xref: /qemu/system/arch_init.c (revision e4ed1541ac9413eac494a03532e34beaf8a7d1c5)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audiodev.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "exec/gdbstub.h"
44 #include "hw/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58     do { } while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 15;
69 #endif
70 
71 
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_OPENRISC)
89 #define QEMU_ARCH QEMU_ARCH_OPENRISC
90 #elif defined(TARGET_PPC)
91 #define QEMU_ARCH QEMU_ARCH_PPC
92 #elif defined(TARGET_S390X)
93 #define QEMU_ARCH QEMU_ARCH_S390X
94 #elif defined(TARGET_SH4)
95 #define QEMU_ARCH QEMU_ARCH_SH4
96 #elif defined(TARGET_SPARC)
97 #define QEMU_ARCH QEMU_ARCH_SPARC
98 #elif defined(TARGET_XTENSA)
99 #define QEMU_ARCH QEMU_ARCH_XTENSA
100 #elif defined(TARGET_UNICORE32)
101 #define QEMU_ARCH QEMU_ARCH_UNICORE32
102 #endif
103 
104 const uint32_t arch_type = QEMU_ARCH;
105 
106 /***********************************************************/
107 /* ram save/restore */
108 
109 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
110 #define RAM_SAVE_FLAG_COMPRESS 0x02
111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
112 #define RAM_SAVE_FLAG_PAGE     0x08
113 #define RAM_SAVE_FLAG_EOS      0x10
114 #define RAM_SAVE_FLAG_CONTINUE 0x20
115 #define RAM_SAVE_FLAG_XBZRLE   0x40
116 
117 #ifdef __ALTIVEC__
118 #include <altivec.h>
119 #define VECTYPE        vector unsigned char
120 #define SPLAT(p)       vec_splat(vec_ld(0, p), 0)
121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
122 /* altivec.h may redefine the bool macro as vector type.
123  * Reset it to POSIX semantics. */
124 #undef bool
125 #define bool _Bool
126 #elif defined __SSE2__
127 #include <emmintrin.h>
128 #define VECTYPE        __m128i
129 #define SPLAT(p)       _mm_set1_epi8(*(p))
130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
131 #else
132 #define VECTYPE        unsigned long
133 #define SPLAT(p)       (*(p) * (~0UL / 255))
134 #define ALL_EQ(v1, v2) ((v1) == (v2))
135 #endif
136 
137 
138 static struct defconfig_file {
139     const char *filename;
140     /* Indicates it is an user config file (disabled by -no-user-config) */
141     bool userconfig;
142 } default_config_files[] = {
143     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
144     { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
145     { NULL }, /* end of list */
146 };
147 
148 
149 int qemu_read_default_config_files(bool userconfig)
150 {
151     int ret;
152     struct defconfig_file *f;
153 
154     for (f = default_config_files; f->filename; f++) {
155         if (!userconfig && f->userconfig) {
156             continue;
157         }
158         ret = qemu_read_config_file(f->filename);
159         if (ret < 0 && ret != -ENOENT) {
160             return ret;
161         }
162     }
163 
164     return 0;
165 }
166 
167 static int is_dup_page(uint8_t *page)
168 {
169     VECTYPE *p = (VECTYPE *)page;
170     VECTYPE val = SPLAT(page);
171     int i;
172 
173     for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
174         if (!ALL_EQ(val, p[i])) {
175             return 0;
176         }
177     }
178 
179     return 1;
180 }
181 
182 /* struct contains XBZRLE cache and a static page
183    used by the compression */
184 static struct {
185     /* buffer used for XBZRLE encoding */
186     uint8_t *encoded_buf;
187     /* buffer for storing page content */
188     uint8_t *current_buf;
189     /* buffer used for XBZRLE decoding */
190     uint8_t *decoded_buf;
191     /* Cache for XBZRLE */
192     PageCache *cache;
193 } XBZRLE = {
194     .encoded_buf = NULL,
195     .current_buf = NULL,
196     .decoded_buf = NULL,
197     .cache = NULL,
198 };
199 
200 
201 int64_t xbzrle_cache_resize(int64_t new_size)
202 {
203     if (XBZRLE.cache != NULL) {
204         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
205             TARGET_PAGE_SIZE;
206     }
207     return pow2floor(new_size);
208 }
209 
210 /* accounting for migration statistics */
211 typedef struct AccountingInfo {
