1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audiodev.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_OPENRISC) 89 #define QEMU_ARCH QEMU_ARCH_OPENRISC 90 #elif defined(TARGET_PPC) 91 #define QEMU_ARCH QEMU_ARCH_PPC 92 #elif defined(TARGET_S390X) 93 #define QEMU_ARCH QEMU_ARCH_S390X 94 #elif defined(TARGET_SH4) 95 #define QEMU_ARCH QEMU_ARCH_SH4 96 #elif defined(TARGET_SPARC) 97 #define QEMU_ARCH QEMU_ARCH_SPARC 98 #elif defined(TARGET_XTENSA) 99 #define QEMU_ARCH QEMU_ARCH_XTENSA 100 #elif defined(TARGET_UNICORE32) 101 #define QEMU_ARCH QEMU_ARCH_UNICORE32 102 #endif 103 104 const uint32_t arch_type = QEMU_ARCH; 105 106 /***********************************************************/ 107 /* ram save/restore */ 108 109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 110 #define RAM_SAVE_FLAG_COMPRESS 0x02 111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 112 #define RAM_SAVE_FLAG_PAGE 0x08 113 #define RAM_SAVE_FLAG_EOS 0x10 114 #define RAM_SAVE_FLAG_CONTINUE 0x20 115 #define RAM_SAVE_FLAG_XBZRLE 0x40 116 117 #ifdef __ALTIVEC__ 118 #include <altivec.h> 119 #define VECTYPE vector unsigned char 120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0) 121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) 122 /* altivec.h may redefine the bool macro as vector type. 123 * Reset it to POSIX semantics. */ 124 #undef bool 125 #define bool _Bool 126 #elif defined __SSE2__ 127 #include <emmintrin.h> 128 #define VECTYPE __m128i 129 #define SPLAT(p) _mm_set1_epi8(*(p)) 130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) 131 #else 132 #define VECTYPE unsigned long 133 #define SPLAT(p) (*(p) * (~0UL / 255)) 134 #define ALL_EQ(v1, v2) ((v1) == (v2)) 135 #endif 136 137 138 static struct defconfig_file { 139 const char *filename; 140 /* Indicates it is an user config file (disabled by -no-user-config) */ 141 bool userconfig; 142 } default_config_files[] = { 143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 145 { NULL }, /* end of list */ 146 }; 147 148 149 int qemu_read_default_config_files(bool userconfig) 150 { 151 int ret; 152 struct defconfig_file *f; 153 154 for (f = default_config_files; f->filename; f++) { 155 if (!userconfig && f->userconfig) { 156 continue; 157 } 158 ret = qemu_read_config_file(f->filename); 159 if (ret < 0 && ret != -ENOENT) { 160 return ret; 161 } 162 } 163 164 return 0; 165 } 166 167 static int is_dup_page(uint8_t *page) 168 { 169 VECTYPE *p = (VECTYPE *)page; 170 VECTYPE val = SPLAT(page); 171 int i; 172 173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) { 174 if (!ALL_EQ(val, p[i])) { 175 return 0; 176 } 177 } 178 179 return 1; 180 } 181 182 /* struct contains XBZRLE cache and a static page 183 used by the compression */ 184 static struct { 185 /* buffer used for XBZRLE encoding */ 186 uint8_t *encoded_buf; 187 /* buffer for storing page content */ 188 uint8_t *current_buf; 189 /* buffer used for XBZRLE decoding */ 190 uint8_t *decoded_buf; 191 /* Cache for XBZRLE */ 192 PageCache *cache; 193 } XBZRLE = { 194 .encoded_buf = NULL, 195 .current_buf = NULL, 196 .decoded_buf = NULL, 197 .cache = NULL, 198 }; 199 200 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 if (XBZRLE.cache != NULL) { 204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 205 TARGET_PAGE_SIZE; 206 } 207 return pow2floor(new_size); 208 } 209 210 /* accounting for migration statistics */ 211 typedef struct AccountingInfo { 212 uint64_t dup_pages; 213 uint64_t norm_pages; 214 uint64_t iterations; 215 uint64_t xbzrle_bytes; 216 uint64_t xbzrle_pages; 217 uint64_t xbzrle_cache_miss; 218 uint64_t