xref: /qemu/system/arch_init.c (revision d97326eec2ca1313eaf0b5cffd69af5663b5af5d)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qmp-commands.h"
50 #include "trace.h"
51 #include "exec/cpu-all.h"
52 #include "exec/ram_addr.h"
53 #include "hw/acpi/acpi.h"
54 #include "qemu/host-utils.h"
55 
56 #ifdef DEBUG_ARCH_INIT
57 #define DPRINTF(fmt, ...) \
58     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61     do { } while (0)
62 #endif
63 
64 #ifdef TARGET_SPARC
65 int graphic_width = 1024;
66 int graphic_height = 768;
67 int graphic_depth = 8;
68 #else
69 int graphic_width = 800;
70 int graphic_height = 600;
71 int graphic_depth = 32;
72 #endif
73 
74 
75 #if defined(TARGET_ALPHA)
76 #define QEMU_ARCH QEMU_ARCH_ALPHA
77 #elif defined(TARGET_ARM)
78 #define QEMU_ARCH QEMU_ARCH_ARM
79 #elif defined(TARGET_CRIS)
80 #define QEMU_ARCH QEMU_ARCH_CRIS
81 #elif defined(TARGET_I386)
82 #define QEMU_ARCH QEMU_ARCH_I386
83 #elif defined(TARGET_M68K)
84 #define QEMU_ARCH QEMU_ARCH_M68K
85 #elif defined(TARGET_LM32)
86 #define QEMU_ARCH QEMU_ARCH_LM32
87 #elif defined(TARGET_MICROBLAZE)
88 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
89 #elif defined(TARGET_MIPS)
90 #define QEMU_ARCH QEMU_ARCH_MIPS
91 #elif defined(TARGET_MOXIE)
92 #define QEMU_ARCH QEMU_ARCH_MOXIE
93 #elif defined(TARGET_OPENRISC)
94 #define QEMU_ARCH QEMU_ARCH_OPENRISC
95 #elif defined(TARGET_PPC)
96 #define QEMU_ARCH QEMU_ARCH_PPC
97 #elif defined(TARGET_S390X)
98 #define QEMU_ARCH QEMU_ARCH_S390X
99 #elif defined(TARGET_SH4)
100 #define QEMU_ARCH QEMU_ARCH_SH4
101 #elif defined(TARGET_SPARC)
102 #define QEMU_ARCH QEMU_ARCH_SPARC
103 #elif defined(TARGET_XTENSA)
104 #define QEMU_ARCH QEMU_ARCH_XTENSA
105 #elif defined(TARGET_UNICORE32)
106 #define QEMU_ARCH QEMU_ARCH_UNICORE32
107 #endif
108 
109 const uint32_t arch_type = QEMU_ARCH;
110 static bool mig_throttle_on;
111 static int dirty_rate_high_cnt;
112 static void check_guest_throttling(void);
113 
114 /***********************************************************/
115 /* ram save/restore */
116 
117 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
118 #define RAM_SAVE_FLAG_COMPRESS 0x02
119 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
120 #define RAM_SAVE_FLAG_PAGE     0x08
121 #define RAM_SAVE_FLAG_EOS      0x10
122 #define RAM_SAVE_FLAG_CONTINUE 0x20
123 #define RAM_SAVE_FLAG_XBZRLE   0x40
124 /* 0x80 is reserved in migration.h start with 0x100 next */
125 
126 static struct defconfig_file {
127     const char *filename;
128     /* Indicates it is an user config file (disabled by -no-user-config) */
129     bool userconfig;
130 } default_config_files[] = {
131     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
132     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
133     { NULL }, /* end of list */
134 };
135 
136 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
137 
138 int qemu_read_default_config_files(bool userconfig)
139 {
140     int ret;
141     struct defconfig_file *f;
142 
143     for (f = default_config_files; f->filename; f++) {
144         if (!userconfig && f->userconfig) {
145             continue;
146         }
147         ret = qemu_read_config_file(f->filename);
148         if (ret < 0 && ret != -ENOENT) {
149             return ret;
150         }
151     }
152 
153     return 0;
154 }
155 
156 static inline bool is_zero_range(uint8_t *p, uint64_t size)
157 {
158     return buffer_find_nonzero_offset(p, size) == size;
159 }
160 
161 /* struct contains XBZRLE cache and a static page
162    used by the compression */
163 static struct {
164     /* buffer used for XBZRLE encoding */
165     uint8_t *encoded_buf;
166     /* buffer for storing page content */
167     uint8_t *current_buf;
168     /* Cache for XBZRLE, Protected by lock. */
169     PageCache *cache;
170     QemuMutex lock;
171 } XBZRLE;
172 
173 /* buffer used for XBZRLE decoding */
174 static uint8_t *xbzrle_decoded_buf;
175 
176 static void XBZRLE_cache_lock(void)
177 {
178     if (migrate_use_xbzrle())
179         qemu_mutex_lock(&XBZRLE.lock);
180 }
181 
182 static void XBZRLE_cache_unlock(void)
183 {
184     if (migrate_use_xbzrle())
185         qemu_mutex_unlock(&XBZRLE.lock);
186 }
187 
188 /*
189  * called from qmp_migrate_set_cache_size in main thread, possibly while
190  * a migration is in progress.