212     uint64_t dup_pages;
213     uint64_t norm_pages;
214     uint64_t iterations;
215     uint64_t xbzrle_bytes;
216     uint64_t xbzrle_pages;
217     uint64_t xbzrle_cache_miss;
218     uint64_t xbzrle_overflows;
219 } AccountingInfo;
220 
221 static AccountingInfo acct_info;
222 
223 static void acct_clear(void)
224 {
225     memset(&acct_info, 0, sizeof(acct_info));
226 }
227 
228 uint64_t dup_mig_bytes_transferred(void)
229 {
230     return acct_info.dup_pages * TARGET_PAGE_SIZE;
231 }
232 
233 uint64_t dup_mig_pages_transferred(void)
234 {
235     return acct_info.dup_pages;
236 }
237 
238 uint64_t norm_mig_bytes_transferred(void)
239 {
240     return acct_info.norm_pages * TARGET_PAGE_SIZE;
241 }
242 
243 uint64_t norm_mig_pages_transferred(void)
244 {
245     return acct_info.norm_pages;
246 }
247 
248 uint64_t xbzrle_mig_bytes_transferred(void)
249 {
250     return acct_info.xbzrle_bytes;
251 }
252 
253 uint64_t xbzrle_mig_pages_transferred(void)
254 {
255     return acct_info.xbzrle_pages;
256 }
257 
258 uint64_t xbzrle_mig_pages_cache_miss(void)
259 {
260     return acct_info.xbzrle_cache_miss;
261 }
262 
263 uint64_t xbzrle_mig_pages_overflow(void)
264 {
265     return acct_info.xbzrle_overflows;
266 }
267 
268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
269         int cont, int flag)
270 {
271         qemu_put_be64(f, offset | cont | flag);
272         if (!cont) {
273                 qemu_put_byte(f, strlen(block->idstr));
274                 qemu_put_buffer(f, (uint8_t *)block->idstr,
275                                 strlen(block->idstr));
276         }
277 
278 }
279 
280 #define ENCODING_FLAG_XBZRLE 0x1
281 
282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
283                             ram_addr_t current_addr, RAMBlock *block,
284                             ram_addr_t offset, int cont, bool last_stage)
285 {
286     int encoded_len = 0, bytes_sent = -1;
287     uint8_t *prev_cached_page;
288 
289     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
290         if (!last_stage) {
291             cache_insert(XBZRLE.cache, current_addr,
292                          g_memdup(current_data, TARGET_PAGE_SIZE));
293         }
294         acct_info.xbzrle_cache_miss++;
295         return -1;
296     }
297 
298     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
299 
300     /* save current buffer into memory */
301     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
302 
303     /* XBZRLE encoding (if there is no overflow) */
304     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
305                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
306                                        TARGET_PAGE_SIZE);
307     if (encoded_len == 0) {
308         DPRINTF("Skipping unmodified page\n");
309         return 0;
310     } else if (encoded_len == -1) {
311         DPRINTF("Overflow\n");
312         acct_info.xbzrle_overflows++;
313         /* update data in the cache */
314         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
315         return -1;
316     }
317 
318     /* we need to update the data in the cache, in order to get the same data */
319     if (!last_stage) {
320         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
321     }
322 
323     /* Send XBZRLE based compressed page */
324     save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
325     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
326     qemu_put_be16(f, encoded_len);
327     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
328     bytes_sent = encoded_len + 1 + 2;
329     acct_info.xbzrle_pages++;
330     acct_info.xbzrle_bytes += bytes_sent;
331 
332     return bytes_sent;
333 }
334 
335 static RAMBlock *last_block;
336 static ram_addr_t last_offset;
337 static unsigned long *migration_bitmap;
338 static uint64_t migration_dirty_pages;
339 static uint32_t last_version;
340 
341 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr,
342                                                          ram_addr_t offset)
343 {
344     bool ret;
345     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
