1 // Copyright 2024, Linaro Limited 2 // Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> 3 // SPDX-License-Identifier: GPL-2.0-or-later 4 5 //! Bindings to create devices and access device functionality from Rust. 6 7 use std::{ 8 ffi::{c_int, c_void, CStr, CString}, 9 ptr::NonNull, 10 }; 11 12 pub use bindings::{ClockEvent, DeviceClass, Property, ResetType}; 13 14 use crate::{ 15 bindings::{self, qdev_init_gpio_in, qdev_init_gpio_out, ResettableClass}, 16 callbacks::FnCall, 17 cell::{bql_locked, Opaque}, 18 chardev::Chardev, 19 error::{Error, Result}, 20 irq::InterruptSource, 21 prelude::*, 22 qom::{ObjectClass, ObjectImpl, Owned}, 23 vmstate::VMStateDescription, 24 }; 25 26 /// A safe wrapper around [`bindings::Clock`]. 27 #[repr(transparent)] 28 #[derive(Debug, qemu_api_macros::Wrapper)] 29 pub struct Clock(Opaque<bindings::Clock>); 30 31 unsafe impl Send for Clock {} 32 unsafe impl Sync for Clock {} 33 34 /// A safe wrapper around [`bindings::DeviceState`]. 35 #[repr(transparent)] 36 #[derive(Debug, qemu_api_macros::Wrapper)] 37 pub struct DeviceState(Opaque<bindings::DeviceState>); 38 39 unsafe impl Send for DeviceState {} 40 unsafe impl Sync for DeviceState {} 41 42 /// Trait providing the contents of the `ResettablePhases` struct, 43 /// which is part of the QOM `Resettable` interface. 44 pub trait ResettablePhasesImpl { 45 /// If not None, this is called when the object enters reset. It 46 /// can reset local state of the object, but it must not do anything that 47 /// has a side-effect on other objects, such as raising or lowering an 48 /// [`InterruptSource`], or reading or writing guest memory. It takes the 49 /// reset's type as argument. 50 const ENTER: Option<fn(&Self, ResetType)> = None; 51 52 /// If not None, this is called when the object for entry into reset, once 53 /// every object in the system which is being reset has had its 54 /// `ResettablePhasesImpl::ENTER` method called. At this point devices 55 /// can do actions that affect other objects. 56 /// 57 /// If in doubt, implement this method. 58 const HOLD: Option<fn(&Self, ResetType)> = None; 59 60 /// If not None, this phase is called when the object leaves the reset 61 /// state. Actions affecting other objects are permitted. 62 const EXIT: Option<fn(&Self, ResetType)> = None; 63 } 64 65 /// # Safety 66 /// 67 /// We expect the FFI user of this function to pass a valid pointer that 68 /// can be downcasted to type `T`. We also expect the device is 69 /// readable/writeable from one thread at any time. 70 unsafe extern "C" fn rust_resettable_enter_fn<T: ResettablePhasesImpl>( 71 obj: *mut bindings::Object, 72 typ: ResetType, 73 ) { 74 let state = NonNull::new(obj).unwrap().cast::<T>(); 75 T::ENTER.unwrap()(unsafe { state.as_ref() }, typ); 76 } 77 78 /// # Safety 79 /// 80 /// We expect the FFI user of this function to pass a valid pointer that 81 /// can be downcasted to type `T`. We also expect the device is 82 /// readable/writeable from one thread at any time. 83 unsafe extern "C" fn rust_resettable_hold_fn<T: ResettablePhasesImpl>( 84 obj: *mut bindings::Object, 85 typ: ResetType, 86 ) { 87 let state = NonNull::new(obj).unwrap().cast::<T>(); 88 T::HOLD.unwrap()(unsafe { state.as_ref() }, typ); 89 } 90 91 /// # Safety 92 /// 93 /// We expect the FFI user of this function to pass a valid pointer that 94 /// can be downcasted to type `T`. We also expect the device is 95 /// readable/writeable from one thread at any time. 96 unsafe extern "C" fn rust_resettable_exit_fn<T: ResettablePhasesImpl>( 97 obj: *mut bindings::Object, 98 typ: ResetType, 99 ) { 100 let state = NonNull::new(obj).unwrap().cast::<T>(); 101 T::EXIT.unwrap()(unsafe { state.as_ref() }, typ); 102 } 103 104 /// Trait providing the contents of [`DeviceClass`]. 