1 /* 2 * RAM allocation and memory access 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "exec/page-vary.h" 22 #include "qapi/error.h" 23 24 #include "qemu/cutils.h" 25 #include "qemu/cacheflush.h" 26 #include "qemu/hbitmap.h" 27 #include "qemu/madvise.h" 28 29 #ifdef CONFIG_TCG 30 #include "hw/core/tcg-cpu-ops.h" 31 #endif /* CONFIG_TCG */ 32 33 #include "exec/exec-all.h" 34 #include "exec/target_page.h" 35 #include "hw/qdev-core.h" 36 #include "hw/qdev-properties.h" 37 #include "hw/boards.h" 38 #include "hw/xen/xen.h" 39 #include "sysemu/kvm.h" 40 #include "sysemu/tcg.h" 41 #include "sysemu/qtest.h" 42 #include "qemu/timer.h" 43 #include "qemu/config-file.h" 44 #include "qemu/error-report.h" 45 #include "qemu/qemu-print.h" 46 #include "qemu/log.h" 47 #include "qemu/memalign.h" 48 #include "exec/memory.h" 49 #include "exec/ioport.h" 50 #include "sysemu/dma.h" 51 #include "sysemu/hostmem.h" 52 #include "sysemu/hw_accel.h" 53 #include "sysemu/xen-mapcache.h" 54 #include "trace/trace-root.h" 55 56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 57 #include <linux/falloc.h> 58 #endif 59 60 #include "qemu/rcu_queue.h" 61 #include "qemu/main-loop.h" 62 #include "exec/translate-all.h" 63 #include "sysemu/replay.h" 64 65 #include "exec/memory-internal.h" 66 #include "exec/ram_addr.h" 67 68 #include "qemu/pmem.h" 69 70 #include "migration/vmstate.h" 71 72 #include "qemu/range.h" 73 #ifndef _WIN32 74 #include "qemu/mmap-alloc.h" 75 #endif 76 77 #include "monitor/monitor.h" 78 79 #ifdef CONFIG_LIBDAXCTL 80 #include <daxctl/libdaxctl.h> 81 #endif 82 83 //#define DEBUG_SUBPAGE 84 85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes 86 * are protected by the ramlist lock. 87 */ 88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; 89 90 static MemoryRegion *system_memory; 91 static MemoryRegion *system_io; 92 93 AddressSpace address_space_io; 94 AddressSpace address_space_memory; 95 96 static MemoryRegion io_mem_unassigned; 97 98 typedef struct PhysPageEntry PhysPageEntry; 99 100 struct PhysPageEntry { 101 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ 102 uint32_t skip : 6; 103 /* index into phys_sections (!skip) or phys_map_nodes (skip) */ 104 uint32_t ptr : 26; 105 }; 106 107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) 108 109 /* Size of the L2 (and L3, etc) page tables. */ 110 #define ADDR_SPACE_BITS 64 111 112 #define P_L2_BITS 9 113 #define P_L2_SIZE (1 << P_L2_BITS) 114 115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) 116 117 typedef PhysPageEntry Node[P_L2_SIZE]; 118 119 typedef struct PhysPageMap { 120 struct rcu_head rcu; 121 122 unsigned sections_nb; 123 unsigned sections_nb_alloc; 124 unsigned nodes_nb; 125 unsigned nodes_nb_alloc; 126 Node *nodes; 127 MemoryRegionSection *sections; 128 } PhysPageMap; 129 130 struct AddressSpaceDispatch { 131 MemoryRegionSection *mru_section; 132 /* This is a multi-level map on the physical address space. 133 * The bottom level has pointers to MemoryRegionSections. 134 */ 135 PhysPageEntry phys_map; 136 PhysPageMap map; 137 }; 138 139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) 140 typedef struct subpage_t { 141 MemoryRegion iomem; 142 FlatView *fv; 143 hwaddr base; 144 uint16_t sub_section[]; 145 } subpage_t; 146 147 #define PHYS_SECTION_UNASSIGNED 0 148 149 static void io_mem_init(void); 150 static void memory_map_init(void); 151 static void tcg_log_global_after_sync(MemoryListener *listener); 152 static void tcg_commit(MemoryListener *listener); 153 154 /** 155 * CPUAddressSpace: all the information a CPU needs about an AddressSpace 156 * @cpu: the CPU whose AddressSpace this is 157 * @as: the AddressSpace itself 158 * @memory_dispatch: its dispatch pointer (cached, RCU protected) 159 * @tcg_as_listener: listener for tracking changes to the AddressSpace 160 */ 161 struct CPUAddressSpace { 162 CPUState *cpu; 163 AddressSpace *as; 164 struct AddressSpaceDispatch *memory_dispatch; 165 MemoryListener tcg_as_listener; 166 }; 167 168 struct DirtyBitmapSnapshot { 169 ram_addr_t start; 170 ram_addr_t end; 171 unsigned long dirty[]; 172 }; 173 174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) 175 { 176 static unsigned alloc_hint = 16; 177 if (map->nodes_nb + nodes > map->nodes_nb_alloc) { 178 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes); 179 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); 180 alloc_hint = map->nodes_nb_alloc; 181 } 182 } 183 184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) 185 { 186 unsigned i; 187 uint32_t ret; 188 PhysPageEntry e; 189 PhysPageEntry *p; 190 191 ret = map->nodes_nb++; 192 p = map->nodes[ret]; 193 assert(ret != PHYS_MAP_NODE_NIL); 194 assert(ret != map->nodes_nb_alloc); 195 196 e.skip = leaf ? 0 : 1; 197 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; 198 for (i = 0; i < P_L2_SIZE; ++i) { 199 memcpy(&p[i], &e, sizeof(e)); 200 } 201 return ret; 202 } 203 204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, 205 hwaddr *index, uint64_t *nb, uint16_t leaf, 206 int level) 207 { 208 PhysPageEntry *p; 209 hwaddr step = (hwaddr)1 << (level * P_L2_BITS); 210 211 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { 212 lp->ptr = phys_map_node_alloc(map, level == 0); 213 } 214 p = map->nodes[lp->ptr]; 215 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; 216 217 while (*nb && lp < &p[P_L2_SIZE]) { 218 if ((*index & (step - 1)) == 0 && *nb >= step) { 219 lp->skip = 0; 220 lp->ptr = leaf; 221 *index += step; 222 *nb -= step; 223 } else { 224 phys_page_set_level(map, lp, index, nb, leaf, level - 1); 225 } 226 ++lp; 227 } 228 } 229 230 static void phys_page_set(AddressSpaceDispatch *d, 231 hwaddr index, uint64_t nb, 232 uint16_t leaf) 233 { 234 /* Wildly overreserve - it doesn't matter much. */ 235 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); 236 237 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); 238 } 239 240 /* Compact a non leaf page entry. Simply detect that the entry has a single child, 241 * and update our entry so we can skip it and go directly to the destination. 242 */ 243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes) 244 { 245 unsigned valid_ptr = P_L2_SIZE; 246 int valid = 0; 247 PhysPageEntry *p; 248 int i; 249 250 if (lp->ptr == PHYS_MAP_NODE_NIL) { 251 return; 252 } 253 254 p = nodes[lp->ptr]; 255 for (i = 0; i < P_L2_SIZE; i++) { 256 if (p[i].ptr == PHYS_MAP_NODE_NIL) { 257 continue; 258 } 259 260 valid_ptr = i; 261 valid++; 262 if (p[i].skip) { 263 phys_page_compact(&p[i], nodes); 264 } 265 } 266 267 /* We can only compress if there's only one child. */ 268 if (valid != 1) { 269 return; 270 } 271 272 assert(valid_ptr < P_L2_SIZE); 273 274 /* Don't compress if it won't fit in the # of bits we have. */ 275 if (P_L2_LEVELS >= (1 << 6) && 276 lp->skip + p[valid_ptr].skip >= (1 << 6)) { 277 return; 278 } 279 280 lp->ptr = p[valid_ptr].ptr; 281 if (!p[valid_ptr].skip) { 282 /* If our only child is a leaf, make this a leaf. */ 283 /* By design, we should have made this node a leaf to begin with so we 284 * should never reach here. 285 * But since it's so simple to handle this, let's do it just in case we 286 * change this rule. 287 */ 288 lp->skip = 0; 289 } else { 290 lp->skip += p[valid_ptr].skip; 291 } 292 } 293 294 void address_space_dispatch_compact(AddressSpaceDispatch *d) 295 { 296 if (d->phys_map.skip) { 297 phys_page_compact(&d->phys_map, d->map.nodes); 298 } 299 } 300 301 static inline bool section_covers_addr(const MemoryRegionSection *section, 302 hwaddr addr) 303 { 304 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means 305 * the section must cover the entire address space. 306 */ 307 return int128_gethi(section->size) || 308 range_covers_byte(section->offset_within_address_space, 309 int128_getlo(section->size), addr); 310 } 311 312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) 313 { 314 PhysPageEntry lp = d->phys_map, *p; 315 Node *nodes = d->map.nodes; 316 MemoryRegionSection *sections = d->map.sections; 317 hwaddr index = addr >> TARGET_PAGE_BITS; 318 int i; 319 320 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { 321 if (lp.ptr == PHYS_MAP_NODE_NIL) { 322 return §ions[PHYS_SECTION_UNASSIGNED]; 323 } 324 p = nodes[lp.ptr]; 325 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; 326 } 327 328 if (section_covers_addr(§ions[lp.ptr], addr)) { 329 return §ions[lp.ptr]; 330 } else { 331 return §ions[PHYS_SECTION_UNASSIGNED]; 332 } 333 } 334 335 /* Called from RCU critical section */ 336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, 337 hwaddr addr, 338 bool resolve_subpage) 339 { 340 MemoryRegionSection *section = qatomic_read(&d->mru_section); 341 subpage_t *subpage; 342 343 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || 344 !section_covers_addr(section, addr)) { 345 section = phys_page_find(d, addr); 346 qatomic_set(&d->mru_section, section); 347 } 348 if (resolve_subpage && section->mr->subpage) { 349 subpage = container_of(section->mr, subpage_t, iomem); 350 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; 351 } 352 return section; 353 } 354 355 /* Called from RCU critical section */ 356 static MemoryRegionSection * 357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, 358 hwaddr *plen, bool resolve_subpage) 359 { 360 MemoryRegionSection *section; 361 MemoryRegion *mr; 362 Int128 diff; 363 364 section = address_space_lookup_region(d, addr, resolve_subpage); 365 /* Compute offset within MemoryRegionSection */ 366 addr -= section->offset_within_address_space; 367 368 /* Compute offset within MemoryRegion */ 369 *xlat = addr + section->offset_within_region; 370 371 mr = section->mr; 372 373 /* MMIO registers can be expected to perform full-width accesses based only 374 * on their address, without considering adjacent registers that could 375 * decode to completely different MemoryRegions. When such registers 376 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO 377 * regions overlap wildly. For this reason we cannot clamp the accesses 378 * here. 379 * 380 * If the length is small (as is the case for address_space_ldl/stl), 381 * everything works fine. If the incoming length is large, however, 382 * the caller really has to do the clamping through memory_access_size. 383 */ 384 if (memory_region_is_ram(mr)) { 385 diff = int128_sub(section->size, int128_make64(addr)); 386 *plen = int128_get64(int128_min(diff, int128_make64(*plen))); 387 } 388 return section; 389 } 390 391 /** 392 * address_space_translate_iommu - translate an address through an IOMMU 393 * memory region and then through the target address space. 394 * 395 * @iommu_mr: the IOMMU memory region that we start the translation from 396 * @addr: the address to be translated through the MMU 397 * @xlat: the translated address offset within the destination memory region. 398 * It cannot be %NULL. 399 * @plen_out: valid read/write length of the translated address. It 400 * cannot be %NULL. 401 * @page_mask_out: page mask for the translated address. This 402 * should only be meaningful for IOMMU translated 403 * addresses, since there may be huge pages that this bit 404 * would tell. It can be %NULL if we don't care about it. 405 * @is_write: whether the translation operation is for write 406 * @is_mmio: whether this can be MMIO, set true if it can 407 * @target_as: the address space targeted by the IOMMU 408 * @attrs: transaction attributes 409 * 410 * This function is called from RCU critical section. It is the common 411 * part of flatview_do_translate and address_space_translate_cached. 412 */ 413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, 414 hwaddr *xlat, 415 hwaddr *plen_out, 416 hwaddr *page_mask_out, 417 bool is_write, 418 bool is_mmio, 419 AddressSpace **target_as, 420 MemTxAttrs attrs) 421 { 422 MemoryRegionSection *section; 423 hwaddr page_mask = (hwaddr)-1; 424 425 do { 426 hwaddr addr = *xlat; 427 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 428 int iommu_idx = 0; 429 IOMMUTLBEntry iotlb; 430 431 if (imrc->attrs_to_index) { 432 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 433 } 434 435 iotlb = imrc->translate(iommu_mr, addr, is_write ? 436 IOMMU_WO : IOMMU_RO, iommu_idx); 437 438 if (!