xref: /qemu/rust/qemu-api/src/qom.rs (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to access QOM functionality from Rust.
6 //!
7 //! The QEMU Object Model (QOM) provides inheritance and dynamic typing for QEMU
8 //! devices. This module makes QOM's features available in Rust through three
9 //! main mechanisms:
10 //!
11 //! * Automatic creation and registration of `TypeInfo` for classes that are
12 //!   written in Rust, as well as mapping between Rust traits and QOM vtables.
13 //!
14 //! * Type-safe casting between parent and child classes, through the [`IsA`]
15 //!   trait and methods such as [`upcast`](ObjectCast::upcast) and
16 //!   [`downcast`](ObjectCast::downcast).
17 //!
18 //! * Automatic delegation of parent class methods to child classes. When a
19 //!   trait uses [`IsA`] as a bound, its contents become available to all child
20 //!   classes through blanket implementations. This works both for class methods
21 //!   and for instance methods accessed through references or smart pointers.
22 //!
23 //! # Structure of a class
24 //!
25 //! A leaf class only needs a struct holding instance state. The struct must
26 //! implement the [`ObjectType`] and [`IsA`] traits, as well as any `*Impl`
27 //! traits that exist for its superclasses.
28 //!
29 //! If a class has subclasses, it will also provide a struct for instance data,
30 //! with the same characteristics as for concrete classes, but it also needs
31 //! additional components to support virtual methods:
32 //!
33 //! * a struct for class data, for example `DeviceClass`. This corresponds to
34 //!   the C "class struct" and holds the vtable that is used by instances of the
35 //!   class and its subclasses. It must start with its parent's class struct.
36 //!
37 //! * a trait for virtual method implementations, for example `DeviceImpl`.
38 //!   Child classes implement this trait to provide their own behavior for
39 //!   virtual methods. The trait's methods take `&self` to access instance data.
40 //!   The traits have the appropriate specialization of `IsA<>` as a supertrait,
41 //!   for example `IsA<DeviceState>` for `DeviceImpl`.
42 //!
43 //! * a trait for instance methods, for example `DeviceMethods`. This trait is
44 //!   automatically implemented for any reference or smart pointer to a device
45 //!   instance.  It calls into the vtable provides access across all subclasses
46 //!   to methods defined for the class.
47 //!
48 //! * optionally, a trait for class methods, for example `DeviceClassMethods`.
49 //!   This provides access to class-wide functionality that doesn't depend on
50 //!   instance data. Like instance methods, these are automatically inherited by
51 //!   child classes.
52 //!
53 //! # Class structures
54 //!
55 //! Each QOM class that has virtual methods describes them in a
56 //! _class struct_.  Class structs include a parent field corresponding
57 //! to the vtable of the parent class, all the way up to [`ObjectClass`].
58 //!
59 //! As mentioned above, virtual methods are defined via traits such as
60 //! `DeviceImpl`.  Class structs do not define any trait but, conventionally,
61 //! all of them have a `class_init` method to initialize the virtual methods
62 //! based on the trait and then call the same method on the superclass.
63 //!
64 //! ```ignore
65 //! impl YourSubclassClass
66 //! {
67 //!     pub fn class_init<T: YourSubclassImpl>(&mut self) {
68 //!         ...
69 //!         klass.parent_class::class_init<T>();
70 //!     }
71 //! }
72 //! ```
73 //!
74 //! If a class implements a QOM interface.  In that case, the function must
75 //! contain, for each interface, an extra forwarding call as follows:
76 //!
77 //! ```ignore
78 //! ResettableClass::cast::<Self>(self).class_init::<Self>();
79 //! ```
80 //!
81 //! These `class_init` functions are methods on the class rather than a trait,
82 //! because the bound on `T` (`DeviceImpl` in this case), will change for every
83 //! class struct.  The functions are pointed to by the
84 //! [`ObjectImpl::CLASS_INIT`] function pointer. While there is no default
85 //! implementation, in most cases it will be enough to write it as follows:
86 //!
87 //! ```ignore
88 //! const CLASS_INIT: fn(&mut Self::Class)> = Self::Class::class_init::<Self>;
89 //! ```
90 //!
91 //! This design incurs a small amount of code duplication but, by not using
92 //! traits, it allows the flexibility of implementing bindings in any crate,
93 //! without incurring into violations of orphan rules for traits.
