1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audiodev.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 53 #ifdef DEBUG_ARCH_INIT 54 #define DPRINTF(fmt, ...) \ 55 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 56 #else 57 #define DPRINTF(fmt, ...) \ 58 do { } while (0) 59 #endif 60 61 #ifdef TARGET_SPARC 62 int graphic_width = 1024; 63 int graphic_height = 768; 64 int graphic_depth = 8; 65 #else 66 int graphic_width = 800; 67 int graphic_height = 600; 68 int graphic_depth = 15; 69 #endif 70 71 72 #if defined(TARGET_ALPHA) 73 #define QEMU_ARCH QEMU_ARCH_ALPHA 74 #elif defined(TARGET_ARM) 75 #define QEMU_ARCH QEMU_ARCH_ARM 76 #elif defined(TARGET_CRIS) 77 #define QEMU_ARCH QEMU_ARCH_CRIS 78 #elif defined(TARGET_I386) 79 #define QEMU_ARCH QEMU_ARCH_I386 80 #elif defined(TARGET_M68K) 81 #define QEMU_ARCH QEMU_ARCH_M68K 82 #elif defined(TARGET_LM32) 83 #define QEMU_ARCH QEMU_ARCH_LM32 84 #elif defined(TARGET_MICROBLAZE) 85 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 86 #elif defined(TARGET_MIPS) 87 #define QEMU_ARCH QEMU_ARCH_MIPS 88 #elif defined(TARGET_OPENRISC) 89 #define QEMU_ARCH QEMU_ARCH_OPENRISC 90 #elif defined(TARGET_PPC) 91 #define QEMU_ARCH QEMU_ARCH_PPC 92 #elif defined(TARGET_S390X) 93 #define QEMU_ARCH QEMU_ARCH_S390X 94 #elif defined(TARGET_SH4) 95 #define QEMU_ARCH QEMU_ARCH_SH4 96 #elif defined(TARGET_SPARC) 97 #define QEMU_ARCH QEMU_ARCH_SPARC 98 #elif defined(TARGET_XTENSA) 99 #define QEMU_ARCH QEMU_ARCH_XTENSA 100 #elif defined(TARGET_UNICORE32) 101 #define QEMU_ARCH QEMU_ARCH_UNICORE32 102 #endif 103 104 const uint32_t arch_type = QEMU_ARCH; 105 106 /***********************************************************/ 107 /* ram save/restore */ 108 109 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 110 #define RAM_SAVE_FLAG_COMPRESS 0x02 111 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 112 #define RAM_SAVE_FLAG_PAGE 0x08 113 #define RAM_SAVE_FLAG_EOS 0x10 114 #define RAM_SAVE_FLAG_CONTINUE 0x20 115 #define RAM_SAVE_FLAG_XBZRLE 0x40 116 117 #ifdef __ALTIVEC__ 118 #include <altivec.h> 119 #define VECTYPE vector unsigned char 120 #define SPLAT(p) vec_splat(vec_ld(0, p), 0) 121 #define ALL_EQ(v1, v2) vec_all_eq(v1, v2) 122 /* altivec.h may redefine the bool macro as vector type. 123 * Reset it to POSIX semantics. */ 124 #undef bool 125 #define bool _Bool 126 #elif defined __SSE2__ 127 #include <emmintrin.h> 128 #define VECTYPE __m128i 129 #define SPLAT(p) _mm_set1_epi8(*(p)) 130 #define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF) 131 #else 132 #define VECTYPE unsigned long 133 #define SPLAT(p) (*(p) * (~0UL / 255)) 134 #define ALL_EQ(v1, v2) ((v1) == (v2)) 135 #endif 136 137 138 static struct defconfig_file { 139 const char *filename; 140 /* Indicates it is an user config file (disabled by -no-user-config) */ 141 bool userconfig; 142 } default_config_files[] = { 143 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 144 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 145 { NULL }, /* end of list */ 146 }; 147 148 149 int qemu_read_default_config_files(bool userconfig) 150 { 151 int ret; 152 struct defconfig_file *f; 153 154 for (f = default_config_files; f->filename; f++) { 155 if (!userconfig && f->userconfig) { 156 continue; 157 } 158 ret = qemu_read_config_file(f->filename); 159 if (ret < 0 && ret != -ENOENT) { 160 return ret; 161 } 162 } 163 164 return 0; 165 } 166 167 static int is_dup_page(uint8_t *page) 168 { 169 VECTYPE *p = (VECTYPE *)page; 170 VECTYPE val = SPLAT(page); 171 int i; 172 173 for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) { 174 if (!ALL_EQ(val, p[i])) { 175 return 0; 176 } 177 } 178 179 return 1; 180 } 181 182 /* struct contains XBZRLE cache and a static page 183 used by the compression */ 184 static struct { 185 /* buffer used for XBZRLE encoding */ 186 uint8_t *encoded_buf; 187 /* buffer for storing page content */ 188 uint8_t *current_buf; 189 /* buffer used for XBZRLE decoding */ 190 uint8_t *decoded_buf; 191 /* Cache for XBZRLE */ 192 PageCache *cache; 193 } XBZRLE = { 194 .encoded_buf = NULL, 195 .current_buf = NULL, 196 .decoded_buf = NULL, 197 .cache = NULL, 198 }; 199 200 201 int64_t xbzrle_cache_resize(int64_t new_size) 202 { 203 if (XBZRLE.cache != NULL) { 204 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 205 TARGET_PAGE_SIZE; 206 } 207 return pow2floor(new_size); 208 } 209 210 /* accounting for migration statistics */ 211 typedef struct AccountingInfo { 212 uint64_t dup_pages; 213 uint64_t norm_pages; 214 uint64_t iterations; 215 uint64_t xbzrle_bytes; 216 uint64_t xbzrle_pages; 217 uint64_t xbzrle_cache_miss; 218 uint64_t xbzrle_overflows; 219 } AccountingInfo; 220 221 static AccountingInfo acct_info; 222 223 static void acct_clear(void) 224 { 225 memset(&acct_info, 0, sizeof(acct_info)); 226 } 227 228 uint64_t dup_mig_bytes_transferred(void) 229 { 230 return acct_info.dup_pages * TARGET_PAGE_SIZE; 231 } 232 233 uint64_t dup_mig_pages_transferred(void) 234 { 235 return acct_info.dup_pages; 236 } 237 238 uint64_t norm_mig_bytes_transferred(void) 239 { 240 return acct_info.norm_pages * TARGET_PAGE_SIZE; 241 } 242 243 uint64_t norm_mig_pages_transferred(void) 244 { 245 return acct_info.norm_pages; 246 } 247 248 uint64_t xbzrle_mig_bytes_transferred(void) 249 { 250 return acct_info.xbzrle_bytes; 251 } 252 253 uint64_t xbzrle_mig_pages_transferred(void) 254 { 255 return acct_info.xbzrle_pages; 256 } 257 258 uint64_t xbzrle_mig_pages_cache_miss(void) 259 { 260 return acct_info.xbzrle_cache_miss; 261 } 262 263 uint64_t xbzrle_mig_pages_overflow(void) 264 { 265 return acct_info.xbzrle_overflows; 266 } 267 268 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 269 int cont, int flag) 270 { 271 size_t size; 272 273 qemu_put_be64(f, offset | cont | flag); 274 size = 8; 275 276 if (!cont) { 277 qemu_put_byte(f, strlen(block->idstr)); 278 qemu_put_buffer(f, (uint8_t *)block->idstr, 279 strlen(block->idstr)); 280 size += 1 + strlen(block->idstr); 281 } 282 return size; 283 } 284 285 #define ENCODING_FLAG_XBZRLE 0x1 286 287 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 288 ram_addr_t current_addr, RAMBlock *block, 289 ram_addr_t offset, int cont, bool last_stage) 290 { 291 int encoded_len = 0, bytes_sent = -1; 292 uint8_t *prev_cached_page; 293 294 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 295 if (!last_stage) { 296 cache_insert(XBZRLE.cache, current_addr, 297 g_memdup(current_data, TARGET_PAGE_SIZE)); 298 } 299 acct_info.xbzrle_cache_miss++; 300 return -1; 301 } 302 303 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 304 305 /* save current buffer into memory */ 306 