1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audiodev.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_OPENRISC) 89 #define QEMU_ARCH QEMU_ARCH_OPENRISC 90 #elif defined(TARGET_PPC) 91 #define QEMU_ARCH QEMU_ARCH_PPC 92 #elif defined(TARGET_S390X) 93 #define QEMU_ARCH QEMU_ARCH_S390X 94 #elif defined(TARGET_SH4) 95 #define QEMU_ARCH QEMU_ARCH_SH4 96 #elif defined(TARGET_SPARC) 97 #define QEMU_ARCH QEMU_ARCH_SPARC 98 #elif defined(TARGET_XTENSA) 99 #define QEMU_ARCH QEMU_ARCH_XTENSA 100 #elif defined(TARGET_UNICORE32) 101 #define QEMU_ARCH QEMU_ARCH_UNICORE32 102 #endif 103 104 const uint32_t arch_type = QEMU_ARCH; 105 106 /***********************************************************/ 107 /* ram save/restore */ 108 109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 110 #define RAM_SAVE_FLAG_COMPRESS 0x02 111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 112 #define RAM_SAVE_FLAG_PAGE 0x08 113 #define RAM_SAVE_FLAG_EOS 0x10 114 #define RAM_SAVE_FLAG_CONTINUE 0x20 115 #define RAM_SAVE_FLAG_XBZRLE 0x40 116 117 #ifdef __ALTIVEC__ 118 #include <altivec.h> 119 #define VECTYPE vector unsigned char 120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0) 121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) 122 /* altivec.h may redefine the bool macro as vector type. 123 * Reset it to POSIX semantics. */ 124 #undef bool 125 #define bool _Bool 126 #elif defined __SSE2__ 127 #include <emmintrin.h> 128 #define VECTYPE __m128i 129 #define SPLAT(p) _mm_set1_epi8(*(p)) 130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) 131 #else 132 #define VECTYPE unsigned long 133 #define SPLAT(p) (*(p) * (~0UL / 255)) 134 #define ALL_EQ(v1, v2) ((v1) == (v2)) 135 #endif 136 137 138 static struct defconfig_file { 139 const char *filename; 140 /* Indicates it is an user config file (disabled by -no-user-config) */ 141 bool userconfig; 142 } default_config_files[] = { 143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 145 { NULL }, /* end of list */ 146 }; 147 148 149 int qemu_read_default_config_files(bool userconfig) 150 { 151 int ret; 152 struct defconfig_file *f; 153 154 for (f = default_config_files; f->filename; f++) { 155 if (!userconfig && f->userconfig) { 156 continue; 157 } 158 ret = qemu_read_config_file(f->filename); 159 if (ret < 0 && ret != -ENOENT) { 160 return ret; 161 } 162 } 163 164 return 0; 165 } 166 167 static int is_dup_page(uint8_t *page) 168 { 169 VECTYPE *p = (VECTYPE *)page; 170 VECTYPE val = SPLAT(page); 171 int i; 172 173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) { 174 if (!ALL_EQ(val, p[i])) { 175 return 0; 176 } 177 } 178 179 return 1; 180 } 181 182 /* struct contains XBZRLE cache and a static page 183 used by the compression */ 184 static struct { 185 /* buffer used for XBZRLE encoding */ 186 uint8_t *encoded_buf; 187 /* buffer for storing page content */ 188 uint8_t *current_buf; 189 /* buffer used for XBZRLE decoding */ 190 uint8_t *decoded_buf; 191 /* Cache for XBZRLE */ 192 PageCache *cache; 193 } XBZRLE = { 194 .encoded_buf = NULL, 195 .current_buf = NULL, 196 .decoded_buf = NULL, 197 .cache = NULL, 198 }; 199 200 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 if (XBZRLE.cache != NULL) { 204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 205 TARGET_PAGE_SIZE; 206 } 207 return pow2floor(new_size); 208 } 209 210 /* accounting for migration statistics */ 211 typedef struct AccountingInfo { 212 uint64_t dup_pages; 213 uint64_t norm_pages; 214 uint64_t iterations; 215 uint64_t xbzrle_bytes; 216 uint64_t xbzrle_pages; 217 