1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/i386/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audio/audio.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "hw/i386/smbios.h" 44 #include "exec/address-spaces.h" 45 #include "hw/audio/pcspk.h" 46 #include "migration/page_cache.h" 47 #include "qemu/config-file.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "exec/cpu-all.h" 51 #include "hw/acpi/acpi.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 32; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_MOXIE) 89 #define QEMU_ARCH QEMU_ARCH_MOXIE 90 #elif defined(TARGET_OPENRISC) 91 #define QEMU_ARCH QEMU_ARCH_OPENRISC 92 #elif defined(TARGET_PPC) 93 #define QEMU_ARCH QEMU_ARCH_PPC 94 #elif defined(TARGET_S390X) 95 #define QEMU_ARCH QEMU_ARCH_S390X 96 #elif defined(TARGET_SH4) 97 #define QEMU_ARCH QEMU_ARCH_SH4 98 #elif defined(TARGET_SPARC) 99 #define QEMU_ARCH QEMU_ARCH_SPARC 100 #elif defined(TARGET_XTENSA) 101 #define QEMU_ARCH QEMU_ARCH_XTENSA 102 #elif defined(TARGET_UNICORE32) 103 #define QEMU_ARCH QEMU_ARCH_UNICORE32 104 #endif 105 106 const uint32_t arch_type = QEMU_ARCH; 107 108 /***********************************************************/ 109 /* ram save/restore */ 110 111 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 112 #define RAM_SAVE_FLAG_COMPRESS 0x02 113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 114 #define RAM_SAVE_FLAG_PAGE 0x08 115 #define RAM_SAVE_FLAG_EOS 0x10 116 #define RAM_SAVE_FLAG_CONTINUE 0x20 117 #define RAM_SAVE_FLAG_XBZRLE 0x40 118 119 120 static struct defconfig_file { 121 const char *filename; 122 /* Indicates it is an user config file (disabled by -no-user-config) */ 123 bool userconfig; 124 } default_config_files[] = { 125 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 126 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true }, 127 { NULL }, /* end of list */ 128 }; 129 130 131 int qemu_read_default_config_files(bool userconfig) 132 { 133 int ret; 134 struct defconfig_file *f; 135 136 for (f = default_config_files; f->filename; f++) { 137 if (!userconfig && f->userconfig) { 138 continue; 139 } 140 ret = qemu_read_config_file(f->filename); 141 if (ret < 0 && ret != -ENOENT) { 142 return ret; 143 } 144 } 145 146 return 0; 147 } 148 149 static inline bool is_zero_page(uint8_t *p) 150 { 151 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) == 152 TARGET_PAGE_SIZE; 153 } 154 155 /* struct contains XBZRLE cache and a static page 156 used by the compression */ 157 static struct { 158 /* buffer used for XBZRLE encoding */ 159 uint8_t *encoded_buf; 160 /* buffer for storing page content */ 161 uint8_t *current_buf; 162 /* buffer used for XBZRLE decoding */ 163 uint8_t *decoded_buf; 164 /* Cache for XBZRLE */ 165 PageCache *cache; 166 } XBZRLE = { 167 .encoded_buf = NULL, 168 .current_buf = NULL, 169 .decoded_buf = NULL, 170 .cache = NULL, 171 }; 172 173 174 int64_t xbzrle_cache_resize(int64_t new_size) 175 { 176 if (XBZRLE.cache != NULL) { 177 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 178 TARGET_PAGE_SIZE; 179 } 180 return pow2floor(new_size); 181 } 182 183 /* accounting for migration statistics */ 184 typedef struct AccountingInfo { 185 uint64_t dup_pages; 186 uint64_t skipped_pages; 187 uint64_t norm_pages; 188 uint64_t iterations; 189 uint64_t xbzrle_bytes; 190 uint64_t xbzrle_pages; 191 uint64_t xbzrle_cache_miss; 192 uint64_t xbzrle_overflows; 193 } AccountingInfo; 194 195 static AccountingInfo acct_info; 196 197 static void acct_clear(void) 198 { 199 memset(&acct_info, 0, sizeof(acct_info)); 200 } 201 202 uint64_t dup_mig_bytes_transferred(void) 203 { 204 return acct_info.dup_pages * TARGET_PAGE_SIZE; 205 } 206 207 uint64_t dup_mig_pages_transferred(void) 208 { 209 return acct_info.dup_pages; 210 } 211 212 uint64_t skipped_mig_bytes_transferred(void) 213 { 214 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 215 } 216 217 uint64_t skipped_mig_pages_transferred(void) 218 { 219 return acct_info.skipped_pages; 220 } 221 222 uint64_t norm_mig_bytes_transferred(void) 223 { 224 return acct_info.norm_pages * TARGET_PAGE_SIZE; 225 } 226 227 uint64_t norm_mig_pages_transferred(void) 228 { 229 return acct_info.norm_pages; 230 } 231 232 uint64_t xbzrle_mig_bytes_transferred(void) 233 { 234 return acct_info.xbzrle_bytes; 235 } 236 237 uint64_t xbzrle_mig_pages_transferred(void) 238 { 239 return acct_info.xbzrle_pages; 240 } 241 242 uint64_t xbzrle_mig_pages_cache_miss(void) 243 { 244 return acct_info.xbzrle_cache_miss; 245 } 246 247 uint64_t xbzrle_mig_pages_overflow(void) 248 { 249 return acct_info.xbzrle_overflows; 250 } 251 252 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 253 int cont, int flag) 254 { 255 size_t size; 256 257 qemu_put_be64(f, offset | cont | flag); 258 size = 8; 259 260 if (!cont) { 261 qemu_put_byte(f, strlen(block->idstr)); 262 qemu_put_buffer(f, (uint8_t *)block->idstr, 263 strlen(block->idstr)); 264 size += 1 + strlen(block->idstr); 265 } 266 return size; 267 } 268 269 #define ENCODING_FLAG_XBZRLE 0x1 270 271 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 272 ram_addr_t current_addr, RAMBlock *block, 273 ram_addr_t offset, int cont, bool last_stage) 274 { 275 int encoded_len = 0, bytes_sent = -1; 276 uint8_t *prev_cached_page; 277 278 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 279 if (!last_stage) { 280 cache_insert(XBZRLE.cache, current_addr, current_data); 281 } 282 acct_info.xbzrle_cache_miss++; 283 return -1; 284 } 285 286 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 287 288 /* save current buffer into memory */ 289 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 290 291 /* XBZRLE encoding (if there is no overflow) */ 292 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 293 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 294 TARGET_PAGE_SIZE); 295 if (encoded_len == 0) { 296 DPRINTF("Skipping unmodified page\n"); 297 return 0; 298 } else if (encoded_len == -1) { 299 DPRINTF("Overflow\n"); 300 acct_info.xbzrle_overflows++; 301 /* update data in the cache */ 302 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 303 return -1; 304 } 305 306 /* we need to update the data in the cache, in order to get the same data */ 307 if (!last_stage) { 308 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 309 } 310 311 /* Send XBZRLE based compressed page */ 312 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 313 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 314 qemu_put_be16(f, encoded_len); 315 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 316 bytes_sent += encoded_len + 1 + 2; 317 acct_info.xbzrle_pages++; 318 acct_info.xbzrle_bytes += bytes_sent; 319 320 return bytes_sent; 321 } 322 323 324 /* This is the last block that we have visited serching for dirty pages 325 */ 326 static RAMBlock *last_seen_block; 327 /* This is the last block from where we have sent data */ 328 static RAMBlock *last_sent_block; 329 static ram_addr_t last_offset; 330 static unsigned long *migration_bitmap; 331 static uint64_t migration_dirty_pages; 332 static uint32_t last_version; 333 static bool ram_bulk_stage; 334 335 static inline 336 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 337 ram_addr_t start) 338 { 339 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 340 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 