1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #include <zlib.h> 28 #ifndef _WIN32 29 #include <sys/types.h> 30 #include <sys/mman.h> 31 #endif 32 #include "config.h" 33 #include "monitor/monitor.h" 34 #include "sysemu/sysemu.h" 35 #include "qemu/bitops.h" 36 #include "qemu/bitmap.h" 37 #include "sysemu/arch_init.h" 38 #include "audio/audio.h" 39 #include "hw/i386/pc.h" 40 #include "hw/pci/pci.h" 41 #include "hw/audio/audio.h" 42 #include "sysemu/kvm.h" 43 #include "migration/migration.h" 44 #include "hw/i386/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/audio/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qemu/error-report.h" 50 #include "qmp-commands.h" 51 #include "trace.h" 52 #include "exec/cpu-all.h" 53 #include "exec/ram_addr.h" 54 #include "hw/acpi/acpi.h" 55 #include "qemu/host-utils.h" 56 #include "qemu/rcu_queue.h" 57 58 #ifdef DEBUG_ARCH_INIT 59 #define DPRINTF(fmt, ...) \ 60 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 61 #else 62 #define DPRINTF(fmt, ...) \ 63 do { } while (0) 64 #endif 65 66 #ifdef TARGET_SPARC 67 int graphic_width = 1024; 68 int graphic_height = 768; 69 int graphic_depth = 8; 70 #else 71 int graphic_width = 800; 72 int graphic_height = 600; 73 int graphic_depth = 32; 74 #endif 75 76 77 #if defined(TARGET_ALPHA) 78 #define QEMU_ARCH QEMU_ARCH_ALPHA 79 #elif defined(TARGET_ARM) 80 #define QEMU_ARCH QEMU_ARCH_ARM 81 #elif defined(TARGET_CRIS) 82 #define QEMU_ARCH QEMU_ARCH_CRIS 83 #elif defined(TARGET_I386) 84 #define QEMU_ARCH QEMU_ARCH_I386 85 #elif defined(TARGET_M68K) 86 #define QEMU_ARCH QEMU_ARCH_M68K 87 #elif defined(TARGET_LM32) 88 #define QEMU_ARCH QEMU_ARCH_LM32 89 #elif defined(TARGET_MICROBLAZE) 90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 91 #elif defined(TARGET_MIPS) 92 #define QEMU_ARCH QEMU_ARCH_MIPS 93 #elif defined(TARGET_MOXIE) 94 #define QEMU_ARCH QEMU_ARCH_MOXIE 95 #elif defined(TARGET_OPENRISC) 96 #define QEMU_ARCH QEMU_ARCH_OPENRISC 97 #elif defined(TARGET_PPC) 98 #define QEMU_ARCH QEMU_ARCH_PPC 99 #elif defined(TARGET_S390X) 100 #define QEMU_ARCH QEMU_ARCH_S390X 101 #elif defined(TARGET_SH4) 102 #define QEMU_ARCH QEMU_ARCH_SH4 103 #elif defined(TARGET_SPARC) 104 #define QEMU_ARCH QEMU_ARCH_SPARC 105 #elif defined(TARGET_XTENSA) 106 #define QEMU_ARCH QEMU_ARCH_XTENSA 107 #elif defined(TARGET_UNICORE32) 108 #define QEMU_ARCH QEMU_ARCH_UNICORE32 109 #elif defined(TARGET_TRICORE) 110 #define QEMU_ARCH QEMU_ARCH_TRICORE 111 #endif 112 113 const uint32_t arch_type = QEMU_ARCH; 114 static bool mig_throttle_on; 115 static int dirty_rate_high_cnt; 116 static void check_guest_throttling(void); 117 118 static uint64_t bitmap_sync_count; 119 120 /***********************************************************/ 121 /* ram save/restore */ 122 123 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 124 #define RAM_SAVE_FLAG_COMPRESS 0x02 125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 126 #define RAM_SAVE_FLAG_PAGE 0x08 127 #define RAM_SAVE_FLAG_EOS 0x10 128 #define RAM_SAVE_FLAG_CONTINUE 0x20 129 #define RAM_SAVE_FLAG_XBZRLE 0x40 130 /* 0x80 is reserved in migration.h start with 0x100 next */ 131 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 132 133 static struct defconfig_file { 134 const char *filename; 135 /* Indicates it is an user config file (disabled by -no-user-config) */ 136 bool userconfig; 137 } default_config_files[] = { 138 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 139 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true }, 140 { NULL }, /* end of list */ 141 }; 142 143 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; 144 145 int qemu_read_default_config_files(bool userconfig) 146 { 147 int ret; 148 struct defconfig_file *f; 149 150 for (f = default_config_files; f->filename; f++) { 151 if (!userconfig && f->userconfig) { 152 continue; 153 } 154 ret = qemu_read_config_file(f->filename); 155 if (ret < 0 && ret != -ENOENT) { 156 return ret; 157 } 158 } 159 160 return 0; 161 } 162 163 static inline bool is_zero_range(uint8_t *p, uint64_t size) 164 { 165 return buffer_find_nonzero_offset(p, size) == size; 166 } 167 168 /* struct contains XBZRLE cache and a static page 169 used by the compression */ 170 static struct { 171 /* buffer used for XBZRLE encoding */ 172 uint8_t *encoded_buf; 173 /* buffer for storing page content */ 174 uint8_t *current_buf; 175 /* Cache for XBZRLE, Protected by lock. */ 176 PageCache *cache; 177 QemuMutex lock; 178 } XBZRLE; 179 180 /* buffer used for XBZRLE decoding */ 181 static uint8_t *xbzrle_decoded_buf; 182 183 static void XBZRLE_cache_lock(void) 184 { 185 if (migrate_use_xbzrle()) 186 qemu_mutex_lock(&XBZRLE.lock); 187 } 188 189 static void XBZRLE_cache_unlock(void) 190 { 191 if (migrate_use_xbzrle()) 192 qemu_mutex_unlock(&XBZRLE.lock); 193 } 194 195 /* 196 * called from qmp_migrate_set_cache_size in main thread, possibly while 197 * a migration is in progress. 198 * A running migration maybe using the cache and might finish during this 199 * call, hence changes to the cache are protected by XBZRLE.lock(). 