xref: /qemu/system/memory.c (revision c0e6b8b798bee5d8772ca8db19638ec89b47c946)
1  /*
2   * Physical memory management
3   *
4   * Copyright 2011 Red Hat, Inc. and/or its affiliates
5   *
6   * Authors:
7   *  Avi Kivity <avi@redhat.com>
8   *
9   * This work is licensed under the terms of the GNU GPL, version 2.  See
10   * the COPYING file in the top-level directory.
11   *
12   * Contributions after 2012-01-13 are licensed under the terms of the
13   * GNU GPL, version 2 or (at your option) any later version.
14   */
15  
16  #include "qemu/osdep.h"
17  #include "qemu/log.h"
18  #include "qapi/error.h"
19  #include "exec/memory.h"
20  #include "qapi/visitor.h"
21  #include "qemu/bitops.h"
22  #include "qemu/error-report.h"
23  #include "qemu/main-loop.h"
24  #include "qemu/qemu-print.h"
25  #include "qom/object.h"
26  #include "trace.h"
27  
28  #include "exec/memory-internal.h"
29  #include "exec/ram_addr.h"
30  #include "system/kvm.h"
31  #include "system/runstate.h"
32  #include "system/tcg.h"
33  #include "qemu/accel.h"
34  #include "hw/boards.h"
35  #include "migration/vmstate.h"
36  #include "exec/address-spaces.h"
37  
38  //#define DEBUG_UNASSIGNED
39  
40  static unsigned memory_region_transaction_depth;
41  static bool memory_region_update_pending;
42  static bool ioeventfd_update_pending;
43  unsigned int global_dirty_tracking;
44  
45  static QTAILQ_HEAD(, MemoryListener) memory_listeners
46      = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47  
48  static QTAILQ_HEAD(, AddressSpace) address_spaces
49      = QTAILQ_HEAD_INITIALIZER(address_spaces);
50  
51  static GHashTable *flat_views;
52  
53  typedef struct AddrRange AddrRange;
54  
55  /*
56   * Note that signed integers are needed for negative offsetting in aliases
57   * (large MemoryRegion::alias_offset).
58   */
59  struct AddrRange {
60      Int128 start;
61      Int128 size;
62  };
63  
64  static AddrRange addrrange_make(Int128 start, Int128 size)
65  {
66      return (AddrRange) { start, size };
67  }
68  
69  static bool addrrange_equal(AddrRange r1, AddrRange r2)
70  {
71      return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
72  }
73  
74  static Int128 addrrange_end(AddrRange r)
75  {
76      return int128_add(r.start, r.size);
77  }
78  
79  static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80  {
81      int128_addto(&range.start, delta);
82      return range;
83  }
84  
85  static bool addrrange_contains(AddrRange range, Int128 addr)
86  {
87      return int128_ge(addr, range.start)
88          && int128_lt(addr, addrrange_end(range));
89  }
90  
91  static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92  {
93      return addrrange_contains(r1, r2.start)
94          || addrrange_contains(r2, r1.start);
95  }
96  
97  static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98  {
99      Int128 start = int128_max(r1.start, r2.start);
100      Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101      return addrrange_make(start, int128_sub(end, start));
102  }
103  
104  enum ListenerDirection { Forward, Reverse };
105  
106  #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
107      do {                                                                \
108          MemoryListener *_listener;                                      \
109                                                                          \
110          switch (_direction) {                                           \
111          case Forward:                                                   \
112              QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
113                  if (_listener->_callback) {                             \
114                      _listener->_callback(_listener, ##_args);           \
115                  }                                                       \
116              }                                                           \
117              break;                                                      \
118          case Reverse:                                                   \
119              QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120                  if (_listener->_callback) {                             \
121                      _listener->_callback(_listener, ##_args);           \
122                  }                                                       \
123              }                                                           \
124              break;                                                      \
125          default:                                                        \
126              abort();                                                    \
127          }                                                               \
128      } while (0)
129  
130  #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131      do {                                                                \
132          MemoryListener *_listener;                                      \
133                                                                          \
134          switch (_direction) {                                           \
135          case Forward:                                                   \
136              QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
137                  if (_listener->_callback) {                             \
138                      _listener->_callback(_listener, _section, ##_args); \
139                  }                                                       \
140              }                                                           \
141              break;                                                      \
142          case Reverse:                                                   \
143              QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144                  if (_listener->_callback) {                             \
145                      _listener->_callback(_listener, _section, ##_args); \
146                  }                                                       \
147              }                                                           \
148              break;                                                      \
149          default:                                                        \
150              abort();                                                    \
151          }                                                               \
152      } while (0)
153  
154  /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155  #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156      do {                                                                \
157          MemoryRegionSection mrs = section_from_flat_range(fr,           \
158                  address_space_to_flatview(as));                         \
159          MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
160      } while(0)
161  
162  struct CoalescedMemoryRange {
163      AddrRange addr;
164      QTAILQ_ENTRY(CoalescedMemoryRange) link;
165  };
166  
167  struct MemoryRegionIoeventfd {
168      AddrRange addr;
169      bool match_data;
170      uint64_t data;
171      EventNotifier *e;
172  };
173  
174  static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175                                             MemoryRegionIoeventfd *b)
176  {
177      if (int128_lt(a->addr.start, b->addr.start)) {
178          return true;
179      } else if (int128_gt(a->addr.start, b->addr.start)) {
180          return false;
181      } else if (int128_lt(a->addr.size, b->addr.size)) {
182          return true;
183      } else if (int128_gt(a->addr.size, b->addr.size)) {
184          return false;
185      } else if (a->match_data < b->match_data) {
186          return true;
187      } else  if (a->match_data > b->match_data) {
188          return false;
189      } else if (a->match_data) {
190          if (a->data < b->data) {
191              return true;
192          } else if (a->data > b->data) {
193              return false;
194          }
195      }
196      if (a->e < b->e) {
197          return true;
198      } else if (a->e > b->e) {
199          return false;
200      }
201      return false;
202  }
203  
204  static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205                                            MemoryRegionIoeventfd *b)
206  {
207      if (int128_eq(a->addr.start, b->addr.start) &&
208          (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
209           (int128_eq(a->addr.size, b->addr.size) &&
210            (a->match_data == b->match_data) &&
211            ((a->match_data && (a->data == b->data)) || !a->match_data) &&
212            (a->e == b->e))))
213          return true;
214  
215      return false;
216  }
217  
218  /* Range of memory in the global map.  Addresses are absolute. */
219  struct FlatRange {
220      MemoryRegion *mr;
221      hwaddr offset_in_region;
222      AddrRange addr;
223      uint8_t dirty_log_mask;
224      bool romd_mode;
225      bool readonly;
226      bool nonvolatile;
227      bool unmergeable;
228  };
229  
230  #define FOR_EACH_FLAT_RANGE(var, view)          \
231      for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232  
233  static inline MemoryRegionSection
234  section_from_flat_range(FlatRange *fr, FlatView *fv)
235  {
236      return (MemoryRegionSection) {
237          .mr = fr->mr,
238          .fv = fv,
239          .offset_within_region = fr->offset_in_region,
240          .size = fr->addr.size,
241          .offset_within_address_space = int128_get64(fr->addr.start),
242          .readonly = fr->readonly,
243          .nonvolatile = fr->nonvolatile,
244          .unmergeable = fr->unmergeable,
245      };
246  }
247  
248  static bool flatrange_equal(FlatRange *a, FlatRange *b)
249  {
250      return a->mr == b->mr
251          && addrrange_equal(a->addr, b->addr)
252          && a->offset_in_region == b->offset_in_region
253          && a->romd_mode == b->romd_mode
254          && a->readonly == b->readonly
255          && a->nonvolatile == b->nonvolatile
256          && a->unmergeable == b->unmergeable;
257  }
258  
259  static FlatView *flatview_new(MemoryRegion *mr_root)
260  {
261      FlatView *view;
262  
263      view = g_new0(FlatView, 1);
264      view->ref = 1;
265      view->root = mr_root;
266      memory_region_ref(mr_root);
267      trace_flatview_new(view, mr_root);
268  
269      return view;
270  }
271  
272  /* Insert a range into a given position.  Caller is responsible for maintaining
273   * sorting order.
274   */
275  static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
276  {
277      if (view->nr == view->nr_allocated) {
278          view->nr_allocated = MAX(2 * view->nr, 10);
279          view->ranges = g_realloc(view->ranges,
280                                      view->nr_allocated * sizeof(*view->ranges));
281      }
282      memmove(view->ranges + pos + 1, view->ranges + pos,
283              (view->nr - pos) * sizeof(FlatRange));
284      view->ranges[pos] = *range;
285      memory_region_ref(range->mr);
286      ++view->nr;
287  }
288  
289  static void flatview_destroy(FlatView *view)
290  {
291      int i;
292  
293      trace_flatview_destroy(view, view->root);
294      if (view->dispatch) {
295          address_space_dispatch_free(view->dispatch);
296      }
297      for (i = 0; i < view->nr; i++) {
298          memory_region_unref(view->ranges[i].mr);
299      }
300      g_free(view->ranges);
301      memory_region_unref(view->root);
302      g_free(view);
303  }
304  
305  static bool flatview_ref(FlatView *view)
306  {
307      return qatomic_fetch_inc_nonzero(&view->ref) > 0;
308  }
309  
310  void flatview_unref(FlatView *view)
311  {
312      if (qatomic_fetch_dec(&view->ref) == 1) {
313          trace_flatview_destroy_rcu(view, view->root);
314          assert(view->root);
315          call_rcu(view, flatview_destroy, rcu);
316      }
317  }
318  
319  static bool can_merge(FlatRange *r1, FlatRange *r2)
320  {
321      return int128_eq(addrrange_end(r1->addr), r2->addr.start)
322          && r1->mr == r2->mr
323          && int128_eq(int128_add(int128_make64(r1->offset_in_region),
324                                  r1->addr.size),
325                       int128_make64(r2->offset_in_region))
326          && r1->dirty_log_mask == r2->dirty_log_mask
327          && r1->romd_mode == r2->romd_mode
328          && r1->readonly == r2->readonly
329          && r1->nonvolatile == r2->nonvolatile
330          && !r1->unmergeable && !r2->unmergeable;
331  }
332  
333  /* Attempt to simplify a view by merging adjacent ranges */
334  static void flatview_simplify(FlatView *view)
335  {
336      unsigned i, j, k;
337  
338      i = 0;
339      while (i < view->nr) {
340          j = i + 1;
341          while (j < view->nr
342                 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
343              int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
344              ++j;
345          }
346          ++i;
347          for (k = i; k < j; k++) {
348              memory_region_unref(view->ranges[k].mr);
349          }
350          memmove(&view->ranges[i], &view->ranges[j],
351                  (view->nr - j) * sizeof(view->ranges[j]));
352          view->nr -= j - i;
353      }
354  }
355  
356  static bool memory_region_big_endian(MemoryRegion *mr)
357  {
358  #if TARGET_BIG_ENDIAN
359      return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
360  #else
361      return mr->ops->endianness == DEVICE_BIG_ENDIAN;
362  #endif
363  }
364  
365  static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
366  {
367      if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
368          switch (op & MO_SIZE) {
369          case MO_8:
370              break;
371          case MO_16:
372              *data = bswap16(*data);
373              break;
374          case MO_32:
375              *data = bswap32(*data);
376              break;
377          case MO_64:
378              *data = bswap64(*data);
379              break;
380          default:
381              g_assert_not_reached();
382          }
383      }
384  }
385  
386  static inline void memory_region_shift_read_access(uint64_t *value,
387                                                     signed shift,
388                                                     uint64_t mask,
389                                                     uint64_t tmp)
390  {
391      if (shift >= 0) {
392          *value |= (tmp & mask) << shift;
393      } else {
394          *value |= (tmp & mask) >> -shift;
395      }
396  }
397  
398  static inline uint64_t memory_region_shift_write_access(uint64_t *value,
399                                                          signed shift,
400                                                          uint64_t mask)
401  {
402      uint64_t tmp;
403  
404      if (shift >= 0) {
405          tmp = (*value >> shift) & mask;
406      } else {
407          tmp = (*value << -shift) & mask;
408      }
409  
410      return tmp;
411  }
412  
413  static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
414  {
415      MemoryRegion *root;
416      hwaddr abs_addr = offset;
417  
418      abs_addr += mr->addr;
419      for (root = mr; root->container; ) {
420          root = root->container;
421          abs_addr += root->addr;
422      }
423  
424      return abs_addr;
425  }
426  
427  static int get_cpu_index(void)
428  {
429      if (current_cpu) {
430          return current_cpu->cpu_index;
431      }
432      return -1;
433  }
434  
435  static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
436                                                  hwaddr addr,
437                                                  uint64_t *value,
438                                                  unsigned size,
439                                                  signed shift,
440                                                  uint64_t mask,
441                                                  MemTxAttrs attrs)
442  {
443      uint64_t tmp;
444  
445      tmp = mr->ops->read(mr->opaque, addr, size);
446      if (mr->subpage) {
447          trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
448      } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
449          hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
450          trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
451                                       memory_region_name(mr));
452      }
453      memory_region_shift_read_access(value, shift, mask, tmp);
454      return MEMTX_OK;
455  }
456  
457  static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
458                                                            hwaddr addr,
459                                                            uint64_t *value,
460                                                            unsigned size,
461                                                            signed shift,
462                                                            uint64_t mask,
463                                                            MemTxAttrs attrs)
464  {
465      uint64_t tmp = 0;
466      MemTxResult r;
467  
468      r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
469      if (mr->subpage) {
470          trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
471      } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
472          hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
473          trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size,
474                                       memory_region_name(mr));
475      }
476      memory_region_shift_read_access(value, shift, mask, tmp);
477      return r;
478  }
479  
480  static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481                                                  hwaddr addr,
482                                                  uint64_t *value,
483                                                  unsigned size,
484                                                  signed shift,
485                                                  uint64_t mask,
486                                                  MemTxAttrs attrs)
487  {
488      uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
489  
490      if (mr->subpage) {
491          trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
492      } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
493          hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
494          trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
495                                        memory_region_name(mr));
496      }
497      mr->ops->write(mr->opaque, addr, tmp, size);
498      return MEMTX_OK;
499  }
500  
501  static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
502                                                             hwaddr addr,
503                                                             uint64_t *value,
504                                                             unsigned size,
505                                                             signed shift,
506                                                             uint64_t mask,
507                                                             MemTxAttrs attrs)
508  {
509      uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
510  
511      if (mr->subpage) {
512          trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
513      } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
514          hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
515          trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size,
516                                        memory_region_name(mr));
517      }
518      return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
519  }
520  
521  static MemTxResult access_with_adjusted_size(hwaddr addr,
522                                        uint64_t *value,
523                                        unsigned size,
524                                        unsigned access_size_min,
525                                        unsigned access_size_max,
526                                        MemTxResult (*access_fn)
527                                                    (MemoryRegion *mr,
528                                                     hwaddr addr,
529                                                     uint64_t *value,
530                                                     unsigned size,
531                                                     signed shift,
532                                                     uint64_t mask,
533                                                     MemTxAttrs attrs),
534                                        MemoryRegion *mr,
535                                        MemTxAttrs attrs)
536  {
537      uint64_t access_mask;
538      unsigned access_size;
539      unsigned i;
540      MemTxResult r = MEMTX_OK;
541      bool reentrancy_guard_applied = false;
542  
543      if (!access_size_min) {
544          access_size_min = 1;
545      }
546      if (!access_size_max) {
547          access_size_max = 4;
548      }
549  
550      /* Do not allow more than one simultaneous access to a device's IO Regions */
551      if (mr->dev && !mr->disable_reentrancy_guard &&
552          !mr->ram_device && !mr->ram && !mr->rom_device && !mr->readonly) {
553          if (mr->dev->mem_reentrancy_guard.engaged_in_io) {
554              warn_report_once("Blocked re-entrant IO on MemoryRegion: "
555                               "%s at addr: 0x%" HWADDR_PRIX,
556                               memory_region_name(mr), addr);
557              return MEMTX_ACCESS_ERROR;
558          }
559          mr->dev->mem_reentrancy_guard.engaged_in_io = true;
560          reentrancy_guard_applied = true;
561      }
562  
563      /* FIXME: support unaligned access? */
564      access_size = MAX(MIN(size, access_size_max), access_size_min);
565      access_mask = MAKE_64BIT_MASK(0, access_size * 8);
566      if (memory_region_big_endian(mr)) {
567          for (i = 0; i < size; i += access_size) {
568              r |= access_fn(mr, addr + i, value, access_size,
569                          (size - access_size - i) * 8, access_mask, attrs);
570          }
571      } else {
572          for (i = 0; i < size; i += access_size) {
573              r |= access_fn(mr, addr + i, value, access_size, i * 8,
574                          access_mask, attrs);
575          }
576      }
577      if (mr->dev && reentrancy_guard_applied) {
578          mr->dev->mem_reentrancy_guard.engaged_in_io = false;
579      }
580      return r;
581  }
582  
583  static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
584  {
585      AddressSpace *as;
586  
587      while (mr->container) {
588          mr = mr->container;
589      }
590      QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
591          if (mr == as->root) {
592              return as;
593          }
594      }
595      return NULL;
596  }
597  
598  /* Render a memory region into the global view.  Ranges in @view obscure
599   * ranges in @mr.
