xref: /qemu/system/arch_init.c (revision e44d26c8f3894a220f29ff5b27abf87f570d2c07)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor.h"
33 #include "sysemu.h"
34 #include "arch_init.h"
35 #include "audio/audio.h"
36 #include "hw/pc.h"
37 #include "hw/pci.h"
38 #include "hw/audiodev.h"
39 #include "kvm.h"
40 #include "migration.h"
41 #include "net.h"
42 #include "gdbstub.h"
43 #include "hw/smbios.h"
44 #include "exec-memory.h"
45 #include "hw/pcspk.h"
46 #include "qemu/page_cache.h"
47 #include "qmp-commands.h"
48 
49 #ifdef DEBUG_ARCH_INIT
50 #define DPRINTF(fmt, ...) \
51     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
52 #else
53 #define DPRINTF(fmt, ...) \
54     do { } while (0)
55 #endif
56 
57 #ifdef TARGET_SPARC
58 int graphic_width = 1024;
59 int graphic_height = 768;
60 int graphic_depth = 8;
61 #else
62 int graphic_width = 800;
63 int graphic_height = 600;
64 int graphic_depth = 15;
65 #endif
66 
67 
68 #if defined(TARGET_ALPHA)
69 #define QEMU_ARCH QEMU_ARCH_ALPHA
70 #elif defined(TARGET_ARM)
71 #define QEMU_ARCH QEMU_ARCH_ARM
72 #elif defined(TARGET_CRIS)
73 #define QEMU_ARCH QEMU_ARCH_CRIS
74 #elif defined(TARGET_I386)
75 #define QEMU_ARCH QEMU_ARCH_I386
76 #elif defined(TARGET_M68K)
77 #define QEMU_ARCH QEMU_ARCH_M68K
78 #elif defined(TARGET_LM32)
79 #define QEMU_ARCH QEMU_ARCH_LM32
80 #elif defined(TARGET_MICROBLAZE)
81 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
82 #elif defined(TARGET_MIPS)
83 #define QEMU_ARCH QEMU_ARCH_MIPS
84 #elif defined(TARGET_OPENRISC)
85 #define QEMU_ARCH QEMU_ARCH_OPENRISC
86 #elif defined(TARGET_PPC)
87 #define QEMU_ARCH QEMU_ARCH_PPC
88 #elif defined(TARGET_S390X)
89 #define QEMU_ARCH QEMU_ARCH_S390X
90 #elif defined(TARGET_SH4)
91 #define QEMU_ARCH QEMU_ARCH_SH4
92 #elif defined(TARGET_SPARC)
93 #define QEMU_ARCH QEMU_ARCH_SPARC
94 #elif defined(TARGET_XTENSA)
95 #define QEMU_ARCH QEMU_ARCH_XTENSA
96 #elif defined(TARGET_UNICORE32)
97 #define QEMU_ARCH QEMU_ARCH_UNICORE32
98 #endif
99 
100 const uint32_t arch_type = QEMU_ARCH;
101 
102 /***********************************************************/
103 /* ram save/restore */
104 
105 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
106 #define RAM_SAVE_FLAG_COMPRESS 0x02
107 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
108 #define RAM_SAVE_FLAG_PAGE     0x08
109 #define RAM_SAVE_FLAG_EOS      0x10
110 #define RAM_SAVE_FLAG_CONTINUE 0x20
111 #define RAM_SAVE_FLAG_XBZRLE   0x40
112 
113 #ifdef __ALTIVEC__
114 #include <altivec.h>
115 #define VECTYPE        vector unsigned char
116 #define SPLAT(p)       vec_splat(vec_ld(0, p), 0)
117 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
118 /* altivec.h may redefine the bool macro as vector type.