(iotlb.perm & (1 << is_write))) { 439 goto unassigned; 440 } 441 442 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 443 | (addr & iotlb.addr_mask)); 444 page_mask &= iotlb.addr_mask; 445 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); 446 *target_as = iotlb.target_as; 447 448 section = address_space_translate_internal( 449 address_space_to_dispatch(iotlb.target_as), addr, xlat, 450 plen_out, is_mmio); 451 452 iommu_mr = memory_region_get_iommu(section->mr); 453 } while (unlikely(iommu_mr)); 454 455 if (page_mask_out) { 456 *page_mask_out = page_mask; 457 } 458 return *section; 459 460 unassigned: 461 return (MemoryRegionSection) { .mr = &io_mem_unassigned }; 462 } 463 464 /** 465 * flatview_do_translate - translate an address in FlatView 466 * 467 * @fv: the flat view that we want to translate on 468 * @addr: the address to be translated in above address space 469 * @xlat: the translated address offset within memory region. It 470 * cannot be @NULL. 471 * @plen_out: valid read/write length of the translated address. It 472 * can be @NULL when we don't care about it. 473 * @page_mask_out: page mask for the translated address. This 474 * should only be meaningful for IOMMU translated 475 * addresses, since there may be huge pages that this bit 476 * would tell. It can be @NULL if we don't care about it. 477 * @is_write: whether the translation operation is for write 478 * @is_mmio: whether this can be MMIO, set true if it can 479 * @target_as: the address space targeted by the IOMMU 480 * @attrs: memory transaction attributes 481 * 482 * This function is called from RCU critical section 483 */ 484 static MemoryRegionSection flatview_do_translate(FlatView *fv, 485 hwaddr addr, 486 hwaddr *xlat, 487 hwaddr *plen_out, 488 hwaddr *page_mask_out, 489 bool is_write, 490 bool is_mmio, 491 AddressSpace **target_as, 492 MemTxAttrs attrs) 493 { 494 MemoryRegionSection *section; 495 IOMMUMemoryRegion *iommu_mr; 496 hwaddr plen = (hwaddr)(-1); 497 498 if (!plen_out) { 499 plen_out = &plen; 500 } 501 502 section = address_space_translate_internal( 503 flatview_to_dispatch(fv), addr, xlat, 504 plen_out, is_mmio); 505 506 iommu_mr = memory_region_get_iommu(section->mr); 507 if (unlikely(iommu_mr)) { 508 return address_space_translate_iommu(iommu_mr, xlat, 509 plen_out, page_mask_out, 510 is_write, is_mmio, 511 target_as, attrs); 512 } 513 if (page_mask_out) { 514 /* Not behind an IOMMU, use default page size. */ 515 *page_mask_out = ~TARGET_PAGE_MASK; 516 } 517 518 return *section; 519 } 520 521 /* Called from RCU critical section */ 522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, 523 bool is_write, MemTxAttrs attrs) 524 { 525 MemoryRegionSection section; 526 hwaddr xlat, page_mask; 527 528 /* 529 * This can never be MMIO, and we don't really care about plen, 530 * but page mask. 531 */ 532 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, 533 NULL, &page_mask, is_write, false, &as, 534 attrs); 535 536 /* Illegal translation */ 537 if (section.mr == &io_mem_unassigned) { 538 goto iotlb_fail; 539 } 540 541 /* Convert memory region offset into address space offset */ 542 xlat += section.offset_within_address_space - 543 section.offset_within_region; 544 545 return (IOMMUTLBEntry) { 546 .target_as = as, 547 .iova = addr & ~page_mask, 548 .translated_addr = xlat & ~page_mask, 549 .addr_mask = page_mask, 550 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ 551 .perm = IOMMU_RW, 552 }; 553 554 iotlb_fail: 555 return (IOMMUTLBEntry) {0}; 556 } 557 558 /* Called from RCU critical section */ 559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, 560 hwaddr *plen, bool is_write, 561 MemTxAttrs attrs) 562 { 563 MemoryRegion *mr; 564 MemoryRegionSection section; 565 AddressSpace *as = NULL; 566 567 /* This can be MMIO, so setup MMIO bit. */ 568 section = flatview_do_translate(fv, addr, xlat, plen, NULL, 569 is_write, true, &as, attrs); 570 mr = section.mr; 571 572 if (xen_enabled() && memory_access_is_direct(mr, is_write)) { 573 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; 574 *plen = MIN(page, *plen); 575 } 576 577 return mr; 578 } 579 580 typedef struct TCGIOMMUNotifier { 581 IOMMUNotifier n; 582 MemoryRegion *mr; 583 CPUState *cpu; 584 int iommu_idx; 585 bool active; 586 } TCGIOMMUNotifier; 587 588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) 589 { 590 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); 591 592 if (!notifier->active) { 593 return; 594 } 595 tlb_flush(notifier->cpu); 596 notifier->active = false; 597 /* We leave the notifier struct on the list to avoid reallocating it later. 598 * Generally the number of IOMMUs a CPU deals with will be small. 599 * In any case we can't unregister the iommu notifier from a notify 600 * callback. 601 */ 602 } 603 604 static void tcg_register_iommu_notifier(CPUState *cpu, 605 IOMMUMemoryRegion *iommu_mr, 606 int iommu_idx) 607 { 608 /* Make sure this CPU has an IOMMU notifier registered for this 609 * IOMMU/IOMMU index combination, so that we can flush its TLB 610 * when the IOMMU tells us the mappings we've cached have changed. 611 */ 612 MemoryRegion *mr = MEMORY_REGION(iommu_mr); 613 TCGIOMMUNotifier *notifier = NULL; 614 int i; 615 616 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 617 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 618 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { 619 break; 620 } 621 } 622 if (i == cpu->iommu_notifiers->len) { 623 /* Not found, add a new entry at the end of the array */ 624 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); 625 notifier = g_new0(TCGIOMMUNotifier, 1); 626 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; 627 628 notifier->mr = mr; 629 notifier->iommu_idx = iommu_idx; 630 notifier->cpu = cpu; 631 /* Rather than trying to register interest in the specific part 632 * of the iommu's address space that we've accessed and then 633 * expand it later as subsequent accesses touch more of it, we 634 * just register interest in the whole thing, on the assumption 635 * that iommu reconfiguration will be rare. 636 */ 637 iommu_notifier_init(¬ifier->n, 638 tcg_iommu_unmap_notify, 639 IOMMU_NOTIFIER_UNMAP, 640 0, 641 HWADDR_MAX, 642 iommu_idx); 643 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n, 644 &error_fatal); 645 } 646 647 if (!notifier->active) { 648 notifier->active = true; 649 } 650 } 651 652 void tcg_iommu_free_notifier_list(CPUState *cpu) 653 { 654 /* Destroy the CPU's notifier list */ 655 int i; 656 TCGIOMMUNotifier *notifier; 657 658 for (i = 0; i < cpu->iommu_notifiers->len; i++) { 659 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); 660 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); 661 g_free(notifier); 662 } 663 g_array_free(cpu->iommu_notifiers, true); 664 } 665 666 void tcg_iommu_init_notifier_list(CPUState *cpu) 667 { 668 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); 669 } 670 671 /* Called from RCU critical section */ 672 MemoryRegionSection * 673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr, 674 hwaddr *xlat, hwaddr *plen, 675 MemTxAttrs attrs, int *prot) 676 { 677 MemoryRegionSection *section; 678 IOMMUMemoryRegion *iommu_mr; 679 IOMMUMemoryRegionClass *imrc; 680 IOMMUTLBEntry iotlb; 681 int iommu_idx; 682 hwaddr addr = orig_addr; 683 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch; 684 685 for (;;) { 686 section = address_space_translate_internal(d, addr, &addr, plen, false); 687 688 iommu_mr = memory_region_get_iommu(section->mr); 689 if (!iommu_mr) { 690 break; 691 } 692 693 imrc = memory_region_get_iommu_class_nocheck(iommu_mr); 694 695 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); 696 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); 697 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU 698 * doesn't short-cut its translation table walk. 699 */ 700 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); 701 addr = ((iotlb.translated_addr & ~iotlb.addr_mask) 702 | (addr & iotlb.addr_mask)); 703 /* Update the caller's prot bits to remove permissions the IOMMU 704 * is giving us a failure response for. If we get down to no 705 * permissions left at all we can give up now. 706 */ 707 if (!(iotlb.perm & IOMMU_RO)) { 708 *prot &= ~(PAGE_READ | PAGE_EXEC); 709 } 710 if (!(iotlb.perm & IOMMU_WO)) { 711 *prot &= ~PAGE_WRITE; 712 } 713 714 if (!*prot) { 715 goto translate_fail; 716 } 717 718 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); 719 } 720 721 assert(!memory_region_is_iommu(section->mr)); 722 *xlat = addr; 723 return section; 724 725 translate_fail: 726 /* 727 * We should be given a page-aligned address -- certainly 728 * tlb_set_page_with_attrs() does so. The page offset of xlat 729 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0. 730 * The page portion of xlat will be logged by memory_region_access_valid() 731 * when this memory access is rejected, so use the original untranslated 732 * physical address. 733 */ 734 assert((orig_addr & ~TARGET_PAGE_MASK) == 0); 735 *xlat = orig_addr; 736 return &d->map.sections[PHYS_SECTION_UNASSIGNED]; 737 } 738 739 void cpu_address_space_init(CPUState *cpu, int asidx, 740 const char *prefix, MemoryRegion *mr) 741 { 742 CPUAddressSpace *newas; 743 AddressSpace *as = g_new0(AddressSpace, 1); 744 char *as_name; 745 746 assert(mr); 747 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); 748 address_space_init(as, mr, as_name); 749 g_free(as_name); 750 751 /* Target code should have set num_ases before calling us */ 752 assert(asidx < cpu->num_ases); 753 754 if (asidx == 0) { 755 /* address space 0 gets the convenience alias */ 756 cpu->as = as; 757 } 758 759 /* KVM cannot currently support multiple address spaces. */ 760 assert(asidx == 0 || !kvm_enabled()); 761 762 if (!cpu->cpu_ases) { 763 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); 764 } 765 766 newas = &cpu->cpu_ases[asidx]; 767 newas->cpu = cpu; 768 newas->as = as; 769 if (tcg_enabled()) { 770 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync; 771 newas->tcg_as_listener.commit = tcg_commit; 772 newas->tcg_as_listener.name = "tcg"; 773 memory_listener_register(&newas->tcg_as_listener, as); 774 } 775 } 776 777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) 778 { 779 /* Return the AddressSpace corresponding to the specified index */ 780 return cpu->cpu_ases[asidx].as; 781 } 782 783 /* Called from RCU critical section */ 784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr) 785 { 786 RAMBlock *block; 787 788 block = qatomic_rcu_read(&ram_list.mru_block); 789 if (block && addr - block->offset < block->max_length) { 790 return block; 791 } 792 RAMBLOCK_FOREACH(block) { 793 if (addr - block->offset < block->max_length) { 794 goto found; 795 } 796 } 797 798 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); 799 abort(); 800 801 found: 802 /* It is safe to write mru_block outside the iothread lock. This 803 * is what happens: 804 * 805 * mru_block = xxx 806 * rcu_read_unlock() 807 * xxx removed from list 808 * rcu_read_lock() 809 * read mru_block 810 * mru_block = NULL; 811 * call_rcu(reclaim_ramblock, xxx); 812 * rcu_read_unlock() 813 * 814 * qatomic_rcu_set is not needed here. The block was already published 815 * when it was placed into the list. Here we're just making an extra 816 * copy of the pointer. 817 */ 818 ram_list.mru_block = block; 819 return block; 820 } 821 822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) 823 { 824 CPUState *cpu; 825 ram_addr_t start1; 826 RAMBlock *block; 827 ram_addr_t end; 828 829 assert(tcg_enabled()); 830 end = TARGET_PAGE_ALIGN(start + length); 831 start &= TARGET_PAGE_MASK; 832 833 RCU_READ_LOCK_GUARD(); 834 block = qemu_get_ram_block(start); 835 assert(block == qemu_get_ram_block(end - 1)); 836 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); 837 CPU_FOREACH(cpu) { 838 tlb_reset_dirty(cpu, start1, length); 839 } 840 } 841 842 /* Note: start and end must be within the same ram block. */ 843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 844 ram_addr_t length, 845 unsigned client) 846 { 847 DirtyMemoryBlocks *blocks; 848 unsigned long end, page, start_page; 849 bool dirty = false; 850 RAMBlock *ramblock; 851 uint64_t mr_offset, mr_size; 852 853 if (length == 0) { 854 return false; 855 } 856 857 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 858 start_page = start >> TARGET_PAGE_BITS; 859 page = start_page; 860 861 WITH_RCU_READ_LOCK_GUARD() { 862 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 863 ramblock = qemu_get_ram_block(start); 864 /* Range sanity check on the ramblock */ 865 assert(start >= ramblock->offset && 866 start + length <= ramblock->offset + ramblock->used_length); 867 868 while (page < end) { 869 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 870 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 871 unsigned long num = MIN(end - page, 872 DIRTY_MEMORY_BLOCK_SIZE - offset); 873 874 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], 875 offset, num); 876 page += num; 877 } 878 879 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset; 880 mr_size = (end - start_page) << TARGET_PAGE_BITS; 881 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size); 882 } 883 884 if (dirty && tcg_enabled()) { 885 tlb_reset_dirty_range_all(start, length); 886 } 887 888 return dirty; 889 } 890 891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty 892 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client) 893 { 894 DirtyMemoryBlocks *blocks; 895 ram_addr_t start = memory_region_get_ram_addr(mr) + offset; 896 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); 897 ram_addr_t first = QEMU_ALIGN_DOWN(start, align); 898 ram_addr_t last = QEMU_ALIGN_UP(start + length, align); 899 DirtyBitmapSnapshot *snap; 900 unsigned long page, end, dest; 901 902 snap = g_malloc0(sizeof(*snap) + 903 ((last - first) >> (TARGET_PAGE_BITS + 3))); 904 snap->start = first; 905 snap->end = last; 906 907 page = first >> TARGET_PAGE_BITS; 908 end = last >> TARGET_PAGE_BITS; 909 dest = 0; 910 911 WITH_RCU_READ_LOCK_GUARD() { 912 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]); 913 914 while (page < end) { 915 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; 916 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; 917 unsigned long num = MIN(end - page, 918 DIRTY_MEMORY_BLOCK_SIZE - offset); 919 920 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); 921 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); 922 offset >>= BITS_PER_LEVEL; 923 924 bitmap_copy_and_clear_atomic(snap->dirty + dest, 925 blocks->blocks[idx] + offset, 926 num); 927 page += num; 928 dest += num >> BITS_PER_LEVEL; 929 } 930 } 931 932 if (tcg_enabled()) { 933 tlb_reset_dirty_range_all(start, length); 934 } 935 936 memory_region_clear_dirty_bitmap(mr, offset, length); 937 938 return snap; 939 } 940 941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, 942 ram_addr_t start, 943 ram_addr_t length) 944 { 945 unsigned long page, end; 946 947 assert(start >= snap->start); 948 assert(start + length <= snap->end); 949 950 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; 951 page = (start - snap->start) >> TARGET_PAGE_BITS; 952 953 while (page < end) { 954 if (test_bit(page, snap->dirty)) { 955 return true; 956 } 957 page++; 958 } 959 return false; 960 } 961 962 /* Called from RCU critical section */ 963 hwaddr memory_region_section_get_iotlb(CPUState *cpu, 964 MemoryRegionSection *section) 965 { 966 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv); 967 return section - d->map.sections; 968 } 969 970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 971 uint16_t section); 972 static subpage_t *subpage_init(FlatView *fv, hwaddr base); 973 974 static uint16_t phys_section_add(PhysPageMap *map, 975 MemoryRegionSection *section) 976 { 977 /* The physical section number is ORed with a page-aligned 978 * pointer to produce the iotlb entries. Thus it should 979 * never overflow into the page-aligned value. 