600   */
601  static void render_memory_region(FlatView *view,
602                                   MemoryRegion *mr,
603                                   Int128 base,
604                                   AddrRange clip,
605                                   bool readonly,
606                                   bool nonvolatile,
607                                   bool unmergeable)
608  {
609      MemoryRegion *subregion;
610      unsigned i;
611      hwaddr offset_in_region;
612      Int128 remain;
613      Int128 now;
614      FlatRange fr;
615      AddrRange tmp;
616  
617      if (!mr->enabled) {
618          return;
619      }
620  
621      int128_addto(&base, int128_make64(mr->addr));
622      readonly |= mr->readonly;
623      nonvolatile |= mr->nonvolatile;
624      unmergeable |= mr->unmergeable;
625  
626      tmp = addrrange_make(base, mr->size);
627  
628      if (!addrrange_intersects(tmp, clip)) {
629          return;
630      }
631  
632      clip = addrrange_intersection(tmp, clip);
633  
634      if (mr->alias) {
635          int128_subfrom(&base, int128_make64(mr->alias->addr));
636          int128_subfrom(&base, int128_make64(mr->alias_offset));
637          render_memory_region(view, mr->alias, base, clip,
638                               readonly, nonvolatile, unmergeable);
639          return;
640      }
641  
642      /* Render subregions in priority order. */
643      QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
644          render_memory_region(view, subregion, base, clip,
645                               readonly, nonvolatile, unmergeable);
646      }
647  
648      if (!mr->terminates) {
649          return;
650      }
651  
652      offset_in_region = int128_get64(int128_sub(clip.start, base));
653      base = clip.start;
654      remain = clip.size;
655  
656      fr.mr = mr;
657      fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
658      fr.romd_mode = mr->romd_mode;
659      fr.readonly = readonly;
660      fr.nonvolatile = nonvolatile;
661      fr.unmergeable = unmergeable;
662  
663      /* Render the region itself into any gaps left by the current view. */
664      for (i = 0; i < view->nr && int128_nz(remain); ++i) {
665          if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
666              continue;
667          }
668          if (int128_lt(base, view->ranges[i].addr.start)) {
669              now = int128_min(remain,
670                               int128_sub(view->ranges[i].addr.start, base));
671              fr.offset_in_region = offset_in_region;
672              fr.addr = addrrange_make(base, now);
673              flatview_insert(view, i, &fr);
674              ++i;
675              int128_addto(&base, now);
676              offset_in_region += int128_get64(now);
677              int128_subfrom(&remain, now);
678          }
679          now = int128_sub(int128_min(int128_add(base, remain),
680                                      addrrange_end(view->ranges[i].addr)),
681                           base);
682          int128_addto(&base, now);
683          offset_in_region += int128_get64(now);
684          int128_subfrom(&remain, now);
685      }
686      if (int128_nz(remain)) {
687          fr.offset_in_region = offset_in_region;
688          fr.addr = addrrange_make(base, remain);
689          flatview_insert(view, i, &fr);
690      }
691  }
692  
693  void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
694  {
695      FlatRange *fr;
696  
697      assert(fv);
698      assert(cb);
699  
700      FOR_EACH_FLAT_RANGE(fr, fv) {
701          if (cb(fr->addr.start, fr->addr.size, fr->mr,
702                 fr->offset_in_region, opaque)) {
703              break;
704          }
705      }
706  }
707  
708  static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
709  {
710      while (mr->enabled) {
711          if (mr->alias) {
712              if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
713                  /* The alias is included in its entirety.  Use it as
714                   * the "real" root, so that we can share more FlatViews.
715                   */
716                  mr = mr->alias;
717                  continue;
718              }
719          } else if (!mr->terminates) {
720              unsigned int found = 0;
721              MemoryRegion *child, *next = NULL;
722              QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
723                  if (child->enabled) {
724                      if (++found > 1) {
725                          next = NULL;
726                          break;
727                      }
728                      if (!child->addr && int128_ge(mr->size, child->size)) {
729                          /* A child is included in its entirety.  If it's the only
730                           * enabled one, use it in the hope of finding an alias down the
731                           * way. This will also let us share FlatViews.
732                           */
733                          next = child;
734                      }
735                  }
736              }
737              if (found == 0) {
738                  return NULL;
739              }
740              if (next) {
741                  mr = next;
742                  continue;
743              }
744          }
745  
746          return mr;
747      }
748  
749      return NULL;
750  }
751  
752  /* Render a memory topology into a list of disjoint absolute ranges. */
753  static FlatView *generate_memory_topology(MemoryRegion *mr)
754  {
755      int i;
756      FlatView *view;
757  
758      view = flatview_new(mr);
759  
760      if (mr) {
761          render_memory_region(view, mr, int128_zero(),
762                               addrrange_make(int128_zero(), int128_2_64()),
763                               false, false, false);
764      }
765      flatview_simplify(view);
766  
767      view->dispatch = address_space_dispatch_new(view);
768      for (i = 0; i < view->nr; i++) {
769          MemoryRegionSection mrs =
770              section_from_flat_range(&view->ranges[i], view);
771          flatview_add_to_dispatch(view, &mrs);
772      }
773      address_space_dispatch_compact(view->dispatch);
774      g_hash_table_replace(flat_views, mr, view);
775  
776      return view;
777  }
778  
779  static void address_space_add_del_ioeventfds(AddressSpace *as,
780                                               MemoryRegionIoeventfd *fds_new,
781                                               unsigned fds_new_nb,
782                                               MemoryRegionIoeventfd *fds_old,
783                                               unsigned fds_old_nb)
784  {
785      unsigned iold, inew;
786      MemoryRegionIoeventfd *fd;
787      MemoryRegionSection section;
788  
789      /* Generate a symmetric difference of the old and new fd sets, adding
790       * and deleting as necessary.
791       */
792  
793      iold = inew = 0;
794      while (iold < fds_old_nb || inew < fds_new_nb) {
795          if (iold < fds_old_nb
796              && (inew == fds_new_nb
797                  || memory_region_ioeventfd_before(&fds_old[iold],
798                                                    &fds_new[inew]))) {
799              fd = &fds_old[iold];
800              section = (MemoryRegionSection) {
801                  .fv = address_space_to_flatview(as),
802                  .offset_within_address_space = int128_get64(fd->addr.start),
803                  .size = fd->addr.size,
804              };
805              MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
806                                   fd->match_data, fd->data, fd->e);
807              ++iold;
808          } else if (inew < fds_new_nb
809                     && (iold == fds_old_nb
810                         || memory_region_ioeventfd_before(&fds_new[inew],
811                                                           &fds_old[iold]))) {
812              fd = &fds_new[inew];
813              section = (MemoryRegionSection) {
814                  .fv = address_space_to_flatview(as),
815                  .offset_within_address_space = int128_get64(fd->addr.start),
816                  .size = fd->addr.size,
817              };
818              MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
819                                   fd->match_data, fd->data, fd->e);
820              ++inew;
821          } else {
822              ++iold;
823              ++inew;
824          }
825      }
826  }
827  
828  FlatView *address_space_get_flatview(AddressSpace *as)
829  {
830      FlatView *view;
831  
832      RCU_READ_LOCK_GUARD();
833      do {
834          view = address_space_to_flatview(as);
835          /* If somebody has replaced as->current_map concurrently,
836           * flatview_ref returns false.
837           */
838      } while (!flatview_ref(view));
839      return view;
840  }
841  
842  static void address_space_update_ioeventfds(AddressSpace *as)
843  {
844      FlatView *view;
845      FlatRange *fr;
846      unsigned ioeventfd_nb = 0;
847      unsigned ioeventfd_max;
848      MemoryRegionIoeventfd *ioeventfds;
849      AddrRange tmp;
850      unsigned i;
851  
852      if (!as->ioeventfd_notifiers) {
853          return;
854      }
855  
856      /*
857       * It is likely that the number of ioeventfds hasn't changed much, so use
858       * the previous size as the starting value, with some headroom to avoid
859       * gratuitous reallocations.
860       */
861      ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
862      ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
863  
864      view = address_space_get_flatview(as);
865      FOR_EACH_FLAT_RANGE(fr, view) {
866          for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
867              tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
868                                    int128_sub(fr->addr.start,
869                                               int128_make64(fr->offset_in_region)));
870              if (addrrange_intersects(fr->addr, tmp)) {
871                  ++ioeventfd_nb;
872                  if (ioeventfd_nb > ioeventfd_max) {
873                      ioeventfd_max = MAX(ioeventfd_max * 2, 4);
874                      ioeventfds = g_realloc(ioeventfds,
875                              ioeventfd_max * sizeof(*ioeventfds));
876                  }
877                  ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
878                  ioeventfds[ioeventfd_nb-1].addr = tmp;
879              }
880          }
881      }
882  
883      address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
884                                       as->ioeventfds, as->ioeventfd_nb);
885  
886      g_free(as->ioeventfds);
887      as->ioeventfds = ioeventfds;
888      as->ioeventfd_nb = ioeventfd_nb;
889      flatview_unref(view);
890  }
891  
892  /*
893   * Notify the memory listeners about the coalesced IO change events of
894   * range `cmr'.  Only the part that has intersection of the specified
895   * FlatRange will be sent.
896   */
897  static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
898                                             CoalescedMemoryRange *cmr, bool add)
899  {
900      AddrRange tmp;
901  
902      tmp = addrrange_shift(cmr->addr,
903                            int128_sub(fr->addr.start,
904                                       int128_make64(fr->offset_in_region)));
905      if (!addrrange_intersects(tmp, fr->addr)) {
906          return;
907      }
908      tmp = addrrange_intersection(tmp, fr->addr);
909  
910      if (add) {
911          MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
912                                        int128_get64(tmp.start),
913                                        int128_get64(tmp.size));
914      } else {
915          MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
916                                        int128_get64(tmp.start),
917                                        int128_get64(tmp.size));
918      }
919  }
920  
921  static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
922  {
923      CoalescedMemoryRange *cmr;
924  
925      QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
926          flat_range_coalesced_io_notify(fr, as, cmr, false);
927      }
928  }
929  
930  static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
931  {
932      MemoryRegion *mr = fr->mr;
933      CoalescedMemoryRange *cmr;
934  
935      if (QTAILQ_EMPTY(&mr->coalesced)) {
936          return;
937      }
938  
939      QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
940          flat_range_coalesced_io_notify(fr, as, cmr, true);
941      }
942  }
943  
944  static void
945  flat_range_coalesced_io_notify_listener_add_del(FlatRange *fr,
946                                                  MemoryRegionSection *mrs,
947                                                  MemoryListener *listener,
948                                                  AddressSpace *as, bool add)
949  {
950      CoalescedMemoryRange *cmr;
951      MemoryRegion *mr = fr->mr;
952      AddrRange tmp;
953  
954      QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
955          tmp = addrrange_shift(cmr->addr,
956                                int128_sub(fr->addr.start,
957                                           int128_make64(fr->offset_in_region)));
958  
959          if (!addrrange_intersects(tmp, fr->addr)) {
960              return;
961          }
962          tmp = addrrange_intersection(tmp, fr->addr);
963  
964          if (add && listener->coalesced_io_add) {
965              listener->coalesced_io_add(listener, mrs,
966                                         int128_get64(tmp.start),
967                                         int128_get64(tmp.size));
968          } else if (!add && listener->coalesced_io_del) {
969              listener->coalesced_io_del(listener, mrs,
970                                         int128_get64(tmp.start),
971                                         int128_get64(tmp.size));
972          }
973      }
974  }
975  
976  static void address_space_update_topology_pass(AddressSpace *as,
977                                                 const FlatView *old_view,
978                                                 const FlatView *new_view,
979                                                 bool adding)
980  {
981      unsigned iold, inew;
982      FlatRange *frold, *frnew;
983  
984      /* Generate a symmetric difference of the old and new memory maps.
985       * Kill ranges in the old map, and instantiate ranges in the new map.
