xref: /qemu/system/arch_init.c (revision 6cd0beda2c3c21fd7575e944764f392be7ef50c1)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "hw/acpi/acpi.h"
52 
53 #ifdef DEBUG_ARCH_INIT
54 #define DPRINTF(fmt, ...) \
55     do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58     do { } while (0)
59 #endif
60 
61 #ifdef TARGET_SPARC
62 int graphic_width = 1024;
63 int graphic_height = 768;
64 int graphic_depth = 8;
65 #else
66 int graphic_width = 800;
67 int graphic_height = 600;
68 int graphic_depth = 32;
69 #endif
70 
71 
72 #if defined(TARGET_ALPHA)
73 #define QEMU_ARCH QEMU_ARCH_ALPHA
74 #elif defined(TARGET_ARM)
75 #define QEMU_ARCH QEMU_ARCH_ARM
76 #elif defined(TARGET_CRIS)
77 #define QEMU_ARCH QEMU_ARCH_CRIS
78 #elif defined(TARGET_I386)
79 #define QEMU_ARCH QEMU_ARCH_I386
80 #elif defined(TARGET_M68K)
81 #define QEMU_ARCH QEMU_ARCH_M68K
82 #elif defined(TARGET_LM32)
83 #define QEMU_ARCH QEMU_ARCH_LM32
84 #elif defined(TARGET_MICROBLAZE)
85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
86 #elif defined(TARGET_MIPS)
87 #define QEMU_ARCH QEMU_ARCH_MIPS
88 #elif defined(TARGET_MOXIE)
89 #define QEMU_ARCH QEMU_ARCH_MOXIE
90 #elif defined(TARGET_OPENRISC)
91 #define QEMU_ARCH QEMU_ARCH_OPENRISC
92 #elif defined(TARGET_PPC)
93 #define QEMU_ARCH QEMU_ARCH_PPC
94 #elif defined(TARGET_S390X)
95 #define QEMU_ARCH QEMU_ARCH_S390X
96 #elif defined(TARGET_SH4)
97 #define QEMU_ARCH QEMU_ARCH_SH4
98 #elif defined(TARGET_SPARC)
99 #define QEMU_ARCH QEMU_ARCH_SPARC
100 #elif defined(TARGET_XTENSA)
101 #define QEMU_ARCH QEMU_ARCH_XTENSA
102 #elif defined(TARGET_UNICORE32)
103 #define QEMU_ARCH QEMU_ARCH_UNICORE32
104 #endif
105 
106 const uint32_t arch_type = QEMU_ARCH;
107 static bool mig_throttle_on;
108 static int dirty_rate_high_cnt;
109 static void check_guest_throttling(void);
110 
111 /***********************************************************/
112 /* ram save/restore */
113 
114 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
115 #define RAM_SAVE_FLAG_COMPRESS 0x02
116 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
117 #define RAM_SAVE_FLAG_PAGE     0x08
118 #define RAM_SAVE_FLAG_EOS      0x10
119 #define RAM_SAVE_FLAG_CONTINUE 0x20
120 #define RAM_SAVE_FLAG_XBZRLE   0x40
121 /* 0x80 is reserved in migration.h start with 0x100 next */
122 
123 
124 static struct defconfig_file {
125     const char *filename;
126     /* Indicates it is an user config file (disabled by -no-user-config) */
127     bool userconfig;
128 } default_config_files[] = {
129     { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
130     { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
131     { NULL }, /* end of list */
132 };
133 
134 
135 int qemu_read_default_config_files(bool userconfig)
136 {
137     int ret;
138     struct defconfig_file *f;
139 
140     for (f = default_config_files; f->filename; f++) {
141         if (!userconfig && f->userconfig) {
142             continue;
143         }
144         ret = qemu_read_config_file(f->filename);
145         if (ret < 0 && ret != -ENOENT) {
146             return ret;
147         }
148     }
149 
150     return 0;
151 }
152 
153 static inline bool is_zero_page(uint8_t *p)
154 {
155     return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) ==
156         TARGET_PAGE_SIZE;
157 }
158 
159 /* struct contains XBZRLE cache and a static page
160    used by the compression */
161 static struct {
162     /* buffer used for XBZRLE encoding */
163     uint8_t *encoded_buf;
164     /* buffer for storing page content */
165     uint8_t *current_buf;
166     /* buffer used for XBZRLE decoding */
167     uint8_t *decoded_buf;
168     /* Cache for XBZRLE */
169     PageCache *cache;
170 } XBZRLE = {
171     .encoded_buf = NULL,
172     .current_buf = NULL,
173     .decoded_buf = NULL,
174     .cache = NULL,
175 };
176 
177 
178 int64_t xbzrle_cache_resize(int64_t new_size)
179 {
180     if (XBZRLE.cache != NULL) {
181         return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
182             TARGET_PAGE_SIZE;
183     }
184     return pow2floor(new_size);
185 }
186 
187 /* accounting for migration statistics */
188 typedef struct AccountingInfo {
189     uint64_t dup_pages;
190     uint64_t skipped_pages;
191     uint64_t norm_pages;