980 */ 981 assert(map->sections_nb < TARGET_PAGE_SIZE); 982 983 if (map->sections_nb == map->sections_nb_alloc) { 984 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); 985 map->sections = g_renew(MemoryRegionSection, map->sections, 986 map->sections_nb_alloc); 987 } 988 map->sections[map->sections_nb] = *section; 989 memory_region_ref(section->mr); 990 return map->sections_nb++; 991 } 992 993 static void phys_section_destroy(MemoryRegion *mr) 994 { 995 bool have_sub_page = mr->subpage; 996 997 memory_region_unref(mr); 998 999 if (have_sub_page) { 1000 subpage_t *subpage = container_of(mr, subpage_t, iomem); 1001 object_unref(OBJECT(&subpage->iomem)); 1002 g_free(subpage); 1003 } 1004 } 1005 1006 static void phys_sections_free(PhysPageMap *map) 1007 { 1008 while (map->sections_nb > 0) { 1009 MemoryRegionSection *section = &map->sections[--map->sections_nb]; 1010 phys_section_destroy(section->mr); 1011 } 1012 g_free(map->sections); 1013 g_free(map->nodes); 1014 } 1015 1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section) 1017 { 1018 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1019 subpage_t *subpage; 1020 hwaddr base = section->offset_within_address_space 1021 & TARGET_PAGE_MASK; 1022 MemoryRegionSection *existing = phys_page_find(d, base); 1023 MemoryRegionSection subsection = { 1024 .offset_within_address_space = base, 1025 .size = int128_make64(TARGET_PAGE_SIZE), 1026 }; 1027 hwaddr start, end; 1028 1029 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); 1030 1031 if (!(existing->mr->subpage)) { 1032 subpage = subpage_init(fv, base); 1033 subsection.fv = fv; 1034 subsection.mr = &subpage->iomem; 1035 phys_page_set(d, base >> TARGET_PAGE_BITS, 1, 1036 phys_section_add(&d->map, &subsection)); 1037 } else { 1038 subpage = container_of(existing->mr, subpage_t, iomem); 1039 } 1040 start = section->offset_within_address_space & ~TARGET_PAGE_MASK; 1041 end = start + int128_get64(section->size) - 1; 1042 subpage_register(subpage, start, end, 1043 phys_section_add(&d->map, section)); 1044 } 1045 1046 1047 static void register_multipage(FlatView *fv, 1048 MemoryRegionSection *section) 1049 { 1050 AddressSpaceDispatch *d = flatview_to_dispatch(fv); 1051 hwaddr start_addr = section->offset_within_address_space; 1052 uint16_t section_index = phys_section_add(&d->map, section); 1053 uint64_t num_pages = int128_get64(int128_rshift(section->size, 1054 TARGET_PAGE_BITS)); 1055 1056 assert(num_pages); 1057 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); 1058 } 1059 1060 /* 1061 * The range in *section* may look like this: 1062 * 1063 * |s|PPPPPPP|s| 1064 * 1065 * where s stands for subpage and P for page. 1066 */ 1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) 1068 { 1069 MemoryRegionSection remain = *section; 1070 Int128 page_size = int128_make64(TARGET_PAGE_SIZE); 1071 1072 /* register first subpage */ 1073 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { 1074 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space) 1075 - remain.offset_within_address_space; 1076 1077 MemoryRegionSection now = remain; 1078 now.size = int128_min(int128_make64(left), now.size); 1079 register_subpage(fv, &now); 1080 if (int128_eq(remain.size, now.size)) { 1081 return; 1082 } 1083 remain.size = int128_sub(remain.size, now.size); 1084 remain.offset_within_address_space += int128_get64(now.size); 1085 remain.offset_within_region += int128_get64(now.size); 1086 } 1087 1088 /* register whole pages */ 1089 if (int128_ge(remain.size, page_size)) { 1090 MemoryRegionSection now = remain; 1091 now.size = int128_and(now.size, int128_neg(page_size)); 1092 register_multipage(fv, &now); 1093 if (int128_eq(remain.size, now.size)) { 1094 return; 1095 } 1096 remain.size = int128_sub(remain.size, now.size); 1097 remain.offset_within_address_space += int128_get64(now.size); 1098 remain.offset_within_region += int128_get64(now.size); 1099 } 1100 1101 /* register last subpage */ 1102 register_subpage(fv, &remain); 1103 } 1104 1105 void qemu_flush_coalesced_mmio_buffer(void) 1106 { 1107 if (kvm_enabled()) 1108 kvm_flush_coalesced_mmio_buffer(); 1109 } 1110 1111 void qemu_mutex_lock_ramlist(void) 1112 { 1113 qemu_mutex_lock(&ram_list.mutex); 1114 } 1115 1116 void qemu_mutex_unlock_ramlist(void) 1117 { 1118 qemu_mutex_unlock(&ram_list.mutex); 1119 } 1120 1121 GString *ram_block_format(void) 1122 { 1123 RAMBlock *block; 1124 char *psize; 1125 GString *buf = g_string_new(""); 1126 1127 RCU_READ_LOCK_GUARD(); 1128 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n", 1129 "Block Name", "PSize", "Offset", "Used", "Total", 1130 "HVA", "RO"); 1131 1132 RAMBLOCK_FOREACH(block) { 1133 psize = size_to_str(block->page_size); 1134 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 1135 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n", 1136 block->idstr, psize, 1137 (uint64_t)block->offset, 1138 (uint64_t)block->used_length, 1139 (uint64_t)block->max_length, 1140 (uint64_t)(uintptr_t)block->host, 1141 block->mr->readonly ? "ro" : "rw"); 1142 1143 g_free(psize); 1144 } 1145 1146 return buf; 1147 } 1148 1149 static int find_min_backend_pagesize(Object *obj, void *opaque) 1150 { 1151 long *hpsize_min = opaque; 1152 1153 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1154 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1155 long hpsize = host_memory_backend_pagesize(backend); 1156 1157 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) { 1158 *hpsize_min = hpsize; 1159 } 1160 } 1161 1162 return 0; 1163 } 1164 1165 static int find_max_backend_pagesize(Object *obj, void *opaque) 1166 { 1167 long *hpsize_max = opaque; 1168 1169 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { 1170 HostMemoryBackend *backend = MEMORY_BACKEND(obj); 1171 long hpsize = host_memory_backend_pagesize(backend); 1172 1173 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) { 1174 *hpsize_max = hpsize; 1175 } 1176 } 1177 1178 return 0; 1179 } 1180 1181 /* 1182 * TODO: We assume right now that all mapped host memory backends are 1183 * used as RAM, however some might be used for different purposes. 1184 */ 1185 long qemu_minrampagesize(void) 1186 { 1187 long hpsize = LONG_MAX; 1188 Object *memdev_root = object_resolve_path("/objects", NULL); 1189 1190 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize); 1191 return hpsize; 1192 } 1193 1194 long qemu_maxrampagesize(void) 1195 { 1196 long pagesize = 0; 1197 Object *memdev_root = object_resolve_path("/objects", NULL); 1198 1199 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize); 1200 return pagesize; 1201 } 1202 1203 #ifdef CONFIG_POSIX 1204 static int64_t get_file_size(int fd) 1205 { 1206 int64_t size; 1207 #if defined(__linux__) 1208 struct stat st; 1209 1210 if (fstat(fd, &st) < 0) { 1211 return -errno; 1212 } 1213 1214 /* Special handling for devdax character devices */ 1215 if (S_ISCHR(st.st_mode)) { 1216 g_autofree char *subsystem_path = NULL; 1217 g_autofree char *subsystem = NULL; 1218 1219 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem", 1220 major(st.st_rdev), minor(st.st_rdev)); 1221 subsystem = g_file_read_link(subsystem_path, NULL); 1222 1223 if (subsystem && g_str_has_suffix(subsystem, "/dax")) { 1224 g_autofree char *size_path = NULL; 1225 g_autofree char *size_str = NULL; 1226 1227 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size", 1228 major(st.st_rdev), minor(st.st_rdev)); 1229 1230 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) { 1231 return g_ascii_strtoll(size_str, NULL, 0); 1232 } 1233 } 1234 } 1235 #endif /* defined(__linux__) */ 1236 1237 /* st.st_size may be zero for special files yet lseek(2) works */ 1238 size = lseek(fd, 0, SEEK_END); 1239 if (size < 0) { 1240 return -errno; 1241 } 1242 return size; 1243 } 1244 1245 static int64_t get_file_align(int fd) 1246 { 1247 int64_t align = -1; 1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL) 1249 struct stat st; 1250 1251 if (fstat(fd, &st) < 0) { 1252 return -errno; 1253 } 1254 1255 /* Special handling for devdax character devices */ 1256 if (S_ISCHR(st.st_mode)) { 1257 g_autofree char *path = NULL; 1258 g_autofree char *rpath = NULL; 1259 struct daxctl_ctx *ctx; 1260 struct daxctl_region *region; 1261 int rc = 0; 1262 1263 path = g_strdup_printf("/sys/dev/char/%d:%d", 1264 major(st.st_rdev), minor(st.st_rdev)); 1265 rpath = realpath(path, NULL); 1266 if (!rpath) { 1267 return -errno; 1268 } 1269 1270 rc = daxctl_new(&ctx); 1271 if (rc) { 1272 return -1; 1273 } 1274 1275 daxctl_region_foreach(ctx, region) { 1276 if (strstr(rpath, daxctl_region_get_path(region))) { 1277 align = daxctl_region_get_align(region); 1278 break; 1279 } 1280 } 1281 daxctl_unref(ctx); 1282 } 1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */ 1284 1285 return align; 1286 } 1287 1288 static int file_ram_open(const char *path, 1289 const char *region_name, 1290 bool readonly, 1291 bool *created, 1292 Error **errp) 1293 { 1294 char *filename; 1295 char *sanitized_name; 1296 char *c; 1297 int fd = -1; 1298 1299 *created = false; 1300 for (;;) { 1301 fd = open(path, readonly ? O_RDONLY : O_RDWR); 1302 if (fd >= 0) { 1303 /* @path names an existing file, use it */ 1304 break; 1305 } 1306 if (errno == ENOENT) { 1307 /* @path names a file that doesn't exist, create it */ 1308 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); 1309 if (fd >= 0) { 1310 *created = true; 1311 break; 1312 } 1313 } else if (errno == EISDIR) { 1314 /* @path names a directory, create a file there */ 1315 /* Make name safe to use with mkstemp by replacing '/' with '_'. */ 1316 sanitized_name = g_strdup(region_name); 1317 for (c = sanitized_name; *c != '\0'; c++) { 1318 if (*c == '/') { 1319 *c = '_'; 1320 } 1321 } 1322 1323 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, 1324 sanitized_name); 1325 g_free(sanitized_name); 1326 1327 fd = mkstemp(filename); 1328 if (fd >= 0) { 1329 unlink(filename); 1330 g_free(filename); 1331 break; 1332 } 1333 g_free(filename); 1334 } 1335 if (errno != EEXIST && errno != EINTR) { 1336 error_setg_errno(errp, errno, 1337 "can't open backing store %s for guest RAM", 1338 path); 1339 return -1; 1340 } 1341 /* 1342 * Try again on EINTR and EEXIST. The latter happens when 1343 * something else creates the file between our two open(). 1344 */ 1345 } 1346 1347 return fd; 1348 } 1349 1350 static void *file_ram_alloc(RAMBlock *block, 1351 ram_addr_t memory, 1352 int fd, 1353 bool readonly, 1354 bool truncate, 1355 off_t offset, 1356 Error **errp) 1357 { 1358 uint32_t qemu_map_flags; 1359 void *area; 1360 1361 block->page_size = qemu_fd_getpagesize(fd); 1362 if (block->mr->align % block->page_size) { 1363 error_setg(errp, "alignment 0x%" PRIx64 1364 " must be multiples of page size 0x%zx", 1365 block->mr->align, block->page_size); 1366 return NULL; 1367 } else if (block->mr->align && !is_power_of_2(block->mr->align)) { 1368 error_setg(errp, "alignment 0x%" PRIx64 1369 " must be a power of two", block->mr->align); 1370 return NULL; 1371 } else if (offset % block->page_size) { 1372 error_setg(errp, "offset 0x%" PRIx64 1373 " must be multiples of page size 0x%zx", 1374 offset, block->page_size); 1375 return NULL; 1376 } 1377 block->mr->align = MAX(block->page_size, block->mr->align); 1378 #if defined(__s390x__) 1379 if (kvm_enabled()) { 1380 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); 1381 } 1382 #endif 1383 1384 if (memory < block->page_size) { 1385 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " 1386 "or larger than page size 0x%zx", 1387 memory, block->page_size); 1388 return NULL; 1389 } 1390 1391 memory = ROUND_UP(memory, block->page_size); 1392 1393 /* 1394 * ftruncate is not supported by hugetlbfs in older 1395 * hosts, so don't bother bailing out on errors. 