986       */
987      iold = inew = 0;
988      while (iold < old_view->nr || inew < new_view->nr) {
989          if (iold < old_view->nr) {
990              frold = &old_view->ranges[iold];
991          } else {
992              frold = NULL;
993          }
994          if (inew < new_view->nr) {
995              frnew = &new_view->ranges[inew];
996          } else {
997              frnew = NULL;
998          }
999  
1000          if (frold
1001              && (!frnew
1002                  || int128_lt(frold->addr.start, frnew->addr.start)
1003                  || (int128_eq(frold->addr.start, frnew->addr.start)
1004                      && !flatrange_equal(frold, frnew)))) {
1005              /* In old but not in new, or in both but attributes changed. */
1006  
1007              if (!adding) {
1008                  flat_range_coalesced_io_del(frold, as);
1009                  MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
1010              }
1011  
1012              ++iold;
1013          } else if (frold && frnew && flatrange_equal(frold, frnew)) {
1014              /* In both and unchanged (except logging may have changed) */
1015  
1016              if (adding) {
1017                  MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
1018                  if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
1019                      MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
1020                                                    frold->dirty_log_mask,
1021                                                    frnew->dirty_log_mask);
1022                  }
1023                  if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
1024                      MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
1025                                                    frold->dirty_log_mask,
1026                                                    frnew->dirty_log_mask);
1027                  }
1028              }
1029  
1030              ++iold;
1031              ++inew;
1032          } else {
1033              /* In new */
1034  
1035              if (adding) {
1036                  MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
1037                  flat_range_coalesced_io_add(frnew, as);
1038              }
1039  
1040              ++inew;
1041          }
1042      }
1043  }
1044  
1045  static void flatviews_init(void)
1046  {
1047      static FlatView *empty_view;
1048  
1049      if (flat_views) {
1050          return;
1051      }
1052  
1053      flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
1054                                         (GDestroyNotify) flatview_unref);
1055      if (!empty_view) {
1056          empty_view = generate_memory_topology(NULL);
1057          /* We keep it alive forever in the global variable.  */
1058          flatview_ref(empty_view);
1059      } else {
1060          g_hash_table_replace(flat_views, NULL, empty_view);
1061          flatview_ref(empty_view);
1062      }
1063  }
1064  
1065  static void flatviews_reset(void)
1066  {
1067      AddressSpace *as;
1068  
1069      if (flat_views) {
1070          g_hash_table_unref(flat_views);
1071          flat_views = NULL;
1072      }
1073      flatviews_init();
1074  
1075      /* Render unique FVs */
1076      QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1077          MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1078  
1079          if (g_hash_table_lookup(flat_views, physmr)) {
1080              continue;
1081          }
1082  
1083          generate_memory_topology(physmr);
1084      }
1085  }
1086  
1087  static void address_space_set_flatview(AddressSpace *as)
1088  {
1089      FlatView *old_view = address_space_to_flatview(as);
1090      MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1091      FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1092  
1093      assert(new_view);
1094  
1095      if (old_view == new_view) {
1096          return;
1097      }
1098  
1099      if (old_view) {
1100          flatview_ref(old_view);
1101      }
1102  
1103      flatview_ref(new_view);
1104  
1105      if (!QTAILQ_EMPTY(&as->listeners)) {
1106          FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1107  
1108          if (!old_view2) {
1109              old_view2 = &tmpview;
1110          }
1111          address_space_update_topology_pass(as, old_view2, new_view, false);
1112          address_space_update_topology_pass(as, old_view2, new_view, true);
1113      }
1114  
1115      /* Writes are protected by the BQL.  */
1116      qatomic_rcu_set(&as->current_map, new_view);
1117      if (old_view) {
1118          flatview_unref(old_view);
1119      }
1120  
1121      /* Note that all the old MemoryRegions are still alive up to this
1122       * point.  This relieves most MemoryListeners from the need to
1123       * ref/unref the MemoryRegions they get---unless they use them
1124       * outside the iothread mutex, in which case precise reference
1125       * counting is necessary.
1126       */
1127      if (old_view) {
1128          flatview_unref(old_view);
1129      }
1130  }
1131  
1132  static void address_space_update_topology(AddressSpace *as)
1133  {
1134      MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1135  
1136      flatviews_init();
1137      if (!g_hash_table_lookup(flat_views, physmr)) {
1138          generate_memory_topology(physmr);
1139      }
1140      address_space_set_flatview(as);
1141  }
1142  
1143  void memory_region_transaction_begin(void)
1144  {
1145      qemu_flush_coalesced_mmio_buffer();
1146      ++memory_region_transaction_depth;
1147  }
1148  
1149  void memory_region_transaction_commit(void)
1150  {
1151      AddressSpace *as;
1152  
1153      assert(memory_region_transaction_depth);
1154      assert(bql_locked());
1155  
1156      --memory_region_transaction_depth;
1157      if (!memory_region_transaction_depth) {
1158          if (memory_region_update_pending) {
1159              flatviews_reset();
1160  
1161              MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1162  
1163              QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1164                  address_space_set_flatview(as);
1165                  address_space_update_ioeventfds(as);
1166              }
1167              memory_region_update_pending = false;
1168              ioeventfd_update_pending = false;
1169              MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1170          } else if (ioeventfd_update_pending) {
1171              QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1172                  address_space_update_ioeventfds(as);
1173              }
1174              ioeventfd_update_pending = false;
1175          }
1176     }
1177  }
1178  
1179  static void memory_region_destructor_none(MemoryRegion *mr)
1180  {
1181  }
1182  
1183  static void memory_region_destructor_ram(MemoryRegion *mr)
1184  {
1185      qemu_ram_free(mr->ram_block);
1186  }
1187  
1188  static bool memory_region_need_escape(char c)
1189  {
1190      return c == '/' || c == '[' || c == '\\' || c == ']';
1191  }
1192  
1193  static char *memory_region_escape_name(const char *name)
1194  {
1195      const char *p;
1196      char *escaped, *q;
1197      uint8_t c;
1198      size_t bytes = 0;
1199  
1200      for (p = name; *p; p++) {
1201          bytes += memory_region_need_escape(*p) ? 4 : 1;
1202      }
1203      if (bytes == p - name) {
1204         return g_memdup(name, bytes + 1);
1205      }
1206  
1207      escaped = g_malloc(bytes + 1);
1208      for (p = name, q = escaped; *p; p++) {
1209          c = *p;
1210          if (unlikely(memory_region_need_escape(c))) {
1211              *q++ = '\\';
1212              *q++ = 'x';
1213              *q++ = "0123456789abcdef"[c >> 4];
1214              c = "0123456789abcdef"[c & 15];
1215          }
1216          *q++ = c;
1217      }
1218      *q = 0;
1219      return escaped;
1220  }
1221  
1222  static void memory_region_do_init(MemoryRegion *mr,
1223                                    Object *owner,
1224                                    const char *name,
1225                                    uint64_t size)
1226  {
1227      mr->size = int128_make64(size);
1228      if (size == UINT64_MAX) {
1229          mr->size = int128_2_64();
1230      }
1231      mr->name = g_strdup(name);
1232      mr->owner = owner;
1233      mr->dev = (DeviceState *) object_dynamic_cast(mr->owner, TYPE_DEVICE);
1234      mr->ram_block = NULL;
1235  
1236      if (name) {
1237          char *escaped_name = memory_region_escape_name(name);
1238          char *name_array = g_strdup_printf("%s[*]", escaped_name);
1239  
1240          if (!owner) {
1241              owner = machine_get_container("unattached");
1242          }
1243  
1244          object_property_add_child(owner, name_array, OBJECT(mr));
1245          object_unref(OBJECT(mr));
1246          g_free(name_array);
1247          g_free(escaped_name);
1248      }
1249  }
1250  
1251  void memory_region_init(MemoryRegion *mr,
1252                          Object *owner,
1253                          const char *name,
1254                          uint64_t size)
1255  {
1256      object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1257      memory_region_do_init(mr, owner, name, size);
1258  }
1259  
1260  static void memory_region_get_container(Object *obj, Visitor *v,
1261                                          const char *name, void *opaque,
1262                                          Error **errp)
1263  {
1264      MemoryRegion *mr = MEMORY_REGION(obj);
1265      char *path = (char *)"";
1266  
1267      if (mr->container) {
1268          path = object_get_canonical_path(OBJECT(mr->container));
1269      }
1270      visit_type_str(v, name, &path, errp);
1271      if (mr->container) {
1272          g_free(path);
1273      }
1274  }
1275  
1276  static Object *memory_region_resolve_container(Object *obj, void *opaque,
1277                                                 const char *part)
1278  {
1279      MemoryRegion *mr = MEMORY_REGION(obj);
1280  
1281      return OBJECT(mr->container);
1282  }
1283  
1284  static void memory_region_get_priority(Object *obj, Visitor *v,
1285                                         const char *name, void *opaque,
1286                                         Error **errp)
1287  {
1288      MemoryRegion *mr = MEMORY_REGION(obj);
1289      int32_t value = mr->priority;
1290  
1291      visit_type_int32(v, name, &value, errp);
1292  }
1293  
1294  static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1295                                     void *opaque, Error **errp)
1296  {
1297      MemoryRegion *mr = MEMORY_REGION(obj);
1298      uint64_t value = memory_region_size(mr);
1299  
1300      visit_type_uint64(v, name, &value, errp);
1301  }
1302  
1303  static void memory_region_initfn(Object *obj)
1304  {
1305      MemoryRegion *mr = MEMORY_REGION(obj);
1306      ObjectProperty *op;
1307  
1308      mr->ops = &unassigned_mem_ops;
1309      mr->enabled = true;
1310      mr->romd_mode = true;
1311      mr->destructor = memory_region_destructor_none;
1312      QTAILQ_INIT(&mr->subregions);
1313      QTAILQ_INIT(&mr->coalesced);
1314  
1315      op = object_property_add(OBJECT(mr), "container",
1316                               "link<" TYPE_MEMORY_REGION ">",
1317                               memory_region_get_container,
1318                               NULL, /* memory_region_set_container */
1319                               NULL, NULL);
1320      op->resolve = memory_region_resolve_container;
1321  
1322      object_property_add_uint64_ptr(OBJECT(mr), "addr",
1323                                     &mr->addr, OBJ_PROP_FLAG_READ);
1324      object_property_add(OBJECT(mr), "priority", "uint32",
1325                          memory_region_get_priority,
1326                          NULL, /* memory_region_set_priority */
1327                          NULL, NULL);
1328      object_property_add(OBJECT(mr), "size", "uint64",
1329                          memory_region_get_size,
1330                          NULL, /* memory_region_set_size, */
1331                          NULL, NULL);
1332  }
1333  
1334  static void iommu_memory_region_initfn(Object *obj)
1335  {
1336      MemoryRegion *mr = MEMORY_REGION(obj);
1337  
1338      mr->is_iommu = true;
1339  }
1340  
1341  static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1342                                      unsigned size)
1343  {
1344  #ifdef DEBUG_UNASSIGNED
1345      printf("Unassigned mem read " HWADDR_FMT_plx "\n", addr);
1346  #endif
1347      return 0;
1348  }
1349  
1350  static void unassigned_mem_write(void *opaque, hwaddr addr,
1351                                   uint64_t val, unsigned size)
1352  {
1353  #ifdef DEBUG_UNASSIGNED
1354      printf("Unassigned mem write " HWADDR_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1355  #endif
1356  }
1357  
1358  static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1359                                     unsigned size, bool is_write,
1360                                     MemTxAttrs attrs)
1361  {
1362      return false;
1363  }
1364  
1365  const MemoryRegionOps unassigned_mem_ops = {
1366      .valid.accepts = unassigned_mem_accepts,
1367      .endianness = DEVICE_NATIVE_ENDIAN,
1368  };
1369  
1370  static uint64_t memory_region_ram_device_read(void *opaque,
1371                                                hwaddr addr, unsigned size)
1372  {
1373      MemoryRegion *mr = opaque;
1374      uint64_t data = ldn_he_p(mr->ram_block->host + addr, size);
1375  
1376      trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1377  
1378      return data;
1379  }
1380  
1381  static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1382                                             uint64_t data, unsigned size)
1383  {
1384      MemoryRegion *mr = opaque;
1385  
1386      trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1387  
1388      stn_he_p(mr->ram_block->host + addr, size, data);
1389  }
1390  
1391  static const MemoryRegionOps ram_device_mem_ops = {
1392      .read = memory_region_ram_device_read,
1393      .write = memory_region_ram_device_write,
1394      .endianness = DEVICE_HOST_ENDIAN,
1395      .valid = {
1396          .min_access_size = 1,
1397          .max_access_size = 8,
1398          .unaligned = true,
1399      },
1400      .impl = {
1401          .min_access_size = 1,
1402          .max_access_size = 8,
1403          .unaligned = true,
1404      },
1405  };
1406  
1407  bool memory_region_access_valid(MemoryRegion *mr,
1408                                  hwaddr addr,
1409                                  unsigned size,
1410                                  bool is_write,
1411                                  MemTxAttrs attrs)
1412  {
1413      if (mr->ops->valid.accepts
1414          && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1415          qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1416                        ", size %u, region '%s', reason: rejected\n",
1417                        is_write ? "write" : "read",
1418                        addr, size, memory_region_name(mr));
1419          return false;
1420      }
1421  
1422      if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1423          qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1424                        ", size %u, region '%s', reason: unaligned\n",
1425                        is_write ? "write" : "read",
1426                        addr, size, memory_region_name(mr));
1427          return false;
1428      }
1429  
1430      /* Treat zero as compatibility all valid */
1431      if (!mr->ops->valid.max_access_size) {
1432          return true;
1433      }
1434  
1435      if (size > mr->ops->valid.max_access_size
1436          || size < mr->ops->valid.min_access_size) {
1437          qemu_log_mask(LOG_INVALID_MEM, "Invalid %s at addr 0x%" HWADDR_PRIX
1438                        ", size %u, region '%s', reason: invalid size "
1439                        "(min:%u max:%u)\n",
1440                        is_write ? "write" : "read",
1441                        addr, size, memory_region_name(mr),
1442                        mr->ops->valid.min_access_size,
1443                        mr->ops->valid.max_access_size);
1444          return false;
1445      }
1446      return true;
1447  }
1448  
1449  static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1450                                                  hwaddr addr,
1451                                                  uint64_t *pval,
1452                                                  unsigned size,
1453                                                  MemTxAttrs attrs)
1454  {
1455      *pval = 0;
1456  
1457      if (mr->ops->read) {
1458          return access_with_adjusted_size(addr, pval, size,
1459                                           mr->ops->impl.min_access_size,
1460                                           mr->ops->impl.max_access_size,
1461                                           memory_region_read_accessor,
1462                                           mr, attrs);
1463      } else {
1464          return access_with_adjusted_size(addr, pval, size,
1465                                           mr->ops->impl.min_access_size,
1466                                           mr->ops->impl.max_access_size,
1467                                           memory_region_read_with_attrs_accessor,
1468                                           mr, attrs);
1469      }
1470  }
1471  
1472  MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1473                                          hwaddr addr,
1474                                          uint64_t *pval,
1475                                          MemOp op,
1476                                          MemTxAttrs attrs)
1477  {
1478      unsigned size = memop_size(op);
1479      MemTxResult r;
1480  
1481      if (mr->alias) {
1482          return memory_region_dispatch_read(mr->alias,
1483                                             mr->alias_offset + addr,
1484                                             pval, op, attrs);
1485      }
1486      if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1487          *pval = unassigned_mem_read(mr, addr, size);
1488          return MEMTX_DECODE_ERROR;
1489      }
1490  
1491      r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1492      adjust_endianness(mr, pval, op);
1493      return r;
1494  }
1495  
1496  /* Return true if an eventfd was signalled */
1497  static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1498                                                      hwaddr addr,
1499                                                      uint64_t data,
1500                                                      unsigned size,
1501                                                      MemTxAttrs attrs)
1502  {
1503      MemoryRegionIoeventfd ioeventfd = {
1504          .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1505          .data = data,
1506      };
1507      unsigned i;
1508  
1509      for (i = 0; i < mr->ioeventfd_nb; i++) {
1510          ioeventfd.match_data = mr->ioeventfds[i].match_data;
1511          ioeventfd.e = mr->ioeventfds[i].e;
1512  
1513          if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1514              event_notifier_set(ioeventfd.e);
1515              return true;
1516          }
1517      }
1518  
1519      return false;
1520  }
1521  
1522  MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1523                                           hwaddr addr,
1524                                           uint64_t data,
1525                                           MemOp op,
1526                                           MemTxAttrs attrs)
1527  {
1528      unsigned size = memop_size(op);
1529  
1530      if (mr->alias) {
1531          return memory_region_dispatch_write(mr->alias,
1532                                              mr->alias_offset + addr,
1533                                              data, op, attrs);
1534      }
1535      if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1536          unassigned_mem_write(mr, addr, data, size);
1537          return MEMTX_DECODE_ERROR;
1538      }
1539  
1540      adjust_endianness(mr, &data, op);
1541  
1542      /*
1543       * FIXME: it's not clear why under KVM the write would be processed
1544       * directly, instead of going through eventfd.  This probably should
1545       * test "tcg_enabled() || qtest_enabled()", or should just go away.