192     uint64_t iterations;
193     uint64_t xbzrle_bytes;
194     uint64_t xbzrle_pages;
195     uint64_t xbzrle_cache_miss;
196     uint64_t xbzrle_overflows;
197 } AccountingInfo;
198 
199 static AccountingInfo acct_info;
200 
201 static void acct_clear(void)
202 {
203     memset(&acct_info, 0, sizeof(acct_info));
204 }
205 
206 uint64_t dup_mig_bytes_transferred(void)
207 {
208     return acct_info.dup_pages * TARGET_PAGE_SIZE;
209 }
210 
211 uint64_t dup_mig_pages_transferred(void)
212 {
213     return acct_info.dup_pages;
214 }
215 
216 uint64_t skipped_mig_bytes_transferred(void)
217 {
218     return acct_info.skipped_pages * TARGET_PAGE_SIZE;
219 }
220 
221 uint64_t skipped_mig_pages_transferred(void)
222 {
223     return acct_info.skipped_pages;
224 }
225 
226 uint64_t norm_mig_bytes_transferred(void)
227 {
228     return acct_info.norm_pages * TARGET_PAGE_SIZE;
229 }
230 
231 uint64_t norm_mig_pages_transferred(void)
232 {
233     return acct_info.norm_pages;
234 }
235 
236 uint64_t xbzrle_mig_bytes_transferred(void)
237 {
238     return acct_info.xbzrle_bytes;
239 }
240 
241 uint64_t xbzrle_mig_pages_transferred(void)
242 {
243     return acct_info.xbzrle_pages;
244 }
245 
246 uint64_t xbzrle_mig_pages_cache_miss(void)
247 {
248     return acct_info.xbzrle_cache_miss;
249 }
250 
251 uint64_t xbzrle_mig_pages_overflow(void)
252 {
253     return acct_info.xbzrle_overflows;
254 }
255 
256 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
257                              int cont, int flag)
258 {
259     size_t size;
260 
261     qemu_put_be64(f, offset | cont | flag);
262     size = 8;
263 
264     if (!cont) {
265         qemu_put_byte(f, strlen(block->idstr));
266         qemu_put_buffer(f, (uint8_t *)block->idstr,
267                         strlen(block->idstr));
268         size += 1 + strlen(block->idstr);
269     }
270     return size;
271 }
272 
273 #define ENCODING_FLAG_XBZRLE 0x1
274 
275 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
276                             ram_addr_t current_addr, RAMBlock *block,
277                             ram_addr_t offset, int cont, bool last_stage)
278 {
279     int encoded_len = 0, bytes_sent = -1;
280     uint8_t *prev_cached_page;
281 
282     if (!cache_is_cached(XBZRLE.cache, current_addr)) {
283         if (!last_stage) {
284             cache_insert(XBZRLE.cache, current_addr, current_data);
285         }
286         acct_info.xbzrle_cache_miss++;
287         return -1;
288     }
289 
290     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
291 
292     /* save current buffer into memory */
293     memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
294 
295     /* XBZRLE encoding (if there is no overflow) */
296     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
297                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
298                                        TARGET_PAGE_SIZE);
299     if (encoded_len == 0) {
300         DPRINTF("Skipping unmodified page\n");
301         return 0;
302     } else if (encoded_len == -1) {
303         DPRINTF("Overflow\n");
304         acct_info.xbzrle_overflows++;
305         /* update data in the cache */
306         memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
307         return -1;
308     }
309 
310     /* we need to update the data in the cache, in order to get the same data */
311     if (!last_stage) {
312         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
313     }
314 
315     /* Send XBZRLE based compressed page */
316     bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
317     qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
318     qemu_put_be16(f, encoded_len);
319     qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
320     bytes_sent += encoded_len + 1 + 2;
321     acct_info.xbzrle_pages++;
322     acct_info.xbzrle_bytes += bytes_sent;
323 
324     return bytes_sent;
325 }
326 
327 
328 /* This is the last block that we have visited serching for dirty pages
329  */
330 static RAMBlock *last_seen_block;
331 /* This is the last block from where we have sent data */
332 static RAMBlock *last_sent_block;
333 static ram_addr_t last_offset;
334 static unsigned long *migration_bitmap;