341 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS); 342 343 unsigned long next; 344 345 if (ram_bulk_stage && nr > base) { 346 next = nr + 1; 347 } else { 348 next = find_next_bit(migration_bitmap, size, nr); 349 } 350 351 if (next < size) { 352 clear_bit(next, migration_bitmap); 353 migration_dirty_pages--; 354 } 355 return (next - base) << TARGET_PAGE_BITS; 356 } 357 358 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 359 ram_addr_t offset) 360 { 361 bool ret; 362 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 363 364 ret = test_and_set_bit(nr, migration_bitmap); 365 366 if (!ret) { 367 migration_dirty_pages++; 368 } 369 return ret; 370 } 371 372 /* Needs iothread lock! */ 373 374 static void migration_bitmap_sync(void) 375 { 376 RAMBlock *block; 377 ram_addr_t addr; 378 uint64_t num_dirty_pages_init = migration_dirty_pages; 379 MigrationState *s = migrate_get_current(); 380 static int64_t start_time; 381 static int64_t num_dirty_pages_period; 382 int64_t end_time; 383 384 if (!start_time) { 385 start_time = qemu_get_clock_ms(rt_clock); 386 } 387 388 trace_migration_bitmap_sync_start(); 389 address_space_sync_dirty_bitmap(&address_space_memory); 390 391 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 392 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 393 if (memory_region_test_and_clear_dirty(block->mr, 394 addr, TARGET_PAGE_SIZE, 395 DIRTY_MEMORY_MIGRATION)) { 396 migration_bitmap_set_dirty(block->mr, addr); 397 } 398 } 399 } 400 trace_migration_bitmap_sync_end(migration_dirty_pages 401 - num_dirty_pages_init); 402 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 403 end_time = qemu_get_clock_ms(rt_clock); 404 405 /* more than 1 second = 1000 millisecons */ 406 if (end_time > start_time + 1000) { 407 s->dirty_pages_rate = num_dirty_pages_period * 1000 408 / (end_time - start_time); 409 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 410 start_time = end_time; 411 num_dirty_pages_period = 0; 412 } 413 } 414 415 /* 416 * ram_save_block: Writes a page of memory to the stream f 417 * 418 * Returns: The number of bytes written. 419 * 0 means no dirty pages 420 */ 421 422 static int ram_save_block(QEMUFile *f, bool last_stage) 423 { 424 RAMBlock *block = last_seen_block; 425 ram_addr_t offset = last_offset; 426 bool complete_round = false; 427 int bytes_sent = 0; 428 MemoryRegion *mr; 429 ram_addr_t current_addr; 430 431 if (!block) 432 block = QTAILQ_FIRST(&ram_list.blocks); 433 434 while (true) { 435 mr = block->mr; 436 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 437 if (complete_round && block == last_seen_block && 438 offset >= last_offset) { 439 break; 440 } 441 if (offset >= block->length) { 442 offset = 0; 443 block = QTAILQ_NEXT(block, next); 444 if (!block) { 445 block = QTAILQ_FIRST(&ram_list.blocks); 446 complete_round = true; 447 ram_bulk_stage = false; 448 } 449 } else { 450 uint8_t *p; 451 int cont = (block == last_sent_block) ? 452 RAM_SAVE_FLAG_CONTINUE : 0; 453 454 p = memory_region_get_ram_ptr(mr) + offset; 455 456 /* In doubt sent page as normal */ 457 bytes_sent = -1; 458 if (is_zero_page(p)) { 459 acct_info.dup_pages++; 460 bytes_sent = save_block_hdr(f, block, offset, cont, 461 RAM_SAVE_FLAG_COMPRESS); 462 qemu_put_byte(f, 0); 463 bytes_sent++; 464 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 465 current_addr = block->offset + offset; 466 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 467 offset, cont, last_stage); 468 if (!last_stage) { 469 p = get_cached_data(XBZRLE.cache, current_addr); 470 } 471 } 472 473 /* XBZRLE overflow or normal page */ 474 if (bytes_sent == -1) { 475 