94 
95 use std::{
96     ffi::CStr,
97     fmt,
98     mem::ManuallyDrop,
99     ops::{Deref, DerefMut},
100     os::raw::c_void,
101     ptr::NonNull,
102 };
103 
104 pub use bindings::{Object, ObjectClass};
105 
106 use crate::{
107     bindings::{
108         self, object_class_dynamic_cast, object_dynamic_cast, object_get_class,
109         object_get_typename, object_new, object_ref, object_unref, TypeInfo,
110     },
111     cell::bql_locked,
112 };
113 
114 /// Marker trait: `Self` can be statically upcasted to `P` (i.e. `P` is a direct
115 /// or indirect parent of `Self`).
116 ///
117 /// # Safety
118 ///
119 /// The struct `Self` must be `#[repr(C)]` and must begin, directly or
120 /// indirectly, with a field of type `P`.  This ensures that invalid casts,
121 /// which rely on `IsA<>` for static checking, are rejected at compile time.
122 pub unsafe trait IsA<P: ObjectType>: ObjectType {}
123 
124 // SAFETY: it is always safe to cast to your own type
125 unsafe impl<T: ObjectType> IsA<T> for T {}
126 
127 /// Macro to mark superclasses of QOM classes.  This enables type-safe
128 /// up- and downcasting.
129 ///
130 /// # Safety
131 ///
132 /// This macro is a thin wrapper around the [`IsA`] trait and performs
133 /// no checking whatsoever of what is declared.  It is the caller's
134 /// responsibility to have $struct begin, directly or indirectly, with
135 /// a field of type `$parent`.
136 #[macro_export]
137 macro_rules! qom_isa {
138     ($struct:ty : $($parent:ty),* ) => {
139         $(
140             // SAFETY: it is the caller responsibility to have $parent as the
141             // first field
142             unsafe impl $crate::qom::IsA<$parent> for $struct {}
143 
144             impl AsRef<$parent> for $struct {
145                 fn as_ref(&self) -> &$parent {
146                     // SAFETY: follows the same rules as for IsA<U>, which is
147                     // declared above.
148                     let ptr: *const Self = self;
149                     unsafe { &*ptr.cast::<$parent>() }
150                 }
151             }
152         )*
153     };
154 }
155 
156 /// This is the same as [`ManuallyDrop<T>`](std::mem::ManuallyDrop), though
157 /// it hides the standard methods of `ManuallyDrop`.
158 ///
159 /// The first field of an `ObjectType` must be of type `ParentField<T>`.
160 /// (Technically, this is only necessary if there is at least one Rust
161 /// superclass in the hierarchy).  This is to ensure that the parent field is
162 /// dropped after the subclass; this drop order is enforced by the C
163 /// `object_deinit` function.
164 ///
165 /// # Examples
166 ///
167 /// ```ignore
168 /// #[repr(C)]
169 /// #[derive(qemu_api_macros::Object)]
170 /// pub struct MyDevice {
171 ///     parent: ParentField<DeviceState>,
172 ///     ...
173 /// }
174 /// ```
175 #[derive(Debug)]
176 #[repr(transparent)]
177 pub struct ParentField<T: ObjectType>(std::mem::ManuallyDrop<T>);
178 
179 impl<T: ObjectType> Deref for ParentField<T> {
180     type Target = T;
181 
182     #[inline(always)]
183     fn deref(&self) -> &Self::Target {
184         &self.0
185     }
186 }
187 
188 impl<T: ObjectType> DerefMut for ParentField<T> {
189     #[inline(always)]
190     fn deref_mut(&mut self) -> &mut Self::Target {
191         &mut self.0
192     }
193 }
194 
195 impl<T: fmt::Display + ObjectType> fmt::Display for ParentField<T> {
196     #[inline(always)]
197     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
198         self.0.fmt(f)
199     }
200 }
201 
202 unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut Object) {
203     let mut state = NonNull::new(obj).unwrap().cast::<T>();
204     // SAFETY: obj is an instance of T, since rust_instance_init<T>
205     // is called from QOM core as the instance_init function
206     // for class T
207     unsafe {
208         T::INSTANCE_INIT.unwrap()(state.as_mut());
209     }
210 }
211 
212 unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut Object) {
213     let state = NonNull::new(obj).unwrap().cast::<T>();
214     // SAFETY: obj is an instance of T, since rust_instance_post_init<T>
215     // is called from QOM core as the instance_post_init function
216     // for class T
217     T::INSTANCE_POST_INIT.unwrap()(unsafe { state.as_ref() });
218 }
219 
220 unsafe extern "C" fn rust_class_init<T: ObjectType + ObjectImpl>(
221     klass: *mut ObjectClass,
222     _data: *mut c_void,
223 ) {
224     let mut klass = NonNull::new(klass)
225         .unwrap()
226         .cast::<<T as ObjectType>::Class>();
227     // SAFETY: klass is a T::Class, since rust_class_init<T>
228     // is called from QOM core as the class_init function
229     // for class T
230     <T as ObjectImpl>::CLASS_INIT(unsafe { klass.as_mut() })
231 }
232 
233 unsafe extern "C" fn drop_object<T: ObjectImpl>(obj: *mut Object) {
234     // SAFETY: obj is an instance of T, since drop_object<T> is called
235     // from the QOM core function object_deinit() as the instance_finalize
236     // function for class T.  Note that while object_deinit() will drop the
237     // superclass field separately after this function returns, `T` must
238     // implement the unsafe trait ObjectType; the safety rules for the
239     // trait mandate that the parent field is manually dropped.