191  * A running migration maybe using the cache and might finish during this
192  * call, hence changes to the cache are protected by XBZRLE.lock().
193  */
194 int64_t xbzrle_cache_resize(int64_t new_size)
195 {
196     PageCache *new_cache;
197     int64_t ret;
198 
199     if (new_size < TARGET_PAGE_SIZE) {
200         return -1;
201     }
202 
203     XBZRLE_cache_lock();
204 
205     if (XBZRLE.cache != NULL) {
206         if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
207             goto out_new_size;
208         }
209         new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
210                                         TARGET_PAGE_SIZE);
211         if (!new_cache) {
212             error_report("Error creating cache");
213             ret = -1;
214             goto out;
215         }
216 
217         cache_fini(XBZRLE.cache);
218         XBZRLE.cache = new_cache;
219     }
220 
221 out_new_size:
222     ret = pow2floor(new_size);
223 out:
224     XBZRLE_cache_unlock();
225     return ret;
226 }
227 
228 /* accounting for migration statistics */
229 typedef struct AccountingInfo {
230     uint64_t dup_pages;
231     uint64_t skipped_pages;
232     uint64_t norm_pages;
233     uint64_t iterations;
234     uint64_t xbzrle_bytes;
235     uint64_t xbzrle_pages;
236     uint64_t xbzrle_cache_miss;
237     uint64_t xbzrle_overflows;
238 } AccountingInfo;
239 
240 static AccountingInfo acct_info;
241 
242 static void acct_clear(void)
243 {
244     memset(&acct_info, 0, sizeof(acct_info));
245 }
246 
247 uint64_t dup_mig_bytes_transferred(void)
248 {
249     return acct_info.dup_pages * TARGET_PAGE_SIZE;
250 }
251 
252 uint64_t dup_mig_pages_transferred(void)
253 {
254     return acct_info.dup_pages;
255 }
256 
257 uint64_t skipped_mig_bytes_transferred(void)
258 {
259     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
260 }
261 
262 uint64_t skipped_mig_pages_transferred(void)
263 {
264     return acct_info.skipped_pages;
265 }
266 
267 uint64_t norm_mig_bytes_transferred(void)
268 {
269     return acct_info.norm_pages * TARGET_PAGE_SIZE;
270 }
271 
272 uint64_t norm_mig_pages_transferred(void)
273 {
274     return acct_info.norm_pages;
275 }
276 
277 uint64_t xbzrle_mig_bytes_transferred(void)
278 {
279     return acct_info.xbzrle_bytes;
280 }
281 
282 uint64_t xbzrle_mig_pages_transferred(void)
283 {
284     return acct_info.xbzrle_pages;
285 }
286 
287 uint64_t xbzrle_mig_pages_cache_miss(void)
288 {
289     return acct_info.xbzrle_cache_miss;
290 }
291 
292 uint64_t xbzrle_mig_pages_overflow(void)
293 {
294     return acct_info.xbzrle_overflows;
295 }
296 
297 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
298                              int cont, int flag)
299 {
300     size_t size;
301 
302     qemu_put_be64(f, offset | cont | flag);
303     size = 8;
304 
305     if (!cont) {
306         qemu_put_byte(f, strlen(block->idstr));
307         qemu_put_buffer(f, (uint8_t *)block->idstr,
308                         strlen(block->idstr));
309         size += 1 + strlen(block->idstr);
310     }
311     return size;
312 }
313 
314 /* This is the last block that we have visited serching for dirty pages
315  */
316 static RAMBlock *last_seen_block;
317 /* This is the last block from where we have sent data */
318 static RAMBlock *last_sent_block;
319 static ram_addr_t last_offset;
320 static unsigned long *migration_bitmap;
321 static uint64_t migration_dirty_pages;
322 static uint32_t last_version;
323 static bool ram_bulk_stage;
324 
325 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
326  * The important thing is that a stale (not-yet-0'd) page be replaced
327  * by the new data.