xbzrle_overflows; 219 } AccountingInfo; 220 221 static AccountingInfo acct_info; 222 223 static void acct_clear(void) 224 { 225 memset(&acct_info, 0, sizeof(acct_info)); 226 } 227 228 uint64_t dup_mig_bytes_transferred(void) 229 { 230 return acct_info.dup_pages * TARGET_PAGE_SIZE; 231 } 232 233 uint64_t dup_mig_pages_transferred(void) 234 { 235 return acct_info.dup_pages; 236 } 237 238 uint64_t norm_mig_bytes_transferred(void) 239 { 240 return acct_info.norm_pages * TARGET_PAGE_SIZE; 241 } 242 243 uint64_t norm_mig_pages_transferred(void) 244 { 245 return acct_info.norm_pages; 246 } 247 248 uint64_t xbzrle_mig_bytes_transferred(void) 249 { 250 return acct_info.xbzrle_bytes; 251 } 252 253 uint64_t xbzrle_mig_pages_transferred(void) 254 { 255 return acct_info.xbzrle_pages; 256 } 257 258 uint64_t xbzrle_mig_pages_cache_miss(void) 259 { 260 return acct_info.xbzrle_cache_miss; 261 } 262 263 uint64_t xbzrle_mig_pages_overflow(void) 264 { 265 return acct_info.xbzrle_overflows; 266 } 267 268 static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 269 int cont, int flag) 270 { 271 qemu_put_be64(f, offset | cont | flag); 272 if (!cont) { 273 qemu_put_byte(f, strlen(block->idstr)); 274 qemu_put_buffer(f, (uint8_t *)block->idstr, 275 strlen(block->idstr)); 276 } 277 278 } 279 280 #define ENCODING_FLAG_XBZRLE 0x1 281 282 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 283 ram_addr_t current_addr, RAMBlock *block, 284 ram_addr_t offset, int cont, bool last_stage) 285 { 286 int encoded_len = 0, bytes_sent = -1; 287 uint8_t *prev_cached_page; 288 289 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 290 if (!last_stage) { 291 cache_insert(XBZRLE.cache, current_addr, 292 g_memdup(current_data, TARGET_PAGE_SIZE)); 293 } 294 acct_info.xbzrle_cache_miss++; 295 return -1; 296 } 297 298 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 299 300 /* save current buffer into memory */ 301 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 302 303 /* XBZRLE encoding (if there is no overflow) */ 304 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 305 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 306 TARGET_PAGE_SIZE); 307 if (encoded_len == 0) { 308 DPRINTF("Skipping unmodified page\n"); 309 return 0; 310 } else if (encoded_len == -1) { 311 DPRINTF("Overflow\n"); 312 acct_info.xbzrle_overflows++; 313 /* update data in the cache */ 314 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 315 return -1; 316 } 317 318 /* we need to update the data in the cache, in order to get the same data */ 319 if (!last_stage) { 320 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 321 } 322 323 /* Send XBZRLE based compressed page */ 324 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 325 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 326 qemu_put_be16(f, encoded_len); 327 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 328 bytes_sent = encoded_len + 1 + 2; 329 acct_info.xbzrle_pages++; 330 acct_info.xbzrle_bytes += bytes_sent; 331 332 return bytes_sent; 333 } 334 335 336 /* This is the last block that we have visited serching for dirty pages 337 */ 338 static RAMBlock *last_seen_block; 339 /* This is the last block from where we have sent data */ 340 static RAMBlock *last_sent_block; 341 static ram_addr_t last_offset; 342 static unsigned long *migration_bitmap; 343 static uint64_t migration_dirty_pages; 344 static uint32_t last_version; 345 346 static inline 347 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 348 ram_addr_t start) 349 { 350 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 351 