200 */ 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 PageCache *new_cache; 204 int64_t ret; 205 206 if (new_size < TARGET_PAGE_SIZE) { 207 return -1; 208 } 209 210 XBZRLE_cache_lock(); 211 212 if (XBZRLE.cache != NULL) { 213 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 214 goto out_new_size; 215 } 216 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 217 TARGET_PAGE_SIZE); 218 if (!new_cache) { 219 error_report("Error creating cache"); 220 ret = -1; 221 goto out; 222 } 223 224 cache_fini(XBZRLE.cache); 225 XBZRLE.cache = new_cache; 226 } 227 228 out_new_size: 229 ret = pow2floor(new_size); 230 out: 231 XBZRLE_cache_unlock(); 232 return ret; 233 } 234 235 /* accounting for migration statistics */ 236 typedef struct AccountingInfo { 237 uint64_t dup_pages; 238 uint64_t skipped_pages; 239 uint64_t norm_pages; 240 uint64_t iterations; 241 uint64_t xbzrle_bytes; 242 uint64_t xbzrle_pages; 243 uint64_t xbzrle_cache_miss; 244 double xbzrle_cache_miss_rate; 245 uint64_t xbzrle_overflows; 246 } AccountingInfo; 247 248 static AccountingInfo acct_info; 249 250 static void acct_clear(void) 251 { 252 memset(&acct_info, 0, sizeof(acct_info)); 253 } 254 255 uint64_t dup_mig_bytes_transferred(void) 256 { 257 return acct_info.dup_pages * TARGET_PAGE_SIZE; 258 } 259 260 uint64_t dup_mig_pages_transferred(void) 261 { 262 return acct_info.dup_pages; 263 } 264 265 uint64_t skipped_mig_bytes_transferred(void) 266 { 267 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 268 } 269 270 uint64_t skipped_mig_pages_transferred(void) 271 { 272 return acct_info.skipped_pages; 273 } 274 275 uint64_t norm_mig_bytes_transferred(void) 276 { 277 return acct_info.norm_pages * TARGET_PAGE_SIZE; 278 } 279 280 uint64_t norm_mig_pages_transferred(void) 281 { 282 return acct_info.norm_pages; 283 } 284 285 uint64_t xbzrle_mig_bytes_transferred(void) 286 { 287 return acct_info.xbzrle_bytes; 288 } 289 290 uint64_t xbzrle_mig_pages_transferred(void) 291 { 292 return acct_info.xbzrle_pages; 293 } 294 295 uint64_t xbzrle_mig_pages_cache_miss(void) 296 { 297 return acct_info.xbzrle_cache_miss; 298 } 299 300 double xbzrle_mig_cache_miss_rate(void) 301 { 302 return acct_info.xbzrle_cache_miss_rate; 303 } 304 305 uint64_t xbzrle_mig_pages_overflow(void) 306 { 307 return acct_info.xbzrle_overflows; 308 } 309 310 /* This is the last block that we have visited serching for dirty pages 311 */ 312 static RAMBlock *last_seen_block; 313 /* This is the last block from where we have sent data */ 314 static RAMBlock *last_sent_block; 315 static ram_addr_t last_offset; 316 static unsigned long *migration_bitmap; 317 static uint64_t migration_dirty_pages; 318 static uint32_t last_version; 319 static bool ram_bulk_stage; 320 321 struct CompressParam { 322 bool start; 323 bool done; 324 QEMUFile *file; 325 QemuMutex mutex; 326 QemuCond cond; 327 RAMBlock *block; 328 ram_addr_t offset; 329 }; 330 typedef struct CompressParam CompressParam; 331 332 struct DecompressParam { 333 /* To be done */ 334 }; 335 typedef struct DecompressParam DecompressParam; 336 337 static CompressParam *comp_param; 338 static QemuThread *compress_threads; 339 /* comp_done_cond is used to wake up the migration thread when 340 * one of the compression threads has finished the compression. 341 * comp_done_lock is used to co-work with comp_done_cond. 342 */ 343 static QemuMutex *comp_done_lock; 344 static QemuCond *comp_done_cond; 345 /* The empty QEMUFileOps will be used by file in CompressParam */ 346 static const QEMUFileOps empty_ops = { }; 347 static bool quit_comp_thread; 348 static bool quit_decomp_thread; 349 static DecompressParam *decomp_param; 350 static QemuThread *decompress_threads; 351 static uint8_t *compressed_data_buf; 352 353 static void *do_data_compress(void *opaque) 354 { 355 while (!quit_comp_thread) { 356 357 /* To be done */ 358 359 } 360 361 return NULL; 362 } 363 364 static inline void terminate_compression_threads(void) 365 { 366 quit_comp_thread = true; 367 368 /* To be done */ 369 } 370 371 void migrate_compress_threads_join(void) 372 { 373 int i, thread_count; 374 375 if (!migrate_use_compression()) { 376 return; 377 } 378 terminate_compression_threads(); 379 thread_count = migrate_compress_threads(); 380 for (i = 0; i < thread_count; i++) { 381 qemu_thread_join(compress_threads + i); 382 qemu_fclose(comp_param[i].file); 383 qemu_mutex_destroy(&comp_param[i].mutex); 384 qemu_cond_destroy(&comp_param[i].cond); 385 } 386 qemu_mutex_destroy(comp_done_lock); 387 qemu_cond_destroy(comp_done_cond); 388 g_free(compress_threads); 389 g_free(comp_param); 390 g_free(comp_done_cond); 391 g_free(comp_done_lock); 392 compress_threads = NULL; 393 comp_param = NULL; 394 comp_done_cond = NULL; 395 comp_done_lock = NULL; 396 } 397 398 void migrate_compress_threads_create(void) 399 { 400 int i, thread_count; 401 402 if (!migrate_use_compression()) { 403 return; 404 } 405 quit_comp_thread = false; 406 thread_count = migrate_compress_threads(); 407 compress_threads = g_new0(QemuThread, thread_count); 408 comp_param = g_new0(CompressParam, thread_count); 409 comp_done_cond = g_new0(QemuCond, 1); 410 comp_done_lock = g_new0(QemuMutex, 1); 411 qemu_cond_init(comp_done_cond); 412 qemu_mutex_init(comp_done_lock); 413 for (i = 0; i < thread_count; i++) { 414 /* com_param[i].file is just used as a dummy buffer to save data, set 415 * it's ops to empty. 416 */ 417 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 418 qemu_mutex_init(&comp_param[i].mutex); 419 qemu_cond_init(&comp_param[i].cond); 420 qemu_thread_create(compress_threads + i, "compress", 421 do_data_compress, comp_param + i, 422 QEMU_THREAD_JOINABLE); 423 } 424 } 425 426 /** 427 * save_page_header: Write page header to wire 428 * 429 * If this is the 1st block, it also writes the block identification 430 * 431 * Returns: Number of bytes written 432 * 433 * @f: QEMUFile where to send the data 434 * @block: block that contains the page we want to send 435 * @offset: offset inside the block for the page 436 * in the lower bits, it contains flags 437 */ 438 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) 439 { 440 size_t size; 441 442 qemu_put_be64(f, offset); 443 size = 8; 444 445 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 446 qemu_put_byte(f, strlen(block->idstr)); 447 qemu_put_buffer(f, (uint8_t *)block->idstr, 448 strlen(block->idstr)); 449 size += 1 + strlen(block->idstr); 450 } 451 return size; 452 } 453 454 /* Update the xbzrle cache to reflect a page that's been sent as all 0. 