1396 * If anything goes wrong with it under other filesystems, 1397 * mmap will fail. 1398 * 1399 * Do not truncate the non-empty backend file to avoid corrupting 1400 * the existing data in the file. Disabling shrinking is not 1401 * enough. For example, the current vNVDIMM implementation stores 1402 * the guest NVDIMM labels at the end of the backend file. If the 1403 * backend file is later extended, QEMU will not be able to find 1404 * those labels. Therefore, extending the non-empty backend file 1405 * is disabled as well. 1406 */ 1407 if (truncate && ftruncate(fd, offset + memory)) { 1408 perror("ftruncate"); 1409 } 1410 1411 qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0; 1412 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0; 1413 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0; 1414 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0; 1415 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset); 1416 if (area == MAP_FAILED) { 1417 error_setg_errno(errp, errno, 1418 "unable to map backing store for guest RAM"); 1419 return NULL; 1420 } 1421 1422 block->fd = fd; 1423 block->fd_offset = offset; 1424 return area; 1425 } 1426 #endif 1427 1428 /* Allocate space within the ram_addr_t space that governs the 1429 * dirty bitmaps. 1430 * Called with the ramlist lock held. 1431 */ 1432 static ram_addr_t find_ram_offset(ram_addr_t size) 1433 { 1434 RAMBlock *block, *next_block; 1435 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; 1436 1437 assert(size != 0); /* it would hand out same offset multiple times */ 1438 1439 if (QLIST_EMPTY_RCU(&ram_list.blocks)) { 1440 return 0; 1441 } 1442 1443 RAMBLOCK_FOREACH(block) { 1444 ram_addr_t candidate, next = RAM_ADDR_MAX; 1445 1446 /* Align blocks to start on a 'long' in the bitmap 1447 * which makes the bitmap sync'ing take the fast path. 1448 */ 1449 candidate = block->offset + block->max_length; 1450 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); 1451 1452 /* Search for the closest following block 1453 * and find the gap. 1454 */ 1455 RAMBLOCK_FOREACH(next_block) { 1456 if (next_block->offset >= candidate) { 1457 next = MIN(next, next_block->offset); 1458 } 1459 } 1460 1461 /* If it fits remember our place and remember the size 1462 * of gap, but keep going so that we might find a smaller 1463 * gap to fill so avoiding fragmentation. 1464 */ 1465 if (next - candidate >= size && next - candidate < mingap) { 1466 offset = candidate; 1467 mingap = next - candidate; 1468 } 1469 1470 trace_find_ram_offset_loop(size, candidate, offset, next, mingap); 1471 } 1472 1473 if (offset == RAM_ADDR_MAX) { 1474 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", 1475 (uint64_t)size); 1476 abort(); 1477 } 1478 1479 trace_find_ram_offset(size, offset); 1480 1481 return offset; 1482 } 1483 1484 static unsigned long last_ram_page(void) 1485 { 1486 RAMBlock *block; 1487 ram_addr_t last = 0; 1488 1489 RCU_READ_LOCK_GUARD(); 1490 RAMBLOCK_FOREACH(block) { 1491 last = MAX(last, block->offset + block->max_length); 1492 } 1493 return last >> TARGET_PAGE_BITS; 1494 } 1495 1496 static void qemu_ram_setup_dump(void *addr, ram_addr_t size) 1497 { 1498 int ret; 1499 1500 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ 1501 if (!machine_dump_guest_core(current_machine)) { 1502 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); 1503 if (ret) { 1504 perror("qemu_madvise"); 1505 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " 1506 "but dump_guest_core=off specified\n"); 1507 } 1508 } 1509 } 1510 1511 const char *qemu_ram_get_idstr(RAMBlock *rb) 1512 { 1513 return rb->idstr; 1514 } 1515 1516 void *qemu_ram_get_host_addr(RAMBlock *rb) 1517 { 1518 return rb->host; 1519 } 1520 1521 ram_addr_t qemu_ram_get_offset(RAMBlock *rb) 1522 { 1523 return rb->offset; 1524 } 1525 1526 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb) 1527 { 1528 return rb->used_length; 1529 } 1530 1531 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb) 1532 { 1533 return rb->max_length; 1534 } 1535 1536 bool qemu_ram_is_shared(RAMBlock *rb) 1537 { 1538 return rb->flags & RAM_SHARED; 1539 } 1540 1541 bool qemu_ram_is_noreserve(RAMBlock *rb) 1542 { 1543 return rb->flags & RAM_NORESERVE; 1544 } 1545 1546 /* Note: Only set at the start of postcopy */ 1547 bool qemu_ram_is_uf_zeroable(RAMBlock *rb) 1548 { 1549 return rb->flags & RAM_UF_ZEROPAGE; 1550 } 1551 1552 void qemu_ram_set_uf_zeroable(RAMBlock *rb) 1553 { 1554 rb->flags |= RAM_UF_ZEROPAGE; 1555 } 1556 1557 bool qemu_ram_is_migratable(RAMBlock *rb) 1558 { 1559 return rb->flags & RAM_MIGRATABLE; 1560 } 1561 1562 void qemu_ram_set_migratable(RAMBlock *rb) 1563 { 1564 rb->flags |= RAM_MIGRATABLE; 1565 } 1566 1567 void qemu_ram_unset_migratable(RAMBlock *rb) 1568 { 1569 rb->flags &= ~RAM_MIGRATABLE; 1570 } 1571 1572 bool qemu_ram_is_named_file(RAMBlock *rb) 1573 { 1574 return rb->flags & RAM_NAMED_FILE; 1575 } 1576 1577 int qemu_ram_get_fd(RAMBlock *rb) 1578 { 1579 return rb->fd; 1580 } 1581 1582 /* Called with iothread lock held. */ 1583 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) 1584 { 1585 RAMBlock *block; 1586 1587 assert(new_block); 1588 assert(!new_block->idstr[0]); 1589 1590 if (dev) { 1591 char *id = qdev_get_dev_path(dev); 1592 if (id) { 1593 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); 1594 g_free(id); 1595 } 1596 } 1597 pstrcat(new_block->idstr, sizeof(new_block->idstr), name); 1598 1599 RCU_READ_LOCK_GUARD(); 1600 RAMBLOCK_FOREACH(block) { 1601 if (block != new_block && 1602 !strcmp(block->idstr, new_block->idstr)) { 1603 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", 1604 new_block->idstr); 1605 abort(); 1606 } 1607 } 1608 } 1609 1610 /* Called with iothread lock held. */ 1611 void qemu_ram_unset_idstr(RAMBlock *block) 1612 { 1613 /* FIXME: arch_init.c assumes that this is not called throughout 1614 * migration. Ignore the problem since hot-unplug during migration 1615 * does not work anyway. 1616 */ 1617 if (block) { 1618 memset(block->idstr, 0, sizeof(block->idstr)); 1619 } 1620 } 1621 1622 size_t qemu_ram_pagesize(RAMBlock *rb) 1623 { 1624 return rb->page_size; 1625 } 1626 1627 /* Returns the largest size of page in use */ 1628 size_t qemu_ram_pagesize_largest(void) 1629 { 1630 RAMBlock *block; 1631 size_t largest = 0; 1632 1633 RAMBLOCK_FOREACH(block) { 1634 largest = MAX(largest, qemu_ram_pagesize(block)); 1635 } 1636 1637 return largest; 1638 } 1639 1640 static int memory_try_enable_merging(void *addr, size_t len) 1641 { 1642 if (!machine_mem_merge(current_machine)) { 1643 /* disabled by the user */ 1644 return 0; 1645 } 1646 1647 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); 1648 } 1649 1650 /* 1651 * Resizing RAM while migrating can result in the migration being canceled. 1652 * Care has to be taken if the guest might have already detected the memory. 1653 * 1654 * As memory core doesn't know how is memory accessed, it is up to 1655 * resize callback to update device state and/or add assertions to detect 1656 * misuse, if necessary. 1657 */ 1658 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) 1659 { 1660 const ram_addr_t oldsize = block->used_length; 1661 const ram_addr_t unaligned_size = newsize; 1662 1663 assert(block); 1664 1665 newsize = HOST_PAGE_ALIGN(newsize); 1666 1667 if (block->used_length == newsize) { 1668 /* 1669 * We don't have to resize the ram block (which only knows aligned 1670 * sizes), however, we have to notify if the unaligned size changed. 1671 */ 1672 if (unaligned_size != memory_region_size(block->mr)) { 1673 memory_region_set_size(block->mr, unaligned_size); 1674 if (block->resized) { 1675 block->resized(block->idstr, unaligned_size, block->host); 1676 } 1677 } 1678 return 0; 1679 } 1680 1681 if (!(block->flags & RAM_RESIZEABLE)) { 1682 error_setg_errno(errp, EINVAL, 1683 "Size mismatch: %s: 0x" RAM_ADDR_FMT 1684 " != 0x" RAM_ADDR_FMT, block->idstr, 1685 newsize, block->used_length); 1686 return -EINVAL; 1687 } 1688 1689 if (block->max_length < newsize) { 1690 error_setg_errno(errp, EINVAL, 1691 "Size too large: %s: 0x" RAM_ADDR_FMT 1692 " > 0x" RAM_ADDR_FMT, block->idstr, 1693 newsize, block->max_length); 1694 return -EINVAL; 1695 } 1696 1697 /* Notify before modifying the ram block and touching the bitmaps. */ 1698 if (block->host) { 1699 ram_block_notify_resize(block->host, oldsize, newsize); 1700 } 1701 1702 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); 1703 block->used_length = newsize; 1704 cpu_physical_memory_set_dirty_range(block->offset, block->used_length, 1705 DIRTY_CLIENTS_ALL); 1706 memory_region_set_size(block->mr, unaligned_size); 1707 if (block->resized) { 1708 block->resized(block->idstr, unaligned_size, block->host); 1709 } 1710 return 0; 1711 } 1712 1713 /* 1714 * Trigger sync on the given ram block for range [start, start + length] 1715 * with the backing store if one is available. 1716 * Otherwise no-op. 1717 * @Note: this is supposed to be a synchronous op. 1718 */ 1719 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length) 1720 { 1721 /* The requested range should fit in within the block range */ 1722 g_assert((start + length) <= block->used_length); 1723 1724 #ifdef CONFIG_LIBPMEM 1725 /* The lack of support for pmem should not block the sync */ 1726 if (ramblock_is_pmem(block)) { 1727 void *addr = ramblock_ptr(block, start); 1728 pmem_persist(addr, length); 1729 return; 1730 } 1731 #endif 1732 if (block->fd >= 0) { 1733 /** 1734 * Case there is no support for PMEM or the memory has not been 1735 * specified as persistent (or is not one) - use the msync. 1736 * Less optimal but still achieves the same goal 1737 */ 1738 void *addr = ramblock_ptr(block, start); 1739 if (qemu_msync(addr, length, block->fd)) { 1740 warn_report("%s: failed to sync memory range: start: " 1741 RAM_ADDR_FMT " length: " RAM_ADDR_FMT, 1742 __func__, start, length); 1743 } 1744 } 1745 } 1746 1747 /* Called with ram_list.mutex held */ 1748 static void dirty_memory_extend(ram_addr_t old_ram_size, 1749 ram_addr_t new_ram_size) 1750 { 1751 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, 1752 DIRTY_MEMORY_BLOCK_SIZE); 1753 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, 1754 DIRTY_MEMORY_BLOCK_SIZE); 1755 int i; 1756 1757 /* Only need to extend if block count increased */ 1758 if (new_num_blocks <= old_num_blocks) { 1759 return; 1760 } 1761 1762 for (i = 0; i < DIRTY_MEMORY_NUM; i++) { 1763 DirtyMemoryBlocks *old_blocks; 1764 DirtyMemoryBlocks *new_blocks; 1765 int j; 1766 1767 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]); 1768 new_blocks = g_malloc(sizeof(*new_blocks) + 1769 sizeof(new_blocks->blocks[0]) * new_num_blocks); 1770 1771 if (old_num_blocks) { 1772 memcpy(new_blocks->blocks, old_blocks->blocks, 1773 old_num_blocks * sizeof(old_blocks->blocks[0])); 1774 } 1775 1776 for (j = old_num_blocks; j < new_num_blocks; j++) { 1777 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); 1778 } 1779 1780 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); 1781 1782 if (old_blocks) { 1783 g_free_rcu(old_blocks, rcu); 1784 } 1785 } 1786 } 1787 1788 static void ram_block_add(RAMBlock *new_block, Error **errp) 1789 { 1790 const bool noreserve = qemu_ram_is_noreserve(new_block); 1791 const bool shared = qemu_ram_is_shared(new_block); 1792 RAMBlock *block; 1793 RAMBlock *last_block = NULL; 1794 ram_addr_t old_ram_size, new_ram_size; 1795 Error *err = NULL; 1796 1797 old_ram_size = last_ram_page(); 1798 1799 qemu_mutex_lock_ramlist(); 1800 new_block->offset = find_ram_offset(new_block->max_length); 1801 1802 if (!new_block->host) { 1803 if (xen_enabled()) { 1804 xen_ram_alloc(new_block->offset, new_block->max_length, 1805 new_block->mr, &err); 1806 if (err) { 1807 error_propagate(errp, err); 1808 qemu_mutex_unlock_ramlist(); 1809 return; 1810 } 1811 } else { 1812 new_block->host = qemu_anon_ram_alloc(new_block->max_length, 1813 &new_block->mr->align, 1814 shared, noreserve); 1815 if (!new_block->host) { 1816 error_setg_errno(errp, errno, 1817 "cannot set up guest memory '%s'", 1818 memory_region_name(new_block->mr)); 1819 qemu_mutex_unlock_ramlist(); 1820 return; 1821 } 1822 memory_try_enable_merging(new_block->host, new_block->max_length); 1823 } 1824 } 1825 1826 new_ram_size = MAX(old_ram_size, 1827 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); 1828 if (new_ram_size > old_ram_size) { 1829 dirty_memory_extend(old_ram_size, new_ram_size); 1830 } 1831 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, 1832 * QLIST (which has an RCU-friendly variant) does not have insertion at 1833 * tail, so save the last element in last_block. 1834 */ 1835 RAMBLOCK_FOREACH(block) { 1836 last_block = block; 1837 if (block->max_length < new_block->max_length) { 1838 break; 1839 } 1840 } 1841 if (block) { 1842 QLIST_INSERT_BEFORE_RCU(block, new_block, next); 1843 } else if (last_block) { 1844 QLIST_INSERT_AFTER_RCU(last_block, new_block, next); 1845 } else { /* list is empty */ 1846 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); 1847 } 1848 ram_list.mru_block = NULL; 1849 1850 /* Write list before version */ 1851 smp_wmb(); 1852 ram_list.version++; 1853 qemu_mutex_unlock_ramlist(); 1854 1855 cpu_physical_memory_set_dirty_range(new_block->offset, 1856 new_block->used_length, 1857 DIRTY_CLIENTS_ALL); 1858 1859 if (new_block->host) { 1860 qemu_ram_setup_dump(new_block->host, new_block->max_length); 1861 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); 1862 /* 1863 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU 1864 * Configure it unless the machine is a qtest server, in which case 1865 * KVM is not used and it may be forked (eg for fuzzing purposes). 