119  * Reset it to POSIX semantics. */
120 #undef bool
121 #define bool _Bool
122 #elif defined __SSE2__
123 #include <emmintrin.h>
124 #define VECTYPE        __m128i
125 #define SPLAT(p)       _mm_set1_epi8(*(p))
126 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
127 #else
128 #define VECTYPE        unsigned long
129 #define SPLAT(p)       (*(p) * (~0UL / 255))
130 #define ALL_EQ(v1, v2) ((v1) == (v2))
131 #endif
132 
133 
134 static struct defconfig_file {
135     const char *filename;
136     /* Indicates it is an user config file (disabled by -no-user-config) */
137     bool userconfig;
138 } default_config_files[] = {
139     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
140     { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
141     { NULL }, /* end of list */
142 };
143 
144 
145 int qemu_read_default_config_files(bool userconfig)
146 {
147     int ret;
148     struct defconfig_file *f;
149 
150     for (f = default_config_files; f->filename; f++) {
151         if (!userconfig && f->userconfig) {
152             continue;
153         }
154         ret = qemu_read_config_file(f->filename);
155         if (ret < 0 && ret != -ENOENT) {
156             return ret;
157         }
158     }
159 
160     return 0;
161 }
162 
163 static int is_dup_page(uint8_t *page)
164 {
165     VECTYPE *p = (VECTYPE *)page;
166     VECTYPE val = SPLAT(page);
167     int i;
168 
169     for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
170         if (!ALL_EQ(val, p[i])) {
171             return 0;
172         }
173     }
174 
175     return 1;
176 }
177 
178 /* struct contains XBZRLE cache and a static page
179    used by the compression */
180 static struct {
181     /* buffer used for XBZRLE encoding */
182     uint8_t *encoded_buf;
183     /* buffer for storing page content */
184     uint8_t *current_buf;
185     /* buffer used for XBZRLE decoding */
186     uint8_t *decoded_buf;
187     /* Cache for XBZRLE */
188     PageCache *cache;
189 } XBZRLE = {
190     .encoded_buf = NULL,
191     .current_buf = NULL,
192     .decoded_buf = NULL,
193     .cache = NULL,
194 };
195 
196 
197 int64_t xbzrle_cache_resize(int64_t new_size)
198 {
199     if (XBZRLE.cache != NULL) {
200         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
201             TARGET_PAGE_SIZE;
202     }
203     return pow2floor(new_size);
204 }
205 
206 /* accounting for migration statistics */
207 typedef struct AccountingInfo {
208     uint64_t dup_pages;
209     uint64_t norm_pages;
210     uint64_t iterations;
211     uint64_t xbzrle_bytes;
212     uint64_t xbzrle_pages;
213     uint64_t xbzrle_cache_miss;
214     uint64_t xbzrle_overflows;
215 } AccountingInfo;
216 
217 static AccountingInfo acct_info;
218 
219 static void acct_clear(void)
220 {
221     memset(&acct_info, 0, sizeof(acct_info));
222 }
223 
224 uint64_t dup_mig_bytes_transferred(void)
225 {
226     return acct_info.dup_pages * TARGET_PAGE_SIZE;
227 }
228 
229 uint64_t dup_mig_pages_transferred(void)
230 {
231     return acct_info.dup_pages;
232 }
233 
234 uint64_t norm_mig_bytes_transferred(void)
235 {
236     return acct_info.norm_pages * TARGET_PAGE_SIZE;
237 }
238 
239 uint64_t norm_mig_pages_transferred(void)
240 {
241     return acct_info.norm_pages;
242 }
243 
244 uint64_t xbzrle_mig_bytes_transferred(void)
245 {
246     return acct_info.xbzrle_bytes;
247 }
248 
249 uint64_t xbzrle_mig_pages_transferred(void)
250 {
251     return acct_info.xbzrle_pages;
252 }
253 
254 uint64_t xbzrle_mig_pages_cache_miss(void)
255 {
256     return acct_info.xbzrle_cache_miss;
257 }
258 
259 uint64_t xbzrle_mig_pages_overflow(void)
260 {
261     return acct_info.xbzrle_overflows;
262 }
263 
264 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
265         int cont, int flag)
266 {
267         qemu_put_be64(f, offset | cont | flag);
268         if (!cont) {
269                 qemu_put_byte(f, strlen(block->idstr));
270                 qemu_put_buffer(f, (uint8_t *)block->idstr,
271                                 strlen(block->idstr));
272         }
273 
274 }
275 
276 #define ENCODING_FLAG_XBZRLE 0x1
277 
278 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
279                             ram_addr_t current_addr, RAMBlock *block,
280                             ram_addr_t offset, int cont, bool last_stage)
281 {
282     int encoded_len = 0, bytes_sent = -1;
283     uint8_t *prev_cached_page;
284 
285     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
286         if (!last_stage) {
