the memory as dirty if is_write is true. access_len gives 3440 * the amount of memory that was actually read or written by the caller. 3441 */ 3442 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3443 bool is_write, hwaddr access_len) 3444 { 3445 MemoryRegion *mr; 3446 ram_addr_t addr1; 3447 3448 mr = memory_region_from_host(buffer, &addr1); 3449 if (mr != NULL) { 3450 if (is_write) { 3451 invalidate_and_set_dirty(mr, addr1, access_len); 3452 } 3453 if (xen_enabled()) { 3454 xen_invalidate_map_cache_entry(buffer); 3455 } 3456 memory_region_unref(mr); 3457 return; 3458 } 3459 3460 3461 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer); 3462 assert(bounce->magic == BOUNCE_BUFFER_MAGIC); 3463 3464 if (is_write) { 3465 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED, 3466 bounce->buffer, access_len); 3467 } 3468 3469 qatomic_sub(&as->bounce_buffer_size, bounce->len); 3470 bounce->magic = ~BOUNCE_BUFFER_MAGIC; 3471 memory_region_unref(bounce->mr); 3472 g_free(bounce); 3473 /* Write bounce_buffer_size before reading map_client_list. */ 3474 smp_mb(); 3475 address_space_notify_map_clients(as); 3476 } 3477 3478 void *cpu_physical_memory_map(hwaddr addr, 3479 hwaddr *plen, 3480 bool is_write) 3481 { 3482 return address_space_map(&address_space_memory, addr, plen, is_write, 3483 MEMTXATTRS_UNSPECIFIED); 3484 } 3485 3486 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3487 bool is_write, hwaddr access_len) 3488 { 3489 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3490 } 3491 3492 #define ARG1_DECL AddressSpace *as 3493 #define ARG1 as 3494 #define SUFFIX 3495 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3496 #define RCU_READ_LOCK(...) rcu_read_lock() 3497 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3498 #include "memory_ldst.c.inc" 3499 3500 int64_t address_space_cache_init(MemoryRegionCache *cache, 3501 AddressSpace *as, 3502 hwaddr addr, 3503 hwaddr len, 3504 bool is_write) 3505 { 3506 AddressSpaceDispatch *d; 3507 hwaddr l; 3508 MemoryRegion *mr; 3509 Int128 diff; 3510 3511 assert(len > 0); 3512 3513 l = len; 3514 cache->fv = address_space_get_flatview(as); 3515 d = flatview_to_dispatch(cache->fv); 3516 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3517 3518 /* 3519 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3520 * Take that into account to compute how many bytes are there between 3521 * cache->xlat and the end of the section. 3522 */ 3523 diff = int128_sub(cache->mrs.size, 3524 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3525 l = int128_get64(int128_min(diff, int128_make64(l))); 3526 3527 mr = cache->mrs.mr; 3528 memory_region_ref(mr); 3529 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) { 3530 /* We don't care about the memory attributes here as we're only 3531 * doing this if we found actual RAM, which behaves the same 3532 * regardless of attributes; so UNSPECIFIED is fine. 3533 */ 3534 l = flatview_extend_translation(cache->fv, addr, len, mr, 3535 cache->xlat, l, is_write, 3536 MEMTXATTRS_UNSPECIFIED); 3537 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true, 3538 is_write); 3539 } else { 3540 cache->ptr = NULL; 3541 } 3542 3543 cache->len = l; 3544 cache->is_write = is_write; 3545 return l; 3546 } 3547 3548 void address_space_cache_invalidate(MemoryRegionCache *cache, 3549 hwaddr addr, 3550 hwaddr access_len) 3551 { 3552 assert(cache->is_write); 3553 if (likely(cache->ptr)) { 3554 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3555 } 3556 } 3557 3558 void address_space_cache_destroy(MemoryRegionCache *cache) 3559 { 3560 if (!cache->mrs.mr) { 3561 return; 3562 } 3563 3564 if (xen_enabled()) { 3565 xen_invalidate_map_cache_entry(cache->ptr); 3566 } 3567 memory_region_unref(cache->mrs.mr); 