xref: /qemu/rust/qemu-api/src/qdev.rs (revision fca2817fdcb00e65020c2dcfcb0b23b2a20ea3c4)
1 // Copyright 2024, Linaro Limited
2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
3 // SPDX-License-Identifier: GPL-2.0-or-later
4 
5 //! Bindings to create devices and access device functionality from Rust.
6 
7 use std::{
8     ffi::{CStr, CString},
9     os::raw::{c_int, c_void},
10     ptr::NonNull,
11 };
12 
13 pub use bindings::{ClockEvent, DeviceClass, Property, ResetType};
14 
15 use crate::{
16     bindings::{self, qdev_init_gpio_in, qdev_init_gpio_out, Error, ResettableClass},
17     callbacks::FnCall,
18     cell::{bql_locked, Opaque},
19     chardev::Chardev,
20     irq::InterruptSource,
21     prelude::*,
22     qom::{ObjectClass, ObjectImpl, Owned},
23     vmstate::VMStateDescription,
24 };
25 
26 /// A safe wrapper around [`bindings::Clock`].
27 #[repr(transparent)]
28 #[derive(Debug, qemu_api_macros::Wrapper)]
29 pub struct Clock(Opaque<bindings::Clock>);
30 
31 unsafe impl Send for Clock {}
32 unsafe impl Sync for Clock {}
33 
34 /// A safe wrapper around [`bindings::DeviceState`].
35 #[repr(transparent)]
36 #[derive(Debug, qemu_api_macros::Wrapper)]
37 pub struct DeviceState(Opaque<bindings::DeviceState>);
38 
39 unsafe impl Send for DeviceState {}
40 unsafe impl Sync for DeviceState {}
41 
42 /// Trait providing the contents of the `ResettablePhases` struct,
43 /// which is part of the QOM `Resettable` interface.
44 pub trait ResettablePhasesImpl {
45     /// If not None, this is called when the object enters reset. It
46     /// can reset local state of the object, but it must not do anything that
47     /// has a side-effect on other objects, such as raising or lowering an
48     /// [`InterruptSource`], or reading or writing guest memory. It takes the
49     /// reset's type as argument.
50     const ENTER: Option<fn(&Self, ResetType)> = None;
51 
52     /// If not None, this is called when the object for entry into reset, once
53     /// every object in the system which is being reset has had its
54     /// `ResettablePhasesImpl::ENTER` method called. At this point devices
55     /// can do actions that affect other objects.
56     ///
57     /// If in doubt, implement this method.
58     const HOLD: Option<fn(&Self, ResetType)> = None;
59 
60     /// If not None, this phase is called when the object leaves the reset
61     /// state. Actions affecting other objects are permitted.
62     const EXIT: Option<fn(&Self, ResetType)> = None;
63 }
64 
65 /// # Safety
66 ///
67 /// We expect the FFI user of this function to pass a valid pointer that
68 /// can be downcasted to type `T`. We also expect the device is
69 /// readable/writeable from one thread at any time.
70 unsafe extern "C" fn rust_resettable_enter_fn<T: ResettablePhasesImpl>(
71     obj: *mut bindings::Object,
72     typ: ResetType,
73 ) {
74     let state = NonNull::new(obj).unwrap().cast::<T>();
75     T::ENTER.unwrap()(unsafe { state.as_ref() }, typ);
76 }
77 
78 /// # Safety
79 ///
80 /// We expect the FFI user of this function to pass a valid pointer that
81 /// can be downcasted to type `T`. We also expect the device is
82 /// readable/writeable from one thread at any time.
83 unsafe extern "C" fn rust_resettable_hold_fn<T: ResettablePhasesImpl>(
84     obj: *mut bindings::Object,
85     typ: ResetType,
86 ) {
87     let state = NonNull::new(obj).unwrap().cast::<T>();
88     T::HOLD.unwrap()(unsafe { state.as_ref() }, typ);
89 }
90 
91 /// # Safety
92 ///
93 /// We expect the FFI user of this function to pass a valid pointer that
94 /// can be downcasted to type `T`. We also expect the device is
95 /// readable/writeable from one thread at any time.