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 307 308 /* XBZRLE encoding (if there is no overflow) */ 309 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 310 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 311 TARGET_PAGE_SIZE); 312 if (encoded_len == 0) { 313 DPRINTF("Skipping unmodified page\n"); 314 return 0; 315 } else if (encoded_len == -1) { 316 DPRINTF("Overflow\n"); 317 acct_info.xbzrle_overflows++; 318 /* update data in the cache */ 319 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 320 return -1; 321 } 322 323 /* we need to update the data in the cache, in order to get the same data */ 324 if (!last_stage) { 325 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 326 } 327 328 /* Send XBZRLE based compressed page */ 329 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 330 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 331 qemu_put_be16(f, encoded_len); 332 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 333 bytes_sent += encoded_len + 1 + 2; 334 acct_info.xbzrle_pages++; 335 acct_info.xbzrle_bytes += bytes_sent; 336 337 return bytes_sent; 338 } 339 340 341 /* This is the last block that we have visited serching for dirty pages 342 */ 343 static RAMBlock *last_seen_block; 344 /* This is the last block from where we have sent data */ 345 static RAMBlock *last_sent_block; 346 static ram_addr_t last_offset; 347 static unsigned long *migration_bitmap; 348 static uint64_t migration_dirty_pages; 349 static uint32_t last_version; 350 351 static inline 352 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 353 ram_addr_t start) 354 { 355 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 356 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 357 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS); 358 359 unsigned long next = find_next_bit(migration_bitmap, size, nr); 360 361 if (next < size) { 362 clear_bit(next, migration_bitmap); 363 migration_dirty_pages--; 364 } 365 return (next - base) << TARGET_PAGE_BITS; 366 } 367 368 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 369 ram_addr_t offset) 370 { 371 bool ret; 372 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 373 374 ret = test_and_set_bit(nr, migration_bitmap); 375 376 if (!ret) { 377 migration_dirty_pages++; 378 } 379 return ret; 380 } 381 382 /* Needs iothread lock! */ 383 384 static void migration_bitmap_sync(void) 385 { 386 RAMBlock *block; 387 ram_addr_t addr; 388 uint64_t num_dirty_pages_init = migration_dirty_pages; 389 MigrationState *s = migrate_get_current(); 390 static int64_t start_time; 391 static int64_t num_dirty_pages_period; 392 int64_t end_time; 393 394 if (!start_time) { 395 start_time = qemu_get_clock_ms(rt_clock); 396 } 397 398 trace_migration_bitmap_sync_start(); 399 memory_global_sync_dirty_bitmap(get_system_memory()); 400 401 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 402 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 403 if (memory_region_test_and_clear_dirty(block->mr, 404 addr, TARGET_PAGE_SIZE, 405 DIRTY_MEMORY_MIGRATION)) { 406 migration_bitmap_set_dirty(block->mr, addr); 407 } 408 } 409 } 410 trace_migration_bitmap_sync_end(migration_dirty_pages 411 - num_dirty_pages_init); 412 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 413 end_time = qemu_get_clock_ms(rt_clock); 414 415 /* more than 1 second = 1000 millisecons */ 416 if (end_time > start_time + 1000) { 417 s->dirty_pages_rate = num_dirty_pages_period * 1000 418 / (end_time - start_time); 419 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 420 start_time = end_time; 421 num_dirty_pages_period = 0; 422 } 423 } 424 425 /* 426 * ram_save_block: Writes a page of memory to the stream f 427 * 428 * Returns: The number of bytes written. 