240     unsafe { std::ptr::drop_in_place(obj.cast::<T>()) }
241 }
242 
243 /// Trait exposed by all structs corresponding to QOM objects.
244 ///
245 /// # Safety
246 ///
247 /// For classes declared in C:
248 ///
249 /// - `Class` and `TYPE` must match the data in the `TypeInfo`;
250 ///
251 /// - the first field of the struct must be of the instance type corresponding
252 ///   to the superclass, as declared in the `TypeInfo`
253 ///
254 /// - likewise, the first field of the `Class` struct must be of the class type
255 ///   corresponding to the superclass
256 ///
257 /// For classes declared in Rust and implementing [`ObjectImpl`]:
258 ///
259 /// - the struct must be `#[repr(C)]`;
260 ///
261 /// - the first field of the struct must be of type
262 ///   [`ParentField<T>`](ParentField), where `T` is the parent type
263 ///   [`ObjectImpl::ParentType`]
264 ///
265 /// - the first field of the `Class` must be of the class struct corresponding
266 ///   to the superclass, which is `ObjectImpl::ParentType::Class`. `ParentField`
267 ///   is not needed here.
268 ///
269 /// In both cases, having a separate class type is not necessary if the subclass
270 /// does not add any field.
271 pub unsafe trait ObjectType: Sized {
272     /// The QOM class object corresponding to this struct.  This is used
273     /// to automatically generate a `class_init` method.
274     type Class;
275 
276     /// The name of the type, which can be passed to `object_new()` to
277     /// generate an instance of this type.
278     const TYPE_NAME: &'static CStr;
279 
280     /// Return the receiver as an Object.  This is always safe, even
281     /// if this type represents an interface.
282     fn as_object(&self) -> &Object {
283         unsafe { &*self.as_object_ptr() }
284     }
285 
286     /// Return the receiver as a const raw pointer to Object.
287     /// This is preferrable to `as_object_mut_ptr()` if a C
288     /// function only needs a `const Object *`.
289     fn as_object_ptr(&self) -> *const Object {
290         self.as_ptr().cast()
291     }
292 
293     /// Return the receiver as a mutable raw pointer to Object.
294     ///
295     /// # Safety
296     ///
297     /// This cast is always safe, but because the result is mutable
298     /// and the incoming reference is not, this should only be used
299     /// for calls to C functions, and only if needed.
300     unsafe fn as_object_mut_ptr(&self) -> *mut Object {
301         self.as_object_ptr() as *mut _
302     }
303 }
304 
305 /// Trait exposed by all structs corresponding to QOM interfaces.
306 /// Unlike `ObjectType`, it is implemented on the class type (which provides
307 /// the vtable for the interfaces).
308 ///
309 /// # Safety
310 ///
311 /// `TYPE` must match the contents of the `TypeInfo` as found in the C code;
312 /// right now, interfaces can only be declared in C.
313 pub unsafe trait InterfaceType: Sized {
314     /// The name of the type, which can be passed to
315     /// `object_class_dynamic_cast()` to obtain the pointer to the vtable
316     /// for this interface.
317     const TYPE_NAME: &'static CStr;
318 
319     /// Return the vtable for the interface; `U` is the type that
320     /// lists the interface in its `TypeInfo`.