3568 flatview_unref(cache->fv); 3569 cache->mrs.mr = NULL; 3570 cache->fv = NULL; 3571 } 3572 3573 /* Called from RCU critical section. This function has the same 3574 * semantics as address_space_translate, but it only works on a 3575 * predefined range of a MemoryRegion that was mapped with 3576 * address_space_cache_init. 3577 */ 3578 static inline MemoryRegion *address_space_translate_cached( 3579 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3580 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3581 { 3582 MemoryRegionSection section; 3583 MemoryRegion *mr; 3584 IOMMUMemoryRegion *iommu_mr; 3585 AddressSpace *target_as; 3586 3587 assert(!cache->ptr); 3588 *xlat = addr + cache->xlat; 3589 3590 mr = cache->mrs.mr; 3591 iommu_mr = memory_region_get_iommu(mr); 3592 if (!iommu_mr) { 3593 /* MMIO region. */ 3594 return mr; 3595 } 3596 3597 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3598 NULL, is_write, true, 3599 &target_as, attrs); 3600 return section.mr; 3601 } 3602 3603 /* Called within RCU critical section. */ 3604 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs, 3605 const void *ptr, 3606 hwaddr len, 3607 hwaddr mr_addr, 3608 hwaddr l, 3609 MemoryRegion *mr) 3610 { 3611 MemTxResult result = MEMTX_OK; 3612 const uint8_t *buf = ptr; 3613 3614 for (;;) { 3615 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l, 3616 mr); 3617 3618 len -= l; 3619 buf += l; 3620 mr_addr += l; 3621 3622 if (!len) { 3623 break; 3624 } 3625 3626 l = len; 3627 } 3628 3629 return result; 3630 } 3631 3632 /* Called within RCU critical section. */ 3633 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs, 3634 void *ptr, hwaddr len, 3635 hwaddr mr_addr, hwaddr l, 3636 MemoryRegion *mr) 3637 { 3638 MemTxResult result = MEMTX_OK; 3639 uint8_t *buf = ptr; 3640 3641 for (;;) { 3642 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr); 3643 len -= l; 3644 buf += l; 3645 mr_addr += l; 3646 3647 if (!len) { 3648 break; 3649 } 3650 l = len; 3651 } 3652 3653 return result; 3654 } 3655 3656 /* Called from RCU critical section. address_space_read_cached uses this 3657 * out of line function when the target is an MMIO or IOMMU region. 3658 */ 3659 MemTxResult 3660 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3661 void *buf, hwaddr len) 3662 { 3663 hwaddr mr_addr, l; 3664 MemoryRegion *mr; 3665 3666 l = len; 3667 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false, 3668 MEMTXATTRS_UNSPECIFIED); 3669 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED, 3670 buf, len, mr_addr, l, mr); 3671 } 3672 3673 /* Called from RCU critical section. address_space_write_cached uses this 3674 * out of line function when the target is an MMIO or IOMMU region. 3675 */ 3676 MemTxResult 3677 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3678 const void *buf, hwaddr len) 3679 { 3680 hwaddr mr_addr, l; 3681 MemoryRegion *mr; 3682 3683 l = len; 3684 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true, 3685 MEMTXATTRS_UNSPECIFIED); 3686 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED, 3687 buf, len, mr_addr, l, mr); 3688 } 3689 3690 #define ARG1_DECL MemoryRegionCache *cache 3691 #define ARG1 cache 3692 #define SUFFIX _cached_slow 3693 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3694 #define RCU_READ_LOCK() ((void)0) 3695 #define RCU_READ_UNLOCK() ((void)0) 3696 #include "memory_ldst.c.inc" 3697 3698 /* virtual memory access for debug (includes writing to ROM) */ 3699 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3700 void *ptr, size_t len, bool is_write) 3701 { 3702 hwaddr phys_addr; 3703 vaddr l, page; 3704 uint8_t *buf = ptr; 3705 3706 cpu_synchronize_state(cpu); 3707 while (len > 0) { 3708 int asidx; 3709 