287             cache_insert(XBZRLE.cache, current_addr,
288                          g_memdup(current_data, TARGET_PAGE_SIZE));
289         }
290         acct_info.xbzrle_cache_miss++;
291         return -1;
292     }
293 
294     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
295 
296     /* save current buffer into memory */
297     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
298 
299     /* XBZRLE encoding (if there is no overflow) */
300     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
301                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
302                                        TARGET_PAGE_SIZE);
303     if (encoded_len == 0) {
304         DPRINTF("Skipping unmodified page\n");
305         return 0;
306     } else if (encoded_len == -1) {
307         DPRINTF("Overflow\n");
308         acct_info.xbzrle_overflows++;
309         /* update data in the cache */
310         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
311         return -1;
312     }
313 
314     /* we need to update the data in the cache, in order to get the same data */
315     if (!last_stage) {
316         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
317     }
318 
319     /* Send XBZRLE based compressed page */
320     save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
321     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
322     qemu_put_be16(f, encoded_len);
323     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
324     bytes_sent = encoded_len + 1 + 2;
325     acct_info.xbzrle_pages++;
326     acct_info.xbzrle_bytes += bytes_sent;
327 
328     return bytes_sent;
329 }
330 
331 static RAMBlock *last_block;
332 static ram_addr_t last_offset;
333 
334 static inline void migration_bitmap_set_dirty(MemoryRegion *mr, int length)
335 {
336     ram_addr_t addr;
337 
338     for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
339         if (!memory_region_get_dirty(mr, addr, TARGET_PAGE_SIZE,
340                                      DIRTY_MEMORY_MIGRATION)) {
341             memory_region_set_dirty(mr, addr, TARGET_PAGE_SIZE);
342         }
343     }
344 }
345 
346 /*
347  * ram_save_block: Writes a page of memory to the stream f
348  *
349  * Returns:  0: if the page hasn't changed
350  *          -1: if there are no more dirty pages
351  *           n: the amount of bytes written in other case
352  */
353 
354 static int ram_save_block(QEMUFile *f, bool last_stage)
355 {
356     RAMBlock *block = last_block;
357     ram_addr_t offset = last_offset;
358     int bytes_sent = -1;
359     MemoryRegion *mr;
360     ram_addr_t current_addr;
361 
362     if (!block)
363         block = QLIST_FIRST(&ram_list.blocks);
364 
365     do {
366         mr = block->mr;
367         if (memory_region_get_dirty(mr, offset, TARGET_PAGE_SIZE,
368                                     DIRTY_MEMORY_MIGRATION)) {
369             uint8_t *p;
370             int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
371 
372             memory_region_reset_dirty(mr, offset, TARGET_PAGE_SIZE,
373                                       DIRTY_MEMORY_MIGRATION);
374 
375             p = memory_region_get_ram_ptr(mr) + offset;
376 
377             if (is_dup_page(p)) {
378                 acct_info.dup_pages++;
379                 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
380                 qemu_put_byte(f, *p);
381                 bytes_sent = 1;
382             } else if (migrate_use_xbzrle()) {
383                 current_addr = block->offset + offset;
384                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
385                                               offset, cont, last_stage);
386                 if (!last_stage) {
387                     p = get_cached_data(XBZRLE.cache, current_addr);
388                 }
389             }
390 
391             /* either we didn't send yet (we may have had XBZRLE overflow) */
392             if (bytes_sent == -1) {
393                 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
394                 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
395                 bytes_sent = TARGET_PAGE_SIZE;
396                 acct_info.norm_pages++;
397             }
398 
399             /* if page is unmodified, continue to the next */
400             if (bytes_sent != 0) {
401                 break;
402             }
403         }
404 
405         offset += TARGET_PAGE_SIZE;
406         if (offset >= block->length) {
407             offset = 0;
408             block = QLIST_NEXT(block, next);