335 static uint64_t migration_dirty_pages;
336 static uint32_t last_version;
337 static bool ram_bulk_stage;
338 
339 static inline
340 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
341                                                  ram_addr_t start)
342 {
343     unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
344     unsigned long nr = base + (start >> TARGET_PAGE_BITS);
345     uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
346     unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
347 
348     unsigned long next;
349 
350     if (ram_bulk_stage && nr > base) {
351         next = nr + 1;
352     } else {
353         next = find_next_bit(migration_bitmap, size, nr);
354     }
355 
356     if (next < size) {
357         clear_bit(next, migration_bitmap);
358         migration_dirty_pages--;
359     }
360     return (next - base) << TARGET_PAGE_BITS;
361 }
362 
363 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
364                                               ram_addr_t offset)
365 {
366     bool ret;
367     int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
368 
369     ret = test_and_set_bit(nr, migration_bitmap);
370 
371     if (!ret) {
372         migration_dirty_pages++;
373     }
374     return ret;
375 }
376 
377 /* Needs iothread lock! */
378 
379 static void migration_bitmap_sync(void)
380 {
381     RAMBlock *block;
382     ram_addr_t addr;
383     uint64_t num_dirty_pages_init = migration_dirty_pages;
384     MigrationState *s = migrate_get_current();
385     static int64_t start_time;
386     static int64_t bytes_xfer_prev;
387     static int64_t num_dirty_pages_period;
388     int64_t end_time;
389     int64_t bytes_xfer_now;
390 
391     if (!bytes_xfer_prev) {
392         bytes_xfer_prev = ram_bytes_transferred();
393     }
394 
395     if (!start_time) {
396         start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
397     }
398 
399     trace_migration_bitmap_sync_start();
400     address_space_sync_dirty_bitmap(&address_space_memory);
401 
402     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
403         for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
404             if (memory_region_test_and_clear_dirty(block->mr,
405                                                    addr, TARGET_PAGE_SIZE,
406                                                    DIRTY_MEMORY_MIGRATION)) {
407                 migration_bitmap_set_dirty(block->mr, addr);
408             }
409         }
410     }
411     trace_migration_bitmap_sync_end(migration_dirty_pages
412                                     - num_dirty_pages_init);
413     num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
414     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
415 
416     /* more than 1 second = 1000 millisecons */
417     if (end_time > start_time + 1000) {
418         if (migrate_auto_converge()) {
419             /* The following detection logic can be refined later. For now:
420                Check to see if the dirtied bytes is 50% more than the approx.
421                amount of bytes that just got transferred since the last time we
422                were in this routine. If that happens >N times (for now N==4)
423                we turn on the throttle down logic */
424             bytes_xfer_now = ram_bytes_transferred();
425             if (s->dirty_pages_rate &&
426                (num_dirty_pages_period * TARGET_PAGE_SIZE >
427                    (bytes_xfer_now - bytes_xfer_prev)/2) &&
428                (dirty_rate_high_cnt++ > 4)) {
429                     trace_migration_throttle();
430                     mig_throttle_on = true;
431                     dirty_rate_high_cnt = 0;
432              }
433              bytes_xfer_prev = bytes_xfer_now;
434         } else {
435              mig_throttle_on = false;
436         }
437         s->dirty_pages_rate = num_dirty_pages_period * 1000
438             / (end_time - start_time);
439         s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
440         start_time = end_time;
441         num_dirty_pages_period = 0;
442     }
443 }
444 
445 /*
446  * ram_save_block: Writes a page of memory to the stream f
447  *
448  * Returns:  The number of bytes written.