429 * 0 means no dirty pages 430 */ 431 432 static int ram_save_block(QEMUFile *f, bool last_stage) 433 { 434 RAMBlock *block = last_seen_block; 435 ram_addr_t offset = last_offset; 436 bool complete_round = false; 437 int bytes_sent = 0; 438 MemoryRegion *mr; 439 ram_addr_t current_addr; 440 441 if (!block) 442 block = QTAILQ_FIRST(&ram_list.blocks); 443 444 while (true) { 445 mr = block->mr; 446 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 447 if (complete_round && block == last_seen_block && 448 offset >= last_offset) { 449 break; 450 } 451 if (offset >= block->length) { 452 offset = 0; 453 block = QTAILQ_NEXT(block, next); 454 if (!block) { 455 block = QTAILQ_FIRST(&ram_list.blocks); 456 complete_round = true; 457 } 458 } else { 459 uint8_t *p; 460 int cont = (block == last_sent_block) ? 461 RAM_SAVE_FLAG_CONTINUE : 0; 462 463 p = memory_region_get_ram_ptr(mr) + offset; 464 465 /* In doubt sent page as normal */ 466 bytes_sent = -1; 467 if (is_dup_page(p)) { 468 acct_info.dup_pages++; 469 bytes_sent = save_block_hdr(f, block, offset, cont, 470 RAM_SAVE_FLAG_COMPRESS); 471 qemu_put_byte(f, *p); 472 bytes_sent += 1; 473 } else if (migrate_use_xbzrle()) { 474 current_addr = block->offset + offset; 475 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 476 offset, cont, last_stage); 477 if (!last_stage) { 478 p = get_cached_data(XBZRLE.cache, current_addr); 479 } 480 } 481 482 /* XBZRLE overflow or normal page */ 483 if (bytes_sent == -1) { 484 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 485 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 486 bytes_sent += TARGET_PAGE_SIZE; 487 acct_info.norm_pages++; 488 } 489 490 /* if page is unmodified, continue to the next */ 491 if (bytes_sent > 0) { 492 last_sent_block = block; 493 break; 494 } 495 } 496 } 497 last_seen_block = block; 498 last_offset = offset; 499 500 return bytes_sent; 501 } 502 503 static uint64_t bytes_transferred; 504 505 static ram_addr_t ram_save_remaining(void) 506 { 507 return migration_dirty_pages; 508 } 509 510 uint64_t ram_bytes_remaining(void) 511 { 512 return ram_save_remaining() * TARGET_PAGE_SIZE; 513 } 514 515 uint64_t ram_bytes_transferred(void) 516 { 517 return bytes_transferred; 518 } 519 520 uint64_t ram_bytes_total(void) 521 { 522 RAMBlock *block; 523 uint64_t total = 0; 524 525 QTAILQ_FOREACH(block, &ram_list.blocks, next) 526 total += block->length; 527 528 return total; 529 } 530 531 static void migration_end(void) 532 { 533 if (migration_bitmap) { 534 memory_global_dirty_log_stop(); 535 g_free(migration_bitmap); 536 migration_bitmap = NULL; 537 } 538 539 if (XBZRLE.cache) { 540 cache_fini(XBZRLE.cache); 541 g_free(XBZRLE.cache); 542 g_free(XBZRLE.encoded_buf); 543 g_free(XBZRLE.current_buf); 544 g_free(XBZRLE.decoded_buf); 545 XBZRLE.cache = NULL; 546 } 547 } 548 549 static void ram_migration_cancel(void *opaque) 550 { 551 migration_end(); 