455 * The important thing is that a stale (not-yet-0'd) page be replaced 456 * by the new data. 457 * As a bonus, if the page wasn't in the cache it gets added so that 458 * when a small write is made into the 0'd page it gets XBZRLE sent 459 */ 460 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 461 { 462 if (ram_bulk_stage || !migrate_use_xbzrle()) { 463 return; 464 } 465 466 /* We don't care if this fails to allocate a new cache page 467 * as long as it updated an old one */ 468 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, 469 bitmap_sync_count); 470 } 471 472 #define ENCODING_FLAG_XBZRLE 0x1 473 474 /** 475 * save_xbzrle_page: compress and send current page 476 * 477 * Returns: 1 means that we wrote the page 478 * 0 means that page is identical to the one already sent 479 * -1 means that xbzrle would be longer than normal 480 * 481 * @f: QEMUFile where to send the data 482 * @current_data: 483 * @current_addr: 484 * @block: block that contains the page we want to send 485 * @offset: offset inside the block for the page 486 * @last_stage: if we are at the completion stage 487 * @bytes_transferred: increase it with the number of transferred bytes 488 */ 489 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, 490 ram_addr_t current_addr, RAMBlock *block, 491 ram_addr_t offset, bool last_stage, 492 uint64_t *bytes_transferred) 493 { 494 int encoded_len = 0, bytes_xbzrle; 495 uint8_t *prev_cached_page; 496 497 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { 498 acct_info.xbzrle_cache_miss++; 499 if (!last_stage) { 500 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 501 bitmap_sync_count) == -1) { 502 return -1; 503 } else { 504 /* update *current_data when the page has been 505 inserted into cache */ 506 *current_data = get_cached_data(XBZRLE.cache, current_addr); 507 } 508 } 509 return -1; 510 } 511 512 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 513 514 /* save current buffer into memory */ 515 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 516 517 /* XBZRLE encoding (if there is no overflow) */ 518 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 519 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 520 TARGET_PAGE_SIZE); 521 if (encoded_len == 0) { 522 DPRINTF("Skipping unmodified page\n"); 523 return 0; 524 } else if (encoded_len == -1) { 525 DPRINTF("Overflow\n"); 526 acct_info.xbzrle_overflows++; 527 /* update data in the cache */ 528 if (!last_stage) { 529 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 530 *current_data = prev_cached_page; 531 } 532 return -1; 533 } 534 535 /* we need to update the data in the cache, in order to get the same data */ 536 if (!last_stage) { 537 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 538 } 539 540 /* Send XBZRLE based compressed page */ 541 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); 542 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 543 qemu_put_be16(f, encoded_len); 544 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 545 bytes_xbzrle += encoded_len + 1 + 2; 546 acct_info.xbzrle_pages++; 547 acct_info.xbzrle_bytes += bytes_xbzrle; 548 *bytes_transferred += bytes_xbzrle; 549 550 return 1; 551 } 552 553 static inline 554 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 555 ram_addr_t start) 556 { 557 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 558 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 559 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr)); 560 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS); 561 562 unsigned long next; 563 564 if (ram_bulk_stage && nr > base) { 565 next = nr + 1; 566 } else { 567 next = find_next_bit(migration_bitmap, size, nr); 568 } 569 570 if (next < size) { 571 clear_bit(next, migration_bitmap); 572 migration_dirty_pages--; 573 } 574 return (next - base) << TARGET_PAGE_BITS; 575 } 576 577 static inline bool migration_bitmap_set_dirty(ram_addr_t addr) 578 { 579 bool ret; 580 int nr = addr >> TARGET_PAGE_BITS; 581 582 ret = test_and_set_bit(nr, migration_bitmap); 583 584 if (!ret) { 585 migration_dirty_pages++; 586 } 587 return ret; 588 } 589 590 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) 591 { 592 ram_addr_t addr; 593 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); 594 595 /* start address is aligned at the start of a word? */ 596 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { 597 int k; 598 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); 599 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]; 600 601 for (k = page; k < page + nr; k++) { 602 if (src[k]) { 603 unsigned long new_dirty; 604 new_dirty = ~migration_bitmap[k]; 605 migration_bitmap[k] |= src[k]; 606 new_dirty &= src[k]; 607 migration_dirty_pages += ctpopl(new_dirty); 608 src[k] = 0; 609 } 610 } 611 } else { 612 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { 613 if (cpu_physical_memory_get_dirty(start + addr, 614 TARGET_PAGE_SIZE, 615 DIRTY_MEMORY_MIGRATION)) { 616 cpu_physical_memory_reset_dirty(start + addr, 617 TARGET_PAGE_SIZE, 618 DIRTY_MEMORY_MIGRATION); 619 migration_bitmap_set_dirty(start + addr); 620 } 621 } 622 } 623 } 624 625 626 /* Fix me: there are too many global variables used in migration process. */ 