449  *           0 means no dirty pages
450  */
451 
452 static int ram_save_block(QEMUFile *f, bool last_stage)
453 {
454     RAMBlock *block = last_seen_block;
455     ram_addr_t offset = last_offset;
456     bool complete_round = false;
457     int bytes_sent = 0;
458     MemoryRegion *mr;
459     ram_addr_t current_addr;
460 
461     if (!block)
462         block = QTAILQ_FIRST(&ram_list.blocks);
463 
464     while (true) {
465         mr = block->mr;
466         offset = migration_bitmap_find_and_reset_dirty(mr, offset);
467         if (complete_round && block == last_seen_block &&
468             offset >= last_offset) {
469             break;
470         }
471         if (offset >= block->length) {
472             offset = 0;
473             block = QTAILQ_NEXT(block, next);
474             if (!block) {
475                 block = QTAILQ_FIRST(&ram_list.blocks);
476                 complete_round = true;
477                 ram_bulk_stage = false;
478             }
479         } else {
480             int ret;
481             uint8_t *p;
482             int cont = (block == last_sent_block) ?
483                 RAM_SAVE_FLAG_CONTINUE : 0;
484 
485             p = memory_region_get_ram_ptr(mr) + offset;
486 
487             /* In doubt sent page as normal */
488             bytes_sent = -1;
489             ret = ram_control_save_page(f, block->offset,
490                                offset, TARGET_PAGE_SIZE, &bytes_sent);
491 
492             if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
493                 if (ret != RAM_SAVE_CONTROL_DELAYED) {
494                     if (bytes_sent > 0) {
495                         acct_info.norm_pages++;
496                     } else if (bytes_sent == 0) {
497                         acct_info.dup_pages++;
498                     }
499                 }
500             } else if (is_zero_page(p)) {
501                 acct_info.dup_pages++;
502                 bytes_sent = save_block_hdr(f, block, offset, cont,
503                                             RAM_SAVE_FLAG_COMPRESS);
504                 qemu_put_byte(f, 0);
505                 bytes_sent++;
506             } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
507                 current_addr = block->offset + offset;
508                 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
509                                               offset, cont, last_stage);
510                 if (!last_stage) {
511                     p = get_cached_data(XBZRLE.cache, current_addr);
512                 }
513             }
514 
515             /* XBZRLE overflow or normal page */
516             if (bytes_sent == -1) {
517                 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
518                 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
519                 bytes_sent += TARGET_PAGE_SIZE;
520                 acct_info.norm_pages++;
521             }
522 
523             /* if page is unmodified, continue to the next */
524             if (bytes_sent > 0) {
525                 last_sent_block = block;
526                 break;
527             }
528         }
529     }
530     last_seen_block = block;
531     last_offset = offset;
532 
533     return bytes_sent;
534 }
535 
536 static uint64_t bytes_transferred;
537 
538 void acct_update_position(QEMUFile *f, size_t size, bool zero)
539 {
540     uint64_t pages = size / TARGET_PAGE_SIZE;
541     if (zero) {
542         acct_info.dup_pages += pages;
543     } else {
544         acct_info.norm_pages += pages;
545         bytes_transferred += size;
546         qemu_update_position(f, size);
547     }
548 }
549 
550 static ram_addr_t ram_save_remaining(void)
551 {
552     return migration_dirty_pages;
553 }
554 
555 uint64_t ram_bytes_remaining(void)
556 {
557     return ram_save_remaining() * TARGET_PAGE_SIZE;
558 }
559 
560 uint64_t ram_bytes_transferred(void)
561 {
562     return bytes_transferred;
563 }
564 
565 uint64_t ram_bytes_total(void)
566 {
567     RAMBlock *block;
568     uint64_t total = 0;
569 
570     QTAILQ_FOREACH(block, &ram_list.blocks, next)
571         total += block->length;
572 
573     return total;
574 }
575 
576 static void migration_end(void)
577 {
578     if (migration_bitmap) {
579         memory_global_dirty_log_stop();
580         g_free(migration_bitmap);
581         migration_bitmap = NULL;
582     }
583 
584     if (XBZRLE.cache) {
585         cache_fini(XBZRLE.cache);
586         g_free(XBZRLE.cache);
587         g_free(XBZRLE.encoded_buf);
588         g_free(XBZRLE.current_buf);
589         g_free(XBZRLE.decoded_buf);
590         XBZRLE.cache = NULL;
591     }
592 }
593 
594 static void ram_migration_cancel(void *opaque)
595 {
596     migration_end();
597 }
598 
599 static void reset_ram_globals(void)
600 {
601     last_seen_block = NULL;