1866 */ 1867 if (!qtest_enabled()) { 1868 qemu_madvise(new_block->host, new_block->max_length, 1869 QEMU_MADV_DONTFORK); 1870 } 1871 ram_block_notify_add(new_block->host, new_block->used_length, 1872 new_block->max_length); 1873 } 1874 } 1875 1876 #ifdef CONFIG_POSIX 1877 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, 1878 uint32_t ram_flags, int fd, off_t offset, 1879 bool readonly, Error **errp) 1880 { 1881 RAMBlock *new_block; 1882 Error *local_err = NULL; 1883 int64_t file_size, file_align; 1884 1885 /* Just support these ram flags by now. */ 1886 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE | 1887 RAM_PROTECTED | RAM_NAMED_FILE)) == 0); 1888 1889 if (xen_enabled()) { 1890 error_setg(errp, "-mem-path not supported with Xen"); 1891 return NULL; 1892 } 1893 1894 if (kvm_enabled() && !kvm_has_sync_mmu()) { 1895 error_setg(errp, 1896 "host lacks kvm mmu notifiers, -mem-path unsupported"); 1897 return NULL; 1898 } 1899 1900 size = HOST_PAGE_ALIGN(size); 1901 file_size = get_file_size(fd); 1902 if (file_size > offset && file_size < (offset + size)) { 1903 error_setg(errp, "backing store size 0x%" PRIx64 1904 " does not match 'size' option 0x" RAM_ADDR_FMT, 1905 file_size, size); 1906 return NULL; 1907 } 1908 1909 file_align = get_file_align(fd); 1910 if (file_align > 0 && file_align > mr->align) { 1911 error_setg(errp, "backing store align 0x%" PRIx64 1912 " is larger than 'align' option 0x%" PRIx64, 1913 file_align, mr->align); 1914 return NULL; 1915 } 1916 1917 new_block = g_malloc0(sizeof(*new_block)); 1918 new_block->mr = mr; 1919 new_block->used_length = size; 1920 new_block->max_length = size; 1921 new_block->flags = ram_flags; 1922 new_block->host = file_ram_alloc(new_block, size, fd, readonly, 1923 !file_size, offset, errp); 1924 if (!new_block->host) { 1925 g_free(new_block); 1926 return NULL; 1927 } 1928 1929 ram_block_add(new_block, &local_err); 1930 if (local_err) { 1931 g_free(new_block); 1932 error_propagate(errp, local_err); 1933 return NULL; 1934 } 1935 return new_block; 1936 1937 } 1938 1939 1940 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 1941 uint32_t ram_flags, const char *mem_path, 1942 off_t offset, bool readonly, Error **errp) 1943 { 1944 int fd; 1945 bool created; 1946 RAMBlock *block; 1947 1948 fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created, 1949 errp); 1950 if (fd < 0) { 1951 return NULL; 1952 } 1953 1954 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, readonly, 1955 errp); 1956 if (!block) { 1957 if (created) { 1958 unlink(mem_path); 1959 } 1960 close(fd); 1961 return NULL; 1962 } 1963 1964 return block; 1965 } 1966 #endif 1967 1968 static 1969 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, 1970 void (*resized)(const char*, 1971 uint64_t length, 1972 void *host), 1973 void *host, uint32_t ram_flags, 1974 MemoryRegion *mr, Error **errp) 1975 { 1976 RAMBlock *new_block; 1977 Error *local_err = NULL; 1978 1979 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC | 1980 RAM_NORESERVE)) == 0); 1981 assert(!host ^ (ram_flags & RAM_PREALLOC)); 1982 1983 size = HOST_PAGE_ALIGN(size); 1984 max_size = HOST_PAGE_ALIGN(max_size); 1985 new_block = g_malloc0(sizeof(*new_block)); 1986 new_block->mr = mr; 1987 new_block->resized = resized; 1988 new_block->used_length = size; 1989 new_block->max_length = max_size; 1990 assert(max_size >= size); 1991 new_block->fd = -1; 1992 new_block->page_size = qemu_real_host_page_size(); 1993 new_block->host = host; 1994 new_block->flags = ram_flags; 1995 ram_block_add(new_block, &local_err); 1996 if (local_err) { 1997 g_free(new_block); 1998 error_propagate(errp, local_err); 1999 return NULL; 2000 } 2001 return new_block; 2002 } 2003 2004 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 2005 MemoryRegion *mr, Error **errp) 2006 { 2007 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr, 2008 errp); 2009 } 2010 2011 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, 2012 MemoryRegion *mr, Error **errp) 2013 { 2014 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0); 2015 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp); 2016 } 2017 2018 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, 2019 void (*resized)(const char*, 2020 uint64_t length, 2021 void *host), 2022 MemoryRegion *mr, Error **errp) 2023 { 2024 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, 2025 RAM_RESIZEABLE, mr, errp); 2026 } 2027 2028 static void reclaim_ramblock(RAMBlock *block) 2029 { 2030 if (block->flags & RAM_PREALLOC) { 2031 ; 2032 } else if (xen_enabled()) { 2033 xen_invalidate_map_cache_entry(block->host); 2034 #ifndef _WIN32 2035 } else if (block->fd >= 0) { 2036 qemu_ram_munmap(block->fd, block->host, block->max_length); 2037 close(block->fd); 2038 #endif 2039 } else { 2040 qemu_anon_ram_free(block->host, block->max_length); 2041 } 2042 g_free(block); 2043 } 2044 2045 void qemu_ram_free(RAMBlock *block) 2046 { 2047 if (!block) { 2048 return; 2049 } 2050 2051 if (block->host) { 2052 ram_block_notify_remove(block->host, block->used_length, 2053 block->max_length); 2054 } 2055 2056 qemu_mutex_lock_ramlist(); 2057 QLIST_REMOVE_RCU(block, next); 2058 ram_list.mru_block = NULL; 2059 /* Write list before version */ 2060 smp_wmb(); 2061 ram_list.version++; 2062 call_rcu(block, reclaim_ramblock, rcu); 2063 qemu_mutex_unlock_ramlist(); 2064 } 2065 2066 #ifndef _WIN32 2067 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) 2068 { 2069 RAMBlock *block; 2070 ram_addr_t offset; 2071 int flags; 2072 void *area, *vaddr; 2073 2074 RAMBLOCK_FOREACH(block) { 2075 offset = addr - block->offset; 2076 if (offset < block->max_length) { 2077 vaddr = ramblock_ptr(block, offset); 2078 if (block->flags & RAM_PREALLOC) { 2079 ; 2080 } else if (xen_enabled()) { 2081 abort(); 2082 } else { 2083 flags = MAP_FIXED; 2084 flags |= block->flags & RAM_SHARED ? 2085 MAP_SHARED : MAP_PRIVATE; 2086 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0; 2087 if (block->fd >= 0) { 2088 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2089 flags, block->fd, offset + block->fd_offset); 2090 } else { 2091 flags |= MAP_ANONYMOUS; 2092 area = mmap(vaddr, length, PROT_READ | PROT_WRITE, 2093 flags, -1, 0); 2094 } 2095 if (area != vaddr) { 2096 error_report("Could not remap addr: " 2097 RAM_ADDR_FMT "@" RAM_ADDR_FMT "", 2098 length, addr); 2099 exit(1); 2100 } 2101 memory_try_enable_merging(vaddr, length); 2102 qemu_ram_setup_dump(vaddr, length); 2103 } 2104 } 2105 } 2106 } 2107 #endif /* !_WIN32 */ 2108 2109 /* Return a host pointer to ram allocated with qemu_ram_alloc. 2110 * This should not be used for general purpose DMA. Use address_space_map 2111 * or address_space_rw instead. For local memory (e.g. video ram) that the 2112 * device owns, use memory_region_get_ram_ptr. 2113 * 2114 * Called within RCU critical section. 2115 */ 2116 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) 2117 { 2118 RAMBlock *block = ram_block; 2119 2120 if (block == NULL) { 2121 block = qemu_get_ram_block(addr); 2122 addr -= block->offset; 2123 } 2124 2125 if (xen_enabled() && block->host == NULL) { 2126 /* We need to check if the requested address is in the RAM 2127 * because we don't want to map the entire memory in QEMU. 2128 * In that case just map until the end of the page. 2129 */ 2130 if (block->offset == 0) { 2131 return xen_map_cache(addr, 0, 0, false); 2132 } 2133 2134 block->host = xen_map_cache(block->offset, block->max_length, 1, false); 2135 } 2136 return ramblock_ptr(block, addr); 2137 } 2138 2139 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr 2140 * but takes a size argument. 2141 * 2142 * Called within RCU critical section. 2143 */ 2144 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, 2145 hwaddr *size, bool lock) 2146 { 2147 RAMBlock *block = ram_block; 2148 if (*size == 0) { 2149 return NULL; 2150 } 2151 2152 if (block == NULL) { 2153 block = qemu_get_ram_block(addr); 2154 addr -= block->offset; 2155 } 2156 *size = MIN(*size, block->max_length - addr); 2157 2158 if (xen_enabled() && block->host == NULL) { 2159 /* We need to check if the requested address is in the RAM 2160 * because we don't want to map the entire memory in QEMU. 2161 * In that case just map the requested area. 2162 */ 2163 if (block->offset == 0) { 2164 return xen_map_cache(addr, *size, lock, lock); 2165 } 2166 2167 block->host = xen_map_cache(block->offset, block->max_length, 1, lock); 2168 } 2169 2170 return ramblock_ptr(block, addr); 2171 } 2172 2173 /* Return the offset of a hostpointer within a ramblock */ 2174 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) 2175 { 2176 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; 2177 assert((uintptr_t)host >= (uintptr_t)rb->host); 2178 assert(res < rb->max_length); 2179 2180 return res; 2181 } 2182 2183 /* 2184 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset 2185 * in that RAMBlock. 2186 * 2187 * ptr: Host pointer to look up 2188 * round_offset: If true round the result offset down to a page boundary 2189 * *ram_addr: set to result ram_addr 2190 * *offset: set to result offset within the RAMBlock 2191 * 2192 * Returns: RAMBlock (or NULL if not found) 2193 * 2194 * By the time this function returns, the returned pointer is not protected 2195 * by RCU anymore. If the caller is not within an RCU critical section and 2196 * does not hold the iothread lock, it must have other means of protecting the 2197 * pointer, such as a reference to the region that includes the incoming 2198 * ram_addr_t. 2199 */ 2200 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, 2201 ram_addr_t *offset) 2202 { 2203 RAMBlock *block; 2204 uint8_t *host = ptr; 2205 2206 if (xen_enabled()) { 2207 ram_addr_t ram_addr; 2208 RCU_READ_LOCK_GUARD(); 2209 ram_addr = xen_ram_addr_from_mapcache(ptr); 2210 block = qemu_get_ram_block(ram_addr); 2211 if (block) { 2212 *offset = ram_addr - block->offset; 2213 } 2214 return block; 2215 } 2216 2217 RCU_READ_LOCK_GUARD(); 2218 block = qatomic_rcu_read(&ram_list.mru_block); 2219 if (block && block->host && host - block->host < block->max_length) { 2220 goto found; 2221 } 2222 2223 RAMBLOCK_FOREACH(block) { 2224 /* This case append when the block is not mapped. */ 2225 if (block->host == NULL) { 2226 continue; 2227 } 2228 if (host - block->host < block->max_length) { 2229 goto found; 2230 } 2231 } 2232 2233 return NULL; 2234 2235 found: 2236 *offset = (host - block->host); 2237 if (round_offset) { 2238 *offset &= TARGET_PAGE_MASK; 2239 } 2240 return block; 2241 } 2242 2243 /* 2244 * Finds the named RAMBlock 2245 * 2246 * name: The name of RAMBlock to find 2247 * 2248 * Returns: RAMBlock (or NULL if not found) 2249 */ 2250 RAMBlock *qemu_ram_block_by_name(const char *name) 2251 { 2252 RAMBlock *block; 2253 2254 RAMBLOCK_FOREACH(block) { 2255 if (!strcmp(name, block->idstr)) { 2256 return block; 2257 } 2258 } 2259 2260 return NULL; 2261 } 2262 2263 /* Some of the softmmu routines need to translate from a host pointer 2264 (typically a TLB entry) back to a ram offset. */ 2265 ram_addr_t qemu_ram_addr_from_host(void *ptr) 2266 { 2267 RAMBlock *block; 2268 ram_addr_t offset; 2269 2270 block = qemu_ram_block_from_host(ptr, false, &offset); 2271 if (!block) { 2272 return RAM_ADDR_INVALID; 2273 } 2274 2275 return block->offset + offset; 2276 } 2277 2278 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 2279 { 2280 ram_addr_t ram_addr; 2281 2282 ram_addr = qemu_ram_addr_from_host(ptr); 2283 if (ram_addr == RAM_ADDR_INVALID) { 2284 error_report("Bad ram pointer %p", ptr); 2285 abort(); 2286 } 2287 return ram_addr; 2288 } 2289 2290 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2291 MemTxAttrs attrs, void *buf, hwaddr len); 2292 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2293 const void *buf, hwaddr len); 2294 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 2295 bool is_write, MemTxAttrs attrs); 2296 2297 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, 2298 unsigned len, MemTxAttrs attrs) 2299 { 2300 subpage_t *subpage = opaque; 2301 uint8_t buf[8]; 2302 MemTxResult res; 2303 2304 #if defined(DEBUG_SUBPAGE) 2305 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__, 2306 subpage, len, addr); 2307 #endif 2308 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); 2309 if (res) { 2310 return res; 2311 } 2312 *data = ldn_p(buf, len); 2313 return MEMTX_OK; 2314 } 2315 2316 static MemTxResult subpage_write(void *opaque, hwaddr addr, 2317 uint64_t value, unsigned len, MemTxAttrs attrs) 2318 { 2319 subpage_t *subpage = opaque; 2320 uint8_t buf[8]; 2321 2322 #if defined(DEBUG_SUBPAGE) 2323 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx 2324 " value %"PRIx64"\n", 2325 __func__, subpage, len, addr, value); 2326 #endif 2327 stn_p(buf, len, value); 2328 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); 2329 } 2330 2331 static bool subpage_accepts(void *opaque, hwaddr addr, 2332 unsigned len, bool is_write, 2333 MemTxAttrs attrs) 2334 { 2335 subpage_t *subpage = opaque; 2336 #if defined(DEBUG_SUBPAGE) 2337 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n", 2338 __func__, subpage, is_write ? 