409             if (!block)
410                 block = QLIST_FIRST(&ram_list.blocks);
411         }
412     } while (block != last_block || offset != last_offset);
413 
414     last_block = block;
415     last_offset = offset;
416 
417     return bytes_sent;
418 }
419 
420 static uint64_t bytes_transferred;
421 
422 static ram_addr_t ram_save_remaining(void)
423 {
424     return ram_list.dirty_pages;
425 }
426 
427 uint64_t ram_bytes_remaining(void)
428 {
429     return ram_save_remaining() * TARGET_PAGE_SIZE;
430 }
431 
432 uint64_t ram_bytes_transferred(void)
433 {
434     return bytes_transferred;
435 }
436 
437 uint64_t ram_bytes_total(void)
438 {
439     RAMBlock *block;
440     uint64_t total = 0;
441 
442     QLIST_FOREACH(block, &ram_list.blocks, next)
443         total += block->length;
444 
445     return total;
446 }
447 
448 static int block_compar(const void *a, const void *b)
449 {
450     RAMBlock * const *ablock = a;
451     RAMBlock * const *bblock = b;
452 
453     return strcmp((*ablock)->idstr, (*bblock)->idstr);
454 }
455 
456 static void sort_ram_list(void)
457 {
458     RAMBlock *block, *nblock, **blocks;
459     int n;
460     n = 0;
461     QLIST_FOREACH(block, &ram_list.blocks, next) {
462         ++n;
463     }
464     blocks = g_malloc(n * sizeof *blocks);
465     n = 0;
466     QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
467         blocks[n++] = block;
468         QLIST_REMOVE(block, next);
469     }
470     qsort(blocks, n, sizeof *blocks, block_compar);
471     while (--n >= 0) {
472         QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
473     }
474     g_free(blocks);
475 }
476 
477 static void migration_end(void)
478 {
479     memory_global_dirty_log_stop();
480 
481     if (migrate_use_xbzrle()) {
482         cache_fini(XBZRLE.cache);
483         g_free(XBZRLE.cache);
484         g_free(XBZRLE.encoded_buf);
485         g_free(XBZRLE.current_buf);
486         g_free(XBZRLE.decoded_buf);
487         XBZRLE.cache = NULL;
488     }
489 }
490 
491 static void ram_migration_cancel(void *opaque)
492 {
493     migration_end();
494 }
495 
496 
497 static void reset_ram_globals(void)
498 {
499     last_block = NULL;
500     last_offset = 0;
501     sort_ram_list();
502 }
503 
504 #define MAX_WAIT 50 /* ms, half buffered_file limit */
505 
506 static int ram_save_setup(QEMUFile *f, void *opaque)
507 {
508     RAMBlock *block;
509 
510     bytes_transferred = 0;
511     reset_ram_globals();
512 
513     if (migrate_use_xbzrle()) {
514         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
515                                   TARGET_PAGE_SIZE,
516                                   TARGET_PAGE_SIZE);
517         if (!XBZRLE.cache) {
518             DPRINTF("Error creating cache\n");
519             return -1;
520         }
521         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
522         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
523         acct_clear();
524     }
525 
526     /* Make sure all dirty bits are set */
527     QLIST_FOREACH(block, &ram_list.blocks, next) {
528         migration_bitmap_set_dirty(block->mr, block->length);
529     }
530 
531     memory_global_dirty_log_start();
532     memory_global_sync_dirty_bitmap(get_system_memory());
533 
534     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
535 
536     QLIST_FOREACH(block, &ram_list.blocks, next) {
537         qemu_put_byte(f, strlen(block->idstr));
538         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
539         qemu_put_be64(f, block->length);
540     }
541 
542     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
543 
544     return 0;
545 }
546 
547 static int ram_save_iterate(QEMUFile *f, void *opaque)
548 {
549     uint64_t bytes_transferred_last;
550     double bwidth = 0;
551     int ret;
552     int i;
553     uint64_t expected_downtime;
554     MigrationState *s = migrate_get_current();
555 
556     bytes_transferred_last = bytes_transferred;
557     bwidth = qemu_get_clock_ns(rt_clock);
558 
559     i = 0;
560     while ((ret = qemu_file_rate_limit(f)) == 0) {
561         int bytes_sent;
562 
563         bytes_sent = ram_save_block(f, false);
564         /* no more blocks to sent */
565         if (bytes_sent < 0) {
566             break;
567         }
568         bytes_transferred += bytes_sent;
569         acct_info.iterations++;
570         /* we want to check in the 1st loop, just in case it was the 1st time
571            and we had to sync the dirty bitmap.