602     last_sent_block = NULL;
603     last_offset = 0;
604     last_version = ram_list.version;
605     ram_bulk_stage = true;
606 }
607 
608 #define MAX_WAIT 50 /* ms, half buffered_file limit */
609 
610 static int ram_save_setup(QEMUFile *f, void *opaque)
611 {
612     RAMBlock *block;
613     int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
614 
615     migration_bitmap = bitmap_new(ram_pages);
616     bitmap_set(migration_bitmap, 0, ram_pages);
617     migration_dirty_pages = ram_pages;
618     mig_throttle_on = false;
619     dirty_rate_high_cnt = 0;
620 
621     if (migrate_use_xbzrle()) {
622         XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
623                                   TARGET_PAGE_SIZE,
624                                   TARGET_PAGE_SIZE);
625         if (!XBZRLE.cache) {
626             DPRINTF("Error creating cache\n");
627             return -1;
628         }
629         XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
630         XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
631         acct_clear();
632     }
633 
634     qemu_mutex_lock_iothread();
635     qemu_mutex_lock_ramlist();
636     bytes_transferred = 0;
637     reset_ram_globals();
638 
639     memory_global_dirty_log_start();
640     migration_bitmap_sync();
641     qemu_mutex_unlock_iothread();
642 
643     qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
644 
645     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
646         qemu_put_byte(f, strlen(block->idstr));
647         qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
648         qemu_put_be64(f, block->length);
649     }
650 
651     qemu_mutex_unlock_ramlist();
652 
653     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
654     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
655 
656     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
657 
658     return 0;
659 }
660 
661 static int ram_save_iterate(QEMUFile *f, void *opaque)
662 {
663     int ret;
664     int i;
665     int64_t t0;
666     int total_sent = 0;
667 
668     qemu_mutex_lock_ramlist();
669 
670     if (ram_list.version != last_version) {
671         reset_ram_globals();
672     }
673 
674     ram_control_before_iterate(f, RAM_CONTROL_ROUND);
675 
676     t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
677     i = 0;
678     while ((ret = qemu_file_rate_limit(f)) == 0) {
679         int bytes_sent;
680 
681         bytes_sent = ram_save_block(f, false);
682         /* no more blocks to sent */
683         if (bytes_sent == 0) {
684             break;
685         }
686         total_sent += bytes_sent;
687         acct_info.iterations++;
688         check_guest_throttling();
689         /* we want to check in the 1st loop, just in case it was the 1st time
690            and we had to sync the dirty bitmap.
691            qemu_get_clock_ns() is a bit expensive, so we only check each some
692            iterations
693         */
694         if ((i & 63) == 0) {
695             uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
696             if (t1 > MAX_WAIT) {
697                 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
698                         t1, i);
699                 break;
700             }
701         }
702         i++;
703     }
704 
705     qemu_mutex_unlock_ramlist();
706 
707     /*
708      * Must occur before EOS (or any QEMUFile operation)
709      * because of RDMA protocol.
710      */
711     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
712 
713     bytes_transferred += total_sent;
714 
715     /*
716      * Do not count these 8 bytes into total_sent, so that we can
717      * return 0 if no page had been dirtied.
718      */
719     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
720     bytes_transferred += 8;
721 
722     ret = qemu_file_get_error(f);
723     if (ret < 0) {
724         return ret;
725     }
726 
727     return total_sent;
728 }
729 
730 static int ram_save_complete(QEMUFile *f, void *opaque)
731 {
732     qemu_mutex_lock_ramlist();
733     migration_bitmap_sync();
734 
735     ram_control_before_iterate(f, RAM_CONTROL_FINISH);
736 
737     /* try transferring iterative blocks of memory */
738 
739     /* flush all remaining blocks regardless of rate limiting */
740     while (true) {
741         int bytes_sent;
742 
743         bytes_sent = ram_save_block(f, true);
744         /* no more blocks to sent */
745         if (bytes_sent == 0) {
746             break;
747         }
748         bytes_transferred += bytes_sent;
749     }
750 
751     ram_control_after_iterate(f, RAM_CONTROL_FINISH);
752     migration_end();
753 
754     qemu_mutex_unlock_ramlist();
755     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
756 
757     return 0;
758 }
759 