1546       */
1547      if (!kvm_enabled() &&
1548          memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1549          return MEMTX_OK;
1550      }
1551  
1552      if (mr->ops->write) {
1553          return access_with_adjusted_size(addr, &data, size,
1554                                           mr->ops->impl.min_access_size,
1555                                           mr->ops->impl.max_access_size,
1556                                           memory_region_write_accessor, mr,
1557                                           attrs);
1558      } else {
1559          return
1560              access_with_adjusted_size(addr, &data, size,
1561                                        mr->ops->impl.min_access_size,
1562                                        mr->ops->impl.max_access_size,
1563                                        memory_region_write_with_attrs_accessor,
1564                                        mr, attrs);
1565      }
1566  }
1567  
1568  void memory_region_init_io(MemoryRegion *mr,
1569                             Object *owner,
1570                             const MemoryRegionOps *ops,
1571                             void *opaque,
1572                             const char *name,
1573                             uint64_t size)
1574  {
1575      memory_region_init(mr, owner, name, size);
1576      mr->ops = ops ? ops : &unassigned_mem_ops;
1577      mr->opaque = opaque;
1578      mr->terminates = true;
1579  }
1580  
1581  bool memory_region_init_ram_nomigrate(MemoryRegion *mr,
1582                                        Object *owner,
1583                                        const char *name,
1584                                        uint64_t size,
1585                                        Error **errp)
1586  {
1587      return memory_region_init_ram_flags_nomigrate(mr, owner, name,
1588                                                    size, 0, errp);
1589  }
1590  
1591  bool memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1592                                              Object *owner,
1593                                              const char *name,
1594                                              uint64_t size,
1595                                              uint32_t ram_flags,
1596                                              Error **errp)
1597  {
1598      Error *err = NULL;
1599      memory_region_init(mr, owner, name, size);
1600      mr->ram = true;
1601      mr->terminates = true;
1602      mr->destructor = memory_region_destructor_ram;
1603      mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1604      if (err) {
1605          mr->size = int128_zero();
1606          object_unparent(OBJECT(mr));
1607          error_propagate(errp, err);
1608          return false;
1609      }
1610      return true;
1611  }
1612  
1613  bool memory_region_init_resizeable_ram(MemoryRegion *mr,
1614                                         Object *owner,
1615                                         const char *name,
1616                                         uint64_t size,
1617                                         uint64_t max_size,
1618                                         void (*resized)(const char*,
1619                                                         uint64_t length,
1620                                                         void *host),
1621                                         Error **errp)
1622  {
1623      Error *err = NULL;
1624      memory_region_init(mr, owner, name, size);
1625      mr->ram = true;
1626      mr->terminates = true;
1627      mr->destructor = memory_region_destructor_ram;
1628      mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1629                                                mr, &err);
1630      if (err) {
1631          mr->size = int128_zero();
1632          object_unparent(OBJECT(mr));
1633          error_propagate(errp, err);
1634          return false;
1635      }
1636      return true;
1637  }
1638  
1639  #ifdef CONFIG_POSIX
1640  bool memory_region_init_ram_from_file(MemoryRegion *mr,
1641                                        Object *owner,
1642                                        const char *name,
1643                                        uint64_t size,
1644                                        uint64_t align,
1645                                        uint32_t ram_flags,
1646                                        const char *path,
1647                                        ram_addr_t offset,
1648                                        Error **errp)
1649  {
1650      Error *err = NULL;
1651      memory_region_init(mr, owner, name, size);
1652      mr->ram = true;
1653      mr->readonly = !!(ram_flags & RAM_READONLY);
1654      mr->terminates = true;
1655      mr->destructor = memory_region_destructor_ram;
1656      mr->align = align;
1657      mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1658                                               offset, &err);
1659      if (err) {
1660          mr->size = int128_zero();
1661          object_unparent(OBJECT(mr));
1662          error_propagate(errp, err);
1663          return false;
1664      }
1665      return true;
1666  }
1667  
1668  bool memory_region_init_ram_from_fd(MemoryRegion *mr,
1669                                      Object *owner,
1670                                      const char *name,
1671                                      uint64_t size,
1672                                      uint32_t ram_flags,
1673                                      int fd,
1674                                      ram_addr_t offset,
1675                                      Error **errp)
1676  {
1677      Error *err = NULL;
1678      memory_region_init(mr, owner, name, size);
1679      mr->ram = true;
1680      mr->readonly = !!(ram_flags & RAM_READONLY);
1681      mr->terminates = true;
1682      mr->destructor = memory_region_destructor_ram;
1683      mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1684                                             &err);
1685      if (err) {
1686          mr->size = int128_zero();
1687          object_unparent(OBJECT(mr));
1688          error_propagate(errp, err);
1689          return false;
1690      }
1691      return true;
1692  }
1693  #endif
1694  
1695  void memory_region_init_ram_ptr(MemoryRegion *mr,
1696                                  Object *owner,
1697                                  const char *name,
1698                                  uint64_t size,
1699                                  void *ptr)
1700  {
1701      memory_region_init(mr, owner, name, size);
1702      mr->ram = true;
1703      mr->terminates = true;
1704      mr->destructor = memory_region_destructor_ram;
1705  
1706      /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1707      assert(ptr != NULL);
1708      mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1709  }
1710  
1711  void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1712                                         Object *owner,
1713                                         const char *name,
1714                                         uint64_t size,
1715                                         void *ptr)
1716  {
1717      memory_region_init(mr, owner, name, size);
1718      mr->ram = true;
1719      mr->terminates = true;
1720      mr->ram_device = true;
1721      mr->ops = &ram_device_mem_ops;
1722      mr->opaque = mr;
1723      mr->destructor = memory_region_destructor_ram;
1724  
1725      /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1726      assert(ptr != NULL);
1727      mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1728  }
1729  
1730  void memory_region_init_alias(MemoryRegion *mr,
1731                                Object *owner,
1732                                const char *name,
1733                                MemoryRegion *orig,
1734                                hwaddr offset,
1735                                uint64_t size)
1736  {
1737      memory_region_init(mr, owner, name, size);
1738      mr->alias = orig;
1739      mr->alias_offset = offset;
1740  }
1741  
1742  bool memory_region_init_rom_nomigrate(MemoryRegion *mr,
1743                                        Object *owner,
1744                                        const char *name,
1745                                        uint64_t size,
1746                                        Error **errp)
1747  {
1748      if (!memory_region_init_ram_flags_nomigrate(mr, owner, name,
1749                                                  size, 0, errp)) {
1750           return false;
1751      }
1752      mr->readonly = true;
1753  
1754      return true;
1755  }
1756  
1757  bool memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1758                                               Object *owner,
1759                                               const MemoryRegionOps *ops,
1760                                               void *opaque,
1761                                               const char *name,
1762                                               uint64_t size,
1763                                               Error **errp)
1764  {
1765      Error *err = NULL;
1766      assert(ops);
1767      memory_region_init(mr, owner, name, size);
1768      mr->ops = ops;
1769      mr->opaque = opaque;
1770      mr->terminates = true;
1771      mr->rom_device = true;
1772      mr->destructor = memory_region_destructor_ram;
1773      mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1774      if (err) {
1775          mr->size = int128_zero();
1776          object_unparent(OBJECT(mr));
1777          error_propagate(errp, err);
1778          return false;
1779      }
1780      return true;
1781  }
1782  
1783  void memory_region_init_iommu(void *_iommu_mr,
1784                                size_t instance_size,
1785                                const char *mrtypename,
1786                                Object *owner,
1787                                const char *name,
1788                                uint64_t size)
1789  {
1790      struct IOMMUMemoryRegion *iommu_mr;
1791      struct MemoryRegion *mr;
1792  
1793      object_initialize(_iommu_mr, instance_size, mrtypename);
1794      mr = MEMORY_REGION(_iommu_mr);
1795      memory_region_do_init(mr, owner, name, size);
1796      iommu_mr = IOMMU_MEMORY_REGION(mr);
1797      mr->terminates = true;  /* then re-forwards */
1798      QLIST_INIT(&iommu_mr->iommu_notify);
1799      iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1800  }
1801  
1802  static void memory_region_finalize(Object *obj)
1803  {
1804      MemoryRegion *mr = MEMORY_REGION(obj);
1805  
1806      assert(!mr->container);
1807  
1808      /* We know the region is not visible in any address space (it
1809       * does not have a container and cannot be a root either because
1810       * it has no references, so we can blindly clear mr->enabled.
1811       * memory_region_set_enabled instead could trigger a transaction
1812       * and cause an infinite loop.
1813       */
1814      mr->enabled = false;
1815      memory_region_transaction_begin();
1816      while (!QTAILQ_EMPTY(&mr->subregions)) {
1817          MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1818          memory_region_del_subregion(mr, subregion);
1819      }
1820      memory_region_transaction_commit();
1821  
1822      mr->destructor(mr);
1823      memory_region_clear_coalescing(mr);
1824      g_free((char *)mr->name);
1825      g_free(mr->ioeventfds);
1826  }
1827  
1828  Object *memory_region_owner(MemoryRegion *mr)
1829  {
1830      Object *obj = OBJECT(mr);
1831      return obj->parent;
1832  }
1833  
1834  void memory_region_ref(MemoryRegion *mr)
1835  {
1836      /* MMIO callbacks most likely will access data that belongs
1837       * to the owner, hence the need to ref/unref the owner whenever
1838       * the memory region is in use.
1839       *
1840       * The memory region is a child of its owner.  As long as the
1841       * owner doesn't call unparent itself on the memory region,
1842       * ref-ing the owner will also keep the memory region alive.
1843       * Memory regions without an owner are supposed to never go away;
1844       * we do not ref/unref them because it slows down DMA sensibly.
1845       */
1846      if (mr && mr->owner) {
1847          object_ref(mr->owner);
1848      }
1849  }
1850  
1851  void memory_region_unref(MemoryRegion *mr)
1852  {
1853      if (mr && mr->owner) {
1854          object_unref(mr->owner);
1855      }
1856  }
1857  
1858  uint64_t memory_region_size(MemoryRegion *mr)
1859  {
1860      if (int128_eq(mr->size, int128_2_64())) {
1861          return UINT64_MAX;
1862      }
1863      return int128_get64(mr->size);
1864  }
1865  
1866  const char *memory_region_name(const MemoryRegion *mr)
1867  {
1868      if (!mr->name) {
1869          ((MemoryRegion *)mr)->name =
1870              g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1871      }
1872      return mr->name;
1873  }
1874  
1875  bool memory_region_is_ram_device(MemoryRegion *mr)
1876  {
1877      return mr->ram_device;
1878  }
1879  
1880  bool memory_region_is_protected(MemoryRegion *mr)
1881  {
1882      return mr->ram && (mr->ram_block->flags & RAM_PROTECTED);
1883  }
1884  
1885  bool memory_region_has_guest_memfd(MemoryRegion *mr)
1886  {
1887      return mr->ram_block && mr->ram_block->guest_memfd >= 0;
1888  }
1889  
1890  uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1891  {
1892      uint8_t mask = mr->dirty_log_mask;
1893      RAMBlock *rb = mr->ram_block;
1894  
1895      if (global_dirty_tracking && ((rb && qemu_ram_is_migratable(rb)) ||
1896                               memory_region_is_iommu(mr))) {
1897          mask |= (1 << DIRTY_MEMORY_MIGRATION);
1898      }
1899  
1900      if (tcg_enabled() && rb) {
1901          /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1902          mask |= (1 << DIRTY_MEMORY_CODE);
1903      }
1904      return mask;
1905  }
1906  
1907  bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1908  {
1909      return memory_region_get_dirty_log_mask(mr) & (1 << client);
1910  }
1911  
1912  static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1913                                                     Error **errp)
1914  {
1915      IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1916      IOMMUNotifier *iommu_notifier;
1917      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1918      int ret = 0;
1919  
1920      IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1921          flags |= iommu_notifier->notifier_flags;
1922      }
1923  
1924      if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1925          ret = imrc->notify_flag_changed(iommu_mr,
1926                                          iommu_mr->iommu_notify_flags,
1927                                          flags, errp);
1928      }
1929  
1930      if (!ret) {
1931          iommu_mr->iommu_notify_flags = flags;
1932      }
1933      return ret;
1934  }
1935  
1936  int memory_region_register_iommu_notifier(MemoryRegion *mr,
1937                                            IOMMUNotifier *n, Error **errp)
1938  {
1939      IOMMUMemoryRegion *iommu_mr;
1940      int ret;
1941  
1942      if (mr->alias) {
1943          return memory_region_register_iommu_notifier(mr->alias, n, errp);
1944      }
1945  
1946      /* We need to register for at least one bitfield */
1947      iommu_mr = IOMMU_MEMORY_REGION(mr);
1948      assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1949      assert(n->start <= n->end);
1950      assert(n->iommu_idx >= 0 &&
1951             n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1952  
1953      QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1954      ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1955      if (ret) {
1956          QLIST_REMOVE(n, node);
1957      }
1958      return ret;
1959  }
1960  
1961  uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1962  {
1963      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1964  
1965      if (imrc->get_min_page_size) {
1966          return imrc->get_min_page_size(iommu_mr);
1967      }
1968      return TARGET_PAGE_SIZE;
1969  }
1970  
1971  void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1972  {
1973      MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1974      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1975      hwaddr addr, granularity;
1976      IOMMUTLBEntry iotlb;
1977  
1978      /* If the IOMMU has its own replay callback, override */
1979      if (imrc->replay) {
1980          imrc->replay(iommu_mr, n);
1981          return;
1982      }
1983  
1984      granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1985  
1986      for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1987          iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1988          if (iotlb.perm != IOMMU_NONE) {
1989              n->notify(n, &iotlb);
1990          }
1991  
1992          /* if (2^64 - MR size) < granularity, it's possible to get an
1993           * infinite loop here.  This should catch such a wraparound */
1994          if ((addr + granularity) < addr) {
1995              break;
1996          }
1997      }
1998  }
1999  
2000  void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
2001                                               IOMMUNotifier *n)
2002  {
2003      IOMMUMemoryRegion *iommu_mr;
2004  
2005      if (mr->alias) {
2006          memory_region_unregister_iommu_notifier(mr->alias, n);
2007          return;
2008      }
2009      QLIST_REMOVE(n, node);
2010      iommu_mr = IOMMU_MEMORY_REGION(mr);
2011      memory_region_update_iommu_notify_flags(iommu_mr, NULL);
2012  }
2013  
2014  void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
2015                                      const IOMMUTLBEvent *event)
2016  {
2017      const IOMMUTLBEntry *entry = &event->entry;
2018      hwaddr entry_end = entry->iova + entry->addr_mask;
2019      IOMMUTLBEntry tmp = *entry;
2020  
2021      if (event->type == IOMMU_NOTIFIER_UNMAP) {
2022          assert(entry->perm == IOMMU_NONE);
2023      }
2024  
2025      /*
2026       * Skip the notification if the notification does not overlap
2027       * with registered range.
