1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audiodev.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_OPENRISC) 89 #define QEMU_ARCH QEMU_ARCH_OPENRISC 90 #elif defined(TARGET_PPC) 91 #define QEMU_ARCH QEMU_ARCH_PPC 92 #elif defined(TARGET_S390X) 93 #define QEMU_ARCH QEMU_ARCH_S390X 94 #elif defined(TARGET_SH4) 95 #define QEMU_ARCH QEMU_ARCH_SH4 96 #elif defined(TARGET_SPARC) 97 #define QEMU_ARCH QEMU_ARCH_SPARC 98 #elif defined(TARGET_XTENSA) 99 #define QEMU_ARCH QEMU_ARCH_XTENSA 100 #elif defined(TARGET_UNICORE32) 101 #define QEMU_ARCH QEMU_ARCH_UNICORE32 102 #endif 103 104 const uint32_t arch_type = QEMU_ARCH; 105 106 /***********************************************************/ 107 /* ram save/restore */ 108 109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 110 #define RAM_SAVE_FLAG_COMPRESS 0x02 111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 112 #define RAM_SAVE_FLAG_PAGE 0x08 113 #define RAM_SAVE_FLAG_EOS 0x10 114 #define RAM_SAVE_FLAG_CONTINUE 0x20 115 #define RAM_SAVE_FLAG_XBZRLE 0x40 116 117 #ifdef __ALTIVEC__ 118 #include <altivec.h> 119 #define VECTYPE vector unsigned char 120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0) 121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) 122 /* altivec.h may redefine the bool macro as vector type. 123 * Reset it to POSIX semantics. */ 124 #undef bool 125 #define bool _Bool 126 #elif defined __SSE2__ 127 #include <emmintrin.h> 128 #define VECTYPE __m128i 129 #define SPLAT(p) _mm_set1_epi8(*(p)) 130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) 131 #else 132 #define VECTYPE unsigned long 133 #define SPLAT(p) (*(p) * (~0UL / 255)) 134 #define ALL_EQ(v1, v2) ((v1) == (v2)) 135 #endif 136 137 138 static struct defconfig_file { 139 const char *filename; 140 /* Indicates it is an user config file (disabled by -no-user-config) */ 141 bool userconfig; 142 } default_config_files[] = { 143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 145 { NULL }, /* end of list */ 146 }; 147 148 149 int qemu_read_default_config_files(bool userconfig) 150 { 151 int ret; 152 struct defconfig_file *f; 153 154 for (f = default_config_files; f->filename; f++) { 155 if (!userconfig && f->userconfig) { 156 continue; 157 } 158 ret = qemu_read_config_file(f->filename); 159 if (ret < 0 && ret != -ENOENT) { 160 return ret; 161 } 162 } 163 164 return 0; 165 } 166 167 static int is_dup_page(uint8_t *page) 168 { 169 VECTYPE *p = (VECTYPE *)page; 170 VECTYPE val = SPLAT(page); 171 int i; 172 173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) { 174 if (!ALL_EQ(val, p[i])) { 175 return 0; 176 } 177 } 178 179 return 1; 180 } 181 182 /* struct contains XBZRLE cache and a static page 183 used by the compression */ 184 static struct { 185 /* buffer used for XBZRLE encoding */ 186 uint8_t *encoded_buf; 187 /* buffer for storing page content */ 188 uint8_t *current_buf; 189 /* buffer used for XBZRLE decoding */ 190 uint8_t *decoded_buf; 191 /* Cache for XBZRLE */ 192 PageCache *cache; 193 } XBZRLE = { 194 .encoded_buf = NULL, 195 .current_buf = NULL, 196 .decoded_buf = NULL, 197 .cache = NULL, 198 }; 199 200 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 if (XBZRLE.cache != NULL) { 204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 205 TARGET_PAGE_SIZE; 206 } 207 return pow2floor(new_size); 208 } 209 210 /* accounting for migration statistics */ 211 typedef struct AccountingInfo { 212 uint64_t dup_pages; 213 uint64_t norm_pages; 214 uint64_t iterations; 215 uint64_t xbzrle_bytes; 216 uint64_t