552 } 553 554 static void reset_ram_globals(void) 555 { 556 last_seen_block = NULL; 557 last_sent_block = NULL; 558 last_offset = 0; 559 last_version = ram_list.version; 560 } 561 562 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 563 564 static int ram_save_setup(QEMUFile *f, void *opaque) 565 { 566 RAMBlock *block; 567 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 568 569 migration_bitmap = bitmap_new(ram_pages); 570 bitmap_set(migration_bitmap, 0, ram_pages); 571 migration_dirty_pages = ram_pages; 572 573 qemu_mutex_lock_ramlist(); 574 bytes_transferred = 0; 575 reset_ram_globals(); 576 577 if (migrate_use_xbzrle()) { 578 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 579 TARGET_PAGE_SIZE, 580 TARGET_PAGE_SIZE); 581 if (!XBZRLE.cache) { 582 DPRINTF("Error creating cache\n"); 583 return -1; 584 } 585 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 586 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 587 acct_clear(); 588 } 589 590 memory_global_dirty_log_start(); 591 migration_bitmap_sync(); 592 593 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 594 595 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 596 qemu_put_byte(f, strlen(block->idstr)); 597 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 598 qemu_put_be64(f, block->length); 599 } 600 601 qemu_mutex_unlock_ramlist(); 602 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 603 604 return 0; 605 } 606 607 static int ram_save_iterate(QEMUFile *f, void *opaque) 608 { 609 int ret; 610 int i; 611 int64_t t0; 612 int total_sent = 0; 613 614 qemu_mutex_lock_ramlist(); 615 616 if (ram_list.version != last_version) { 617 reset_ram_globals(); 618 } 619 620 t0 = qemu_get_clock_ns(rt_clock); 621 i = 0; 622 while ((ret = qemu_file_rate_limit(f)) == 0) { 623 int bytes_sent; 624 625 bytes_sent = ram_save_block(f, false); 626 /* no more blocks to sent */ 627 if (bytes_sent == 0) { 628 break; 629 } 630 total_sent += bytes_sent; 631 acct_info.iterations++; 632 /* we want to check in the 1st loop, just in case it was the 1st time 633 and we had to sync the dirty bitmap. 634 qemu_get_clock_ns() is a bit expensive, so we only check each some 635 iterations 636 */ 637 if ((i & 63) == 0) { 638 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 639 if (t1 > MAX_WAIT) { 640 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 641 t1, i); 642 break; 643 } 644 } 645 i++; 646 } 647 648 qemu_mutex_unlock_ramlist(); 649 650 if (ret < 0) { 651 bytes_transferred += total_sent; 652 return ret; 653 } 654 655 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 656 total_sent += 8; 657 bytes_transferred += total_sent; 658 659 return total_sent; 660 } 661 662 static int ram_save_complete(QEMUFile *f, void *opaque) 663 { 664 qemu_mutex_lock_ramlist(); 665 migration_bitmap_sync(); 666 667 /* try transferring iterative blocks of memory */ 668 669 /* flush all remaining blocks regardless of rate limiting */ 670 while (true) { 671 int bytes_sent; 672 673 bytes_sent = ram_save_block(f, true); 674 /* no more blocks to sent */ 675 if (bytes_sent == 0) { 676 break; 677 } 678 bytes_transferred += bytes_sent; 679 } 680 migration_end(); 681 682 qemu_mutex_unlock_ramlist(); 683 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 684 685 return 0; 686 } 687 688 