321     ///
322     /// # Examples
323     ///
324     /// This function is usually called by a `class_init` method in `U::Class`.
325     /// For example, `DeviceClass::class_init<T>` initializes its `Resettable`
326     /// interface as follows:
327     ///
328     /// ```ignore
329     /// ResettableClass::cast::<DeviceState>(self).class_init::<T>();
330     /// ```
331     ///
332     /// where `T` is the concrete subclass that is being initialized.
333     ///
334     /// # Panics
335     ///
336     /// Panic if the incoming argument if `T` does not implement the interface.
337     fn cast<U: ObjectType>(klass: &mut U::Class) -> &mut Self {
338         unsafe {
339             // SAFETY: upcasting to ObjectClass is always valid, and the
340             // return type is either NULL or the argument itself
341             let result: *mut Self = object_class_dynamic_cast(
342                 (klass as *mut U::Class).cast(),
343                 Self::TYPE_NAME.as_ptr(),
344             )
345             .cast();
346             result.as_mut().unwrap()
347         }
348     }
349 }
350 
351 /// This trait provides safe casting operations for QOM objects to raw pointers,
352 /// to be used for example for FFI. The trait can be applied to any kind of
353 /// reference or smart pointers, and enforces correctness through the [`IsA`]
354 /// trait.
355 pub trait ObjectDeref: Deref
356 where
357     Self::Target: ObjectType,
358 {
359     /// Convert to a const Rust pointer, to be used for example for FFI.
360     /// The target pointer type must be the type of `self` or a superclass
361     fn as_ptr<U: ObjectType>(&self) -> *const U
362     where
363         Self::Target: IsA<U>,
364     {
365         let ptr: *const Self::Target = self.deref();
366         ptr.cast::<U>()
367     }
368 
369     /// Convert to a mutable Rust pointer, to be used for example for FFI.
370     /// The target pointer type must be the type of `self` or a superclass.
371     /// Used to implement interior mutability for objects.
372     ///
373     /// # Safety
374     ///
375     /// This method is safe because only the actual dereference of the pointer
376     /// has to be unsafe.  Bindings to C APIs will use it a lot, but care has
377     /// to be taken because it overrides the const-ness of `&self`.
378     fn as_mut_ptr<U: ObjectType>(&self) -> *mut U
379     where
380         Self::Target: IsA<U>,
381     {
382         #[allow(clippy::as_ptr_cast_mut)]
383         {
384             self.as_ptr::<U>() as *mut _
385         }
386     }
387 }
388 
389 /// Trait that adds extra functionality for `&T` where `T` is a QOM
390 /// object type.  Allows conversion to/from C objects in generic code.
391 pub trait ObjectCast: ObjectDeref + Copy
392 where
393     Self::Target: ObjectType,
394 {
395     /// Safely convert from a derived type to one of its parent types.
396     ///
397     /// This is always safe; the [`IsA`] trait provides static verification
398     /// trait that `Self` dereferences to `U` or a child of `U`.
399     fn upcast<'a, U: ObjectType>(self) -> &'a U
400     where
401         Self::Target: IsA<U>,
402         Self: 'a,
403     {
404         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
405         unsafe { self.unsafe_cast::<U>() }
406     }
407 
408     /// Attempt to convert to a derived type.
409     ///
410     /// Returns `None` if the object is not actually of type `U`. This is
411     /// verified at runtime by checking the object's type information.
412     fn downcast<'a, U: IsA<Self::Target>>(self) -> Option<&'a U>
413     where
414         Self: 'a,
415     {
416         self.dynamic_cast::<U>()
417     }
418 
419     /// Attempt to convert between any two types in the QOM hierarchy.
420     ///
421     /// Returns `None` if the object is not actually of type `U`. This is
422     /// verified at runtime by checking the object's type information.
423     fn dynamic_cast<'a, U: ObjectType>(self) -> Option<&'a U>
424     where
425         Self: 'a,
426     {
427         unsafe {
428             // SAFETY: upcasting to Object is always valid, and the
429             // return type is either NULL or the argument itself
430             let result: *const U =
431                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
432 
433             result.as_ref()
434         }
435     }
436 
437     /// Convert to any QOM type without verification.