627 static int64_t start_time; 628 static int64_t bytes_xfer_prev; 629 static int64_t num_dirty_pages_period; 630 631 static void migration_bitmap_sync_init(void) 632 { 633 start_time = 0; 634 bytes_xfer_prev = 0; 635 num_dirty_pages_period = 0; 636 } 637 638 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */ 639 static void migration_bitmap_sync(void) 640 { 641 RAMBlock *block; 642 uint64_t num_dirty_pages_init = migration_dirty_pages; 643 MigrationState *s = migrate_get_current(); 644 int64_t end_time; 645 int64_t bytes_xfer_now; 646 static uint64_t xbzrle_cache_miss_prev; 647 static uint64_t iterations_prev; 648 649 bitmap_sync_count++; 650 651 if (!bytes_xfer_prev) { 652 bytes_xfer_prev = ram_bytes_transferred(); 653 } 654 655 if (!start_time) { 656 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 657 } 658 659 trace_migration_bitmap_sync_start(); 660 address_space_sync_dirty_bitmap(&address_space_memory); 661 662 rcu_read_lock(); 663 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 664 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length); 665 } 666 rcu_read_unlock(); 667 668 trace_migration_bitmap_sync_end(migration_dirty_pages 669 - num_dirty_pages_init); 670 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 671 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 672 673 /* more than 1 second = 1000 millisecons */ 674 if (end_time > start_time + 1000) { 675 if (migrate_auto_converge()) { 676 /* The following detection logic can be refined later. For now: 677 Check to see if the dirtied bytes is 50% more than the approx. 678 amount of bytes that just got transferred since the last time we 679 were in this routine. If that happens >N times (for now N==4) 680 we turn on the throttle down logic */ 681 bytes_xfer_now = ram_bytes_transferred(); 682 if (s->dirty_pages_rate && 683 (num_dirty_pages_period * TARGET_PAGE_SIZE > 684 (bytes_xfer_now - bytes_xfer_prev)/2) && 685 (dirty_rate_high_cnt++ > 4)) { 686 trace_migration_throttle(); 687 mig_throttle_on = true; 688 dirty_rate_high_cnt = 0; 689 } 690 bytes_xfer_prev = bytes_xfer_now; 691 } else { 692 mig_throttle_on = false; 693 } 694 if (migrate_use_xbzrle()) { 695 if (iterations_prev != 0) { 696 acct_info.xbzrle_cache_miss_rate = 697 (double)(acct_info.xbzrle_cache_miss - 698 xbzrle_cache_miss_prev) / 699 (acct_info.iterations - iterations_prev); 700 } 701 iterations_prev = acct_info.iterations; 702 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; 703 } 704 s->dirty_pages_rate = num_dirty_pages_period * 1000 705 / (end_time - start_time); 706 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 707 start_time = end_time; 708 num_dirty_pages_period = 0; 709 s->dirty_sync_count = bitmap_sync_count; 710 } 711 } 712 713 /** 714 * ram_save_page: Send the given page to the stream 715 * 716 * Returns: Number of pages written. 717 * 718 * @f: QEMUFile where to send the data 719 * @block: block that contains the page we want to send 720 * @offset: offset inside the block for the page 721 * @last_stage: if we are at the completion stage 722 * @bytes_transferred: increase it with the number of transferred bytes 723 */ 724 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset, 725 bool last_stage, uint64_t *bytes_transferred) 726 { 727 int pages = -1; 728 uint64_t bytes_xmit; 729 ram_addr_t current_addr; 730 MemoryRegion *mr = block->mr; 731 uint8_t *p; 732 int ret; 733 bool send_async = true; 734 735 p = memory_region_get_ram_ptr(mr) + offset; 736 737 /* In doubt sent page as normal */ 738 bytes_xmit = 0; 739 ret = ram_control_save_page(f, block->offset, 740 offset, TARGET_PAGE_SIZE, &bytes_xmit); 741 if (bytes_xmit) { 742 *bytes_transferred += bytes_xmit; 743 pages = 1; 744 } 745 746 XBZRLE_cache_lock(); 747 748 current_addr = block->offset + offset; 749 750 if (block == last_sent_block) { 751 offset |= RAM_SAVE_FLAG_CONTINUE; 752 } 753 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 754 if (ret != RAM_SAVE_CONTROL_DELAYED) { 755 if (bytes_xmit > 0) { 756 acct_info.norm_pages++; 757 } else if (bytes_xmit == 0) { 758 acct_info.dup_pages++; 759 } 760 } 761 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) { 762 acct_info.dup_pages++; 763 *bytes_transferred += save_page_header(f, block, 764 offset | RAM_SAVE_FLAG_COMPRESS); 765 qemu_put_byte(f, 0); 766 *bytes_transferred += 1; 767 pages = 1; 768 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 769 * page would be stale 770 */ 771 xbzrle_cache_zero_page(current_addr); 772 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 773 pages = save_xbzrle_page(f, &p, current_addr, block, 774 offset, last_stage, bytes_transferred); 775 if (!last_stage) { 776 /* Can't send this cached data async, since the cache page 777 * might get updated before it gets to the wire 778 */ 779 send_async = false; 780 } 781 } 782 783 /* XBZRLE overflow or normal page */ 784 if (pages == -1) { 785 *bytes_transferred += save_page_header(f, block, 786 offset | RAM_SAVE_FLAG_PAGE); 787 if (send_async) { 788 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 789 } else { 790 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 791 } 792 *bytes_transferred += TARGET_PAGE_SIZE; 793 pages = 1; 794 acct_info.norm_pages++; 795 } 796 797 XBZRLE_cache_unlock(); 798 799 return pages; 800 } 801 802 /** 803 * ram_save_compressed_page: compress the given page and send it to the stream 804 * 805 * Returns: Number of pages written. 