xref: /qemu/rust/qemu-api/src/qom.rs (revision ca0d60a6ad777ab617cbc4e6f328eaff60617b3f)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!
41 //! * an implementation of [`ClassInitImpl`], for example
42 //!   `ClassInitImpl<DeviceClass>`. This fills the vtable in the class struct;
43 //!   the source for this is the `*Impl` trait; the associated consts and
44 //!   functions if needed are wrapped to map C types into Rust types.
45 //!
46 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
47 //!   automatically implemented for any reference or smart pointer to a device
48 //!   instance.  It calls into the vtable provides access across all subclasses
49 //!   to methods defined for the class.
50 //!
51 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
52 //!   This provides access to class-wide functionality that doesn't depend on
53 //!   instance data. Like instance methods, these are automatically inherited by
54 //!   child classes.
55 
56 use std::{
57     ffi::CStr,
58     fmt,
59     ops::{Deref, DerefMut},
60     os::raw::c_void,
61 };
62 
63 pub use bindings::{Object, ObjectClass};
64 
65 use crate::bindings::{self, object_dynamic_cast, object_get_class, object_get_typename, TypeInfo};
66 
67 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
68 /// or indirect parent of `Self`).
69 ///
70 /// # Safety
71 ///
72 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
73 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
74 /// which rely on `IsA<>` for static checking, are rejected at compile time.
75 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
76 
77 // SAFETY: it is always safe to cast to your own type
78 unsafe impl<T: ObjectType> IsA<T> for T {}
79 
80 /// Macro to mark superclasses of QOM classes.  This enables type-safe
81 /// up- and downcasting.
82 ///
83 /// # Safety
84 ///
85 /// This macro is a thin wrapper around the [`IsA`] trait and performs
86 /// no checking whatsoever of what is declared.  It is the caller's
87 /// responsibility to have $struct begin, directly or indirectly, with
88 /// a field of type `$parent`.
89 #[macro_export]
90 macro_rules! qom_isa {
91     ($struct:ty : $($parent:ty),* ) => {
92         $(
93             // SAFETY: it is the caller responsibility to have $parent as the
94             // first field
95             unsafe impl $crate::qom::IsA<$parent> for $struct {}
96 
97             impl AsRef<$parent> for $struct {
98                 fn as_ref(&self) -> &$parent {
99                     // SAFETY: follows the same rules as for IsA<U>, which is
100                     // declared above.
101                     let ptr: *const Self = self;
102                     unsafe { &*ptr.cast::<$parent>() }
103                 }
104             }
105         )*
106     };
107 }
108 
109 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
110 /// it hides the standard methods of `ManuallyDrop`.
111 ///
112 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
113 /// (Technically, this is only necessary if there is at least one Rust
114 /// superclass in the hierarchy).  This is to ensure that the parent field is
115 /// dropped after the subclass; this drop order is enforced by the C
116 /// `object_deinit` function.
117 ///
118 /// # Examples
119 ///
120 /// ```ignore
121 /// #[repr(C)]
122 /// #[derive(qemu_api_macros::Object)]
123 /// pub struct MyDevice {
124 ///     parent: ParentField<DeviceState>,
125 ///     ...
126 /// }
127 /// ```
128 #[derive(Debug)]
129 #[repr(transparent)]
130 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
131 
132 impl<T: ObjectType> Deref for ParentField<T> {
133     type Target = T;
134 
135     #[inline(always)]
136     fn deref(&self) -> &Self::Target {
137         &self.0
138     }
139 }
140 
141 impl<T: ObjectType> DerefMut for ParentField<T> {
142     #[inline(always)]
143     fn deref_mut(&mut self) -> &mut Self::Target {
144         &mut self.0
145     }
146 }
147 
148 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
149     #[inline(always)]
150     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
151         self.0.fmt(f)
152     }
153 }
154 
155 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut Object) {
156     // SAFETY: obj is an instance of T, since rust_instance_init<T>
157     // is called from QOM core as the instance_init function
158     // for class T
159     unsafe { T::INSTANCE_INIT.unwrap()(&mut *obj.cast::<T>()) }
160 }
161 
162 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut Object) {
163     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
164     // is called from QOM core as the instance_post_init function
165     // for class T
166     //
167     // FIXME: it's not really guaranteed that there are no backpointers to
168     // obj; it's quite possible that they have been created by instance_init().
169     // The receiver should be &self, not &mut self.