572            qemu_get_clock_ns() is a bit expensive, so we only check each some
573            iterations
574         */
575         if ((i & 63) == 0) {
576             uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
577             if (t1 > MAX_WAIT) {
578                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
579                         t1, i);
580                 break;
581             }
582         }
583         i++;
584     }
585 
586     if (ret < 0) {
587         return ret;
588     }
589 
590     bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
591     bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
592 
593     /* if we haven't transferred anything this round, force
594      * expected_downtime to a very high value, but without
595      * crashing */
596     if (bwidth == 0) {
597         bwidth = 0.000001;
598     }
599 
600     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
601 
602     expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
603     DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n",
604             expected_downtime, migrate_max_downtime());
605 
606     if (expected_downtime <= migrate_max_downtime()) {
607         memory_global_sync_dirty_bitmap(get_system_memory());
608         expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
609         s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */
610 
611         return expected_downtime <= migrate_max_downtime();
612     }
613     return 0;
614 }
615 
616 static int ram_save_complete(QEMUFile *f, void *opaque)
617 {
618     memory_global_sync_dirty_bitmap(get_system_memory());
619 
620     /* try transferring iterative blocks of memory */
621 
622     /* flush all remaining blocks regardless of rate limiting */
623     while (true) {
624         int bytes_sent;
625 
626         bytes_sent = ram_save_block(f, true);
627         /* no more blocks to sent */
628         if (bytes_sent < 0) {
629             break;
630         }
631         bytes_transferred += bytes_sent;
632     }
633     memory_global_dirty_log_stop();
634 
635     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
636 
637     return 0;
638 }
639 
640 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
641 {
642     int ret, rc = 0;
643     unsigned int xh_len;
644     int xh_flags;
645 
646     if (!XBZRLE.decoded_buf) {
647         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
648     }
649 
650     /* extract RLE header */
651     xh_flags = qemu_get_byte(f);
652     xh_len = qemu_get_be16(f);
653 
654     if (xh_flags != ENCODING_FLAG_XBZRLE) {
655         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
656         return -1;
657     }
658 
659     if (xh_len > TARGET_PAGE_SIZE) {
660         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
661         return -1;
662     }
663     /* load data and decode */
664     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
665 
666     /* decode RLE */
667     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
668                                TARGET_PAGE_SIZE);
669     if (ret == -1) {
670         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
671         rc = -1;
672     } else  if (ret > TARGET_PAGE_SIZE) {
673         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
674                 ret, TARGET_PAGE_SIZE);
675         abort();
676     }
677 
678     return rc;
679 }
680 
681 static inline void *host_from_stream_offset(QEMUFile *f,
682                                             ram_addr_t offset,
683                                             int flags)
684 {
685     static RAMBlock *block = NULL;
686     char id[256];
687     uint8_t len;
688 
689     if (flags & RAM_SAVE_FLAG_CONTINUE) {
690         if (!block) {
691             fprintf(stderr, "Ack, bad migration stream!\n");
692             return NULL;
693         }
694 
695         return memory_region_get_ram_ptr(block->mr) + offset;
696     }
697 
698     len = qemu_get_byte(f);
699     qemu_get_buffer(f, (uint8_t *)id, len);
700     id[len] = 0;
701 
702     QLIST_FOREACH(block, &ram_list.blocks, next) {
703         if (!strncmp(id, block->idstr, sizeof(id)))
704             return memory_region_get_ram_ptr(block->mr) + offset;
705     }
706 
707     fprintf(stderr, "Can't find block %s!\n", id);
708     return NULL;
709 }
710 
711 static int ram_load(QEMUFile *f, void *opaque, int version_id)
712 {
713     ram_addr_t addr;
714     int flags, ret = 0;
715     int error;
716     static uint64_t seq_iter;
717 
718     seq_iter++;
719 
720     if (version_id < 4 || version_id > 4) {
721         return -EINVAL;
722     }
723 
724     do {
725         addr = qemu_get_be64(f);
726 
727         flags = addr & ~TARGET_PAGE_MASK;
728         addr &= TARGET_PAGE_MASK;
729 
730         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
731             if (version_id == 4) {