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 476 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 477 bytes_sent += TARGET_PAGE_SIZE; 478 acct_info.norm_pages++; 479 } 480 481 /* if page is unmodified, continue to the next */ 482 if (bytes_sent > 0) { 483 last_sent_block = block; 484 break; 485 } 486 } 487 } 488 last_seen_block = block; 489 last_offset = offset; 490 491 return bytes_sent; 492 } 493 494 static uint64_t bytes_transferred; 495 496 void acct_update_position(QEMUFile *f, size_t size, bool zero) 497 { 498 uint64_t pages = size / TARGET_PAGE_SIZE; 499 if (zero) { 500 acct_info.dup_pages += pages; 501 } else { 502 acct_info.norm_pages += pages; 503 bytes_transferred += size; 504 qemu_update_position(f, size); 505 } 506 } 507 508 static ram_addr_t ram_save_remaining(void) 509 { 510 return migration_dirty_pages; 511 } 512 513 uint64_t ram_bytes_remaining(void) 514 { 515 return ram_save_remaining() * TARGET_PAGE_SIZE; 516 } 517 518 uint64_t ram_bytes_transferred(void) 519 { 520 return bytes_transferred; 521 } 522 523 uint64_t ram_bytes_total(void) 524 { 525 RAMBlock *block; 526 uint64_t total = 0; 527 528 QTAILQ_FOREACH(block, &ram_list.blocks, next) 529 total += block->length; 530 531 return total; 532 } 533 534 static void migration_end(void) 535 { 536 if (migration_bitmap) { 537 memory_global_dirty_log_stop(); 538 g_free(migration_bitmap); 539 migration_bitmap = NULL; 540 } 541 542 if (XBZRLE.cache) { 543 cache_fini(XBZRLE.cache); 544 g_free(XBZRLE.cache); 545 g_free(XBZRLE.encoded_buf); 546 g_free(XBZRLE.current_buf); 547 g_free(XBZRLE.decoded_buf); 548 XBZRLE.cache = NULL; 549 } 550 } 551 552 static void ram_migration_cancel(void *opaque) 553 { 554 migration_end(); 555 } 556 557 static void reset_ram_globals(void) 558 { 559 last_seen_block = NULL; 560 last_sent_block = NULL; 561 last_offset = 0; 562 last_version = ram_list.version; 563 ram_bulk_stage = true; 564 } 565 566 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 567 568 static int ram_save_setup(QEMUFile *f, void *opaque) 569 { 570 RAMBlock *block; 571 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 572 573 migration_bitmap = bitmap_new(ram_pages); 574 bitmap_set(migration_bitmap, 0, ram_pages); 575 migration_dirty_pages = ram_pages; 576 577 if (migrate_use_xbzrle()) { 578 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 579 TARGET_PAGE_SIZE, 580 TARGET_PAGE_SIZE); 581 if (!XBZRLE.cache) { 582 DPRINTF("Error creating cache\n"); 583 return -1; 584 } 585 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 586 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 587 acct_clear(); 588 } 589 590 qemu_mutex_lock_iothread(); 591 qemu_mutex_lock_ramlist(); 592 bytes_transferred = 0; 593 reset_ram_globals(); 594 595 memory_global_dirty_log_start(); 596 migration_bitmap_sync(); 597 qemu_mutex_unlock_iothread(); 598 599 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 600 601 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 602 qemu_put_byte(f, strlen(block->idstr)); 603 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 604 qemu_put_be64(f, block->length); 605 } 606 607 qemu_mutex_unlock_ramlist(); 608 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 609 610 return 0; 611 } 612 613 static int ram_save_iterate(QEMUFile *f, void *opaque) 614 { 615 int ret; 616 int i; 617 int64_t t0; 618 int total_sent = 0; 619 620 qemu_mutex_lock_ramlist(); 621 622 if (ram_list.version != last_version) { 623 reset_ram_globals(); 624 } 625 626 t0 = qemu_get_clock_ns(rt_clock); 627 i = 0; 628 while ((ret = qemu_file_rate_limit(f)) == 0) { 629 int bytes_sent; 630 631 bytes_sent = ram_save_block(f, false); 632 /* no more blocks to sent */ 633 if (bytes_sent == 0) { 634 break; 635 } 636 total_sent += bytes_sent; 637 acct_info.iterations++; 638 /* we want to check in the 1st loop, just in case it was the 1st time 639 and we had to sync the dirty bitmap. 