170     T::INSTANCE_POST_INIT.unwrap()(unsafe { &mut *obj.cast::<T>() })
171 }
172 
173 unsafe extern "C" fn rust_class_init<T: ObjectType + ClassInitImpl<T::Class>>(
174     klass: *mut ObjectClass,
175     _data: *mut c_void,
176 ) {
177     // SAFETY: klass is a T::Class, since rust_class_init<T>
178     // is called from QOM core as the class_init function
179     // for class T
180     T::class_init(unsafe { &mut *klass.cast::<T::Class>() })
181 }
182 
183 /// Trait exposed by all structs corresponding to QOM objects.
184 ///
185 /// # Safety
186 ///
187 /// For classes declared in C:
188 ///
189 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
190 ///
191 /// - the first field of the struct must be of the instance type corresponding
192 ///   to the superclass, as declared in the `TypeInfo`
193 ///
194 /// - likewise, the first field of the `Class` struct must be of the class type
195 ///   corresponding to the superclass
196 ///
197 /// For classes declared in Rust and implementing [`ObjectImpl`]:
198 ///
199 /// - the struct must be `#[repr(C)]`;
200 ///
201 /// - the first field of the struct must be of type
202 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
203 ///   [`ObjectImpl::ParentType`]
204 ///
205 /// - the first field of the `Class` must be of the class struct corresponding
206 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
207 ///   is not needed here.
208 ///
209 /// In both cases, having a separate class type is not necessary if the subclass
210 /// does not add any field.
211 pub unsafe trait ObjectType: Sized {
212     /// The QOM class object corresponding to this struct.  This is used
213     /// to automatically generate a `class_init` method.
214     type Class;
215 
216     /// The name of the type, which can be passed to `object_new()` to
217     /// generate an instance of this type.
218     const TYPE_NAME: &'static CStr;
219 
220     /// Return the receiver as an Object.  This is always safe, even
221     /// if this type represents an interface.
222     fn as_object(&self) -> &Object {
223         unsafe { &*self.as_object_ptr() }
224     }
225 
226     /// Return the receiver as a const raw pointer to Object.
227     /// This is preferrable to `as_object_mut_ptr()` if a C
228     /// function only needs a `const Object *`.
229     fn as_object_ptr(&self) -> *const Object {
230         self.as_ptr().cast()
231     }
232 
233     /// Return the receiver as a mutable raw pointer to Object.
234     ///
235     /// # Safety
236     ///
237     /// This cast is always safe, but because the result is mutable
238     /// and the incoming reference is not, this should only be used
239     /// for calls to C functions, and only if needed.
240     unsafe fn as_object_mut_ptr(&self) -> *mut Object {
241         self.as_object_ptr() as *mut _
242     }
243 }
244 
245 /// This trait provides safe casting operations for QOM objects to raw pointers,
246 /// to be used for example for FFI. The trait can be applied to any kind of
247 /// reference or smart pointers, and enforces correctness through the [`IsA`]
248 /// trait.
249 pub trait ObjectDeref: Deref
250 where
251     Self::Target: ObjectType,
252 {
253     /// Convert to a const Rust pointer, to be used for example for FFI.
254     /// The target pointer type must be the type of `self` or a superclass
255     fn as_ptr<U: ObjectType>(&self) -> *const U
256     where
257         Self::Target: IsA<U>,
258     {
259         let ptr: *const Self::Target = self.deref();
260         ptr.cast::<U>()
261     }
262 
263     /// Convert to a mutable Rust pointer, to be used for example for FFI.
264     /// The target pointer type must be the type of `self` or a superclass.
265     /// Used to implement interior mutability for objects.
266     ///
267     /// # Safety
268     ///
269     /// This method is unsafe because it overrides const-ness of `&self`.
270     /// Bindings to C APIs will use it a lot, but otherwise it should not
271     /// be necessary.
272     unsafe fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
273     where
274         Self::Target: IsA<U>,
275     {
276         #[allow(clippy::as_ptr_cast_mut)]
277         {
278             self.as_ptr::<U>() as *mut _
279         }
280     }
281 }
282 
283 /// Trait that adds extra functionality for `&T` where `T` is a QOM
284 /// object type.  Allows conversion to/from C objects in generic code.
285 pub trait ObjectCast: ObjectDeref + Copy
286 where
287     Self::Target: ObjectType,
288 {
289     /// Safely convert from a derived type to one of its parent types.
290     ///
291     /// This is always safe; the [`IsA`] trait provides static verification
292     /// trait that `Self` dereferences to `U` or a child of `U`.
293     fn upcast<'a, U: ObjectType>(self) -> &'a U
294     where
295         Self::Target: IsA<U>,
296         Self: 'a,
297     {
298         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
299         unsafe { self.unsafe_cast::<U>() }
300     }
301 
302     /// Attempt to convert to a derived type.