732                 /* Synchronize RAM block list */
733                 char id[256];
734                 ram_addr_t length;
735                 ram_addr_t total_ram_bytes = addr;
736 
737                 while (total_ram_bytes) {
738                     RAMBlock *block;
739                     uint8_t len;
740 
741                     len = qemu_get_byte(f);
742                     qemu_get_buffer(f, (uint8_t *)id, len);
743                     id[len] = 0;
744                     length = qemu_get_be64(f);
745 
746                     QLIST_FOREACH(block, &ram_list.blocks, next) {
747                         if (!strncmp(id, block->idstr, sizeof(id))) {
748                             if (block->length != length) {
749                                 ret =  -EINVAL;
750                                 goto done;
751                             }
752                             break;
753                         }
754                     }
755 
756                     if (!block) {
757                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
758                                 "accept migration\n", id);
759                         ret = -EINVAL;
760                         goto done;
761                     }
762 
763                     total_ram_bytes -= length;
764                 }
765             }
766         }
767 
768         if (flags & RAM_SAVE_FLAG_COMPRESS) {
769             void *host;
770             uint8_t ch;
771 
772             host = host_from_stream_offset(f, addr, flags);
773             if (!host) {
774                 return -EINVAL;
775             }
776 
777             ch = qemu_get_byte(f);
778             memset(host, ch, TARGET_PAGE_SIZE);
779 #ifndef _WIN32
780             if (ch == 0 &&
781                 (!kvm_enabled() || kvm_has_sync_mmu())) {
782                 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
783             }
784 #endif
785         } else if (flags & RAM_SAVE_FLAG_PAGE) {
786             void *host;
787 
788             host = host_from_stream_offset(f, addr, flags);
789             if (!host) {
790                 return -EINVAL;
791             }
792 
793             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
794         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
795             if (!migrate_use_xbzrle()) {
796                 return -EINVAL;
797             }
798             void *host = host_from_stream_offset(f, addr, flags);
799             if (!host) {
800                 return -EINVAL;
801             }
802 
803             if (load_xbzrle(f, addr, host) < 0) {
804                 ret = -EINVAL;
805                 goto done;
806             }
807         }
808         error = qemu_file_get_error(f);
809         if (error) {
810             ret = error;
811             goto done;
812         }
813     } while (!(flags & RAM_SAVE_FLAG_EOS));
814 
815 done:
816     DPRINTF("Completed load of VM with exit code %d seq iteration "
817             "%" PRIu64 "\n", ret, seq_iter);
818     return ret;
819 }
820 
821 SaveVMHandlers savevm_ram_handlers = {
822     .save_live_setup = ram_save_setup,
823     .save_live_iterate = ram_save_iterate,
824     .save_live_complete = ram_save_complete,
825     .load_state = ram_load,
826     .cancel = ram_migration_cancel,
827 };
828 
829 #ifdef HAS_AUDIO
830 struct soundhw {
831     const char *name;
832     const char *descr;
833     int enabled;
834     int isa;
835     union {
836         int (*init_isa) (ISABus *bus);
837         int (*init_pci) (PCIBus *bus);
838     } init;
839 };
840 
841 static struct soundhw soundhw[] = {
842 #ifdef HAS_AUDIO_CHOICE
843 #ifdef CONFIG_PCSPK
844     {
845         "pcspk",
846         "PC speaker",
847         0,
848         1,
849         { .init_isa = pcspk_audio_init }
850     },
851 #endif
852 
853 #ifdef CONFIG_SB16
854     {
855         "sb16",
856         "Creative Sound Blaster 16",
857         0,
858         1,
859         { .init_isa = SB16_init }
860     },
861 #endif
862 
863 #ifdef CONFIG_CS4231A
864     {
865         "cs4231a",
866         "CS4231A",
867         0,
868         1,
869         { .init_isa = cs4231a_init }
870     },
871 #endif
872 
873 #ifdef CONFIG_ADLIB
874     {
875         "adlib",
876 #ifdef HAS_YMF262
877         "Yamaha YMF262 (OPL3)",
878 #else
879         "Yamaha YM3812 (OPL2)",
880 #endif
881         0,
882         1,
883         { .init_isa = Adlib_init }
884     },
885 #endif
886 
887 #ifdef CONFIG_GUS
888     {
889         "gus",
890         "Gravis Ultrasound GF1",
891         0,
892         1,
893         { .init_isa = GUS_init }
894     },
895 #endif
896 
897 #ifdef CONFIG_AC97
898     {
899         "ac97",
900         "Intel 82801AA AC97 Audio",
901         0,
902         0,
903         { .init_pci = ac97_init }
904     },
905 #endif
906 
907 #ifdef CONFIG_ES1370
908     {
909         "es1370",
