1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/i386/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audio/audio.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "hw/i386/smbios.h" 44 #include "exec/address-spaces.h" 45 #include "hw/audio/pcspk.h" 46 #include "migration/page_cache.h" 47 #include "qemu/config-file.h" 48 #include "qmp-commands.h" 49 #include "trace.h" 50 #include "exec/cpu-all.h" 51 #include "hw/acpi/acpi.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_MOXIE) 89 #define QEMU_ARCH QEMU_ARCH_MOXIE 90 #elif defined(TARGET_OPENRISC) 91 #define QEMU_ARCH QEMU_ARCH_OPENRISC 92 #elif defined(TARGET_PPC) 93 #define QEMU_ARCH QEMU_ARCH_PPC 94 #elif defined(TARGET_S390X) 95 #define QEMU_ARCH QEMU_ARCH_S390X 96 #elif defined(TARGET_SH4) 97 #define QEMU_ARCH QEMU_ARCH_SH4 98 #elif defined(TARGET_SPARC) 99 #define QEMU_ARCH QEMU_ARCH_SPARC 100 #elif defined(TARGET_XTENSA) 101 #define QEMU_ARCH QEMU_ARCH_XTENSA 102 #elif defined(TARGET_UNICORE32) 103 #define QEMU_ARCH QEMU_ARCH_UNICORE32 104 #endif 105 106 const uint32_t arch_type = QEMU_ARCH; 107 108 /***********************************************************/ 109 /* ram save/restore */ 110 111 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 112 #define RAM_SAVE_FLAG_COMPRESS 0x02 113 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 114 #define RAM_SAVE_FLAG_PAGE 0x08 115 #define RAM_SAVE_FLAG_EOS 0x10 116 #define RAM_SAVE_FLAG_CONTINUE 0x20 117 #define RAM_SAVE_FLAG_XBZRLE 0x40 118 119 120 static struct defconfig_file { 121 const char *filename; 122 /* Indicates it is an user config file (disabled by -no-user-config) */ 123 bool userconfig; 124 } default_config_files[] = { 125 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 126 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true }, 127 { NULL }, /* end of list */ 128 }; 129 130 131 int qemu_read_default_config_files(bool userconfig) 132 { 133 int ret; 134 struct defconfig_file *f; 135 136 for (f = default_config_files; f->filename; f++) { 137 if (!userconfig && f->userconfig) { 138 continue; 139 } 140 ret = qemu_read_config_file(f->filename); 141 if (ret < 0 && ret != -ENOENT) { 142 return ret; 143 } 144 } 145 146 return 0; 147 } 148 149 static inline bool is_zero_page(uint8_t *p) 150 { 151 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) == 152 TARGET_PAGE_SIZE; 153 } 154 155 /* struct contains XBZRLE cache and a static page 156 used by the compression */ 157 static struct { 158 /* buffer used for XBZRLE encoding */ 159 uint8_t *encoded_buf; 160 /* buffer for storing page content */ 161 uint8_t *current_buf; 162 /* buffer used for XBZRLE decoding */ 163 uint8_t *decoded_buf; 164 /* Cache for XBZRLE */ 165 PageCache *cache; 166 } XBZRLE = { 167 .encoded_buf = NULL, 168 .current_buf = NULL, 169 .decoded_buf = NULL, 170 .cache = NULL, 171 }; 172 173 174 int64_t xbzrle_cache_resize(int64_t new_size) 175 { 176 if (XBZRLE.cache != NULL) { 177 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 178 TARGET_PAGE_SIZE; 179 } 180 return pow2floor(new_size); 181 } 182 183 /* accounting for migration statistics */ 184 typedef struct AccountingInfo { 185 uint64_t dup_pages; 186 uint64_t skipped_pages; 187 uint64_t norm_pages; 188 uint64_t iterations; 189 uint64_t xbzrle_bytes; 190 uint64_t xbzrle_pages; 191 uint64_t xbzrle_cache_miss; 192 uint64_t xbzrle_overflows; 193 } AccountingInfo; 194 195 static AccountingInfo acct_info; 196 197 static void acct_clear(void) 198 { 199 memset(&acct_info, 0, sizeof(acct_info)); 200 } 201 202 uint64_t dup_mig_bytes_transferred(void) 203 { 204 return acct_info.dup_pages * TARGET_PAGE_SIZE; 205 } 206 207 uint64_t dup_mig_pages_transferred(void) 208 { 209 return acct_info.dup_pages; 210 } 211 212 uint64_t skipped_mig_bytes_transferred(void) 213 { 214 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 215 } 216 217 uint64_t skipped_mig_pages_transferred(void) 218 { 219 return acct_info.skipped_pages; 220 } 221 222 uint64_t norm_mig_bytes_transferred(void) 223 { 224 return acct_info.norm_pages * TARGET_PAGE_SIZE; 225 } 226 227 uint64_t norm_mig_pages_transferred(void) 228 { 229 return acct_info.norm_pages; 230 } 231 232 uint64_t xbzrle_mig_bytes_transferred(void) 233 { 234 return acct_info.xbzrle_bytes; 235 } 236 237 uint64_t xbzrle_mig_pages_transferred(void) 238 { 239 return acct_info.xbzrle_pages; 240 } 241 242 uint64_t xbzrle_mig_pages_cache_miss(void) 243 { 244 return acct_info.xbzrle_cache_miss; 245 } 246 247 uint64_t xbzrle_mig_pages_overflow(void) 248 { 249 return acct_info.xbzrle_overflows; 250 } 251 252 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 253 int cont, int flag) 254 { 255 size_t size; 256 257 qemu_put_be64(f, offset | cont | flag); 258 size = 8; 259 260 if (!cont) { 261 qemu_put_byte(f, strlen(block->idstr)); 262 qemu_put_buffer(f, (uint8_t *)block->idstr, 263 strlen(block->idstr)); 264 size += 1 + strlen(block->idstr); 265 } 266 return size; 267 } 268 269 #define ENCODING_FLAG_XBZRLE 0x1 270 271 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 272 ram_addr_t current_addr, RAMBlock *block, 273 ram_addr_t offset, int cont, bool last_stage) 274 { 275 int encoded_len = 0, bytes_sent = -1; 276 uint8_t *prev_cached_page; 277 278 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 279 if (!last_stage) { 280 cache_insert(XBZRLE.cache, current_addr, current_data); 281 } 282 acct_info.xbzrle_cache_miss++; 283 return -1; 284 } 285 286 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 287 288 /* save current buffer into memory */ 289 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 290 291 /* XBZRLE encoding (if there is no overflow) */ 292 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 293 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 294 TARGET_PAGE_SIZE); 295 if (encoded_len == 0) { 296 DPRINTF("Skipping unmodified page\n"); 297 return 0; 298 } else if (encoded_len == -1) { 299 DPRINTF("Overflow\n"); 300 acct_info.xbzrle_overflows++; 301 /* update data in the cache */ 302 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 303 return -1; 304 } 305 306 /* we need to update the data in the cache, in order to get the same data */ 307 if (!last_stage) { 308 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 309 } 310 311 /* Send XBZRLE based compressed page */ 312 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 313 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 314 qemu_put_be16(f, encoded_len); 315 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 316 bytes_sent += encoded_len + 1 + 2; 317 acct_info.xbzrle_pages++; 318 acct_info.xbzrle_bytes += bytes_sent; 319 320 return bytes_sent; 321 } 322 323 324 /* This is the last block that we have visited serching for dirty pages 325 */ 326 static RAMBlock *last_seen_block; 327 /* This is the last block from where we have sent data */ 328 static RAMBlock *last_sent_block; 329 static ram_addr_t last_offset; 330 static unsigned long *migration_bitmap; 331 static uint64_t migration_dirty_pages; 332 static uint32_t last_version; 333 static bool ram_bulk_stage; 334 335 static inline 336 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 337 ram_addr_t start) 338 { 339 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 