xbzrle_pages; 217 uint64_t xbzrle_cache_miss; 218 uint64_t xbzrle_overflows; 219 } AccountingInfo; 220 221 static AccountingInfo acct_info; 222 223 static void acct_clear(void) 224 { 225 memset(&acct_info, 0, sizeof(acct_info)); 226 } 227 228 uint64_t dup_mig_bytes_transferred(void) 229 { 230 return acct_info.dup_pages * TARGET_PAGE_SIZE; 231 } 232 233 uint64_t dup_mig_pages_transferred(void) 234 { 235 return acct_info.dup_pages; 236 } 237 238 uint64_t norm_mig_bytes_transferred(void) 239 { 240 return acct_info.norm_pages * TARGET_PAGE_SIZE; 241 } 242 243 uint64_t norm_mig_pages_transferred(void) 244 { 245 return acct_info.norm_pages; 246 } 247 248 uint64_t xbzrle_mig_bytes_transferred(void) 249 { 250 return acct_info.xbzrle_bytes; 251 } 252 253 uint64_t xbzrle_mig_pages_transferred(void) 254 { 255 return acct_info.xbzrle_pages; 256 } 257 258 uint64_t xbzrle_mig_pages_cache_miss(void) 259 { 260 return acct_info.xbzrle_cache_miss; 261 } 262 263 uint64_t xbzrle_mig_pages_overflow(void) 264 { 265 return acct_info.xbzrle_overflows; 266 } 267 268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 269 int cont, int flag) 270 { 271 qemu_put_be64(f, offset | cont | flag); 272 if (!cont) { 273 qemu_put_byte(f, strlen(block->idstr)); 274 qemu_put_buffer(f, (uint8_t *)block->idstr, 275 strlen(block->idstr)); 276 } 277 278 } 279 280 #define ENCODING_FLAG_XBZRLE 0x1 281 282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 283 ram_addr_t current_addr, RAMBlock *block, 284 ram_addr_t offset, int cont, bool last_stage) 285 { 286 int encoded_len = 0, bytes_sent = -1; 287 uint8_t *prev_cached_page; 288 289 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 290 if (!last_stage) { 291 cache_insert(XBZRLE.cache, current_addr, 292 g_memdup(current_data, TARGET_PAGE_SIZE)); 293 } 294 acct_info.xbzrle_cache_miss++; 295 return -1; 296 } 297 298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 299 300 /* save current buffer into memory */ 301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 302 303 /* XBZRLE encoding (if there is no overflow) */ 304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 306 TARGET_PAGE_SIZE); 307 if (encoded_len == 0) { 308 DPRINTF("Skipping unmodified page\n"); 309 return 0; 310 } else if (encoded_len == -1) { 311 DPRINTF("Overflow\n"); 312 acct_info.xbzrle_overflows++; 313 /* update data in the cache */ 314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 315 return -1; 316 } 317 318 /* we need to update the data in the cache, in order to get the same data */ 319 if (!last_stage) { 320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 321 } 322 323 /* Send XBZRLE based compressed page */ 324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 326 qemu_put_be16(f, encoded_len); 327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 328 bytes_sent = encoded_len + 1 + 2; 329 acct_info.xbzrle_pages++; 330 acct_info.xbzrle_bytes += bytes_sent; 331 332 return bytes_sent; 333 } 334 335 336 /* This is the last block that we have visited serching for dirty pages 337 */ 338 static RAMBlock *last_seen_block; 339 /* This is the last block from where we have sent data */ 340 static RAMBlock *last_sent_block; 341 static ram_addr_t last_offset; 342 static unsigned long *migration_bitmap; 343 static uint64_t migration_dirty_pages; 344 static uint32_t last_version; 345 346 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr, 347 ram_addr_t offset) 348 { 349 bool ret; 350 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 351 352 ret = test_and_clear_bit(nr, migration_bitmap); 353 354 if (ret) { 355 migration_dirty_pages--; 356 } 357 return ret; 358 } 359 360 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 361 ram_addr_t offset) 362 { 363 bool ret; 364 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 365 366 ret = test_and_set_bit(nr, migration_bitmap); 367 368 if (!ret) { 369 migration_dirty_pages++; 370 } 371 return ret; 372 } 373 374 static void migration_bitmap_sync(void) 375 { 376 RAMBlock *block; 377 ram_addr_t addr; 378 uint64_t num_dirty_pages_init = migration_dirty_pages; 379 MigrationState *s = migrate_get_current(); 380 static int64_t start_time; 381 static int64_t num_dirty_pages_period; 382 int64_t end_time; 383 384 if (!start_time) { 385 start_time = qemu_get_clock_ms(rt_clock); 386 } 387 388 trace_migration_bitmap_sync_start(); 389 memory_global_sync_dirty_bitmap(get_system_memory()); 390 391 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 392 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 393 if (memory_region_test_and_clear_dirty(block->mr, 394 addr, TARGET_PAGE_SIZE, 395 DIRTY_MEMORY_MIGRATION)) { 396 migration_bitmap_set_dirty(block->mr, addr); 397 } 398 } 399 } 400 trace_migration_bitmap_sync_end(migration_dirty_pages 401 - num_dirty_pages_init); 402 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 403 end_time = qemu_get_clock_ms(rt_clock); 404 405 /* more than 1 second = 1000 millisecons */ 406 if (end_time > start_time + 1000) { 407 s->dirty_pages_rate = num_dirty_pages_period * 1000 408 / (end_time - start_time); 409 start_time = end_time; 410 num_dirty_pages_period = 0; 411 } 412 } 413 414 /* 415 * ram_save_block: Writes a page of memory to the stream f 416 * 417 * Returns: 0: if the page hasn't changed 418 * -1: if there are no more dirty pages 419 * n: the amount of bytes written in other case 420 */ 421 422 static int ram_save_block(QEMUFile *f, bool last_stage) 423 { 424 RAMBlock *block = last_seen_block; 425 ram_addr_t offset = last_offset; 426 int bytes_sent = -1; 427 MemoryRegion *mr; 428 ram_addr_t current_addr; 429 430 if (!block) 431 block = QTAILQ_FIRST(&ram_list.blocks); 432 433 do { 434 mr = block->mr; 435 if (migration_bitmap_test_and_reset_dirty(mr, offset)) { 436 uint8_t *p; 437 int cont = (block == last_sent_block) ? 438 RAM_SAVE_FLAG_CONTINUE : 0; 439 440 p = memory_region_get_ram_ptr(mr) + offset; 441 442 if (is_dup_page(p)) { 443 acct_info.dup_pages++; 444 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS); 445 qemu_put_byte(f, *p); 446 bytes_sent = 1; 447 } else if (migrate_use_xbzrle()) { 448 current_addr = block->offset + offset; 449 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 450 offset, cont, last_stage); 451 if (!last_stage) { 452 p = get_cached_data(XBZRLE.cache, current_addr); 453 } 454 } 455 456 /* either we didn't send yet (we may have had XBZRLE overflow) */ 457 if (bytes_sent == -1) { 458 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 459 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 460 bytes_sent = TARGET_PAGE_SIZE; 461 acct_info.norm_pages++; 462 } 463 464 /* if page is unmodified, continue to the next */ 465 if (bytes_sent != 0) { 466 last_sent_block = block; 467 break; 468 } 469 } 470 471 offset += TARGET_PAGE_SIZE; 472 if (offset >= block->length) { 473 offset = 0; 474 block = QTAILQ_NEXT(block, next); 475 if (!block) 476 block = QTAILQ_FIRST(&ram_list.blocks); 477 } 478 } while (block != last_seen_block || offset != last_offset); 479 480 last_seen_block = block; 481 last_offset = offset; 482 483 