2028       */
2029      if (notifier->start > entry_end || notifier->end < entry->iova) {
2030          return;
2031      }
2032  
2033      if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2034          /* Crop (iova, addr_mask) to range */
2035          tmp.iova = MAX(tmp.iova, notifier->start);
2036          tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
2037      } else {
2038          assert(entry->iova >= notifier->start && entry_end <= notifier->end);
2039      }
2040  
2041      if (event->type & notifier->notifier_flags) {
2042          notifier->notify(notifier, &tmp);
2043      }
2044  }
2045  
2046  void memory_region_unmap_iommu_notifier_range(IOMMUNotifier *notifier)
2047  {
2048      IOMMUTLBEvent event;
2049  
2050      event.type = IOMMU_NOTIFIER_UNMAP;
2051      event.entry.target_as = &address_space_memory;
2052      event.entry.iova = notifier->start;
2053      event.entry.perm = IOMMU_NONE;
2054      event.entry.addr_mask = notifier->end - notifier->start;
2055  
2056      memory_region_notify_iommu_one(notifier, &event);
2057  }
2058  
2059  void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
2060                                  int iommu_idx,
2061                                  const IOMMUTLBEvent event)
2062  {
2063      IOMMUNotifier *iommu_notifier;
2064  
2065      assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
2066  
2067      IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
2068          if (iommu_notifier->iommu_idx == iommu_idx) {
2069              memory_region_notify_iommu_one(iommu_notifier, &event);
2070          }
2071      }
2072  }
2073  
2074  int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
2075                                   enum IOMMUMemoryRegionAttr attr,
2076                                   void *data)
2077  {
2078      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2079  
2080      if (!imrc->get_attr) {
2081          return -EINVAL;
2082      }
2083  
2084      return imrc->get_attr(iommu_mr, attr, data);
2085  }
2086  
2087  int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2088                                         MemTxAttrs attrs)
2089  {
2090      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2091  
2092      if (!imrc->attrs_to_index) {
2093          return 0;
2094      }
2095  
2096      return imrc->attrs_to_index(iommu_mr, attrs);
2097  }
2098  
2099  int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2100  {
2101      IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2102  
2103      if (!imrc->num_indexes) {
2104          return 1;
2105      }
2106  
2107      return imrc->num_indexes(iommu_mr);
2108  }
2109  
2110  RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2111  {
2112      if (!memory_region_is_ram(mr)) {
2113          return NULL;
2114      }
2115      return mr->rdm;
2116  }
2117  
2118  void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2119                                             RamDiscardManager *rdm)
2120  {
2121      g_assert(memory_region_is_ram(mr));
2122      g_assert(!rdm || !mr->rdm);
2123      mr->rdm = rdm;
2124  }
2125  
2126  uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2127                                                   const MemoryRegion *mr)
2128  {
2129      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2130  
2131      g_assert(rdmc->get_min_granularity);
2132      return rdmc->get_min_granularity(rdm, mr);
2133  }
2134  
2135  bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2136                                        const MemoryRegionSection *section)
2137  {
2138      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2139  
2140      g_assert(rdmc->is_populated);
2141      return rdmc->is_populated(rdm, section);
2142  }
2143  
2144  int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2145                                           MemoryRegionSection *section,
2146                                           ReplayRamPopulate replay_fn,
2147                                           void *opaque)
2148  {
2149      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2150  
2151      g_assert(rdmc->replay_populated);
2152      return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2153  }
2154  
2155  void ram_discard_manager_replay_discarded(const RamDiscardManager *rdm,
2156                                            MemoryRegionSection *section,
2157                                            ReplayRamDiscard replay_fn,
2158                                            void *opaque)
2159  {
2160      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2161  
2162      g_assert(rdmc->replay_discarded);
2163      rdmc->replay_discarded(rdm, section, replay_fn, opaque);
2164  }
2165  
2166  void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2167                                             RamDiscardListener *rdl,
2168                                             MemoryRegionSection *section)
2169  {
2170      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2171  
2172      g_assert(rdmc->register_listener);
2173      rdmc->register_listener(rdm, rdl, section);
2174  }
2175  
2176  void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2177                                               RamDiscardListener *rdl)
2178  {
2179      RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2180  
2181      g_assert(rdmc->unregister_listener);
2182      rdmc->unregister_listener(rdm, rdl);
2183  }
2184  
2185  /* Called with rcu_read_lock held.  */
2186  bool memory_get_xlat_addr(IOMMUTLBEntry *iotlb, void **vaddr,
2187                            ram_addr_t *ram_addr, bool *read_only,
2188                            bool *mr_has_discard_manager, Error **errp)
2189  {
2190      MemoryRegion *mr;
2191      hwaddr xlat;
2192      hwaddr len = iotlb->addr_mask + 1;
2193      bool writable = iotlb->perm & IOMMU_WO;
2194  
2195      if (mr_has_discard_manager) {
2196          *mr_has_discard_manager = false;
2197      }
2198      /*
2199       * The IOMMU TLB entry we have just covers translation through
2200       * this IOMMU to its immediate target.  We need to translate
2201       * it the rest of the way through to memory.
2202       */
2203      mr = address_space_translate(&address_space_memory, iotlb->translated_addr,
2204                                   &xlat, &len, writable, MEMTXATTRS_UNSPECIFIED);
2205      if (!memory_region_is_ram(mr)) {
2206          error_setg(errp, "iommu map to non memory area %" HWADDR_PRIx "", xlat);
2207          return false;
2208      } else if (memory_region_has_ram_discard_manager(mr)) {
2209          RamDiscardManager *rdm = memory_region_get_ram_discard_manager(mr);
2210          MemoryRegionSection tmp = {
2211              .mr = mr,
2212              .offset_within_region = xlat,
2213              .size = int128_make64(len),
2214          };
2215          if (mr_has_discard_manager) {
2216              *mr_has_discard_manager = true;
2217          }
2218          /*
2219           * Malicious VMs can map memory into the IOMMU, which is expected
2220           * to remain discarded. vfio will pin all pages, populating memory.
2221           * Disallow that. vmstate priorities make sure any RamDiscardManager
2222           * were already restored before IOMMUs are restored.
2223           */
2224          if (!ram_discard_manager_is_populated(rdm, &tmp)) {
2225              error_setg(errp, "iommu map to discarded memory (e.g., unplugged"
2226                           " via virtio-mem): %" HWADDR_PRIx "",
2227                           iotlb->translated_addr);
2228              return false;
2229          }
2230      }
2231  
2232      /*
2233       * Translation truncates length to the IOMMU page size,
2234       * check that it did not truncate too much.
2235       */
2236      if (len & iotlb->addr_mask) {
2237          error_setg(errp, "iommu has granularity incompatible with target AS");
2238          return false;
2239      }
2240  
2241      if (vaddr) {
2242          *vaddr = memory_region_get_ram_ptr(mr) + xlat;
2243      }
2244  
2245      if (ram_addr) {
2246          *ram_addr = memory_region_get_ram_addr(mr) + xlat;
2247      }
2248  
2249      if (read_only) {
2250          *read_only = !writable || mr->readonly;
2251      }
2252  
2253      return true;
2254  }
2255  
2256  void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2257  {
2258      uint8_t mask = 1 << client;
2259      uint8_t old_logging;
2260  
2261      assert(client == DIRTY_MEMORY_VGA);
2262      old_logging = mr->vga_logging_count;
2263      mr->vga_logging_count += log ? 1 : -1;
2264      if (!!old_logging == !!mr->vga_logging_count) {
2265          return;
2266      }
2267  
2268      memory_region_transaction_begin();
2269      mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2270      memory_region_update_pending |= mr->enabled;
2271      memory_region_transaction_commit();
2272  }
2273  
2274  void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2275                               hwaddr size)
2276  {
2277      assert(mr->ram_block);
2278      cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2279                                          size,
2280                                          memory_region_get_dirty_log_mask(mr));
2281  }
2282  
2283  /*
2284   * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2285   * dirty bitmap for the specified memory region.
2286   */
2287  static void memory_region_sync_dirty_bitmap(MemoryRegion *mr, bool last_stage)
2288  {
2289      MemoryListener *listener;
2290      AddressSpace *as;
2291      FlatView *view;
2292      FlatRange *fr;
2293  
2294      /* If the same address space has multiple log_sync listeners, we
2295       * visit that address space's FlatView multiple times.  But because
2296       * log_sync listeners are rare, it's still cheaper than walking each
2297       * address space once.
2298       */
2299      QTAILQ_FOREACH(listener, &memory_listeners, link) {
2300          if (listener->log_sync) {
2301              as = listener->address_space;
2302              view = address_space_get_flatview(as);
2303              FOR_EACH_FLAT_RANGE(fr, view) {
2304                  if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2305                      MemoryRegionSection mrs = section_from_flat_range(fr, view);
2306                      listener->log_sync(listener, &mrs);
2307                  }
2308              }
2309              flatview_unref(view);
2310              trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 0);
2311          } else if (listener->log_sync_global) {
2312              /*
2313               * No matter whether MR is specified, what we can do here
2314               * is to do a global sync, because we are not capable to
2315               * sync in a finer granularity.
2316               */
2317              listener->log_sync_global(listener, last_stage);
2318              trace_memory_region_sync_dirty(mr ? mr->name : "(all)", listener->name, 1);
2319          }
2320      }
2321  }
2322  
2323  void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2324                                        hwaddr len)
2325  {
2326      MemoryRegionSection mrs;
2327      MemoryListener *listener;
2328      AddressSpace *as;
2329      FlatView *view;
2330      FlatRange *fr;
2331      hwaddr sec_start, sec_end, sec_size;
2332  
2333      QTAILQ_FOREACH(listener, &memory_listeners, link) {
2334          if (!listener->log_clear) {
2335              continue;
2336          }
2337          as = listener->address_space;
2338          view = address_space_get_flatview(as);
2339          FOR_EACH_FLAT_RANGE(fr, view) {
2340              if (!fr->dirty_log_mask || fr->mr != mr) {
2341                  /*
2342                   * Clear dirty bitmap operation only applies to those
2343                   * regions whose dirty logging is at least enabled
2344                   */
2345                  continue;
2346              }
2347  
2348              mrs = section_from_flat_range(fr, view);
2349  
2350              sec_start = MAX(mrs.offset_within_region, start);
2351              sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2352              sec_end = MIN(sec_end, start + len);
2353  
2354              if (sec_start >= sec_end) {
2355                  /*
2356                   * If this memory region section has no intersection
2357                   * with the requested range, skip.
2358                   */
2359                  continue;
2360              }
2361  
2362              /* Valid case; shrink the section if needed */
2363              mrs.offset_within_address_space +=
2364                  sec_start - mrs.offset_within_region;
2365              mrs.offset_within_region = sec_start;
2366              sec_size = sec_end - sec_start;
2367              mrs.size = int128_make64(sec_size);
2368              listener->log_clear(listener, &mrs);
2369          }
2370          flatview_unref(view);
2371      }
2372  }
2373  
2374  DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2375                                                              hwaddr addr,
2376                                                              hwaddr size,
2377                                                              unsigned client)
2378  {
2379      DirtyBitmapSnapshot *snapshot;
2380      assert(mr->ram_block);
2381      memory_region_sync_dirty_bitmap(mr, false);
2382      snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2383      memory_global_after_dirty_log_sync();
2384      return snapshot;
2385  }
2386  
2387  bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2388                                        hwaddr addr, hwaddr size)
2389  {
2390      assert(mr->ram_block);
2391      return cpu_physical_memory_snapshot_get_dirty(snap,
2392                  memory_region_get_ram_addr(mr) + addr, size);
2393  }
2394  
2395  void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2396  {
2397      if (mr->readonly != readonly) {
2398          memory_region_transaction_begin();
2399          mr->readonly = readonly;
2400          memory_region_update_pending |= mr->enabled;
2401          memory_region_transaction_commit();
2402      }
2403  }
2404  
2405  void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2406  {
2407      if (mr->nonvolatile != nonvolatile) {
2408          memory_region_transaction_begin();
2409          mr->nonvolatile = nonvolatile;
2410          memory_region_update_pending |= mr->enabled;
2411          memory_region_transaction_commit();
2412      }
2413  }
2414  
2415  void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2416  {
2417      if (mr->romd_mode != romd_mode) {
2418          memory_region_transaction_begin();
2419          mr->romd_mode = romd_mode;
2420          memory_region_update_pending |= mr->enabled;
2421          memory_region_transaction_commit();
2422      }
2423  }
2424  
2425  void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2426                                 hwaddr size, unsigned client)
2427  {
2428      assert(mr->ram_block);
2429      cpu_physical_memory_test_and_clear_dirty(
2430          memory_region_get_ram_addr(mr) + addr, size, client);
2431  }
2432  
2433  int memory_region_get_fd(MemoryRegion *mr)
2434  {
2435      RCU_READ_LOCK_GUARD();
2436      while (mr->alias) {
2437          mr = mr->alias;
2438      }
2439      return mr->ram_block->fd;
2440  }
2441  
2442  void *memory_region_get_ram_ptr(MemoryRegion *mr)
2443  {
2444      uint64_t offset = 0;
2445  
2446      RCU_READ_LOCK_GUARD();
2447      while (mr->alias) {
2448          offset += mr->alias_offset;
2449          mr = mr->alias;
2450      }
2451      assert(mr->ram_block);
2452      return qemu_map_ram_ptr(mr->ram_block, offset);
2453  }
2454  
2455  MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2456  {
2457      RAMBlock *block;
2458  
2459      block = qemu_ram_block_from_host(ptr, false, offset);
2460      if (!block) {
2461          return NULL;
2462      }
2463  
2464      return block->mr;
2465  }
2466  
2467  ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2468  {
2469      return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2470  }
2471  
2472  void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2473  {
2474      assert(mr->ram_block);
2475  
2476      qemu_ram_resize(mr->ram_block, newsize, errp);
2477  }
2478  
2479  void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2480  {
2481      if (mr->ram_block) {
2482          qemu_ram_msync(mr->ram_block, addr, size);
2483      }
2484  }
2485  
2486  void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2487  {
2488      /*
2489       * Might be extended case needed to cover
2490       * different types of memory regions
2491       */
2492      if (mr->dirty_log_mask) {
2493          memory_region_msync(mr, addr, size);
2494      }
2495  }
2496  
2497  /*
2498   * Call proper memory listeners about the change on the newly
2499   * added/removed CoalescedMemoryRange.
