1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audiodev.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_OPENRISC) 89 #define QEMU_ARCH QEMU_ARCH_OPENRISC 90 #elif defined(TARGET_PPC) 91 #define QEMU_ARCH QEMU_ARCH_PPC 92 #elif defined(TARGET_S390X) 93 #define QEMU_ARCH QEMU_ARCH_S390X 94 #elif defined(TARGET_SH4) 95 #define QEMU_ARCH QEMU_ARCH_SH4 96 #elif defined(TARGET_SPARC) 97 #define QEMU_ARCH QEMU_ARCH_SPARC 98 #elif defined(TARGET_XTENSA) 99 #define QEMU_ARCH QEMU_ARCH_XTENSA 100 #elif defined(TARGET_UNICORE32) 101 #define QEMU_ARCH QEMU_ARCH_UNICORE32 102 #endif 103 104 const uint32_t arch_type = QEMU_ARCH; 105 106 /***********************************************************/ 107 /* ram save/restore */ 108 109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 110 #define RAM_SAVE_FLAG_COMPRESS 0x02 111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 112 #define RAM_SAVE_FLAG_PAGE 0x08 113 #define RAM_SAVE_FLAG_EOS 0x10 114 #define RAM_SAVE_FLAG_CONTINUE 0x20 115 #define RAM_SAVE_FLAG_XBZRLE 0x40 116 117 #ifdef __ALTIVEC__ 118 #include <altivec.h> 119 #define VECTYPE vector unsigned char 120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0) 121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) 122 /* altivec.h may redefine the bool macro as vector type. 123 * Reset it to POSIX semantics. */ 124 #undef bool 125 #define bool _Bool 126 #elif defined __SSE2__ 127 #include <emmintrin.h> 128 #define VECTYPE __m128i 129 #define SPLAT(p) _mm_set1_epi8(*(p)) 130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) 131 #else 132 #define VECTYPE unsigned long 133 #define SPLAT(p) (*(p) * (~0UL / 255)) 134 #define ALL_EQ(v1, v2) ((v1) == (v2)) 135 #endif 136 137 138 static struct defconfig_file { 139 const char *filename; 140 /* Indicates it is an user config file (disabled by -no-user-config) */ 141 bool userconfig; 142 } default_config_files[] = { 143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 145 { NULL }, /* end of list */ 146 }; 147 148 149 int qemu_read_default_config_files(bool userconfig) 150 { 151 int ret; 152 struct defconfig_file *f; 153 154 for (f = default_config_files; f->filename; f++) { 155 if (!userconfig && f->userconfig) { 156 continue; 157 } 158 ret = qemu_read_config_file(f->filename); 159 if (ret < 0 && ret != -ENOENT) { 160 return ret; 161 } 162 } 163 164 return 0; 165 } 166 167 static int is_dup_page(uint8_t *page) 168 { 169 VECTYPE *p = (VECTYPE *)page; 170 VECTYPE val = SPLAT(page); 171 int i; 172 173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) { 174 if (!ALL_EQ(val, p[i])) { 175 return 0; 176 } 177 } 178 179 return 1; 180 } 181 182 /* struct contains XBZRLE cache and a static page 183 used by the compression */ 184 static struct { 185 /* buffer used for XBZRLE encoding */ 186 uint8_t *encoded_buf; 187 /* buffer for storing page content */ 188 uint8_t *current_buf; 189 /* buffer used for XBZRLE decoding */ 190 uint8_t *decoded_buf; 191 /* Cache for XBZRLE */ 192 PageCache *cache; 193 } XBZRLE = { 194 .encoded_buf = NULL, 195 .current_buf = NULL, 196 .decoded_buf = NULL, 197 .cache = NULL, 198 }; 199 200 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 if (XBZRLE.cache != NULL) { 204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 205 TARGET_PAGE_SIZE; 206 } 207 return pow2floor(new_size); 208 } 209 210 /* accounting for migration statistics */ 211 typedef struct AccountingInfo { 212 uint64_t dup_pages; 213 uint64_t norm_pages; 214 uint64_t iterations; 215 uint64_t xbzrle_bytes; 216 uint64_t xbzrle_pages; 217 uint64_t xbzrle_cache_miss; 218 uint64_t xbzrle_overflows; 219 } AccountingInfo; 220 221 static AccountingInfo