340 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 341 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS); 342 343 unsigned long next; 344 345 if (ram_bulk_stage && nr > base) { 346 next = nr + 1; 347 } else { 348 next = find_next_bit(migration_bitmap, size, nr); 349 } 350 351 if (next < size) { 352 clear_bit(next, migration_bitmap); 353 migration_dirty_pages--; 354 } 355 return (next - base) << TARGET_PAGE_BITS; 356 } 357 358 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 359 ram_addr_t offset) 360 { 361 bool ret; 362 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 363 364 ret = test_and_set_bit(nr, migration_bitmap); 365 366 if (!ret) { 367 migration_dirty_pages++; 368 } 369 return ret; 370 } 371 372 /* Needs iothread lock! */ 373 374 static void migration_bitmap_sync(void) 375 { 376 RAMBlock *block; 377 ram_addr_t addr; 378 uint64_t num_dirty_pages_init = migration_dirty_pages; 379 MigrationState *s = migrate_get_current(); 380 static int64_t start_time; 381 static int64_t num_dirty_pages_period; 382 int64_t end_time; 383 384 if (!start_time) { 385 start_time = qemu_get_clock_ms(rt_clock); 386 } 387 388 trace_migration_bitmap_sync_start(); 389 address_space_sync_dirty_bitmap(&address_space_memory); 390 391 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 392 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 393 if (memory_region_test_and_clear_dirty(block->mr, 394 addr, TARGET_PAGE_SIZE, 395 DIRTY_MEMORY_MIGRATION)) { 396 migration_bitmap_set_dirty(block->mr, addr); 397 } 398 } 399 } 400 trace_migration_bitmap_sync_end(migration_dirty_pages 401 - num_dirty_pages_init); 402 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 403 end_time = qemu_get_clock_ms(rt_clock); 404 405 /* more than 1 second = 1000 millisecons */ 406 if (end_time > start_time + 1000) { 407 s->dirty_pages_rate = num_dirty_pages_period * 1000 408 / (end_time - start_time); 409 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 410 start_time = end_time; 411 num_dirty_pages_period = 0; 412 } 413 } 414 415 /* 416 * ram_save_block: Writes a page of memory to the stream f 417 * 418 * Returns: The number of bytes written. 419 * 0 means no dirty pages 420 */ 421 422 static int ram_save_block(QEMUFile *f, bool last_stage) 423 { 424 RAMBlock *block = last_seen_block; 425 ram_addr_t offset = last_offset; 426 bool complete_round = false; 427 int bytes_sent = 0; 428 MemoryRegion *mr; 429 ram_addr_t current_addr; 430 431 if (!block) 432 block = QTAILQ_FIRST(&ram_list.blocks); 433 434 while (true) { 435 mr = block->mr; 436 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 437 if (complete_round && block == last_seen_block && 438 offset >= last_offset) { 439 break; 440 } 441 if (offset >= block->length) { 442 offset = 0; 443 block = QTAILQ_NEXT(block, next); 444 if (!block) { 445 block = QTAILQ_FIRST(&ram_list.blocks); 446 complete_round = true; 447 ram_bulk_stage = false; 448 } 449 } else { 450 uint8_t *p; 451 int cont = (block == last_sent_block) ? 452 RAM_SAVE_FLAG_CONTINUE : 0; 453 454 p = memory_region_get_ram_ptr(mr) + offset; 455 456 /* In doubt sent page as normal */ 457 bytes_sent = -1; 458 if (is_zero_page(p)) { 459 acct_info.dup_pages++; 460 if (!ram_bulk_stage) { 461 bytes_sent = save_block_hdr(f, block, offset, cont, 462 RAM_SAVE_FLAG_COMPRESS); 463 qemu_put_byte(f, 0); 464 bytes_sent++; 465 } else { 466 acct_info.skipped_pages++; 467 bytes_sent = 0; 468 } 469 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 470 current_addr = block->offset + offset; 471 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 472 offset, cont, last_stage); 