438     ///
439     /// # Safety
440     ///
441     /// What safety? You need to know yourself that the cast is correct; only
442     /// use when performance is paramount.  It is still better than a raw
443     /// pointer `cast()`, which does not even check that you remain in the
444     /// realm of QOM `ObjectType`s.
445     ///
446     /// `unsafe_cast::<Object>()` is always safe.
447     unsafe fn unsafe_cast<'a, U: ObjectType>(self) -> &'a U
448     where
449         Self: 'a,
450     {
451         unsafe { &*(self.as_ptr::<Self::Target>().cast::<U>()) }
452     }
453 }
454 
455 impl<T: ObjectType> ObjectDeref for &T {}
456 impl<T: ObjectType> ObjectCast for &T {}
457 
458 /// Trait for mutable type casting operations in the QOM hierarchy.
459 ///
460 /// This trait provides the mutable counterparts to [`ObjectCast`]'s conversion
461 /// functions. Unlike `ObjectCast`, this trait returns `Result` for fallible
462 /// conversions to preserve the original smart pointer if the cast fails. This
463 /// is necessary because mutable references cannot be copied, so a failed cast
464 /// must return ownership of the original reference. For example:
465 ///
466 /// ```ignore
467 /// let mut dev = get_device();
468 /// // If this fails, we need the original `dev` back to try something else
469 /// match dev.dynamic_cast_mut::<FooDevice>() {
470 ///    Ok(foodev) => /* use foodev */,
471 ///    Err(dev) => /* still have ownership of dev */
472 /// }
473 /// ```
474 pub trait ObjectCastMut: Sized + ObjectDeref + DerefMut
475 where
476     Self::Target: ObjectType,
477 {
478     /// Safely convert from a derived type to one of its parent types.
479     ///
480     /// This is always safe; the [`IsA`] trait provides static verification
481     /// that `Self` dereferences to `U` or a child of `U`.
482     fn upcast_mut<'a, U: ObjectType>(self) -> &'a mut U
483     where
484         Self::Target: IsA<U>,
485         Self: 'a,
486     {
487         // SAFETY: soundness is declared via IsA<U>, which is an unsafe trait
488         unsafe { self.unsafe_cast_mut::<U>() }
489     }
490 
491     /// Attempt to convert to a derived type.
492     ///
493     /// Returns `Ok(..)` if the object is of type `U`, or `Err(self)` if the
494     /// object if the conversion failed. This is verified at runtime by
495     /// checking the object's type information.
496     fn downcast_mut<'a, U: IsA<Self::Target>>(self) -> Result<&'a mut U, Self>
497     where
498         Self: 'a,
499     {
500         self.dynamic_cast_mut::<U>()
501     }
502 
503     /// Attempt to convert between any two types in the QOM hierarchy.
504     ///
505     /// Returns `Ok(..)` if the object is of type `U`, or `Err(self)` if the
506     /// object if the conversion failed. This is verified at runtime by
507     /// checking the object's type information.
508     fn dynamic_cast_mut<'a, U: ObjectType>(self) -> Result<&'a mut U, Self>
509     where
510         Self: 'a,
511     {
512         unsafe {
513             // SAFETY: upcasting to Object is always valid, and the
514             // return type is either NULL or the argument itself
515             let result: *mut U =
516                 object_dynamic_cast(self.as_object_mut_ptr(), U::TYPE_NAME.as_ptr()).cast();
517 
518             result.as_mut().ok_or(self)
519         }
520     }
521 
522     /// Convert to any QOM type without verification.
523     ///
524     /// # Safety
525     ///
526     /// What safety? You need to know yourself that the cast is correct; only
527     /// use when performance is paramount.  It is still better than a raw
528     /// pointer `cast()`, which does not even check that you remain in the
529     /// realm of QOM `ObjectType`s.
530     ///
531     /// `unsafe_cast::<Object>()` is always safe.
532     unsafe fn unsafe_cast_mut<'a, U: ObjectType>(self) -> &'a mut U
533     where
534         Self: 'a,
535     {
536         unsafe { &mut *self.as_mut_ptr::<Self::Target>().cast::<U>() }
537     }
538 }
539 
540 impl<T: ObjectType> ObjectDeref for &mut T {}
541 impl<T: ObjectType> ObjectCastMut for &mut T {}
542 
543 /// Trait a type must implement to be registered with QEMU.
544 pub trait ObjectImpl: ObjectType + IsA<Object> {
545     /// The parent of the type.  This should match the first field of the
546     /// struct that implements `ObjectImpl`, minus the `ParentField<_>` wrapper.