acct_info; 222 223 static void acct_clear(void) 224 { 225 memset(&acct_info, 0, sizeof(acct_info)); 226 } 227 228 uint64_t dup_mig_bytes_transferred(void) 229 { 230 return acct_info.dup_pages * TARGET_PAGE_SIZE; 231 } 232 233 uint64_t dup_mig_pages_transferred(void) 234 { 235 return acct_info.dup_pages; 236 } 237 238 uint64_t norm_mig_bytes_transferred(void) 239 { 240 return acct_info.norm_pages * TARGET_PAGE_SIZE; 241 } 242 243 uint64_t norm_mig_pages_transferred(void) 244 { 245 return acct_info.norm_pages; 246 } 247 248 uint64_t xbzrle_mig_bytes_transferred(void) 249 { 250 return acct_info.xbzrle_bytes; 251 } 252 253 uint64_t xbzrle_mig_pages_transferred(void) 254 { 255 return acct_info.xbzrle_pages; 256 } 257 258 uint64_t xbzrle_mig_pages_cache_miss(void) 259 { 260 return acct_info.xbzrle_cache_miss; 261 } 262 263 uint64_t xbzrle_mig_pages_overflow(void) 264 { 265 return acct_info.xbzrle_overflows; 266 } 267 268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 269 int cont, int flag) 270 { 271 qemu_put_be64(f, offset | cont | flag); 272 if (!cont) { 273 qemu_put_byte(f, strlen(block->idstr)); 274 qemu_put_buffer(f, (uint8_t *)block->idstr, 275 strlen(block->idstr)); 276 } 277 278 } 279 280 #define ENCODING_FLAG_XBZRLE 0x1 281 282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 283 ram_addr_t current_addr, RAMBlock *block, 284 ram_addr_t offset, int cont, bool last_stage) 285 { 286 int encoded_len = 0, bytes_sent = -1; 287 uint8_t *prev_cached_page; 288 289 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 290 if (!last_stage) { 291 cache_insert(XBZRLE.cache, current_addr, 292 g_memdup(current_data, TARGET_PAGE_SIZE)); 293 } 294 acct_info.xbzrle_cache_miss++; 295 return -1; 296 } 297 298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 299 300 /* save current buffer into memory */ 301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 302 303 /* XBZRLE encoding (if there is no overflow) */ 304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 306 TARGET_PAGE_SIZE); 307 if (encoded_len == 0) { 308 DPRINTF("Skipping unmodified page\n"); 309 return 0; 310 } else if (encoded_len == -1) { 311 DPRINTF("Overflow\n"); 312 acct_info.xbzrle_overflows++; 313 /* update data in the cache */ 314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 315 return -1; 316 } 317 318 /* we need to update the data in the cache, in order to get the same data */ 319 if (!last_stage) { 320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 321 } 322 323 /* Send XBZRLE based compressed page */ 324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 326 qemu_put_be16(f, encoded_len); 327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 328 bytes_sent = encoded_len + 1 + 2; 329 acct_info.xbzrle_pages++; 330 acct_info.xbzrle_bytes += bytes_sent; 331 332 return bytes_sent; 333 } 334 335 static RAMBlock *last_block; 336 static ram_addr_t last_offset; 337 static unsigned long *migration_bitmap; 338 static uint64_t migration_dirty_pages; 339 340 static inline bool migration_bitmap_test_and_reset_dirty(MemoryRegion *mr, 341 ram_addr_t offset) 342 { 343 bool ret; 344 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 345 346 ret = test_and_clear_bit(nr, migration_bitmap); 347 348 if (ret) { 349 migration_dirty_pages--; 350 } 351 return ret; 352 } 353 354 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 355 ram_addr_t offset) 356 { 357 bool ret; 358 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 359 360 ret = test_and_set_bit(nr, migration_bitmap); 361 362 if (!ret) { 363 migration_dirty_pages++; 364 } 365 return ret; 366 } 367 368 static void migration_bitmap_sync(void) 369 { 370 