640 qemu_get_clock_ns() is a bit expensive, so we only check each some 641 iterations 642 */ 643 if ((i & 63) == 0) { 644 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 645 if (t1 > MAX_WAIT) { 646 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 647 t1, i); 648 break; 649 } 650 } 651 i++; 652 } 653 654 qemu_mutex_unlock_ramlist(); 655 656 if (ret < 0) { 657 bytes_transferred += total_sent; 658 return ret; 659 } 660 661 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 662 total_sent += 8; 663 bytes_transferred += total_sent; 664 665 return total_sent; 666 } 667 668 static int ram_save_complete(QEMUFile *f, void *opaque) 669 { 670 qemu_mutex_lock_ramlist(); 671 migration_bitmap_sync(); 672 673 /* try transferring iterative blocks of memory */ 674 675 /* flush all remaining blocks regardless of rate limiting */ 676 while (true) { 677 int bytes_sent; 678 679 bytes_sent = ram_save_block(f, true); 680 /* no more blocks to sent */ 681 if (bytes_sent == 0) { 682 break; 683 } 684 bytes_transferred += bytes_sent; 685 } 686 migration_end(); 687 688 qemu_mutex_unlock_ramlist(); 689 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 690 691 return 0; 692 } 693 694 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 695 { 696 uint64_t remaining_size; 697 698 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 699 700 if (remaining_size < max_size) { 701 qemu_mutex_lock_iothread(); 702 migration_bitmap_sync(); 703 qemu_mutex_unlock_iothread(); 704 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 705 } 706 return remaining_size; 707 } 708 709 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 710 { 711 int ret, rc = 0; 712 unsigned int xh_len; 713 int xh_flags; 714 715 if (!XBZRLE.decoded_buf) { 716 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 717 } 718 719 /* extract RLE header */ 720 xh_flags = qemu_get_byte(f); 721 xh_len = qemu_get_be16(f); 722 723 if (xh_flags != ENCODING_FLAG_XBZRLE) { 724 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 725 return -1; 726 } 727 728 if (xh_len > TARGET_PAGE_SIZE) { 729 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 730 return -1; 731 } 732 /* load data and decode */ 733 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 734 735 /* decode RLE */ 736 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 737 TARGET_PAGE_SIZE); 738 if (ret == -1) { 739 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 740 rc = -1; 741 } else if (ret > TARGET_PAGE_SIZE) { 742 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 743 ret, TARGET_PAGE_SIZE); 744 abort(); 745 } 746 747 return rc; 748 } 749 750 static inline void *host_from_stream_offset(QEMUFile *f, 751 ram_addr_t offset, 752 int flags) 753 { 754 static RAMBlock *block = NULL; 755 char id[256]; 756 uint8_t len; 757 758 if (flags & RAM_SAVE_FLAG_CONTINUE) { 759 if (!block) { 760 fprintf(stderr, "Ack, bad migration stream!\n"); 761 return NULL; 762 } 763 764 return memory_region_get_ram_ptr(block->mr) + offset; 765 } 766 767 len = qemu_get_byte(f); 768 qemu_get_buffer(f, (uint8_t *)id, len); 769 id[len] = 0; 770 771 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 772 if (!strncmp(id, block->idstr, sizeof(id))) 773 return memory_region_get_ram_ptr(block->mr) + offset; 774 } 775 776 fprintf(stderr, "Can't find block %s!