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 352 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS); 353 354 unsigned long next = find_next_bit(migration_bitmap, size, nr); 355 356 if (next < size) { 357 clear_bit(next, migration_bitmap); 358 migration_dirty_pages--; 359 } 360 return (next - base) << TARGET_PAGE_BITS; 361 } 362 363 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 364 ram_addr_t offset) 365 { 366 bool ret; 367 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 368 369 ret = test_and_set_bit(nr, migration_bitmap); 370 371 if (!ret) { 372 migration_dirty_pages++; 373 } 374 return ret; 375 } 376 377 static void migration_bitmap_sync(void) 378 { 379 RAMBlock *block; 380 ram_addr_t addr; 381 uint64_t num_dirty_pages_init = migration_dirty_pages; 382 MigrationState *s = migrate_get_current(); 383 static int64_t start_time; 384 static int64_t num_dirty_pages_period; 385 int64_t end_time; 386 387 if (!start_time) { 388 start_time = qemu_get_clock_ms(rt_clock); 389 } 390 391 trace_migration_bitmap_sync_start(); 392 memory_global_sync_dirty_bitmap(get_system_memory()); 393 394 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 395 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 396 if (memory_region_test_and_clear_dirty(block->mr, 397 addr, TARGET_PAGE_SIZE, 398 DIRTY_MEMORY_MIGRATION)) { 399 migration_bitmap_set_dirty(block->mr, addr); 400 } 401 } 402 } 403 trace_migration_bitmap_sync_end(migration_dirty_pages 404 - num_dirty_pages_init); 405 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 406 end_time = qemu_get_clock_ms(rt_clock); 407 408 /* more than 1 second = 1000 millisecons */ 409 if (end_time > start_time + 1000) { 410 s->dirty_pages_rate = num_dirty_pages_period * 1000 411 / (end_time - start_time); 412 start_time = end_time; 413 num_dirty_pages_period = 0; 414 } 415 } 416 417 /* 418 * ram_save_block: Writes a page of memory to the stream f 419 * 420 * Returns: 0: if the page hasn't changed 421 * -1: if there are no more dirty pages 422 * n: the amount of bytes written in other case 423 */ 424 425 static int ram_save_block(QEMUFile *f, bool last_stage) 426 { 427 RAMBlock *block = last_seen_block; 428 ram_addr_t offset = last_offset; 429 bool complete_round = false; 430 int bytes_sent = -1; 431 MemoryRegion *mr; 432 ram_addr_t current_addr; 433 434 if (!block) 435 block = QTAILQ_FIRST(&ram_list.blocks); 436 437 while (true) { 438 mr = block->mr; 439 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 440 if (complete_round && block == last_seen_block && 441 offset >= last_offset) { 442 break; 443 } 444 if (offset >= block->length) { 445 offset = 0; 446 block = QTAILQ_NEXT(block, next); 447 if (!block) { 448 block = QTAILQ_FIRST(&ram_list.blocks); 449 complete_round = true; 450 } 451 } else { 452 uint8_t *p; 453 int cont = (block == last_sent_block) ? 454 RAM_SAVE_FLAG_CONTINUE : 0; 455 456 p = memory_region_get_ram_ptr(mr) + offset; 457 458 if (is_dup_page(p)) { 459 acct_info.dup_pages++; 460 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS); 461 qemu_put_byte(f, *p); 462 bytes_sent = 1; 463 } else if (migrate_use_xbzrle()) { 464 current_addr = block->offset + offset; 465 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 466 offset, cont, last_stage); 467 if (!last_stage) { 468 p = get_cached_data(XBZRLE.cache, current_addr); 469 } 470 } 471 472 /* either we didn't send yet (we may have had XBZRLE overflow) */ 473 if (bytes_sent == -1) { 474 save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 475 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 476 bytes_sent = TARGET_PAGE_SIZE; 