328  * As a bonus, if the page wasn't in the cache it gets added so that
329  * when a small write is made into the 0'd page it gets XBZRLE sent
330  */
331 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
332 {
333     if (ram_bulk_stage || !migrate_use_xbzrle()) {
334         return;
335     }
336 
337     /* We don't care if this fails to allocate a new cache page
338      * as long as it updated an old one */
339     cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE);
340 }
341 
342 #define ENCODING_FLAG_XBZRLE 0x1
343 
344 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
345                             ram_addr_t current_addr, RAMBlock *block,
346                             ram_addr_t offset, int cont, bool last_stage)
347 {
348     int encoded_len = 0, bytes_sent = -1;
349     uint8_t *prev_cached_page;
350 
351     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
352         if (!last_stage) {
353             if (cache_insert(XBZRLE.cache, current_addr, current_data) == -1) {
354                 return -1;
355             }
356         }
357         acct_info.xbzrle_cache_miss++;
358         return -1;
359     }
360 
361     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
362 
363     /* save current buffer into memory */
364     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
365 
366     /* XBZRLE encoding (if there is no overflow) */
367     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
368                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
369                                        TARGET_PAGE_SIZE);
370     if (encoded_len == 0) {
371         DPRINTF("Skipping unmodified page\n");
372         return 0;
373     } else if (encoded_len == -1) {
374         DPRINTF("Overflow\n");
375         acct_info.xbzrle_overflows++;
376         /* update data in the cache */
377         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
378         return -1;
379     }
380 
381     /* we need to update the data in the cache, in order to get the same data */
382     if (!last_stage) {
383         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
384     }
385 
386     /* Send XBZRLE based compressed page */
387     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
388     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
389     qemu_put_be16(f, encoded_len);
390     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
391     bytes_sent += encoded_len + 1 + 2;
392     acct_info.xbzrle_pages++;
393     acct_info.xbzrle_bytes += bytes_sent;
394 
395     return bytes_sent;
396 }
397 
398 static inline
399 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
400                                                  ram_addr_t start)
401 {
402     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
403     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
404     uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
405     unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
406 
407     unsigned long next;
408 
409     if (ram_bulk_stage && nr > base) {
410         next = nr + 1;
411     } else {
412         next = find_next_bit(migration_bitmap, size, nr);
413     }
414 
415     if (next < size) {
416         clear_bit(next, migration_bitmap);
417         migration_dirty_pages--;
418     }
419     return (next - base) << TARGET_PAGE_BITS;
420 }
421 
422 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
423 {
424     bool ret;
425     int nr = addr >> TARGET_PAGE_BITS;
426 
427     ret = test_and_set_bit(nr, migration_bitmap);
428 
429     if (!ret) {
430         migration_dirty_pages++;
431     }
432     return ret;
433 }
434 
435 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
436 {
437     ram_addr_t addr;
438     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
439 
440     /* start address is aligned at the start of a word? */
441     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
442         int k;
443         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
444         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
445 
446         for (k = page; k < page + nr; k++) {
447             if (src[k]) {
448                 unsigned long new_dirty;
449                 new_dirty = ~migration_bitmap[k];
450                 migration_bitmap[k] |= src[k];
451                 new_dirty &= src[k];
452                 migration_dirty_pages += ctpopl(new_dirty);
453                 src[k] = 0;
454             }
455         }
456     } else {
457         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
458             if (cpu_physical_memory_get_dirty(start + addr,
459                                               TARGET_PAGE_SIZE,
460                                               DIRTY_MEMORY_MIGRATION)) {
461                 cpu_physical_memory_reset_dirty(start + addr,
462                                                 TARGET_PAGE_SIZE,
463                                                 DIRTY_MEMORY_MIGRATION);
464                 migration_bitmap_set_dirty(start + addr);
465             }
466         }
467     }
468 }
469 
470 
471 /* Needs iothread lock! */
472 
473 static void migration_bitmap_sync(void)
474 {
475     RAMBlock *block;
476     uint64_t num_dirty_pages_init = migration_dirty_pages;
477     MigrationState *s = migrate_get_current();
478     static int64_t start_time;
479     static int64_t bytes_xfer_prev;
480     static int64_t num_dirty_pages_period;
481     int64_t end_time;
482     int64_t bytes_xfer_now;
483 
484     if (!bytes_xfer_prev) {
485         bytes_xfer_prev = ram_bytes_transferred();
486     }
487 
488     if (!start_time) {
489         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
490     }
491 
492     trace_migration_bitmap_sync_start();
493     address_space_sync_dirty_bitmap(&address_space_memory);
494 
495     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
496         migration_bitmap_sync_range(block->mr->ram_addr, block->length);
497     }
498     trace_migration_bitmap_sync_end(migration_dirty_pages
499                                     - num_dirty_pages_init);
500     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
501     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
502 
503     /* more than 1 second = 1000 millisecons */
504     if (end_time > start_time + 1000) {
505         if (migrate_auto_converge()) {
506             /* The following detection logic can be refined later. For now:
507                Check to see if the dirtied bytes is 50% more than the approx.
508                amount of bytes that just got transferred since the last time we
509                were in this routine. If that happens >N times (for now N==4)
510                we turn on the throttle down logic */
511             bytes_xfer_now = ram_bytes_transferred();
512             if (s->dirty_pages_rate &&
513                (num_dirty_pages_period * TARGET_PAGE_SIZE >
514                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
515                (dirty_rate_high_cnt++ > 4)) {
516                     trace_migration_throttle();
517                     mig_throttle_on = true;
518                     dirty_rate_high_cnt = 0;
519              }
520              bytes_xfer_prev = bytes_xfer_now;
521         } else {
522              mig_throttle_on = false;
523         }
524         s->dirty_pages_rate = num_dirty_pages_period * 1000
525             / (end_time - start_time);
526         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
527         start_time = end_time;
528         num_dirty_pages_period = 0;
529     }
530 }
531 
532 /*
533  * ram_save_block: Writes a page of memory to the stream f
534  *
535  * Returns:  The number of bytes written.
536  *           0 means no dirty pages
537  */
538 
539 static int ram_save_block(QEMUFile *f, bool last_stage)
540 {
541     RAMBlock *block = last_seen_block;
542     ram_addr_t offset = last_offset;
543     bool complete_round = false;
544     int bytes_sent = 0;
545     MemoryRegion *mr;
546     ram_addr_t current_addr;
547 
548     if (!block)
549         block = QTAILQ_FIRST(&ram_list.blocks);
550 
551     while (true) {
552         mr = block->mr;
553         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
554         if (complete_round && block == last_seen_block &&
555             offset >= last_offset) {
556             break;
557         }
558         if (offset >= block->length) {
559             offset = 0;
560             block = QTAILQ_NEXT(block, next);
561             if (!block) {
562                 block = QTAILQ_FIRST(&ram_list.blocks);
563                 complete_round = true;
564                 ram_bulk_stage = false;
565             }
566         } else {
567             int ret;
568             uint8_t *p;
569             bool send_async = true;
570             int cont = (block == last_sent_block) ?
571                 RAM_SAVE_FLAG_CONTINUE : 0;
572 
573             p = memory_region_get_ram_ptr(mr) + offset;
574 
575             /* In doubt sent page as normal */
576             bytes_sent = -1;
577             ret = ram_control_save_page(f, block->offset,
578                                offset, TARGET_PAGE_SIZE, &bytes_sent);
579 
580             XBZRLE_cache_lock();
581 
582             current_addr = block->offset + offset;
583             if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
584                 if (ret != RAM_SAVE_CONTROL_DELAYED) {
585                     if (bytes_sent > 0) {
586                         acct_info.norm_pages++;
587                     } else if (bytes_sent == 0) {
588                         acct_info.dup_pages++;
589                     }
590                 }
591             } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
592                 acct_info.dup_pages++;
593                 bytes_sent = save_block_hdr(f, block, offset, cont,
594                                             RAM_SAVE_FLAG_COMPRESS);
595                 qemu_put_byte(f, 0);
596                 bytes_sent++;
597                 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
598                  * page would be stale
599                  */
600                 xbzrle_cache_zero_page(current_addr);
601             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
602                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
603                                               offset, cont, last_stage);
604                 if (!last_stage) {
605                     /* We must send exactly what's in the xbzrle cache
606                      * even if the page wasn't xbzrle compressed, so that
607                      * it's right next time.
608                      */
609                     p = get_cached_data(XBZRLE.cache, current_addr);
610 
611                     /* Can't send this cached data async, since the cache page
612                      * might get updated before it gets to the wire
613                      */
614                     send_async = false;
615                 }
616             }
617 
618             /* XBZRLE overflow or normal page */
619             if (bytes_sent == -1) {
620                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
621                 if (send_async) {
622                     qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
623                 } else {
624                     qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
625                 }
626                 bytes_sent += TARGET_PAGE_SIZE;
627                 acct_info.norm_pages++;
628             }
629 
630             XBZRLE_cache_unlock();
631             /* if page is unmodified, continue to the next */
632             if (bytes_sent > 0) {
633                 last_sent_block = block;
634                 break;
635             }
636         }
637     }
638     last_seen_block = block;
639     last_offset = offset;
640 
641     return bytes_sent;
642 }
643 
644 static uint64_t bytes_transferred;
645 