RAMBlock *block; 371 ram_addr_t addr; 372 uint64_t num_dirty_pages_init = migration_dirty_pages; 373 MigrationState *s = migrate_get_current(); 374 static int64_t start_time; 375 static int64_t num_dirty_pages_period; 376 int64_t end_time; 377 378 if (!start_time) { 379 start_time = qemu_get_clock_ms(rt_clock); 380 } 381 382 trace_migration_bitmap_sync_start(); 383 memory_global_sync_dirty_bitmap(get_system_memory()); 384 385 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 386 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 387 if (memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE, 388 DIRTY_MEMORY_MIGRATION)) { 389 migration_bitmap_set_dirty(block->mr, addr); 390 } 391 } 392 memory_region_reset_dirty(block->mr, 0, block->length, 393 DIRTY_MEMORY_MIGRATION); 394 } 395 trace_migration_bitmap_sync_end(migration_dirty_pages 396 - num_dirty_pages_init); 397 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 398 end_time = qemu_get_clock_ms(rt_clock); 399 400 /* more than 1 second = 1000 millisecons */ 401 if (end_time > start_time + 1000) { 402 s->dirty_pages_rate = num_dirty_pages_period * 1000 403 / (end_time - start_time); 404 start_time = end_time; 405 num_dirty_pages_period = 0; 406 } 407 } 408 409 410 /* 411 * ram_save_block: Writes a page of memory to the stream f 412 * 413 * Returns: 0: if the page hasn't changed 414 * -1: if there are no more dirty pages 415 * n: the amount of bytes written in other case 416 */ 417 418 static int ram_save_block(QEMUFile *f, bool last_stage) 419 { 420 RAMBlock *block = last_block; 421 ram_addr_t offset = last_offset; 422 int bytes_sent = -1; 423 MemoryRegion *mr; 424 ram_addr_t current_addr; 425 426 if (!block) 427 block = QTAILQ_FIRST(&ram_list.blocks); 428 429 do { 430 mr = block->mr; 431 if (migration_bitmap_test_and_reset_dirty(mr, offset)) { 432 uint8_t *p; 433 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0; 434 435 p = memory_region_get_ram_ptr(mr) + offset; 436 437 if (is_dup_page(p)) { 438 acct_info.dup_pages++; 439 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS); 440 qemu_put_byte(f, *p); 441 bytes_sent = 1; 442 } else if (migrate_use_xbzrle()) { 443 current_addr = block->offset + offset; 444 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 445 offset, cont, last_stage); 446 if (!last_stage) { 447 p = get_cached_data(XBZRLE.cache, current_addr); 448 } 449 } 450 451 /* either we didn't send yet (we may have had XBZRLE overflow) */ 452 if (bytes_sent == -1) { 453 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 454 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 455 bytes_sent = TARGET_PAGE_SIZE; 456 acct_info.norm_pages++; 457 } 458 459 /* if page is unmodified, continue to the next */ 460 if (bytes_sent != 0) { 461 break; 462 } 463 } 464 465 offset += TARGET_PAGE_SIZE; 466 if (offset >= block->length) { 467 offset = 0; 468 block = QTAILQ_NEXT(block, next); 469 if (!block) 470 block = QTAILQ_FIRST(&ram_list.blocks); 471 } 472 } while (block != last_block || offset != last_offset); 473 474 last_block = block; 475 last_offset = offset; 476 477 return bytes_sent; 478 } 479 480 static uint64_t bytes_transferred; 481 482 static ram_addr_t ram_save_remaining(void) 483 { 484 return migration_dirty_pages; 485 } 486 487 uint64_t ram_bytes_remaining(void) 488 { 489 return ram_save_remaining() * TARGET_PAGE_SIZE; 490 } 491 492 uint64_t ram_bytes_transferred(void) 493 { 494 return bytes_transferred; 495 } 496 497 uint64_t ram_bytes_total(void) 498 { 499 RAMBlock *block; 500 uint64_t total = 0; 501 502 QTAILQ_FOREACH(block, &ram_list.blocks, next) 503 total += block->length; 504 505 return total; 506 } 507 