'w' : 'r', len, addr); 2339 #endif 2340 2341 return flatview_access_valid(subpage->fv, addr + subpage->base, 2342 len, is_write, attrs); 2343 } 2344 2345 static const MemoryRegionOps subpage_ops = { 2346 .read_with_attrs = subpage_read, 2347 .write_with_attrs = subpage_write, 2348 .impl.min_access_size = 1, 2349 .impl.max_access_size = 8, 2350 .valid.min_access_size = 1, 2351 .valid.max_access_size = 8, 2352 .valid.accepts = subpage_accepts, 2353 .endianness = DEVICE_NATIVE_ENDIAN, 2354 }; 2355 2356 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end, 2357 uint16_t section) 2358 { 2359 int idx, eidx; 2360 2361 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) 2362 return -1; 2363 idx = SUBPAGE_IDX(start); 2364 eidx = SUBPAGE_IDX(end); 2365 #if defined(DEBUG_SUBPAGE) 2366 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", 2367 __func__, mmio, start, end, idx, eidx, section); 2368 #endif 2369 for (; idx <= eidx; idx++) { 2370 mmio->sub_section[idx] = section; 2371 } 2372 2373 return 0; 2374 } 2375 2376 static subpage_t *subpage_init(FlatView *fv, hwaddr base) 2377 { 2378 subpage_t *mmio; 2379 2380 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */ 2381 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); 2382 mmio->fv = fv; 2383 mmio->base = base; 2384 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, 2385 NULL, TARGET_PAGE_SIZE); 2386 mmio->iomem.subpage = true; 2387 #if defined(DEBUG_SUBPAGE) 2388 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__, 2389 mmio, base, TARGET_PAGE_SIZE); 2390 #endif 2391 2392 return mmio; 2393 } 2394 2395 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) 2396 { 2397 assert(fv); 2398 MemoryRegionSection section = { 2399 .fv = fv, 2400 .mr = mr, 2401 .offset_within_address_space = 0, 2402 .offset_within_region = 0, 2403 .size = int128_2_64(), 2404 }; 2405 2406 return phys_section_add(map, §ion); 2407 } 2408 2409 MemoryRegionSection *iotlb_to_section(CPUState *cpu, 2410 hwaddr index, MemTxAttrs attrs) 2411 { 2412 int asidx = cpu_asidx_from_attrs(cpu, attrs); 2413 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; 2414 AddressSpaceDispatch *d = cpuas->memory_dispatch; 2415 int section_index = index & ~TARGET_PAGE_MASK; 2416 MemoryRegionSection *ret; 2417 2418 assert(section_index < d->map.sections_nb); 2419 ret = d->map.sections + section_index; 2420 assert(ret->mr); 2421 assert(ret->mr->ops); 2422 2423 return ret; 2424 } 2425 2426 static void io_mem_init(void) 2427 { 2428 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, 2429 NULL, UINT64_MAX); 2430 } 2431 2432 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) 2433 { 2434 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); 2435 uint16_t n; 2436 2437 n = dummy_section(&d->map, fv, &io_mem_unassigned); 2438 assert(n == PHYS_SECTION_UNASSIGNED); 2439 2440 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; 2441 2442 return d; 2443 } 2444 2445 void address_space_dispatch_free(AddressSpaceDispatch *d) 2446 { 2447 phys_sections_free(&d->map); 2448 g_free(d); 2449 } 2450 2451 static void do_nothing(CPUState *cpu, run_on_cpu_data d) 2452 { 2453 } 2454 2455 static void tcg_log_global_after_sync(MemoryListener *listener) 2456 { 2457 CPUAddressSpace *cpuas; 2458 2459 /* Wait for the CPU to end the current TB. This avoids the following 2460 * incorrect race: 2461 * 2462 * vCPU migration 2463 * ---------------------- ------------------------- 2464 * TLB check -> slow path 2465 * notdirty_mem_write 2466 * write to RAM 2467 * mark dirty 2468 * clear dirty flag 2469 * TLB check -> fast path 2470 * read memory 2471 * write to RAM 2472 * 2473 * by pushing the migration thread's memory read after the vCPU thread has 2474 * written the memory. 2475 */ 2476 if (replay_mode == REPLAY_MODE_NONE) { 2477 /* 2478 * VGA can make calls to this function while updating the screen. 2479 * In record/replay mode this causes a deadlock, because 2480 * run_on_cpu waits for rr mutex. Therefore no races are possible 2481 * in this case and no need for making run_on_cpu when 2482 * record/replay is enabled. 2483 */ 2484 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2485 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL); 2486 } 2487 } 2488 2489 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data) 2490 { 2491 CPUAddressSpace *cpuas = data.host_ptr; 2492 2493 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as); 2494 tlb_flush(cpu); 2495 } 2496 2497 static void tcg_commit(MemoryListener *listener) 2498 { 2499 CPUAddressSpace *cpuas; 2500 CPUState *cpu; 2501 2502 assert(tcg_enabled()); 2503 /* since each CPU stores ram addresses in its TLB cache, we must 2504 reset the modified entries */ 2505 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); 2506 cpu = cpuas->cpu; 2507 2508 /* 2509 * Defer changes to as->memory_dispatch until the cpu is quiescent. 2510 * Otherwise we race between (1) other cpu threads and (2) ongoing 2511 * i/o for the current cpu thread, with data cached by mmu_lookup(). 2512 * 2513 * In addition, queueing the work function will kick the cpu back to 2514 * the main loop, which will end the RCU critical section and reclaim 2515 * the memory data structures. 2516 * 2517 * That said, the listener is also called during realize, before 2518 * all of the tcg machinery for run-on is initialized: thus halt_cond. 2519 */ 2520 if (cpu->halt_cond) { 2521 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2522 } else { 2523 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas)); 2524 } 2525 } 2526 2527 static void memory_map_init(void) 2528 { 2529 system_memory = g_malloc(sizeof(*system_memory)); 2530 2531 memory_region_init(system_memory, NULL, "system", UINT64_MAX); 2532 address_space_init(&address_space_memory, system_memory, "memory"); 2533 2534 system_io = g_malloc(sizeof(*system_io)); 2535 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", 2536 65536); 2537 address_space_init(&address_space_io, system_io, "I/O"); 2538 } 2539 2540 MemoryRegion *get_system_memory(void) 2541 { 2542 return system_memory; 2543 } 2544 2545 MemoryRegion *get_system_io(void) 2546 { 2547 return system_io; 2548 } 2549 2550 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, 2551 hwaddr length) 2552 { 2553 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); 2554 addr += memory_region_get_ram_addr(mr); 2555 2556 /* No early return if dirty_log_mask is or becomes 0, because 2557 * cpu_physical_memory_set_dirty_range will still call 2558 * xen_modified_memory. 2559 */ 2560 if (dirty_log_mask) { 2561 dirty_log_mask = 2562 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); 2563 } 2564 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { 2565 assert(tcg_enabled()); 2566 tb_invalidate_phys_range(addr, addr + length - 1); 2567 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); 2568 } 2569 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); 2570 } 2571 2572 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size) 2573 { 2574 /* 2575 * In principle this function would work on other memory region types too, 2576 * but the ROM device use case is the only one where this operation is 2577 * necessary. Other memory regions should use the 2578 * address_space_read/write() APIs. 2579 */ 2580 assert(memory_region_is_romd(mr)); 2581 2582 invalidate_and_set_dirty(mr, addr, size); 2583 } 2584 2585 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 2586 { 2587 unsigned access_size_max = mr->ops->valid.max_access_size; 2588 2589 /* Regions are assumed to support 1-4 byte accesses unless 2590 otherwise specified. */ 2591 if (access_size_max == 0) { 2592 access_size_max = 4; 2593 } 2594 2595 /* Bound the maximum access by the alignment of the address. */ 2596 if (!mr->ops->impl.unaligned) { 2597 unsigned align_size_max = addr & -addr; 2598 if (align_size_max != 0 && align_size_max < access_size_max) { 2599 access_size_max = align_size_max; 2600 } 2601 } 2602 2603 /* Don't attempt accesses larger than the maximum. */ 2604 if (l > access_size_max) { 2605 l = access_size_max; 2606 } 2607 l = pow2floor(l); 2608 2609 return l; 2610 } 2611 2612 bool prepare_mmio_access(MemoryRegion *mr) 2613 { 2614 bool release_lock = false; 2615 2616 if (!qemu_mutex_iothread_locked()) { 2617 qemu_mutex_lock_iothread(); 2618 release_lock = true; 2619 } 2620 if (mr->flush_coalesced_mmio) { 2621 qemu_flush_coalesced_mmio_buffer(); 2622 } 2623 2624 return release_lock; 2625 } 2626 2627 /** 2628 * flatview_access_allowed 2629 * @mr: #MemoryRegion to be accessed 2630 * @attrs: memory transaction attributes 2631 * @addr: address within that memory region 2632 * @len: the number of bytes to access 2633 * 2634 * Check if a memory transaction is allowed. 2635 * 2636 * Returns: true if transaction is allowed, false if denied. 2637 */ 2638 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs, 2639 hwaddr addr, hwaddr len) 2640 { 2641 if (likely(!attrs.memory)) { 2642 return true; 2643 } 2644 if (memory_region_is_ram(mr)) { 2645 return true; 2646 } 2647 qemu_log_mask(LOG_GUEST_ERROR, 2648 "Invalid access to non-RAM device at " 2649 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", " 2650 "region '%s'\n", addr, len, memory_region_name(mr)); 2651 return false; 2652 } 2653 2654 /* Called within RCU critical section. */ 2655 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, 2656 MemTxAttrs attrs, 2657 const void *ptr, 2658 hwaddr len, hwaddr addr1, 2659 hwaddr l, MemoryRegion *mr) 2660 { 2661 uint8_t *ram_ptr; 2662 uint64_t val; 2663 MemTxResult result = MEMTX_OK; 2664 bool release_lock = false; 2665 const uint8_t *buf = ptr; 2666 2667 for (;;) { 2668 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2669 result |= MEMTX_ACCESS_ERROR; 2670 /* Keep going. */ 2671 } else if (!memory_access_is_direct(mr, true)) { 2672 release_lock |= prepare_mmio_access(mr); 2673 l = memory_access_size(mr, l, addr1); 2674 /* XXX: could force current_cpu to NULL to avoid 2675 potential bugs */ 2676 val = ldn_he_p(buf, l); 2677 result |= memory_region_dispatch_write(mr, addr1, val, 2678 size_memop(l), attrs); 2679 } else { 2680 /* RAM case */ 2681 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2682 memmove(ram_ptr, buf, l); 2683 invalidate_and_set_dirty(mr, addr1, l); 2684 } 2685 2686 if (release_lock) { 2687 qemu_mutex_unlock_iothread(); 2688 release_lock = false; 2689 } 2690 2691 len -= l; 2692 buf += l; 2693 addr += l; 2694 2695 if (!len) { 2696 break; 2697 } 2698 2699 l = len; 2700 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2701 } 2702 2703 return result; 2704 } 2705 2706 /* Called from RCU critical section. */ 2707 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, 2708 const void *buf, hwaddr len) 2709 { 2710 hwaddr l; 2711 hwaddr addr1; 2712 MemoryRegion *mr; 2713 2714 l = len; 2715 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); 2716 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2717 return MEMTX_ACCESS_ERROR; 2718 } 2719 return flatview_write_continue(fv, addr, attrs, buf, len, 2720 addr1, l, mr); 2721 } 2722 2723 /* Called within RCU critical section. */ 2724 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, 2725 MemTxAttrs attrs, void *ptr, 2726 hwaddr len, hwaddr addr1, hwaddr l, 2727 MemoryRegion *mr) 2728 { 2729 uint8_t *ram_ptr; 2730 uint64_t val; 2731 MemTxResult result = MEMTX_OK; 2732 bool release_lock = false; 2733 uint8_t *buf = ptr; 2734 2735 fuzz_dma_read_cb(addr, len, mr); 2736 for (;;) { 2737 if (!flatview_access_allowed(mr, attrs, addr1, l)) { 2738 result |= MEMTX_ACCESS_ERROR; 2739 /* Keep going. */ 2740 } else if (!memory_access_is_direct(mr, false)) { 2741 /* I/O case */ 2742 release_lock |= prepare_mmio_access(mr); 2743 l = memory_access_size(mr, l, addr1); 2744 result |= memory_region_dispatch_read(mr, addr1, &val, 2745 size_memop(l), attrs); 2746 stn_he_p(buf, l, val); 2747 } else { 2748 /* RAM case */ 2749 ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); 2750 memcpy(buf, ram_ptr, l); 2751 } 2752 2753 if (release_lock) { 2754 qemu_mutex_unlock_iothread(); 2755 release_lock = false; 2756 } 2757 2758 len -= l; 2759 buf += l; 2760 addr += l; 2761 2762 if (!len) { 2763 break; 2764 } 2765 2766 l = len; 2767 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2768 } 2769 2770 return result; 2771 } 2772 2773 /* Called from RCU critical section. */ 2774 static MemTxResult flatview_read(FlatView *fv, hwaddr addr, 2775 MemTxAttrs attrs, void *buf, hwaddr len) 2776 { 2777 hwaddr l; 2778 hwaddr addr1; 2779 MemoryRegion *mr; 2780 2781 l = len; 2782 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); 2783 if (!flatview_access_allowed(mr, attrs, addr, len)) { 2784 return MEMTX_ACCESS_ERROR; 2785 } 2786 return flatview_read_continue(fv, addr, attrs, buf, len, 2787 addr1, l, mr); 2788 } 2789 2790 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, 2791 MemTxAttrs attrs, void *buf, hwaddr len) 2792 { 2793 MemTxResult result = MEMTX_OK; 2794 FlatView *fv; 2795 2796 if (len > 0) { 2797 RCU_READ_LOCK_GUARD(); 2798 fv = address_space_to_flatview(as); 2799 result = flatview_read(fv, addr, attrs, buf, len); 2800 } 2801 2802 return result; 2803 } 2804 2805 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, 2806 MemTxAttrs attrs, 2807 const void *buf, hwaddr len) 2808 { 2809 MemTxResult result = MEMTX_OK; 2810 FlatView *fv; 2811 2812 if (len > 0) { 2813 RCU_READ_LOCK_GUARD(); 2814 fv = address_space_to_flatview(as); 2815 result = flatview_write(fv, addr, attrs, buf, len); 2816 } 2817 2818 return result; 2819 } 2820 2821 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, 2822 void *buf, hwaddr len, bool is_write) 2823 { 2824 if (is_write) { 2825 return address_space_write(as, addr, attrs, buf, len); 2826 } else { 2827 return address_space_read_full(as, addr, attrs, buf, len); 2828 } 2829 } 2830 2831 MemTxResult address_space_set(AddressSpace *as, hwaddr addr, 2832 uint8_t c, hwaddr len, MemTxAttrs attrs) 2833 { 2834 #define FILLBUF_SIZE 512 2835 uint8_t fillbuf[FILLBUF_SIZE]; 2836 int l; 2837 MemTxResult error = MEMTX_OK; 2838 2839 memset(fillbuf, c, FILLBUF_SIZE); 2840 while (len > 0) { 2841 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE; 2842 error |= address_space_write(as, addr, attrs, fillbuf, l); 2843 len -= l; 2844 addr += l; 2845 } 2846 2847 return error; 2848 } 2849 2850 void cpu_physical_memory_rw(hwaddr addr, void *buf, 2851 hwaddr len, bool is_write) 2852 { 2853 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, 2854 buf, len, is_write); 2855 } 2856 2857 enum write_rom_type { 2858 WRITE_DATA, 2859 FLUSH_CACHE, 2860 }; 2861 2862 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as, 2863 hwaddr addr, 2864 MemTxAttrs attrs, 2865 const void *ptr, 2866 hwaddr len, 2867 enum write_rom_type type) 2868 { 2869 hwaddr l; 2870 uint8_t *ram_ptr; 2871 hwaddr addr1; 2872 MemoryRegion *mr; 2873 const uint8_t *buf = ptr; 2874 2875 RCU_READ_LOCK_GUARD(); 2876 while (len > 0) { 2877 l = len; 2878 mr = address_space_translate(as, addr, &addr1, &l, true, attrs); 2879 2880 if (!