646 void acct_update_position(QEMUFile *f, size_t size, bool zero)
647 {
648     uint64_t pages = size / TARGET_PAGE_SIZE;
649     if (zero) {
650         acct_info.dup_pages += pages;
651     } else {
652         acct_info.norm_pages += pages;
653         bytes_transferred += size;
654         qemu_update_position(f, size);
655     }
656 }
657 
658 static ram_addr_t ram_save_remaining(void)
659 {
660     return migration_dirty_pages;
661 }
662 
663 uint64_t ram_bytes_remaining(void)
664 {
665     return ram_save_remaining() * TARGET_PAGE_SIZE;
666 }
667 
668 uint64_t ram_bytes_transferred(void)
669 {
670     return bytes_transferred;
671 }
672 
673 uint64_t ram_bytes_total(void)
674 {
675     RAMBlock *block;
676     uint64_t total = 0;
677 
678     QTAILQ_FOREACH(block, &ram_list.blocks, next)
679         total += block->length;
680 
681     return total;
682 }
683 
684 void free_xbzrle_decoded_buf(void)
685 {
686     g_free(xbzrle_decoded_buf);
687     xbzrle_decoded_buf = NULL;
688 }
689 
690 static void migration_end(void)
691 {
692     if (migration_bitmap) {
693         memory_global_dirty_log_stop();
694         g_free(migration_bitmap);
695         migration_bitmap = NULL;
696     }
697 
698     XBZRLE_cache_lock();
699     if (XBZRLE.cache) {
700         cache_fini(XBZRLE.cache);
701         g_free(XBZRLE.cache);
702         g_free(XBZRLE.encoded_buf);
703         g_free(XBZRLE.current_buf);
704         XBZRLE.cache = NULL;
705         XBZRLE.encoded_buf = NULL;
706         XBZRLE.current_buf = NULL;
707     }
708     XBZRLE_cache_unlock();
709 }
710 
711 static void ram_migration_cancel(void *opaque)
712 {
713     migration_end();
714 }
715 
716 static void reset_ram_globals(void)
717 {
718     last_seen_block = NULL;
719     last_sent_block = NULL;
720     last_offset = 0;
721     last_version = ram_list.version;
722     ram_bulk_stage = true;
723 }
724 
725 #define MAX_WAIT 50 /* ms, half buffered_file limit */
726 
727 static int ram_save_setup(QEMUFile *f, void *opaque)
728 {
729     RAMBlock *block;
730     int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
731 
732     mig_throttle_on = false;
733     dirty_rate_high_cnt = 0;
734 
735     if (migrate_use_xbzrle()) {
736         XBZRLE_cache_lock();
737         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
738                                   TARGET_PAGE_SIZE,
739                                   TARGET_PAGE_SIZE);
740         if (!XBZRLE.cache) {
741             XBZRLE_cache_unlock();
742             error_report("Error creating cache");
743             return -1;
744         }
745         XBZRLE_cache_unlock();
746 
747         /* We prefer not to abort if there is no memory */
748         XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
749         if (!XBZRLE.encoded_buf) {
750             error_report("Error allocating encoded_buf");
751             return -1;
752         }
753 
754         XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
755         if (!XBZRLE.current_buf) {
756             error_report("Error allocating current_buf");
757             g_free(XBZRLE.encoded_buf);
758             XBZRLE.encoded_buf = NULL;
759             return -1;
760         }
761 
762         acct_clear();
763     }
764 
765     qemu_mutex_lock_iothread();
766     qemu_mutex_lock_ramlist();
767     bytes_transferred = 0;
768     reset_ram_globals();
769 
770     ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
771     migration_bitmap = bitmap_new(ram_bitmap_pages);
772     bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
773 
774     /*
775      * Count the total number of pages used by ram blocks not including any
776      * gaps due to alignment or unplugs.
777      */
778     migration_dirty_pages = 0;
779     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
780         uint64_t block_pages;
781 
782         block_pages = block->length >> TARGET_PAGE_BITS;
783         migration_dirty_pages += block_pages;
784     }
785 
786     memory_global_dirty_log_start();
787     migration_bitmap_sync();
788     qemu_mutex_unlock_iothread();
789 
790     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
791 
792     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
793         qemu_put_byte(f, strlen(block->idstr));
794         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
795         qemu_put_be64(f, block->length);
796     }
797 
798     qemu_mutex_unlock_ramlist();
799 
800     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
801     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
802 
803     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
804 
805     return 0;
806 }
807 
808 static int ram_save_iterate(QEMUFile *f, void *opaque)
809 {
810     int ret;
811     int i;
812     int64_t t0;
813     int total_sent = 0;
814 
815     qemu_mutex_lock_ramlist();
816 
817     if (ram_list.version != last_version) {
818         reset_ram_globals();
819     }
820 
821     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
822 
823     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
824     i = 0;
825     while ((ret = qemu_file_rate_limit(f)) == 0) {
826         int bytes_sent;
827 
828         bytes_sent = ram_save_block(f, false);
829         /* no more blocks to sent */
830         if (bytes_sent == 0) {
831             break;
832         }
833         total_sent += bytes_sent;
834         acct_info.iterations++;
835         check_guest_throttling();
836         /* we want to check in the 1st loop, just in case it was the 1st time
837            and we had to sync the dirty bitmap.