346 
347     ret = test_and_clear_bit(nr, migration_bitmap);
348 
349     if (ret) {
350         migration_dirty_pages--;
351     }
352     return ret;
353 }
354 
355 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
356                                               ram_addr_t offset)
357 {
358     bool ret;
359     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
360 
361     ret = test_and_set_bit(nr, migration_bitmap);
362 
363     if (!ret) {
364         migration_dirty_pages++;
365     }
366     return ret;
367 }
368 
369 static void migration_bitmap_sync(void)
370 {
371     RAMBlock *block;
372     ram_addr_t addr;
373     uint64_t num_dirty_pages_init = migration_dirty_pages;
374     MigrationState *s = migrate_get_current();
375     static int64_t start_time;
376     static int64_t num_dirty_pages_period;
377     int64_t end_time;
378 
379     if (!start_time) {
380         start_time = qemu_get_clock_ms(rt_clock);
381     }
382 
383     trace_migration_bitmap_sync_start();
384     memory_global_sync_dirty_bitmap(get_system_memory());
385 
386     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
387         for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
388             if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
389                                         DIRTY_MEMORY_MIGRATION)) {
390                 migration_bitmap_set_dirty(block->mr, addr);
391             }
392         }
393         memory_region_reset_dirty(block->mr, 0, block->length,
394                                   DIRTY_MEMORY_MIGRATION);
395     }
396     trace_migration_bitmap_sync_end(migration_dirty_pages
397                                     - num_dirty_pages_init);
398     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
399     end_time = qemu_get_clock_ms(rt_clock);
400 
401     /* more than 1 second = 1000 millisecons */
402     if (end_time > start_time + 1000) {
403         s->dirty_pages_rate = num_dirty_pages_period * 1000
404             / (end_time - start_time);
405         start_time = end_time;
406         num_dirty_pages_period = 0;
407     }
408 }
409 
410 /*
411  * ram_save_block: Writes a page of memory to the stream f
412  *
413  * Returns:  0: if the page hasn't changed
414  *          -1: if there are no more dirty pages
415  *           n: the amount of bytes written in other case
416  */
417 
418 static int ram_save_block(QEMUFile *f, bool last_stage)
419 {
420     RAMBlock *block = last_block;
421     ram_addr_t offset = last_offset;
422     int bytes_sent = -1;
423     MemoryRegion *mr;
424     ram_addr_t current_addr;
425 
426     if (!block)
427         block = QTAILQ_FIRST(&ram_list.blocks);
428 
429     do {
430         mr = block->mr;
431         if (migration_bitmap_test_and_reset_dirty(mr, offset)) {
432             uint8_t *p;
433             int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
434 
435             p = memory_region_get_ram_ptr(mr) + offset;
436 
437             if (is_dup_page(p)) {
438                 acct_info.dup_pages++;
439                 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
440                 qemu_put_byte(f, *p);
441                 bytes_sent = 1;
442             } else if (migrate_use_xbzrle()) {
443                 current_addr = block->offset + offset;
444                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
445                                               offset, cont, last_stage);
446                 if (!last_stage) {
447                     p = get_cached_data(XBZRLE.cache, current_addr);
448                 }
449             }
450 
451             /* either we didn't send yet (we may have had XBZRLE overflow) */
452             if (bytes_sent == -1) {
453                 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
454                 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
455                 bytes_sent = TARGET_PAGE_SIZE;
456                 acct_info.norm_pages++;
457             }
458 
459             /* if page is unmodified, continue to the next */