508 static int block_compar(const void *a, const void *b) 509 { 510 RAMBlock * const *ablock = a; 511 RAMBlock * const *bblock = b; 512 513 return strcmp((*ablock)->idstr, (*bblock)->idstr); 514 } 515 516 static void sort_ram_list(void) 517 { 518 RAMBlock *block, *nblock, **blocks; 519 int n; 520 n = 0; 521 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 522 ++n; 523 } 524 blocks = g_malloc(n * sizeof *blocks); 525 n = 0; 526 QTAILQ_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) { 527 blocks[n++] = block; 528 QTAILQ_REMOVE(&ram_list.blocks, block, next); 529 } 530 qsort(blocks, n, sizeof *blocks, block_compar); 531 while (--n >= 0) { 532 QTAILQ_INSERT_HEAD(&ram_list.blocks, blocks[n], next); 533 } 534 g_free(blocks); 535 } 536 537 static void migration_end(void) 538 { 539 if (migration_bitmap) { 540 memory_global_dirty_log_stop(); 541 g_free(migration_bitmap); 542 migration_bitmap = NULL; 543 } 544 545 if (XBZRLE.cache) { 546 cache_fini(XBZRLE.cache); 547 g_free(XBZRLE.cache); 548 g_free(XBZRLE.encoded_buf); 549 g_free(XBZRLE.current_buf); 550 g_free(XBZRLE.decoded_buf); 551 XBZRLE.cache = NULL; 552 } 553 } 554 555 static void ram_migration_cancel(void *opaque) 556 { 557 migration_end(); 558 } 559 560 561 static void reset_ram_globals(void) 562 { 563 last_block = NULL; 564 last_offset = 0; 565 sort_ram_list(); 566 } 567 568 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 569 570 static int ram_save_setup(QEMUFile *f, void *opaque) 571 { 572 RAMBlock *block; 573 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 574 575 migration_bitmap = bitmap_new(ram_pages); 576 bitmap_set(migration_bitmap, 0, ram_pages); 577 migration_dirty_pages = ram_pages; 578 579 bytes_transferred = 0; 580 reset_ram_globals(); 581 582 if (migrate_use_xbzrle()) { 583 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 584 TARGET_PAGE_SIZE, 585 TARGET_PAGE_SIZE); 586 if (!XBZRLE.cache) { 587 DPRINTF("Error creating cache\n"); 588 return -1; 589 } 590 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 591 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 592 acct_clear(); 593 } 594 595 memory_global_dirty_log_start(); 596 migration_bitmap_sync(); 597 598 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 599 600 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 601 qemu_put_byte(f, strlen(block->idstr)); 602 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 603 qemu_put_be64(f, block->length); 604 } 605 606 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 607 608 return 0; 609 } 610 611 static int ram_save_iterate(QEMUFile *f, void *opaque) 612 { 613 uint64_t bytes_transferred_last; 614 double bwidth = 0; 615 int ret; 616 int i; 617 uint64_t expected_downtime; 618 MigrationState *s = migrate_get_current(); 619 620 bytes_transferred_last = bytes_transferred; 621 bwidth = qemu_get_clock_ns(rt_clock); 622 623 i = 0; 624 while ((ret = qemu_file_rate_limit(f)) == 0) { 625 int bytes_sent; 626 627 bytes_sent = ram_save_block(f, false); 628 /* no more blocks to sent */ 629 if (bytes_sent < 0) { 630 break; 631 } 632 bytes_transferred += bytes_sent; 633 acct_info.iterations++; 634 /* we want to check in the 1st loop, just in case it was the 1st time 635 and we had to sync the dirty bitmap. 