806 * 807 * @f: QEMUFile where to send the data 808 * @block: block that contains the page we want to send 809 * @offset: offset inside the block for the page 810 * @last_stage: if we are at the completion stage 811 * @bytes_transferred: increase it with the number of transferred bytes 812 */ 813 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block, 814 ram_addr_t offset, bool last_stage, 815 uint64_t *bytes_transferred) 816 { 817 int pages = -1; 818 819 /* To be done*/ 820 821 return pages; 822 } 823 824 /** 825 * ram_find_and_save_block: Finds a dirty page and sends it to f 826 * 827 * Called within an RCU critical section. 828 * 829 * Returns: The number of pages written 830 * 0 means no dirty pages 831 * 832 * @f: QEMUFile where to send the data 833 * @last_stage: if we are at the completion stage 834 * @bytes_transferred: increase it with the number of transferred bytes 835 */ 836 837 static int ram_find_and_save_block(QEMUFile *f, bool last_stage, 838 uint64_t *bytes_transferred) 839 { 840 RAMBlock *block = last_seen_block; 841 ram_addr_t offset = last_offset; 842 bool complete_round = false; 843 int pages = 0; 844 MemoryRegion *mr; 845 846 if (!block) 847 block = QLIST_FIRST_RCU(&ram_list.blocks); 848 849 while (true) { 850 mr = block->mr; 851 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 852 if (complete_round && block == last_seen_block && 853 offset >= last_offset) { 854 break; 855 } 856 if (offset >= block->used_length) { 857 offset = 0; 858 block = QLIST_NEXT_RCU(block, next); 859 if (!block) { 860 block = QLIST_FIRST_RCU(&ram_list.blocks); 861 complete_round = true; 862 ram_bulk_stage = false; 863 } 864 } else { 865 if (migrate_use_compression()) { 866 pages = ram_save_compressed_page(f, block, offset, last_stage, 867 bytes_transferred); 868 } else { 869 pages = ram_save_page(f, block, offset, last_stage, 870 bytes_transferred); 871 } 872 873 /* if page is unmodified, continue to the next */ 874 if (pages > 0) { 875 last_sent_block = block; 876 break; 877 } 878 } 879 } 880 881 last_seen_block = block; 882 last_offset = offset; 883 884 return pages; 885 } 886 887 static uint64_t bytes_transferred; 888 889 void acct_update_position(QEMUFile *f, size_t size, bool zero) 890 { 891 uint64_t pages = size / TARGET_PAGE_SIZE; 892 if (zero) { 893 acct_info.dup_pages += pages; 894 } else { 895 acct_info.norm_pages += pages; 896 bytes_transferred += size; 897 qemu_update_position(f, size); 898 } 899 } 900 901 static ram_addr_t ram_save_remaining(void) 902 { 903 return migration_dirty_pages; 904 } 905 906 uint64_t ram_bytes_remaining(void) 907 { 908 return ram_save_remaining() * TARGET_PAGE_SIZE; 909 } 910 911 uint64_t ram_bytes_transferred(void) 912 { 913 return bytes_transferred; 914 } 915 916 uint64_t ram_bytes_total(void) 917 { 918 RAMBlock *block; 919 uint64_t total = 0; 920 921 rcu_read_lock(); 922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) 923 total += block->used_length; 924 rcu_read_unlock(); 925 return total; 926 } 927 928 void free_xbzrle_decoded_buf(void) 929 { 930 g_free(xbzrle_decoded_buf); 931 xbzrle_decoded_buf = NULL; 932 } 933 934 static void migration_end(void) 935 { 936 if (migration_bitmap) { 937 memory_global_dirty_log_stop(); 938 g_free(migration_bitmap); 939 migration_bitmap = NULL; 940 } 941 942 XBZRLE_cache_lock(); 943 if (XBZRLE.cache) { 944 cache_fini(XBZRLE.cache); 945 g_free(XBZRLE.encoded_buf); 946 g_free(XBZRLE.current_buf); 947 XBZRLE.cache = NULL; 948 XBZRLE.encoded_buf = NULL; 949 XBZRLE.current_buf = NULL; 950 } 951 XBZRLE_cache_unlock(); 952 } 953 954 static void ram_migration_cancel(void *opaque) 955 { 956 migration_end(); 957 } 958 959 static void reset_ram_globals(void) 960 { 961 last_seen_block = NULL; 962 last_sent_block = NULL; 963 last_offset = 0; 964 last_version = ram_list.version; 965 ram_bulk_stage = true; 966 } 967 968 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 969 970 971 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has 972 * long-running RCU critical section. When rcu-reclaims in the code 973 * start to become numerous it will be necessary to reduce the 974 * granularity of these critical sections. 975 */ 976 977 static int ram_save_setup(QEMUFile *f, void *opaque) 978 { 979 RAMBlock *block; 980 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ 981 982 mig_throttle_on = false; 983 dirty_rate_high_cnt = 0; 984 bitmap_sync_count = 0; 985 migration_bitmap_sync_init(); 986 987 if (migrate_use_xbzrle()) { 988 XBZRLE_cache_lock(); 989 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 990 TARGET_PAGE_SIZE, 991 TARGET_PAGE_SIZE); 992 if (!XBZRLE.cache) { 993 XBZRLE_cache_unlock(); 994 error_report("Error creating cache"); 995 return -1; 996 } 997 XBZRLE_cache_unlock(); 998 999 /* We prefer not to abort if there is no memory */ 1000 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1001 if (!XBZRLE.encoded_buf) { 1002 error_report("Error allocating encoded_buf"); 1003 return -1; 1004 } 1005 1006 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1007 if (!XBZRLE.current_buf) { 1008 error_report("Error allocating current_buf"); 1009 g_free(XBZRLE.encoded_buf); 1010 XBZRLE.encoded_buf = NULL; 1011 return -1; 1012 } 1013 1014 acct_clear(); 1015 } 1016 1017 /* iothread lock needed for ram_list.dirty_memory[] */ 1018 qemu_mutex_lock_iothread(); 1019 qemu_mutex_lock_ramlist(); 1020 rcu_read_lock(); 1021 bytes_transferred = 0; 1022 reset_ram_globals(); 1023 1024 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1025 migration_bitmap = bitmap_new(ram_bitmap_pages); 1026 bitmap_set(migration_bitmap, 0, ram_bitmap_pages); 1027 1028 /* 1029 * Count the total number of pages used by ram blocks not including any 1030 * gaps due to alignment or unplugs. 