547     type ParentType: ObjectType;
548 
549     /// Whether the object can be instantiated
550     const ABSTRACT: bool = false;
551 
552     /// Function that is called to initialize an object.  The parent class will
553     /// have already been initialized so the type is only responsible for
554     /// initializing its own members.
555     ///
556     /// FIXME: The argument is not really a valid reference. `&mut
557     /// MaybeUninit<Self>` would be a better description.
558     const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
559 
560     /// Function that is called to finish initialization of an object, once
561     /// `INSTANCE_INIT` functions have been called.
562     const INSTANCE_POST_INIT: Option<fn(&Self)> = None;
563 
564     /// Called on descendent classes after all parent class initialization
565     /// has occurred, but before the class itself is initialized.  This
566     /// is only useful if a class is not a leaf, and can be used to undo
567     /// the effects of copying the contents of the parent's class struct
568     /// to the descendants.
569     const CLASS_BASE_INIT: Option<
570         unsafe extern "C" fn(klass: *mut ObjectClass, data: *mut c_void),
571     > = None;
572 
573     const TYPE_INFO: TypeInfo = TypeInfo {
574         name: Self::TYPE_NAME.as_ptr(),
575         parent: Self::ParentType::TYPE_NAME.as_ptr(),
576         instance_size: core::mem::size_of::<Self>(),
577         instance_align: core::mem::align_of::<Self>(),
578         instance_init: match Self::INSTANCE_INIT {
579             None => None,
580             Some(_) => Some(rust_instance_init::<Self>),
581         },
582         instance_post_init: match Self::INSTANCE_POST_INIT {
583             None => None,
584             Some(_) => Some(rust_instance_post_init::<Self>),
585         },
586         instance_finalize: Some(drop_object::<Self>),
587         abstract_: Self::ABSTRACT,
588         class_size: core::mem::size_of::<Self::Class>(),
589         class_init: Some(rust_class_init::<Self>),
590         class_base_init: Self::CLASS_BASE_INIT,
591         class_data: core::ptr::null_mut(),
592         interfaces: core::ptr::null_mut(),
593     };
594 
595     // methods on ObjectClass
596     const UNPARENT: Option<fn(&Self)> = None;
597 
598     /// Store into the argument the virtual method implementations
599     /// for `Self`.  On entry, the virtual method pointers are set to
600     /// the default values coming from the parent classes; the function
601     /// can change them to override virtual methods of a parent class.
602     ///
603     /// Usually defined simply as `Self::Class::class_init::<Self>`;
604     /// however a default implementation cannot be included here, because the
605     /// bounds that the `Self::Class::class_init` method places on `Self` are
606     /// not known in advance.
607     ///
608     /// # Safety
609     ///
610     /// While `klass`'s parent class is initialized on entry, the other fields
611     /// are all zero; it is therefore assumed that all fields in `T` can be
612     /// zeroed, otherwise it would not be possible to provide the class as a
613     /// `&mut T`.  TODO: add a bound of [`Zeroable`](crate::zeroable::Zeroable)
614     /// to T; this is more easily done once Zeroable does not require a manual
615     /// implementation (Rust 1.75.0).
616     const CLASS_INIT: fn(&mut Self::Class);
617 }
618 
619 /// # Safety
620 ///
621 /// We expect the FFI user of this function to pass a valid pointer that
622 /// can be downcasted to type `T`. We also expect the device is
623 /// readable/writeable from one thread at any time.
624 unsafe extern "C" fn rust_unparent_fn<T: ObjectImpl>(dev: *mut Object) {
625     let state = NonNull::new(dev).unwrap().cast::<T>();
626     T::UNPARENT.unwrap()(unsafe { state.as_ref() });
627 }
628 
629 impl ObjectClass {
630     /// Fill in the virtual methods of `ObjectClass` based on the definitions in
631     /// the `ObjectImpl` trait.
632     pub fn class_init<T: ObjectImpl>(&mut self) {
633         if <T as ObjectImpl>::UNPARENT.is_some() {
634             self.unparent = Some(rust_unparent_fn::<T>);
635         }
636     }
637 }
638 
639 unsafe impl ObjectType for Object {
640     type Class = ObjectClass;
641     const TYPE_NAME: &'static CStr =
642         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_OBJECT) };
643 }
644 
645 /// A reference-counted pointer to a QOM object.