\n", id); 777 return NULL; 778 } 779 780 static int ram_load(QEMUFile *f, void *opaque, int version_id) 781 { 782 ram_addr_t addr; 783 int flags, ret = 0; 784 int error; 785 static uint64_t seq_iter; 786 787 seq_iter++; 788 789 if (version_id < 4 || version_id > 4) { 790 return -EINVAL; 791 } 792 793 do { 794 addr = qemu_get_be64(f); 795 796 flags = addr & ~TARGET_PAGE_MASK; 797 addr &= TARGET_PAGE_MASK; 798 799 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 800 if (version_id == 4) { 801 /* Synchronize RAM block list */ 802 char id[256]; 803 ram_addr_t length; 804 ram_addr_t total_ram_bytes = addr; 805 806 while (total_ram_bytes) { 807 RAMBlock *block; 808 uint8_t len; 809 810 len = qemu_get_byte(f); 811 qemu_get_buffer(f, (uint8_t *)id, len); 812 id[len] = 0; 813 length = qemu_get_be64(f); 814 815 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 816 if (!strncmp(id, block->idstr, sizeof(id))) { 817 if (block->length != length) { 818 fprintf(stderr, 819 "Length mismatch: %s: " RAM_ADDR_FMT 820 " in != " RAM_ADDR_FMT "\n", id, length, 821 block->length); 822 ret = -EINVAL; 823 goto done; 824 } 825 break; 826 } 827 } 828 829 if (!block) { 830 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 831 "accept migration\n", id); 832 ret = -EINVAL; 833 goto done; 834 } 835 836 total_ram_bytes -= length; 837 } 838 } 839 } 840 841 if (flags & RAM_SAVE_FLAG_COMPRESS) { 842 void *host; 843 uint8_t ch; 844 845 host = host_from_stream_offset(f, addr, flags); 846 if (!host) { 847 return -EINVAL; 848 } 849 850 ch = qemu_get_byte(f); 851 if (ch != 0 || !is_zero_page(host)) { 852 memset(host, ch, TARGET_PAGE_SIZE); 853 #ifndef _WIN32 854 if (ch == 0 && 855 (!kvm_enabled() || kvm_has_sync_mmu()) && 856 getpagesize() <= TARGET_PAGE_SIZE) { 857 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 858 } 859 #endif 860 } 861 } else if (flags & RAM_SAVE_FLAG_PAGE) { 862 void *host; 863 864 host = host_from_stream_offset(f, addr, flags); 865 if (!host) { 866 return -EINVAL; 867 } 868 869 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 870 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 871 void *host = host_from_stream_offset(f, addr, flags); 872 if (!host) { 873 return -EINVAL; 874 } 875 876 if (load_xbzrle(f, addr, host) < 0) { 877 ret = -EINVAL; 878 goto done; 879 } 880 } 881 error = qemu_file_get_error(f); 882 if (error) { 883 ret = error; 884 goto done; 885 } 886 } while (!(flags & RAM_SAVE_FLAG_EOS)); 887 888 done: 889 DPRINTF("Completed load of VM with exit code %d seq iteration " 890 "%" PRIu64 "\n", ret, seq_iter); 891 return ret; 892 } 893 894 SaveVMHandlers savevm_ram_handlers = { 895 .save_live_setup = ram_save_setup, 896 .save_live_iterate = ram_save_iterate, 897 .save_live_complete = ram_save_complete, 898 .save_live_pending = ram_save_pending, 899 .load_state = ram_load, 900 .cancel = ram_migration_cancel, 901 }; 902 903 struct soundhw { 904 const char *name; 905 const char *descr; 906 int enabled; 907 int isa; 908 union { 909 int (*init_isa) (ISABus *bus); 910 int (*init_pci) (PCIBus *bus); 911 } init; 912 }; 913 914 static struct soundhw soundhw[9]; 915 static int soundhw_count; 916 917 void isa_register_soundhw(const char *name, const char *descr, 918 int (*init_isa)(ISABus *bus)) 919 { 920 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 921 soundhw[soundhw_count].name = name; 922 soundhw[soundhw_count].descr = descr; 923 soundhw[soundhw_count].isa = 1; 924 soundhw[soundhw_count].init.init_isa = init_isa; 925 soundhw_count++; 926 } 927 928 void pci_register_soundhw(const char *name, const char *descr, 929 int (*init_pci)(PCIBus *bus)) 930 { 931 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 932 soundhw[soundhw_count].name = name; 933 soundhw[soundhw_count].descr = descr; 934 soundhw[soundhw_count].isa = 