xref: /qemu/system/arch_init.c (revision f4be0f75f68ec463d07c65cb2f636e6adf1388e6)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55 #include "qemu/rcu_queue.h"
56 
57 #ifdef DEBUG_ARCH_INIT
58 #define DPRINTF(fmt, ...) \
59     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
60 #else
61 #define DPRINTF(fmt, ...) \
62     do { } while (0)
63 #endif
64 
65 #ifdef TARGET_SPARC
66 int graphic_width = 1024;
67 int graphic_height = 768;
68 int graphic_depth = 8;
69 #else
70 int graphic_width = 800;
71 int graphic_height = 600;
72 int graphic_depth = 32;
73 #endif
74 
75 
76 #if defined(TARGET_ALPHA)
77 #define QEMU_ARCH QEMU_ARCH_ALPHA
78 #elif defined(TARGET_ARM)
79 #define QEMU_ARCH QEMU_ARCH_ARM
80 #elif defined(TARGET_CRIS)
81 #define QEMU_ARCH QEMU_ARCH_CRIS
82 #elif defined(TARGET_I386)
83 #define QEMU_ARCH QEMU_ARCH_I386
84 #elif defined(TARGET_M68K)
85 #define QEMU_ARCH QEMU_ARCH_M68K
86 #elif defined(TARGET_LM32)
87 #define QEMU_ARCH QEMU_ARCH_LM32
88 #elif defined(TARGET_MICROBLAZE)
89 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
90 #elif defined(TARGET_MIPS)
91 #define QEMU_ARCH QEMU_ARCH_MIPS
92 #elif defined(TARGET_MOXIE)
93 #define QEMU_ARCH QEMU_ARCH_MOXIE
94 #elif defined(TARGET_OPENRISC)
95 #define QEMU_ARCH QEMU_ARCH_OPENRISC
96 #elif defined(TARGET_PPC)
97 #define QEMU_ARCH QEMU_ARCH_PPC
98 #elif defined(TARGET_S390X)
99 #define QEMU_ARCH QEMU_ARCH_S390X
100 #elif defined(TARGET_SH4)
101 #define QEMU_ARCH QEMU_ARCH_SH4
102 #elif defined(TARGET_SPARC)
103 #define QEMU_ARCH QEMU_ARCH_SPARC
104 #elif defined(TARGET_XTENSA)
105 #define QEMU_ARCH QEMU_ARCH_XTENSA
106 #elif defined(TARGET_UNICORE32)
107 #define QEMU_ARCH QEMU_ARCH_UNICORE32
108 #elif defined(TARGET_TRICORE)
109 #define QEMU_ARCH QEMU_ARCH_TRICORE
110 #endif
111 
112 const uint32_t arch_type = QEMU_ARCH;
113 static bool mig_throttle_on;
114 static int dirty_rate_high_cnt;
115 static void check_guest_throttling(void);
116 
117 static uint64_t bitmap_sync_count;
118 
119 /***********************************************************/
120 /* ram save/restore */
121 
122 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
123 #define RAM_SAVE_FLAG_COMPRESS 0x02
124 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
125 #define RAM_SAVE_FLAG_PAGE     0x08
126 #define RAM_SAVE_FLAG_EOS      0x10
127 #define RAM_SAVE_FLAG_CONTINUE 0x20
128 #define RAM_SAVE_FLAG_XBZRLE   0x40
129 /* 0x80 is reserved in migration.h start with 0x100 next */
130 
131 static struct defconfig_file {
132     const char *filename;
133     /* Indicates it is an user config file (disabled by -no-user-config) */
134     bool userconfig;
135 } default_config_files[] = {
136     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
137     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
138     { NULL }, /* end of list */
139 };
140 
141 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
142 
143 int qemu_read_default_config_files(bool userconfig)
144 {
145     int ret;
146     struct defconfig_file *f;
147 
148     for (f = default_config_files; f->filename; f++) {
149         if (!userconfig && f->userconfig) {
150             continue;
151         }
152         ret = qemu_read_config_file(f->filename);
153         if (ret < 0 && ret != -ENOENT) {
154             return ret;
155         }
156     }
157 
158     return 0;
159 }
160 
161 static inline bool is_zero_range(uint8_t *p, uint64_t size)
162 {
163     return buffer_find_nonzero_offset(p, size) == size;
164 }
165 
166 /* struct contains XBZRLE cache and a static page
167    used by the compression */
168 static struct {
169     /* buffer used for XBZRLE encoding */
170     uint8_t *encoded_buf;
171     /* buffer for storing page content */
172     uint8_t *current_buf;
173     /* Cache for XBZRLE, Protected by lock. */
174     PageCache *cache;
175     QemuMutex lock;
176 } XBZRLE;
177 
178 /* buffer used for XBZRLE decoding */
179 static uint8_t *xbzrle_decoded_buf;
180 
181 static void XBZRLE_cache_lock(void)
182 {
183     if (migrate_use_xbzrle())
184         qemu_mutex_lock(&XBZRLE.lock);
185 }
186 
187 static void XBZRLE_cache_unlock(void)
188 {
189     if (migrate_use_xbzrle())
190         qemu_mutex_unlock(&XBZRLE.lock);
191 }
192 
193 /*
194  * called from qmp_migrate_set_cache_size in main thread, possibly while
195  * a migration is in progress.