646 ///
647 /// `Owned<T>` wraps `T` with automatic reference counting.  It increases the
648 /// reference count when created via [`Owned::from`] or cloned, and decreases
649 /// it when dropped.  This ensures that the reference count remains elevated
650 /// as long as any `Owned<T>` references to it exist.
651 ///
652 /// `Owned<T>` can be used for two reasons:
653 /// * because the lifetime of the QOM object is unknown and someone else could
654 ///   take a reference (similar to `Arc<T>`, for example): in this case, the
655 ///   object can escape and outlive the Rust struct that contains the `Owned<T>`
656 ///   field;
657 ///
658 /// * to ensure that the object stays alive until after `Drop::drop` is called
659 ///   on the Rust struct: in this case, the object will always die together with
660 ///   the Rust struct that contains the `Owned<T>` field.
661 ///
662 /// Child properties are an example of the second case: in C, an object that
663 /// is created with `object_initialize_child` will die *before*
664 /// `instance_finalize` is called, whereas Rust expects the struct to have valid
665 /// contents when `Drop::drop` is called.  Therefore Rust structs that have
666 /// child properties need to keep a reference to the child object.  Right now
667 /// this can be done with `Owned<T>`; in the future one might have a separate
668 /// `Child<'parent, T>` smart pointer that keeps a reference to a `T`, like
669 /// `Owned`, but does not allow cloning.
670 ///
671 /// Note that dropping an `Owned<T>` requires the big QEMU lock to be taken.
672 #[repr(transparent)]
673 #[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
674 pub struct Owned<T: ObjectType>(NonNull<T>);
675 
676 // The following rationale for safety is taken from Linux's kernel::sync::Arc.
677 
678 // SAFETY: It is safe to send `Owned<T>` to another thread when the underlying
679 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
680 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
681 // thread that has an `Owned<T>` may ultimately access `T` using a
682 // mutable reference when the reference count reaches zero and `T` is dropped.
683 unsafe impl<T: ObjectType + Send + Sync> Send for Owned<T> {}
684 
685 // SAFETY: It is safe to send `&Owned<T>` to another thread when the underlying
686 // `T` is `Sync` because it effectively means sharing `&T` (which is safe
687 // because `T` is `Sync`); additionally, it needs `T` to be `Send` because any
688 // thread that has a `&Owned<T>` may clone it and get an `Owned<T>` on that
689 // thread, so the thread may ultimately access `T` using a mutable reference
690 // when the reference count reaches zero and `T` is dropped.
691 unsafe impl<T: ObjectType + Sync + Send> Sync for Owned<T> {}
692 
693 impl<T: ObjectType> Owned<T> {
694     /// Convert a raw C pointer into an owned reference to the QOM
695     /// object it points to.  The object's reference count will be
696     /// decreased when the `Owned` is dropped.
697     ///
698     /// # Panics
699     ///
700     /// Panics if `ptr` is NULL.
701     ///
702     /// # Safety
703     ///
704     /// The caller must indeed own a reference to the QOM object.
705     /// The object must not be embedded in another unless the outer
706     /// object is guaranteed to have a longer lifetime.
707     ///
708     /// A raw pointer obtained via [`Owned::into_raw()`] can always be passed
709     /// back to `from_raw()` (assuming the original `Owned` was valid!),
710     /// since the owned reference remains there between the calls to
711     /// `into_raw()` and `from_raw()`.
712     pub unsafe fn from_raw(ptr: *const T) -> Self {
713         // SAFETY NOTE: while NonNull requires a mutable pointer, only
714         // Deref is implemented so the pointer passed to from_raw
715         // remains const
716         Owned(NonNull::new(ptr as *mut T).unwrap())
717     }
718 
719     /// Obtain a raw C pointer from a reference.  `src` is consumed
720     /// and the reference is leaked.
721     #[allow(clippy::missing_const_for_fn)]
722     pub fn into_raw(src: Owned<T>) -> *mut T {
723         let src = ManuallyDrop::new(src);
724         src.0.as_ptr()
725     }
726 
727     /// Increase the reference count of a QOM object and return
728     /// a new owned reference to it.
729     ///
730     /// # Safety
731     ///
732     /// The object must not be embedded in another, unless the outer
733     /// object is guaranteed to have a longer lifetime.