477 acct_info.norm_pages++; 478 } 479 480 /* if page is unmodified, continue to the next */ 481 if (bytes_sent != 0) { 482 last_sent_block = block; 483 break; 484 } 485 } 486 } 487 last_seen_block = block; 488 last_offset = offset; 489 490 return bytes_sent; 491 } 492 493 static uint64_t bytes_transferred; 494 495 static ram_addr_t ram_save_remaining(void) 496 { 497 return migration_dirty_pages; 498 } 499 500 uint64_t ram_bytes_remaining(void) 501 { 502 return ram_save_remaining() * TARGET_PAGE_SIZE; 503 } 504 505 uint64_t ram_bytes_transferred(void) 506 { 507 return bytes_transferred; 508 } 509 510 uint64_t ram_bytes_total(void) 511 { 512 RAMBlock *block; 513 uint64_t total = 0; 514 515 QTAILQ_FOREACH(block, &ram_list.blocks, next) 516 total += block->length; 517 518 return total; 519 } 520 521 static void migration_end(void) 522 { 523 if (migration_bitmap) { 524 memory_global_dirty_log_stop(); 525 g_free(migration_bitmap); 526 migration_bitmap = NULL; 527 } 528 529 if (XBZRLE.cache) { 530 cache_fini(XBZRLE.cache); 531 g_free(XBZRLE.cache); 532 g_free(XBZRLE.encoded_buf); 533 g_free(XBZRLE.current_buf); 534 g_free(XBZRLE.decoded_buf); 535 XBZRLE.cache = NULL; 536 } 537 } 538 539 static void ram_migration_cancel(void *opaque) 540 { 541 migration_end(); 542 } 543 544 static void reset_ram_globals(void) 545 { 546 last_seen_block = NULL; 547 last_sent_block = NULL; 548 last_offset = 0; 549 last_version = ram_list.version; 550 } 551 552 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 553 554 static int ram_save_setup(QEMUFile *f, void *opaque) 555 { 556 RAMBlock *block; 557 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 558 559 migration_bitmap = bitmap_new(ram_pages); 560 bitmap_set(migration_bitmap, 0, ram_pages); 561 migration_dirty_pages = ram_pages; 562 563 qemu_mutex_lock_ramlist(); 564 bytes_transferred = 0; 565 reset_ram_globals(); 566 567 if (migrate_use_xbzrle()) { 568 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 569 TARGET_PAGE_SIZE, 570 TARGET_PAGE_SIZE); 571 if (!XBZRLE.cache) { 572 DPRINTF("Error creating cache\n"); 573 return -1; 574 } 575 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 576 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 577 acct_clear(); 578 } 579 580 memory_global_dirty_log_start(); 581 migration_bitmap_sync(); 582 583 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 584 585 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 586 qemu_put_byte(f, strlen(block->idstr)); 587 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 588 qemu_put_be64(f, block->length); 589 } 590 591 qemu_mutex_unlock_ramlist(); 592 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 593 594 return 0; 595 } 596 597 static int ram_save_iterate(QEMUFile *f, void *opaque) 598 { 599 int ret; 600 int i; 601 int64_t t0; 602 603 qemu_mutex_lock_ramlist(); 604 605 if (ram_list.version != last_version) { 606 reset_ram_globals(); 607 } 608 609 t0 = qemu_get_clock_ns(rt_clock); 610 i = 0; 611 while ((ret = qemu_file_rate_limit(f)) == 0) { 612 int bytes_sent; 613 614 bytes_sent = ram_save_block(f, false); 615 /* no more blocks to sent */ 616 if (bytes_sent < 0) { 617 break; 618 } 619 bytes_transferred += bytes_sent; 620 acct_info.iterations++; 621 /* we want to check in the 1st loop, just in case it was the 1st time 622 and we had to sync the dirty bitmap. 