303     ///
304     /// Returns `None` if the object is not actually of type `U`. This is
305     /// verified at runtime by checking the object's type information.
306     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
307     where
308         Self: 'a,
309     {
310         self.dynamic_cast::<U>()
311     }
312 
313     /// Attempt to convert between any two types in the QOM hierarchy.
314     ///
315     /// Returns `None` if the object is not actually of type `U`. This is
316     /// verified at runtime by checking the object's type information.
317     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
318     where
319         Self: 'a,
320     {
321         unsafe {
322             // SAFETY: upcasting to Object is always valid, and the
323             // return type is either NULL or the argument itself
324             let result: *const U =
325                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
326 
327             result.as_ref()
328         }
329     }
330 
331     /// Convert to any QOM type without verification.
332     ///
333     /// # Safety
334     ///
335     /// What safety? You need to know yourself that the cast is correct; only
336     /// use when performance is paramount.  It is still better than a raw
337     /// pointer `cast()`, which does not even check that you remain in the
338     /// realm of QOM `ObjectType`s.
339     ///
340     /// `unsafe_cast::<Object>()` is always safe.
341     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
342     where
343         Self: 'a,
344     {
345         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
346     }
347 }
348 
349 impl<T: ObjectType> ObjectDeref for &T {}
350 impl<T: ObjectType> ObjectCast for &T {}
351 
352 /// Trait for mutable type casting operations in the QOM hierarchy.
353 ///
354 /// This trait provides the mutable counterparts to [`ObjectCast`]'s conversion
355 /// functions. Unlike `ObjectCast`, this trait returns `Result` for fallible
356 /// conversions to preserve the original smart pointer if the cast fails. This
357 /// is necessary because mutable references cannot be copied, so a failed cast
358 /// must return ownership of the original reference. For example:
359 ///
360 /// ```ignore
361 /// let mut dev = get_device();
362 /// // If this fails, we need the original `dev` back to try something else
363 /// match dev.dynamic_cast_mut::<FooDevice>() {
364 ///    Ok(foodev) => /* use foodev */,
365 ///    Err(dev) => /* still have ownership of dev */
366 /// }
367 /// ```
368 pub trait ObjectCastMut: Sized + ObjectDeref + DerefMut
369 where
370     Self::Target: ObjectType,
371 {
372     /// Safely convert from a derived type to one of its parent types.
373     ///
374     /// This is always safe; the [`IsA`] trait provides static verification
375     /// that `Self` dereferences to `U` or a child of `U`.
376     fn upcast_mut<'a, U: ObjectType>(self) -> &'a mut U
377     where
378         Self::Target: IsA<U>,
379         Self: 'a,
380     {
381         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
382         unsafe { self.unsafe_cast_mut::<U>() }
383     }
384 
385     /// Attempt to convert to a derived type.
386     ///
387     /// Returns `Ok(..)` if the object is of type `U`, or `Err(self)` if the
388     /// object if the conversion failed. This is verified at runtime by
389     /// checking the object's type information.
390     fn downcast_mut<'a, U: IsA<Self::Target>>(self) -> Result<&'a mut U, Self>
391     where
392         Self: 'a,
393     {
394         self.dynamic_cast_mut::<U>()
395     }
396 
397     /// Attempt to convert between any two types in the QOM hierarchy.
398     ///
399     /// Returns `Ok(..)` if the object is of type `U`, or `Err(self)` if the
400     /// object if the conversion failed. This is verified at runtime by
401     /// checking the object's type information.
402     fn dynamic_cast_mut<'a, U: ObjectType>(self) -> Result<&'a mut U, Self>
403     where
404         Self: 'a,
405     {
406         unsafe {
407             // SAFETY: upcasting to Object is always valid, and the
408             // return type is either NULL or the argument itself
409             let result: *mut U =
410                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
411 
412             result.as_mut().ok_or(self)
413         }
414     }
415 
416     /// Convert to any QOM type without verification.
417     ///
418     /// # Safety
419     ///
420     /// What safety? You need to know yourself that the cast is correct; only
421     /// use when performance is paramount.  It is still better than a raw
422     /// pointer `cast()`, which does not even check that you remain in the
423     /// realm of QOM `ObjectType`s.
424     ///
425     /// `unsafe_cast::<Object>()` is always safe.
