1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor.h" 33 #include "sysemu.h" 34 #include "arch_init.h" 35 #include "audio/audio.h" 36 #include "hw/pc.h" 37 #include "hw/pci.h" 38 #include "hw/audiodev.h" 39 #include "kvm.h" 40 #include "migration.h" 41 #include "net.h" 42 #include "gdbstub.h" 43 #include "hw/smbios.h" 44 45 #ifdef TARGET_SPARC 46 int graphic_width = 1024; 47 int graphic_height = 768; 48 int graphic_depth = 8; 49 #else 50 int graphic_width = 800; 51 int graphic_height = 600; 52 int graphic_depth = 15; 53 #endif 54 55 const char arch_config_name[] = CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf"; 56 57 #if defined(TARGET_ALPHA) 58 #define QEMU_ARCH QEMU_ARCH_ALPHA 59 #elif defined(TARGET_ARM) 60 #define QEMU_ARCH QEMU_ARCH_ARM 61 #elif defined(TARGET_CRIS) 62 #define QEMU_ARCH QEMU_ARCH_CRIS 63 #elif defined(TARGET_I386) 64 #define QEMU_ARCH QEMU_ARCH_I386 65 #elif defined(TARGET_M68K) 66 #define QEMU_ARCH QEMU_ARCH_M68K 67 #elif defined(TARGET_LM32) 68 #define QEMU_ARCH QEMU_ARCH_LM32 69 #elif defined(TARGET_MICROBLAZE) 70 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 71 #elif defined(TARGET_MIPS) 72 #define QEMU_ARCH QEMU_ARCH_MIPS 73 #elif defined(TARGET_PPC) 74 #define QEMU_ARCH QEMU_ARCH_PPC 75 #elif defined(TARGET_S390X) 76 #define QEMU_ARCH QEMU_ARCH_S390X 77 #elif defined(TARGET_SH4) 78 #define QEMU_ARCH QEMU_ARCH_SH4 79 #elif defined(TARGET_SPARC) 80 #define QEMU_ARCH QEMU_ARCH_SPARC 81 #endif 82 83 const uint32_t arch_type = QEMU_ARCH; 84 85 /***********************************************************/ 86 /* ram save/restore */ 87 88 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 89 #define RAM_SAVE_FLAG_COMPRESS 0x02 90 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 91 #define RAM_SAVE_FLAG_PAGE 0x08 92 #define RAM_SAVE_FLAG_EOS 0x10 93 #define RAM_SAVE_FLAG_CONTINUE 0x20 94 95 static int is_dup_page(uint8_t *page, uint8_t ch) 96 { 97 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch; 98 uint32_t *array = (uint32_t *)page; 99 int i; 100 101 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) { 102 if (array[i] != val) { 103 return 0; 104 } 105 } 106 107 return 1; 108 } 109 110 static RAMBlock *last_block; 111 static ram_addr_t last_offset; 112 113 static int ram_save_block(QEMUFile *f) 114 { 115 RAMBlock *block = last_block; 116 ram_addr_t offset = last_offset; 117 ram_addr_t current_addr; 118 int bytes_sent = 0; 119 120 if (!block) 121 block = QLIST_FIRST(&ram_list.blocks); 122 123 current_addr = block->offset + offset; 124 125 do { 126 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { 127 uint8_t *p; 128 int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0; 129 130 cpu_physical_memory_reset_dirty(current_addr, 131 current_addr + TARGET_PAGE_SIZE, 132 MIGRATION_DIRTY_FLAG); 133 134 p = block->host + offset; 135 136 if (is_dup_page(p, *p)) { 137 qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_COMPRESS); 138 if (!cont) { 139 qemu_put_byte(f, strlen(block->idstr)); 140 qemu_put_buffer(f, (uint8_t *)block->idstr, 141 strlen(block->idstr)); 142 } 143 qemu_put_byte(f, *p); 144 bytes_sent = 1; 145 } else { 146 qemu_put_be64(f, offset | cont | RAM_SAVE_FLAG_PAGE); 147 if (!cont) { 148 qemu_put_byte(f, strlen(block->idstr)); 149 qemu_put_buffer(f, (uint8_t *)block->idstr, 150 strlen(block->idstr)); 151 } 152 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 153 bytes_sent = TARGET_PAGE_SIZE; 154 } 155 156 break; 157 } 158 159 offset += TARGET_PAGE_SIZE; 160 if (offset >= block->length) { 161 offset = 0; 162 block = QLIST_NEXT(block, next); 163 if (!block) 164 block = QLIST_FIRST(&ram_list.blocks); 165 } 166 167 current_addr = block->offset + offset; 168 169 } while (current_addr != last_block->offset + last_offset); 170 171 last_block = block; 172 last_offset = offset; 173 174 return bytes_sent; 175 } 176 177 static uint64_t bytes_transferred; 178 179 static ram_addr_t ram_save_remaining(void) 180 { 181 RAMBlock *block; 182 ram_addr_t count = 0; 183 184 QLIST_FOREACH(block, &ram_list.blocks, next) { 185 ram_addr_t addr; 186 for (addr = block->offset; addr < block->offset + block->length; 187 addr += TARGET_PAGE_SIZE) { 188 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) { 189 count++; 190 } 191 } 192 } 193 194 return count; 195 } 196 197 uint64_t ram_bytes_remaining(void) 198 { 199 return ram_save_remaining() * TARGET_PAGE_SIZE; 200 } 201 202 uint64_t ram_bytes_transferred(void) 203 { 204 return bytes_transferred; 205 } 206 207 uint64_t ram_bytes_total(void) 208 { 209 RAMBlock *block; 210 uint64_t total = 0; 211 212 QLIST_FOREACH(block, &ram_list.blocks, next) 213 total += block->length; 214 215 return total; 216 } 217 218 static int block_compar(const void *a, const void *b) 219 { 220 RAMBlock * const *ablock = a; 221 RAMBlock * const *bblock = b; 222 if ((*ablock)->offset < (*bblock)->offset) { 223 return -1; 224 } else if ((*ablock)->offset > (*bblock)->offset) { 225 return 1; 226 } 227 return 0; 228 } 229 230 static void sort_ram_list(void) 231 { 232 RAMBlock *block, *nblock, **blocks; 233 int n; 234 n = 0; 235 QLIST_FOREACH(block, &ram_list.blocks, next) { 236 ++n; 237 } 238 blocks = g_malloc(n * sizeof *blocks); 239 n = 0; 240 QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) { 241 blocks[n++] = block; 242 QLIST_REMOVE(block, next); 243 } 244 qsort(blocks, n, sizeof *blocks, block_compar); 245 while (--n >= 0) { 246 QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next); 247 } 248 g_free(blocks); 249 } 250 251 int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque) 252 { 253 ram_addr_t addr; 254 uint64_t bytes_transferred_last; 255 double bwidth = 0; 256 uint64_t expected_time = 0; 257 258 if (stage < 0) { 259 cpu_physical_memory_set_dirty_tracking(0); 260 return 0; 261 } 262 263 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) { 264 qemu_file_set_error(f); 265 return 0; 266 } 267 268 if (stage == 1) { 269 RAMBlock *block; 270 bytes_transferred = 0; 271 last_block = NULL; 272 last_offset = 0; 273 sort_ram_list(); 274 275 /* Make sure all dirty bits are set */ 276 QLIST_FOREACH(block, &ram_list.blocks, next) { 277 for (addr = block->offset; addr < block->offset + block->length; 278 addr += TARGET_PAGE_SIZE) { 279 if (!cpu_physical_memory_get_dirty(addr, 280 MIGRATION_DIRTY_FLAG)) { 281 cpu_physical_memory_set_dirty(addr); 282 } 283 } 284 } 285 286 /* Enable dirty memory tracking */ 287 cpu_physical_memory_set_dirty_tracking(1); 288 289 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 290 291 QLIST_FOREACH(block, &ram_list.blocks, next) { 292 qemu_put_byte(f, strlen(block->idstr)); 293 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 294 qemu_put_be64(f, block->length); 295 } 296 } 297 298 bytes_transferred_last = bytes_transferred; 299 bwidth = qemu_get_clock_ns(rt_clock); 300 301 while (!qemu_file_rate_limit(f)) { 302 int bytes_sent; 303 304 bytes_sent = ram_save_block(f); 305 bytes_transferred += bytes_sent; 306 if (bytes_sent == 0) { /* no more blocks */ 307 break; 308 } 309 } 310 311 bwidth = qemu_get_clock_ns(rt_clock) - bwidth; 312 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; 313 314 /* if we haven't transferred anything this round, force expected_time to a 315 * a very high value, but without crashing */ 316 if (bwidth == 0) { 317 bwidth = 0.000001; 318 } 319 320 /* try transferring iterative blocks of memory */ 321 if (stage == 3) { 322 int bytes_sent; 323 324 /* flush all remaining blocks regardless of rate limiting */ 325 while ((bytes_sent = ram_save_block(f)) != 0) { 326 bytes_transferred += bytes_sent; 327 } 328 cpu_physical_memory_set_dirty_tracking(0); 329 } 330 331 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 332 333 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; 334 335 return (stage == 2) && (expected_time <= migrate_max_downtime()); 336 } 337 338 static inline void *host_from_stream_offset(QEMUFile *f, 339 ram_addr_t offset, 340 int flags) 341 { 342 static RAMBlock *block = NULL; 343 char id[256]; 344 uint8_t len; 345 346 if (flags & RAM_SAVE_FLAG_CONTINUE) { 347 if (!block) { 348 fprintf(stderr, "Ack, bad migration stream!