uint64_t xbzrle_cache_miss; 218 uint64_t xbzrle_overflows; 219 } AccountingInfo; 220 221 static AccountingInfo acct_info; 222 223 static void acct_clear(void) 224 { 225 memset(&acct_info, 0, sizeof(acct_info)); 226 } 227 228 uint64_t dup_mig_bytes_transferred(void) 229 { 230 return acct_info.dup_pages * TARGET_PAGE_SIZE; 231 } 232 233 uint64_t dup_mig_pages_transferred(void) 234 { 235 return acct_info.dup_pages; 236 } 237 238 uint64_t norm_mig_bytes_transferred(void) 239 { 240 return acct_info.norm_pages * TARGET_PAGE_SIZE; 241 } 242 243 uint64_t norm_mig_pages_transferred(void) 244 { 245 return acct_info.norm_pages; 246 } 247 248 uint64_t xbzrle_mig_bytes_transferred(void) 249 { 250 return acct_info.xbzrle_bytes; 251 } 252 253 uint64_t xbzrle_mig_pages_transferred(void) 254 { 255 return acct_info.xbzrle_pages; 256 } 257 258 uint64_t xbzrle_mig_pages_cache_miss(void) 259 { 260 return acct_info.xbzrle_cache_miss; 261 } 262 263 uint64_t xbzrle_mig_pages_overflow(void) 264 { 265 return acct_info.xbzrle_overflows; 266 } 267 268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 269 int cont, int flag) 270 { 271 qemu_put_be64(f, offset | cont | flag); 272 if (!cont) { 273 qemu_put_byte(f, strlen(block->idstr)); 274 qemu_put_buffer(f, (uint8_t *)block->idstr, 275 strlen(block->idstr)); 276 } 277 278 } 279 280 #define ENCODING_FLAG_XBZRLE 0x1 281 282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 283 ram_addr_t current_addr, RAMBlock *block, 284 ram_addr_t offset, int cont, bool last_stage) 285 { 286 int encoded_len = 0, bytes_sent = -1; 287 uint8_t *prev_cached_page; 288 289 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 290 if (!last_stage) { 291 cache_insert(XBZRLE.cache, current_addr, 292 g_memdup(current_data, TARGET_PAGE_SIZE)); 293 } 294 acct_info.xbzrle_cache_miss++; 295 return -1; 296 } 297 298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 299 300 /* save current buffer into memory */ 301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 302 303 /* XBZRLE encoding (if there is no overflow) */ 304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 306 TARGET_PAGE_SIZE); 307 if (encoded_len == 0) { 308 DPRINTF("Skipping unmodified page\n"); 309 return 0; 310 } else if (encoded_len == -1) { 311 DPRINTF("Overflow\n"); 312 acct_info.xbzrle_overflows++; 313 /* update data in the cache */ 314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 315 return -1; 316 } 317 318 /* we need to update the data in the cache, in order to get the same data */ 319 if (!last_stage) { 320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 321 } 322 323 /* Send XBZRLE based compressed page */ 324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 326 qemu_put_be16(f, encoded_len); 327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 328 bytes_sent = encoded_len + 1 + 2; 329 acct_info.xbzrle_pages++; 330 acct_info.xbzrle_bytes += bytes_sent; 331 332 return bytes_sent; 333 } 334 335 static RAMBlock *last_block; 336 static ram_addr_t last_offset; 337 static unsigned long *migration_bitmap; 338 static uint64_t migration_dirty_pages; 339 static uint32_t last_version; 340 341 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr, 342 ram_addr_t offset) 343 { 344 bool ret; 345 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 346 347 ret = test_and_clear_bit(nr, migration_bitmap); 348 349 if (ret) { 350 migration_dirty_pages--; 351 } 352 return ret; 353 } 354 355 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 356 ram_addr_t offset) 357 { 358 bool ret; 359 