426     unsafe fn unsafe_cast_mut<'a, U: ObjectType>(self) -> &'a mut U
427     where
428         Self: 'a,
429     {
430         unsafe { &mut *self.as_mut_ptr::<Self::Target>().cast::<U>() }
431     }
432 }
433 
434 impl<T: ObjectType> ObjectDeref for &mut T {}
435 impl<T: ObjectType> ObjectCastMut for &mut T {}
436 
437 /// Trait a type must implement to be registered with QEMU.
438 pub trait ObjectImpl: ObjectType + ClassInitImpl<Self::Class> {
439     /// The parent of the type.  This should match the first field of the
440     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
441     type ParentType: ObjectType;
442 
443     /// Whether the object can be instantiated
444     const ABSTRACT: bool = false;
445     const INSTANCE_FINALIZE: Option<unsafe extern "C" fn(obj: *mut Object)> = None;
446 
447     /// Function that is called to initialize an object.  The parent class will
448     /// have already been initialized so the type is only responsible for
449     /// initializing its own members.
450     ///
451     /// FIXME: The argument is not really a valid reference. `&mut
452     /// MaybeUninit<Self>` would be a better description.
453     const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
454 
455     /// Function that is called to finish initialization of an object, once
456     /// `INSTANCE_INIT` functions have been called.
457     const INSTANCE_POST_INIT: Option<fn(&mut Self)> = None;
458 
459     /// Called on descendent classes after all parent class initialization
460     /// has occurred, but before the class itself is initialized.  This
461     /// is only useful if a class is not a leaf, and can be used to undo
462     /// the effects of copying the contents of the parent's class struct
463     /// to the descendants.
464     const CLASS_BASE_INIT: Option<
465         unsafe extern "C" fn(klass: *mut ObjectClass, data: *mut c_void),
466     > = None;
467 
468     const TYPE_INFO: TypeInfo = TypeInfo {
469         name: Self::TYPE_NAME.as_ptr(),
470         parent: Self::ParentType::TYPE_NAME.as_ptr(),
471         instance_size: core::mem::size_of::<Self>(),
472         instance_align: core::mem::align_of::<Self>(),
473         instance_init: match Self::INSTANCE_INIT {
474             None => None,
475             Some(_) => Some(rust_instance_init::<Self>),
476         },
477         instance_post_init: match Self::INSTANCE_POST_INIT {
478             None => None,
479             Some(_) => Some(rust_instance_post_init::<Self>),
480         },
481         instance_finalize: Self::INSTANCE_FINALIZE,
482         abstract_: Self::ABSTRACT,
483         class_size: core::mem::size_of::<Self::Class>(),
484         class_init: Some(rust_class_init::<Self>),
485         class_base_init: Self::CLASS_BASE_INIT,
486         class_data: core::ptr::null_mut(),
487         interfaces: core::ptr::null_mut(),
488     };
489 
490     // methods on ObjectClass
491     const UNPARENT: Option<fn(&Self)> = None;
492 }
493 
494 /// Internal trait used to automatically fill in a class struct.
495 ///
496 /// Each QOM class that has virtual methods describes them in a
497 /// _class struct_.  Class structs include a parent field corresponding
498 /// to the vtable of the parent class, all the way up to [`ObjectClass`].
499 /// Each QOM type has one such class struct; this trait takes care of
500 /// initializing the `T` part of the class struct, for the type that
501 /// implements the trait.
502 ///
503 /// Each struct will implement this trait with `T` equal to each
504 /// superclass.  For example, a device should implement at least
505 /// `ClassInitImpl<`[`DeviceClass`](crate::qdev::DeviceClass)`>` and
506 /// `ClassInitImpl<`[`ObjectClass`]`>`.  Such implementations are made
507 /// in one of two ways.
508 ///
509 /// For most superclasses, `ClassInitImpl` is provided by the `qemu-api`
510 /// crate itself.  The Rust implementation of methods will come from a
511 /// trait like [`ObjectImpl`] or [`DeviceImpl`](crate::qdev::DeviceImpl),
512 /// and `ClassInitImpl` is provided by blanket implementations that
513 /// operate on all implementors of the `*Impl`* trait.  For example:
514 ///
515 /// ```ignore
516 /// impl<T> ClassInitImpl<DeviceClass> for T
517 /// where
518 ///     T: ClassInitImpl<ObjectClass> + DeviceImpl,
519 /// ```
520 ///
521 /// The bound on `ClassInitImpl<ObjectClass>` is needed so that,
522 /// after initializing the `DeviceClass` part of the class struct,
523 /// the parent [`ObjectClass`] is initialized as well.
524 ///
525 /// The other case is when manual implementation of the trait is needed.