838            qemu_get_clock_ns() is a bit expensive, so we only check each some
839            iterations
840         */
841         if ((i & 63) == 0) {
842             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
843             if (t1 > MAX_WAIT) {
844                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
845                         t1, i);
846                 break;
847             }
848         }
849         i++;
850     }
851 
852     qemu_mutex_unlock_ramlist();
853 
854     /*
855      * Must occur before EOS (or any QEMUFile operation)
856      * because of RDMA protocol.
857      */
858     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
859 
860     bytes_transferred += total_sent;
861 
862     /*
863      * Do not count these 8 bytes into total_sent, so that we can
864      * return 0 if no page had been dirtied.
865      */
866     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
867     bytes_transferred += 8;
868 
869     ret = qemu_file_get_error(f);
870     if (ret < 0) {
871         return ret;
872     }
873 
874     return total_sent;
875 }
876 
877 static int ram_save_complete(QEMUFile *f, void *opaque)
878 {
879     qemu_mutex_lock_ramlist();
880     migration_bitmap_sync();
881 
882     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
883 
884     /* try transferring iterative blocks of memory */
885 
886     /* flush all remaining blocks regardless of rate limiting */
887     while (true) {
888         int bytes_sent;
889 
890         bytes_sent = ram_save_block(f, true);
891         /* no more blocks to sent */
892         if (bytes_sent == 0) {
893             break;
894         }
895         bytes_transferred += bytes_sent;
896     }
897 
898     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
899     migration_end();
900 
901     qemu_mutex_unlock_ramlist();
902     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
903 
904     return 0;
905 }
906 
907 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
908 {
909     uint64_t remaining_size;
910 
911     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
912 
913     if (remaining_size < max_size) {
914         qemu_mutex_lock_iothread();
915         migration_bitmap_sync();
916         qemu_mutex_unlock_iothread();
917         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
918     }
919     return remaining_size;
920 }
921 
922 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
923 {
924     int ret, rc = 0;
925     unsigned int xh_len;
926     int xh_flags;
927 
928     if (!xbzrle_decoded_buf) {
929         xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
930     }
931 
932     /* extract RLE header */
933     xh_flags = qemu_get_byte(f);
934     xh_len = qemu_get_be16(f);
935 
936     if (xh_flags != ENCODING_FLAG_XBZRLE) {
937         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
938         return -1;
939     }
940 
941     if (xh_len > TARGET_PAGE_SIZE) {
942         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
943         return -1;
944     }
945     /* load data and decode */
946     qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
947 
948     /* decode RLE */
949     ret = xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
950                                TARGET_PAGE_SIZE);
951     if (ret == -1) {
952         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
953         rc = -1;
954     } else  if (ret > TARGET_PAGE_SIZE) {
955         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
956                 ret, TARGET_PAGE_SIZE);
957         abort();
958     }
959 
960     return rc;
961 }
962 
963 static inline void *host_from_stream_offset(QEMUFile *f,
964                                             ram_addr_t offset,
965                                             int flags)
966 {
967     static RAMBlock *block = NULL;
968     char id[256];
969     uint8_t len;
970 
971     if (flags & RAM_SAVE_FLAG_CONTINUE) {
972         if (!block) {
973             fprintf(stderr, "Ack, bad migration stream!\n");
974             return NULL;
975         }
976 
977         return memory_region_get_ram_ptr(block->mr) + offset;
978     }
979 
980     len = qemu_get_byte(f);
981     qemu_get_buffer(f, (uint8_t *)id, len);
982     id[len] = 0;
983 
984     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
985         if (!strncmp(id, block->idstr, sizeof(id)))
986             return memory_region_get_ram_ptr(block->mr) + offset;
987     }
988 
989     fprintf(stderr, "Can't find block %s!\n", id);
990     return NULL;
991 }
992 
993 /*
994  * If a page (or a whole RDMA chunk) has been
995  * determined to be zero, then zap it.