196  * A running migration maybe using the cache and might finish during this
197  * call, hence changes to the cache are protected by XBZRLE.lock().
198  */
199 int64_t xbzrle_cache_resize(int64_t new_size)
200 {
201     PageCache *new_cache;
202     int64_t ret;
203 
204     if (new_size < TARGET_PAGE_SIZE) {
205         return -1;
206     }
207 
208     XBZRLE_cache_lock();
209 
210     if (XBZRLE.cache != NULL) {
211         if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
212             goto out_new_size;
213         }
214         new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
215                                         TARGET_PAGE_SIZE);
216         if (!new_cache) {
217             error_report("Error creating cache");
218             ret = -1;
219             goto out;
220         }
221 
222         cache_fini(XBZRLE.cache);
223         XBZRLE.cache = new_cache;
224     }
225 
226 out_new_size:
227     ret = pow2floor(new_size);
228 out:
229     XBZRLE_cache_unlock();
230     return ret;
231 }
232 
233 /* accounting for migration statistics */
234 typedef struct AccountingInfo {
235     uint64_t dup_pages;
236     uint64_t skipped_pages;
237     uint64_t norm_pages;
238     uint64_t iterations;
239     uint64_t xbzrle_bytes;
240     uint64_t xbzrle_pages;
241     uint64_t xbzrle_cache_miss;
242     double xbzrle_cache_miss_rate;
243     uint64_t xbzrle_overflows;
244 } AccountingInfo;
245 
246 static AccountingInfo acct_info;
247 
248 static void acct_clear(void)
249 {
250     memset(&acct_info, 0, sizeof(acct_info));
251 }
252 
253 uint64_t dup_mig_bytes_transferred(void)
254 {
255     return acct_info.dup_pages * TARGET_PAGE_SIZE;
256 }
257 
258 uint64_t dup_mig_pages_transferred(void)
259 {
260     return acct_info.dup_pages;
261 }
262 
263 uint64_t skipped_mig_bytes_transferred(void)
264 {
265     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
266 }
267 
268 uint64_t skipped_mig_pages_transferred(void)
269 {
270     return acct_info.skipped_pages;
271 }
272 
273 uint64_t norm_mig_bytes_transferred(void)
274 {
275     return acct_info.norm_pages * TARGET_PAGE_SIZE;
276 }
277 
278 uint64_t norm_mig_pages_transferred(void)
279 {
280     return acct_info.norm_pages;
281 }
282 
283 uint64_t xbzrle_mig_bytes_transferred(void)
284 {
285     return acct_info.xbzrle_bytes;
286 }
287 
288 uint64_t xbzrle_mig_pages_transferred(void)
289 {
290     return acct_info.xbzrle_pages;
291 }
292 
293 uint64_t xbzrle_mig_pages_cache_miss(void)
294 {
295     return acct_info.xbzrle_cache_miss;
296 }
297 
298 double xbzrle_mig_cache_miss_rate(void)
299 {
300     return acct_info.xbzrle_cache_miss_rate;
301 }
302 
303 uint64_t xbzrle_mig_pages_overflow(void)
304 {
305     return acct_info.xbzrle_overflows;
306 }
307 
308 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
309                              int cont, int flag)
310 {
311     size_t size;
312 
313     qemu_put_be64(f, offset | cont | flag);
314     size = 8;
315 
316     if (!cont) {
317         qemu_put_byte(f, strlen(block->idstr));
318         qemu_put_buffer(f, (uint8_t *)block->idstr,
319                         strlen(block->idstr));
320         size += 1 + strlen(block->idstr);
321     }
322     return size;
323 }
324 
325 /* This is the last block that we have visited serching for dirty pages
326  */
327 static RAMBlock *last_seen_block;
328 /* This is the last block from where we have sent data */
329 static RAMBlock *last_sent_block;
330 static ram_addr_t last_offset;
331 static unsigned long *migration_bitmap;
332 static uint64_t migration_dirty_pages;
333 static uint32_t last_version;
334 static bool ram_bulk_stage;
335 
336 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
337  * The important thing is that a stale (not-yet-0'd) page be replaced
338  * by the new data.