636 qemu_get_clock_ns() is a bit expensive, so we only check each some 637 iterations 638 */ 639 if ((i & 63) == 0) { 640 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000; 641 if (t1 > MAX_WAIT) { 642 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 643 t1, i); 644 break; 645 } 646 } 647 i++; 648 } 649 650 if (ret < 0) { 651 return ret; 652 } 653 654 bwidth = qemu_get_clock_ns(rt_clock) - bwidth; 655 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; 656 657 /* if we haven't transferred anything this round, force 658 * expected_downtime to a very high value, but without 659 * crashing */ 660 if (bwidth == 0) { 661 bwidth = 0.000001; 662 } 663 664 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 665 666 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; 667 DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(" PRIu64 ")?\n", 668 expected_downtime, migrate_max_downtime()); 669 670 if (expected_downtime <= migrate_max_downtime()) { 671 migration_bitmap_sync(); 672 expected_downtime = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; 673 s->expected_downtime = expected_downtime / 1000000; /* ns -> ms */ 674 675 return expected_downtime <= migrate_max_downtime(); 676 } 677 return 0; 678 } 679 680 static int ram_save_complete(QEMUFile *f, void *opaque) 681 { 682 migration_bitmap_sync(); 683 684 /* try transferring iterative blocks of memory */ 685 686 /* flush all remaining blocks regardless of rate limiting */ 687 while (true) { 688 int bytes_sent; 689 690 bytes_sent = ram_save_block(f, true); 691 /* no more blocks to sent */ 692 if (bytes_sent < 0) { 693 break; 694 } 695 bytes_transferred += bytes_sent; 696 } 697 migration_end(); 698 699 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 700 701 return 0; 702 } 703 704 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 705 { 706 int ret, rc = 0; 707 unsigned int xh_len; 708 int xh_flags; 709 710 if (!XBZRLE.decoded_buf) { 711 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 712 } 713 714 /* extract RLE header */ 715 xh_flags = qemu_get_byte(f); 716 xh_len = qemu_get_be16(f); 717 718 if (xh_flags != ENCODING_FLAG_XBZRLE) { 719 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 720 return -1; 721 } 722 723 if (xh_len > TARGET_PAGE_SIZE) { 724 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 725 return -1; 726 } 727 /* load data and decode */ 728 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 729 730 /* decode RLE */ 731 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 732 TARGET_PAGE_SIZE); 733 if (ret == -1) { 734 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 735 rc = -1; 736 } else if (ret > TARGET_PAGE_SIZE) { 737 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 738 ret, TARGET_PAGE_SIZE); 739 abort(); 740 } 741 742 return rc; 743 } 744 745 static inline void *host_from_stream_offset(QEMUFile *f, 746 ram_addr_t offset, 747 int flags) 748 { 749 static RAMBlock *block = NULL; 750 char id[256]; 751 uint8_t len; 752 753 if (flags & RAM_SAVE_FLAG_CONTINUE) { 754 if (!block) { 755 fprintf(stderr, "Ack, bad migration stream!\n"); 756 return NULL; 757 } 758 759 return memory_region_get_ram_ptr(block->mr) + offset; 760 } 761 762 len = qemu_get_byte(f); 763 qemu_get_buffer(f, (uint8_t *)id, len); 764 id[len] = 0; 765 766 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 767 if (!strncmp(id, block->idstr, sizeof(id))) 768 return memory_region_get_ram_ptr(block->mr) + offset; 769 } 770 771 fprintf(stderr, "Can't find block %s!\n", id); 772 return NULL; 773 } 774 775 static int ram_load(QEMUFile *f, void *opaque, int version_id) 776 { 777 ram_addr_t addr; 778 int flags, ret = 0; 779 int error; 780 static uint64_t seq_iter; 781 782 seq_iter++; 783 784 if (version_id < 4 || version_id > 4) { 785 return -EINVAL; 786 } 787 788 do { 789 addr = qemu_get_be64(f); 790 791 flags = addr & ~TARGET_PAGE_MASK; 792 addr &= TARGET_PAGE_MASK; 793 794 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 795 if (version_id == 4) { 796 /* Synchronize RAM block list */ 797 char id[256]; 798 