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 689 { 690 uint64_t remaining_size; 691 692 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 693 694 if (remaining_size < max_size) { 695 qemu_mutex_lock_iothread(); 696 migration_bitmap_sync(); 697 qemu_mutex_unlock_iothread(); 698 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 699 } 700 return remaining_size; 701 } 702 703 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 704 { 705 int ret, rc = 0; 706 unsigned int xh_len; 707 int xh_flags; 708 709 if (!XBZRLE.decoded_buf) { 710 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 711 } 712 713 /* extract RLE header */ 714 xh_flags = qemu_get_byte(f); 715 xh_len = qemu_get_be16(f); 716 717 if (xh_flags != ENCODING_FLAG_XBZRLE) { 718 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 719 return -1; 720 } 721 722 if (xh_len > TARGET_PAGE_SIZE) { 723 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 724 return -1; 725 } 726 /* load data and decode */ 727 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 728 729 /* decode RLE */ 730 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 731 TARGET_PAGE_SIZE); 732 if (ret == -1) { 733 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 734 rc = -1; 735 } else if (ret > TARGET_PAGE_SIZE) { 736 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 737 ret, TARGET_PAGE_SIZE); 738 abort(); 739 } 740 741 return rc; 742 } 743 744 static inline void *host_from_stream_offset(QEMUFile *f, 745 ram_addr_t offset, 746 int flags) 747 { 748 static RAMBlock *block = NULL; 749 char id[256]; 750 uint8_t len; 751 752 if (flags & RAM_SAVE_FLAG_CONTINUE) { 753 if (!block) { 754 fprintf(stderr, "Ack, bad migration stream!\n"); 755 return NULL; 756 } 757 758 return memory_region_get_ram_ptr(block->mr) + offset; 759 } 760 761 len = qemu_get_byte(f); 762 qemu_get_buffer(f, (uint8_t *)id, len); 763 id[len] = 0; 764 765 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 766 if (!strncmp(id, block->idstr, sizeof(id))) 767 return memory_region_get_ram_ptr(block->mr) + offset; 768 } 769 770 fprintf(stderr, "Can't find block %s!\n", id); 771 return NULL; 772 } 773 774 static int ram_load(QEMUFile *f, void *opaque, int version_id) 775 { 776 ram_addr_t addr; 777 int flags, ret = 0; 778 int error; 779 static uint64_t seq_iter; 780 781 seq_iter++; 782 783 if (version_id < 4 || version_id > 4) { 784 return -EINVAL; 785 } 786 787 do { 788 addr = qemu_get_be64(f); 789 790 flags = addr & ~TARGET_PAGE_MASK; 791 addr &= TARGET_PAGE_MASK; 792 793 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 794 if (version_id == 4) { 795 /* Synchronize RAM block list */ 796 char id[256]; 797 ram_addr_t length; 798 ram_addr_t total_ram_bytes = addr; 799 800 while (total_ram_bytes) { 801 RAMBlock *block; 802 uint8_t len; 803 804 len = qemu_get_byte(f); 805 qemu_get_buffer(f, (uint8_t *)id, len); 806 id[len] = 0; 807 length = qemu_get_be64(f); 808 809 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 810 if (!strncmp(id, block->idstr, sizeof(id))) { 811 if (block->length != length) { 812 ret = -EINVAL; 813 goto done; 814 } 815 break; 816 } 817 } 818 819 if (!block) { 820 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 821 "accept migration\n", id); 822 ret = -EINVAL; 823 goto done; 824 } 825 826 total_ram_bytes -= length; 827 } 828 } 829 } 830 