760 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
761 {
762     uint64_t remaining_size;
763 
764     remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
765 
766     if (remaining_size < max_size) {
767         qemu_mutex_lock_iothread();
768         migration_bitmap_sync();
769         qemu_mutex_unlock_iothread();
770         remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
771     }
772     return remaining_size;
773 }
774 
775 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
776 {
777     int ret, rc = 0;
778     unsigned int xh_len;
779     int xh_flags;
780 
781     if (!XBZRLE.decoded_buf) {
782         XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
783     }
784 
785     /* extract RLE header */
786     xh_flags = qemu_get_byte(f);
787     xh_len = qemu_get_be16(f);
788 
789     if (xh_flags != ENCODING_FLAG_XBZRLE) {
790         fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
791         return -1;
792     }
793 
794     if (xh_len > TARGET_PAGE_SIZE) {
795         fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
796         return -1;
797     }
798     /* load data and decode */
799     qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
800 
801     /* decode RLE */
802     ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
803                                TARGET_PAGE_SIZE);
804     if (ret == -1) {
805         fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
806         rc = -1;
807     } else  if (ret > TARGET_PAGE_SIZE) {
808         fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
809                 ret, TARGET_PAGE_SIZE);
810         abort();
811     }
812 
813     return rc;
814 }
815 
816 static inline void *host_from_stream_offset(QEMUFile *f,
817                                             ram_addr_t offset,
818                                             int flags)
819 {
820     static RAMBlock *block = NULL;
821     char id[256];
822     uint8_t len;
823 
824     if (flags & RAM_SAVE_FLAG_CONTINUE) {
825         if (!block) {
826             fprintf(stderr, "Ack, bad migration stream!\n");
827             return NULL;
828         }
829 
830         return memory_region_get_ram_ptr(block->mr) + offset;
831     }
832 
833     len = qemu_get_byte(f);
834     qemu_get_buffer(f, (uint8_t *)id, len);
835     id[len] = 0;
836 
837     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
838         if (!strncmp(id, block->idstr, sizeof(id)))
839             return memory_region_get_ram_ptr(block->mr) + offset;
840     }
841 
842     fprintf(stderr, "Can't find block %s!\n", id);
843     return NULL;
844 }
845 
846 /*
847  * If a page (or a whole RDMA chunk) has been
848  * determined to be zero, then zap it.
849  */
850 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
851 {
852     if (ch != 0 || !is_zero_page(host)) {
853         memset(host, ch, size);
854 #ifndef _WIN32
855         if (ch == 0 &&
856             (!kvm_enabled() || kvm_has_sync_mmu()) &&
857             getpagesize() <= TARGET_PAGE_SIZE) {
858             qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
859         }
860 #endif
861     }
862 }
863 
864 static int ram_load(QEMUFile *f, void *opaque, int version_id)
865 {
866     ram_addr_t addr;
867     int flags, ret = 0;
868     int error;
869     static uint64_t seq_iter;
870 
871     seq_iter++;
872 
873     if (version_id < 4 || version_id > 4) {
874         return -EINVAL;
875     }
876 
877     do {
878         addr = qemu_get_be64(f);
879 
880         flags = addr & ~TARGET_PAGE_MASK;
881         addr &= TARGET_PAGE_MASK;
882 
883         if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
884             if (version_id == 4) {
885                 /* Synchronize RAM block list */
886                 char id[256];
887                 ram_addr_t length;
888                 ram_addr_t total_ram_bytes = addr;
889 
890                 while (total_ram_bytes) {
891                     RAMBlock *block;
892                     uint8_t len;
893 
894                     len = qemu_get_byte(f);
895                     qemu_get_buffer(f, (uint8_t *)id, len);
896                     id[len] = 0;
897                     length = qemu_get_be64(f);
898 
899                     QTAILQ_FOREACH(block, &ram_list.blocks, next) {
900                         if (!strncmp(id, block->idstr, sizeof(id))) {
901                             if (block->length != length) {
902                                 fprintf(stderr,
903                                         "Length mismatch: %s: " RAM_ADDR_FMT
904                                         " in != " RAM_ADDR_FMT "\n", id, length,
905                                         block->length);
906                                 ret =  -EINVAL;
907                                 goto done;
908                             }