996  */
997 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
998 {
999     if (ch != 0 || !is_zero_range(host, size)) {
1000         memset(host, ch, size);
1001     }
1002 }
1003 
1004 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1005 {
1006     ram_addr_t addr;
1007     int flags, ret = 0;
1008     int error;
1009     static uint64_t seq_iter;
1010 
1011     seq_iter++;
1012 
1013     if (version_id < 4 || version_id > 4) {
1014         return -EINVAL;
1015     }
1016 
1017     do {
1018         addr = qemu_get_be64(f);
1019 
1020         flags = addr & ~TARGET_PAGE_MASK;
1021         addr &= TARGET_PAGE_MASK;
1022 
1023         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
1024             if (version_id == 4) {
1025                 /* Synchronize RAM block list */
1026                 char id[256];
1027                 ram_addr_t length;
1028                 ram_addr_t total_ram_bytes = addr;
1029 
1030                 while (total_ram_bytes) {
1031                     RAMBlock *block;
1032                     uint8_t len;
1033 
1034                     len = qemu_get_byte(f);
1035                     qemu_get_buffer(f, (uint8_t *)id, len);
1036                     id[len] = 0;
1037                     length = qemu_get_be64(f);
1038 
1039                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1040                         if (!strncmp(id, block->idstr, sizeof(id))) {
1041                             if (block->length != length) {
1042                                 fprintf(stderr,
1043                                         "Length mismatch: %s: " RAM_ADDR_FMT
1044                                         " in != " RAM_ADDR_FMT "\n", id, length,
1045                                         block->length);
1046                                 ret =  -EINVAL;
1047                                 goto done;
1048                             }
1049                             break;
1050                         }
1051                     }
1052 
1053                     if (!block) {
1054                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
1055                                 "accept migration\n", id);
1056                         ret = -EINVAL;
1057                         goto done;
1058                     }
1059 
1060                     total_ram_bytes -= length;
1061                 }
1062             }
1063         }
1064 
1065         if (flags & RAM_SAVE_FLAG_COMPRESS) {
1066             void *host;
1067             uint8_t ch;
1068 
1069             host = host_from_stream_offset(f, addr, flags);
1070             if (!host) {
1071                 return -EINVAL;
1072             }
1073 
1074             ch = qemu_get_byte(f);
1075             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1076         } else if (flags & RAM_SAVE_FLAG_PAGE) {
1077             void *host;
1078 
1079             host = host_from_stream_offset(f, addr, flags);
1080             if (!host) {
1081                 return -EINVAL;
1082             }
1083 
1084             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1085         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
1086             void *host = host_from_stream_offset(f, addr, flags);
1087             if (!host) {
1088                 return -EINVAL;
1089             }
1090 
1091             if (load_xbzrle(f, addr, host) < 0) {
1092                 ret = -EINVAL;
1093                 goto done;
1094             }
1095         } else if (flags & RAM_SAVE_FLAG_HOOK) {
1096             ram_control_load_hook(f, flags);
1097         }
1098         error = qemu_file_get_error(f);
1099         if (error) {
1100             ret = error;
1101             goto done;
1102         }
1103     } while (!(flags & RAM_SAVE_FLAG_EOS));
1104 
1105 done:
1106     DPRINTF("Completed load of VM with exit code %d seq iteration "
1107             "%" PRIu64 "\n", ret, seq_iter);
1108     return ret;
1109 }
1110 
1111 static SaveVMHandlers savevm_ram_handlers = {
1112     .save_live_setup = ram_save_setup,
1113     .save_live_iterate = ram_save_iterate,
1114     .save_live_complete = ram_save_complete,
1115     .save_live_pending = ram_save_pending,
1116     .load_state = ram_load,
1117     .cancel = ram_migration_cancel,
1118 };
1119 
1120 void ram_mig_init(void)
1121 {
1122     qemu_mutex_init(&XBZRLE.lock);
1123     register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1124 }
1125 
1126 struct soundhw {
1127     const char *name;
1128     const char *descr;
1129     int enabled;
1130     int isa;
1131     union {
1132         int (*init_isa) (ISABus *bus);
1133         int (*init_pci) (PCIBus *bus);
1134     } init;
1135 };
1136 
1137 static struct soundhw soundhw[9];
1138 static int soundhw_count;
1139 
1140 void isa_register_soundhw(const char *name, const char *descr,
1141                           int (*init_isa)(ISABus *bus))
1142 {
1143     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1144     soundhw[soundhw_count].name = name;
1145     soundhw[soundhw_count].descr = descr;
1146     soundhw[soundhw_count].isa = 1;
1147     soundhw[soundhw_count].init.init_isa = init_isa;
1148     soundhw_count++;
1149 }
1150 
1151 void pci_register_soundhw(const char *name, const char *descr,
1152                           int (*init_pci)(PCIBus *bus))
1153 {
1154     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1155     soundhw[soundhw_count].name = name;
1156     soundhw[soundhw_count].descr = descr;
1157     soundhw[soundhw_count].isa = 0;
1158     soundhw[soundhw_count].init.init_pci = init_pci;
1159     soundhw_count++;
1160 }
1161 
1162 void select_soundhw(const char *optarg)
1163 {
1164     struct soundhw *c;
1165 
1166     if (is_help_option(optarg)) {
1167     show_valid_cards:
1168 