460             if (bytes_sent != 0) {
461                 break;
462             }
463         }
464 
465         offset += TARGET_PAGE_SIZE;
466         if (offset >= block->length) {
467             offset = 0;
468             block = QTAILQ_NEXT(block, next);
469             if (!block)
470                 block = QTAILQ_FIRST(&ram_list.blocks);
471         }
472     } while (block != last_block || offset != last_offset);
473 
474     last_block = block;
475     last_offset = offset;
476 
477     return bytes_sent;
478 }
479 
480 static uint64_t bytes_transferred;
481 
482 static ram_addr_t ram_save_remaining(void)
483 {
484     return migration_dirty_pages;
485 }
486 
487 uint64_t ram_bytes_remaining(void)
488 {
489     return ram_save_remaining() * TARGET_PAGE_SIZE;
490 }
491 
492 uint64_t ram_bytes_transferred(void)
493 {
494     return bytes_transferred;
495 }
496 
497 uint64_t ram_bytes_total(void)
498 {
499     RAMBlock *block;
500     uint64_t total = 0;
501 
502     QTAILQ_FOREACH(block, &ram_list.blocks, next)
503         total += block->length;
504 
505     return total;
506 }
507 
508 static void migration_end(void)
509 {
510     if (migration_bitmap) {
511         memory_global_dirty_log_stop();
512         g_free(migration_bitmap);
513         migration_bitmap = NULL;
514     }
515 
516     if (XBZRLE.cache) {
517         cache_fini(XBZRLE.cache);
518         g_free(XBZRLE.cache);
519         g_free(XBZRLE.encoded_buf);
520         g_free(XBZRLE.current_buf);
521         g_free(XBZRLE.decoded_buf);
522         XBZRLE.cache = NULL;
523     }
524 }
525 
526 static void ram_migration_cancel(void *opaque)
527 {
528     migration_end();
529 }
530 
531 static void reset_ram_globals(void)
532 {
533     last_block = NULL;
534     last_offset = 0;
535     last_version = ram_list.version;
536 }
537 
538 #define MAX_WAIT 50 /* ms, half buffered_file limit */
539 
540 static int ram_save_setup(QEMUFile *f, void *opaque)
541 {
542     RAMBlock *block;
543     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
544 
545     migration_bitmap = bitmap_new(ram_pages);
546     bitmap_set(migration_bitmap, 0, ram_pages);
547     migration_dirty_pages = ram_pages;
548 
549     qemu_mutex_lock_ramlist();
550     bytes_transferred = 0;
551     reset_ram_globals();
552 
553     if (migrate_use_xbzrle()) {
554         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
555                                   TARGET_PAGE_SIZE,
556                                   TARGET_PAGE_SIZE);
557         if (!XBZRLE.cache) {
558             DPRINTF("Error creating cache\n");
559             return -1;
560         }
561         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
562         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
563         acct_clear();
564     }
565 
566     memory_global_dirty_log_start();
567     migration_bitmap_sync();
568 
569     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
570 
571     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
572         qemu_put_byte(f, strlen(block->idstr));
573         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
574         qemu_put_be64(f, block->length);
575     }
576 
577     qemu_mutex_unlock_ramlist();
578     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
579 
580     return 0;
581 }
582 
583 static int ram_save_iterate(QEMUFile *f, void *opaque)
584 {
585     int ret;
586     int i;
587     int64_t t0;
588 
589     qemu_mutex_lock_ramlist();
590 
591     if (ram_list.version != last_version) {
592         reset_ram_globals();
593     }
594 
595     t0 = qemu_get_clock_ns(rt_clock);
596     i = 0;
597     while ((ret = qemu_file_rate_limit(f)) == 0) {
598         int bytes_sent;
599 
600         bytes_sent = ram_save_block(f, false);
601         /* no more blocks to sent */
602         if (bytes_sent < 0) {
603             break;
604         }
605         bytes_transferred += bytes_sent;
606         acct_info.iterations++;
607         /* we want to check in the 1st loop, just in case it was the 1st time
608            and we had to sync the dirty bitmap.