(memory_region_is_ram(mr) || 2881 memory_region_is_romd(mr))) { 2882 l = memory_access_size(mr, l, addr1); 2883 } else { 2884 /* ROM/RAM case */ 2885 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1); 2886 switch (type) { 2887 case WRITE_DATA: 2888 memcpy(ram_ptr, buf, l); 2889 invalidate_and_set_dirty(mr, addr1, l); 2890 break; 2891 case FLUSH_CACHE: 2892 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l); 2893 break; 2894 } 2895 } 2896 len -= l; 2897 buf += l; 2898 addr += l; 2899 } 2900 return MEMTX_OK; 2901 } 2902 2903 /* used for ROM loading : can write in RAM and ROM */ 2904 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr, 2905 MemTxAttrs attrs, 2906 const void *buf, hwaddr len) 2907 { 2908 return address_space_write_rom_internal(as, addr, attrs, 2909 buf, len, WRITE_DATA); 2910 } 2911 2912 void cpu_flush_icache_range(hwaddr start, hwaddr len) 2913 { 2914 /* 2915 * This function should do the same thing as an icache flush that was 2916 * triggered from within the guest. For TCG we are always cache coherent, 2917 * so there is no need to flush anything. For KVM / Xen we need to flush 2918 * the host's instruction cache at least. 2919 */ 2920 if (tcg_enabled()) { 2921 return; 2922 } 2923 2924 address_space_write_rom_internal(&address_space_memory, 2925 start, MEMTXATTRS_UNSPECIFIED, 2926 NULL, len, FLUSH_CACHE); 2927 } 2928 2929 typedef struct { 2930 MemoryRegion *mr; 2931 void *buffer; 2932 hwaddr addr; 2933 hwaddr len; 2934 bool in_use; 2935 } BounceBuffer; 2936 2937 static BounceBuffer bounce; 2938 2939 typedef struct MapClient { 2940 QEMUBH *bh; 2941 QLIST_ENTRY(MapClient) link; 2942 } MapClient; 2943 2944 QemuMutex map_client_list_lock; 2945 static QLIST_HEAD(, MapClient) map_client_list 2946 = QLIST_HEAD_INITIALIZER(map_client_list); 2947 2948 static void cpu_unregister_map_client_do(MapClient *client) 2949 { 2950 QLIST_REMOVE(client, link); 2951 g_free(client); 2952 } 2953 2954 static void cpu_notify_map_clients_locked(void) 2955 { 2956 MapClient *client; 2957 2958 while (!QLIST_EMPTY(&map_client_list)) { 2959 client = QLIST_FIRST(&map_client_list); 2960 qemu_bh_schedule(client->bh); 2961 cpu_unregister_map_client_do(client); 2962 } 2963 } 2964 2965 void cpu_register_map_client(QEMUBH *bh) 2966 { 2967 MapClient *client = g_malloc(sizeof(*client)); 2968 2969 qemu_mutex_lock(&map_client_list_lock); 2970 client->bh = bh; 2971 QLIST_INSERT_HEAD(&map_client_list, client, link); 2972 /* Write map_client_list before reading in_use. */ 2973 smp_mb(); 2974 if (!qatomic_read(&bounce.in_use)) { 2975 cpu_notify_map_clients_locked(); 2976 } 2977 qemu_mutex_unlock(&map_client_list_lock); 2978 } 2979 2980 void cpu_exec_init_all(void) 2981 { 2982 qemu_mutex_init(&ram_list.mutex); 2983 /* The data structures we set up here depend on knowing the page size, 2984 * so no more changes can be made after this point. 2985 * In an ideal world, nothing we did before we had finished the 2986 * machine setup would care about the target page size, and we could 2987 * do this much later, rather than requiring board models to state 2988 * up front what their requirements are. 2989 */ 2990 finalize_target_page_bits(); 2991 io_mem_init(); 2992 memory_map_init(); 2993 qemu_mutex_init(&map_client_list_lock); 2994 } 2995 2996 void cpu_unregister_map_client(QEMUBH *bh) 2997 { 2998 MapClient *client; 2999 3000 qemu_mutex_lock(&map_client_list_lock); 3001 QLIST_FOREACH(client, &map_client_list, link) { 3002 if (client->bh == bh) { 3003 cpu_unregister_map_client_do(client); 3004 break; 3005 } 3006 } 3007 qemu_mutex_unlock(&map_client_list_lock); 3008 } 3009 3010 static void cpu_notify_map_clients(void) 3011 { 3012 qemu_mutex_lock(&map_client_list_lock); 3013 cpu_notify_map_clients_locked(); 3014 qemu_mutex_unlock(&map_client_list_lock); 3015 } 3016 3017 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len, 3018 bool is_write, MemTxAttrs attrs) 3019 { 3020 MemoryRegion *mr; 3021 hwaddr l, xlat; 3022 3023 while (len > 0) { 3024 l = len; 3025 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3026 if (!memory_access_is_direct(mr, is_write)) { 3027 l = memory_access_size(mr, l, addr); 3028 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { 3029 return false; 3030 } 3031 } 3032 3033 len -= l; 3034 addr += l; 3035 } 3036 return true; 3037 } 3038 3039 bool address_space_access_valid(AddressSpace *as, hwaddr addr, 3040 hwaddr len, bool is_write, 3041 MemTxAttrs attrs) 3042 { 3043 FlatView *fv; 3044 3045 RCU_READ_LOCK_GUARD(); 3046 fv = address_space_to_flatview(as); 3047 return flatview_access_valid(fv, addr, len, is_write, attrs); 3048 } 3049 3050 static hwaddr 3051 flatview_extend_translation(FlatView *fv, hwaddr addr, 3052 hwaddr target_len, 3053 MemoryRegion *mr, hwaddr base, hwaddr len, 3054 bool is_write, MemTxAttrs attrs) 3055 { 3056 hwaddr done = 0; 3057 hwaddr xlat; 3058 MemoryRegion *this_mr; 3059 3060 for (;;) { 3061 target_len -= len; 3062 addr += len; 3063 done += len; 3064 if (target_len == 0) { 3065 return done; 3066 } 3067 3068 len = target_len; 3069 this_mr = flatview_translate(fv, addr, &xlat, 3070 &len, is_write, attrs); 3071 if (this_mr != mr || xlat != base + done) { 3072 return done; 3073 } 3074 } 3075 } 3076 3077 /* Map a physical memory region into a host virtual address. 3078 * May map a subset of the requested range, given by and returned in *plen. 3079 * May return NULL if resources needed to perform the mapping are exhausted. 3080 * Use only for reads OR writes - not for read-modify-write operations. 3081 * Use cpu_register_map_client() to know when retrying the map operation is 3082 * likely to succeed. 3083 */ 3084 void *address_space_map(AddressSpace *as, 3085 hwaddr addr, 3086 hwaddr *plen, 3087 bool is_write, 3088 MemTxAttrs attrs) 3089 { 3090 hwaddr len = *plen; 3091 hwaddr l, xlat; 3092 MemoryRegion *mr; 3093 FlatView *fv; 3094 3095 if (len == 0) { 3096 return NULL; 3097 } 3098 3099 l = len; 3100 RCU_READ_LOCK_GUARD(); 3101 fv = address_space_to_flatview(as); 3102 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); 3103 3104 if (!memory_access_is_direct(mr, is_write)) { 3105 if (qatomic_xchg(&bounce.in_use, true)) { 3106 *plen = 0; 3107 return NULL; 3108 } 3109 /* Avoid unbounded allocations */ 3110 l = MIN(l, TARGET_PAGE_SIZE); 3111 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); 3112 bounce.addr = addr; 3113 bounce.len = l; 3114 3115 memory_region_ref(mr); 3116 bounce.mr = mr; 3117 if (!is_write) { 3118 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, 3119 bounce.buffer, l); 3120 } 3121 3122 *plen = l; 3123 return bounce.buffer; 3124 } 3125 3126 3127 memory_region_ref(mr); 3128 *plen = flatview_extend_translation(fv, addr, len, mr, xlat, 3129 l, is_write, attrs); 3130 fuzz_dma_read_cb(addr, *plen, mr); 3131 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); 3132 } 3133 3134 /* Unmaps a memory region previously mapped by address_space_map(). 3135 * Will also mark the memory as dirty if is_write is true. access_len gives 3136 * the amount of memory that was actually read or written by the caller. 3137 */ 3138 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, 3139 bool is_write, hwaddr access_len) 3140 { 3141 if (buffer != bounce.buffer) { 3142 MemoryRegion *mr; 3143 ram_addr_t addr1; 3144 3145 mr = memory_region_from_host(buffer, &addr1); 3146 assert(mr != NULL); 3147 if (is_write) { 3148 invalidate_and_set_dirty(mr, addr1, access_len); 3149 } 3150 if (xen_enabled()) { 3151 xen_invalidate_map_cache_entry(buffer); 3152 } 3153 memory_region_unref(mr); 3154 return; 3155 } 3156 if (is_write) { 3157 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, 3158 bounce.buffer, access_len); 3159 } 3160 qemu_vfree(bounce.buffer); 3161 bounce.buffer = NULL; 3162 memory_region_unref(bounce.mr); 3163 /* Clear in_use before reading map_client_list. */ 3164 qatomic_set_mb(&bounce.in_use, false); 3165 cpu_notify_map_clients(); 3166 } 3167 3168 void *cpu_physical_memory_map(hwaddr addr, 3169 hwaddr *plen, 3170 bool is_write) 3171 { 3172 return address_space_map(&address_space_memory, addr, plen, is_write, 3173 MEMTXATTRS_UNSPECIFIED); 3174 } 3175 3176 void cpu_physical_memory_unmap(void *buffer, hwaddr len, 3177 bool is_write, hwaddr access_len) 3178 { 3179 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); 3180 } 3181 3182 #define ARG1_DECL AddressSpace *as 3183 #define ARG1 as 3184 #define SUFFIX 3185 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) 3186 #define RCU_READ_LOCK(...) rcu_read_lock() 3187 #define RCU_READ_UNLOCK(...) rcu_read_unlock() 3188 #include "memory_ldst.c.inc" 3189 3190 int64_t address_space_cache_init(MemoryRegionCache *cache, 3191 AddressSpace *as, 3192 hwaddr addr, 3193 hwaddr len, 3194 bool is_write) 3195 { 3196 AddressSpaceDispatch *d; 3197 hwaddr l; 3198 MemoryRegion *mr; 3199 Int128 diff; 3200 3201 assert(len > 0); 3202 3203 l = len; 3204 cache->fv = address_space_get_flatview(as); 3205 d = flatview_to_dispatch(cache->fv); 3206 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); 3207 3208 /* 3209 * cache->xlat is now relative to cache->mrs.mr, not to the section itself. 3210 * Take that into account to compute how many bytes are there between 3211 * cache->xlat and the end of the section. 3212 */ 3213 diff = int128_sub(cache->mrs.size, 3214 int128_make64(cache->xlat - cache->mrs.offset_within_region)); 3215 l = int128_get64(int128_min(diff, int128_make64(l))); 3216 3217 mr = cache->mrs.mr; 3218 memory_region_ref(mr); 3219 if (memory_access_is_direct(mr, is_write)) { 3220 /* We don't care about the memory attributes here as we're only 3221 * doing this if we found actual RAM, which behaves the same 3222 * regardless of attributes; so UNSPECIFIED is fine. 3223 */ 3224 l = flatview_extend_translation(cache->fv, addr, len, mr, 3225 cache->xlat, l, is_write, 3226 MEMTXATTRS_UNSPECIFIED); 3227 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); 3228 } else { 3229 cache->ptr = NULL; 3230 } 3231 3232 cache->len = l; 3233 cache->is_write = is_write; 3234 return l; 3235 } 3236 3237 void address_space_cache_invalidate(MemoryRegionCache *cache, 3238 hwaddr addr, 3239 hwaddr access_len) 3240 { 3241 assert(cache->is_write); 3242 if (likely(cache->ptr)) { 3243 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); 3244 } 3245 } 3246 3247 void address_space_cache_destroy(MemoryRegionCache *cache) 3248 { 3249 if (!cache->mrs.mr) { 3250 return; 3251 } 3252 3253 if (xen_enabled()) { 3254 xen_invalidate_map_cache_entry(cache->ptr); 3255 } 3256 memory_region_unref(cache->mrs.mr); 3257 flatview_unref(cache->fv); 3258 cache->mrs.mr = NULL; 3259 cache->fv = NULL; 3260 } 3261 3262 /* Called from RCU critical section. This function has the same 3263 * semantics as address_space_translate, but it only works on a 3264 * predefined range of a MemoryRegion that was mapped with 3265 * address_space_cache_init. 3266 */ 3267 static inline MemoryRegion *address_space_translate_cached( 3268 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, 3269 hwaddr *plen, bool is_write, MemTxAttrs attrs) 3270 { 3271 MemoryRegionSection section; 3272 MemoryRegion *mr; 3273 IOMMUMemoryRegion *iommu_mr; 3274 AddressSpace *target_as; 3275 3276 assert(!cache->ptr); 3277 *xlat = addr + cache->xlat; 3278 3279 mr = cache->mrs.mr; 3280 iommu_mr = memory_region_get_iommu(mr); 3281 if (!iommu_mr) { 3282 /* MMIO region. */ 3283 return mr; 3284 } 3285 3286 section = address_space_translate_iommu(iommu_mr, xlat, plen, 3287 NULL, is_write, true, 3288 &target_as, attrs); 3289 return section.mr; 3290 } 3291 3292 /* Called from RCU critical section. address_space_read_cached uses this 3293 * out of line function when the target is an MMIO or IOMMU region. 