MemTxAttrs attrs; 3710 MemTxResult res; 3711 3712 page = addr & TARGET_PAGE_MASK; 3713 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3714 asidx = cpu_asidx_from_attrs(cpu, attrs); 3715 /* if no physical page mapped, return an error */ 3716 if (phys_addr == -1) 3717 return -1; 3718 l = (page + TARGET_PAGE_SIZE) - addr; 3719 if (l > len) 3720 l = len; 3721 phys_addr += (addr & ~TARGET_PAGE_MASK); 3722 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf, 3723 l, is_write); 3724 if (res != MEMTX_OK) { 3725 return -1; 3726 } 3727 len -= l; 3728 buf += l; 3729 addr += l; 3730 } 3731 return 0; 3732 } 3733 3734 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3735 { 3736 MemoryRegion*mr; 3737 hwaddr l = 1; 3738 3739 RCU_READ_LOCK_GUARD(); 3740 mr = address_space_translate(&address_space_memory, 3741 phys_addr, &phys_addr, &l, false, 3742 MEMTXATTRS_UNSPECIFIED); 3743 3744 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3745 } 3746 3747 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3748 { 3749 RAMBlock *block; 3750 int ret = 0; 3751 3752 RCU_READ_LOCK_GUARD(); 3753 RAMBLOCK_FOREACH(block) { 3754 ret = func(block, opaque); 3755 if (ret) { 3756 break; 3757 } 3758 } 3759 return ret; 3760 } 3761 3762 /* 3763 * Unmap pages of memory from start to start+length such that 3764 * they a) read as 0, b) Trigger whatever fault mechanism 3765 * the OS provides for postcopy. 3766 * The pages must be unmapped by the end of the function. 3767 * Returns: 0 on success, none-0 on failure 3768 * 3769 */ 3770 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3771 { 3772 int ret = -1; 3773 3774 uint8_t *host_startaddr = rb->host + start; 3775 3776 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3777 error_report("%s: Unaligned start address: %p", 3778 __func__, host_startaddr); 3779 goto err; 3780 } 3781 3782 if ((start + length) <= rb->max_length) { 3783 bool need_madvise, need_fallocate; 3784 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3785 error_report("%s: Unaligned length: %zx", __func__, length); 3786 goto err; 3787 } 3788 3789 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3790 3791 /* The logic here is messy; 3792 * madvise DONTNEED fails for hugepages 3793 * fallocate works on hugepages and shmem 3794 * shared anonymous memory requires madvise REMOVE 3795 */ 3796 need_madvise = (rb->page_size == qemu_real_host_page_size()); 3797 need_fallocate = rb->fd != -1; 3798 if (need_fallocate) { 3799 /* For a file, this causes the area of the file to be zero'd 3800 * if read, and for hugetlbfs also causes it to be unmapped 3801 * so a userfault will trigger. 3802 */ 3803 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3804 /* 3805 * fallocate() will fail with readonly files. Let's print a 3806 * proper error message. 3807 */ 3808 if (rb->flags & RAM_READONLY_FD) { 3809 error_report("%s: Discarding RAM with readonly files is not" 3810 " supported", __func__); 3811 goto err; 3812 3813 } 3814 /* 3815 * We'll discard data from the actual file, even though we only 3816 * have a MAP_PRIVATE mapping, possibly messing with other 3817 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3818 * change that behavior whithout violating the promised 3819 * semantics of ram_block_discard_range(). 