96 unsafe extern "C" fn rust_resettable_exit_fn<T: ResettablePhasesImpl>(
97     obj: *mut bindings::Object,
98     typ: ResetType,
99 ) {
100     let state = NonNull::new(obj).unwrap().cast::<T>();
101     T::EXIT.unwrap()(unsafe { state.as_ref() }, typ);
102 }
103 
104 /// Trait providing the contents of [`DeviceClass`].
105 pub trait DeviceImpl: ObjectImpl + ResettablePhasesImpl + IsA<DeviceState> {
106     /// _Realization_ is the second stage of device creation. It contains
107     /// all operations that depend on device properties and can fail (note:
108     /// this is not yet supported for Rust devices).
109     ///
110     /// If not `None`, the parent class's `realize` method is overridden
111     /// with the function pointed to by `REALIZE`.
112     const REALIZE: Option<fn(&Self)> = None;
113 
114     /// An array providing the properties that the user can set on the
115     /// device.  Not a `const` because referencing statics in constants
116     /// is unstable until Rust 1.83.0.
117     fn properties() -> &'static [Property] {
118         &[]
119     }
120 
121     /// A `VMStateDescription` providing the migration format for the device
122     /// Not a `const` because referencing statics in constants is unstable
123     /// until Rust 1.83.0.
124     fn vmsd() -> Option<&'static VMStateDescription> {
125         None
126     }
127 }
128 
129 /// # Safety
130 ///
131 /// This function is only called through the QOM machinery and
132 /// used by `DeviceClass::class_init`.
133 /// We expect the FFI user of this function to pass a valid pointer that
134 /// can be downcasted to type `T`. We also expect the device is
135 /// readable/writeable from one thread at any time.
136 unsafe extern "C" fn rust_realize_fn<T: DeviceImpl>(
137     dev: *mut bindings::DeviceState,
138     _errp: *mut *mut Error,
139 ) {
140     let state = NonNull::new(dev).unwrap().cast::<T>();
141     T::REALIZE.unwrap()(unsafe { state.as_ref() });
142 }
143 
144 unsafe impl InterfaceType for ResettableClass {
145     const TYPE_NAME: &'static CStr =
146         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_RESETTABLE_INTERFACE) };
147 }
148 
149 impl ResettableClass {
150     /// Fill in the virtual methods of `ResettableClass` based on the
151     /// definitions in the `ResettablePhasesImpl` trait.
152     pub fn class_init<T: ResettablePhasesImpl>(&mut self) {
153         if <T as ResettablePhasesImpl>::ENTER.is_some() {
154             self.phases.enter = Some(rust_resettable_enter_fn::<T>);
155         }
156         if <T as ResettablePhasesImpl>::HOLD.is_some() {
157             self.phases.hold = Some(rust_resettable_hold_fn::<T>);
158         }
159         if <T as ResettablePhasesImpl>::EXIT.is_some() {
160             self.phases.exit = Some(rust_resettable_exit_fn::<T>);
161         }
162     }
163 }
164 
165 impl DeviceClass {
166     /// Fill in the virtual methods of `DeviceClass` based on the definitions in
167     /// the `DeviceImpl` trait.