return bytes_sent; 484 } 485 486 static uint64_t bytes_transferred; 487 488 static ram_addr_t ram_save_remaining(void) 489 { 490 return migration_dirty_pages; 491 } 492 493 uint64_t ram_bytes_remaining(void) 494 { 495 return ram_save_remaining() * TARGET_PAGE_SIZE; 496 } 497 498 uint64_t ram_bytes_transferred(void) 499 { 500 return bytes_transferred; 501 } 502 503 uint64_t ram_bytes_total(void) 504 { 505 RAMBlock *block; 506 uint64_t total = 0; 507 508 QTAILQ_FOREACH(block, &ram_list.blocks, next) 509 total += block->length; 510 511 return total; 512 } 513 514 static void migration_end(void) 515 { 516 if (migration_bitmap) { 517 memory_global_dirty_log_stop(); 518 g_free(migration_bitmap); 519 migration_bitmap = NULL; 520 } 521 522 if (XBZRLE.cache) { 523 cache_fini(XBZRLE.cache); 524 g_free(XBZRLE.cache); 525 g_free(XBZRLE.encoded_buf); 526 g_free(XBZRLE.current_buf); 527 g_free(XBZRLE.decoded_buf); 528 XBZRLE.cache = NULL; 529 } 530 } 531 532 static void ram_migration_cancel(void *opaque) 533 { 534 migration_end(); 535 } 536 537 static void reset_ram_globals(void) 538 { 539 last_seen_block = NULL; 540 last_sent_block = NULL; 541 last_offset = 0; 542 last_version = ram_list.version; 543 } 544 545 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 546 547 static int ram_save_setup(QEMUFile *f, void *opaque) 548 { 549 RAMBlock *block; 550 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 551 552 migration_bitmap = bitmap_new(ram_pages); 553 bitmap_set(migration_bitmap, 0, ram_pages); 554 migration_dirty_pages = ram_pages; 555 556 qemu_mutex_lock_ramlist(); 557 bytes_transferred = 0; 558 reset_ram_globals(); 559 560 if (migrate_use_xbzrle()) { 561 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 562 TARGET_PAGE_SIZE, 563 TARGET_PAGE_SIZE); 564 if (!XBZRLE.cache) { 565 DPRINTF("Error creating cache\n"); 566 return -1; 567 } 568 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 569 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 570 acct_clear(); 571 } 572 573 memory_global_dirty_log_start(); 574 migration_bitmap_sync(); 575 576 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 577 578 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 579 qemu_put_byte(f, strlen(block->idstr)); 580 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 581 qemu_put_be64(f, block->length); 582 } 583 584 qemu_mutex_unlock_ramlist(); 585 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 586 587 return 0; 588 } 589 590 static int ram_save_iterate(QEMUFile *f, void *opaque) 591 { 592 int ret; 593 int i; 594 int64_t t0; 595 596 qemu_mutex_lock_ramlist(); 597 598 if (ram_list.version != last_version) { 599 reset_ram_globals(); 600 } 601 602 t0 = qemu_get_clock_ns(rt_clock); 603 i = 0; 604 while ((ret = qemu_file_rate_limit(f)) == 0) { 605 int bytes_sent; 606 607 bytes_sent = ram_save_block(f, false); 608 /* no more blocks to sent */ 609 if (bytes_sent < 0) { 610 break; 611 } 612 bytes_transferred += bytes_sent; 613 acct_info.iterations++; 614 /* we want to check in the 1st loop, just in case it was the 1st time 615 and we had to sync the dirty bitmap. 