609            qemu_get_clock_ns() is a bit expensive, so we only check each some
610            iterations
611         */
612         if ((i & 63) == 0) {
613             uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000;
614             if (t1 > MAX_WAIT) {
615                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
616                         t1, i);
617                 break;
618             }
619         }
620         i++;
621     }
622 
623     if (ret < 0) {
624         return ret;
625     }
626 
627     qemu_mutex_unlock_ramlist();
628     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
629 
630     return i;
631 }
632 
633 static int ram_save_complete(QEMUFile *f, void *opaque)
634 {
635     migration_bitmap_sync();
636 
637     qemu_mutex_lock_ramlist();
638 
639     /* try transferring iterative blocks of memory */
640 
641     /* flush all remaining blocks regardless of rate limiting */
642     while (true) {
643         int bytes_sent;
644 
645         bytes_sent = ram_save_block(f, true);
646         /* no more blocks to sent */
647         if (bytes_sent < 0) {
648             break;
649         }
650         bytes_transferred += bytes_sent;
651     }
652     migration_end();
653 
654     qemu_mutex_unlock_ramlist();
655     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
656 
657     return 0;
658 }
659 
660 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
661 {
662     uint64_t remaining_size;
663 
664     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
665 
666     if (remaining_size < max_size) {
667         migration_bitmap_sync();
668         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
669     }
670     return remaining_size;
671 }
672 
673 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
674 {
675     int ret, rc = 0;
676     unsigned int xh_len;
677     int xh_flags;
678 
679     if (!XBZRLE.decoded_buf) {
680         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
681     }
682 
683     /* extract RLE header */
684     xh_flags = qemu_get_byte(f);
685     xh_len = qemu_get_be16(f);
686 
687     if (xh_flags != ENCODING_FLAG_XBZRLE) {
688         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
689         return -1;
690     }
691 
692     if (xh_len > TARGET_PAGE_SIZE) {
693         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
694         return -1;
695     }
696     /* load data and decode */
697     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
698 
699     /* decode RLE */
700     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
701                                TARGET_PAGE_SIZE);
702     if (ret == -1) {
703         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
704         rc = -1;
705     } else  if (ret > TARGET_PAGE_SIZE) {
706         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
707                 ret, TARGET_PAGE_SIZE);
708         abort();
709     }
710 
711     return rc;
712 }
713 
714 static inline void *host_from_stream_offset(QEMUFile *f,
715                                             ram_addr_t offset,
716                                             int flags)
717 {
718     static RAMBlock *block = NULL;
719     char id[256];
720     uint8_t len;
721 
722     if (flags & RAM_SAVE_FLAG_CONTINUE) {
723         if (!block) {
724             fprintf(stderr, "Ack, bad migration stream!\n");
725             return NULL;
726         }
727 
728         return memory_region_get_ram_ptr(block->mr) + offset;
729     }
730 
731     len = qemu_get_byte(f);
732     qemu_get_buffer(f, (uint8_t *)id, len);
733     id[len] = 0;
734 
735     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
736         if (!strncmp(id, block->idstr, sizeof(id)))
737             return memory_region_get_ram_ptr(block->mr) + offset;
738     }
739 
740     fprintf(stderr, "Can't find block %s!\n", id);
741     return NULL;
742 }
743 
744 static int ram_load(QEMUFile *f, void *opaque, int version_id)
745 {
746     ram_addr_t addr;
747     int flags, ret = 0;
748     int error;
749     static uint64_t seq_iter;
750 
751     seq_iter++;
752 
753     if (version_id < 4 || version_id > 4) {
754         return -EINVAL;
755     }
756 
757     do {
758         addr = qemu_get_be64(f);
759 
760         flags = addr & ~TARGET_PAGE_MASK;
761         addr &= TARGET_PAGE_MASK;
762 
763         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
764             if (version_id == 4) {
765                 /* Synchronize RAM block list */
766                 char id[256];
767                 ram_addr_t length;
768                 ram_addr_t total_ram_bytes = addr;
769 
770                 while (total_ram_bytes) {
771                     RAMBlock *block;
772                     uint8_t len;
773 
774                     len = qemu_get_byte(f);