1031 */ 1032 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1033 1034 memory_global_dirty_log_start(); 1035 migration_bitmap_sync(); 1036 qemu_mutex_unlock_ramlist(); 1037 qemu_mutex_unlock_iothread(); 1038 1039 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1040 1041 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1042 qemu_put_byte(f, strlen(block->idstr)); 1043 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1044 qemu_put_be64(f, block->used_length); 1045 } 1046 1047 rcu_read_unlock(); 1048 1049 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1050 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1051 1052 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1053 1054 return 0; 1055 } 1056 1057 static int ram_save_iterate(QEMUFile *f, void *opaque) 1058 { 1059 int ret; 1060 int i; 1061 int64_t t0; 1062 int pages_sent = 0; 1063 1064 rcu_read_lock(); 1065 if (ram_list.version != last_version) { 1066 reset_ram_globals(); 1067 } 1068 1069 /* Read version before ram_list.blocks */ 1070 smp_rmb(); 1071 1072 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1073 1074 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1075 i = 0; 1076 while ((ret = qemu_file_rate_limit(f)) == 0) { 1077 int pages; 1078 1079 pages = ram_find_and_save_block(f, false, &bytes_transferred); 1080 /* no more pages to sent */ 1081 if (pages == 0) { 1082 break; 1083 } 1084 pages_sent += pages; 1085 acct_info.iterations++; 1086 check_guest_throttling(); 1087 /* we want to check in the 1st loop, just in case it was the 1st time 1088 and we had to sync the dirty bitmap. 1089 qemu_get_clock_ns() is a bit expensive, so we only check each some 1090 iterations 1091 */ 1092 if ((i & 63) == 0) { 1093 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 1094 if (t1 > MAX_WAIT) { 1095 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 1096 t1, i); 1097 break; 1098 } 1099 } 1100 i++; 1101 } 1102 rcu_read_unlock(); 1103 1104 /* 1105 * Must occur before EOS (or any QEMUFile operation) 1106 * because of RDMA protocol. 1107 */ 1108 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 1109 1110 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1111 bytes_transferred += 8; 1112 1113 ret = qemu_file_get_error(f); 1114 if (ret < 0) { 1115 return ret; 1116 } 1117 1118 return pages_sent; 1119 } 1120 1121 /* Called with iothread lock */ 1122 static int ram_save_complete(QEMUFile *f, void *opaque) 1123 { 1124 rcu_read_lock(); 1125 1126 migration_bitmap_sync(); 1127 1128 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 1129 1130 /* try transferring iterative blocks of memory */ 1131 1132 /* flush all remaining blocks regardless of rate limiting */ 1133 while (true) { 1134 int pages; 1135 1136 pages = ram_find_and_save_block(f, true, &bytes_transferred); 1137 /* no more blocks to sent */ 1138 if (pages == 0) { 1139 break; 1140 } 1141 } 1142 1143 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 1144 migration_end(); 1145 1146 rcu_read_unlock(); 1147 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1148 1149 return 0; 1150 } 1151 1152 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 1153 { 1154 uint64_t remaining_size; 1155 1156 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 1157 1158 if (remaining_size < max_size) { 1159 qemu_mutex_lock_iothread(); 1160 rcu_read_lock(); 1161 migration_bitmap_sync(); 1162 rcu_read_unlock(); 1163 qemu_mutex_unlock_iothread(); 1164 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 1165 } 1166 return remaining_size; 1167 } 1168 1169 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 1170 { 1171 unsigned int xh_len; 1172 int xh_flags; 1173 1174 if (!xbzrle_decoded_buf) { 1175 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1176 } 1177 1178 /* extract RLE header */ 1179 xh_flags = qemu_get_byte(f); 1180 xh_len = qemu_get_be16(f); 1181 1182 if (xh_flags != ENCODING_FLAG_XBZRLE) { 1183 error_report("Failed to load XBZRLE page - wrong compression!"); 1184 return -1; 1185 } 1186 1187 if (xh_len > TARGET_PAGE_SIZE) { 1188 error_report("Failed to load XBZRLE page - len overflow!"); 1189 return -1; 1190 } 1191 /* load data and decode */ 1192 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len); 1193 1194 /* decode RLE */ 1195 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host, 1196 TARGET_PAGE_SIZE) == -1) { 1197 error_report("Failed to load XBZRLE page - decode error!"); 1198 return -1; 1199 } 1200 1201 return 0; 1202 } 1203 1204 /* Must be called from within a rcu critical section. 1205 * Returns a pointer from within the RCU-protected ram_list. 1206 */ 1207 static inline void *host_from_stream_offset(QEMUFile *f, 1208 ram_addr_t offset, 1209 int flags) 1210 { 1211 static RAMBlock *block = NULL; 1212 char id[256]; 1213 uint8_t len; 1214 1215 if (flags & RAM_SAVE_FLAG_CONTINUE) { 1216 if (!block || block->max_length <= offset) { 1217 error_report("Ack, bad migration stream!"); 1218 return NULL; 1219 } 1220 1221 return memory_region_get_ram_ptr(block->mr) + offset; 1222 } 1223 1224 len = qemu_get_byte(f); 1225 qemu_get_buffer(f, (uint8_t *)id, len); 1226 id[len] = 0; 1227 1228 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1229 if (!strncmp(id, block->idstr, sizeof(id)) && 1230 block->max_length > offset) { 1231 return memory_region_get_ram_ptr(block->mr) + offset; 1232 } 1233 } 1234 1235 error_report("Can't find block %s!", id); 1236 return NULL; 1237 } 1238 1239 /* 1240 * If a page (or a whole RDMA chunk) has been 1241 * determined to be zero, then zap it. 1242 */ 1243 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 1244 { 1245 if (ch != 0 || !is_zero_range(host, size)) { 1246 memset(host, ch, size); 1247 } 1248 } 1249 1250 static void *do_data_decompress(void *opaque) 1251 { 1252 while (!quit_decomp_thread) { 1253 /* To be done */ 1254 } 1255 1256 return NULL; 1257 } 1258 1259 void migrate_decompress_threads_create(void) 1260 { 1261 int i, thread_count; 1262 1263 thread_count = migrate_decompress_threads(); 1264 decompress_threads = g_new0(QemuThread, thread_count); 1265 decomp_param = g_new0(DecompressParam, thread_count); 1266 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 1267 quit_decomp_thread = false; 1268 for (i = 0; i < thread_count; i++) { 1269 qemu_thread_create(decompress_threads + i, "decompress", 1270 do_data_decompress, decomp_param + i, 1271 QEMU_THREAD_JOINABLE); 1272 } 1273 } 1274 1275 void migrate_decompress_threads_join(void) 1276 { 1277 int i, thread_count; 1278 1279 quit_decomp_thread = true; 1280 thread_count = migrate_decompress_threads(); 1281 for (i = 0; i < thread_count; i++) { 1282 qemu_thread_join(decompress_threads + i); 1283 } 1284 g_free(decompress_threads); 1285 g_free(decomp_param); 1286 g_free(compressed_data_buf); 1287 decompress_threads = NULL; 1288 decomp_param = NULL; 1289 compressed_data_buf = NULL; 1290 } 1291 1292 static void decompress_data_with_multi_threads(uint8_t *compbuf, 1293 void *host, int len) 1294 { 1295 /* To be done */ 1296 } 1297 1298 static int ram_load(QEMUFile *f, void *opaque, int version_id) 1299 { 1300 int flags = 0, ret = 0; 1301 static uint64_t seq_iter; 1302 int len = 0; 1303 1304 seq_iter++; 1305 1306 if (version_id != 4) { 1307 ret = -EINVAL; 1308 } 1309 1310 /* This RCU critical section can be very long running. 1311 * When RCU reclaims in the code start to become numerous, 1312 * it will be necessary to reduce the granularity of this 1313 * critical section. 1314 */ 1315 rcu_read_lock(); 1316 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 1317 ram_addr_t addr, total_ram_bytes; 1318 void *host; 1319 uint8_t ch; 1320 1321 addr = qemu_get_be64(f); 1322 flags = addr & ~TARGET_PAGE_MASK; 1323 addr &= TARGET_PAGE_MASK; 1324 1325 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 1326 case RAM_SAVE_FLAG_MEM_SIZE: 1327 /* Synchronize RAM block list */ 1328 total_ram_bytes = addr; 1329 while (!ret && total_ram_bytes) { 1330 RAMBlock *block; 1331 uint8_t len; 1332 char id[256]; 1333 ram_addr_t length; 1334 1335 len = qemu_get_byte(f); 1336 qemu_get_buffer(f, (uint8_t *)id, len); 1337 id[len] = 0; 1338 length = qemu_get_be64(f); 1339 1340 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1341 if (!strncmp(id, block->idstr, sizeof(id))) { 1342 if (length != block->used_length) { 1343 Error *local_err = NULL; 1344 1345 ret = qemu_ram_resize(block->offset, length, &local_err); 1346 if (local_err) { 1347 error_report_err(local_err); 1348 } 1349 } 1350 break; 1351 } 1352 } 1353 1354 if (!block) { 1355 error_report("Unknown ramblock \"%s\", cannot " 1356 "accept migration", id); 1357 ret = -EINVAL; 1358 } 1359 1360 total_ram_bytes -= length; 1361 } 1362 break; 1363 case RAM_SAVE_FLAG_COMPRESS: 1364 host = host_from_stream_offset(f, addr, flags); 1365 if (!host) { 1366 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 1367 ret = -EINVAL; 1368 break; 1369 } 1370 ch = qemu_get_byte(f); 1371 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 1372 break; 1373 case RAM_SAVE_FLAG_PAGE: 1374 host = host_from_stream_offset(f, addr, flags); 1375 if (!host) { 1376 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 1377 ret = -EINVAL; 1378 break; 1379 } 1380 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 1381 break; 1382 case RAM_SAVE_FLAG_COMPRESS_PAGE: 1383 host = host_from_stream_offset(f, addr, flags); 1384 if (!host) { 1385 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr); 1386 ret = -EINVAL; 1387 break; 1388 } 1389 1390 len = qemu_get_be32(f); 1391 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 1392 error_report("Invalid compressed data length: %d", len); 1393 ret = -EINVAL; 1394 break; 1395 } 1396 qemu_get_buffer(f, compressed_data_buf, len); 1397 decompress_data_with_multi_threads(compressed_data_buf, host, len); 1398 break; 1399 case RAM_SAVE_FLAG_XBZRLE: 1400 host = host_from_stream_offset(f, addr, flags); 1401 if (!host) { 1402 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 1403 ret = -EINVAL; 1404 break; 1405 } 1406 if (load_xbzrle(f, addr, host) < 0) { 1407 error_report("Failed to decompress XBZRLE page at " 1408 RAM_ADDR_FMT, addr); 1409 ret = -EINVAL; 1410 break; 1411 } 1412 break; 1413 case RAM_SAVE_FLAG_EOS: 1414 /* normal exit */ 1415 break; 1416 default: 1417 if (flags & RAM_SAVE_FLAG_HOOK) { 1418 ram_control_load_hook(f, flags); 1419 } else { 1420 error_report("Unknown combination of migration flags: %#x", 1421 flags); 1422 ret = -EINVAL; 1423 } 1424 } 1425 if (!ret) { 1426 ret = qemu_file_get_error(f); 1427 } 1428 } 1429 1430 rcu_read_unlock(); 1431 DPRINTF("Completed load of VM with exit code %d seq iteration " 1432 "%" PRIu64 "\n", ret, seq_iter); 1433 return ret; 1434 } 1435 1436 static SaveVMHandlers savevm_ram_handlers = { 1437 .save_live_setup = ram_save_setup, 1438 .save_live_iterate = ram_save_iterate, 1439 .save_live_complete = ram_save_complete, 1440 .save_live_pending = ram_save_pending, 1441 .load_state = ram_load, 1442 .cancel = ram_migration_cancel, 1443 }; 1444 1445 void ram_mig_init(void) 1446 { 1447 qemu_mutex_init(&XBZRLE.lock); 1448 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); 1449 } 1450 1451 struct soundhw { 1452 const char *name; 1453 const char *descr; 1454 int enabled; 1455 int isa; 1456 