623 qemu_get_clock_ns() is a bit expensive, so we only check each some 624 iterations 625 */ 626 if ((i & 63) == 0) { 627 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 628 if (t1 > MAX_WAIT) { 629 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 630 t1, i); 631 break; 632 } 633 } 634 i++; 635 } 636 637 if (ret < 0) { 638 return ret; 639 } 640 641 qemu_mutex_unlock_ramlist(); 642 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 643 644 return i; 645 } 646 647 static int ram_save_complete(QEMUFile *f, void *opaque) 648 { 649 migration_bitmap_sync(); 650 651 qemu_mutex_lock_ramlist(); 652 653 /* try transferring iterative blocks of memory */ 654 655 /* flush all remaining blocks regardless of rate limiting */ 656 while (true) { 657 int bytes_sent; 658 659 bytes_sent = ram_save_block(f, true); 660 /* no more blocks to sent */ 661 if (bytes_sent < 0) { 662 break; 663 } 664 bytes_transferred += bytes_sent; 665 } 666 migration_end(); 667 668 qemu_mutex_unlock_ramlist(); 669 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 670 671 return 0; 672 } 673 674 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 675 { 676 uint64_t remaining_size; 677 678 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 679 680 if (remaining_size < max_size) { 681 migration_bitmap_sync(); 682 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 683 } 684 return remaining_size; 685 } 686 687 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 688 { 689 int ret, rc = 0; 690 unsigned int xh_len; 691 int xh_flags; 692 693 if (!XBZRLE.decoded_buf) { 694 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 695 } 696 697 /* extract RLE header */ 698 xh_flags = qemu_get_byte(f); 699 xh_len = qemu_get_be16(f); 700 701 if (xh_flags != ENCODING_FLAG_XBZRLE) { 702 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 703 return -1; 704 } 705 706 if (xh_len > TARGET_PAGE_SIZE) { 707 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 708 return -1; 709 } 710 /* load data and decode */ 711 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 712 713 /* decode RLE */ 714 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 715 TARGET_PAGE_SIZE); 716 if (ret == -1) { 717 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 718 rc = -1; 719 } else if (ret > TARGET_PAGE_SIZE) { 720 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 721 ret, TARGET_PAGE_SIZE); 722 abort(); 723 } 724 725 return rc; 726 } 727 728 static inline void *host_from_stream_offset(QEMUFile *f, 729 ram_addr_t offset, 730 int flags) 731 { 732 static RAMBlock *block = NULL; 733 char id[256]; 734 uint8_t len; 735 736 if (flags & RAM_SAVE_FLAG_CONTINUE) { 737 if (!block) { 738 fprintf(stderr, "Ack, bad migration stream!\n"); 739 return NULL; 740 } 741 742 return memory_region_get_ram_ptr(block->mr) + offset; 743 } 744 745 len = qemu_get_byte(f); 746 qemu_get_buffer(f, (uint8_t *)id, len); 747 id[len] = 0; 748 749 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 750 if (!strncmp(id, block->idstr, sizeof(id))) 751 return memory_region_get_ram_ptr(block->mr) + offset; 752 } 753 754 fprintf(stderr, "Can't find block %s!\n", id); 755 return NULL; 756 } 757 758 static int ram_load(QEMUFile *f, void *opaque, int version_id) 759 { 760 ram_addr_t addr; 761 int flags, ret = 0; 762 int error; 763 static uint64_t seq_iter; 764 765 seq_iter++; 766 767 if (version_id < 4 || version_id > 4) { 768 return -EINVAL; 769 } 770 771 do { 772 addr = qemu_get_be64(f); 773 774 flags = addr & ~TARGET_PAGE_MASK; 775 addr &= TARGET_PAGE_MASK; 776 777 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 778 if (version_id == 4) { 779 /* Synchronize RAM block list */ 780 char id[256]; 781 ram_addr_t length; 782 ram_addr_t total_ram_bytes = addr; 783 784 while (total_ram_bytes) { 785 RAMBlock *block; 786 uint8_t len; 787 788 len = qemu_get_byte(f); 