339  * As a bonus, if the page wasn't in the cache it gets added so that
340  * when a small write is made into the 0'd page it gets XBZRLE sent
341  */
342 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
343 {
344     if (ram_bulk_stage || !migrate_use_xbzrle()) {
345         return;
346     }
347 
348     /* We don't care if this fails to allocate a new cache page
349      * as long as it updated an old one */
350     cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
351                  bitmap_sync_count);
352 }
353 
354 #define ENCODING_FLAG_XBZRLE 0x1
355 
356 /**
357  * save_xbzrle_page: compress and send current page
358  *
359  * Returns: 1 means that we wrote the page
360  *          0 means that page is identical to the one already sent
361  *          -1 means that xbzrle would be longer than normal
362  *
363  * @f: QEMUFile where to send the data
364  * @current_data:
365  * @current_addr:
366  * @block: block that contains the page we want to send
367  * @offset: offset inside the block for the page
368  * @last_stage: if we are at the completion stage
369  * @bytes_transferred: increase it with the number of transferred bytes
370  */
371 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
372                             ram_addr_t current_addr, RAMBlock *block,
373                             ram_addr_t offset, int cont, bool last_stage,
374                             uint64_t *bytes_transferred)
375 {
376     int encoded_len = 0, bytes_xbzrle;
377     uint8_t *prev_cached_page;
378 
379     if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
380         acct_info.xbzrle_cache_miss++;
381         if (!last_stage) {
382             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
383                              bitmap_sync_count) == -1) {
384                 return -1;
385             } else {
386                 /* update *current_data when the page has been
387                    inserted into cache */
388                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
389             }
390         }
391         return -1;
392     }
393 
394     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
395 
396     /* save current buffer into memory */
397     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
398 
399     /* XBZRLE encoding (if there is no overflow) */
400     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
401                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
402                                        TARGET_PAGE_SIZE);
403     if (encoded_len == 0) {
404         DPRINTF("Skipping unmodified page\n");
405         return 0;
406     } else if (encoded_len == -1) {
407         DPRINTF("Overflow\n");
408         acct_info.xbzrle_overflows++;
409         /* update data in the cache */
410         if (!last_stage) {
411             memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
412             *current_data = prev_cached_page;
413         }
414         return -1;
415     }
416 
417     /* we need to update the data in the cache, in order to get the same data */
418     if (!last_stage) {
419         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
420     }
421 
422     /* Send XBZRLE based compressed page */
423     bytes_xbzrle = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
424     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
425     qemu_put_be16(f, encoded_len);
426     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
427     bytes_xbzrle += encoded_len + 1 + 2;
428     acct_info.xbzrle_pages++;
429     acct_info.xbzrle_bytes += bytes_xbzrle;
430     *bytes_transferred += bytes_xbzrle;
431 
432     return 1;
433 }
434 
435 static inline
436 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
437                                                  ram_addr_t start)
438 {
439     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
440     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
441     uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
442     unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
443 
444     unsigned long next;
445 
446     if (ram_bulk_stage && nr > base) {
447         next = nr + 1;
448     } else {
449         next = find_next_bit(migration_bitmap, size, nr);
450     }
451 
452     if (next < size) {
453         clear_bit(next, migration_bitmap);
454         migration_dirty_pages--;
455     }
456     return (next - base) << TARGET_PAGE_BITS;
457 }
458 
459 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
460 {
461     bool ret;
462     int nr = addr >> TARGET_PAGE_BITS;
463 
464     ret = test_and_set_bit(nr, migration_bitmap);
465 
466     if (!ret) {
467         migration_dirty_pages++;
468     }
469     return ret;
470 }
471 
472 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
473 {
474     ram_addr_t addr;
475     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
476 
477     /* start address is aligned at the start of a word? */
478     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
479         int k;
480         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
481         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
482 
483         for (k = page; k < page + nr; k++) {
484             if (src[k]) {
485                 unsigned long new_dirty;
486                 new_dirty = ~migration_bitmap[k];
487                 migration_bitmap[k] |= src[k];
488                 new_dirty &= src[k];
489                 migration_dirty_pages += ctpopl(new_dirty);
490                 src[k] = 0;
491             }
492         }
493     } else {
494         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
495             if (cpu_physical_memory_get_dirty(start + addr,
496                                               TARGET_PAGE_SIZE,
497                                               DIRTY_MEMORY_MIGRATION)) {
498                 cpu_physical_memory_reset_dirty(start + addr,
499                                                 TARGET_PAGE_SIZE,
500                                                 DIRTY_MEMORY_MIGRATION);
501                 migration_bitmap_set_dirty(start + addr);
502             }
503         }
504     }
505 }
506 
507 
508 /* Fix me: there are too many global variables used in migration process. */
509 static int64_t start_time;
510 static int64_t bytes_xfer_prev;
511 static int64_t num_dirty_pages_period;
512 
513 static void migration_bitmap_sync_init(void)
514 {
515     start_time = 0;
516     bytes_xfer_prev = 0;
517     num_dirty_pages_period = 0;
518 }
519 
520 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
521 static void migration_bitmap_sync(void)
522 {
523     RAMBlock *block;
524     uint64_t num_dirty_pages_init = migration_dirty_pages;
525     MigrationState *s = migrate_get_current();
526     int64_t end_time;
527     int64_t bytes_xfer_now;
528     static uint64_t xbzrle_cache_miss_prev;
529     static uint64_t iterations_prev;
530 
531     bitmap_sync_count++;
532 
533     if (!bytes_xfer_prev) {
534         bytes_xfer_prev = ram_bytes_transferred();
535     }
536 
537     if (!start_time) {
538         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
539     }
540 
541     trace_migration_bitmap_sync_start();
542     address_space_sync_dirty_bitmap(&address_space_memory);
543 
544     rcu_read_lock();
545     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
546         migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
547     }
548     rcu_read_unlock();
549 
550     trace_migration_bitmap_sync_end(migration_dirty_pages
551                                     - num_dirty_pages_init);
552     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
553     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
554 
555     /* more than 1 second = 1000 millisecons */
556     if (end_time > start_time + 1000) {
557         if (migrate_auto_converge()) {
558             /* The following detection logic can be refined later. For now:
559                Check to see if the dirtied bytes is 50% more than the approx.
560                amount of bytes that just got transferred since the last time we
561                were in this routine. If that happens >N times (for now N==4)
562                we turn on the throttle down logic */
563             bytes_xfer_now = ram_bytes_transferred();
564             if (s->dirty_pages_rate &&
565                (num_dirty_pages_period * TARGET_PAGE_SIZE >
566                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
567                (dirty_rate_high_cnt++ > 4)) {
568                     trace_migration_throttle();
569                     mig_throttle_on = true;
570                     dirty_rate_high_cnt = 0;
571              }
572              bytes_xfer_prev = bytes_xfer_now;
573         } else {
574              mig_throttle_on = false;
575         }
576         if (migrate_use_xbzrle()) {
577             if (iterations_prev != 0) {
578                 acct_info.xbzrle_cache_miss_rate =
579                    (double)(acct_info.xbzrle_cache_miss -
580                             xbzrle_cache_miss_prev) /
581                    (acct_info.iterations - iterations_prev);
582             }
583             iterations_prev = acct_info.iterations;
584             xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
585         }
586         s->dirty_pages_rate = num_dirty_pages_period * 1000
587             / (end_time - start_time);
588         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
589         start_time = end_time;
590         num_dirty_pages_period = 0;
591         s->dirty_sync_count = bitmap_sync_count;
592     }
593 }
594 
595 /**
596  * ram_save_page: Send the given page to the stream
597  *
598  * Returns: Number of pages written.
599  *
600  * @f: QEMUFile where to send the data
601  * @block: block that contains the page we want to send
602  * @offset: offset inside the block for the page
603  * @last_stage: if we are at the completion stage
604  * @bytes_transferred: increase it with the number of transferred bytes
605  */
606 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
607                          bool last_stage, uint64_t *bytes_transferred)
608 {
609     int pages = -1;
610     uint64_t bytes_xmit;
611     int cont;
612     ram_addr_t current_addr;
613     MemoryRegion *mr = block->mr;
614     uint8_t *p;
615     int ret;
616     bool send_async = true;
617 
618     cont = (block == last_sent_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
619 
620     p = memory_region_get_ram_ptr(mr) + offset;
621 
622     /* In doubt sent page as normal */
623     bytes_xmit = 0;
624     ret = ram_control_save_page(f, block->offset,
625                            offset, TARGET_PAGE_SIZE, &bytes_xmit);
626     if (bytes_xmit) {
627         *bytes_transferred += bytes_xmit;
628         pages = 1;
629     }
630 
631     XBZRLE_cache_lock();
632 
633     current_addr = block->offset + offset;
634     if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
635         if (ret != RAM_SAVE_CONTROL_DELAYED) {
636             if (bytes_xmit > 0) {
637                 acct_info.norm_pages++;
638             } else if (bytes_xmit == 0) {
639                 acct_info.dup_pages++;
640             }
641         }
642     } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
643         acct_info.dup_pages++;
644         *bytes_transferred += save_block_hdr(f, block, offset, cont,
645                                              RAM_SAVE_FLAG_COMPRESS);
646         qemu_put_byte(f, 0);
647         *bytes_transferred += 1;
648         pages = 1;
649         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
650          * page would be stale
651          */
652         xbzrle_cache_zero_page(current_addr);
653     } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
654         pages = save_xbzrle_page(f, &p, current_addr, block,
655                                  offset, cont, last_stage, bytes_transferred);
656         if (!last_stage) {
657             /* Can't send this cached data async, since the cache page
658              * might get updated before it gets to the wire
659              */
660             send_async = false;
661         }
662     }
663 
664     /* XBZRLE overflow or normal page */
665     if (pages == -1) {
666         *bytes_transferred += save_block_hdr(f, block, offset, cont,
667                                              RAM_SAVE_FLAG_PAGE);
668         if (send_async) {
669             qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
670         } else {
671             qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
672         }
673         *bytes_transferred += TARGET_PAGE_SIZE;
674         pages = 1;
675         acct_info.norm_pages++;
676     }
677 
678     XBZRLE_cache_unlock();
679 
680     return pages;
681 }
682 
683 /**
684  * ram_find_and_save_block: Finds a dirty page and sends it to f
685  *
686  * Called within an RCU critical section.