909                             break;
910                         }
911                     }
912 
913                     if (!block) {
914                         fprintf(stderr, "Unknown ramblock \"%s\", cannot "
915                                 "accept migration\n", id);
916                         ret = -EINVAL;
917                         goto done;
918                     }
919 
920                     total_ram_bytes -= length;
921                 }
922             }
923         }
924 
925         if (flags & RAM_SAVE_FLAG_COMPRESS) {
926             void *host;
927             uint8_t ch;
928 
929             host = host_from_stream_offset(f, addr, flags);
930             if (!host) {
931                 return -EINVAL;
932             }
933 
934             ch = qemu_get_byte(f);
935             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
936         } else if (flags & RAM_SAVE_FLAG_PAGE) {
937             void *host;
938 
939             host = host_from_stream_offset(f, addr, flags);
940             if (!host) {
941                 return -EINVAL;
942             }
943 
944             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
945         } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
946             void *host = host_from_stream_offset(f, addr, flags);
947             if (!host) {
948                 return -EINVAL;
949             }
950 
951             if (load_xbzrle(f, addr, host) < 0) {
952                 ret = -EINVAL;
953                 goto done;
954             }
955         } else if (flags & RAM_SAVE_FLAG_HOOK) {
956             ram_control_load_hook(f, flags);
957         }
958         error = qemu_file_get_error(f);
959         if (error) {
960             ret = error;
961             goto done;
962         }
963     } while (!(flags & RAM_SAVE_FLAG_EOS));
964 
965 done:
966     DPRINTF("Completed load of VM with exit code %d seq iteration "
967             "%" PRIu64 "\n", ret, seq_iter);
968     return ret;
969 }
970 
971 SaveVMHandlers savevm_ram_handlers = {
972     .save_live_setup = ram_save_setup,
973     .save_live_iterate = ram_save_iterate,
974     .save_live_complete = ram_save_complete,
975     .save_live_pending = ram_save_pending,
976     .load_state = ram_load,
977     .cancel = ram_migration_cancel,
978 };
979 
980 struct soundhw {
981     const char *name;
982     const char *descr;
983     int enabled;
984     int isa;
985     union {
986         int (*init_isa) (ISABus *bus);
987         int (*init_pci) (PCIBus *bus);
988     } init;
989 };
990 
991 static struct soundhw soundhw[9];
992 static int soundhw_count;
993 
994 void isa_register_soundhw(const char *name, const char *descr,
995                           int (*init_isa)(ISABus *bus))
996 {
997     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
998     soundhw[soundhw_count].name = name;
999     soundhw[soundhw_count].descr = descr;
1000     soundhw[soundhw_count].isa = 1;
1001     soundhw[soundhw_count].init.init_isa = init_isa;
1002     soundhw_count++;
1003 }
1004 
1005 void pci_register_soundhw(const char *name, const char *descr,
1006                           int (*init_pci)(PCIBus *bus))
1007 {
1008     assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1009     soundhw[soundhw_count].name = name;
1010     soundhw[soundhw_count].descr = descr;
1011     soundhw[soundhw_count].isa = 0;
1012     soundhw[soundhw_count].init.init_pci = init_pci;
1013     soundhw_count++;
1014 }
1015 
1016 void select_soundhw(const char *optarg)
1017 {
1018     struct soundhw *c;
1019 
1020     if (is_help_option(optarg)) {
1021     show_valid_cards:
1022 
1023         if (soundhw_count) {
1024              printf("Valid sound card names (comma separated):\n");
1025              for (c = soundhw; c->name; ++c) {
1026                  printf ("%-11s %s\n", c->name, c->descr);
1027              }
1028              printf("\n-soundhw all will enable all of the above\n");
1029         } else {
1030              printf("Machine has no user-selectable audio hardware "
1031                     "(it may or may not have always-present audio hardware).\n");
1032         }
1033         exit(!is_help_option(optarg));
1034     }
1035     else {
1036         size_t l;
1037         const char *p;
1038         char *e;
1039         int bad_card = 0;
1040 
1041         if (!strcmp(optarg, "all")) {
1042             for (c = soundhw; c->name; ++c) {
1043                 c->enabled = 1;
1044             }
1045             return;
1046         }
1047 
1048         p = optarg;
1049         while (*p) {
1050             e = strchr(p, ',');
1051             l = !e ? strlen(p) : (size_t) (e - p);
1052 
1053             for (c = soundhw; c->name; ++c) {
1054                 if (!strncmp(c->name, p, l) && !c->name[l]) {