473 if (!last_stage) { 474 p = get_cached_data(XBZRLE.cache, current_addr); 475 } 476 } 477 478 /* XBZRLE overflow or normal page */ 479 if (bytes_sent == -1) { 480 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 481 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 482 bytes_sent += TARGET_PAGE_SIZE; 483 acct_info.norm_pages++; 484 } 485 486 /* if page is unmodified, continue to the next */ 487 if (bytes_sent > 0) { 488 last_sent_block = block; 489 break; 490 } 491 } 492 } 493 last_seen_block = block; 494 last_offset = offset; 495 496 return bytes_sent; 497 } 498 499 static uint64_t bytes_transferred; 500 501 static ram_addr_t ram_save_remaining(void) 502 { 503 return migration_dirty_pages; 504 } 505 506 uint64_t ram_bytes_remaining(void) 507 { 508 return ram_save_remaining() * TARGET_PAGE_SIZE; 509 } 510 511 uint64_t ram_bytes_transferred(void) 512 { 513 return bytes_transferred; 514 } 515 516 uint64_t ram_bytes_total(void) 517 { 518 RAMBlock *block; 519 uint64_t total = 0; 520 521 QTAILQ_FOREACH(block, &ram_list.blocks, next) 522 total += block->length; 523 524 return total; 525 } 526 527 static void migration_end(void) 528 { 529 if (migration_bitmap) { 530 memory_global_dirty_log_stop(); 531 g_free(migration_bitmap); 532 migration_bitmap = NULL; 533 } 534 535 if (XBZRLE.cache) { 536 cache_fini(XBZRLE.cache); 537 g_free(XBZRLE.cache); 538 g_free(XBZRLE.encoded_buf); 539 g_free(XBZRLE.current_buf); 540 g_free(XBZRLE.decoded_buf); 541 XBZRLE.cache = NULL; 542 } 543 } 544 545 static void ram_migration_cancel(void *opaque) 546 { 547 migration_end(); 548 } 549 550 static void reset_ram_globals(void) 551 { 552 last_seen_block = NULL; 553 last_sent_block = NULL; 554 last_offset = 0; 555 last_version = ram_list.version; 556 ram_bulk_stage = true; 557 } 558 559 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 560 561 static int ram_save_setup(QEMUFile *f, void *opaque) 562 { 563 RAMBlock *block; 564 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 565 566 migration_bitmap = bitmap_new(ram_pages); 567 bitmap_set(migration_bitmap, 0, ram_pages); 568 migration_dirty_pages = ram_pages; 569 570 if (migrate_use_xbzrle()) { 571 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 572 TARGET_PAGE_SIZE, 573 TARGET_PAGE_SIZE); 574 if (!XBZRLE.cache) { 575 DPRINTF("Error creating cache\n"); 576 return -1; 577 } 578 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 579 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 580 acct_clear(); 581 } 582 583 qemu_mutex_lock_iothread(); 584 qemu_mutex_lock_ramlist(); 585 bytes_transferred = 0; 586 reset_ram_globals(); 587 588 memory_global_dirty_log_start(); 589 migration_bitmap_sync(); 590 qemu_mutex_unlock_iothread(); 591 592 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 593 594 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 595 qemu_put_byte(f, strlen(block->idstr)); 596 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 597 qemu_put_be64(f, block->length); 598 } 599 600 qemu_mutex_unlock_ramlist(); 601 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 602 603 return 0; 604 } 605 606 static int ram_save_iterate(QEMUFile *f, void *opaque) 607 { 608 int ret; 609 int i; 610 int64_t t0; 611 int total_sent = 0; 612 613 qemu_mutex_lock_ramlist(); 614 615 if (ram_list.version != last_version) { 616 reset_ram_globals(); 617 } 618 619 t0 = qemu_get_clock_ns(rt_clock); 620 i = 0; 621 while ((ret = qemu_file_rate_limit(f)) == 0) { 622 int bytes_sent; 623 624 bytes_sent = ram_save_block(f, false); 625 /* no more blocks to sent */ 626 if (bytes_sent == 0) { 627 break; 628 } 629 total_sent += bytes_sent; 630 acct_info.iterations++; 631 /* we want to check in the 1st loop, just in case it was the 1st time 632 and we had to sync the dirty bitmap. 