ram_addr_t length; 799 ram_addr_t total_ram_bytes = addr; 800 801 while (total_ram_bytes) { 802 RAMBlock *block; 803 uint8_t len; 804 805 len = qemu_get_byte(f); 806 qemu_get_buffer(f, (uint8_t *)id, len); 807 id[len] = 0; 808 length = qemu_get_be64(f); 809 810 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 811 if (!strncmp(id, block->idstr, sizeof(id))) { 812 if (block->length != length) { 813 ret = -EINVAL; 814 goto done; 815 } 816 break; 817 } 818 } 819 820 if (!block) { 821 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 822 "accept migration\n", id); 823 ret = -EINVAL; 824 goto done; 825 } 826 827 total_ram_bytes -= length; 828 } 829 } 830 } 831 832 if (flags & RAM_SAVE_FLAG_COMPRESS) { 833 void *host; 834 uint8_t ch; 835 836 host = host_from_stream_offset(f, addr, flags); 837 if (!host) { 838 return -EINVAL; 839 } 840 841 ch = qemu_get_byte(f); 842 memset(host, ch, TARGET_PAGE_SIZE); 843 #ifndef _WIN32 844 if (ch == 0 && 845 (!kvm_enabled() || kvm_has_sync_mmu()) && 846 getpagesize() <= TARGET_PAGE_SIZE) { 847 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 848 } 849 #endif 850 } else if (flags & RAM_SAVE_FLAG_PAGE) { 851 void *host; 852 853 host = host_from_stream_offset(f, addr, flags); 854 if (!host) { 855 return -EINVAL; 856 } 857 858 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 859 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 860 if (!migrate_use_xbzrle()) { 861 return -EINVAL; 862 } 863 void *host = host_from_stream_offset(f, addr, flags); 864 if (!host) { 865 return -EINVAL; 866 } 867 868 if (load_xbzrle(f, addr, host) < 0) { 869 ret = -EINVAL; 870 goto done; 871 } 872 } 873 error = qemu_file_get_error(f); 874 if (error) { 875 ret = error; 876 goto done; 877 } 878 } while (!(flags & RAM_SAVE_FLAG_EOS)); 879 880 done: 881 DPRINTF("Completed load of VM with exit code %d seq iteration " 882 "%" PRIu64 "\n", ret, seq_iter); 883 return ret; 884 } 885 886 SaveVMHandlers savevm_ram_handlers = { 887 .save_live_setup = ram_save_setup, 888 .save_live_iterate = ram_save_iterate, 889 .save_live_complete = ram_save_complete, 890 .load_state = ram_load, 891 .cancel = ram_migration_cancel, 892 }; 893 894 #ifdef HAS_AUDIO 895 struct soundhw { 896 const char *name; 897 const char *descr; 898 int enabled; 899 int isa; 900 union { 901 int (*init_isa) (ISABus *bus); 902 int (*init_pci) (PCIBus *bus); 903 } init; 904 }; 905 906 static struct soundhw soundhw[] = { 907 #ifdef HAS_AUDIO_CHOICE 908 #ifdef CONFIG_PCSPK 909 { 910 "pcspk", 911 "PC speaker", 912 0, 913 1, 914 { .init_isa = pcspk_audio_init } 915 }, 916 #endif 917 918 #ifdef CONFIG_SB16 919 { 920 "sb16", 921 "Creative Sound Blaster 16", 922 0, 923 1, 924 { .init_isa = SB16_init } 925 }, 926 #endif 927 928 #ifdef CONFIG_CS4231A 929 { 930 "cs4231a", 931 "CS4231A", 932 0, 933 1, 934 { .init_isa = cs4231a_init } 935 }, 936 #endif 937 938 #ifdef CONFIG_ADLIB 939 { 940 "adlib", 941 #ifdef HAS_YMF262 942 "Yamaha YMF262 (OPL3)", 943 #else 944 "Yamaha YM3812 (OPL2)", 945 #endif 946 0, 947 1, 948 { .init_isa = Adlib_init } 949 }, 950 #endif 951 952 #ifdef CONFIG_GUS 953 { 954 "gus", 955 "Gravis Ultrasound GF1", 956 0, 957 1, 958 { .init_isa = GUS_init } 959 }, 960 #endif 961 962 #ifdef CONFIG_AC97 963 { 964 "ac97", 965 "Intel 82801AA AC97 Audio", 966 0, 967 0, 968 { .init_pci = ac97_init } 969 }, 970 #endif 971 972 #ifdef CONFIG_ES1370 973 { 974 "es1370", 975 "ENSONIQ AudioPCI ES1370", 976 0, 977 0, 978 { .init_pci = es1370_init } 979 }, 980 #endif 981 982 #ifdef CONFIG_HDA 983 { 984 "hda", 985 "Intel HD Audio", 986 0, 987 0, 988 { .init_pci = intel_hda_and_codec_init } 989 }, 990 #endif 991 992 #endif /* HAS_AUDIO_CHOICE */ 993 994 { NULL, NULL, 0, 0, { NULL } } 995 }; 996 997 void select_soundhw(const char *optarg) 998 { 999 struct soundhw *c; 1000 1001 if (is_help_option(optarg)) { 1002 show_valid_cards: 1003 1004 #ifdef HAS_AUDIO_CHOICE 1005 printf("Valid sound card names (comma separated):\n"); 1006 for (c = soundhw; c->name; ++c) { 1007 printf ("%-11s %s\n", c->name, c->descr); 1008 } 1009 printf("\n-soundhw all will enable all of the above\n"); 1010 #else 1011 printf("Machine has no user-selectable audio hardware " 1012 "(it may or may not have always-present audio hardware).\n"); 1013 #endif 1014 exit(!is_help_option(optarg)); 1015 } 1016 else { 1017 size_t l; 1018 const char *p; 1019 char *e; 1020 int bad_card = 0; 1021 1022 if (!strcmp(optarg, "all")) { 1023 for (c = soundhw; c->name; ++c) { 1024 c->enabled = 1; 1025 } 1026 return; 1027 } 1028 1029 p = optarg; 1030 while (*p) { 1031 e = strchr(p, ','); 1032 l = !e ? strlen(p) : (size_t) (e - p); 1033 1034 for (c = soundhw; c->name; ++c) { 1035 if (!strncmp(c->name, p, l) && !c->name[l]) { 1036 c->enabled = 1; 1037 break; 1038 } 1039 } 1040 1041 if (!c->name) { 1042 if (l > 80) { 1043 fprintf(stderr, 1044 "Unknown sound card name (too big to show)\n"); 1045 } 1046 else { 1047 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1048 (int) l, p); 1049 } 1050 bad_card = 1; 1051 } 1052 p += l + (e != NULL); 1053 } 1054 1055 if (bad_card) { 1056 goto show_valid_cards; 1057 } 1058 } 1059 } 1060 1061 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1062 { 1063 struct soundhw *c; 1064 1065 for (c = soundhw; c->name; ++c) { 1066 if (c->enabled) { 1067 if (c->isa) { 1068 if (isa_bus) { 1069 c->init.init_isa(isa_bus); 1070 } 1071 } else { 1072 if (pci_bus) { 1073 c->init.init_pci(pci_bus); 1074 } 1075 } 1076 } 1077 } 1078 } 1079 #else 1080 void select_soundhw(const char *optarg) 1081 { 1082 } 1083 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1084 { 1085 } 1086 #endif 1087 1088 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1089 { 1090 int ret; 1091 1092 if (strlen(str) != 36) { 1093 return -1; 1094 } 1095 1096 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1097 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1098 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1099 &uuid[15]); 1100 1101 if (ret != 16) { 1102 return -1; 1103 } 1104 #ifdef TARGET_I386 1105 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1106 #endif 1107 return 0; 1108 } 1109 1110 void do_acpitable_option(const char *optarg) 1111 { 1112 #ifdef TARGET_I386 1113 if (acpi_table_add(optarg) < 0) { 1114 fprintf(stderr, "Wrong acpi table provided\n"); 1115 exit(1); 1116 } 1117 #endif 1118 } 1119 1120 void do_smbios_option(const char *optarg) 1121 { 1122 #ifdef TARGET_I386 1123 if (smbios_entry_add(optarg) < 0) { 1124 fprintf(stderr, "Wrong smbios provided\n"); 1125 exit(1); 1126 } 1127 #endif 1128 } 1129 1130 void cpudef_init(void) 1131 { 1132 #if defined(cpudef_setup) 1133 cpudef_setup(); /* parse cpu definitions in target config file */ 1134 #endif 1135 } 1136 1137 int audio_available(void) 1138 { 1139 #ifdef HAS_AUDIO 1140 return 1; 1141 #else 1142 return 0; 1143 #endif 1144 } 1145 1146 int tcg_available(void) 1147 { 1148 return 1; 1149 } 1150 1151 int kvm_available(void) 1152 { 1153 #ifdef CONFIG_KVM 1154 return 1; 1155 #else 1156 return 0; 1157 #endif 1158 } 1159 1160 int xen_available(void) 1161 { 1162 #ifdef CONFIG_XEN 1163 return 1; 1164 #else 1165 return 0; 1166 #endif 1167 } 1168 1169 1170 TargetInfo *qmp_query_target(Error **errp) 1171 { 1172 TargetInfo *info = g_malloc0(sizeof(*info)); 1173 1174 info->arch = TARGET_TYPE; 1175 1176 return info; 1177 } 1178