1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdint.h> 25 #include <stdarg.h> 26 #include <stdlib.h> 27 #ifndef _WIN32 28 #include <sys/types.h> 29 #include <sys/mman.h> 30 #endif 31 #include "config.h" 32 #include "monitor/monitor.h" 33 #include "sysemu/sysemu.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "sysemu/arch_init.h" 37 #include "audio/audio.h" 38 #include "hw/i386/pc.h" 39 #include "hw/pci/pci.h" 40 #include "hw/audio/audio.h" 41 #include "sysemu/kvm.h" 42 #include "migration/migration.h" 43 #include "exec/gdbstub.h" 44 #include "hw/i386/smbios.h" 45 #include "exec/address-spaces.h" 46 #include "hw/audio/pcspk.h" 47 #include "migration/page_cache.h" 48 #include "qemu/config-file.h" 49 #include "qmp-commands.h" 50 #include "trace.h" 51 #include "exec/cpu-all.h" 52 #include "hw/acpi/acpi.h" 53 54 #ifdef DEBUG_ARCH_INIT 55 #define DPRINTF(fmt, ...) \ 56 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) 57 #else 58 #define DPRINTF(fmt, ...) \ 59 do { } while (0) 60 #endif 61 62 #ifdef TARGET_SPARC 63 int graphic_width = 1024; 64 int graphic_height = 768; 65 int graphic_depth = 8; 66 #else 67 int graphic_width = 800; 68 int graphic_height = 600; 69 int graphic_depth = 15; 70 #endif 71 72 73 #if defined(TARGET_ALPHA) 74 #define QEMU_ARCH QEMU_ARCH_ALPHA 75 #elif defined(TARGET_ARM) 76 #define QEMU_ARCH QEMU_ARCH_ARM 77 #elif defined(TARGET_CRIS) 78 #define QEMU_ARCH QEMU_ARCH_CRIS 79 #elif defined(TARGET_I386) 80 #define QEMU_ARCH QEMU_ARCH_I386 81 #elif defined(TARGET_M68K) 82 #define QEMU_ARCH QEMU_ARCH_M68K 83 #elif defined(TARGET_LM32) 84 #define QEMU_ARCH QEMU_ARCH_LM32 85 #elif defined(TARGET_MICROBLAZE) 86 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE 87 #elif defined(TARGET_MIPS) 88 #define QEMU_ARCH QEMU_ARCH_MIPS 89 #elif defined(TARGET_MOXIE) 90 #define QEMU_ARCH QEMU_ARCH_MOXIE 91 #elif defined(TARGET_OPENRISC) 92 #define QEMU_ARCH QEMU_ARCH_OPENRISC 93 #elif defined(TARGET_PPC) 94 #define QEMU_ARCH QEMU_ARCH_PPC 95 #elif defined(TARGET_S390X) 96 #define QEMU_ARCH QEMU_ARCH_S390X 97 #elif defined(TARGET_SH4) 98 #define QEMU_ARCH QEMU_ARCH_SH4 99 #elif defined(TARGET_SPARC) 100 #define QEMU_ARCH QEMU_ARCH_SPARC 101 #elif defined(TARGET_XTENSA) 102 #define QEMU_ARCH QEMU_ARCH_XTENSA 103 #elif defined(TARGET_UNICORE32) 104 #define QEMU_ARCH QEMU_ARCH_UNICORE32 105 #endif 106 107 const uint32_t arch_type = QEMU_ARCH; 108 109 /***********************************************************/ 110 /* ram save/restore */ 111 112 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 113 #define RAM_SAVE_FLAG_COMPRESS 0x02 114 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 115 #define RAM_SAVE_FLAG_PAGE 0x08 116 #define RAM_SAVE_FLAG_EOS 0x10 117 #define RAM_SAVE_FLAG_CONTINUE 0x20 118 #define RAM_SAVE_FLAG_XBZRLE 0x40 119 120 121 static struct defconfig_file { 122 const char *filename; 123 /* Indicates it is an user config file (disabled by -no-user-config) */ 124 bool userconfig; 125 } default_config_files[] = { 126 { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, 127 { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true }, 128 { NULL }, /* end of list */ 129 }; 130 131 132 int qemu_read_default_config_files(bool userconfig) 133 { 134 int ret; 135 struct defconfig_file *f; 136 137 for (f = default_config_files; f->filename; f++) { 138 if (!userconfig && f->userconfig) { 139 continue; 140 } 141 ret = qemu_read_config_file(f->filename); 142 if (ret < 0 && ret != -ENOENT) { 143 return ret; 144 } 145 } 146 147 return 0; 148 } 149 150 static inline bool is_zero_page(uint8_t *p) 151 { 152 return buffer_find_nonzero_offset(p, TARGET_PAGE_SIZE) == 153 TARGET_PAGE_SIZE; 154 } 155 156 /* struct contains XBZRLE cache and a static page 157 used by the compression */ 158 static struct { 159 /* buffer used for XBZRLE encoding */ 160 uint8_t *encoded_buf; 161 /* buffer for storing page content */ 162 uint8_t *current_buf; 163 /* buffer used for XBZRLE decoding */ 164 uint8_t *decoded_buf; 165 /* Cache for XBZRLE */ 166 PageCache *cache; 167 } XBZRLE = { 168 .encoded_buf = NULL, 169 .current_buf = NULL, 170 .decoded_buf = NULL, 171 .cache = NULL, 172 }; 173 174 175 int64_t xbzrle_cache_resize(int64_t new_size) 176 { 177 if (XBZRLE.cache != NULL) { 178 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) * 179 TARGET_PAGE_SIZE; 180 } 181 return pow2floor(new_size); 182 } 183 184 /* accounting for migration statistics */ 185 typedef struct AccountingInfo { 186 uint64_t dup_pages; 187 uint64_t skipped_pages; 188 uint64_t norm_pages; 189 uint64_t iterations; 190 uint64_t xbzrle_bytes; 191 uint64_t xbzrle_pages; 192 uint64_t xbzrle_cache_miss; 193 uint64_t xbzrle_overflows; 194 } AccountingInfo; 195 196 static AccountingInfo acct_info; 197 198 static void acct_clear(void) 199 { 200 memset(&acct_info, 0, sizeof(acct_info)); 201 } 202 203 uint64_t dup_mig_bytes_transferred(void) 204 { 205 return acct_info.dup_pages * TARGET_PAGE_SIZE; 206 } 207 208 uint64_t dup_mig_pages_transferred(void) 209 { 210 return acct_info.dup_pages; 211 } 212 213 uint64_t skipped_mig_bytes_transferred(void) 214 { 215 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 216 } 217 218 uint64_t skipped_mig_pages_transferred(void) 219 { 220 return acct_info.skipped_pages; 221 } 222 223 uint64_t norm_mig_bytes_transferred(void) 224 { 225 return acct_info.norm_pages * TARGET_PAGE_SIZE; 226 } 227 228 uint64_t norm_mig_pages_transferred(void) 229 { 230 return acct_info.norm_pages; 231 } 232 233 uint64_t xbzrle_mig_bytes_transferred(void) 234 { 235 return acct_info.xbzrle_bytes; 236 } 237 238 uint64_t xbzrle_mig_pages_transferred(void) 239 { 240 return acct_info.xbzrle_pages; 241 } 242 243 uint64_t xbzrle_mig_pages_cache_miss(void) 244 { 245 return acct_info.xbzrle_cache_miss; 246 } 247 248 uint64_t xbzrle_mig_pages_overflow(void) 249 { 250 return acct_info.xbzrle_overflows; 251 } 252 253 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 254 int cont, int flag) 255 { 256 size_t size; 257 258 qemu_put_be64(f, offset | cont | flag); 259 size = 8; 260 261 if (!cont) { 262 qemu_put_byte(f, strlen(block->idstr)); 263 qemu_put_buffer(f, (uint8_t *)block->idstr, 264 strlen(block->idstr)); 265 size += 1 + strlen(block->idstr); 266 } 267 return size; 268 } 269 270 #define ENCODING_FLAG_XBZRLE 0x1 271 272 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data, 273 ram_addr_t current_addr, RAMBlock *block, 274 ram_addr_t offset, int cont, bool last_stage) 275 { 276 int encoded_len = 0, bytes_sent = -1; 277 uint8_t *prev_cached_page; 278 279 if (!cache_is_cached(XBZRLE.cache, current_addr)) { 280 if (!last_stage) { 281 cache_insert(XBZRLE.cache, current_addr, current_data); 282 } 283 acct_info.xbzrle_cache_miss++; 284 return -1; 285 } 286 287 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 288 