1055                     c->enabled = 1;
1056                     break;
1057                 }
1058             }
1059 
1060             if (!c->name) {
1061                 if (l > 80) {
1062                     fprintf(stderr,
1063                             "Unknown sound card name (too big to show)\n");
1064                 }
1065                 else {
1066                     fprintf(stderr, "Unknown sound card name `%.*s'\n",
1067                             (int) l, p);
1068                 }
1069                 bad_card = 1;
1070             }
1071             p += l + (e != NULL);
1072         }
1073 
1074         if (bad_card) {
1075             goto show_valid_cards;
1076         }
1077     }
1078 }
1079 
1080 void audio_init(void)
1081 {
1082     struct soundhw *c;
1083     ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1084     PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1085 
1086     for (c = soundhw; c->name; ++c) {
1087         if (c->enabled) {
1088             if (c->isa) {
1089                 if (!isa_bus) {
1090                     fprintf(stderr, "ISA bus not available for %s\n", c->name);
1091                     exit(1);
1092                 }
1093                 c->init.init_isa(isa_bus);
1094             } else {
1095                 if (!pci_bus) {
1096                     fprintf(stderr, "PCI bus not available for %s\n", c->name);
1097                     exit(1);
1098                 }
1099                 c->init.init_pci(pci_bus);
1100             }
1101         }
1102     }
1103 }
1104 
1105 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1106 {
1107     int ret;
1108 
1109     if (strlen(str) != 36) {
1110         return -1;
1111     }
1112 
1113     ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1114                  &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1115                  &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1116                  &uuid[15]);
1117 
1118     if (ret != 16) {
1119         return -1;
1120     }
1121 #ifdef TARGET_I386
1122     smbios_add_field(1, offsetof(struct smbios_type_1, uuid), uuid, 16);
1123 #endif
1124     return 0;
1125 }
1126 
1127 void do_acpitable_option(const QemuOpts *opts)
1128 {
1129 #ifdef TARGET_I386
1130     Error *err = NULL;
1131 
1132     acpi_table_add(opts, &err);
1133     if (err) {
1134         error_report("Wrong acpi table provided: %s",
1135                      error_get_pretty(err));
1136         error_free(err);
1137         exit(1);
1138     }
1139 #endif
1140 }
1141 
1142 void do_smbios_option(const char *optarg)
1143 {
1144 #ifdef TARGET_I386
1145     if (smbios_entry_add(optarg) < 0) {
1146         exit(1);
1147     }
1148 #endif
1149 }
1150 
1151 void cpudef_init(void)
1152 {
1153 #if defined(cpudef_setup)
1154     cpudef_setup(); /* parse cpu definitions in target config file */
1155 #endif
1156 }
1157 
1158 int tcg_available(void)
1159 {
1160     return 1;
1161 }
1162 
1163 int kvm_available(void)
1164 {
1165 #ifdef CONFIG_KVM
1166     return 1;
1167 #else
1168     return 0;
1169 #endif
1170 }
1171 
1172 int xen_available(void)
1173 {
1174 #ifdef CONFIG_XEN
1175     return 1;
1176 #else
1177     return 0;
1178 #endif
1179 }
1180 
1181 
1182 TargetInfo *qmp_query_target(Error **errp)
1183 {
1184     TargetInfo *info = g_malloc0(sizeof(*info));
1185 
1186     info->arch = g_strdup(TARGET_NAME);
1187 
1188     return info;
1189 }
1190 
1191 /* Stub function that's gets run on the vcpu when its brought out of the
1192    VM to run inside qemu via async_run_on_cpu()*/
1193 static void mig_sleep_cpu(void *opq)
1194 {
1195     qemu_mutex_unlock_iothread();
1196     g_usleep(30*1000);
1197     qemu_mutex_lock_iothread();
1198 }
1199 
1200 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1201    much time in the VM. The migration thread will try to catchup.
1202    Workload will experience a performance drop.
1203 */
1204 static void mig_throttle_guest_down(void)
1205 {
1206     CPUState *cpu;
1207 
1208     qemu_mutex_lock_iothread();
1209     CPU_FOREACH(cpu) {
1210         async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1211     }
1212     qemu_mutex_unlock_iothread();
1213 }
1214 
1215 static void check_guest_throttling(void)
1216 {
1217     static int64_t t0;
1218     int64_t        t1;
1219 
1220     if (!mig_throttle_on) {
1221         return;
1222     }
1223 
1224     if (!t0)  {
1225         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1226         return;
1227     }
1228 
1229     t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1230 
1231     /* If it has been more than 40 ms since the last time the guest
1232      * was throttled then do it again.
1233      */
1234     if (40 < (t1-t0)/1000000) {
1235         mig_throttle_guest_down();
1236         t0 = t1;
1237     }
1238 }
1239