3294 */ 3295 MemTxResult 3296 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3297 void *buf, hwaddr len) 3298 { 3299 hwaddr addr1, l; 3300 MemoryRegion *mr; 3301 3302 l = len; 3303 mr = address_space_translate_cached(cache, addr, &addr1, &l, false, 3304 MEMTXATTRS_UNSPECIFIED); 3305 return flatview_read_continue(cache->fv, 3306 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3307 addr1, l, mr); 3308 } 3309 3310 /* Called from RCU critical section. address_space_write_cached uses this 3311 * out of line function when the target is an MMIO or IOMMU region. 3312 */ 3313 MemTxResult 3314 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, 3315 const void *buf, hwaddr len) 3316 { 3317 hwaddr addr1, l; 3318 MemoryRegion *mr; 3319 3320 l = len; 3321 mr = address_space_translate_cached(cache, addr, &addr1, &l, true, 3322 MEMTXATTRS_UNSPECIFIED); 3323 return flatview_write_continue(cache->fv, 3324 addr, MEMTXATTRS_UNSPECIFIED, buf, len, 3325 addr1, l, mr); 3326 } 3327 3328 #define ARG1_DECL MemoryRegionCache *cache 3329 #define ARG1 cache 3330 #define SUFFIX _cached_slow 3331 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) 3332 #define RCU_READ_LOCK() ((void)0) 3333 #define RCU_READ_UNLOCK() ((void)0) 3334 #include "memory_ldst.c.inc" 3335 3336 /* virtual memory access for debug (includes writing to ROM) */ 3337 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr, 3338 void *ptr, size_t len, bool is_write) 3339 { 3340 hwaddr phys_addr; 3341 vaddr l, page; 3342 uint8_t *buf = ptr; 3343 3344 cpu_synchronize_state(cpu); 3345 while (len > 0) { 3346 int asidx; 3347 MemTxAttrs attrs; 3348 MemTxResult res; 3349 3350 page = addr & TARGET_PAGE_MASK; 3351 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); 3352 asidx = cpu_asidx_from_attrs(cpu, attrs); 3353 /* if no physical page mapped, return an error */ 3354 if (phys_addr == -1) 3355 return -1; 3356 l = (page + TARGET_PAGE_SIZE) - addr; 3357 if (l > len) 3358 l = len; 3359 phys_addr += (addr & ~TARGET_PAGE_MASK); 3360 if (is_write) { 3361 res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr, 3362 attrs, buf, l); 3363 } else { 3364 res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr, 3365 attrs, buf, l); 3366 } 3367 if (res != MEMTX_OK) { 3368 return -1; 3369 } 3370 len -= l; 3371 buf += l; 3372 addr += l; 3373 } 3374 return 0; 3375 } 3376 3377 /* 3378 * Allows code that needs to deal with migration bitmaps etc to still be built 3379 * target independent. 3380 */ 3381 size_t qemu_target_page_size(void) 3382 { 3383 return TARGET_PAGE_SIZE; 3384 } 3385 3386 int qemu_target_page_mask(void) 3387 { 3388 return TARGET_PAGE_MASK; 3389 } 3390 3391 int qemu_target_page_bits(void) 3392 { 3393 return TARGET_PAGE_BITS; 3394 } 3395 3396 int qemu_target_page_bits_min(void) 3397 { 3398 return TARGET_PAGE_BITS_MIN; 3399 } 3400 3401 /* Convert target pages to MiB (2**20). */ 3402 size_t qemu_target_pages_to_MiB(size_t pages) 3403 { 3404 int page_bits = TARGET_PAGE_BITS; 3405 3406 /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */ 3407 g_assert(page_bits < 20); 3408 3409 return pages >> (20 - page_bits); 3410 } 3411 3412 bool cpu_physical_memory_is_io(hwaddr phys_addr) 3413 { 3414 MemoryRegion*mr; 3415 hwaddr l = 1; 3416 3417 RCU_READ_LOCK_GUARD(); 3418 mr = address_space_translate(&address_space_memory, 3419 phys_addr, &phys_addr, &l, false, 3420 MEMTXATTRS_UNSPECIFIED); 3421 3422 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); 3423 } 3424 3425 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) 3426 { 3427 RAMBlock *block; 3428 int ret = 0; 3429 3430 RCU_READ_LOCK_GUARD(); 3431 RAMBLOCK_FOREACH(block) { 3432 ret = func(block, opaque); 3433 if (ret) { 3434 break; 3435 } 3436 } 3437 return ret; 3438 } 3439 3440 /* 3441 * Unmap pages of memory from start to start+length such that 3442 * they a) read as 0, b) Trigger whatever fault mechanism 3443 * the OS provides for postcopy. 3444 * The pages must be unmapped by the end of the function. 3445 * Returns: 0 on success, none-0 on failure 3446 * 3447 */ 3448 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) 3449 { 3450 int ret = -1; 3451 3452 uint8_t *host_startaddr = rb->host + start; 3453 3454 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) { 3455 error_report("ram_block_discard_range: Unaligned start address: %p", 3456 host_startaddr); 3457 goto err; 3458 } 3459 3460 if ((start + length) <= rb->max_length) { 3461 bool need_madvise, need_fallocate; 3462 if (!QEMU_IS_ALIGNED(length, rb->page_size)) { 3463 error_report("ram_block_discard_range: Unaligned length: %zx", 3464 length); 3465 goto err; 3466 } 3467 3468 errno = ENOTSUP; /* If we are missing MADVISE etc */ 3469 3470 /* The logic here is messy; 3471 * madvise DONTNEED fails for hugepages 3472 * fallocate works on hugepages and shmem 3473 * shared anonymous memory requires madvise REMOVE 3474 */ 3475 need_madvise = (rb->page_size == qemu_host_page_size); 3476 need_fallocate = rb->fd != -1; 3477 if (need_fallocate) { 3478 /* For a file, this causes the area of the file to be zero'd 3479 * if read, and for hugetlbfs also causes it to be unmapped 3480 * so a userfault will trigger. 3481 */ 3482 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE 3483 /* 3484 * We'll discard data from the actual file, even though we only 3485 * have a MAP_PRIVATE mapping, possibly messing with other 3486 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to 3487 * change that behavior whithout violating the promised 3488 * semantics of ram_block_discard_range(). 3489 * 3490 * Only warn, because it works as long as nobody else uses that 3491 * file. 3492 */ 3493 if (!qemu_ram_is_shared(rb)) { 3494 warn_report_once("ram_block_discard_range: Discarding RAM" 3495 " in private file mappings is possibly" 3496 " dangerous, because it will modify the" 3497 " underlying file and will affect other" 3498 " users of the file"); 3499 } 3500 3501 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 3502 start, length); 3503 if (ret) { 3504 ret = -errno; 3505 error_report("ram_block_discard_range: Failed to fallocate " 3506 "%s:%" PRIx64 " +%zx (%d)", 3507 rb->idstr, start, length, ret); 3508 goto err; 3509 } 3510 #else 3511 ret = -ENOSYS; 3512 error_report("ram_block_discard_range: fallocate not available/file" 3513 "%s:%" PRIx64 " +%zx (%d)", 3514 rb->idstr, start, length, ret); 3515 goto err; 3516 #endif 3517 } 3518 if (need_madvise) { 3519 /* For normal RAM this causes it to be unmapped, 3520 * for shared memory it causes the local mapping to disappear 3521 * and to fall back on the file contents (which we just 3522 * fallocate'd away). 3523 */ 3524 #if defined(CONFIG_MADVISE) 3525 if (qemu_ram_is_shared(rb) && rb->fd < 0) { 3526 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE); 3527 } else { 3528 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED); 3529 } 3530 if (ret) { 3531 ret = -errno; 3532 error_report("ram_block_discard_range: Failed to discard range " 3533 "%s:%" PRIx64 " +%zx (%d)", 3534 rb->idstr, start, length, ret); 3535 goto err; 3536 } 3537 #else 3538 ret = -ENOSYS; 3539 error_report("ram_block_discard_range: MADVISE not available" 3540 "%s:%" PRIx64 " +%zx (%d)", 3541 rb->idstr, start, length, ret); 3542 goto err; 3543 #endif 3544 } 3545 trace_ram_block_discard_range(rb->idstr, host_startaddr, length, 3546 need_madvise, need_fallocate, ret); 3547 } else { 3548 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 3549 "/%zx/" RAM_ADDR_FMT")", 3550 rb->idstr, start, length, rb->max_length); 3551 } 3552 3553 err: 3554 return ret; 3555 } 3556 3557 bool ramblock_is_pmem(RAMBlock *rb) 3558 { 3559 return rb->flags & RAM_PMEM; 3560 } 3561 3562 static void mtree_print_phys_entries(int start, int end, int skip, int ptr) 3563 { 3564 if (start == end - 1) { 3565 qemu_printf("\t%3d ", start); 3566 } else { 3567 qemu_printf("\t%3d..%-3d ", start, end - 1); 3568 } 3569 qemu_printf(" skip=%d ", skip); 3570 if (ptr == PHYS_MAP_NODE_NIL) { 3571 qemu_printf(" ptr=NIL"); 3572 } else if (!skip) { 3573 qemu_printf(" ptr=#%d", ptr); 3574 } else { 3575 qemu_printf(" ptr=[%d]", ptr); 3576 } 3577 qemu_printf("\n"); 3578 } 3579 3580 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ 3581 int128_sub((size), int128_one())) : 0) 3582 3583 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root) 3584 { 3585 int i; 3586 3587 qemu_printf(" Dispatch\n"); 3588 qemu_printf(" Physical sections\n"); 3589 3590 for (i = 0; i < d->map.sections_nb; ++i) { 3591 MemoryRegionSection *s = d->map.sections + i; 3592 const char *names[] = { " [unassigned]", " [not dirty]", 3593 " [ROM]", " [watch]" }; 3594 3595 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx 3596 " %s%s%s%s%s", 3597 i, 3598 s->offset_within_address_space, 3599 s->offset_within_address_space + MR_SIZE(s->size), 3600 s->mr->name ? s->mr->name : "(noname)", 3601 i < ARRAY_SIZE(names) ? names[i] : "", 3602 s->mr == root ? " [ROOT]" : "", 3603 s == d->mru_section ? " [MRU]" : "", 3604 s->mr->is_iommu ? " [iommu]" : ""); 3605 3606 if (s->mr->alias) { 3607 qemu_printf(" alias=%s", s->mr->alias->name ? 3608 s->mr->alias->name : "noname"); 3609 } 3610 qemu_printf("\n"); 3611 } 3612 3613 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", 3614 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); 3615 for (i = 0; i < d->map.nodes_nb; ++i) { 3616 int j, jprev; 3617 PhysPageEntry prev; 3618 Node *n = d->map.nodes + i; 3619 3620 qemu_printf(" [%d]\n", i); 3621 3622 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { 3623 PhysPageEntry *pe = *n + j; 3624 3625 if (pe->ptr == prev.ptr && pe->skip == prev.skip) { 3626 continue; 3627 } 3628 3629 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3630 3631 jprev = j; 3632 prev = *pe; 3633 } 3634 3635 if (jprev != ARRAY_SIZE(*n)) { 3636 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr); 3637 } 3638 } 3639 } 3640 3641 /* Require any discards to work. */ 3642 static unsigned int ram_block_discard_required_cnt; 3643 /* Require only coordinated discards to work. */ 3644 static unsigned int ram_block_coordinated_discard_required_cnt; 3645 /* Disable any discards. */ 3646 static unsigned int ram_block_discard_disabled_cnt; 3647 /* Disable only uncoordinated discards. */ 3648 static unsigned int ram_block_uncoordinated_discard_disabled_cnt; 3649 static QemuMutex ram_block_discard_disable_mutex; 3650 3651 static void ram_block_discard_disable_mutex_lock(void) 3652 { 3653 static gsize initialized; 3654 3655 if (g_once_init_enter(&initialized)) { 3656 qemu_mutex_init(&ram_block_discard_disable_mutex); 3657 g_once_init_leave(&initialized, 1); 3658 } 3659 qemu_mutex_lock(&ram_block_discard_disable_mutex); 3660 } 3661 3662 static void ram_block_discard_disable_mutex_unlock(void) 3663 { 3664 qemu_mutex_unlock(&ram_block_discard_disable_mutex); 3665 } 3666 3667 int ram_block_discard_disable(bool state) 3668 { 3669 int ret = 0; 3670 3671 ram_block_discard_disable_mutex_lock(); 3672 if (!state) { 3673 ram_block_discard_disabled_cnt--; 3674 } else if (ram_block_discard_required_cnt || 3675 ram_block_coordinated_discard_required_cnt) { 3676 ret = -EBUSY; 3677 } else { 3678 ram_block_discard_disabled_cnt++; 3679 } 3680 ram_block_discard_disable_mutex_unlock(); 3681 return ret; 3682 } 3683 3684 int ram_block_uncoordinated_discard_disable(bool state) 3685 { 3686 int ret = 0; 3687 3688 ram_block_discard_disable_mutex_lock(); 3689 if (!state) { 3690 ram_block_uncoordinated_discard_disabled_cnt--; 3691 } else if (ram_block_discard_required_cnt) { 3692 ret = -EBUSY; 3693 } else { 3694 ram_block_uncoordinated_discard_disabled_cnt++; 3695 } 3696 ram_block_discard_disable_mutex_unlock(); 3697 return ret; 3698 } 3699 3700 int ram_block_discard_require(bool state) 3701 { 3702 int ret = 0; 3703 3704 ram_block_discard_disable_mutex_lock(); 3705 if (!state) { 3706 ram_block_discard_required_cnt--; 3707 } else if (ram_block_discard_disabled_cnt || 3708 ram_block_uncoordinated_discard_disabled_cnt) { 3709 ret = -EBUSY; 3710 } else { 3711 ram_block_discard_required_cnt++; 3712 } 3713 ram_block_discard_disable_mutex_unlock(); 3714 return ret; 3715 } 3716 3717 int ram_block_coordinated_discard_require(bool state) 3718 { 3719 int ret = 0; 3720 3721 ram_block_discard_disable_mutex_lock(); 3722 if (!state) { 3723 ram_block_coordinated_discard_required_cnt--; 3724 } else if (ram_block_discard_disabled_cnt) { 3725 ret = -EBUSY; 3726 } else { 3727 ram_block_coordinated_discard_required_cnt++; 3728 } 3729 ram_block_discard_disable_mutex_unlock(); 3730 return ret; 3731 } 3732 3733 bool ram_block_discard_is_disabled(void) 3734 { 3735 return qatomic_read(&ram_block_discard_disabled_cnt) || 3736 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt); 3737 } 3738 3739 bool ram_block_discard_is_required(void) 3740 { 3741 return qatomic_read(&ram_block_discard_required_cnt) || 3742 qatomic_read(&ram_block_coordinated_discard_required_cnt); 3743 } 3744