289 /* save current buffer into memory */ 290 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE); 291 292 /* XBZRLE encoding (if there is no overflow) */ 293 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 294 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 295 TARGET_PAGE_SIZE); 296 if (encoded_len == 0) { 297 DPRINTF("Skipping unmodified page\n"); 298 return 0; 299 } else if (encoded_len == -1) { 300 DPRINTF("Overflow\n"); 301 acct_info.xbzrle_overflows++; 302 /* update data in the cache */ 303 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE); 304 return -1; 305 } 306 307 /* we need to update the data in the cache, in order to get the same data */ 308 if (!last_stage) { 309 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 310 } 311 312 /* Send XBZRLE based compressed page */ 313 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE); 314 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 315 qemu_put_be16(f, encoded_len); 316 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 317 bytes_sent += encoded_len + 1 + 2; 318 acct_info.xbzrle_pages++; 319 acct_info.xbzrle_bytes += bytes_sent; 320 321 return bytes_sent; 322 } 323 324 325 /* This is the last block that we have visited serching for dirty pages 326 */ 327 static RAMBlock *last_seen_block; 328 /* This is the last block from where we have sent data */ 329 static RAMBlock *last_sent_block; 330 static ram_addr_t last_offset; 331 static unsigned long *migration_bitmap; 332 static uint64_t migration_dirty_pages; 333 static uint32_t last_version; 334 static bool ram_bulk_stage; 335 336 static inline 337 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, 338 ram_addr_t start) 339 { 340 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; 341 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 342 unsigned long size = base + (int128_get64(mr->size) >> TARGET_PAGE_BITS); 343 344 unsigned long next; 345 346 if (ram_bulk_stage && nr > base) { 347 next = nr + 1; 348 } else { 349 next = find_next_bit(migration_bitmap, size, nr); 350 } 351 352 if (next < size) { 353 clear_bit(next, migration_bitmap); 354 migration_dirty_pages--; 355 } 356 return (next - base) << TARGET_PAGE_BITS; 357 } 358 359 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr, 360 ram_addr_t offset) 361 { 362 bool ret; 363 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS; 364 365 ret = test_and_set_bit(nr, migration_bitmap); 366 367 if (!ret) { 368 migration_dirty_pages++; 369 } 370 return ret; 371 } 372 373 /* Needs iothread lock! */ 374 375 static void migration_bitmap_sync(void) 376 { 377 RAMBlock *block; 378 ram_addr_t addr; 379 uint64_t num_dirty_pages_init = migration_dirty_pages; 380 MigrationState *s = migrate_get_current(); 381 static int64_t start_time; 382 static int64_t num_dirty_pages_period; 383 int64_t end_time; 384 385 if (!start_time) { 386 start_time = qemu_get_clock_ms(rt_clock); 387 } 388 389 trace_migration_bitmap_sync_start(); 390 memory_global_sync_dirty_bitmap(get_system_memory()); 391 392 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 393 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) { 394 if (memory_region_test_and_clear_dirty(block->mr, 395 addr, TARGET_PAGE_SIZE, 396 DIRTY_MEMORY_MIGRATION)) { 397 migration_bitmap_set_dirty(block->mr, addr); 398 } 399 } 400 } 401 trace_migration_bitmap_sync_end(migration_dirty_pages 402 - num_dirty_pages_init); 