789 qemu_get_buffer(f, (uint8_t *)id, len); 790 id[len] = 0; 791 length = qemu_get_be64(f); 792 793 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 794 if (!strncmp(id, block->idstr, sizeof(id))) { 795 if (block->length != length) { 796 ret = -EINVAL; 797 goto done; 798 } 799 break; 800 } 801 } 802 803 if (!block) { 804 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 805 "accept migration\n", id); 806 ret = -EINVAL; 807 goto done; 808 } 809 810 total_ram_bytes -= length; 811 } 812 } 813 } 814 815 if (flags & RAM_SAVE_FLAG_COMPRESS) { 816 void *host; 817 uint8_t ch; 818 819 host = host_from_stream_offset(f, addr, flags); 820 if (!host) { 821 return -EINVAL; 822 } 823 824 ch = qemu_get_byte(f); 825 memset(host, ch, TARGET_PAGE_SIZE); 826 #ifndef _WIN32 827 if (ch == 0 && 828 (!kvm_enabled() || kvm_has_sync_mmu()) && 829 getpagesize() <= TARGET_PAGE_SIZE) { 830 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 831 } 832 #endif 833 } else if (flags & RAM_SAVE_FLAG_PAGE) { 834 void *host; 835 836 host = host_from_stream_offset(f, addr, flags); 837 if (!host) { 838 return -EINVAL; 839 } 840 841 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 842 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 843 if (!migrate_use_xbzrle()) { 844 return -EINVAL; 845 } 846 void *host = host_from_stream_offset(f, addr, flags); 847 if (!host) { 848 return -EINVAL; 849 } 850 851 if (load_xbzrle(f, addr, host) < 0) { 852 ret = -EINVAL; 853 goto done; 854 } 855 } 856 error = qemu_file_get_error(f); 857 if (error) { 858 ret = error; 859 goto done; 860 } 861 } while (!(flags & RAM_SAVE_FLAG_EOS)); 862 863 done: 864 DPRINTF("Completed load of VM with exit code %d seq iteration " 865 "%" PRIu64 "\n", ret, seq_iter); 866 return ret; 867 } 868 869 SaveVMHandlers savevm_ram_handlers = { 870 .save_live_setup = ram_save_setup, 871 .save_live_iterate = ram_save_iterate, 872 .save_live_complete = ram_save_complete, 873 .save_live_pending = ram_save_pending, 874 .load_state = ram_load, 875 .cancel = ram_migration_cancel, 876 }; 877 878 #ifdef HAS_AUDIO 879 struct soundhw { 880 const char *name; 881 const char *descr; 882 int enabled; 883 int isa; 884 union { 885 int (*init_isa) (ISABus *bus); 886 int (*init_pci) (PCIBus *bus); 887 } init; 888 }; 889 890 static struct soundhw soundhw[] = { 891 #ifdef HAS_AUDIO_CHOICE 892 #ifdef CONFIG_PCSPK 893 { 894 "pcspk", 895 "PC speaker", 896 0, 897 1, 898 { .init_isa = pcspk_audio_init } 899 }, 900 #endif 901 902 #ifdef CONFIG_SB16 903 { 904 "sb16", 905 "Creative Sound Blaster 16", 906 0, 907 1, 908 { .init_isa = SB16_init } 909 }, 910 #endif 911 912 #ifdef CONFIG_CS4231A 913 { 914 "cs4231a", 915 "CS4231A", 916 0, 917 1, 918 { .init_isa = cs4231a_init } 919 }, 920 #endif 921 922 #ifdef CONFIG_ADLIB 923 { 924 "adlib", 925 #ifdef HAS_YMF262 926 "Yamaha YMF262 (OPL3)", 927 #else 928 "Yamaha YM3812 (OPL2)", 929 #endif 930 0, 931 1, 932 { .init_isa = Adlib_init } 933 }, 934 #endif 935 936 #ifdef CONFIG_GUS 937 { 938 "gus", 939 "Gravis Ultrasound GF1", 940 0, 941 1, 942 { .init_isa = GUS_init } 943 }, 944 #endif 945 946 #ifdef CONFIG_AC97 947 { 948 "ac97", 949 "Intel 82801AA AC97 Audio", 950 0, 951 0, 952 { .init_pci = ac97_init } 953 }, 954 #endif 955 956 #ifdef CONFIG_ES1370 957 { 958 "es1370", 959 "ENSONIQ AudioPCI ES1370", 960 0, 961 0, 962 { .init_pci = es1370_init } 963 }, 964 #endif 965 966 #ifdef CONFIG_HDA 967 { 968 "hda", 969 "Intel HD Audio", 970 0, 971 0, 972 { .init_pci = intel_hda_and_codec_init } 973 }, 974 #endif 975 976 #endif /* HAS_AUDIO_CHOICE */ 977 978 { NULL, NULL, 0, 0, { NULL } } 979 }; 980 981 void select_soundhw(const char *optarg) 982 { 983 struct soundhw *c; 984 985 if (is_help_option(optarg)) { 986 show_valid_cards: 987 988 #ifdef HAS_AUDIO_CHOICE 989 printf("Valid sound card names (comma separated):\n"); 990 for (c = soundhw; c->name; ++c) { 991 printf ("%-11s %s\n", c->name, c->descr); 992 } 993 printf("\n-soundhw all will enable all of the above\n"); 994 #else 995 printf("Machine has no user-selectable audio hardware " 996 "(it may or may not have always-present audio hardware).