168     pub fn class_init<T: DeviceImpl>(&mut self) {
169         if <T as DeviceImpl>::REALIZE.is_some() {
170             self.realize = Some(rust_realize_fn::<T>);
171         }
172         if let Some(vmsd) = <T as DeviceImpl>::vmsd() {
173             self.vmsd = vmsd;
174         }
175         let prop = <T as DeviceImpl>::properties();
176         if !prop.is_empty() {
177             unsafe {
178                 bindings::device_class_set_props_n(self, prop.as_ptr(), prop.len());
179             }
180         }
181 
182         ResettableClass::cast::<DeviceState>(self).class_init::<T>();
183         self.parent_class.class_init::<T>();
184     }
185 }
186 
187 #[macro_export]
188 macro_rules! define_property {
189     ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, bit = $bitnr:expr, default = $defval:expr$(,)*) => {
190         $crate::bindings::Property {
191             // use associated function syntax for type checking
192             name: ::std::ffi::CStr::as_ptr($name),
193             info: $prop,
194             offset: $crate::offset_of!($state, $field) as isize,
195             bitnr: $bitnr,
196             set_default: true,
197             defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 },
198             ..$crate::zeroable::Zeroable::ZERO
199         }
200     };
201     ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, default = $defval:expr$(,)*) => {
202         $crate::bindings::Property {
203             // use associated function syntax for type checking
204             name: ::std::ffi::CStr::as_ptr($name),
205             info: $prop,
206             offset: $crate::offset_of!($state, $field) as isize,
207             set_default: true,
208             defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 },
209             ..$crate::zeroable::Zeroable::ZERO
210         }
211     };
212     ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty$(,)*) => {
213         $crate::bindings::Property {
214             // use associated function syntax for type checking
215             name: ::std::ffi::CStr::as_ptr($name),
216             info: $prop,
217             offset: $crate::offset_of!($state, $field) as isize,
218             set_default: false,
219             ..$crate::zeroable::Zeroable::ZERO
220         }
221     };
222 }
223 
224 #[macro_export]
225 macro_rules! declare_properties {
226     ($ident:ident, $($prop:expr),*$(,)*) => {
227         pub static $ident: [$crate::bindings::Property; {
228             let mut len = 0;
229             $({
230                 _ = stringify!($prop);
231                 len += 1;
232             })*
233             len
234         }] = [
235             $($prop),*,
236         ];
237     };
238 }
239 
240 unsafe impl ObjectType for DeviceState {
241     type Class = DeviceClass;
242     const TYPE_NAME: &'static CStr =
243         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_DEVICE) };
244 }
245 qom_isa!(DeviceState: Object);
246 
247 /// Trait for methods exposed by the [`DeviceState`] class.  The methods can be
248 /// called on all objects that have the trait `IsA<DeviceState>`.
249 ///
250 /// The trait should only be used through the blanket implementation,
251 /// which guarantees safety via `IsA`.
252 pub trait DeviceMethods: ObjectDeref
253 where
254     Self::Target: IsA<DeviceState>,
255 {
256     /// Add an input clock named `name`.  Invoke the callback with
257     /// `self` as the first parameter for the events that are requested.
258     ///
259     /// The resulting clock is added as a child of `self`, but it also
260     /// stays alive until after `Drop::drop` is called because C code
261     /// keeps an extra reference to it until `device_finalize()` calls
262     /// `qdev_finalize_clocklist()`.  Therefore (unlike most cases in
263     /// which Rust code has a reference to a child object) it would be
264     /// possible for this function to return a `&Clock` too.
265     #[inline]
266     fn init_clock_in<F: for<'a> FnCall<(&'a Self::Target, ClockEvent)>>(
267         &self,
268         name: &str,
269         _cb: &F,
270         events: ClockEvent,
271     ) -> Owned<Clock> {
272         fn do_init_clock_in(
273             dev: &DeviceState,
274             name: &str,
275             cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)>,
276             events: ClockEvent,
277         ) -> Owned<Clock> {
278             assert!(bql_locked());
279 
280             // SAFETY: the clock is heap allocated, but qdev_init_clock_in()
281             // does not gift the reference to its caller; so use Owned::from to
282             // add one.  The callback is disabled automatically when the clock
283             // is unparented, which happens before the device is finalized.