403 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 404 end_time = qemu_get_clock_ms(rt_clock); 405 406 /* more than 1 second = 1000 millisecons */ 407 if (end_time > start_time + 1000) { 408 s->dirty_pages_rate = num_dirty_pages_period * 1000 409 / (end_time - start_time); 410 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 411 start_time = end_time; 412 num_dirty_pages_period = 0; 413 } 414 } 415 416 /* 417 * ram_save_block: Writes a page of memory to the stream f 418 * 419 * Returns: The number of bytes written. 420 * 0 means no dirty pages 421 */ 422 423 static int ram_save_block(QEMUFile *f, bool last_stage) 424 { 425 RAMBlock *block = last_seen_block; 426 ram_addr_t offset = last_offset; 427 bool complete_round = false; 428 int bytes_sent = 0; 429 MemoryRegion *mr; 430 ram_addr_t current_addr; 431 432 if (!block) 433 block = QTAILQ_FIRST(&ram_list.blocks); 434 435 while (true) { 436 mr = block->mr; 437 offset = migration_bitmap_find_and_reset_dirty(mr, offset); 438 if (complete_round && block == last_seen_block && 439 offset >= last_offset) { 440 break; 441 } 442 if (offset >= block->length) { 443 offset = 0; 444 block = QTAILQ_NEXT(block, next); 445 if (!block) { 446 block = QTAILQ_FIRST(&ram_list.blocks); 447 complete_round = true; 448 ram_bulk_stage = false; 449 } 450 } else { 451 uint8_t *p; 452 int cont = (block == last_sent_block) ? 453 RAM_SAVE_FLAG_CONTINUE : 0; 454 455 p = memory_region_get_ram_ptr(mr) + offset; 456 457 /* In doubt sent page as normal */ 458 bytes_sent = -1; 459 if (is_zero_page(p)) { 460 acct_info.dup_pages++; 461 if (!ram_bulk_stage) { 462 bytes_sent = save_block_hdr(f, block, offset, cont, 463 RAM_SAVE_FLAG_COMPRESS); 464 qemu_put_byte(f, 0); 465 bytes_sent++; 466 } else { 467 acct_info.skipped_pages++; 468 bytes_sent = 0; 469 } 470 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 471 current_addr = block->offset + offset; 472 bytes_sent = save_xbzrle_page(f, p, current_addr, block, 473 offset, cont, last_stage); 474 if (!last_stage) { 475 p = get_cached_data(XBZRLE.cache, current_addr); 476 } 477 } 478 479 /* XBZRLE overflow or normal page */ 480 if (bytes_sent == -1) { 481 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE); 482 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 483 bytes_sent += TARGET_PAGE_SIZE; 484 acct_info.norm_pages++; 485 } 486 487 /* if page is unmodified, continue to the next */ 488 if (bytes_sent > 0) { 489 last_sent_block = block; 490 break; 491 } 492 } 493 } 494 last_seen_block = block; 495 last_offset = offset; 496 497 return bytes_sent; 498 } 499 500 static uint64_t bytes_transferred; 501 502 static ram_addr_t ram_save_remaining(void) 503 { 504 return migration_dirty_pages; 505 } 506 507 uint64_t ram_bytes_remaining(void) 508 { 509 return ram_save_remaining() * TARGET_PAGE_SIZE; 510 } 511 512 uint64_t ram_bytes_transferred(void) 513 { 514 return bytes_transferred; 515 } 516 517 uint64_t ram_bytes_total(void) 518 { 519 RAMBlock *block; 520 uint64_t total = 0; 521 522 QTAILQ_FOREACH(block, &ram_list.blocks, next) 523 total += block->length; 524 525 return total; 526 } 527 528 static void migration_end(void) 529 { 530 if (migration_bitmap) { 531 memory_global_dirty_log_stop(); 532 g_free(migration_bitmap); 533 migration_bitmap = NULL; 534 } 535 536 if (XBZRLE.cache) { 537 cache_fini(XBZRLE.cache); 538 g_free(XBZRLE.cache); 539 g_free(XBZRLE.encoded_buf); 540 