1 /* 2 * DMA helper functions 3 * 4 * Copyright (c) 2009,2020 Red Hat 5 * 6 * This work is licensed under the terms of the GNU General Public License 7 * (GNU GPL), version 2 or later. 8 */ 9 10 #include "qemu/osdep.h" 11 #include "sysemu/block-backend.h" 12 #include "sysemu/dma.h" 13 #include "trace/trace-root.h" 14 #include "qemu/thread.h" 15 #include "qemu/main-loop.h" 16 #include "sysemu/cpu-timers.h" 17 #include "qemu/range.h" 18 19 /* #define DEBUG_IOMMU */ 20 21 MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr, 22 uint8_t c, dma_addr_t len, MemTxAttrs attrs) 23 { 24 dma_barrier(as, DMA_DIRECTION_FROM_DEVICE); 25 26 return address_space_set(as, addr, c, len, attrs); 27 } 28 29 void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint, 30 AddressSpace *as) 31 { 32 qsg->sg = g_new(ScatterGatherEntry, alloc_hint); 33 qsg->nsg = 0; 34 qsg->nalloc = alloc_hint; 35 qsg->size = 0; 36 qsg->as = as; 37 qsg->dev = dev; 38 object_ref(OBJECT(dev)); 39 } 40 41 void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len) 42 { 43 if (qsg->nsg == qsg->nalloc) { 44 qsg->nalloc = 2 * qsg->nalloc + 1; 45 qsg->sg = g_renew(ScatterGatherEntry, qsg->sg, qsg->nalloc); 46 } 47 qsg->sg[qsg->nsg].base = base; 48 qsg->sg[qsg->nsg].len = len; 49 qsg->size += len; 50 ++qsg->nsg; 51 } 52 53 void qemu_sglist_destroy(QEMUSGList *qsg) 54 { 55 object_unref(OBJECT(qsg->dev)); 56 g_free(qsg->sg); 57 memset(qsg, 0, sizeof(*qsg)); 58 } 59 60 typedef struct { 61 BlockAIOCB common; 62 AioContext *ctx; 63 BlockAIOCB *acb; 64 QEMUSGList *sg; 65 uint32_t align; 66 uint64_t offset; 67 DMADirection dir; 68 int sg_cur_index; 69 dma_addr_t sg_cur_byte; 70 QEMUIOVector iov; 71 QEMUBH *bh; 72 DMAIOFunc *io_func; 73 void *io_func_opaque; 74 } DMAAIOCB; 75 76 static void dma_blk_cb(void *opaque, int ret); 77 78 static void reschedule_dma(void *opaque) 79 { 80 DMAAIOCB *dbs = (DMAAIOCB *)opaque; 81 82 assert(!dbs->acb && dbs->bh); 83 qemu_bh_delete(dbs->bh); 84 dbs->bh = NULL; 85 dma_blk_cb(dbs, 0); 86 } 87 88 static void dma_blk_unmap(DMAAIOCB *dbs) 89 { 90 int i; 91 92 for (i = 0; i < dbs->iov.niov; ++i) { 93 dma_memory_unmap(dbs->sg->as, dbs->iov.iov[i].iov_base, 94 dbs->iov.iov[i].iov_len, dbs->dir, 95 dbs->iov.iov[i].iov_len); 96 } 97 qemu_iovec_reset(&dbs->iov); 98 } 99 100 static void dma_complete(DMAAIOCB *dbs, int ret) 101 { 102 trace_dma_complete(dbs, ret, dbs->common.cb); 103 104 assert(!dbs->acb && !dbs->bh); 105 dma_blk_unmap(dbs); 106 if (dbs->common.cb) { 107 dbs->common.cb(dbs->common.opaque, ret); 108 } 109 qemu_iovec_destroy(&dbs->iov); 110 qemu_aio_unref(dbs); 111 } 112 113 static void dma_blk_cb(void *opaque, int ret) 114 { 115 DMAAIOCB *dbs = (DMAAIOCB *)opaque; 116 AioContext *ctx = dbs->ctx; 117 dma_addr_t cur_addr, cur_len; 118 void *mem; 119 120 trace_dma_blk_cb(dbs, ret); 121 122 dbs->acb = NULL; 123 dbs->offset += dbs->iov.size; 124 125 if (dbs->sg_cur_index == dbs->sg->nsg || ret < 0) { 126 dma_complete(dbs, ret); 127 return; 128 } 129 dma_blk_unmap(dbs); 130 131 while (dbs->sg_cur_index < dbs->sg->nsg) { 132 cur_addr = dbs->sg->sg[dbs->sg_cur_index].base + dbs->sg_cur_byte; 133 cur_len = dbs->sg->sg[dbs->sg_cur_index].len - dbs->sg_cur_byte; 134 mem = dma_memory_map(dbs->sg->as, cur_addr, &cur_len, dbs->dir, 135 MEMTXATTRS_UNSPECIFIED); 136 /* 137 * Make reads deterministic in icount mode. Windows sometimes issues 138 * disk read requests with overlapping SGs. It leads 139 * to non-determinism, because resulting buffer contents may be mixed 140 * from several sectors. This code splits all SGs into several 141 * groups. SGs in every group do not overlap. 142 */ 143 if (mem && icount_enabled() && dbs->dir == DMA_DIRECTION_FROM_DEVICE) { 144 int i; 145 for (i = 0 ; i < dbs->iov.niov ; ++i) { 146 if (ranges_overlap((intptr_t)dbs->iov.iov[i].iov_base, 147 dbs->iov.iov[i].iov_len, (intptr_t)mem, 148 cur_len)) { 149 dma_memory_unmap(dbs->sg->as, mem, cur_len, 150 dbs->dir, cur_len); 151 mem = NULL; 152 break; 153 } 154 } 155 } 156 if (!mem) 157 break; 158 qemu_iovec_add(&dbs->iov, mem, cur_len); 159 dbs->sg_cur_byte += cur_len; 160 if (dbs->sg_cur_byte == dbs->sg->sg[dbs->sg_cur_index].len) { 161 dbs->sg_cur_byte = 0; 162 ++dbs->sg_cur_index; 163 } 164 } 165 166 if (dbs->iov.size == 0) { 167 trace_dma_map_wait(dbs); 168 dbs->bh = aio_bh_new(ctx, reschedule_dma, dbs); 169 cpu_register_map_client(dbs->bh); 170 return; 171 } 172 173 if (!QEMU_IS_ALIGNED(dbs->iov.size, dbs->align)) { 174 qemu_iovec_discard_back(&dbs->iov, 175 QEMU_ALIGN_DOWN(dbs->iov.size, dbs->align)); 176 } 177 178 dbs->acb = dbs->io_func(dbs->offset, &dbs->iov, 179 dma_blk_cb, dbs, dbs->io_func_opaque); 180 assert(dbs->acb); 181 } 182 183 static void dma_aio_cancel(BlockAIOCB *acb) 184 { 185 DMAAIOCB *dbs = container_of(acb, DMAAIOCB, common); 186 187 trace_dma_aio_cancel(dbs); 188 189 assert(!(dbs->acb && dbs->bh)); 190 if (dbs->acb) { 191 /* This will invoke dma_blk_cb. */ 192 blk_aio_cancel_async(dbs->acb); 193 return; 194 } 195 196 if (dbs->bh) { 197 cpu_unregister_map_client(dbs->bh); 198 qemu_bh_delete(dbs->bh); 199 dbs->bh = NULL; 200 } 201 if (dbs->common.cb) { 202 dbs->common.cb(dbs->common.opaque, -ECANCELED); 203 } 204 } 205 206 static const AIOCBInfo dma_aiocb_info = { 207 .aiocb_size = sizeof(DMAAIOCB), 208 .cancel_async = dma_aio_cancel, 209 }; 210 211 BlockAIOCB *dma_blk_io(AioContext *ctx, 212 QEMUSGList *sg, uint64_t offset, uint32_t align, 213 DMAIOFunc *io_func, void *io_func_opaque, 214 BlockCompletionFunc *cb, 215 void *opaque, DMADirection dir) 216 { 217 DMAAIOCB *dbs = qemu_aio_get(&dma_aiocb_info, NULL, cb, opaque); 218 219 trace_dma_blk_io(dbs, io_func_opaque, offset, (dir == DMA_DIRECTION_TO_DEVICE)); 220 221 dbs->acb = NULL; 222 dbs->sg = sg; 223 dbs->ctx = ctx; 224 dbs->offset = offset; 225 dbs->align = align; 226 dbs->sg_cur_index = 0; 227 dbs->sg_cur_byte = 0; 228 dbs->dir = dir; 229 dbs->io_func = io_func; 230 dbs->io_func_opaque = io_func_opaque; 231 dbs->bh = NULL; 232 qemu_iovec_init(&dbs->iov, sg->nsg); 233 dma_blk_cb(dbs, 0); 234 return &dbs->common; 235 } 236 237 238 static 239 BlockAIOCB *dma_blk_read_io_func(int64_t offset, QEMUIOVector *iov, 