2500   */
2501  static void memory_region_update_coalesced_range(MemoryRegion *mr,
2502                                                   CoalescedMemoryRange *cmr,
2503                                                   bool add)
2504  {
2505      AddressSpace *as;
2506      FlatView *view;
2507      FlatRange *fr;
2508  
2509      QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2510          view = address_space_get_flatview(as);
2511          FOR_EACH_FLAT_RANGE(fr, view) {
2512              if (fr->mr == mr) {
2513                  flat_range_coalesced_io_notify(fr, as, cmr, add);
2514              }
2515          }
2516          flatview_unref(view);
2517      }
2518  }
2519  
2520  void memory_region_set_coalescing(MemoryRegion *mr)
2521  {
2522      memory_region_clear_coalescing(mr);
2523      memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2524  }
2525  
2526  void memory_region_add_coalescing(MemoryRegion *mr,
2527                                    hwaddr offset,
2528                                    uint64_t size)
2529  {
2530      CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2531  
2532      cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2533      QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2534      memory_region_update_coalesced_range(mr, cmr, true);
2535      memory_region_set_flush_coalesced(mr);
2536  }
2537  
2538  void memory_region_clear_coalescing(MemoryRegion *mr)
2539  {
2540      CoalescedMemoryRange *cmr;
2541  
2542      if (QTAILQ_EMPTY(&mr->coalesced)) {
2543          return;
2544      }
2545  
2546      qemu_flush_coalesced_mmio_buffer();
2547      mr->flush_coalesced_mmio = false;
2548  
2549      while (!QTAILQ_EMPTY(&mr->coalesced)) {
2550          cmr = QTAILQ_FIRST(&mr->coalesced);
2551          QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2552          memory_region_update_coalesced_range(mr, cmr, false);
2553          g_free(cmr);
2554      }
2555  }
2556  
2557  void memory_region_set_flush_coalesced(MemoryRegion *mr)
2558  {
2559      mr->flush_coalesced_mmio = true;
2560  }
2561  
2562  void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2563  {
2564      qemu_flush_coalesced_mmio_buffer();
2565      if (QTAILQ_EMPTY(&mr->coalesced)) {
2566          mr->flush_coalesced_mmio = false;
2567      }
2568  }
2569  
2570  void memory_region_add_eventfd(MemoryRegion *mr,
2571                                 hwaddr addr,
2572                                 unsigned size,
2573                                 bool match_data,
2574                                 uint64_t data,
2575                                 EventNotifier *e)
2576  {
2577      MemoryRegionIoeventfd mrfd = {
2578          .addr.start = int128_make64(addr),
2579          .addr.size = int128_make64(size),
2580          .match_data = match_data,
2581          .data = data,
2582          .e = e,
2583      };
2584      unsigned i;
2585  
2586      if (size) {
2587          adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2588      }
2589      memory_region_transaction_begin();
2590      for (i = 0; i < mr->ioeventfd_nb; ++i) {
2591          if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2592              break;
2593          }
2594      }
2595      ++mr->ioeventfd_nb;
2596      mr->ioeventfds = g_realloc(mr->ioeventfds,
2597                                    sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2598      memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2599              sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2600      mr->ioeventfds[i] = mrfd;
2601      ioeventfd_update_pending |= mr->enabled;
2602      memory_region_transaction_commit();
2603  }
2604  
2605  void memory_region_del_eventfd(MemoryRegion *mr,
2606                                 hwaddr addr,
2607                                 unsigned size,
2608                                 bool match_data,
2609                                 uint64_t data,
2610                                 EventNotifier *e)
2611  {
2612      MemoryRegionIoeventfd mrfd = {
2613          .addr.start = int128_make64(addr),
2614          .addr.size = int128_make64(size),
2615          .match_data = match_data,
2616          .data = data,
2617          .e = e,
2618      };
2619      unsigned i;
2620  
2621      if (size) {
2622          adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2623      }
2624      memory_region_transaction_begin();
2625      for (i = 0; i < mr->ioeventfd_nb; ++i) {
2626          if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2627              break;
2628          }
2629      }
2630      assert(i != mr->ioeventfd_nb);
2631      memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2632              sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2633      --mr->ioeventfd_nb;
2634      mr->ioeventfds = g_realloc(mr->ioeventfds,
2635                                    sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2636      ioeventfd_update_pending |= mr->enabled;
2637      memory_region_transaction_commit();
2638  }
2639  
2640  static void memory_region_update_container_subregions(MemoryRegion *subregion)
2641  {
2642      MemoryRegion *mr = subregion->container;
2643      MemoryRegion *other;
2644  
2645      memory_region_transaction_begin();
2646  
2647      memory_region_ref(subregion);
2648      QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2649          if (subregion->priority >= other->priority) {
2650              QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2651              goto done;
2652          }
2653      }
2654      QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2655  done:
2656      memory_region_update_pending |= mr->enabled && subregion->enabled;
2657      memory_region_transaction_commit();
2658  }
2659  
2660  static void memory_region_add_subregion_common(MemoryRegion *mr,
2661                                                 hwaddr offset,
2662                                                 MemoryRegion *subregion)
2663  {
2664      MemoryRegion *alias;
2665  
2666      assert(!subregion->container);
2667      subregion->container = mr;
2668      for (alias = subregion->alias; alias; alias = alias->alias) {
2669          alias->mapped_via_alias++;
2670      }
2671      subregion->addr = offset;
2672      memory_region_update_container_subregions(subregion);
2673  }
2674  
2675  void memory_region_add_subregion(MemoryRegion *mr,
2676                                   hwaddr offset,
2677                                   MemoryRegion *subregion)
2678  {
2679      subregion->priority = 0;
2680      memory_region_add_subregion_common(mr, offset, subregion);
2681  }
2682  
2683  void memory_region_add_subregion_overlap(MemoryRegion *mr,
2684                                           hwaddr offset,
2685                                           MemoryRegion *subregion,
2686                                           int priority)
2687  {
2688      subregion->priority = priority;
2689      memory_region_add_subregion_common(mr, offset, subregion);
2690  }
2691  
2692  void memory_region_del_subregion(MemoryRegion *mr,
2693                                   MemoryRegion *subregion)
2694  {
2695      MemoryRegion *alias;
2696  
2697      memory_region_transaction_begin();
2698      assert(subregion->container == mr);
2699      subregion->container = NULL;
2700      for (alias = subregion->alias; alias; alias = alias->alias) {
2701          alias->mapped_via_alias--;
2702          assert(alias->mapped_via_alias >= 0);
2703      }
2704      QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2705      memory_region_unref(subregion);
2706      memory_region_update_pending |= mr->enabled && subregion->enabled;
2707      memory_region_transaction_commit();
2708  }
2709  
2710  void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2711  {
2712      if (enabled == mr->enabled) {
2713          return;
2714      }
2715      memory_region_transaction_begin();
2716      mr->enabled = enabled;
2717      memory_region_update_pending = true;
2718      memory_region_transaction_commit();
2719  }
2720  
2721  void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2722  {
2723      Int128 s = int128_make64(size);
2724  
2725      if (size == UINT64_MAX) {
2726          s = int128_2_64();
2727      }
2728      if (int128_eq(s, mr->size)) {
2729          return;
2730      }
2731      memory_region_transaction_begin();
2732      mr->size = s;
2733      memory_region_update_pending = true;
2734      memory_region_transaction_commit();
2735  }
2736  
2737  static void memory_region_readd_subregion(MemoryRegion *mr)
2738  {
2739      MemoryRegion *container = mr->container;
2740  
2741      if (container) {
2742          memory_region_transaction_begin();
2743          memory_region_ref(mr);
2744          memory_region_del_subregion(container, mr);
2745          memory_region_add_subregion_common(container, mr->addr, mr);
2746          memory_region_unref(mr);
2747          memory_region_transaction_commit();
2748      }
2749  }
2750  
2751  void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2752  {
2753      if (addr != mr->addr) {
2754          mr->addr = addr;
2755          memory_region_readd_subregion(mr);
2756      }
2757  }
2758  
2759  void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2760  {
2761      assert(mr->alias);
2762  
2763      if (offset == mr->alias_offset) {
2764          return;
2765      }
2766  
2767      memory_region_transaction_begin();
2768      mr->alias_offset = offset;
2769      memory_region_update_pending |= mr->enabled;
2770      memory_region_transaction_commit();
2771  }
2772  
2773  void memory_region_set_unmergeable(MemoryRegion *mr, bool unmergeable)
2774  {
2775      if (unmergeable == mr->unmergeable) {
2776          return;
2777      }
2778  
2779      memory_region_transaction_begin();
2780      mr->unmergeable = unmergeable;
2781      memory_region_update_pending |= mr->enabled;
2782      memory_region_transaction_commit();
2783  }
2784  
2785  uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2786  {
2787      return mr->align;
2788  }
2789  
2790  static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2791  {
2792      const AddrRange *addr = addr_;
2793      const FlatRange *fr = fr_;
2794  
2795      if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2796          return -1;
2797      } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2798          return 1;
2799      }
2800      return 0;
2801  }
2802  
2803  static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2804  {
2805      return bsearch(&addr, view->ranges, view->nr,
2806                     sizeof(FlatRange), cmp_flatrange_addr);
2807  }
2808  
2809  bool memory_region_is_mapped(MemoryRegion *mr)
2810  {
2811      return !!mr->container || mr->mapped_via_alias;
2812  }
2813  
2814  /* Same as memory_region_find, but it does not add a reference to the
2815   * returned region.  It must be called from an RCU critical section.
2816   */
2817  static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2818                                                    hwaddr addr, uint64_t size)
2819  {
2820      MemoryRegionSection ret = { .mr = NULL };
2821      MemoryRegion *root;
2822      AddressSpace *as;
2823      AddrRange range;
2824      FlatView *view;
2825      FlatRange *fr;
2826  
2827      addr += mr->addr;
2828      for (root = mr; root->container; ) {
2829          root = root->container;
2830          addr += root->addr;
2831      }
2832  
2833      as = memory_region_to_address_space(root);
2834      if (!as) {
2835          return ret;
2836      }
2837      range = addrrange_make(int128_make64(addr), int128_make64(size));
2838  
2839      view = address_space_to_flatview(as);
2840      fr = flatview_lookup(view, range);
2841      if (!fr) {
2842          return ret;
2843      }
2844  
2845      while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2846          --fr;
2847      }
2848  
2849      ret.mr = fr->mr;
2850      ret.fv = view;
2851      range = addrrange_intersection(range, fr->addr);
2852      ret.offset_within_region = fr->offset_in_region;
2853      ret.offset_within_region += int128_get64(int128_sub(range.start,
2854                                                          fr->addr.start));
2855      ret.size = range.size;
2856      ret.offset_within_address_space = int128_get64(range.start);
2857      ret.readonly = fr->readonly;
2858      ret.nonvolatile = fr->nonvolatile;
2859      return ret;
2860  }
2861  
2862  MemoryRegionSection memory_region_find(MemoryRegion *mr,
2863                                         hwaddr addr, uint64_t size)
2864  {
2865      MemoryRegionSection ret;
2866      RCU_READ_LOCK_GUARD();
2867      ret = memory_region_find_rcu(mr, addr, size);
2868      if (ret.mr) {
2869          memory_region_ref(ret.mr);
2870      }
2871      return ret;
2872  }
2873  
2874  MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2875  {
2876      MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2877  
2878      *tmp = *s;
2879      if (tmp->mr) {
2880          memory_region_ref(tmp->mr);
2881      }
2882      if (tmp->fv) {
2883          bool ret  = flatview_ref(tmp->fv);
2884  
2885          g_assert(ret);
2886      }
2887      return tmp;
2888  }
2889  
2890  void memory_region_section_free_copy(MemoryRegionSection *s)
2891  {
2892      if (s->fv) {
2893          flatview_unref(s->fv);
2894      }
2895      if (s->mr) {
2896          memory_region_unref(s->mr);
2897      }
2898      g_free(s);
2899  }
2900  
2901  bool memory_region_present(MemoryRegion *container, hwaddr addr)
2902  {
2903      MemoryRegion *mr;
2904  
2905      RCU_READ_LOCK_GUARD();
2906      mr = memory_region_find_rcu(container, addr, 1).mr;
2907      return mr && mr != container;
2908  }
2909  
2910  void memory_global_dirty_log_sync(bool last_stage)
2911  {
2912      memory_region_sync_dirty_bitmap(NULL, last_stage);
2913  }
2914  
2915  void memory_global_after_dirty_log_sync(void)
2916  {
2917      MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2918  }
2919  
2920  /*
2921   * Dirty track stop flags that are postponed due to VM being stopped.  Should
2922   * only be used within vmstate_change hook.