831 if (flags & RAM_SAVE_FLAG_COMPRESS) { 832 void *host; 833 uint8_t ch; 834 835 host = host_from_stream_offset(f, addr, flags); 836 if (!host) { 837 return -EINVAL; 838 } 839 840 ch = qemu_get_byte(f); 841 memset(host, ch, TARGET_PAGE_SIZE); 842 #ifndef _WIN32 843 if (ch == 0 && 844 (!kvm_enabled() || kvm_has_sync_mmu()) && 845 getpagesize() <= TARGET_PAGE_SIZE) { 846 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 847 } 848 #endif 849 } else if (flags & RAM_SAVE_FLAG_PAGE) { 850 void *host; 851 852 host = host_from_stream_offset(f, addr, flags); 853 if (!host) { 854 return -EINVAL; 855 } 856 857 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 858 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 859 void *host = host_from_stream_offset(f, addr, flags); 860 if (!host) { 861 return -EINVAL; 862 } 863 864 if (load_xbzrle(f, addr, host) < 0) { 865 ret = -EINVAL; 866 goto done; 867 } 868 } 869 error = qemu_file_get_error(f); 870 if (error) { 871 ret = error; 872 goto done; 873 } 874 } while (!(flags & RAM_SAVE_FLAG_EOS)); 875 876 done: 877 DPRINTF("Completed load of VM with exit code %d seq iteration " 878 "%" PRIu64 "\n", ret, seq_iter); 879 return ret; 880 } 881 882 SaveVMHandlers savevm_ram_handlers = { 883 .save_live_setup = ram_save_setup, 884 .save_live_iterate = ram_save_iterate, 885 .save_live_complete = ram_save_complete, 886 .save_live_pending = ram_save_pending, 887 .load_state = ram_load, 888 .cancel = ram_migration_cancel, 889 }; 890 891 #ifdef HAS_AUDIO 892 struct soundhw { 893 const char *name; 894 const char *descr; 895 int enabled; 896 int isa; 897 union { 898 int (*init_isa) (ISABus *bus); 899 int (*init_pci) (PCIBus *bus); 900 } init; 901 }; 902 903 static struct soundhw soundhw[] = { 904 #ifdef HAS_AUDIO_CHOICE 905 #ifdef CONFIG_PCSPK 906 { 907 "pcspk", 908 "PC speaker", 909 0, 910 1, 911 { .init_isa = pcspk_audio_init } 912 }, 913 #endif 914 915 #ifdef CONFIG_SB16 916 { 917 "sb16", 918 "Creative Sound Blaster 16", 919 0, 920 1, 921 { .init_isa = SB16_init } 922 }, 923 #endif 924 925 #ifdef CONFIG_CS4231A 926 { 927 "cs4231a", 928 "CS4231A", 929 0, 930 1, 931 { .init_isa = cs4231a_init } 932 }, 933 #endif 934 935 #ifdef CONFIG_ADLIB 936 { 937 "adlib", 938 #ifdef HAS_YMF262 939 "Yamaha YMF262 (OPL3)", 940 #else 941 "Yamaha YM3812 (OPL2)", 942 #endif 943 0, 944 1, 945 { .init_isa = Adlib_init } 946 }, 947 #endif 948 949 #ifdef CONFIG_GUS 950 { 951 "gus", 952 "Gravis Ultrasound GF1", 953 0, 954 1, 955 { .init_isa = GUS_init } 956 }, 957 #endif 958 959 #ifdef CONFIG_AC97 960 { 961 "ac97", 962 "Intel 82801AA AC97 Audio", 963 0, 964 0, 965 { .init_pci = ac97_init } 966 }, 967 #endif 968 969 #ifdef CONFIG_ES1370 970 { 971 "es1370", 972 "ENSONIQ AudioPCI ES1370", 973 0, 974 0, 975 { .init_pci = es1370_init } 976 }, 977 #endif 978 979 #ifdef CONFIG_HDA 980 { 981 "hda", 982 "Intel HD Audio", 983 0, 984 0, 985 { .init_pci = intel_hda_and_codec_init } 986 }, 987 #endif 988 989 #endif /* HAS_AUDIO_CHOICE */ 990 991 { NULL, NULL, 0, 0, { NULL } } 992 }; 993 994 void select_soundhw(const char *optarg) 995 { 996 struct soundhw *c; 997 998 if (is_help_option(optarg)) { 999 show_valid_cards: 1000 1001 #ifdef HAS_AUDIO_CHOICE 1002 printf("Valid sound card names (comma separated):\n"); 1003 for (c = soundhw; c->name; ++c) { 1004 printf ("%-11s %s\n", c->name, c->descr); 1005 } 1006 printf("\n-soundhw all will enable all of the above\n"); 1007 #else 1008 printf("Machine has no user-selectable audio hardware " 1009 "(it may or may not have always-present audio hardware).