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 360 361 ret = test_and_set_bit(nr, migration_bitmap); 362 363 if (!ret) { 364 migration_dirty_pages++; 365 } 366 return ret; 367 } 368 369 static void migration_bitmap_sync(void) 370 { 371 RAMBlock *block; 372 ram_addr_t addr; 373 uint64_t num_dirty_pages_init = migration_dirty_pages; 374 MigrationState *s = migrate_get_current(); 375 static int64_t start_time; 376 static int64_t num_dirty_pages_period; 377 int64_t end_time; 378 379 if (!start_time) { 380 start_time = qemu_get_clock_ms(rt_clock); 381 } 382 383 trace_migration_bitmap_sync_start(); 384 memory_global_sync_dirty_bitmap(get_system_memory()); 385 386 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 387 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 388 if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE, 389 DIRTY_MEMORY_MIGRATION)) { 390 migration_bitmap_set_dirty(block->mr, addr); 391 } 392 } 393 memory_region_reset_dirty(block->mr, 0, block->length, 394 DIRTY_MEMORY_MIGRATION); 395 } 396 trace_migration_bitmap_sync_end(migration_dirty_pages 397 - num_dirty_pages_init); 398 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 399 end_time = qemu_get_clock_ms(rt_clock); 400 401 /* more than 1 second = 1000 millisecons */ 402 if (end_time > start_time + 1000) { 403 s->dirty_pages_rate = num_dirty_pages_period * 1000 404 / (end_time - start_time); 405 start_time = end_time; 406 num_dirty_pages_period = 0; 407 } 408 } 409 410 /* 411 * ram_save_block: Writes a page of memory to the stream f 412 * 413 * Returns: 0: if the page hasn't changed 414 * -1: if there are no more dirty pages 415 * n: the amount of bytes written in other case 416 */ 417 418 static int ram_save_block(QEMUFile *f, bool last_stage) 419 { 420 RAMBlock *block = last_block; 421 ram_addr_t offset = last_offset; 422 int bytes_sent = -1; 423 MemoryRegion *mr; 424 ram_addr_t current_addr; 425 426 if (!block) 427 block = QTAILQ_FIRST(&ram_list.blocks); 428 429 do { 430 mr = block->mr; 431 if (migration_bitmap_test_and_reset_dirty(mr, offset)) { 432 uint8_t *p; 433 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0; 434 435 p = memory_region_get_ram_ptr(mr) + offset; 436 437 if (is_dup_page(p)) { 438 acct_info.dup_pages++; 439 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS); 440 qemu_put_byte(f, *p); 441 bytes_sent = 1; 442 } else if (migrate_use_xbzrle()) { 443 current_addr = block->offset + offset; 444 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 445 offset, cont, last_stage); 446 if (!last_stage) { 447 p = get_cached_data(XBZRLE.cache, current_addr); 448 } 449 } 450 451 /* either we didn't send yet (we may have had XBZRLE overflow) */ 452 if (bytes_sent == -1) { 453 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 454 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 455 bytes_sent = TARGET_PAGE_SIZE; 456 acct_info.norm_pages++; 457 } 458 459 /* if page is unmodified, continue to the next */ 460 if (bytes_sent != 0) { 461 break; 462 } 463 } 464 465 offset += TARGET_PAGE_SIZE; 466 if (offset >= block->length) { 467 offset = 0; 468 block = QTAILQ_NEXT(block, next); 469 if (!block) 470 block = QTAILQ_FIRST(&ram_list.blocks); 471 } 472 } while (block != last_block || offset != last_offset); 473 474 last_block = block; 475 last_offset = offset; 476 477 return bytes_sent; 478 } 479 480 static uint64_t bytes_transferred; 481 482 static ram_addr_t ram_save_remaining(void) 483 { 484 return migration_dirty_pages; 485 } 486 487 uint64_t ram_bytes_remaining(void) 488 { 489 return ram_save_remaining() * TARGET_PAGE_SIZE; 