687  *
688  * Returns:  The number of pages written
689  *           0 means no dirty pages
690  *
691  * @f: QEMUFile where to send the data
692  * @last_stage: if we are at the completion stage
693  * @bytes_transferred: increase it with the number of transferred bytes
694  */
695 
696 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
697                                    uint64_t *bytes_transferred)
698 {
699     RAMBlock *block = last_seen_block;
700     ram_addr_t offset = last_offset;
701     bool complete_round = false;
702     int pages = 0;
703     MemoryRegion *mr;
704 
705     if (!block)
706         block = QLIST_FIRST_RCU(&ram_list.blocks);
707 
708     while (true) {
709         mr = block->mr;
710         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
711         if (complete_round && block == last_seen_block &&
712             offset >= last_offset) {
713             break;
714         }
715         if (offset >= block->used_length) {
716             offset = 0;
717             block = QLIST_NEXT_RCU(block, next);
718             if (!block) {
719                 block = QLIST_FIRST_RCU(&ram_list.blocks);
720                 complete_round = true;
721                 ram_bulk_stage = false;
722             }
723         } else {
724             pages = ram_save_page(f, block, offset, last_stage,
725                                   bytes_transferred);
726 
727             /* if page is unmodified, continue to the next */
728             if (pages > 0) {
729                 last_sent_block = block;
730                 break;
731             }
732         }
733     }
734 
735     last_seen_block = block;
736     last_offset = offset;
737 
738     return pages;
739 }
740 
741 static uint64_t bytes_transferred;
742 
743 void acct_update_position(QEMUFile *f, size_t size, bool zero)
744 {
745     uint64_t pages = size / TARGET_PAGE_SIZE;
746     if (zero) {
747         acct_info.dup_pages += pages;
748     } else {
749         acct_info.norm_pages += pages;
750         bytes_transferred += size;
751         qemu_update_position(f, size);
752     }
753 }
754 
755 static ram_addr_t ram_save_remaining(void)
756 {
757     return migration_dirty_pages;
758 }
759 
760 uint64_t ram_bytes_remaining(void)
761 {
762     return ram_save_remaining() * TARGET_PAGE_SIZE;
763 }
764 
765 uint64_t ram_bytes_transferred(void)
766 {
767     return bytes_transferred;
768 }
769 
770 uint64_t ram_bytes_total(void)
771 {
772     RAMBlock *block;
773     uint64_t total = 0;
774 
775     rcu_read_lock();
776     QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
777         total += block->used_length;
778     rcu_read_unlock();
779     return total;
780 }
781 
782 void free_xbzrle_decoded_buf(void)
783 {
784     g_free(xbzrle_decoded_buf);
785     xbzrle_decoded_buf = NULL;
786 }
787 
788 static void migration_end(void)
789 {
790     if (migration_bitmap) {
791         memory_global_dirty_log_stop();
792         g_free(migration_bitmap);
793         migration_bitmap = NULL;
794     }
795 
796     XBZRLE_cache_lock();
797     if (XBZRLE.cache) {
798         cache_fini(XBZRLE.cache);
799         g_free(XBZRLE.encoded_buf);
800         g_free(XBZRLE.current_buf);
801         XBZRLE.cache = NULL;
802         XBZRLE.encoded_buf = NULL;
803         XBZRLE.current_buf = NULL;
804     }
805     XBZRLE_cache_unlock();
806 }
807 
808 static void ram_migration_cancel(void *opaque)
809 {
810     migration_end();
811 }
812 
813 static void reset_ram_globals(void)
814 {
815     last_seen_block = NULL;
816     last_sent_block = NULL;
817     last_offset = 0;
818     last_version = ram_list.version;
819     ram_bulk_stage = true;
820 }
821 
822 #define MAX_WAIT 50 /* ms, half buffered_file limit */
823 
824 
825 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
826  * long-running RCU critical section.  When rcu-reclaims in the code
827  * start to become numerous it will be necessary to reduce the
828  * granularity of these critical sections.
829  */
830 
831 static int ram_save_setup(QEMUFile *f, void *opaque)
832 {
833     RAMBlock *block;
834     int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
835 
836     mig_throttle_on = false;
837     dirty_rate_high_cnt = 0;
838     bitmap_sync_count = 0;
839     migration_bitmap_sync_init();
840 
841     if (migrate_use_xbzrle()) {
842         XBZRLE_cache_lock();
843         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
844                                   TARGET_PAGE_SIZE,
845                                   TARGET_PAGE_SIZE);
846         if (!XBZRLE.cache) {
847             XBZRLE_cache_unlock();
848             error_report("Error creating cache");
849             return -1;
850         }
851         XBZRLE_cache_unlock();
852 
853         /* We prefer not to abort if there is no memory */
854         XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
855         if (!XBZRLE.encoded_buf) {
856             error_report("Error allocating encoded_buf");
857             return -1;
858         }
859 
860         XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
861         if (!XBZRLE.current_buf) {
862             error_report("Error allocating current_buf");
863             g_free(XBZRLE.encoded_buf);
864             XBZRLE.encoded_buf = NULL;
865             return -1;
866         }
867 
868         acct_clear();
869     }
870 
871     /* iothread lock needed for ram_list.dirty_memory[] */
872     qemu_mutex_lock_iothread();
873     qemu_mutex_lock_ramlist();
874     rcu_read_lock();
875     bytes_transferred = 0;
876     reset_ram_globals();
877 
878     ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
879     migration_bitmap = bitmap_new(ram_bitmap_pages);
880     bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
881 
882     /*
883      * Count the total number of pages used by ram blocks not including any
884      * gaps due to alignment or unplugs.
885      */
886     migration_dirty_pages = 0;
887     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
888         uint64_t block_pages;
889 
890         block_pages = block->used_length >> TARGET_PAGE_BITS;
891         migration_dirty_pages += block_pages;
892     }
893 
894     memory_global_dirty_log_start();
895     migration_bitmap_sync();
896     qemu_mutex_unlock_ramlist();
897     qemu_mutex_unlock_iothread();
898 
899     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
900 
901     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
902         qemu_put_byte(f, strlen(block->idstr));
903         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
904         qemu_put_be64(f, block->used_length);
905     }
906 
907     rcu_read_unlock();
908 
909     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
910     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
911 
912     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
913 
914     return 0;
915 }
916 
917 static int ram_save_iterate(QEMUFile *f, void *opaque)
918 {
919     int ret;
920     int i;
921     int64_t t0;
922     int pages_sent = 0;
923 
924     rcu_read_lock();
925     if (ram_list.version != last_version) {
926         reset_ram_globals();
927     }
928 
929     /* Read version before ram_list.blocks */
930     smp_rmb();
931 
932     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
933 
934     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
935     i = 0;
936     while ((ret = qemu_file_rate_limit(f)) == 0) {
937         int pages;
938 
939         pages = ram_find_and_save_block(f, false, &bytes_transferred);
940         /* no more pages to sent */
941         if (pages == 0) {
942             break;
943         }
944         pages_sent += pages;
945         acct_info.iterations++;
946         check_guest_throttling();
947         /* we want to check in the 1st loop, just in case it was the 1st time
948            and we had to sync the dirty bitmap.