3820 * 3821 * Only warn, because it works as long as nobody else uses that 3822 * file. 3823 */ 3824 if (!qemu_ram_is_shared(rb)) { 3825 warn_report_once("%s: Discarding RAM" 3826 " in private file mappings is possibly" 3827 " dangerous, because it will modify the" 3828 " underlying file and will affect other" 3829 " users of the file", __func__); 3830 } 3831 3832 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3833 start + rb->fd_offset, length); 3834 if (ret) { 3835 ret = -errno; 3836 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64 3837 " +%zx (%d)", __func__, rb->idstr, start, 3838 rb->fd_offset, length, ret); 3839 goto err; 3840 } 3841 #else 3842 ret = -ENOSYS; 3843 error_report("%s: fallocate not available/file" 3844 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__, 3845 rb->idstr, start, rb->fd_offset, length, ret); 3846 goto err; 3847 #endif 3848 } 3849 if (need_madvise) { 3850 /* For normal RAM this causes it to be unmapped, 3851 * for shared memory it causes the local mapping to disappear 3852 * and to fall back on the file contents (which we just 3853 * fallocate'd away). 3854 */ 3855 #if defined(CONFIG_MADVISE) 3856 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3857 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3858 } else { 3859 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3860 } 3861 if (ret) { 3862 ret = -errno; 3863 error_report("%s: Failed to discard range " 3864 "%s:%" PRIx64 " +%zx (%d)", 3865 __func__, rb->idstr, start, length, ret); 3866 goto err; 3867 } 3868 #else 3869 ret = -ENOSYS; 3870 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)", 3871 __func__, rb->idstr, start, length, ret); 3872 goto err; 3873 #endif 3874 } 3875 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3876 need_madvise, need_fallocate, ret); 3877 } else { 3878 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")", 3879 __func__, rb->idstr, start, length, rb->max_length); 3880 } 3881 3882 err: 3883 return ret; 3884 } 3885 3886 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start, 3887 size_t length) 3888 { 3889 int ret = -1; 3890 3891 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3892 /* ignore fd_offset with guest_memfd */ 3893 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3894 start, length); 3895 3896 if (ret) { 3897 ret = -errno; 3898 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)", 3899 __func__, rb->idstr, start, length, ret); 3900 } 3901 #else 3902 ret = -ENOSYS; 3903 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)", 3904 __func__, rb->idstr, start, length, ret); 3905 #endif 3906 3907 return ret; 3908 } 3909 3910 bool ramblock_is_pmem(RAMBlock *rb) 3911 { 3912 return rb->flags & RAM_PMEM; 3913 } 3914 3915 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3916 { 3917 if (start == end - 1) { 3918 qemu_printf("\t%3d ", start); 3919 } else { 3920 qemu_printf("\t%3d..%-3d ", start, end - 1); 3921 } 3922 qemu_printf(" skip=%d ", skip); 3923 if (ptr == PHYS_MAP_NODE_NIL) { 3924 qemu_printf(" ptr=NIL"); 3925 } else if (!skip) { 3926 qemu_printf(" ptr=#%d", ptr); 3927 } else { 3928 qemu_printf(" ptr=[%d]", ptr); 3929 } 3930 qemu_printf("\n"); 3931 } 3932 3933 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3934 int128_sub((size), int128_one())) : 0) 3935 3936 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3937 { 3938 int i; 3939 3940 qemu_printf(" Dispatch\n"); 3941 qemu_printf(" Physical sections\n"); 3942 3943 for (i = 0; i < d->map.sections_nb; ++i) { 3944 MemoryRegionSection *s = d->map.sections + i; 3945 const char *names[] = { " [unassigned]", " [not dirty]", 3946 " [ROM]", " [watch]" }; 3947 3948 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3949 " %s%s%s%s%s", 3950 i, 3951 s->offset_within_address_space, 3952 s->offset_within_address_space + MR_SIZE(s->size), 3953 s->mr->name ? s->mr->name : "(noname)", 3954 i < ARRAY_SIZE(names) ? names[i] : "", 3955 s->mr == root ? " [ROOT]" : "", 3956 s == d->mru_section ? " [MRU]" : "", 3957 s->mr->is_iommu ? " [iommu]" : ""); 3958 3959 if (s->mr->alias) { 3960 qemu_printf(" alias=%s", s->mr->alias->name ? 