g_free(XBZRLE.current_buf); 541 g_free(XBZRLE.decoded_buf); 542 XBZRLE.cache = NULL; 543 } 544 } 545 546 static void ram_migration_cancel(void *opaque) 547 { 548 migration_end(); 549 } 550 551 static void reset_ram_globals(void) 552 { 553 last_seen_block = NULL; 554 last_sent_block = NULL; 555 last_offset = 0; 556 last_version = ram_list.version; 557 ram_bulk_stage = true; 558 } 559 560 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 561 562 static int ram_save_setup(QEMUFile *f, void *opaque) 563 { 564 RAMBlock *block; 565 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 566 567 migration_bitmap = bitmap_new(ram_pages); 568 bitmap_set(migration_bitmap, 0, ram_pages); 569 migration_dirty_pages = ram_pages; 570 571 if (migrate_use_xbzrle()) { 572 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 573 TARGET_PAGE_SIZE, 574 TARGET_PAGE_SIZE); 575 if (!XBZRLE.cache) { 576 DPRINTF("Error creating cache\n"); 577 return -1; 578 } 579 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE); 580 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE); 581 acct_clear(); 582 } 583 584 qemu_mutex_lock_iothread(); 585 qemu_mutex_lock_ramlist(); 586 bytes_transferred = 0; 587 reset_ram_globals(); 588 589 memory_global_dirty_log_start(); 590 migration_bitmap_sync(); 591 qemu_mutex_unlock_iothread(); 592 593 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 594 595 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 596 qemu_put_byte(f, strlen(block->idstr)); 597 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 598 qemu_put_be64(f, block->length); 599 } 600 601 qemu_mutex_unlock_ramlist(); 602 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 603 604 return 0; 605 } 606 607 static int ram_save_iterate(QEMUFile *f, void *opaque) 608 { 609 int ret; 610 int i; 611 int64_t t0; 612 int total_sent = 0; 613 614 qemu_mutex_lock_ramlist(); 615 616 if (ram_list.version != last_version) { 617 reset_ram_globals(); 618 } 619 620 t0 = qemu_get_clock_ns(rt_clock); 621 i = 0; 622 while ((ret = qemu_file_rate_limit(f)) == 0) { 623 int bytes_sent; 624 625 bytes_sent = ram_save_block(f, false); 626 /* no more blocks to sent */ 627 if (bytes_sent == 0) { 628 break; 629 } 630 total_sent += bytes_sent; 631 acct_info.iterations++; 632 /* we want to check in the 1st loop, just in case it was the 1st time 633 and we had to sync the dirty bitmap. 634 qemu_get_clock_ns() is a bit expensive, so we only check each some 635 iterations 636 */ 637 if ((i & 63) == 0) { 638 uint64_t t1 = (qemu_get_clock_ns(rt_clock) - t0) / 1000000; 639 if (t1 > MAX_WAIT) { 640 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 641 t1, i); 642 break; 643 } 644 } 645 i++; 646 } 647 648 qemu_mutex_unlock_ramlist(); 649 650 if (ret < 0) { 651 bytes_transferred += total_sent; 652 return ret; 653 } 654 655 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 656 total_sent += 8; 657 bytes_transferred += total_sent; 658 659 return total_sent; 660 } 661 662 static int ram_save_complete(QEMUFile *f, void *opaque) 663 { 664 qemu_mutex_lock_ramlist(); 665 migration_bitmap_sync(); 666 667 /* try transferring iterative blocks of memory */ 668 669 /* flush all remaining blocks regardless of rate limiting */ 670 while (true) { 671 int bytes_sent; 672 673 bytes_sent = ram_save_block(f, true); 674 /* no more blocks to sent */ 675 if (bytes_sent == 0) { 676 break; 677 } 678 bytes_transferred += bytes_sent; 