616 qemu_get_clock_ns() is a bit expensive, so we only check each some 617 iterations 618 */ 619 if ((i & 63) == 0) { 620 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 621 if (t1 > MAX_WAIT) { 622 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 623 t1, i); 624 break; 625 } 626 } 627 i++; 628 } 629 630 if (ret < 0) { 631 return ret; 632 } 633 634 qemu_mutex_unlock_ramlist(); 635 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 636 637 return i; 638 } 639 640 static int ram_save_complete(QEMUFile *f, void *opaque) 641 { 642 migration_bitmap_sync(); 643 644 qemu_mutex_lock_ramlist(); 645 646 /* try transferring iterative blocks of memory */ 647 648 /* flush all remaining blocks regardless of rate limiting */ 649 while (true) { 650 int bytes_sent; 651 652 bytes_sent = ram_save_block(f, true); 653 /* no more blocks to sent */ 654 if (bytes_sent < 0) { 655 break; 656 } 657 bytes_transferred += bytes_sent; 658 } 659 migration_end(); 660 661 qemu_mutex_unlock_ramlist(); 662 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 663 664 return 0; 665 } 666 667 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 668 { 669 uint64_t remaining_size; 670 671 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 672 673 if (remaining_size < max_size) { 674 migration_bitmap_sync(); 675 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 676 } 677 return remaining_size; 678 } 679 680 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 681 { 682 int ret, rc = 0; 683 unsigned int xh_len; 684 int xh_flags; 685 686 if (!XBZRLE.decoded_buf) { 687 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 688 } 689 690 /* extract RLE header */ 691 xh_flags = qemu_get_byte(f); 692 xh_len = qemu_get_be16(f); 693 694 if (xh_flags != ENCODING_FLAG_XBZRLE) { 695 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 696 return -1; 697 } 698 699 if (xh_len > TARGET_PAGE_SIZE) { 700 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 701 return -1; 702 } 703 /* load data and decode */ 704 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 705 706 /* decode RLE */ 707 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 708 TARGET_PAGE_SIZE); 709 if (ret == -1) { 710 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 711 rc = -1; 712 } else if (ret > TARGET_PAGE_SIZE) { 713 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 714 ret, TARGET_PAGE_SIZE); 715 abort(); 716 } 717 718 return rc; 719 } 720 721 static inline void *host_from_stream_offset(QEMUFile *f, 722 ram_addr_t offset, 723 int flags) 724 { 725 static RAMBlock *block = NULL; 726 char id[256]; 727 uint8_t len; 728 729 if (flags & RAM_SAVE_FLAG_CONTINUE) { 730 if (!block) { 731 fprintf(stderr, "Ack, bad migration stream!\n"); 732 return NULL; 733 } 734 735 return memory_region_get_ram_ptr(block->mr) + offset; 736 } 737 738 len = qemu_get_byte(f); 739 qemu_get_buffer(f, (uint8_t *)id, len); 740 id[len] = 0; 741 742 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 743 if (!strncmp(id, block->idstr, sizeof(id))) 744 return memory_region_get_ram_ptr(block->mr) + offset; 745 } 746 747 fprintf(stderr, "Can't find block %s!\n", id); 748 return NULL; 749 } 750 751 static int ram_load(QEMUFile *f, void *opaque, int version_id) 752 { 753 ram_addr_t addr; 754 int flags, ret = 0; 755 int error; 756 static uint64_t seq_iter; 757 758 seq_iter++; 759 760 if (version_id < 4 || version_id > 4) { 761 return -EINVAL; 762 } 763 764 do { 765 addr = qemu_get_be64(f); 766 767 flags = addr & ~TARGET_PAGE_MASK; 768 addr &= TARGET_PAGE_MASK; 769 770 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 771 if (version_id == 4) { 772 /* Synchronize RAM block list */ 773 char id[256]; 774 ram_addr_t length; 775 ram_addr_t total_ram_bytes = addr; 776 777 while (total_ram_bytes) { 778 RAMBlock *block; 779 uint8_t len; 780 781 len = qemu_get_byte(f); 782 qemu_get_buffer(f, (uint8_t *)id, len); 783 id[len] = 0; 784 length = qemu_get_be64(f); 785 786 