633 qemu_get_clock_ns() is a bit expensive, so we only check each some 634 iterations 635 */ 636 if ((i & 63) == 0) { 637 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 638 if (t1 > MAX_WAIT) { 639 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 640 t1, i); 641 break; 642 } 643 } 644 i++; 645 } 646 647 qemu_mutex_unlock_ramlist(); 648 649 if (ret < 0) { 650 bytes_transferred += total_sent; 651 return ret; 652 } 653 654 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 655 total_sent += 8; 656 bytes_transferred += total_sent; 657 658 return total_sent; 659 } 660 661 static int ram_save_complete(QEMUFile *f, void *opaque) 662 { 663 qemu_mutex_lock_ramlist(); 664 migration_bitmap_sync(); 665 666 /* try transferring iterative blocks of memory */ 667 668 /* flush all remaining blocks regardless of rate limiting */ 669 while (true) { 670 int bytes_sent; 671 672 bytes_sent = ram_save_block(f, true); 673 /* no more blocks to sent */ 674 if (bytes_sent == 0) { 675 break; 676 } 677 bytes_transferred += bytes_sent; 678 } 679 migration_end(); 680 681 qemu_mutex_unlock_ramlist(); 682 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 683 684 return 0; 685 } 686 687 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 688 { 689 uint64_t remaining_size; 690 691 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 692 693 if (remaining_size < max_size) { 694 qemu_mutex_lock_iothread(); 695 migration_bitmap_sync(); 696 qemu_mutex_unlock_iothread(); 697 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 698 } 699 return remaining_size; 700 } 701 702 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 703 { 704 int ret, rc = 0; 705 unsigned int xh_len; 706 int xh_flags; 707 708 if (!XBZRLE.decoded_buf) { 709 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 710 } 711 712 /* extract RLE header */ 713 xh_flags = qemu_get_byte(f); 714 xh_len = qemu_get_be16(f); 715 716 if (xh_flags != ENCODING_FLAG_XBZRLE) { 717 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 718 return -1; 719 } 720 721 if (xh_len > TARGET_PAGE_SIZE) { 722 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 723 return -1; 724 } 725 /* load data and decode */ 726 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 727 728 /* decode RLE */ 729 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 730 TARGET_PAGE_SIZE); 731 if (ret == -1) { 732 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 733 rc = -1; 734 } else if (ret > TARGET_PAGE_SIZE) { 735 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 736 ret, TARGET_PAGE_SIZE); 737 abort(); 738 } 739 740 return rc; 741 } 742 743 static inline void *host_from_stream_offset(QEMUFile *f, 744 ram_addr_t offset, 745 int flags) 746 { 747 static RAMBlock *block = NULL; 748 char id[256]; 749 uint8_t len; 750 751 if (flags & RAM_SAVE_FLAG_CONTINUE) { 752 if (!block) { 753 fprintf(stderr, "Ack, bad migration stream!\n"); 754 return NULL; 755 } 756 757 return memory_region_get_ram_ptr(block->mr) + offset; 758 } 759 760 len = qemu_get_byte(f); 761 qemu_get_buffer(f, (uint8_t *)id, len); 762 id[len] = 0; 763 764 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 765 if (!strncmp(id, block->idstr, sizeof(id))) 766 return memory_region_get_ram_ptr(block->mr) + offset; 767 } 768 769 fprintf(stderr, "Can't find block %s!