679 } 680 migration_end(); 681 682 qemu_mutex_unlock_ramlist(); 683 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 684 685 return 0; 686 } 687 688 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) 689 { 690 uint64_t remaining_size; 691 692 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 693 694 if (remaining_size < max_size) { 695 qemu_mutex_lock_iothread(); 696 migration_bitmap_sync(); 697 qemu_mutex_unlock_iothread(); 698 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 699 } 700 return remaining_size; 701 } 702 703 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 704 { 705 int ret, rc = 0; 706 unsigned int xh_len; 707 int xh_flags; 708 709 if (!XBZRLE.decoded_buf) { 710 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 711 } 712 713 /* extract RLE header */ 714 xh_flags = qemu_get_byte(f); 715 xh_len = qemu_get_be16(f); 716 717 if (xh_flags != ENCODING_FLAG_XBZRLE) { 718 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n"); 719 return -1; 720 } 721 722 if (xh_len > TARGET_PAGE_SIZE) { 723 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n"); 724 return -1; 725 } 726 /* load data and decode */ 727 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len); 728 729 /* decode RLE */ 730 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host, 731 TARGET_PAGE_SIZE); 732 if (ret == -1) { 733 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n"); 734 rc = -1; 735 } else if (ret > TARGET_PAGE_SIZE) { 736 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n", 737 ret, TARGET_PAGE_SIZE); 738 abort(); 739 } 740 741 return rc; 742 } 743 744 static inline void *host_from_stream_offset(QEMUFile *f, 745 ram_addr_t offset, 746 int flags) 747 { 748 static RAMBlock *block = NULL; 749 char id[256]; 750 uint8_t len; 751 752 if (flags & RAM_SAVE_FLAG_CONTINUE) { 753 if (!block) { 754 fprintf(stderr, "Ack, bad migration stream!\n"); 755 return NULL; 756 } 757 758 return memory_region_get_ram_ptr(block->mr) + offset; 759 } 760 761 len = qemu_get_byte(f); 762 qemu_get_buffer(f, (uint8_t *)id, len); 763 id[len] = 0; 764 765 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 766 if (!strncmp(id, block->idstr, sizeof(id))) 767 return memory_region_get_ram_ptr(block->mr) + offset; 768 } 769 770 fprintf(stderr, "Can't find block %s!\n", id); 771 return NULL; 772 } 773 774 static int ram_load(QEMUFile *f, void *opaque, int version_id) 775 { 776 ram_addr_t addr; 777 int flags, ret = 0; 778 int error; 779 static uint64_t seq_iter; 780 781 seq_iter++; 782 783 if (version_id < 4 || version_id > 4) { 784 return -EINVAL; 785 } 786 787 do { 788 addr = qemu_get_be64(f); 789 790 flags = addr & ~TARGET_PAGE_MASK; 791 addr &= TARGET_PAGE_MASK; 792 793 if (flags & RAM_SAVE_FLAG_MEM_SIZE) { 794 if (version_id == 4) { 795 /* Synchronize RAM block list */ 796 char id[256]; 797 ram_addr_t length; 798 ram_addr_t total_ram_bytes = addr; 799 800 while (total_ram_bytes) { 801 RAMBlock *block; 802 uint8_t len; 803 804 len = qemu_get_byte(f); 805 qemu_get_buffer(f, (uint8_t *)id, len); 806 id[len] = 0; 807 length = qemu_get_be64(f); 808 809 QTAILQ_FOREACH(block, &ram_list.blocks, next) { 810 if (!strncmp(id, block->idstr, sizeof(id))) { 811 if (block->length != length) { 812 ret = -EINVAL; 813 goto done; 814 } 815 break; 816 } 817 } 818 819 if (!block) { 820 fprintf(stderr, "Unknown ramblock \"%s\", cannot " 821 "accept migration\n", id); 822 