490 } 491 492 uint64_t ram_bytes_transferred(void) 493 { 494 return bytes_transferred; 495 } 496 497 uint64_t ram_bytes_total(void) 498 { 499 RAMBlock *block; 500 uint64_t total = 0; 501 502 QTAILQ_FOREACH(block, &ram_list.blocks, next) 503 total += block->length; 504 505 return total; 506 } 507 508 static void migration_end(void) 509 { 510 if (migration_bitmap) { 511 memory_global_dirty_log_stop(); 512 g_free(migration_bitmap); 513 migration_bitmap = NULL; 514 } 515 516 if (XBZRLE.cache) { 517 cache_fini(XBZRLE.cache); 518 g_free(XBZRLE.cache); 519 g_free(XBZRLE.encoded_buf); 520 g_free(XBZRLE.current_buf); 521 g_free(XBZRLE.decoded_buf); 522 XBZRLE.cache = NULL; 523 } 524 } 525 526 static void ram_migration_cancel(void *opaque) 527 { 528 migration_end(); 529 } 530 531 532 static void reset_ram_globals(void) 533 { 534 last_block = NULL; 535 last_offset = 0; 536 last_version = ram_list.version; 537 } 538 539 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 540 541 static int ram_save_setup(QEMUFile *f, void *opaque) 542 { 543 RAMBlock *block; 544 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 545 546 migration_bitmap = bitmap_new(ram_pages); 547 bitmap_set(migration_bitmap, 0, ram_pages); 548 migration_dirty_pages = ram_pages; 549 550 bytes_transferred = 0; 551 reset_ram_globals(); 552 553 if (migrate_use_xbzrle()) { 554 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 555 TARGET_PAGE_SIZE, 556 TARGET_PAGE_SIZE); 557 if (!XBZRLE.cache) { 558 DPRINTF("Error creating cache\n"); 559 return -1; 560 } 561 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 562 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 563 acct_clear(); 564 } 565 566 memory_global_dirty_log_start(); 567 migration_bitmap_sync(); 568 569 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 570 571 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 572 qemu_put_byte(f, strlen(block->idstr)); 573 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 574 qemu_put_be64(f, block->length); 575 } 576 577 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 578 579 return 0; 580 } 581 582 static int ram_save_iterate(QEMUFile *f, void *opaque) 583 { 584 uint64_t bytes_transferred_last; 585 double bwidth = 0; 586 int ret; 587 int i; 588 uint64_t expected_downtime; 589 MigrationState *s = migrate_get_current(); 590 591 if (ram_list.version != last_version) { 592 reset_ram_globals(); 593 } 594 595 bytes_transferred_last = bytes_transferred; 596 bwidth = qemu_get_clock_ns(rt_clock); 597 598 i = 0; 599 while ((ret = qemu_file_rate_limit(f)) == 0) { 600 int bytes_sent; 601 602 bytes_sent = ram_save_block(f, false); 603 /* no more blocks to sent */ 604 if (bytes_sent < 0) { 605 break; 606 } 607 bytes_transferred += bytes_sent; 608 acct_info.iterations++; 609 /* we want to check in the 1st loop, just in case it was the 1st time 610 and we had to sync the dirty bitmap. 611 qemu_get_clock_ns() is a bit expensive, so we only check each some 612 iterations 613 */ 614 if ((i & 63) == 0) { 615 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000; 616 if (t1 > MAX_WAIT) { 617 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 618 t1, i); 619 break; 620 } 621 } 622 i++; 623 } 624 625 if (ret < 0) { 626 return ret; 627 } 628 629 bwidth = qemu_get_clock_ns(rt_clock) - bwidth; 630 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; 631 632 /* if we haven't transferred anything this round, force 633 * expected_downtime to a very high value, but without 634 * crashing */ 635 if (bwidth == 0) { 636 bwidth = 0.000001; 637 } 638 639 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 640 641 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; 642 DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n", 643 expected_downtime, migrate_max_downtime()); 644 645 if (expected_downtime <= migrate_max_downtime()) { 646 migration_bitmap_sync(); 647 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; 648 s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */ 649 650 return expected_downtime <= migrate_max_downtime(); 651 } 652 return 0; 653 } 654 655 static int ram_save_complete(QEMUFile *f, void *opaque) 656 { 657 migration_bitmap_sync(); 658 659 /* try transferring iterative blocks of memory */ 660 661 /* flush all remaining blocks regardless of rate limiting */ 662 while (true) { 663 int bytes_sent; 664 665 bytes_sent = ram_save_block(f, true); 666 /* no more blocks to sent */ 667 if (bytes_sent < 0) { 668 break; 669 } 670 bytes_transferred += bytes_sent; 671 } 672 migration_end(); 673 674 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 675 676 return 0; 677 } 678 679 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 680 { 681 int ret, rc = 0; 682 unsigned int xh_len; 683 int xh_flags; 684 685 if (!XBZRLE.decoded_buf) { 686 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 687 } 688 689 /* extract RLE header */ 690 xh_flags = qemu_get_byte(f); 691 xh_len = qemu_get_be16(f); 692 693 if (xh_flags != ENCODING_FLAG_XBZRLE) { 694 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 695 return -1; 696 } 697 698 if (xh_len > TARGET_PAGE_SIZE) { 699 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 700 return -1; 701 } 702 /* load data and decode */ 703 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 704 705 /* decode RLE */ 706 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 707 TARGET_PAGE_SIZE); 708 if (ret == -1) { 709 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 710 rc = -1; 711 } else if (ret > TARGET_PAGE_SIZE) { 712 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 713 ret, TARGET_PAGE_SIZE); 714 abort(); 715 } 716 717 return rc; 718 } 719 720 static inline void *host_from_stream_offset(QEMUFile *f, 721 ram_addr_t offset, 722 int flags) 723 { 724 static RAMBlock *block = NULL; 725 char id[256]; 726 uint8_t len; 727 728 if (flags & RAM_SAVE_FLAG_CONTINUE) { 729 if (!block) { 730 fprintf(stderr, "Ack, bad migration stream!\n"); 731 return NULL; 732 } 733 734 return memory_region_get_ram_ptr(block->mr) + offset; 735 } 736 737 len = qemu_get_byte(f); 738 qemu_get_buffer(f, (uint8_t *)id, len); 739 id[len] = 0; 740 741 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 742 if (!strncmp(id, block->idstr, sizeof(id))) 743 return memory_region_get_ram_ptr(block->mr) + offset; 744 } 745 746 fprintf(stderr, "Can't find block %s!\n", id); 747 return NULL; 748 } 749 750 static int ram_load(QEMUFile *f, void *opaque, int version_id) 751 { 752 ram_addr_t addr; 753 int flags, ret = 0; 754 int error; 755 static uint64_t seq_iter; 756 757 seq_iter++; 758 759 if (version_id < 4 || version_id > 4) { 760 return -EINVAL; 761 } 762 763 do { 764 addr = qemu_get_be64(f); 765 766 flags = addr & ~TARGET_PAGE_MASK; 767 addr &= TARGET_PAGE_MASK; 768 769 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 770 if (version_id == 4) { 771 /* Synchronize RAM block list */ 772 char id[256]; 773 ram_addr_t length; 774 ram_addr_t total_ram_bytes = addr; 775 776 while (total_ram_bytes) { 777 RAMBlock *block; 778 uint8_t len; 779 780 len = qemu_get_byte(f); 781 qemu_get_buffer(f, (uint8_t *)id, len); 782 id[len] = 0; 783 length = qemu_get_be64(f); 784 785 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 786 if (!strncmp(id, block->idstr, sizeof(id))) { 787 if (block->length != length) { 788 ret = -EINVAL; 789 goto done; 790 } 791 break; 792 } 793 } 794 795 if (!block) { 796 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 797 "accept migration\n", id); 798 ret = -EINVAL; 799 goto done; 800 } 801 802 total_ram_bytes -= length; 803 } 804 } 805 } 806 807 if (flags & RAM_SAVE_FLAG_COMPRESS) { 808 void *host; 809 uint8_t ch; 810 811 host = host_from_stream_offset(f, addr, flags); 812 if (!host) { 813 return -EINVAL; 814 } 815 816 ch = qemu_get_byte(f); 817 memset(host, ch, TARGET_PAGE_SIZE); 818 #ifndef _WIN32 819 if (ch == 0 && 820 (!kvm_enabled() || kvm_has_sync_mmu()) && 821 getpagesize() <= TARGET_PAGE_SIZE) { 822 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 823 } 824 #endif 825 } else if (flags & RAM_SAVE_FLAG_PAGE) { 826 void *host; 827 828 host = host_from_stream_offset(f, addr, flags); 829 if (!host) { 830 return -EINVAL; 831 } 832 833 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 834 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 835 if (!migrate_use_xbzrle()) { 836 return -EINVAL; 837 } 838 void *host = host_from_stream_offset(f, addr, flags); 839 if (!host) { 840 return -EINVAL; 841 } 842 843 if (load_xbzrle(f, addr, host) < 0) { 844 ret = -EINVAL; 845 goto done; 846 } 847 } 848 error = qemu_file_get_error(f); 849 if (error) { 850 ret = error; 851 goto done; 852 } 853 } while (!(flags & RAM_SAVE_FLAG_EOS)); 854 855 done: 856 DPRINTF("Completed load of VM with exit code %d seq iteration " 857 "%" PRIu64 "\n", ret, seq_iter); 858 return ret; 859 } 860 861 SaveVMHandlers savevm_ram_handlers = { 862 .save_live_setup = ram_save_setup, 863 .save_live_iterate = ram_save_iterate, 864 .save_live_complete = ram_save_complete, 865 .load_state = ram_load, 866 .cancel = ram_migration_cancel, 867 }; 868 869 #ifdef HAS_AUDIO 870 struct soundhw { 871 const char *name; 872 const char *descr; 873 int enabled; 874 int isa; 875 union { 876 int (*init_isa) (ISABus *bus); 877 int (*init_pci) (PCIBus *bus); 878 } init; 879 }; 880 881 static struct soundhw soundhw[] = { 882 #ifdef HAS_AUDIO_CHOICE 883 #ifdef CONFIG_PCSPK 884 { 885 "pcspk", 886 "PC speaker", 887 0, 888 1, 889 { .init_isa = pcspk_audio_init } 890 }, 891 #endif 892 893 #ifdef CONFIG_SB16 894 { 895 "sb16", 896 "Creative Sound Blaster 16", 897 0, 898 1, 899 { .init_isa = SB16_init } 900 }, 901 #endif 902 903 #ifdef CONFIG_CS4231A 904 { 905 "cs4231a", 906 "CS4231A", 907 0, 908 1, 909 { .init_isa = cs4231a_init } 910 }, 911 #endif 912 913 #ifdef CONFIG_ADLIB 914 { 915 "adlib", 916 #ifdef HAS_YMF262 917 "Yamaha YMF262 (OPL3)", 918 #else 919 "Yamaha YM3812 (OPL2)", 920 #endif 921 0, 922 1, 923 { .init_isa = Adlib_init } 924 }, 925 #endif 926 927 #ifdef CONFIG_GUS 928 { 929 "gus", 930 "Gravis Ultrasound GF1", 931 0, 932 1, 933 { .init_isa = GUS_init } 934 }, 935 #endif 936 937 #ifdef CONFIG_AC97 938 { 939 "ac97", 940 "Intel 82801AA AC97 Audio", 941 0, 942 0, 943 { .init_pci = ac97_init } 944 }, 945 #endif 946 947 #ifdef CONFIG_ES1370 948 { 949 "es1370", 950 "ENSONIQ AudioPCI ES1370", 951 0, 952 0, 953 { .init_pci = es1370_init } 954 }, 955 #endif 956 957 #ifdef CONFIG_HDA 958 { 959 "hda", 960 "Intel HD Audio", 961 0, 962 0, 963 { .init_pci = intel_hda_and_codec_init } 964 }, 965 #endif 966 967 #endif /* HAS_AUDIO_CHOICE */ 968 969 { NULL, NULL, 0, 0, { NULL } } 970 }; 971 972 void select_soundhw(const char *optarg) 973 { 974 struct soundhw *c; 975 976 if (is_help_option(optarg)) { 977 show_valid_cards: 978 979 #ifdef HAS_AUDIO_CHOICE 980 printf("Valid sound card names (comma separated):\n"); 981 for (c = soundhw; c->name; ++c) { 982 printf ("%-11s %s\n", c->name, c->descr); 983 } 984 printf("\n-soundhw all will enable all of the above\n"); 985 #else 986 printf("Machine has no user-selectable audio hardware " 987 "(it may or may not have always-present audio hardware).