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 787 if (!strncmp(id, block->idstr, sizeof(id))) { 788 if (block->length != length) { 789 ret = -EINVAL; 790 goto done; 791 } 792 break; 793 } 794 } 795 796 if (!block) { 797 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 798 "accept migration\n", id); 799 ret = -EINVAL; 800 goto done; 801 } 802 803 total_ram_bytes -= length; 804 } 805 } 806 } 807 808 if (flags & RAM_SAVE_FLAG_COMPRESS) { 809 void *host; 810 uint8_t ch; 811 812 host = host_from_stream_offset(f, addr, flags); 813 if (!host) { 814 return -EINVAL; 815 } 816 817 ch = qemu_get_byte(f); 818 memset(host, ch, TARGET_PAGE_SIZE); 819 #ifndef _WIN32 820 if (ch == 0 && 821 (!kvm_enabled() || kvm_has_sync_mmu()) && 822 getpagesize() <= TARGET_PAGE_SIZE) { 823 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 824 } 825 #endif 826 } else if (flags & RAM_SAVE_FLAG_PAGE) { 827 void *host; 828 829 host = host_from_stream_offset(f, addr, flags); 830 if (!host) { 831 return -EINVAL; 832 } 833 834 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 835 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 836 if (!migrate_use_xbzrle()) { 837 return -EINVAL; 838 } 839 void *host = host_from_stream_offset(f, addr, flags); 840 if (!host) { 841 return -EINVAL; 842 } 843 844 if (load_xbzrle(f, addr, host) < 0) { 845 ret = -EINVAL; 846 goto done; 847 } 848 } 849 error = qemu_file_get_error(f); 850 if (error) { 851 ret = error; 852 goto done; 853 } 854 } while (!(flags & RAM_SAVE_FLAG_EOS)); 855 856 done: 857 DPRINTF("Completed load of VM with exit code %d seq iteration " 858 "%" PRIu64 "\n", ret, seq_iter); 859 return ret; 860 } 861 862 SaveVMHandlers savevm_ram_handlers = { 863 .save_live_setup = ram_save_setup, 864 .save_live_iterate = ram_save_iterate, 865 .save_live_complete = ram_save_complete, 866 .save_live_pending = ram_save_pending, 867 .load_state = ram_load, 868 .cancel = ram_migration_cancel, 869 }; 870 871 #ifdef HAS_AUDIO 872 struct soundhw { 873 const char *name; 874 const char *descr; 875 int enabled; 876 int isa; 877 union { 878 int (*init_isa) (ISABus *bus); 879 int (*init_pci) (PCIBus *bus); 880 } init; 881 }; 882 883 static struct soundhw soundhw[] = { 884 #ifdef HAS_AUDIO_CHOICE 885 #ifdef CONFIG_PCSPK 886 { 887 "pcspk", 888 "PC speaker", 889 0, 890 1, 891 { .init_isa = pcspk_audio_init } 892 }, 893 #endif 894 895 #ifdef CONFIG_SB16 896 { 897 "sb16", 898 "Creative Sound Blaster 16", 899 0, 900 1, 901 { .init_isa = SB16_init } 902 }, 903 #endif 904 905 #ifdef CONFIG_CS4231A 906 { 907 "cs4231a", 908 "CS4231A", 909 0, 910 1, 911 { .init_isa = cs4231a_init } 912 }, 913 #endif 914 915 #ifdef CONFIG_ADLIB 916 { 917 "adlib", 918 #ifdef HAS_YMF262 919 "Yamaha YMF262 (OPL3)", 920 #else 921 "Yamaha YM3812 (OPL2)", 922 #endif 923 0, 924 1, 925 { .init_isa = Adlib_init } 926 }, 927 #endif 928 929 #ifdef CONFIG_GUS 930 { 931 "gus", 932 "Gravis Ultrasound GF1", 933 0, 934 1, 935 { .init_isa = GUS_init } 936 }, 937 #endif 938 939 #ifdef CONFIG_AC97 940 { 941 "ac97", 942 "Intel 82801AA AC97 Audio", 943 0, 944 0, 945 { .init_pci = ac97_init } 946 }, 947 #endif 948 949 #ifdef CONFIG_ES1370 950 { 951 "es1370", 952 "ENSONIQ AudioPCI ES1370", 953 0, 954 0, 955 { .init_pci = es1370_init } 956 }, 957 #endif 958 959 #ifdef CONFIG_HDA 960 { 961 "hda", 962 "Intel HD Audio", 963 0, 964 0, 965 { .init_pci = intel_hda_and_codec_init } 966 }, 967 #endif 968 969 #endif /* HAS_AUDIO_CHOICE */ 970 971 { NULL, NULL, 0, 0, { NULL } } 972 }; 973 974 void select_soundhw(const char *optarg) 975 { 976 struct soundhw *c; 977 978 if (is_help_option(optarg)) { 979 show_valid_cards: 980 981 #ifdef HAS_AUDIO_CHOICE 982 printf("Valid sound card names (comma separated):\n"); 983 for (c = soundhw; c->name; ++c) { 984 printf ("%-11s %s\n", c->name, c->descr); 985 } 986 printf("\n-soundhw all will enable all of the above\n"); 987 #else 988 printf("Machine has no user-selectable audio hardware " 989 "(it may or may not have always-present audio hardware).