\n", id); 770 return NULL; 771 } 772 773 static int ram_load(QEMUFile *f, void *opaque, int version_id) 774 { 775 ram_addr_t addr; 776 int flags, ret = 0; 777 int error; 778 static uint64_t seq_iter; 779 780 seq_iter++; 781 782 if (version_id < 4 || version_id > 4) { 783 return -EINVAL; 784 } 785 786 do { 787 addr = qemu_get_be64(f); 788 789 flags = addr & ~TARGET_PAGE_MASK; 790 addr &= TARGET_PAGE_MASK; 791 792 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 793 if (version_id == 4) { 794 /* Synchronize RAM block list */ 795 char id[256]; 796 ram_addr_t length; 797 ram_addr_t total_ram_bytes = addr; 798 799 while (total_ram_bytes) { 800 RAMBlock *block; 801 uint8_t len; 802 803 len = qemu_get_byte(f); 804 qemu_get_buffer(f, (uint8_t *)id, len); 805 id[len] = 0; 806 length = qemu_get_be64(f); 807 808 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 809 if (!strncmp(id, block->idstr, sizeof(id))) { 810 if (block->length != length) { 811 fprintf(stderr, "Length mismatch: %s: %ld " 812 "in != " RAM_ADDR_FMT "\n", id, length, 813 block->length); 814 ret = -EINVAL; 815 goto done; 816 } 817 break; 818 } 819 } 820 821 if (!block) { 822 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 823 "accept migration\n", id); 824 ret = -EINVAL; 825 goto done; 826 } 827 828 total_ram_bytes -= length; 829 } 830 } 831 } 832 833 if (flags & RAM_SAVE_FLAG_COMPRESS) { 834 void *host; 835 uint8_t ch; 836 837 host = host_from_stream_offset(f, addr, flags); 838 if (!host) { 839 return -EINVAL; 840 } 841 842 ch = qemu_get_byte(f); 843 memset(host, ch, TARGET_PAGE_SIZE); 844 #ifndef _WIN32 845 if (ch == 0 && 846 (!kvm_enabled() || kvm_has_sync_mmu()) && 847 getpagesize() <= TARGET_PAGE_SIZE) { 848 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 849 } 850 #endif 851 } else if (flags & RAM_SAVE_FLAG_PAGE) { 852 void *host; 853 854 host = host_from_stream_offset(f, addr, flags); 855 if (!host) { 856 return -EINVAL; 857 } 858 859 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 860 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 861 void *host = host_from_stream_offset(f, addr, flags); 862 if (!host) { 863 return -EINVAL; 864 } 865 866 if (load_xbzrle(f, addr, host) < 0) { 867 ret = -EINVAL; 868 goto done; 869 } 870 } 871 error = qemu_file_get_error(f); 872 if (error) { 873 ret = error; 874 goto done; 875 } 876 } while (!(flags & RAM_SAVE_FLAG_EOS)); 877 878 done: 879 DPRINTF("Completed load of VM with exit code %d seq iteration " 880 "%" PRIu64 "\n", ret, seq_iter); 881 return ret; 882 } 883 884 SaveVMHandlers savevm_ram_handlers = { 885 .save_live_setup = ram_save_setup, 886 .save_live_iterate = ram_save_iterate, 887 .save_live_complete = ram_save_complete, 888 .save_live_pending = ram_save_pending, 889 .load_state = ram_load, 890 .cancel = ram_migration_cancel, 891 }; 892 893 struct soundhw { 894 const char *name; 895 const char *descr; 896 int enabled; 897 int isa; 898 union { 899 int (*init_isa) (ISABus *bus); 900 int (*init_pci) (PCIBus *bus); 901 } init; 902 }; 903 904 static struct soundhw soundhw[9]; 905 static int soundhw_count; 906 907 void isa_register_soundhw(const char *name, const char *descr, 908 int (*init_isa)(ISABus *bus)) 909 { 910 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 911 soundhw[soundhw_count].name = name; 912 soundhw[soundhw_count].descr = descr; 913 soundhw[soundhw_count].isa = 1; 914 soundhw[soundhw_count].init.init_isa = init_isa; 915 soundhw_count++; 916 } 917 918 void pci_register_soundhw(const char *name, const char *descr, 919 int (*init_pci)(PCIBus *bus)) 920 { 921 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 922 soundhw[soundhw_count].name = name; 923 soundhw[soundhw_count].descr = descr; 924 soundhw[soundhw_count].isa = 0; 925 soundhw[soundhw_count].init.init_pci = init_pci; 926 soundhw_count++; 927 } 928 929 void select_soundhw(const char *optarg) 930 { 931 struct soundhw *c; 932 933 if (is_help_option(optarg)) { 934 show_valid_cards: 935 936 if (soundhw_count) { 937 printf("Valid sound card names (comma separated):\n"); 938 for (c = soundhw; c->name; ++c) { 939 printf ("%-11s %s\n", c->name, c->descr); 940 } 941 printf("\n-soundhw all will enable all of the above\n"); 942 } else { 943 printf("Machine has no user-selectable audio hardware " 944 "(it may or may not have always-present audio hardware).\n"); 945 } 946 exit(!is_help_option(optarg)); 947 } 948 else { 949 size_t l; 950 const char *p; 951 char *e; 952 int bad_card = 0; 953 954 if (!strcmp(optarg, "all")) { 955 for (c = soundhw; c->name; ++c) { 956 c->enabled = 1; 957 } 958 return; 959 } 960 961 p = optarg; 962 while (*p) { 963 e = strchr(p, ','); 964 l = !e ? strlen(p) : (size_t) (e - p); 965 966 for (c = soundhw; c->name; ++c) { 967 if (!strncmp(c->name, p, l) && !c->name[l]) { 968 c->enabled = 1; 969 break; 970 } 971 } 972 973 if (!c->name) { 974 if (l > 80) { 975 fprintf(stderr, 976 "Unknown sound card name (too big to show)\n"); 977 } 978 else { 979 fprintf(stderr, "Unknown sound card name `%.*s'\n", 980 (int) l, p); 981 } 982 bad_card = 1; 983 } 984 p += l + (e != NULL); 985 } 986 987 if (bad_card) { 988 goto show_valid_cards; 989 } 990 } 991 } 992 993 void audio_init(void) 994 { 995 struct soundhw *c; 996 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL); 997 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL); 998 999 for (c = soundhw; c->name; ++c) { 1000 if (c->enabled) { 1001 if (c->isa) { 1002 if (!isa_bus) { 1003 fprintf(stderr, "ISA bus not available for %s\n", c->name); 1004 exit(1); 1005 } 1006 c->init.init_isa(isa_bus); 1007 } else { 1008 if (!pci_bus) { 1009 fprintf(stderr, "PCI bus not available for %s\n", c->name); 1010 exit(1); 1011 } 1012 c->init.init_pci(pci_bus); 1013 } 1014 } 1015 } 1016 } 1017 1018 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1019 { 1020 int ret; 1021 1022 if (strlen(str) != 36) { 1023 return -1; 1024 } 1025 1026 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1027 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1028 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1029 &uuid[15]); 1030 1031 if (ret != 16) { 1032 return -1; 1033 } 1034 #ifdef TARGET_I386 1035 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16); 1036 #endif 1037 return 0; 1038 } 1039 1040 void do_acpitable_option(const QemuOpts *opts) 1041 { 1042 #ifdef TARGET_I386 1043 Error *err = NULL; 1044 1045 acpi_table_add(opts, &err); 1046 if (err) { 1047 fprintf(stderr, "Wrong acpi table provided: %s\n", 1048 error_get_pretty(err)); 1049 error_free(err); 1050 exit(1); 1051 } 1052 #endif 1053 } 1054 1055 void do_smbios_option(const char *optarg) 1056 { 1057 #ifdef TARGET_I386 1058 if (smbios_entry_add(optarg) < 0) { 1059 exit(1); 1060 } 1061 #endif 1062 } 1063 1064 void cpudef_init(void) 1065 { 1066 #if defined(cpudef_setup) 1067 cpudef_setup(); /* parse cpu definitions in target config file */ 1068 #endif 1069 } 1070 1071 int tcg_available(void) 1072 { 1073 return 1; 1074 } 1075 1076 int kvm_available(void) 1077 { 1078 #ifdef CONFIG_KVM 1079 return 1; 1080 #else 1081 return 0; 1082 #endif 1083 } 1084 1085 int xen_available(void) 1086 { 1087 #ifdef CONFIG_XEN 1088 return 1; 1089 #else 1090 return 0; 1091 #endif 1092 } 1093 1094 1095 TargetInfo *qmp_query_target(Error **errp) 1096 { 1097 TargetInfo *info = g_malloc0(sizeof(*info)); 1098 1099 info->arch = g_strdup(TARGET_NAME); 1100 1101 return info; 1102 } 1103