949            qemu_get_clock_ns() is a bit expensive, so we only check each some
950            iterations
951         */
952         if ((i & 63) == 0) {
953             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
954             if (t1 > MAX_WAIT) {
955                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
956                         t1, i);
957                 break;
958             }
959         }
960         i++;
961     }
962     rcu_read_unlock();
963 
964     /*
965      * Must occur before EOS (or any QEMUFile operation)
966      * because of RDMA protocol.
967      */
968     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
969 
970     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
971     bytes_transferred += 8;
972 
973     ret = qemu_file_get_error(f);
974     if (ret < 0) {
975         return ret;
976     }
977 
978     return pages_sent;
979 }
980 
981 /* Called with iothread lock */
982 static int ram_save_complete(QEMUFile *f, void *opaque)
983 {
984     rcu_read_lock();
985 
986     migration_bitmap_sync();
987 
988     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
989 
990     /* try transferring iterative blocks of memory */
991 
992     /* flush all remaining blocks regardless of rate limiting */
993     while (true) {
994         int pages;
995 
996         pages = ram_find_and_save_block(f, true, &bytes_transferred);
997         /* no more blocks to sent */
998         if (pages == 0) {
999             break;
1000         }
1001     }
1002 
1003     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1004     migration_end();
1005 
1006     rcu_read_unlock();
1007     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1008 
1009     return 0;
1010 }
1011 
1012 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1013 {
1014     uint64_t remaining_size;
1015 
1016     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1017 
1018     if (remaining_size < max_size) {
1019         qemu_mutex_lock_iothread();
1020         rcu_read_lock();
1021         migration_bitmap_sync();
1022         rcu_read_unlock();
1023         qemu_mutex_unlock_iothread();
1024         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1025     }
1026     return remaining_size;
1027 }
1028 
1029 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1030 {
1031     unsigned int xh_len;
1032     int xh_flags;
1033 
1034     if (!xbzrle_decoded_buf) {
1035         xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1036     }
1037 
1038     /* extract RLE header */
1039     xh_flags = qemu_get_byte(f);
1040     xh_len = qemu_get_be16(f);
1041 
1042     if (xh_flags != ENCODING_FLAG_XBZRLE) {
1043         error_report("Failed to load XBZRLE page - wrong compression!");
1044         return -1;
1045     }
1046 
1047     if (xh_len > TARGET_PAGE_SIZE) {
1048         error_report("Failed to load XBZRLE page - len overflow!");
1049         return -1;
1050     }
1051     /* load data and decode */
1052     qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1053 
1054     /* decode RLE */
1055     if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1056                              TARGET_PAGE_SIZE) == -1) {
1057         error_report("Failed to load XBZRLE page - decode error!");
1058         return -1;
1059     }
1060 
1061     return 0;
1062 }
1063 
1064 /* Must be called from within a rcu critical section.
1065  * Returns a pointer from within the RCU-protected ram_list.
1066  */
1067 static inline void *host_from_stream_offset(QEMUFile *f,
1068                                             ram_addr_t offset,
1069                                             int flags)
1070 {
1071     static RAMBlock *block = NULL;
1072     char id[256];
1073     uint8_t len;
1074 
1075     if (flags & RAM_SAVE_FLAG_CONTINUE) {
1076         if (!block || block->max_length <= offset) {
1077             error_report("Ack, bad migration stream!");
1078             return NULL;
1079         }
1080 
1081         return memory_region_get_ram_ptr(block->mr) + offset;
1082     }
1083 
1084     len = qemu_get_byte(f);
1085     qemu_get_buffer(f, (uint8_t *)id, len);
1086     id[len] = 0;
1087 
1088     QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1089         if (!strncmp(id, block->idstr, sizeof(id)) &&
1090             block->max_length > offset) {
1091             return memory_region_get_ram_ptr(block->mr) + offset;
1092         }
1093     }
1094 
1095     error_report("Can't find block %s!", id);
1096     return NULL;
1097 }
1098 
1099 /*
1100  * If a page (or a whole RDMA chunk) has been
1101  * determined to be zero, then zap it.
1102  */
1103 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1104 {
1105     if (ch != 0 || !is_zero_range(host, size)) {
1106         memset(host, ch, size);
1107     }
1108 }
1109 
1110 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1111 {
1112     int flags = 0, ret = 0;
1113     static uint64_t seq_iter;
1114 
1115     seq_iter++;
1116 
1117     if (version_id != 4) {
1118         ret = -EINVAL;
1119     }
1120 
1121     /* This RCU critical section can be very long running.
1122      * When RCU reclaims in the code start to become numerous,
1123      * it will be necessary to reduce the granularity of this
1124      * critical section.