1169         if (soundhw_count) {
1170              printf("Valid sound card names (comma separated):\n");
1171              for (c = soundhw; c->name; ++c) {
1172                  printf ("%-11s %s\n", c->name, c->descr);
1173              }
1174              printf("\n-soundhw all will enable all of the above\n");
1175         } else {
1176              printf("Machine has no user-selectable audio hardware "
1177                     "(it may or may not have always-present audio hardware).\n");
1178         }
1179         exit(!is_help_option(optarg));
1180     }
1181     else {
1182         size_t l;
1183         const char *p;
1184         char *e;
1185         int bad_card = 0;
1186 
1187         if (!strcmp(optarg, "all")) {
1188             for (c = soundhw; c->name; ++c) {
1189                 c->enabled = 1;
1190             }
1191             return;
1192         }
1193 
1194         p = optarg;
1195         while (*p) {
1196             e = strchr(p, ',');
1197             l = !e ? strlen(p) : (size_t) (e - p);
1198 
1199             for (c = soundhw; c->name; ++c) {
1200                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1201                     c->enabled = 1;
1202                     break;
1203                 }
1204             }
1205 
1206             if (!c->name) {
1207                 if (l > 80) {
1208                     fprintf(stderr,
1209                             "Unknown sound card name (too big to show)\n");
1210                 }
1211                 else {
1212                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
1213                             (int) l, p);
1214                 }
1215                 bad_card = 1;
1216             }
1217             p += l + (e != NULL);
1218         }
1219 
1220         if (bad_card) {
1221             goto show_valid_cards;
1222         }
1223     }
1224 }
1225 
1226 void audio_init(void)
1227 {
1228     struct soundhw *c;
1229     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1230     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1231 
1232     for (c = soundhw; c->name; ++c) {
1233         if (c->enabled) {
1234             if (c->isa) {
1235                 if (!isa_bus) {
1236                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1237                     exit(1);
1238                 }
1239                 c->init.init_isa(isa_bus);
1240             } else {
1241                 if (!pci_bus) {
1242                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1243                     exit(1);
1244                 }
1245                 c->init.init_pci(pci_bus);
1246             }
1247         }
1248     }
1249 }
1250 
1251 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1252 {
1253     int ret;
1254 
1255     if (strlen(str) != 36) {
1256         return -1;
1257     }
1258 
1259     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1260                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1261                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1262                  &uuid[15]);
1263 
1264     if (ret != 16) {
1265         return -1;
1266     }
1267     return 0;
1268 }
1269 
1270 void do_acpitable_option(const QemuOpts *opts)
1271 {
1272 #ifdef TARGET_I386
1273     Error *err = NULL;
1274 
1275     acpi_table_add(opts, &err);
1276     if (err) {
1277         error_report("Wrong acpi table provided: %s",
1278                      error_get_pretty(err));
1279         error_free(err);
1280         exit(1);
1281     }
1282 #endif
1283 }
1284 
1285 void do_smbios_option(QemuOpts *opts)
1286 {
1287 #ifdef TARGET_I386
1288     smbios_entry_add(opts);
1289 #endif
1290 }
1291 
1292 void cpudef_init(void)
1293 {
1294 #if defined(cpudef_setup)
1295     cpudef_setup(); /* parse cpu definitions in target config file */
1296 #endif
1297 }
1298 
1299 int tcg_available(void)
1300 {
1301     return 1;
1302 }
1303 
1304 int kvm_available(void)
1305 {
1306 #ifdef CONFIG_KVM
1307     return 1;
1308 #else
1309     return 0;
1310 #endif
1311 }
1312 
1313 int xen_available(void)
1314 {
1315 #ifdef CONFIG_XEN
1316     return 1;
1317 #else
1318     return 0;
1319 #endif
1320 }
1321 
1322 
1323 TargetInfo *qmp_query_target(Error **errp)
1324 {
1325     TargetInfo *info = g_malloc0(sizeof(*info));
1326 
1327     info->arch = g_strdup(TARGET_NAME);
1328 
1329     return info;
1330 }
1331 
1332 /* Stub function that's gets run on the vcpu when its brought out of the
1333    VM to run inside qemu via async_run_on_cpu()*/
1334 static void mig_sleep_cpu(void *opq)
1335 {
1336     qemu_mutex_unlock_iothread();
1337     g_usleep(30*1000);
1338     qemu_mutex_lock_iothread();
1339 }
1340 
1341 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1342    much time in the VM. The migration thread will try to catchup.
1343    Workload will experience a performance drop.
1344 */
1345 static void mig_throttle_guest_down(void)
1346 {
1347     CPUState *cpu;
1348 
1349     qemu_mutex_lock_iothread();
1350     CPU_FOREACH(cpu) {
1351         async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1352     }
1353     qemu_mutex_unlock_iothread();
1354 }
1355 
1356 static void check_guest_throttling(void)
1357 {
1358     static int64_t t0;
1359     int64_t        t1;
1360 
1361     if (!mig_throttle_on) {
1362         return;
1363     }
1364 
1365     if (!t0)  {
1366         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1367         return;
1368     }
1369 
1370     t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1371 
1372     /* If it has been more than 40 ms since the last time the guest
1373      * was throttled then do it again.
1374      */
1375     if (40 < (t1-t0)/1000000) {
1376         mig_throttle_guest_down();
1377         t0 = t1;
1378     }
1379 }
1380