ret = -EINVAL; 823 goto done; 824 } 825 826 total_ram_bytes -= length; 827 } 828 } 829 } 830 831 if (flags & RAM_SAVE_FLAG_COMPRESS) { 832 void *host; 833 uint8_t ch; 834 835 host = host_from_stream_offset(f, addr, flags); 836 if (!host) { 837 return -EINVAL; 838 } 839 840 ch = qemu_get_byte(f); 841 memset(host, ch, TARGET_PAGE_SIZE); 842 #ifndef _WIN32 843 if (ch == 0 && 844 (!kvm_enabled() || kvm_has_sync_mmu()) && 845 getpagesize() <= TARGET_PAGE_SIZE) { 846 qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED); 847 } 848 #endif 849 } else if (flags & RAM_SAVE_FLAG_PAGE) { 850 void *host; 851 852 host = host_from_stream_offset(f, addr, flags); 853 if (!host) { 854 return -EINVAL; 855 } 856 857 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 858 } else if (flags & RAM_SAVE_FLAG_XBZRLE) { 859 void *host = host_from_stream_offset(f, addr, flags); 860 if (!host) { 861 return -EINVAL; 862 } 863 864 if (load_xbzrle(f, addr, host) < 0) { 865 ret = -EINVAL; 866 goto done; 867 } 868 } 869 error = qemu_file_get_error(f); 870 if (error) { 871 ret = error; 872 goto done; 873 } 874 } while (!(flags & RAM_SAVE_FLAG_EOS)); 875 876 done: 877 DPRINTF("Completed load of VM with exit code %d seq iteration " 878 "%" PRIu64 "\n", ret, seq_iter); 879 return ret; 880 } 881 882 SaveVMHandlers savevm_ram_handlers = { 883 .save_live_setup = ram_save_setup, 884 .save_live_iterate = ram_save_iterate, 885 .save_live_complete = ram_save_complete, 886 .save_live_pending = ram_save_pending, 887 .load_state = ram_load, 888 .cancel = ram_migration_cancel, 889 }; 890 891 #ifdef HAS_AUDIO 892 struct soundhw { 893 const char *name; 894 const char *descr; 895 int enabled; 896 int isa; 897 union { 898 int (*init_isa) (ISABus *bus); 899 int (*init_pci) (PCIBus *bus); 900 } init; 901 }; 902 903 static struct soundhw soundhw[] = { 904 #ifdef HAS_AUDIO_CHOICE 905 #ifdef CONFIG_PCSPK 906 { 907 "pcspk", 908 "PC speaker", 909 0, 910 1, 911 { .init_isa = pcspk_audio_init } 912 }, 913 #endif 914 915 #ifdef CONFIG_SB16 916 { 917 "sb16", 918 "Creative Sound Blaster 16", 919 0, 920 1, 921 { .init_isa = SB16_init } 922 }, 923 #endif 924 925 #ifdef CONFIG_CS4231A 926 { 927 "cs4231a", 928 "CS4231A", 929 0, 930 1, 931 { .init_isa = cs4231a_init } 932 }, 933 #endif 934 935 #ifdef CONFIG_ADLIB 936 { 937 "adlib", 938 #ifdef HAS_YMF262 939 "Yamaha YMF262 (OPL3)", 940 #else 941 "Yamaha YM3812 (OPL2)", 942 #endif 943 0, 944 1, 945 { .init_isa = Adlib_init } 946 }, 947 #endif 948 949 #ifdef CONFIG_GUS 950 { 951 "gus", 952 "Gravis Ultrasound GF1", 953 0, 954 1, 955 { .init_isa = GUS_init } 956 }, 957 #endif 958 959 #ifdef CONFIG_AC97 960 { 961 "ac97", 962 "Intel 82801AA AC97 Audio", 963 0, 964 0, 965 { .init_pci = ac97_init } 966 }, 967 #endif 968 969 #ifdef CONFIG_ES1370 970 { 971 "es1370", 972 "ENSONIQ AudioPCI ES1370", 973 0, 974 0, 975 { .init_pci = es1370_init } 976 }, 977 #endif 978 979 #ifdef CONFIG_HDA 980 { 981 "hda", 982 "Intel HD Audio", 983 0, 984 0, 985 { .init_pci = intel_hda_and_codec_init } 986 }, 987 #endif 988 989 #endif /* HAS_AUDIO_CHOICE */ 990 991 { NULL, NULL, 0, 0, { NULL } } 992 }; 993 994 void select_soundhw(const char *optarg) 995 { 996 struct soundhw *c; 997 998 if (is_help_option(optarg)) { 999 show_valid_cards: 1000 1001 #ifdef HAS_AUDIO_CHOICE 1002 printf("Valid sound card names (comma separated):\n"); 1003 for (c = soundhw; c->name; ++c) { 1004 printf ("%-11s %s\n", c->name, c->descr); 1005 } 1006 printf("\n-soundhw all will enable all of the above\n"); 1007 #else 1008 printf("Machine has no user-selectable audio hardware " 1009 "(it may or may not have always-present audio hardware).