526 /// This covers the following cases:
527 ///
528 /// * if a class implements a QOM interface, the Rust code _has_ to define its
529 ///   own class struct `FooClass` and implement `ClassInitImpl<FooClass>`.
530 ///   `ClassInitImpl<FooClass>`'s `class_init` method will then forward to
531 ///   multiple other `class_init`s, for the interfaces as well as the
532 ///   superclass. (Note that there is no Rust example yet for using interfaces).
533 ///
534 /// * for classes implemented outside the ``qemu-api`` crate, it's not possible
535 ///   to add blanket implementations like the above one, due to orphan rules. In
536 ///   that case, the easiest solution is to implement
537 ///   `ClassInitImpl<YourSuperclass>` for each subclass and not have a
538 ///   `YourSuperclassImpl` trait at all.
539 ///
540 /// ```ignore
541 /// impl ClassInitImpl<YourSuperclass> for YourSubclass {
542 ///     fn class_init(klass: &mut YourSuperclass) {
543 ///         klass.some_method = Some(Self::some_method);
544 ///         <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class);
545 ///     }
546 /// }
547 /// ```
548 ///
549 ///   While this method incurs a small amount of code duplication,
550 ///   it is generally limited to the recursive call on the last line.
551 ///   This is because classes defined in Rust do not need the same
552 ///   glue code that is needed when the classes are defined in C code.
553 ///   You may consider using a macro if you have many subclasses.
554 pub trait ClassInitImpl<T> {
555     /// Initialize `klass` to point to the virtual method implementations
556     /// for `Self`.  On entry, the virtual method pointers are set to
557     /// the default values coming from the parent classes; the function
558     /// can change them to override virtual methods of a parent class.
559     ///
560     /// The virtual method implementations usually come from another
561     /// trait, for example [`DeviceImpl`](crate::qdev::DeviceImpl)
562     /// when `T` is [`DeviceClass`](crate::qdev::DeviceClass).
563     ///
564     /// On entry, `klass`'s parent class is initialized, while the other fields
565     /// are all zero; it is therefore assumed that all fields in `T` can be
566     /// zeroed, otherwise it would not be possible to provide the class as a
567     /// `&mut T`.  TODO: add a bound of [`Zeroable`](crate::zeroable::Zeroable)
568     /// to T; this is more easily done once Zeroable does not require a manual
569     /// implementation (Rust 1.75.0).
570     fn class_init(klass: &mut T);
571 }
572 
573 /// # Safety
574 ///
575 /// We expect the FFI user of this function to pass a valid pointer that
576 /// can be downcasted to type `T`. We also expect the device is
577 /// readable/writeable from one thread at any time.
578 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut Object) {
579     unsafe {
580         assert!(!dev.is_null());
581         let state = core::ptr::NonNull::new_unchecked(dev.cast::<T>());
582         T::UNPARENT.unwrap()(state.as_ref());
583     }
584 }
585 
586 impl<T> ClassInitImpl<ObjectClass> for T
587 where
588     T: ObjectImpl,
589 {
590     fn class_init(oc: &mut ObjectClass) {
591         if <T as ObjectImpl>::UNPARENT.is_some() {
592             oc.unparent = Some(rust_unparent_fn::<T>);
593         }
594     }
595 }
596 
597 unsafe impl ObjectType for Object {
598     type Class = ObjectClass;
599     const TYPE_NAME: &'static CStr =
600         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
601 }
602 
603 /// Trait for methods exposed by the Object class.  The methods can be
604 /// called on all objects that have the trait `IsA<Object>`.
605 ///
606 /// The trait should only be used through the blanket implementation,
607 /// which guarantees safety via `IsA`
608 pub trait ObjectMethods: ObjectDeref
609 where
610     Self::Target: IsA<Object>,
611 {
612     /// Return the name of the type of `self`
613     fn typename(&self) -> std::borrow::Cow<'_, str> {
614         let obj = self.upcast::<Object>();
615         // SAFETY: safety of this is the requirement for implementing IsA
616         // The result of the C API has static lifetime
617         unsafe {
618             let p = object_get_typename(obj.as_mut_ptr());
619             CStr::from_ptr(p).to_string_lossy()
620         }
621     }
622 
623     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
624         let obj = self.upcast::<Object>();
625 
626         // SAFETY: all objects can call object_get_class; the actual class
627         // type is guaranteed by the implementation of `ObjectType` and
628         // `ObjectImpl`.
629         let klass: &'static <Self::Target as ObjectType>::Class =
630             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
631 
632         klass
633     }
634 }
635 
636 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
637