union { 1457 int (*init_isa) (ISABus *bus); 1458 int (*init_pci) (PCIBus *bus); 1459 } init; 1460 }; 1461 1462 static struct soundhw soundhw[9]; 1463 static int soundhw_count; 1464 1465 void isa_register_soundhw(const char *name, const char *descr, 1466 int (*init_isa)(ISABus *bus)) 1467 { 1468 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 1469 soundhw[soundhw_count].name = name; 1470 soundhw[soundhw_count].descr = descr; 1471 soundhw[soundhw_count].isa = 1; 1472 soundhw[soundhw_count].init.init_isa = init_isa; 1473 soundhw_count++; 1474 } 1475 1476 void pci_register_soundhw(const char *name, const char *descr, 1477 int (*init_pci)(PCIBus *bus)) 1478 { 1479 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); 1480 soundhw[soundhw_count].name = name; 1481 soundhw[soundhw_count].descr = descr; 1482 soundhw[soundhw_count].isa = 0; 1483 soundhw[soundhw_count].init.init_pci = init_pci; 1484 soundhw_count++; 1485 } 1486 1487 void select_soundhw(const char *optarg) 1488 { 1489 struct soundhw *c; 1490 1491 if (is_help_option(optarg)) { 1492 show_valid_cards: 1493 1494 if (soundhw_count) { 1495 printf("Valid sound card names (comma separated):\n"); 1496 for (c = soundhw; c->name; ++c) { 1497 printf ("%-11s %s\n", c->name, c->descr); 1498 } 1499 printf("\n-soundhw all will enable all of the above\n"); 1500 } else { 1501 printf("Machine has no user-selectable audio hardware " 1502 "(it may or may not have always-present audio hardware).\n"); 1503 } 1504 exit(!is_help_option(optarg)); 1505 } 1506 else { 1507 size_t l; 1508 const char *p; 1509 char *e; 1510 int bad_card = 0; 1511 1512 if (!strcmp(optarg, "all")) { 1513 for (c = soundhw; c->name; ++c) { 1514 c->enabled = 1; 1515 } 1516 return; 1517 } 1518 1519 p = optarg; 1520 while (*p) { 1521 e = strchr(p, ','); 1522 l = !e ? strlen(p) : (size_t) (e - p); 1523 1524 for (c = soundhw; c->name; ++c) { 1525 if (!strncmp(c->name, p, l) && !c->name[l]) { 1526 c->enabled = 1; 1527 break; 1528 } 1529 } 1530 1531 if (!c->name) { 1532 if (l > 80) { 1533 error_report("Unknown sound card name (too big to show)"); 1534 } 1535 else { 1536 error_report("Unknown sound card name `%.*s'", 1537 (int) l, p); 1538 } 1539 bad_card = 1; 1540 } 1541 p += l + (e != NULL); 1542 } 1543 1544 if (bad_card) { 1545 goto show_valid_cards; 1546 } 1547 } 1548 } 1549 1550 void audio_init(void) 1551 { 1552 struct soundhw *c; 1553 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL); 1554 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL); 1555 1556 for (c = soundhw; c->name; ++c) { 1557 if (c->enabled) { 1558 if (c->isa) { 1559 if (!isa_bus) { 1560 error_report("ISA bus not available for %s", c->name); 1561 exit(1); 1562 } 1563 c->init.init_isa(isa_bus); 1564 } else { 1565 if (!pci_bus) { 1566 error_report("PCI bus not available for %s", c->name); 1567 exit(1); 1568 } 1569 c->init.init_pci(pci_bus); 1570 } 1571 } 1572 } 1573 } 1574 1575 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1576 { 1577 int ret; 1578 1579 if (strlen(str) != 36) { 1580 return -1; 1581 } 1582 1583 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1584 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1585 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1586 &uuid[15]); 1587 1588 if (ret != 16) { 1589 return -1; 1590 } 1591 return 0; 1592 } 1593 1594 void do_acpitable_option(const QemuOpts *opts) 1595 { 1596 #ifdef TARGET_I386 1597 Error *err = NULL; 1598 1599 acpi_table_add(opts, &err); 1600 if (err) { 1601 error_report("Wrong acpi table provided: %s", 1602 error_get_pretty(err)); 1603 error_free(err); 1604 exit(1); 1605 } 1606 #endif 1607 } 1608 1609 void do_smbios_option(QemuOpts *opts) 1610 { 1611 #ifdef TARGET_I386 1612 smbios_entry_add(opts); 1613 #endif 1614 } 1615 1616 void cpudef_init(void) 1617 { 1618 #if defined(cpudef_setup) 1619 cpudef_setup(); /* parse cpu definitions in target config file */ 1620 #endif 1621 } 1622 1623 int kvm_available(void) 1624 { 1625 #ifdef CONFIG_KVM 1626 return 1; 1627 #else 1628 return 0; 1629 #endif 1630 } 1631 1632 int xen_available(void) 1633 { 1634 #ifdef CONFIG_XEN 1635 return 1; 1636 #else 1637 return 0; 1638 #endif 1639 } 1640 1641 1642 TargetInfo *qmp_query_target(Error **errp) 1643 { 1644 TargetInfo *info = g_malloc0(sizeof(*info)); 1645 1646 info->arch = g_strdup(TARGET_NAME); 1647 1648 return info; 1649 } 1650 1651 /* Stub function that's gets run on the vcpu when its brought out of the 1652 VM to run inside qemu via async_run_on_cpu()*/ 1653 static void mig_sleep_cpu(void *opq) 1654 { 1655 qemu_mutex_unlock_iothread(); 1656 g_usleep(30*1000); 1657 qemu_mutex_lock_iothread(); 1658 } 1659 1660 /* To reduce the dirty rate explicitly disallow the VCPUs from spending 1661 much time in the VM. The migration thread will try to catchup. 1662 Workload will experience a performance drop. 1663 */ 1664 static void mig_throttle_guest_down(void) 1665 { 1666 CPUState *cpu; 1667 1668 qemu_mutex_lock_iothread(); 1669 CPU_FOREACH(cpu) { 1670 async_run_on_cpu(cpu, mig_sleep_cpu, NULL); 1671 } 1672 qemu_mutex_unlock_iothread(); 1673 } 1674 1675 static void check_guest_throttling(void) 1676 { 1677 static int64_t t0; 1678 int64_t t1; 1679 1680 if (!mig_throttle_on) { 1681 return; 1682 } 1683 1684 if (!t0) { 1685 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1686 return; 1687 } 1688 1689 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1690 1691 /* If it has been more than 40 ms since the last time the guest 1692 * was throttled then do it again. 1693 */ 1694 if (40 < (t1-t0)/1000000) { 1695 mig_throttle_guest_down(); 1696 t0 = t1; 1697 } 1698 } 1699