105 pub trait DeviceImpl: ObjectImpl + ResettablePhasesImpl + IsA<DeviceState> { 106 /// _Realization_ is the second stage of device creation. It contains 107 /// all operations that depend on device properties and can fail (note: 108 /// this is not yet supported for Rust devices). 109 /// 110 /// If not `None`, the parent class's `realize` method is overridden 111 /// with the function pointed to by `REALIZE`. 112 const REALIZE: Option<fn(&Self) -> Result<()>> = None; 113 114 /// An array providing the properties that the user can set on the 115 /// device. Not a `const` because referencing statics in constants 116 /// is unstable until Rust 1.83.0. 117 fn properties() -> &'static [Property] { 118 &[] 119 } 120 121 /// A `VMStateDescription` providing the migration format for the device 122 /// Not a `const` because referencing statics in constants is unstable 123 /// until Rust 1.83.0. 124 fn vmsd() -> Option<&'static VMStateDescription> { 125 None 126 } 127 } 128 129 /// # Safety 130 /// 131 /// This function is only called through the QOM machinery and 132 /// used by `DeviceClass::class_init`. 133 /// We expect the FFI user of this function to pass a valid pointer that 134 /// can be downcasted to type `T`. We also expect the device is 135 /// readable/writeable from one thread at any time. 136 unsafe extern "C" fn rust_realize_fn<T: DeviceImpl>( 137 dev: *mut bindings::DeviceState, 138 errp: *mut *mut bindings::Error, 139 ) { 140 let state = NonNull::new(dev).unwrap().cast::<T>(); 141 let result = T::REALIZE.unwrap()(unsafe { state.as_ref() }); 142 unsafe { 143 Error::ok_or_propagate(result, errp); 144 } 145 } 146 147 unsafe impl InterfaceType for ResettableClass { 148 const TYPE_NAME: &'static CStr = 149 unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_RESETTABLE_INTERFACE) }; 150 } 151 152 impl ResettableClass { 153 /// Fill in the virtual methods of `ResettableClass` based on the 154 /// definitions in the `ResettablePhasesImpl` trait. 155 pub fn class_init<T: ResettablePhasesImpl>(&mut self) { 156 if <T as ResettablePhasesImpl>::ENTER.is_some() { 157 self.phases.enter = Some(rust_resettable_enter_fn::<T>); 158 } 159 if <T as ResettablePhasesImpl>::HOLD.is_some() { 160 self.phases.hold = Some(rust_resettable_hold_fn::<T>); 161 } 162 if <T as ResettablePhasesImpl>::EXIT.is_some() { 163 self.phases.exit = Some(rust_resettable_exit_fn::<T>); 164 } 165 } 166 } 167 168 impl DeviceClass { 169 /// Fill in the virtual methods of `DeviceClass` based on the definitions in 170 /// the `DeviceImpl` trait. 171 pub fn class_init<T: DeviceImpl>(&mut self) { 172 if <T as DeviceImpl>::REALIZE.is_some() { 173 self.realize = Some(rust_realize_fn::<T>); 174 } 175 if let Some(vmsd) = <T as DeviceImpl>::vmsd() { 176 self.vmsd = vmsd; 177 } 178 let prop = <T as DeviceImpl>::properties(); 179 if !prop.is_empty() { 180 unsafe { 181 bindings::device_class_set_props_n(self, prop.as_ptr(), prop.len()); 182 } 183 } 184 185 ResettableClass::cast::<DeviceState>(self).class_init::<T>(); 186 self.parent_class.class_init::<T>(); 187 } 188 } 189 190 #[macro_export] 191 macro_rules! define_property { 192 ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, bit = $bitnr:expr, default = $defval:expr$(,)*) => { 193 $crate::bindings::Property { 194 // use associated function syntax for type checking 195 name: ::std::ffi::CStr::as_ptr($name), 196 info: $prop, 197 offset: ::std::mem::offset_of!