1125      */
1126     rcu_read_lock();
1127     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1128         ram_addr_t addr, total_ram_bytes;
1129         void *host;
1130         uint8_t ch;
1131 
1132         addr = qemu_get_be64(f);
1133         flags = addr & ~TARGET_PAGE_MASK;
1134         addr &= TARGET_PAGE_MASK;
1135 
1136         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1137         case RAM_SAVE_FLAG_MEM_SIZE:
1138             /* Synchronize RAM block list */
1139             total_ram_bytes = addr;
1140             while (!ret && total_ram_bytes) {
1141                 RAMBlock *block;
1142                 uint8_t len;
1143                 char id[256];
1144                 ram_addr_t length;
1145 
1146                 len = qemu_get_byte(f);
1147                 qemu_get_buffer(f, (uint8_t *)id, len);
1148                 id[len] = 0;
1149                 length = qemu_get_be64(f);
1150 
1151                 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1152                     if (!strncmp(id, block->idstr, sizeof(id))) {
1153                         if (length != block->used_length) {
1154                             Error *local_err = NULL;
1155 
1156                             ret = qemu_ram_resize(block->offset, length, &local_err);
1157                             if (local_err) {
1158                                 error_report_err(local_err);
1159                             }
1160                         }
1161                         break;
1162                     }
1163                 }
1164 
1165                 if (!block) {
1166                     error_report("Unknown ramblock \"%s\", cannot "
1167                                  "accept migration", id);
1168                     ret = -EINVAL;
1169                 }
1170 
1171                 total_ram_bytes -= length;
1172             }
1173             break;
1174         case RAM_SAVE_FLAG_COMPRESS:
1175             host = host_from_stream_offset(f, addr, flags);
1176             if (!host) {
1177                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1178                 ret = -EINVAL;
1179                 break;
1180             }
1181             ch = qemu_get_byte(f);
1182             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1183             break;
1184         case RAM_SAVE_FLAG_PAGE:
1185             host = host_from_stream_offset(f, addr, flags);
1186             if (!host) {
1187                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1188                 ret = -EINVAL;
1189                 break;
1190             }
1191             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1192             break;
1193         case RAM_SAVE_FLAG_XBZRLE:
1194             host = host_from_stream_offset(f, addr, flags);
1195             if (!host) {
1196                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1197                 ret = -EINVAL;
1198                 break;
1199             }
1200             if (load_xbzrle(f, addr, host) < 0) {
1201                 error_report("Failed to decompress XBZRLE page at "
1202                              RAM_ADDR_FMT, addr);
1203                 ret = -EINVAL;
1204                 break;
1205             }
1206             break;
1207         case RAM_SAVE_FLAG_EOS:
1208             /* normal exit */
1209             break;
1210         default:
1211             if (flags & RAM_SAVE_FLAG_HOOK) {
1212                 ram_control_load_hook(f, flags);
1213             } else {
1214                 error_report("Unknown combination of migration flags: %#x",
1215                              flags);
1216                 ret = -EINVAL;
1217             }
1218         }
1219         if (!ret) {
1220             ret = qemu_file_get_error(f);
1221         }
1222     }
1223 
1224     rcu_read_unlock();
1225     DPRINTF("Completed load of VM with exit code %d seq iteration "
1226             "%" PRIu64 "\n", ret, seq_iter);
1227     return ret;
1228 }
1229 
1230 static SaveVMHandlers savevm_ram_handlers = {
1231     .save_live_setup = ram_save_setup,
1232     .save_live_iterate = ram_save_iterate,
1233     .save_live_complete = ram_save_complete,
1234     .save_live_pending = ram_save_pending,
1235     .load_state = ram_load,
1236     .cancel = ram_migration_cancel,
1237 };
1238 
1239 void ram_mig_init(void)
1240 {
1241     qemu_mutex_init(&XBZRLE.lock);
1242     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1243 }
1244 
1245 struct soundhw {
1246     const char *name;
1247     const char *descr;
1248     int enabled;
1249     int isa;
1250     union {
1251         int (*init_isa) (ISABus *bus);
1252         int (*init_pci) (PCIBus *bus);
1253     } init;
1254 };
1255 
1256 static struct soundhw soundhw[9];
1257 static int soundhw_count;
1258 
1259 void isa_register_soundhw(const char *name, const char *descr,
1260                           int (*init_isa)(ISABus *bus))
1261 {
1262     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1263     soundhw[soundhw_count].name = name;
1264     soundhw[soundhw_count].descr = descr;
1265     soundhw[soundhw_count].isa = 1;
1266     soundhw[soundhw_count].init.init_isa = init_isa;
1267     soundhw_count++;
1268 }
1269 
1270 void pci_register_soundhw(const char *name, const char *descr,
1271                           int (*init_pci)(PCIBus *bus))
1272 {
1273     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1274     soundhw[soundhw_count].name = name;
1275     soundhw[soundhw_count].descr = descr;
1276     soundhw[soundhw_count].isa = 0;
1277     soundhw[soundhw_count].init.init_pci = init_pci;
1278     soundhw_count++;
1279 }
1280 
1281 void select_soundhw(const char *optarg)
1282 {
1283     struct soundhw *c;
1284 