2923   */
2924  static unsigned int postponed_stop_flags;
2925  static VMChangeStateEntry *vmstate_change;
2926  static void memory_global_dirty_log_stop_postponed_run(void);
2927  
2928  static bool memory_global_dirty_log_do_start(Error **errp)
2929  {
2930      MemoryListener *listener;
2931  
2932      QTAILQ_FOREACH(listener, &memory_listeners, link) {
2933          if (listener->log_global_start) {
2934              if (!listener->log_global_start(listener, errp)) {
2935                  goto err;
2936              }
2937          }
2938      }
2939      return true;
2940  
2941  err:
2942      while ((listener = QTAILQ_PREV(listener, link)) != NULL) {
2943          if (listener->log_global_stop) {
2944              listener->log_global_stop(listener);
2945          }
2946      }
2947  
2948      return false;
2949  }
2950  
2951  bool memory_global_dirty_log_start(unsigned int flags, Error **errp)
2952  {
2953      unsigned int old_flags;
2954  
2955      assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2956  
2957      if (vmstate_change) {
2958          /* If there is postponed stop(), operate on it first */
2959          postponed_stop_flags &= ~flags;
2960          memory_global_dirty_log_stop_postponed_run();
2961      }
2962  
2963      flags &= ~global_dirty_tracking;
2964      if (!flags) {
2965          return true;
2966      }
2967  
2968      old_flags = global_dirty_tracking;
2969      global_dirty_tracking |= flags;
2970      trace_global_dirty_changed(global_dirty_tracking);
2971  
2972      if (!old_flags) {
2973          if (!memory_global_dirty_log_do_start(errp)) {
2974              global_dirty_tracking &= ~flags;
2975              trace_global_dirty_changed(global_dirty_tracking);
2976              return false;
2977          }
2978  
2979          memory_region_transaction_begin();
2980          memory_region_update_pending = true;
2981          memory_region_transaction_commit();
2982      }
2983      return true;
2984  }
2985  
2986  static void memory_global_dirty_log_do_stop(unsigned int flags)
2987  {
2988      assert(flags && !(flags & (~GLOBAL_DIRTY_MASK)));
2989      assert((global_dirty_tracking & flags) == flags);
2990      global_dirty_tracking &= ~flags;
2991  
2992      trace_global_dirty_changed(global_dirty_tracking);
2993  
2994      if (!global_dirty_tracking) {
2995          memory_region_transaction_begin();
2996          memory_region_update_pending = true;
2997          memory_region_transaction_commit();
2998          MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2999      }
3000  }
3001  
3002  /*
3003   * Execute the postponed dirty log stop operations if there is, then reset
3004   * everything (including the flags and the vmstate change hook).
3005   */
3006  static void memory_global_dirty_log_stop_postponed_run(void)
3007  {
3008      /* This must be called with the vmstate handler registered */
3009      assert(vmstate_change);
3010  
3011      /* Note: postponed_stop_flags can be cleared in log start routine */
3012      if (postponed_stop_flags) {
3013          memory_global_dirty_log_do_stop(postponed_stop_flags);
3014          postponed_stop_flags = 0;
3015      }
3016  
3017      qemu_del_vm_change_state_handler(vmstate_change);
3018      vmstate_change = NULL;
3019  }
3020  
3021  static void memory_vm_change_state_handler(void *opaque, bool running,
3022                                             RunState state)
3023  {
3024      if (running) {
3025          memory_global_dirty_log_stop_postponed_run();
3026      }
3027  }
3028  
3029  void memory_global_dirty_log_stop(unsigned int flags)
3030  {
3031      if (!runstate_is_running()) {
3032          /* Postpone the dirty log stop, e.g., to when VM starts again */
3033          if (vmstate_change) {
3034              /* Batch with previous postponed flags */
3035              postponed_stop_flags |= flags;
3036          } else {
3037              postponed_stop_flags = flags;
3038              vmstate_change = qemu_add_vm_change_state_handler(
3039                  memory_vm_change_state_handler, NULL);
3040          }
3041          return;
3042      }
3043  
3044      memory_global_dirty_log_do_stop(flags);
3045  }
3046  
3047  static void listener_add_address_space(MemoryListener *listener,
3048                                         AddressSpace *as)
3049  {
3050      unsigned i;
3051      FlatView *view;
3052      FlatRange *fr;
3053      MemoryRegionIoeventfd *fd;
3054  
3055      if (listener->begin) {
3056          listener->begin(listener);
3057      }
3058      if (global_dirty_tracking) {
3059          /*
3060           * Currently only VFIO can fail log_global_start(), and it's not
3061           * yet allowed to hotplug any PCI device during migration. So this
3062           * should never fail when invoked, guard it with error_abort.  If
3063           * it can start to fail in the future, we need to be able to fail
3064           * the whole listener_add_address_space() and its callers.
3065           */
3066          if (listener->log_global_start) {
3067              listener->log_global_start(listener, &error_abort);
3068          }
3069      }
3070  
3071      view = address_space_get_flatview(as);
3072      FOR_EACH_FLAT_RANGE(fr, view) {
3073          MemoryRegionSection section = section_from_flat_range(fr, view);
3074  
3075          if (listener->region_add) {
3076              listener->region_add(listener, &section);
3077          }
3078  
3079          /* send coalesced io add notifications */
3080          flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3081                                                          listener, as, true);
3082  
3083          if (fr->dirty_log_mask && listener->log_start) {
3084              listener->log_start(listener, &section, 0, fr->dirty_log_mask);
3085          }
3086      }
3087  
3088      /*
3089       * register all eventfds for this address space for the newly registered
3090       * listener.
3091       */
3092      for (i = 0; i < as->ioeventfd_nb; i++) {
3093          fd = &as->ioeventfds[i];
3094          MemoryRegionSection section = (MemoryRegionSection) {
3095              .fv = view,
3096              .offset_within_address_space = int128_get64(fd->addr.start),
3097              .size = fd->addr.size,
3098          };
3099  
3100          if (listener->eventfd_add) {
3101              listener->eventfd_add(listener, &section,
3102                                    fd->match_data, fd->data, fd->e);
3103          }
3104      }
3105  
3106      if (listener->commit) {
3107          listener->commit(listener);
3108      }
3109      flatview_unref(view);
3110  }
3111  
3112  static void listener_del_address_space(MemoryListener *listener,
3113                                         AddressSpace *as)
3114  {
3115      unsigned i;
3116      FlatView *view;
3117      FlatRange *fr;
3118      MemoryRegionIoeventfd *fd;
3119  
3120      if (listener->begin) {
3121          listener->begin(listener);
3122      }
3123      view = address_space_get_flatview(as);
3124      FOR_EACH_FLAT_RANGE(fr, view) {
3125          MemoryRegionSection section = section_from_flat_range(fr, view);
3126  
3127          if (fr->dirty_log_mask && listener->log_stop) {
3128              listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
3129          }
3130  
3131          /* send coalesced io del notifications */
3132          flat_range_coalesced_io_notify_listener_add_del(fr, &section,
3133                                                          listener, as, false);
3134          if (listener->region_del) {
3135              listener->region_del(listener, &section);
3136          }
3137      }
3138  
3139      /*
3140       * de-register all eventfds for this address space for the current
3141       * listener.
3142       */
3143      for (i = 0; i < as->ioeventfd_nb; i++) {
3144          fd = &as->ioeventfds[i];
3145          MemoryRegionSection section = (MemoryRegionSection) {
3146              .fv = view,
3147              .offset_within_address_space = int128_get64(fd->addr.start),
3148              .size = fd->addr.size,
3149          };
3150  
3151          if (listener->eventfd_del) {
3152              listener->eventfd_del(listener, &section,
3153                                    fd->match_data, fd->data, fd->e);
3154          }
3155      }
3156  
3157      if (listener->commit) {
3158          listener->commit(listener);
3159      }
3160      flatview_unref(view);
3161  }
3162  
3163  void memory_listener_register(MemoryListener *listener, AddressSpace *as)
3164  {
3165      MemoryListener *other = NULL;
3166  
3167      /* Only one of them can be defined for a listener */
3168      assert(!(listener->log_sync && listener->log_sync_global));
3169  
3170      listener->address_space = as;
3171      if (QTAILQ_EMPTY(&memory_listeners)
3172          || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
3173          QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
3174      } else {
3175          QTAILQ_FOREACH(other, &memory_listeners, link) {
3176              if (listener->priority < other->priority) {
3177                  break;
3178              }
3179          }
3180          QTAILQ_INSERT_BEFORE(other, listener, link);
3181      }
3182  
3183      if (QTAILQ_EMPTY(&as->listeners)
3184          || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
3185          QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
3186      } else {
3187          QTAILQ_FOREACH(other, &as->listeners, link_as) {
3188              if (listener->priority < other->priority) {
3189                  break;
3190              }
3191          }
3192          QTAILQ_INSERT_BEFORE(other, listener, link_as);
3193      }
3194  
3195      listener_add_address_space(listener, as);
3196  
3197      if (listener->eventfd_add || listener->eventfd_del) {
3198          as->ioeventfd_notifiers++;
3199      }
3200  }
3201  
3202  void memory_listener_unregister(MemoryListener *listener)
3203  {
3204      if (!listener->address_space) {
3205          return;
3206      }
3207  
3208      if (listener->eventfd_add || listener->eventfd_del) {
3209          listener->address_space->ioeventfd_notifiers--;
3210      }
3211  
3212      listener_del_address_space(listener, listener->address_space);
3213      QTAILQ_REMOVE(&memory_listeners, listener, link);
3214      QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
3215      listener->address_space = NULL;
3216  }
3217  
3218  void address_space_remove_listeners(AddressSpace *as)
3219  {
3220      while (!QTAILQ_EMPTY(&as->listeners)) {
3221          memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
3222      }
3223  }
3224  
3225  void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
3226  {
3227      memory_region_ref(root);
3228      as->root = root;
3229      as->current_map = NULL;
3230      as->ioeventfd_nb = 0;
3231      as->ioeventfds = NULL;
3232      QTAILQ_INIT(&as->listeners);
3233      QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
3234      as->max_bounce_buffer_size = DEFAULT_MAX_BOUNCE_BUFFER_SIZE;
3235      as->bounce_buffer_size = 0;
3236      qemu_mutex_init(&as->map_client_list_lock);
3237      QLIST_INIT(&as->map_client_list);
3238      as->name = g_strdup(name ? name : "anonymous");
3239      address_space_update_topology(as);
3240      address_space_update_ioeventfds(as);
3241  }
3242  
3243  static void do_address_space_destroy(AddressSpace *as)
3244  {
3245      assert(qatomic_read(&as->bounce_buffer_size) == 0);
3246      assert(QLIST_EMPTY(&as->map_client_list));
3247      qemu_mutex_destroy(&as->map_client_list_lock);
3248  
3249      assert(QTAILQ_EMPTY(&as->listeners));
3250  
3251      flatview_unref(as->current_map);
3252      g_free(as->name);
3253      g_free(as->ioeventfds);
3254      memory_region_unref(as->root);
3255  }
3256  
3257  void address_space_destroy(AddressSpace *as)
3258  {
3259      MemoryRegion *root = as->root;
3260  
3261      /* Flush out anything from MemoryListeners listening in on this */
3262      memory_region_transaction_begin();
3263      as->root = NULL;
3264      memory_region_transaction_commit();
3265      QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
3266  
3267      /* At this point, as->dispatch and as->current_map are dummy
3268       * entries that the guest should never use.  Wait for the old
3269       * values to expire before freeing the data.
3270       */
3271      as->root = root;
3272      call_rcu(as, do_address_space_destroy, rcu);
3273  }
3274  
3275  static const char *memory_region_type(MemoryRegion *mr)
3276  {
3277      if (mr->alias) {
3278          return memory_region_type(mr->alias);
3279      }
3280      if (memory_region_is_ram_device(mr)) {
3281          return "ramd";
3282      } else if (memory_region_is_romd(mr)) {
3283          return "romd";
3284      } else if (memory_region_is_rom(mr)) {
3285          return "rom";
3286      } else if (memory_region_is_ram(mr)) {
3287          return "ram";
3288      } else {
3289          return "i/o";
3290      }
3291  }
3292  
3293  typedef struct MemoryRegionList MemoryRegionList;
3294  
3295  struct MemoryRegionList {
3296      const MemoryRegion *mr;
3297      QTAILQ_ENTRY(MemoryRegionList) mrqueue;
3298  };
3299  
3300  typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
3301  
3302  #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3303                             int128_sub((size), int128_one())) : 0)
3304  #define MTREE_INDENT "  "
3305  
3306  static void mtree_expand_owner(const char *label, Object *obj)
3307  {
3308      DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
3309  
3310      qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
3311      if (dev && dev->id) {
3312          qemu_printf(" id=%s", dev->id);
3313      } else {
3314          char *canonical_path = object_get_canonical_path(obj);
3315          if (canonical_path) {
3316              qemu_printf(" path=%s", canonical_path);
3317              g_free(canonical_path);
3318          } else {
3319              qemu_printf(" type=%s", object_get_typename(obj));
3320          }
3321      }
3322      qemu_printf("}");
3323  }
3324  
3325  static void mtree_print_mr_owner(const MemoryRegion *mr)
3326  {
3327      Object *owner = mr->owner;
3328      Object *parent = memory_region_owner((MemoryRegion *)mr);
3329  
3330      if (!owner && !parent) {
3331          qemu_printf(" orphan");
3332          return;
3333      }
3334      if (owner) {
3335          mtree_expand_owner("owner", owner);
3336      }
3337      if (parent && parent != owner) {
3338          mtree_expand_owner("parent", parent);
3339      }
3340  }
3341  
3342  static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3343                             hwaddr base,
3344                             MemoryRegionListHead *alias_print_queue,
3345                             bool owner, bool display_disabled)
3346  {
3347      MemoryRegionList *new_ml, *ml, *next_ml;
3348      MemoryRegionListHead submr_print_queue;
3349      const MemoryRegion *submr;
3350      unsigned int i;
3351      hwaddr cur_start, cur_end;
3352  
3353      if (!mr) {
3354          return;
3355      }
3356  
3357      cur_start = base + mr->addr;
3358      cur_end = cur_start + MR_SIZE(mr->size);
3359  
3360      /*
3361       * Try to detect overflow of memory region. This should never
3362       * happen normally. When it happens, we dump something to warn the
3363       * user who is observing this.