3961 s->mr->alias->name : "noname"); 3962 } 3963 qemu_printf("\n"); 3964 } 3965 3966 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3967 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3968 for (i = 0; i < d->map.nodes_nb; ++i) { 3969 int j, jprev; 3970 PhysPageEntry prev; 3971 Node *n = d->map.nodes + i; 3972 3973 qemu_printf(" [%d]\n", i); 3974 3975 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3976 PhysPageEntry *pe = *n + j; 3977 3978 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3979 continue; 3980 } 3981 3982 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3983 3984 jprev = j; 3985 prev = *pe; 3986 } 3987 3988 if (jprev != ARRAY_SIZE(*n)) { 3989 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3990 } 3991 } 3992 } 3993 3994 /* Require any discards to work. */ 3995 static unsigned int ram_block_discard_required_cnt; 3996 /* Require only coordinated discards to work. */ 3997 static unsigned int ram_block_coordinated_discard_required_cnt; 3998 /* Disable any discards. */ 3999 static unsigned int ram_block_discard_disabled_cnt; 4000 /* Disable only uncoordinated discards. */ 4001 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 4002 static QemuMutex ram_block_discard_disable_mutex; 4003 4004 static void ram_block_discard_disable_mutex_lock(void) 4005 { 4006 static gsize initialized; 4007 4008 if (g_once_init_enter(&initialized)) { 4009 qemu_mutex_init(&ram_block_discard_disable_mutex); 4010 g_once_init_leave(&initialized, 1); 4011 } 4012 qemu_mutex_lock(&ram_block_discard_disable_mutex); 4013 } 4014 4015 static void ram_block_discard_disable_mutex_unlock(void) 4016 { 4017 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 4018 } 4019 4020 int ram_block_discard_disable(bool state) 4021 { 4022 int ret = 0; 4023 4024 ram_block_discard_disable_mutex_lock(); 4025 if (!state) { 4026 ram_block_discard_disabled_cnt--; 4027 } else if (ram_block_discard_required_cnt || 4028 ram_block_coordinated_discard_required_cnt) { 4029 ret = -EBUSY; 4030 } else { 4031 ram_block_discard_disabled_cnt++; 4032 } 4033 ram_block_discard_disable_mutex_unlock(); 4034 return ret; 4035 } 4036 4037 int ram_block_uncoordinated_discard_disable(bool state) 4038 { 4039 int ret = 0; 4040 4041 ram_block_discard_disable_mutex_lock(); 4042 if (!state) { 4043 ram_block_uncoordinated_discard_disabled_cnt--; 4044 } else if (ram_block_discard_required_cnt) { 4045 ret = -EBUSY; 4046 } else { 4047 ram_block_uncoordinated_discard_disabled_cnt++; 4048 } 4049 ram_block_discard_disable_mutex_unlock(); 4050 return ret; 4051 } 4052 4053 int ram_block_discard_require(bool state) 4054 { 4055 int ret = 0; 4056 4057 ram_block_discard_disable_mutex_lock(); 4058 if (!state) { 4059 ram_block_discard_required_cnt--; 4060 } else if (ram_block_discard_disabled_cnt || 4061 ram_block_uncoordinated_discard_disabled_cnt) { 4062 ret = -EBUSY; 4063 } else { 4064 ram_block_discard_required_cnt++; 4065 } 4066 ram_block_discard_disable_mutex_unlock(); 4067 return ret; 4068 } 4069 4070 int ram_block_coordinated_discard_require(bool state) 4071 { 4072 int ret = 0; 4073 4074 ram_block_discard_disable_mutex_lock(); 4075 if (!state) { 4076 ram_block_coordinated_discard_required_cnt--; 4077 } else if (ram_block_discard_disabled_cnt) { 4078 ret = -EBUSY; 4079 } else { 4080 ram_block_coordinated_discard_required_cnt++; 4081 } 4082 ram_block_discard_disable_mutex_unlock(); 4083 return ret; 4084 } 4085 4086 bool ram_block_discard_is_disabled(void) 4087 { 4088 return qatomic_read(&ram_block_discard_disabled_cnt) || 4089 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 4090 } 4091 4092 bool ram_block_discard_is_required(void) 4093 { 4094 return qatomic_read(&ram_block_discard_required_cnt) || 4095 qatomic_read(&ram_block_coordinated_discard_required_cnt); 4096 } 4097