1285     if (is_help_option(optarg)) {
1286     show_valid_cards:
1287 
1288         if (soundhw_count) {
1289              printf("Valid sound card names (comma separated):\n");
1290              for (c = soundhw; c->name; ++c) {
1291                  printf ("%-11s %s\n", c->name, c->descr);
1292              }
1293              printf("\n-soundhw all will enable all of the above\n");
1294         } else {
1295              printf("Machine has no user-selectable audio hardware "
1296                     "(it may or may not have always-present audio hardware).\n");
1297         }
1298         exit(!is_help_option(optarg));
1299     }
1300     else {
1301         size_t l;
1302         const char *p;
1303         char *e;
1304         int bad_card = 0;
1305 
1306         if (!strcmp(optarg, "all")) {
1307             for (c = soundhw; c->name; ++c) {
1308                 c->enabled = 1;
1309             }
1310             return;
1311         }
1312 
1313         p = optarg;
1314         while (*p) {
1315             e = strchr(p, ',');
1316             l = !e ? strlen(p) : (size_t) (e - p);
1317 
1318             for (c = soundhw; c->name; ++c) {
1319                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1320                     c->enabled = 1;
1321                     break;
1322                 }
1323             }
1324 
1325             if (!c->name) {
1326                 if (l > 80) {
1327                     error_report("Unknown sound card name (too big to show)");
1328                 }
1329                 else {
1330                     error_report("Unknown sound card name `%.*s'",
1331                                  (int) l, p);
1332                 }
1333                 bad_card = 1;
1334             }
1335             p += l + (e != NULL);
1336         }
1337 
1338         if (bad_card) {
1339             goto show_valid_cards;
1340         }
1341     }
1342 }
1343 
1344 void audio_init(void)
1345 {
1346     struct soundhw *c;
1347     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1348     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1349 
1350     for (c = soundhw; c->name; ++c) {
1351         if (c->enabled) {
1352             if (c->isa) {
1353                 if (!isa_bus) {
1354                     error_report("ISA bus not available for %s", c->name);
1355                     exit(1);
1356                 }
1357                 c->init.init_isa(isa_bus);
1358             } else {
1359                 if (!pci_bus) {
1360                     error_report("PCI bus not available for %s", c->name);
1361                     exit(1);
1362                 }
1363                 c->init.init_pci(pci_bus);
1364             }
1365         }
1366     }
1367 }
1368 
1369 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1370 {
1371     int ret;
1372 
1373     if (strlen(str) != 36) {
1374         return -1;
1375     }
1376 
1377     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1378                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1379                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1380                  &uuid[15]);
1381 
1382     if (ret != 16) {
1383         return -1;
1384     }
1385     return 0;
1386 }
1387 
1388 void do_acpitable_option(const QemuOpts *opts)
1389 {
1390 #ifdef TARGET_I386
1391     Error *err = NULL;
1392 
1393     acpi_table_add(opts, &err);
1394     if (err) {
1395         error_report("Wrong acpi table provided: %s",
1396                      error_get_pretty(err));
1397         error_free(err);
1398         exit(1);
1399     }
1400 #endif
1401 }
1402 
1403 void do_smbios_option(QemuOpts *opts)
1404 {
1405 #ifdef TARGET_I386
1406     smbios_entry_add(opts);
1407 #endif
1408 }
1409 
1410 void cpudef_init(void)
1411 {
1412 #if defined(cpudef_setup)
1413     cpudef_setup(); /* parse cpu definitions in target config file */
1414 #endif
1415 }
1416 
1417 int kvm_available(void)
1418 {
1419 #ifdef CONFIG_KVM
1420     return 1;
1421 #else
1422     return 0;
1423 #endif
1424 }
1425 
1426 int xen_available(void)
1427 {
1428 #ifdef CONFIG_XEN
1429     return 1;
1430 #else
1431     return 0;
1432 #endif
1433 }
1434 
1435 
1436 TargetInfo *qmp_query_target(Error **errp)
1437 {
1438     TargetInfo *info = g_malloc0(sizeof(*info));
1439 
1440     info->arch = g_strdup(TARGET_NAME);
1441 
1442     return info;
1443 }
1444 
1445 /* Stub function that's gets run on the vcpu when its brought out of the
1446    VM to run inside qemu via async_run_on_cpu()*/
1447 static void mig_sleep_cpu(void *opq)
1448 {
1449     qemu_mutex_unlock_iothread();
1450     g_usleep(30*1000);
1451     qemu_mutex_lock_iothread();
1452 }
1453 
1454 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1455    much time in the VM. The migration thread will try to catchup.
1456    Workload will experience a performance drop.
1457 */
1458 static void mig_throttle_guest_down(void)
1459 {
1460     CPUState *cpu;
1461 
1462     qemu_mutex_lock_iothread();
1463     CPU_FOREACH(cpu) {
1464         async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1465     }
1466     qemu_mutex_unlock_iothread();
1467 }
1468 
1469 static void check_guest_throttling(void)
1470 {
1471     static int64_t t0;
1472     int64_t        t1;
1473 
1474     if (!mig_throttle_on) {
1475         return;
1476     }
1477 
1478     if (!t0)  {
1479         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1480         return;
1481     }
1482 
1483     t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1484 
1485     /* If it has been more than 40 ms since the last time the guest
1486      * was throttled then do it again.
1487      */
1488     if (40 < (t1-t0)/1000000) {
1489         mig_throttle_guest_down();
1490         t0 = t1;
1491     }
1492 }
1493