($state, $field) as isize, 198 bitnr: $bitnr, 199 set_default: true, 200 defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 }, 201 ..$crate::zeroable::Zeroable::ZERO 202 } 203 }; 204 ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, default = $defval:expr$(,)*) => { 205 $crate::bindings::Property { 206 // use associated function syntax for type checking 207 name: ::std::ffi::CStr::as_ptr($name), 208 info: $prop, 209 offset: ::std::mem::offset_of!($state, $field) as isize, 210 set_default: true, 211 defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 }, 212 ..$crate::zeroable::Zeroable::ZERO 213 } 214 }; 215 ($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty$(,)*) => { 216 $crate::bindings::Property { 217 // use associated function syntax for type checking 218 name: ::std::ffi::CStr::as_ptr($name), 219 info: $prop, 220 offset: ::std::mem::offset_of!($state, $field) as isize, 221 set_default: false, 222 ..$crate::zeroable::Zeroable::ZERO 223 } 224 }; 225 } 226 227 #[macro_export] 228 macro_rules! declare_properties { 229 ($ident:ident, $($prop:expr),*$(,)*) => { 230 pub static $ident: [$crate::bindings::Property; { 231 let mut len = 0; 232 $({ 233 _ = stringify!($prop); 234 len += 1; 235 })* 236 len 237 }] = [ 238 $($prop),*, 239 ]; 240 }; 241 } 242 243 unsafe impl ObjectType for DeviceState { 244 type Class = DeviceClass; 245 const TYPE_NAME: &'static CStr = 246 unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_DEVICE) }; 247 } 248 qom_isa!(DeviceState: Object); 249 250 /// Trait for methods exposed by the [`DeviceState`] class. The methods can be 251 /// called on all objects that have the trait `IsA<DeviceState>`. 252 /// 253 /// The trait should only be used through the blanket implementation, 254 /// which guarantees safety via `IsA`. 255 pub trait DeviceMethods: ObjectDeref 256 where 257 Self::Target: IsA<DeviceState>, 258 { 259 /// Add an input clock named `name`. Invoke the callback with 260 /// `self` as the first parameter for the events that are requested. 261 /// 262 /// The resulting clock is added as a child of `self`, but it also 263 /// stays alive until after `Drop::drop` is called because C code 264 /// keeps an extra reference to it until `device_finalize()` calls 265 /// `qdev_finalize_clocklist()`. Therefore (unlike most cases in 266 /// which Rust code has a reference to a child object) it would be 267 /// possible for this function to return a `&Clock` too. 268 #[inline] 269 fn init_clock_in<F: for<'a> FnCall<(&'a Self::Target, ClockEvent)>>( 270 &self, 271 name: &str, 272 _cb: &F, 273 events: ClockEvent, 274 ) -> Owned<Clock> { 275 fn do_init_clock_in( 276 dev: &DeviceState, 277 name: &str, 278 cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)>, 279 events: ClockEvent, 280 ) -> Owned<Clock> { 281 assert!(bql_locked()); 282 283 // SAFETY: the clock is heap allocated, but qdev_init_clock_in() 284 // does not gift the reference to its caller; so use Owned::from to 285 // add one. The callback is disabled automatically when the clock 286 // is unparented, which happens before the device is finalized. 