\n"); 990 #endif 991 exit(!is_help_option(optarg)); 992 } 993 else { 994 size_t l; 995 const char *p; 996 char *e; 997 int bad_card = 0; 998 999 if (!strcmp(optarg, "all")) { 1000 for (c = soundhw; c->name; ++c) { 1001 c->enabled = 1; 1002 } 1003 return; 1004 } 1005 1006 p = optarg; 1007 while (*p) { 1008 e = strchr(p, ','); 1009 l = !e ? strlen(p) : (size_t) (e - p); 1010 1011 for (c = soundhw; c->name; ++c) { 1012 if (!strncmp(c->name, p, l) && !c->name[l]) { 1013 c->enabled = 1; 1014 break; 1015 } 1016 } 1017 1018 if (!c->name) { 1019 if (l > 80) { 1020 fprintf(stderr, 1021 "Unknown sound card name (too big to show)\n"); 1022 } 1023 else { 1024 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1025 (int) l, p); 1026 } 1027 bad_card = 1; 1028 } 1029 p += l + (e != NULL); 1030 } 1031 1032 if (bad_card) { 1033 goto show_valid_cards; 1034 } 1035 } 1036 } 1037 1038 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1039 { 1040 struct soundhw *c; 1041 1042 for (c = soundhw; c->name; ++c) { 1043 if (c->enabled) { 1044 if (c->isa) { 1045 if (isa_bus) { 1046 c->init.init_isa(isa_bus); 1047 } 1048 } else { 1049 if (pci_bus) { 1050 c->init.init_pci(pci_bus); 1051 } 1052 } 1053 } 1054 } 1055 } 1056 #else 1057 void select_soundhw(const char *optarg) 1058 { 1059 } 1060 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1061 { 1062 } 1063 #endif 1064 1065 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1066 { 1067 int ret; 1068 1069 if (strlen(str) != 36) { 1070 return -1; 1071 } 1072 1073 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1074 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1075 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1076 &uuid[15]); 1077 1078 if (ret != 16) { 1079 return -1; 1080 } 1081 #ifdef TARGET_I386 1082 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1083 #endif 1084 return 0; 1085 } 1086 1087 void do_acpitable_option(const char *optarg) 1088 { 1089 #ifdef TARGET_I386 1090 if (acpi_table_add(optarg) < 0) { 1091 fprintf(stderr, "Wrong acpi table provided\n"); 1092 exit(1); 1093 } 1094 #endif 1095 } 1096 1097 void do_smbios_option(const char *optarg) 1098 { 1099 #ifdef TARGET_I386 1100 if (smbios_entry_add(optarg) < 0) { 1101 fprintf(stderr, "Wrong smbios provided\n"); 1102 exit(1); 1103 } 1104 #endif 1105 } 1106 1107 void cpudef_init(void) 1108 { 1109 #if defined(cpudef_setup) 1110 cpudef_setup(); /* parse cpu definitions in target config file */ 1111 #endif 1112 } 1113 1114 int audio_available(void) 1115 { 1116 #ifdef HAS_AUDIO 1117 return 1; 1118 #else 1119 return 0; 1120 #endif 1121 } 1122 1123 int tcg_available(void) 1124 { 1125 return 1; 1126 } 1127 1128 int kvm_available(void) 1129 { 1130 #ifdef CONFIG_KVM 1131 return 1; 1132 #else 1133 return 0; 1134 #endif 1135 } 1136 1137 int xen_available(void) 1138 { 1139 #ifdef CONFIG_XEN 1140 return 1; 1141 #else 1142 return 0; 1143 #endif 1144 } 1145 1146 1147 TargetInfo *qmp_query_target(Error **errp) 1148 { 1149 TargetInfo *info = g_malloc0(sizeof(*info)); 1150 1151 info->arch = TARGET_TYPE; 1152 1153 return info; 1154 } 1155