\n"); 988 #endif 989 exit(!is_help_option(optarg)); 990 } 991 else { 992 size_t l; 993 const char *p; 994 char *e; 995 int bad_card = 0; 996 997 if (!strcmp(optarg, "all")) { 998 for (c = soundhw; c->name; ++c) { 999 c->enabled = 1; 1000 } 1001 return; 1002 } 1003 1004 p = optarg; 1005 while (*p) { 1006 e = strchr(p, ','); 1007 l = !e ? strlen(p) : (size_t) (e - p); 1008 1009 for (c = soundhw; c->name; ++c) { 1010 if (!strncmp(c->name, p, l) && !c->name[l]) { 1011 c->enabled = 1; 1012 break; 1013 } 1014 } 1015 1016 if (!c->name) { 1017 if (l > 80) { 1018 fprintf(stderr, 1019 "Unknown sound card name (too big to show)\n"); 1020 } 1021 else { 1022 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1023 (int) l, p); 1024 } 1025 bad_card = 1; 1026 } 1027 p += l + (e != NULL); 1028 } 1029 1030 if (bad_card) { 1031 goto show_valid_cards; 1032 } 1033 } 1034 } 1035 1036 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1037 { 1038 struct soundhw *c; 1039 1040 for (c = soundhw; c->name; ++c) { 1041 if (c->enabled) { 1042 if (c->isa) { 1043 if (isa_bus) { 1044 c->init.init_isa(isa_bus); 1045 } 1046 } else { 1047 if (pci_bus) { 1048 c->init.init_pci(pci_bus); 1049 } 1050 } 1051 } 1052 } 1053 } 1054 #else 1055 void select_soundhw(const char *optarg) 1056 { 1057 } 1058 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1059 { 1060 } 1061 #endif 1062 1063 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1064 { 1065 int ret; 1066 1067 if (strlen(str) != 36) { 1068 return -1; 1069 } 1070 1071 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1072 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1073 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1074 &uuid[15]); 1075 1076 if (ret != 16) { 1077 return -1; 1078 } 1079 #ifdef TARGET_I386 1080 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1081 #endif 1082 return 0; 1083 } 1084 1085 void do_acpitable_option(const char *optarg) 1086 { 1087 #ifdef TARGET_I386 1088 if (acpi_table_add(optarg) < 0) { 1089 fprintf(stderr, "Wrong acpi table provided\n"); 1090 exit(1); 1091 } 1092 #endif 1093 } 1094 1095 void do_smbios_option(const char *optarg) 1096 { 1097 #ifdef TARGET_I386 1098 if (smbios_entry_add(optarg) < 0) { 1099 fprintf(stderr, "Wrong smbios provided\n"); 1100 exit(1); 1101 } 1102 #endif 1103 } 1104 1105 void cpudef_init(void) 1106 { 1107 #if defined(cpudef_setup) 1108 cpudef_setup(); /* parse cpu definitions in target config file */ 1109 #endif 1110 } 1111 1112 int audio_available(void) 1113 { 1114 #ifdef HAS_AUDIO 1115 return 1; 1116 #else 1117 return 0; 1118 #endif 1119 } 1120 1121 int tcg_available(void) 1122 { 1123 return 1; 1124 } 1125 1126 int kvm_available(void) 1127 { 1128 #ifdef CONFIG_KVM 1129 return 1; 1130 #else 1131 return 0; 1132 #endif 1133 } 1134 1135 int xen_available(void) 1136 { 1137 #ifdef CONFIG_XEN 1138 return 1; 1139 #else 1140 return 0; 1141 #endif 1142 } 1143 1144 1145 TargetInfo *qmp_query_target(Error **errp) 1146 { 1147 TargetInfo *info = g_malloc0(sizeof(*info)); 1148 1149 info->arch = TARGET_TYPE; 1150 1151 return info; 1152 } 1153