3364       */
3365      if (cur_start < base || cur_end < cur_start) {
3366          qemu_printf("[DETECTED OVERFLOW!] ");
3367      }
3368  
3369      if (mr->alias) {
3370          bool found = false;
3371  
3372          /* check if the alias is already in the queue */
3373          QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3374              if (ml->mr == mr->alias) {
3375                  found = true;
3376              }
3377          }
3378  
3379          if (!found) {
3380              ml = g_new(MemoryRegionList, 1);
3381              ml->mr = mr->alias;
3382              QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3383          }
3384          if (mr->enabled || display_disabled) {
3385              for (i = 0; i < level; i++) {
3386                  qemu_printf(MTREE_INDENT);
3387              }
3388              qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3389                          " (prio %d, %s%s): alias %s @%s " HWADDR_FMT_plx
3390                          "-" HWADDR_FMT_plx "%s",
3391                          cur_start, cur_end,
3392                          mr->priority,
3393                          mr->nonvolatile ? "nv-" : "",
3394                          memory_region_type((MemoryRegion *)mr),
3395                          memory_region_name(mr),
3396                          memory_region_name(mr->alias),
3397                          mr->alias_offset,
3398                          mr->alias_offset + MR_SIZE(mr->size),
3399                          mr->enabled ? "" : " [disabled]");
3400              if (owner) {
3401                  mtree_print_mr_owner(mr);
3402              }
3403              qemu_printf("\n");
3404          }
3405      } else {
3406          if (mr->enabled || display_disabled) {
3407              for (i = 0; i < level; i++) {
3408                  qemu_printf(MTREE_INDENT);
3409              }
3410              qemu_printf(HWADDR_FMT_plx "-" HWADDR_FMT_plx
3411                          " (prio %d, %s%s): %s%s",
3412                          cur_start, cur_end,
3413                          mr->priority,
3414                          mr->nonvolatile ? "nv-" : "",
3415                          memory_region_type((MemoryRegion *)mr),
3416                          memory_region_name(mr),
3417                          mr->enabled ? "" : " [disabled]");
3418              if (owner) {
3419                  mtree_print_mr_owner(mr);
3420              }
3421              qemu_printf("\n");
3422          }
3423      }
3424  
3425      QTAILQ_INIT(&submr_print_queue);
3426  
3427      QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3428          new_ml = g_new(MemoryRegionList, 1);
3429          new_ml->mr = submr;
3430          QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3431              if (new_ml->mr->addr < ml->mr->addr ||
3432                  (new_ml->mr->addr == ml->mr->addr &&
3433                   new_ml->mr->priority > ml->mr->priority)) {
3434                  QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3435                  new_ml = NULL;
3436                  break;
3437              }
3438          }
3439          if (new_ml) {
3440              QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3441          }
3442      }
3443  
3444      QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3445          mtree_print_mr(ml->mr, level + 1, cur_start,
3446                         alias_print_queue, owner, display_disabled);
3447      }
3448  
3449      QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3450          g_free(ml);
3451      }
3452  }
3453  
3454  struct FlatViewInfo {
3455      int counter;
3456      bool dispatch_tree;
3457      bool owner;
3458      AccelClass *ac;
3459  };
3460  
3461  static void mtree_print_flatview(gpointer key, gpointer value,
3462                                   gpointer user_data)
3463  {
3464      FlatView *view = key;
3465      GArray *fv_address_spaces = value;
3466      struct FlatViewInfo *fvi = user_data;
3467      FlatRange *range = &view->ranges[0];
3468      MemoryRegion *mr;
3469      int n = view->nr;
3470      int i;
3471      AddressSpace *as;
3472  
3473      qemu_printf("FlatView #%d\n", fvi->counter);
3474      ++fvi->counter;
3475  
3476      for (i = 0; i < fv_address_spaces->len; ++i) {
3477          as = g_array_index(fv_address_spaces, AddressSpace*, i);
3478          qemu_printf(" AS \"%s\", root: %s",
3479                      as->name, memory_region_name(as->root));
3480          if (as->root->alias) {
3481              qemu_printf(", alias %s", memory_region_name(as->root->alias));
3482          }
3483          qemu_printf("\n");
3484      }
3485  
3486      qemu_printf(" Root memory region: %s\n",
3487        view->root ? memory_region_name(view->root) : "(none)");
3488  
3489      if (n <= 0) {
3490          qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3491          return;
3492      }
3493  
3494      while (n--) {
3495          mr = range->mr;
3496          if (range->offset_in_region) {
3497              qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3498                          " (prio %d, %s%s): %s @" HWADDR_FMT_plx,
3499                          int128_get64(range->addr.start),
3500                          int128_get64(range->addr.start)
3501                          + MR_SIZE(range->addr.size),
3502                          mr->priority,
3503                          range->nonvolatile ? "nv-" : "",
3504                          range->readonly ? "rom" : memory_region_type(mr),
3505                          memory_region_name(mr),
3506                          range->offset_in_region);
3507          } else {
3508              qemu_printf(MTREE_INDENT HWADDR_FMT_plx "-" HWADDR_FMT_plx
3509                          " (prio %d, %s%s): %s",
3510                          int128_get64(range->addr.start),
3511                          int128_get64(range->addr.start)
3512                          + MR_SIZE(range->addr.size),
3513                          mr->priority,
3514                          range->nonvolatile ? "nv-" : "",
3515                          range->readonly ? "rom" : memory_region_type(mr),
3516                          memory_region_name(mr));
3517          }
3518          if (fvi->owner) {
3519              mtree_print_mr_owner(mr);
3520          }
3521  
3522          if (fvi->ac) {
3523              for (i = 0; i < fv_address_spaces->len; ++i) {
3524                  as = g_array_index(fv_address_spaces, AddressSpace*, i);
3525                  if (fvi->ac->has_memory(current_machine, as,
3526                                          int128_get64(range->addr.start),
3527                                          MR_SIZE(range->addr.size) + 1)) {
3528                      qemu_printf(" %s", fvi->ac->name);
3529                  }
3530              }
3531          }
3532          qemu_printf("\n");
3533          range++;
3534      }
3535  
3536  #if !defined(CONFIG_USER_ONLY)
3537      if (fvi->dispatch_tree && view->root) {
3538          mtree_print_dispatch(view->dispatch, view->root);
3539      }
3540  #endif
3541  
3542      qemu_printf("\n");
3543  }
3544  
3545  static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3546                                        gpointer user_data)
3547  {
3548      FlatView *view = key;
3549      GArray *fv_address_spaces = value;
3550  
3551      g_array_unref(fv_address_spaces);
3552      flatview_unref(view);
3553  
3554      return true;
3555  }
3556  
3557  static void mtree_info_flatview(bool dispatch_tree, bool owner)
3558  {
3559      struct FlatViewInfo fvi = {
3560          .counter = 0,
3561          .dispatch_tree = dispatch_tree,
3562          .owner = owner,
3563      };
3564      AddressSpace *as;
3565      FlatView *view;
3566      GArray *fv_address_spaces;
3567      GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3568      AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3569  
3570      if (ac->has_memory) {
3571          fvi.ac = ac;
3572      }
3573  
3574      /* Gather all FVs in one table */
3575      QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3576          view = address_space_get_flatview(as);
3577  
3578          fv_address_spaces = g_hash_table_lookup(views, view);
3579          if (!fv_address_spaces) {
3580              fv_address_spaces = g_array_new(false, false, sizeof(as));
3581              g_hash_table_insert(views, view, fv_address_spaces);
3582          }
3583  
3584          g_array_append_val(fv_address_spaces, as);
3585      }
3586  
3587      /* Print */
3588      g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3589  
3590      /* Free */
3591      g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3592      g_hash_table_unref(views);
3593  }
3594  
3595  struct AddressSpaceInfo {
3596      MemoryRegionListHead *ml_head;
3597      bool owner;
3598      bool disabled;
3599  };
3600  
3601  /* Returns negative value if a < b; zero if a = b; positive value if a > b. */
3602  static gint address_space_compare_name(gconstpointer a, gconstpointer b)
3603  {
3604      const AddressSpace *as_a = a;
3605      const AddressSpace *as_b = b;
3606  
3607      return g_strcmp0(as_a->name, as_b->name);
3608  }
3609  
3610  static void mtree_print_as_name(gpointer data, gpointer user_data)
3611  {
3612      AddressSpace *as = data;
3613  
3614      qemu_printf("address-space: %s\n", as->name);
3615  }
3616  
3617  static void mtree_print_as(gpointer key, gpointer value, gpointer user_data)
3618  {
3619      MemoryRegion *mr = key;
3620      GSList *as_same_root_mr_list = value;
3621      struct AddressSpaceInfo *asi = user_data;
3622  
3623      g_slist_foreach(as_same_root_mr_list, mtree_print_as_name, NULL);
3624      mtree_print_mr(mr, 1, 0, asi->ml_head, asi->owner, asi->disabled);
3625      qemu_printf("\n");
3626  }
3627  
3628  static gboolean mtree_info_as_free(gpointer key, gpointer value,
3629                                     gpointer user_data)
3630  {
3631      GSList *as_same_root_mr_list = value;
3632  
3633      g_slist_free(as_same_root_mr_list);
3634  
3635      return true;
3636  }
3637  
3638  static void mtree_info_as(bool dispatch_tree, bool owner, bool disabled)
3639  {
3640      MemoryRegionListHead ml_head;
3641      MemoryRegionList *ml, *ml2;
3642      AddressSpace *as;
3643      GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3644      GSList *as_same_root_mr_list;
3645      struct AddressSpaceInfo asi = {
3646          .ml_head = &ml_head,
3647          .owner = owner,
3648          .disabled = disabled,
3649      };
3650  
3651      QTAILQ_INIT(&ml_head);
3652  
3653      QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3654          /* Create hashtable, key=AS root MR, value = list of AS */
3655          as_same_root_mr_list = g_hash_table_lookup(views, as->root);
3656          as_same_root_mr_list = g_slist_insert_sorted(as_same_root_mr_list, as,
3657                                                       address_space_compare_name);
3658          g_hash_table_insert(views, as->root, as_same_root_mr_list);
3659      }
3660  
3661      /* print address spaces */
3662      g_hash_table_foreach(views, mtree_print_as, &asi);
3663      g_hash_table_foreach_remove(views, mtree_info_as_free, 0);
3664      g_hash_table_unref(views);
3665  
3666      /* print aliased regions */
3667      QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3668          qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3669          mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3670          qemu_printf("\n");
3671      }
3672  
3673      QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3674          g_free(ml);
3675      }
3676  }
3677  
3678  void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3679  {
3680      if (flatview) {
3681          mtree_info_flatview(dispatch_tree, owner);
3682      } else {
3683          mtree_info_as(dispatch_tree, owner, disabled);
3684      }
3685  }
3686  
3687  bool memory_region_init_ram(MemoryRegion *mr,
3688                              Object *owner,
3689                              const char *name,
3690                              uint64_t size,
3691                              Error **errp)
3692  {
3693      DeviceState *owner_dev;
3694  
3695      if (!memory_region_init_ram_nomigrate(mr, owner, name, size, errp)) {
3696          return false;
3697      }
3698      /* This will assert if owner is neither NULL nor a DeviceState.
3699       * We only want the owner here for the purposes of defining a
3700       * unique name for migration. TODO: Ideally we should implement
3701       * a naming scheme for Objects which are not DeviceStates, in
3702       * which case we can relax this restriction.
3703       */
3704      owner_dev = DEVICE(owner);
3705      vmstate_register_ram(mr, owner_dev);
3706  
3707      return true;
3708  }
3709  
3710  bool memory_region_init_ram_guest_memfd(MemoryRegion *mr,
3711                                          Object *owner,
3712                                          const char *name,
3713                                          uint64_t size,
3714                                          Error **errp)
3715  {
3716      DeviceState *owner_dev;
3717  
3718      if (!memory_region_init_ram_flags_nomigrate(mr, owner, name, size,
3719                                                  RAM_GUEST_MEMFD, errp)) {
3720          return false;
3721      }
3722      /* This will assert if owner is neither NULL nor a DeviceState.
3723       * We only want the owner here for the purposes of defining a
3724       * unique name for migration. TODO: Ideally we should implement
3725       * a naming scheme for Objects which are not DeviceStates, in
3726       * which case we can relax this restriction.
3727       */
3728      owner_dev = DEVICE(owner);
3729      vmstate_register_ram(mr, owner_dev);
3730  
3731      return true;
3732  }
3733  
3734  bool memory_region_init_rom(MemoryRegion *mr,
3735                              Object *owner,
3736                              const char *name,
3737                              uint64_t size,
3738                              Error **errp)
3739  {
3740      DeviceState *owner_dev;
3741  
3742      if (!memory_region_init_rom_nomigrate(mr, owner, name, size, errp)) {
3743          return false;
3744      }
3745      /* This will assert if owner is neither NULL nor a DeviceState.
3746       * We only want the owner here for the purposes of defining a
3747       * unique name for migration. TODO: Ideally we should implement
3748       * a naming scheme for Objects which are not DeviceStates, in
3749       * which case we can relax this restriction.
3750       */
3751      owner_dev = DEVICE(owner);
3752      vmstate_register_ram(mr, owner_dev);
3753  
3754      return true;
3755  }
3756  
3757  bool memory_region_init_rom_device(MemoryRegion *mr,
3758                                     Object *owner,
3759                                     const MemoryRegionOps *ops,
3760                                     void *opaque,
3761                                     const char *name,
3762                                     uint64_t size,
3763                                     Error **errp)
3764  {
3765      DeviceState *owner_dev;
3766  
3767      if (!memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3768                                                   name, size, errp)) {
3769          return false;
3770      }
3771      /* This will assert if owner is neither NULL nor a DeviceState.
3772       * We only want the owner here for the purposes of defining a
3773       * unique name for migration. TODO: Ideally we should implement
3774       * a naming scheme for Objects which are not DeviceStates, in
3775       * which case we can relax this restriction.
3776       */
3777      owner_dev = DEVICE(owner);
3778      vmstate_register_ram(mr, owner_dev);
3779  
3780      return true;
3781  }
3782  
3783  /*
3784   * Support system builds with CONFIG_FUZZ using a weak symbol and a stub for
3785   * the fuzz_dma_read_cb callback
3786   */
3787  #ifdef CONFIG_FUZZ
3788  void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3789                        size_t len,
3790                        MemoryRegion *mr)
3791  {
3792  }
3793  #endif
3794  
3795  static const TypeInfo memory_region_info = {
3796      .parent             = TYPE_OBJECT,
3797      .name               = TYPE_MEMORY_REGION,
3798      .class_size         = sizeof(MemoryRegionClass),
3799      .instance_size      = sizeof(MemoryRegion),
3800      .instance_init      = memory_region_initfn,
3801      .instance_finalize  = memory_region_finalize,
3802  };
3803  
3804  static const TypeInfo iommu_memory_region_info = {
3805      .parent             = TYPE_MEMORY_REGION,
3806      .name               = TYPE_IOMMU_MEMORY_REGION,
3807      .class_size         = sizeof(IOMMUMemoryRegionClass),
3808      .instance_size      = sizeof(IOMMUMemoryRegion),
3809      .instance_init      = iommu_memory_region_initfn,
3810      .abstract           = true,
3811  };
3812  
3813  static const TypeInfo ram_discard_manager_info = {
3814      .parent             = TYPE_INTERFACE,
3815      .name               = TYPE_RAM_DISCARD_MANAGER,
3816      .class_size         = sizeof(RamDiscardManagerClass),
3817  };
3818  
3819  static void memory_register_types(void)
3820  {
3821      type_register_static(&memory_region_info);
3822      type_register_static(&iommu_memory_region_info);
3823      type_register_static(&ram_discard_manager_info);
3824  }
3825  
3826  type_init(memory_register_types)
3827