775                     qemu_get_buffer(f, (uint8_t *)id, len);
776                     id[len] = 0;
777                     length = qemu_get_be64(f);
778 
779                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
780                         if (!strncmp(id, block->idstr, sizeof(id))) {
781                             if (block->length != length) {
782                                 ret =  -EINVAL;
783                                 goto done;
784                             }
785                             break;
786                         }
787                     }
788 
789                     if (!block) {
790                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
791                                 "accept migration\n", id);
792                         ret = -EINVAL;
793                         goto done;
794                     }
795 
796                     total_ram_bytes -= length;
797                 }
798             }
799         }
800 
801         if (flags & RAM_SAVE_FLAG_COMPRESS) {
802             void *host;
803             uint8_t ch;
804 
805             host = host_from_stream_offset(f, addr, flags);
806             if (!host) {
807                 return -EINVAL;
808             }
809 
810             ch = qemu_get_byte(f);
811             memset(host, ch, TARGET_PAGE_SIZE);
812 #ifndef _WIN32
813             if (ch == 0 &&
814                 (!kvm_enabled() || kvm_has_sync_mmu()) &&
815                 getpagesize() <= TARGET_PAGE_SIZE) {
816                 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
817             }
818 #endif
819         } else if (flags & RAM_SAVE_FLAG_PAGE) {
820             void *host;
821 
822             host = host_from_stream_offset(f, addr, flags);
823             if (!host) {
824                 return -EINVAL;
825             }
826 
827             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
828         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
829             if (!migrate_use_xbzrle()) {
830                 return -EINVAL;
831             }
832             void *host = host_from_stream_offset(f, addr, flags);
833             if (!host) {
834                 return -EINVAL;
835             }
836 
837             if (load_xbzrle(f, addr, host) < 0) {
838                 ret = -EINVAL;
839                 goto done;
840             }
841         }
842         error = qemu_file_get_error(f);
843         if (error) {
844             ret = error;
845             goto done;
846         }
847     } while (!(flags & RAM_SAVE_FLAG_EOS));
848 
849 done:
850     DPRINTF("Completed load of VM with exit code %d seq iteration "
851             "%" PRIu64 "\n", ret, seq_iter);
852     return ret;
853 }
854 
855 SaveVMHandlers savevm_ram_handlers = {
856     .save_live_setup = ram_save_setup,
857     .save_live_iterate = ram_save_iterate,
858     .save_live_complete = ram_save_complete,
859     .save_live_pending = ram_save_pending,
860     .load_state = ram_load,
861     .cancel = ram_migration_cancel,
862 };
863 
864 #ifdef HAS_AUDIO
865 struct soundhw {
866     const char *name;
867     const char *descr;
868     int enabled;
869     int isa;
870     union {
871         int (*init_isa) (ISABus *bus);
872         int (*init_pci) (PCIBus *bus);
873     } init;
874 };
875 
876 static struct soundhw soundhw[] = {
877 #ifdef HAS_AUDIO_CHOICE
878 #ifdef CONFIG_PCSPK
879     {
880         "pcspk",
881         "PC speaker",
882         0,
883         1,
884         { .init_isa = pcspk_audio_init }
885     },
886 #endif
887 
888 #ifdef CONFIG_SB16
889     {
890         "sb16",
891         "Creative Sound Blaster 16",
892         0,
893         1,
894         { .init_isa = SB16_init }
895     },
896 #endif
897 
898 #ifdef CONFIG_CS4231A
899     {
900         "cs4231a",
901         "CS4231A",
902         0,
903         1,
904         { .init_isa = cs4231a_init }
905     },
906 #endif
907 
908 #ifdef CONFIG_ADLIB
909     {
910         "adlib",
911 #ifdef HAS_YMF262
912         "Yamaha YMF262 (OPL3)",
913 #else
914         "Yamaha YM3812 (OPL2)",
915 #endif
916         0,
917         1,
918         { .init_isa = Adlib_init }
919     },
920 #endif
921 
922 #ifdef CONFIG_GUS
923     {
924         "gus",
925         "Gravis Ultrasound GF1",
926         0,
927         1,
928         { .init_isa = GUS_init }
929     },
930 #endif
931 
932 #ifdef CONFIG_AC97
933     {
934         "ac97",
935         "Intel 82801AA AC97 Audio",
936         0,
937         0,
938         { .init_pci = ac97_init }
939     },
940 #endif
941 
942 #ifdef CONFIG_ES1370
943     {
944         "es1370",
945         "ENSONIQ AudioPCI ES1370",
946         0,
947         0,
948         { .init_pci = es1370_init }
949     },
950 #endif
951 