\n"); 349 return NULL; 350 } 351 352 return block->host + offset; 353 } 354 355 len = qemu_get_byte(f); 356 qemu_get_buffer(f, (uint8_t *)id, len); 357 id[len] = 0; 358 359 QLIST_FOREACH(block, &ram_list.blocks, next) { 360 if (!strncmp(id, block->idstr, sizeof(id))) 361 return block->host + offset; 362 } 363 364 fprintf(stderr, "Can't find block %s!\n", id); 365 return NULL; 366 } 367 368 int ram_load(QEMUFile *f, void *opaque, int version_id) 369 { 370 ram_addr_t addr; 371 int flags; 372 373 if (version_id < 3 || version_id > 4) { 374 return -EINVAL; 375 } 376 377 do { 378 addr = qemu_get_be64(f); 379 380 flags = addr & ~TARGET_PAGE_MASK; 381 addr &= TARGET_PAGE_MASK; 382 383 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 384 if (version_id == 3) { 385 if (addr != ram_bytes_total()) { 386 return -EINVAL; 387 } 388 } else { 389 /* Synchronize RAM block list */ 390 char id[256]; 391 ram_addr_t length; 392 ram_addr_t total_ram_bytes = addr; 393 394 while (total_ram_bytes) { 395 RAMBlock *block; 396 uint8_t len; 397 398 len = qemu_get_byte(f); 399 qemu_get_buffer(f, (uint8_t *)id, len); 400 id[len] = 0; 401 length = qemu_get_be64(f); 402 403 QLIST_FOREACH(block, &ram_list.blocks, next) { 404 if (!strncmp(id, block->idstr, sizeof(id))) { 405 if (block->length != length) 406 return -EINVAL; 407 break; 408 } 409 } 410 411 if (!block) { 412 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 413 "accept migration\n", id); 414 return -EINVAL; 415 } 416 417 total_ram_bytes -= length; 418 } 419 } 420 } 421 422 if (flags & RAM_SAVE_FLAG_COMPRESS) { 423 void *host; 424 uint8_t ch; 425 426 if (version_id == 3) 427 host = qemu_get_ram_ptr(addr); 428 else 429 host = host_from_stream_offset(f, addr, flags); 430 if (!host) { 431 return -EINVAL; 432 } 433 434 ch = qemu_get_byte(f); 435 memset(host, ch, TARGET_PAGE_SIZE); 436 #ifndef _WIN32 437 if (ch == 0 && 438 (!kvm_enabled() || kvm_has_sync_mmu())) { 439 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 440 } 441 #endif 442 } else if (flags & RAM_SAVE_FLAG_PAGE) { 443 void *host; 444 445 if (version_id == 3) 446 host = qemu_get_ram_ptr(addr); 447 else 448 host = host_from_stream_offset(f, addr, flags); 449 450 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 451 } 452 if (qemu_file_has_error(f)) { 453 return -EIO; 454 } 455 } while (!(flags & RAM_SAVE_FLAG_EOS)); 456 457 return 0; 458 } 459 460 void qemu_service_io(void) 461 { 462 qemu_notify_event(); 463 } 464 465 #ifdef HAS_AUDIO 466 struct soundhw { 467 const char *name; 468 const char *descr; 469 int enabled; 470 int isa; 471 union { 472 int (*init_isa) (qemu_irq *pic); 473 int (*init_pci) (PCIBus *bus); 474 } init; 475 }; 476 477 static struct soundhw soundhw[] = { 478 #ifdef HAS_AUDIO_CHOICE 479 #if defined(TARGET_I386) || defined(TARGET_MIPS) 480 { 481 "pcspk", 482 "PC speaker", 483 0, 484 1, 485 { .init_isa = pcspk_audio_init } 486 }, 487 #endif 488 489 #ifdef CONFIG_SB16 490 { 491 "sb16", 492 "Creative Sound Blaster 16", 493 0, 494 1, 495 { .init_isa = SB16_init } 496 }, 497 #endif 498 499 #ifdef CONFIG_CS4231A 500 { 501 "cs4231a", 502 "CS4231A", 503 0, 504 1, 505 { .init_isa = cs4231a_init } 506 }, 507 #endif 508 509 #ifdef CONFIG_ADLIB 510 { 511 "adlib", 512 #ifdef HAS_YMF262 513 "Yamaha YMF262 (OPL3)", 514 #else 515 "Yamaha YM3812 (OPL2)", 516 #endif 517 0, 518 1, 519 { .init_isa = Adlib_init } 520 }, 521 #endif 522 523 #ifdef CONFIG_GUS 524 { 525 "gus", 526 "Gravis Ultrasound GF1", 527 0, 528 1, 529 { .init_isa = GUS_init } 530 }, 531 #endif 532 533 #ifdef CONFIG_AC97 534 { 535 "ac97", 536 "Intel 82801AA AC97 Audio", 537 0, 538 0, 539 { .init_pci = ac97_init } 540 }, 541 #endif 542 543 #ifdef CONFIG_ES1370 544 { 545 "es1370", 546 "ENSONIQ AudioPCI ES1370", 547 0, 548 0, 549 { .init_pci = es1370_init } 550 }, 551 #endif 552 553 #ifdef CONFIG_HDA 554 { 555 "hda", 556 "Intel HD Audio", 557 0, 558 0, 559 { .init_pci = intel_hda_and_codec_init } 560 }, 561 #endif 562 563 #endif /* HAS_AUDIO_CHOICE */ 564 565 { NULL, NULL, 0, 0, { NULL } } 566 }; 567 568 void select_soundhw(const char *optarg) 569 { 570 struct soundhw *c; 571 572 if (*optarg == '?') { 573 show_valid_cards: 574 575 printf("Valid sound card names (comma separated):\n"); 576 for (c = soundhw; c->name; ++c) { 577 printf ("%-11s %s\n", c->name, c->descr); 578 } 579 printf("\n-soundhw all will enable all of the above\n"); 580 exit(*optarg != '?'); 581 } 582 else { 583 size_t l; 584 const char *p; 585 char *e; 586 int bad_card = 0; 587 588 if (!strcmp(optarg, "all")) { 589 for (c = soundhw; c->name; ++c) { 590 c->enabled = 1; 591 } 592 return; 593 } 594 595 p = optarg; 596 while (*p) { 597 e = strchr(p, ','); 598 l = !e ? strlen(p) : (size_t) (e - p); 599 600 for (c = soundhw; c->name; ++c) { 601 if (!strncmp(c->name, p, l) && !c->name[l]) { 602 c->enabled = 1; 603 break; 604 } 605 } 606 607 if (!c->name) { 608 if (l > 80) { 609 fprintf(stderr, 610 "Unknown sound card name (too big to show)\n"); 611 } 612 else { 613 fprintf(stderr, "Unknown sound card name `%.*s'\n", 614 (int) l, p); 615 } 616 bad_card = 1; 617 } 618 p += l + (e != NULL); 619 } 620 621 if (bad_card) { 622 goto show_valid_cards; 623 } 624 } 625 } 626 627 void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus) 628 { 629 struct soundhw *c; 630 631 for (c = soundhw; c->name; ++c) { 632 if (c->enabled) { 633 if (c->isa) { 634 if (isa_pic) { 635 c->init.init_isa(isa_pic); 636 } 637 } else { 638 if (pci_bus) { 639 c->init.init_pci(pci_bus); 640 } 641 } 642 } 643 } 644 } 645 #else 646 void select_soundhw(const char *optarg) 647 { 648 } 649 void audio_init(qemu_irq *isa_pic, PCIBus *pci_bus) 650 { 651 } 652 #endif 653 654 int qemu_uuid_parse(const char *str, uint8_t *uuid) 655 { 656 int ret; 657 658 if (strlen(str) != 36) { 659 return -1; 660 } 661 662 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 663 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 664 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 665 &uuid[15]); 666 667 if (ret != 16) { 668 return -1; 669 } 670 #ifdef TARGET_I386 671 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 672 #endif 673 return 0; 674 } 675 676 void do_acpitable_option(const char *optarg) 677 { 678 #ifdef TARGET_I386 679 if (acpi_table_add(optarg) < 0) { 680 fprintf(stderr, "Wrong acpi table provided\n"); 681 exit(1); 682 } 683 #endif 684 } 685 686 void do_smbios_option(const char *optarg) 687 { 688 #ifdef TARGET_I386 689 if (smbios_entry_add(optarg) < 0) { 690 fprintf(stderr, "Wrong smbios provided\n"); 691 exit(1); 692 } 693 #endif 694 } 695 696 void cpudef_init(void) 697 { 698 #if defined(cpudef_setup) 699 cpudef_setup(); /* parse cpu definitions in target config file */ 700 #endif 701 } 702 703 int audio_available(void) 704 { 705 #ifdef HAS_AUDIO 706 return 1; 707 #else 708 return 0; 709 #endif 710 } 711 712 int tcg_available(void) 713 { 714 return 1; 715 } 716 717 int kvm_available(void) 718 { 719 #ifdef CONFIG_KVM 720 return 1; 721 #else 722 return 0; 723 #endif 724 } 725 726 int xen_available(void) 727 { 728 #ifdef CONFIG_XEN 729 return 1; 730 #else 731 return 0; 732 #endif 733 } 734