734     pub unsafe fn from(obj: &T) -> Self {
735         unsafe {
736             object_ref(obj.as_object_mut_ptr().cast::<c_void>());
737 
738             // SAFETY NOTE: while NonNull requires a mutable pointer, only
739             // Deref is implemented so the reference passed to from_raw
740             // remains shared
741             Owned(NonNull::new_unchecked(obj.as_mut_ptr()))
742         }
743     }
744 }
745 
746 impl<T: ObjectType> Clone for Owned<T> {
747     fn clone(&self) -> Self {
748         // SAFETY: creation method is unsafe; whoever calls it has
749         // responsibility that the pointer is valid, and remains valid
750         // throughout the lifetime of the `Owned<T>` and its clones.
751         unsafe { Owned::from(self.deref()) }
752     }
753 }
754 
755 impl<T: ObjectType> Deref for Owned<T> {
756     type Target = T;
757 
758     fn deref(&self) -> &Self::Target {
759         // SAFETY: creation method is unsafe; whoever calls it has
760         // responsibility that the pointer is valid, and remains valid
761         // throughout the lifetime of the `Owned<T>` and its clones.
762         // With that guarantee, reference counting ensures that
763         // the object remains alive.
764         unsafe { &*self.0.as_ptr() }
765     }
766 }
767 impl<T: ObjectType> ObjectDeref for Owned<T> {}
768 
769 impl<T: ObjectType> Drop for Owned<T> {
770     fn drop(&mut self) {
771         assert!(bql_locked());
772         // SAFETY: creation method is unsafe, and whoever calls it has
773         // responsibility that the pointer is valid, and remains valid
774         // throughout the lifetime of the `Owned<T>` and its clones.
775         unsafe {
776             object_unref(self.as_object_mut_ptr().cast::<c_void>());
777         }
778     }
779 }
780 
781 impl<T: IsA<Object>> fmt::Debug for Owned<T> {
782     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
783         self.deref().debug_fmt(f)
784     }
785 }
786 
787 /// Trait for class methods exposed by the Object class.  The methods can be
788 /// called on all objects that have the trait `IsA<Object>`.
789 ///
790 /// The trait should only be used through the blanket implementation,
791 /// which guarantees safety via `IsA`
792 pub trait ObjectClassMethods: IsA<Object> {
793     /// Return a new reference counted instance of this class
794     fn new() -> Owned<Self> {
795         assert!(bql_locked());
796         // SAFETY: the object created by object_new is allocated on
797         // the heap and has a reference count of 1
798         unsafe {
799             let obj = &*object_new(Self::TYPE_NAME.as_ptr());
800             Owned::from_raw(obj.unsafe_cast::<Self>())
801         }
802     }
803 }
804 
805 /// Trait for methods exposed by the Object class.  The methods can be
806 /// called on all objects that have the trait `IsA<Object>`.
807 ///
808 /// The trait should only be used through the blanket implementation,
809 /// which guarantees safety via `IsA`
810 pub trait ObjectMethods: ObjectDeref
811 where
812     Self::Target: IsA<Object>,
813 {
814     /// Return the name of the type of `self`
815     fn typename(&self) -> std::borrow::Cow<'_, str> {
816         let obj = self.upcast::<Object>();
817         // SAFETY: safety of this is the requirement for implementing IsA
818         // The result of the C API has static lifetime
819         unsafe {
820             let p = object_get_typename(obj.as_mut_ptr());
821             CStr::from_ptr(p).to_string_lossy()
822         }
823     }
824 
825     fn get_class(&self) -> &'static <Self::Target as ObjectType>::Class {
826         let obj = self.upcast::<Object>();
827 
828         // SAFETY: all objects can call object_get_class; the actual class
829         // type is guaranteed by the implementation of `ObjectType` and
830         // `ObjectImpl`.
831         let klass: &'static <Self::Target as ObjectType>::Class =
832             unsafe { &*object_get_class(obj.as_mut_ptr()).cast() };
833 
834         klass
835     }
836 
837     /// Convenience function for implementing the Debug trait
838     fn debug_fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
839         f.debug_tuple(&self.typename())
840             .field(&(self as *const Self))
841             .finish()
842     }
843 }
844 
845 impl<T> ObjectClassMethods for T where T: IsA<Object> {}
846 impl<R: ObjectDeref> ObjectMethods for R where R::Target: IsA<Object> {}
847