910         "ENSONIQ AudioPCI ES1370",
911         0,
912         0,
913         { .init_pci = es1370_init }
914     },
915 #endif
916 
917 #ifdef CONFIG_HDA
918     {
919         "hda",
920         "Intel HD Audio",
921         0,
922         0,
923         { .init_pci = intel_hda_and_codec_init }
924     },
925 #endif
926 
927 #endif /* HAS_AUDIO_CHOICE */
928 
929     { NULL, NULL, 0, 0, { NULL } }
930 };
931 
932 void select_soundhw(const char *optarg)
933 {
934     struct soundhw *c;
935 
936     if (is_help_option(optarg)) {
937     show_valid_cards:
938 
939 #ifdef HAS_AUDIO_CHOICE
940         printf("Valid sound card names (comma separated):\n");
941         for (c = soundhw; c->name; ++c) {
942             printf ("%-11s %s\n", c->name, c->descr);
943         }
944         printf("\n-soundhw all will enable all of the above\n");
945 #else
946         printf("Machine has no user-selectable audio hardware "
947                "(it may or may not have always-present audio hardware).\n");
948 #endif
949         exit(!is_help_option(optarg));
950     }
951     else {
952         size_t l;
953         const char *p;
954         char *e;
955         int bad_card = 0;
956 
957         if (!strcmp(optarg, "all")) {
958             for (c = soundhw; c->name; ++c) {
959                 c->enabled = 1;
960             }
961             return;
962         }
963 
964         p = optarg;
965         while (*p) {
966             e = strchr(p, ',');
967             l = !e ? strlen(p) : (size_t) (e - p);
968 
969             for (c = soundhw; c->name; ++c) {
970                 if (!strncmp(c->name, p, l) && !c->name[l]) {
971                     c->enabled = 1;
972                     break;
973                 }
974             }
975 
976             if (!c->name) {
977                 if (l > 80) {
978                     fprintf(stderr,
979                             "Unknown sound card name (too big to show)\n");
980                 }
981                 else {
982                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
983                             (int) l, p);
984                 }
985                 bad_card = 1;
986             }
987             p += l + (e != NULL);
988         }
989 
990         if (bad_card) {
991             goto show_valid_cards;
992         }
993     }
994 }
995 
996 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
997 {
998     struct soundhw *c;
999 
1000     for (c = soundhw; c->name; ++c) {
1001         if (c->enabled) {
1002             if (c->isa) {
1003                 if (isa_bus) {
1004                     c->init.init_isa(isa_bus);
1005                 }
1006             } else {
1007                 if (pci_bus) {
1008                     c->init.init_pci(pci_bus);
1009                 }
1010             }
1011         }
1012     }
1013 }
1014 #else
1015 void select_soundhw(const char *optarg)
1016 {
1017 }
1018 void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1019 {
1020 }
1021 #endif
1022 
1023 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1024 {
1025     int ret;
1026 
1027     if (strlen(str) != 36) {
1028         return -1;
1029     }
1030 
1031     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1032                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1033                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1034                  &uuid[15]);
1035 
1036     if (ret != 16) {
1037         return -1;
1038     }
1039 #ifdef TARGET_I386
1040     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1041 #endif
1042     return 0;
1043 }
1044 
1045 void do_acpitable_option(const char *optarg)
1046 {
1047 #ifdef TARGET_I386
1048     if (acpi_table_add(optarg) < 0) {
1049         fprintf(stderr, "Wrong acpi table provided\n");
1050         exit(1);
1051     }
1052 #endif
1053 }
1054 
1055 void do_smbios_option(const char *optarg)
1056 {
1057 #ifdef TARGET_I386
1058     if (smbios_entry_add(optarg) < 0) {
1059         fprintf(stderr, "Wrong smbios provided\n");
1060         exit(1);
1061     }
1062 #endif
1063 }
1064 
1065 void cpudef_init(void)
1066 {
1067 #if defined(cpudef_setup)
1068     cpudef_setup(); /* parse cpu definitions in target config file */
1069 #endif
1070 }
1071 
1072 int audio_available(void)
1073 {
1074 #ifdef HAS_AUDIO
1075     return 1;
1076 #else
1077     return 0;
1078 #endif
1079 }
1080 
1081 int tcg_available(void)
1082 {
1083     return 1;
1084 }
1085 
1086 int kvm_available(void)
1087 {
1088 #ifdef CONFIG_KVM
1089     return 1;
1090 #else
1091     return 0;
1092 #endif
1093 }
1094 
1095 int xen_available(void)
1096 {
1097 #ifdef CONFIG_XEN
1098     return 1;
1099 #else
1100     return 0;
1101 #endif
1102 }
1103 
1104 
1105 TargetInfo *qmp_query_target(Error **errp)
1106 {
1107     TargetInfo *info = g_malloc0(sizeof(*info));
1108 
1109     info->arch = TARGET_TYPE;
1110 
1111     return info;
1112 }
1113