\n"); 1010 #endif 1011 exit(!is_help_option(optarg)); 1012 } 1013 else { 1014 size_t l; 1015 const char *p; 1016 char *e; 1017 int bad_card = 0; 1018 1019 if (!strcmp(optarg, "all")) { 1020 for (c = soundhw; c->name; ++c) { 1021 c->enabled = 1; 1022 } 1023 return; 1024 } 1025 1026 p = optarg; 1027 while (*p) { 1028 e = strchr(p, ','); 1029 l = !e ? strlen(p) : (size_t) (e - p); 1030 1031 for (c = soundhw; c->name; ++c) { 1032 if (!strncmp(c->name, p, l) && !c->name[l]) { 1033 c->enabled = 1; 1034 break; 1035 } 1036 } 1037 1038 if (!c->name) { 1039 if (l > 80) { 1040 fprintf(stderr, 1041 "Unknown sound card name (too big to show)\n"); 1042 } 1043 else { 1044 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1045 (int) l, p); 1046 } 1047 bad_card = 1; 1048 } 1049 p += l + (e != NULL); 1050 } 1051 1052 if (bad_card) { 1053 goto show_valid_cards; 1054 } 1055 } 1056 } 1057 1058 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1059 { 1060 struct soundhw *c; 1061 1062 for (c = soundhw; c->name; ++c) { 1063 if (c->enabled) { 1064 if (c->isa) { 1065 if (isa_bus) { 1066 c->init.init_isa(isa_bus); 1067 } 1068 } else { 1069 if (pci_bus) { 1070 c->init.init_pci(pci_bus); 1071 } 1072 } 1073 } 1074 } 1075 } 1076 #else 1077 void select_soundhw(const char *optarg) 1078 { 1079 } 1080 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1081 { 1082 } 1083 #endif 1084 1085 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1086 { 1087 int ret; 1088 1089 if (strlen(str) != 36) { 1090 return -1; 1091 } 1092 1093 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1094 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1095 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1096 &uuid[15]); 1097 1098 if (ret != 16) { 1099 return -1; 1100 } 1101 #ifdef TARGET_I386 1102 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1103 #endif 1104 return 0; 1105 } 1106 1107 void do_acpitable_option(const char *optarg) 1108 { 1109 #ifdef TARGET_I386 1110 if (acpi_table_add(optarg) < 0) { 1111 fprintf(stderr, "Wrong acpi table provided\n"); 1112 exit(1); 1113 } 1114 #endif 1115 } 1116 1117 void do_smbios_option(const char *optarg) 1118 { 1119 #ifdef TARGET_I386 1120 if (smbios_entry_add(optarg) < 0) { 1121 fprintf(stderr, "Wrong smbios provided\n"); 1122 exit(1); 1123 } 1124 #endif 1125 } 1126 1127 void cpudef_init(void) 1128 { 1129 #if defined(cpudef_setup) 1130 cpudef_setup(); /* parse cpu definitions in target config file */ 1131 #endif 1132 } 1133 1134 int audio_available(void) 1135 { 1136 #ifdef HAS_AUDIO 1137 return 1; 1138 #else 1139 return 0; 1140 #endif 1141 } 1142 1143 int tcg_available(void) 1144 { 1145 return 1; 1146 } 1147 1148 int kvm_available(void) 1149 { 1150 #ifdef CONFIG_KVM 1151 return 1; 1152 #else 1153 return 0; 1154 #endif 1155 } 1156 1157 int xen_available(void) 1158 { 1159 #ifdef CONFIG_XEN 1160 return 1; 1161 #else 1162 return 0; 1163 #endif 1164 } 1165 1166 1167 TargetInfo *qmp_query_target(Error **errp) 1168 { 1169 TargetInfo *info = g_malloc0(sizeof(*info)); 1170 1171 info->arch = TARGET_TYPE; 1172 1173 return info; 1174 } 1175