240 BlockCompletionFunc *cb, void *cb_opaque, 241 void *opaque) 242 { 243 BlockBackend *blk = opaque; 244 return blk_aio_preadv(blk, offset, iov, 0, cb, cb_opaque); 245 } 246 247 BlockAIOCB *dma_blk_read(BlockBackend *blk, 248 QEMUSGList *sg, uint64_t offset, uint32_t align, 249 void (*cb)(void *opaque, int ret), void *opaque) 250 { 251 return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, 252 dma_blk_read_io_func, blk, cb, opaque, 253 DMA_DIRECTION_FROM_DEVICE); 254 } 255 256 static 257 BlockAIOCB *dma_blk_write_io_func(int64_t offset, QEMUIOVector *iov, 258 BlockCompletionFunc *cb, void *cb_opaque, 259 void *opaque) 260 { 261 BlockBackend *blk = opaque; 262 return blk_aio_pwritev(blk, offset, iov, 0, cb, cb_opaque); 263 } 264 265 BlockAIOCB *dma_blk_write(BlockBackend *blk, 266 QEMUSGList *sg, uint64_t offset, uint32_t align, 267 void (*cb)(void *opaque, int ret), void *opaque) 268 { 269 return dma_blk_io(blk_get_aio_context(blk), sg, offset, align, 270 dma_blk_write_io_func, blk, cb, opaque, 271 DMA_DIRECTION_TO_DEVICE); 272 } 273 274 275 static MemTxResult dma_buf_rw(void *buf, dma_addr_t len, dma_addr_t *residual, 276 QEMUSGList *sg, DMADirection dir, 277 MemTxAttrs attrs) 278 { 279 uint8_t *ptr = buf; 280 dma_addr_t xresidual; 281 int sg_cur_index; 282 MemTxResult res = MEMTX_OK; 283 284 xresidual = sg->size; 285 sg_cur_index = 0; 286 len = MIN(len, xresidual); 287 while (len > 0) { 288 ScatterGatherEntry entry = sg->sg[sg_cur_index++]; 289 dma_addr_t xfer = MIN(len, entry.len); 290 res |= dma_memory_rw(sg->as, entry.base, ptr, xfer, dir, attrs); 291 ptr += xfer; 292 len -= xfer; 293 xresidual -= xfer; 294 } 295 296 if (residual) { 297 *residual = xresidual; 298 } 299 return res; 300 } 301 302 MemTxResult dma_buf_read(void *ptr, dma_addr_t len, dma_addr_t *residual, 303 QEMUSGList *sg, MemTxAttrs attrs) 304 { 305 return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_FROM_DEVICE, attrs); 306 } 307 308 MemTxResult dma_buf_write(void *ptr, dma_addr_t len, dma_addr_t *residual, 309 QEMUSGList *sg, MemTxAttrs attrs) 310 { 311 return dma_buf_rw(ptr, len, residual, sg, DMA_DIRECTION_TO_DEVICE, attrs); 312 } 313 314 void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie, 315 QEMUSGList *sg, enum BlockAcctType type) 316 { 317 block_acct_start(blk_get_stats(blk), cookie, sg->size, type); 318 } 319 320 uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits) 321 { 322 uint64_t max_mask = UINT64_MAX, addr_mask = end - start; 323 uint64_t alignment_mask, size_mask; 324 325 if (max_addr_bits != 64) { 326 max_mask = (1ULL << max_addr_bits) - 1; 327 } 328 329 alignment_mask = start ? (start & -start) - 1 : max_mask; 330 alignment_mask = MIN(alignment_mask, max_mask); 331 size_mask = MIN(addr_mask, max_mask); 332 333 if (alignment_mask <= size_mask) { 334 /* Increase the alignment of start */ 335 return alignment_mask; 336 } else { 337 /* Find the largest page mask from size */ 338 if (addr_mask == UINT64_MAX) { 339 return UINT64_MAX; 340 } 341 return (1ULL << (63 - clz64(addr_mask + 1))) - 1; 342 } 343 } 344 345