\n"); 1010 #endif 1011 exit(!is_help_option(optarg)); 1012 } 1013 else { 1014 size_t l; 1015 const char *p; 1016 char *e; 1017 int bad_card = 0; 1018 1019 if (!strcmp(optarg, "all")) { 1020 for (c = soundhw; c->name; ++c) { 1021 c->enabled = 1; 1022 } 1023 return; 1024 } 1025 1026 p = optarg; 1027 while (*p) { 1028 e = strchr(p, ','); 1029 l = !e ? strlen(p) : (size_t) (e - p); 1030 1031 for (c = soundhw; c->name; ++c) { 1032 if (!strncmp(c->name, p, l) && !c->name[l]) { 1033 c->enabled = 1; 1034 break; 1035 } 1036 } 1037 1038 if (!c->name) { 1039 if (l > 80) { 1040 fprintf(stderr, 1041 "Unknown sound card name (too big to show)\n"); 1042 } 1043 else { 1044 fprintf(stderr, "Unknown sound card name `%.*s'\n", 1045 (int) l, p); 1046 } 1047 bad_card = 1; 1048 } 1049 p += l + (e != NULL); 1050 } 1051 1052 if (bad_card) { 1053 goto show_valid_cards; 1054 } 1055 } 1056 } 1057 1058 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1059 { 1060 struct soundhw *c; 1061 1062 for (c = soundhw; c->name; ++c) { 1063 if (c->enabled) { 1064 if (c->isa) { 1065 if (isa_bus) { 1066 c->init.init_isa(isa_bus); 1067 } 1068 } else { 1069 if (pci_bus) { 1070 c->init.init_pci(pci_bus); 1071 } 1072 } 1073 } 1074 } 1075 } 1076 #else 1077 void select_soundhw(const char *optarg) 1078 { 1079 } 1080 void audio_init(ISABus *isa_bus, PCIBus *pci_bus) 1081 { 1082 } 1083 #endif 1084 1085 int qemu_uuid_parse(const char *str, uint8_t *uuid) 1086 { 1087 int ret; 1088 1089 if (strlen(str) != 36) { 1090 return -1; 1091 } 1092 1093 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], 1094 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], 1095 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], 1096 &uuid[15]); 1097 1098 if (ret != 16) { 1099 return -1; 1100 } 1101 #ifdef TARGET_I386 1102 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); 1103 #endif 1104 return 0; 1105 } 1106 1107 void do_acpitable_option(const QemuOpts *opts) 1108 { 1109 #ifdef TARGET_I386 1110 Error *err = NULL; 1111 1112 acpi_table_add(opts, &err); 1113 if (err) { 1114 fprintf(stderr, "Wrong acpi table provided: %s\n", 1115 error_get_pretty(err)); 1116 error_free(err); 1117 exit(1); 1118 } 1119 #endif 1120 } 1121 1122 void do_smbios_option(const char *optarg) 1123 { 1124 #ifdef TARGET_I386 1125 if (smbios_entry_add(optarg) < 0) { 1126 fprintf(stderr, "Wrong smbios provided\n"); 1127 exit(1); 1128 } 1129 #endif 1130 } 1131 1132 void cpudef_init(void) 1133 { 1134 #if defined(cpudef_setup) 1135 cpudef_setup(); /* parse cpu definitions in target config file */ 1136 #endif 1137 } 1138 1139 int audio_available(void) 1140 { 1141 #ifdef HAS_AUDIO 1142 return 1; 1143 #else 1144 return 0; 1145 #endif 1146 } 1147 1148 int tcg_available(void) 1149 { 1150 return 1; 1151 } 1152 1153 int kvm_available(void) 1154 { 1155 #ifdef CONFIG_KVM 1156 return 1; 1157 #else 1158 return 0; 1159 #endif 1160 } 1161 1162 int xen_available(void) 1163 { 1164 #ifdef CONFIG_XEN 1165 return 1; 1166 #else 1167 return 0; 1168 #endif 1169 } 1170 1171 1172 TargetInfo *qmp_query_target(Error **errp) 1173 { 1174 TargetInfo *info = g_malloc0(sizeof(*info)); 1175 1176 info->arch = TARGET_TYPE; 1177 1178 return info; 1179 } 1180