0; 935 soundhw[soundhw_count].init.init_pci = init_pci; 936 soundhw_count++; 937 } 938 939 void select_soundhw(const char *optarg) 940 { 941 struct soundhw *c; 942 943 if (is_help_option(optarg)) { 944 show_valid_cards: 945 946 if (soundhw_count) { 947 printf("Valid sound card names (comma separated):\n"); 948 for (c = soundhw; c->name; ++c) { 949 printf ("%-11s %s\n", c->name, c->descr); 950 } 951 printf("\n-soundhw all will enable all of the above\n"); 952 } else { 953 printf("Machine has no user-selectable audio hardware " 954 "(it may or may not have always-present audio hardware).\n"); 955 } 956 exit(!is_help_option(optarg)); 957 } 958 else { 959 size_t l; 960 const char *p; 961 char *e; 962 int bad_card = 0; 963 964 if (!strcmp(optarg, "all")) { 965 for (c = soundhw; c->name; ++c) { 966 c->enabled = 1; 967 } 968 return; 969 } 970 971 p = optarg; 972 while (*p) { 973 e = strchr(p, ','); 974 l = !e ? strlen(p) : (size_t) (e - p); 975 976 for (c = soundhw; c->name; ++c) { 977 if (!strncmp(c->name, p, l) && !c->name[l]) { 978 c->enabled = 1; 979 break; 980 } 981 } 982 983 if (!c->name) { 984 if (l > 80) { 985 fprintf(stderr, 986 "Unknown sound card name (too big to show)\n"); 987 } 988 else { 989 fprintf(stderr, "Unknown sound card name `%.*s'\n", 990 (int) l, p); 991 } 992 bad_card = 1; 993 } 994 p += l + (e != NULL); 995 } 996 997 if (bad_card) { 998 goto show_valid_cards; 999 } 1000 } 1001 } 1002 1003 void audio_init(void) 1004 { 1005 struct soundhw *c; 1006 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL); 1007 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL); 1008 1009 for (c = soundhw; c->name; ++c) { 1010 if (c->enabled) { 1011 if (c->isa) { 1012 if (!isa_bus) { 1013 fprintf(stderr, "ISA bus not available for %s\n", c->name); 1014 exit(1); 1015 } 1016 c->init.init_isa(isa_bus); 1017 } else { 1018 if (!pci_bus) { 1019 fprintf(stderr, "PCI bus not available for %s\n", c->name); 1020 exit(1); 1021 } 1022 c->init.init_pci(pci_bus); 1023 } 1024 } 1025 } 1026 } 1027 1028 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1029 { 1030 int ret; 1031 1032 if (strlen(str) != 36) { 1033 return -1; 1034 } 1035 1036 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1037 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1038 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1039 &uuid[15]); 1040 1041 if (ret != 16) { 1042 return -1; 1043 } 1044 #ifdef TARGET_I386 1045 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16); 1046 #endif 1047 return 0; 1048 } 1049 1050 void do_acpitable_option(const QemuOpts *opts) 1051 { 1052 #ifdef TARGET_I386 1053 Error *err = NULL; 1054 1055 acpi_table_add(opts, &err); 1056 if (err) { 1057 fprintf(stderr, "Wrong acpi table provided: %s\n", 1058 error_get_pretty(err)); 1059 error_free(err); 1060 exit(1); 1061 } 1062 #endif 1063 } 1064 1065 void do_smbios_option(const char *optarg) 1066 { 1067 #ifdef TARGET_I386 1068 if (smbios_entry_add(optarg) < 0) { 1069 exit(1); 1070 } 1071 #endif 1072 } 1073 1074 void cpudef_init(void) 1075 { 1076 #if defined(cpudef_setup) 1077 cpudef_setup(); /* parse cpu definitions in target config file */ 1078 #endif 1079 } 1080 1081 int tcg_available(void) 1082 { 1083 return 1; 1084 } 1085 1086 int kvm_available(void) 1087 { 1088 #ifdef CONFIG_KVM 1089 return 1; 1090 #else 1091 return 0; 1092 #endif 1093 } 1094 1095 int xen_available(void) 1096 { 1097 #ifdef CONFIG_XEN 1098 return 1; 1099 #else 1100 return 0; 1101 #endif 1102 } 1103 1104 1105 TargetInfo *qmp_query_target(Error **errp) 1106 { 1107 TargetInfo *info = g_malloc0(sizeof(*info)); 1108 1109 info->arch = g_strdup(TARGET_NAME); 1110 1111 return info; 1112 } 1113