952 #ifdef CONFIG_HDA
953     {
954         "hda",
955         "Intel HD Audio",
956         0,
957         0,
958         { .init_pci = intel_hda_and_codec_init }
959     },
960 #endif
961 
962 #endif /* HAS_AUDIO_CHOICE */
963 
964     { NULL, NULL, 0, 0, { NULL } }
965 };
966 
967 void select_soundhw(const char *optarg)
968 {
969     struct soundhw *c;
970 
971     if (is_help_option(optarg)) {
972     show_valid_cards:
973 
974 #ifdef HAS_AUDIO_CHOICE
975         printf("Valid sound card names (comma separated):\n");
976         for (c = soundhw; c->name; ++c) {
977             printf ("%-11s %s\n", c->name, c->descr);
978         }
979         printf("\n-soundhw all will enable all of the above\n");
980 #else
981         printf("Machine has no user-selectable audio hardware "
982                "(it may or may not have always-present audio hardware).\n");
983 #endif
984         exit(!is_help_option(optarg));
985     }
986     else {
987         size_t l;
988         const char *p;
989         char *e;
990         int bad_card = 0;
991 
992         if (!strcmp(optarg, "all")) {
993             for (c = soundhw; c->name; ++c) {
994                 c->enabled = 1;
995             }
996             return;
997         }
998 
999         p = optarg;
1000         while (*p) {
1001             e = strchr(p, ',');
1002             l = !e ? strlen(p) : (size_t) (e - p);
1003 
1004             for (c = soundhw; c->name; ++c) {
1005                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1006                     c->enabled = 1;
1007                     break;
1008                 }
1009             }
1010 
1011             if (!c->name) {
1012                 if (l > 80) {
1013                     fprintf(stderr,
1014                             "Unknown sound card name (too big to show)\n");
1015                 }
1016                 else {
1017                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
1018                             (int) l, p);
1019                 }
1020                 bad_card = 1;
1021             }
1022             p += l + (e != NULL);
1023         }
1024 
1025         if (bad_card) {
1026             goto show_valid_cards;
1027         }
1028     }
1029 }
1030 
1031 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1032 {
1033     struct soundhw *c;
1034 
1035     for (c = soundhw; c->name; ++c) {
1036         if (c->enabled) {
1037             if (c->isa) {
1038                 if (isa_bus) {
1039                     c->init.init_isa(isa_bus);
1040                 }
1041             } else {
1042                 if (pci_bus) {
1043                     c->init.init_pci(pci_bus);
1044                 }
1045             }
1046         }
1047     }
1048 }
1049 #else
1050 void select_soundhw(const char *optarg)
1051 {
1052 }
1053 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1054 {
1055 }
1056 #endif
1057 
1058 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1059 {
1060     int ret;
1061 
1062     if (strlen(str) != 36) {
1063         return -1;
1064     }
1065 
1066     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1067                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1068                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1069                  &uuid[15]);
1070 
1071     if (ret != 16) {
1072         return -1;
1073     }
1074 #ifdef TARGET_I386
1075     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1076 #endif
1077     return 0;
1078 }
1079 
1080 void do_acpitable_option(const char *optarg)
1081 {
1082 #ifdef TARGET_I386
1083     if (acpi_table_add(optarg) < 0) {
1084         fprintf(stderr, "Wrong acpi table provided\n");
1085         exit(1);
1086     }
1087 #endif
1088 }
1089 
1090 void do_smbios_option(const char *optarg)
1091 {
1092 #ifdef TARGET_I386
1093     if (smbios_entry_add(optarg) < 0) {
1094         fprintf(stderr, "Wrong smbios provided\n");
1095         exit(1);
1096     }
1097 #endif
1098 }
1099 
1100 void cpudef_init(void)
1101 {
1102 #if defined(cpudef_setup)
1103     cpudef_setup(); /* parse cpu definitions in target config file */
1104 #endif
1105 }
1106 
1107 int audio_available(void)
1108 {
1109 #ifdef HAS_AUDIO
1110     return 1;
1111 #else
1112     return 0;
1113 #endif
1114 }
1115 
1116 int tcg_available(void)
1117 {
1118     return 1;
1119 }
1120 
1121 int kvm_available(void)
1122 {
1123 #ifdef CONFIG_KVM
1124     return 1;
1125 #else
1126     return 0;
1127 #endif
1128 }
1129 
1130 int xen_available(void)
1131 {
1132 #ifdef CONFIG_XEN
1133     return 1;
1134 #else
1135     return 0;
1136 #endif
1137 }
1138 
1139 
1140 TargetInfo *qmp_query_target(Error **errp)
1141 {
1142     TargetInfo *info = g_malloc0(sizeof(*info));
1143 
1144     info->arch = TARGET_TYPE;
1145 
1146     return info;
1147 }
1148