287 unsafe { 288 let cstr = CString::new(name).unwrap(); 289 let clk = bindings::qdev_init_clock_in( 290 dev.as_mut_ptr(), 291 cstr.as_ptr(), 292 cb, 293 dev.as_void_ptr(), 294 events.0, 295 ); 296 297 let clk: &Clock = Clock::from_raw(clk); 298 Owned::from(clk) 299 } 300 } 301 302 let cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)> = if F::is_some() { 303 unsafe extern "C" fn rust_clock_cb<T, F: for<'a> FnCall<(&'a T, ClockEvent)>>( 304 opaque: *mut c_void, 305 event: ClockEvent, 306 ) { 307 // SAFETY: the opaque is "this", which is indeed a pointer to T 308 F::call((unsafe { &*(opaque.cast::<T>()) }, event)) 309 } 310 Some(rust_clock_cb::<Self::Target, F>) 311 } else { 312 None 313 }; 314 315 do_init_clock_in(self.upcast(), name, cb, events) 316 } 317 318 /// Add an output clock named `name`. 319 /// 320 /// The resulting clock is added as a child of `self`, but it also 321 /// stays alive until after `Drop::drop` is called because C code 322 /// keeps an extra reference to it until `device_finalize()` calls 323 /// `qdev_finalize_clocklist()`. Therefore (unlike most cases in 324 /// which Rust code has a reference to a child object) it would be 325 /// possible for this function to return a `&Clock` too. 326 #[inline] 327 fn init_clock_out(&self, name: &str) -> Owned<Clock> { 328 unsafe { 329 let cstr = CString::new(name).unwrap(); 330 let clk = bindings::qdev_init_clock_out(self.upcast().as_mut_ptr(), cstr.as_ptr()); 331 332 let clk: &Clock = Clock::from_raw(clk); 333 Owned::from(clk) 334 } 335 } 336 337 fn prop_set_chr(&self, propname: &str, chr: &Owned<Chardev>) { 338 assert!(bql_locked()); 339 let c_propname = CString::new(propname).unwrap(); 340 let chr: &Chardev = chr; 341 unsafe { 342 bindings::qdev_prop_set_chr( 343 self.upcast().as_mut_ptr(), 344 c_propname.as_ptr(), 345 chr.as_mut_ptr(), 346 ); 347 } 348 } 349 350 fn init_gpio_in<F: for<'a> FnCall<(&'a Self::Target, u32, u32)>>( 351 &self, 352 num_lines: u32, 353 _cb: F, 354 ) { 355 fn do_init_gpio_in( 356 dev: &DeviceState, 357 num_lines: u32, 358 gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int), 359 ) { 360 unsafe { 361 qdev_init_gpio_in(dev.as_mut_ptr(), Some(gpio_in_cb), num_lines as c_int); 362 } 363 } 364 365 let _: () = F::ASSERT_IS_SOME; 366 unsafe extern "C" fn rust_irq_handler<T, F: for<'a> FnCall<(&'a T, u32, u32)>>( 367 opaque: *mut c_void, 368 line: c_int, 369 level: c_int, 370 ) { 371 // SAFETY: the opaque was passed as a reference to `T` 372 F::call((unsafe { &*(opaque.cast::<T>()) }, line as u32, level as u32)) 373 } 374 375 let gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int) = 376 rust_irq_handler::<Self::Target, F>; 377 378 do_init_gpio_in(self.upcast(), num_lines, gpio_in_cb); 379 } 380 381 fn init_gpio_out(&self, pins: &[InterruptSource]) { 382 unsafe { 383 qdev_init_gpio_out( 384 self.upcast().as_mut_ptr(), 385 InterruptSource::slice_as_ptr(pins), 386 pins.len() as c_int, 387 ); 388 } 389 } 390 } 391 392 impl<R: ObjectDeref> DeviceMethods for R where R::Target: IsA<DeviceState> {} 393 394 unsafe impl ObjectType for Clock { 395 type Class = ObjectClass; 396 const TYPE_NAME: &'static CStr = 397 unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_CLOCK) }; 398 } 399 qom_isa!(Clock: Object); 400