284             unsafe {
285                 let cstr = CString::new(name).unwrap();
286                 let clk = bindings::qdev_init_clock_in(
287                     dev.as_mut_ptr(),
288                     cstr.as_ptr(),
289                     cb,
290                     dev.as_void_ptr(),
291                     events.0,
292                 );
293 
294                 let clk: &Clock = Clock::from_raw(clk);
295                 Owned::from(clk)
296             }
297         }
298 
299         let cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)> = if F::is_some() {
300             unsafe extern "C" fn rust_clock_cb<T, F: for<'a> FnCall<(&'a T, ClockEvent)>>(
301                 opaque: *mut c_void,
302                 event: ClockEvent,
303             ) {
304                 // SAFETY: the opaque is "this", which is indeed a pointer to T
305                 F::call((unsafe { &*(opaque.cast::<T>()) }, event))
306             }
307             Some(rust_clock_cb::<Self::Target, F>)
308         } else {
309             None
310         };
311 
312         do_init_clock_in(self.upcast(), name, cb, events)
313     }
314 
315     /// Add an output clock named `name`.
316     ///
317     /// The resulting clock is added as a child of `self`, but it also
318     /// stays alive until after `Drop::drop` is called because C code
319     /// keeps an extra reference to it until `device_finalize()` calls
320     /// `qdev_finalize_clocklist()`.  Therefore (unlike most cases in
321     /// which Rust code has a reference to a child object) it would be
322     /// possible for this function to return a `&Clock` too.
323     #[inline]
324     fn init_clock_out(&self, name: &str) -> Owned<Clock> {
325         unsafe {
326             let cstr = CString::new(name).unwrap();
327             let clk = bindings::qdev_init_clock_out(self.upcast().as_mut_ptr(), cstr.as_ptr());
328 
329             let clk: &Clock = Clock::from_raw(clk);
330             Owned::from(clk)
331         }
332     }
333 
334     fn prop_set_chr(&self, propname: &str, chr: &Owned<Chardev>) {
335         assert!(bql_locked());
336         let c_propname = CString::new(propname).unwrap();
337         let chr: &Chardev = chr;
338         unsafe {
339             bindings::qdev_prop_set_chr(
340                 self.upcast().as_mut_ptr(),
341                 c_propname.as_ptr(),
342                 chr.as_mut_ptr(),
343             );
344         }
345     }
346 
347     fn init_gpio_in<F: for<'a> FnCall<(&'a Self::Target, u32, u32)>>(
348         &self,
349         num_lines: u32,
350         _cb: F,
351     ) {
352         fn do_init_gpio_in(
353             dev: &DeviceState,
354             num_lines: u32,
355             gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int),
356         ) {
357             unsafe {
358                 qdev_init_gpio_in(dev.as_mut_ptr(), Some(gpio_in_cb), num_lines as c_int);
359             }
360         }
361 
362         let _: () = F::ASSERT_IS_SOME;
363         unsafe extern "C" fn rust_irq_handler<T, F: for<'a> FnCall<(&'a T, u32, u32)>>(
364             opaque: *mut c_void,
365             line: c_int,
366             level: c_int,
367         ) {
368             // SAFETY: the opaque was passed as a reference to `T`
369             F::call((unsafe { &*(opaque.cast::<T>()) }, line as u32, level as u32))
370         }
371 
372         let gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int) =
373             rust_irq_handler::<Self::Target, F>;
374 
375         do_init_gpio_in(self.upcast(), num_lines, gpio_in_cb);
376     }
377 
378     fn init_gpio_out(&self, pins: &[InterruptSource]) {
379         unsafe {
380             qdev_init_gpio_out(
381                 self.upcast().as_mut_ptr(),
382                 InterruptSource::slice_as_ptr(pins),
383                 pins.len() as c_int,
384             );
385         }
386     }
387 }
388 
389 impl<R: ObjectDeref> DeviceMethods for R where R::Target: IsA<DeviceState> {}
390 
391 unsafe impl ObjectType for Clock {
392     type Class = ObjectClass;
393     const TYPE_NAME: &'static CStr =
394         unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_CLOCK) };
395 }
396 qom_isa!(Clock: Object);
397