\n"); 997 #endif 998 exit(!is_help_option(optarg)); 999 } 1000 else { 1001 size_t l; 1002 const char *p; 1003 char *e; 1004 int bad_card = 0; 1005 1006 if (!strcmp(optarg, "all")) { 1007 for (c = soundhw; c->name; ++c) { 1008 c->enabled = 1; 1009 } 1010 return; 1011 } 1012 1013 p = optarg; 1014 while (*p) { 1015 e = strchr(p, ','); 1016 l = !e ? strlen(p) : (size_t) (e - p); 1017 1018 for (c = soundhw; c->name; ++c) { 1019 if (!strncmp(c->name, p, l) && !c->name[l]) { 1020 c->enabled = 1; 1021 break; 1022 } 1023 } 1024 1025 if (!c->name) { 1026 if (l > 80) { 1027 fprintf(stderr, 1028 "Unknown sound card name (too big to show)\n"); 1029 } 1030 else { 1031 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1032 (int) l, p); 1033 } 1034 bad_card = 1; 1035 } 1036 p += l + (e != NULL); 1037 } 1038 1039 if (bad_card) { 1040 goto show_valid_cards; 1041 } 1042 } 1043 } 1044 1045 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1046 { 1047 struct soundhw *c; 1048 1049 for (c = soundhw; c->name; ++c) { 1050 if (c->enabled) { 1051 if (c->isa) { 1052 if (isa_bus) { 1053 c->init.init_isa(isa_bus); 1054 } 1055 } else { 1056 if (pci_bus) { 1057 c->init.init_pci(pci_bus); 1058 } 1059 } 1060 } 1061 } 1062 } 1063 #else 1064 void select_soundhw(const char *optarg) 1065 { 1066 } 1067 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1068 { 1069 } 1070 #endif 1071 1072 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1073 { 1074 int ret; 1075 1076 if (strlen(str) != 36) { 1077 return -1; 1078 } 1079 1080 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1081 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1082 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1083 &uuid[15]); 1084 1085 if (ret != 16) { 1086 return -1; 1087 } 1088 #ifdef TARGET_I386 1089 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1090 #endif 1091 return 0; 1092 } 1093 1094 void do_acpitable_option(const char *optarg) 1095 { 1096 #ifdef TARGET_I386 1097 if (acpi_table_add(optarg) < 0) { 1098 fprintf(stderr, "Wrong acpi table provided\n"); 1099 exit(1); 1100 } 1101 #endif 1102 } 1103 1104 void do_smbios_option(const char *optarg) 1105 { 1106 #ifdef TARGET_I386 1107 if (smbios_entry_add(optarg) < 0) { 1108 fprintf(stderr, "Wrong smbios provided\n"); 1109 exit(1); 1110 } 1111 #endif 1112 } 1113 1114 void cpudef_init(void) 1115 { 1116 #if defined(cpudef_setup) 1117 cpudef_setup(); /* parse cpu definitions in target config file */ 1118 #endif 1119 } 1120 1121 int audio_available(void) 1122 { 1123 #ifdef HAS_AUDIO 1124 return 1; 1125 #else 1126 return 0; 1127 #endif 1128 } 1129 1130 int tcg_available(void) 1131 { 1132 return 1; 1133 } 1134 1135 int kvm_available(void) 1136 { 1137 #ifdef CONFIG_KVM 1138 return 1; 1139 #else 1140 return 0; 1141 #endif 1142 } 1143 1144 int xen_available(void) 1145 { 1146 #ifdef CONFIG_XEN 1147 return 1; 1148 #else 1149 return 0; 1150 #endif 1151 } 1152 1153 1154 TargetInfo *qmp_query_target(Error **errp) 1155 { 1156 TargetInfo *info = g_malloc0(sizeof(*info)); 1157 1158 info->arch = TARGET_TYPE; 1159 1160 return info; 1161 } 1162